WorldWideScience

Sample records for bacterial surface layer

  1. Electric double layer interactions in bacterial adhesion to surfaces

    NARCIS (Netherlands)

    Poortinga, AT; Norde, W; Busscher, HJ; Bos, R.R.M.

    2002-01-01

    The DLVO (Derjaguin, Landau, Verwey, Overbeek) theory was originally developed to describe interactions between non-biological lyophobic colloids such as polystyrene particles, but is also used to describe bacterial adhesion to surfaces. Despite the differences between the surface of bacteria and th

  2. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    Science.gov (United States)

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.

  3. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Science.gov (United States)

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations. PMID:26659364

  4. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Dustin W Kemp

    Full Text Available Coral surface mucus layer (SML microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance, underside (low irradiance, and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  5. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  6. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  7. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  8. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.;

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  9. Friction contact mechanisms of layered surface

    Institute of Scientific and Technical Information of China (English)

    Fan Xue; Diao Dongfeng

    2013-01-01

    In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering.Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is described.Furthermore,the contact stress evolution processes of layered surface with and without transfer layer during wear are given for understanding the contact mechanisms.Finally,a three-dimension (3D) local yield map of layered surface is introduced,which is useful to predict the possible contact mechanisms.

  10. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  11. Uncertainties in Surface Layer Modeling

    Science.gov (United States)

    Pendergrass, W.

    2015-12-01

    A central problem for micrometeorologists has been the relationship of air-surface exchange rates of momentum and heat to quantities that can be predicted with confidence. The flux-gradient profile developed through Monin-Obukhov Similarity Theory (MOST) provides an integration of the dimensionless wind shear expression where is an empirically derived expression for stable and unstable atmospheric conditions. Empirically derived expressions are far from universally accepted (Garratt, 1992, Table A5). Regardless of what form of these relationships might be used, their significance over any short period of time is questionable since all of these relationships between fluxes and gradients apply to averages that might rarely occur. It is well accepted that the assumption of stationarity and homogeneity do not reflect the true chaotic nature of the processes that control the variables considered in these relationships, with the net consequence that the levels of predictability theoretically attainable might never be realized in practice. This matter is of direct relevance to modern prognostic models which construct forecasts by assuming the universal applicability of relationships among averages for the lower atmosphere, which rarely maintains an average state. Under a Cooperative research and Development Agreement between NOAA and Duke Energy Generation, NOAA/ATDD conducted atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of legacy flux-gradient formulations (the ϕ functions, see Monin and Obukhov, 1954) for the exchange of heat and momentum. At the Duke Energy Ocotillo site, NOAA/ATDD installed sonic anemometers reporting wind and temperature fluctuations at 10Hz at eight elevations. From these observations, ϕM and ϕH were derived from a two-year database of mean and turbulent wind and temperature observations. From this extensive measurement database, using a

  12. Surface-induced layer formation in polyelectrolytes

    OpenAIRE

    Solis, F. J.; de la Cruz, M. Olvera

    1998-01-01

    We analyze, by means of an RPA calculation, the conditions under which a mixture of oppositely charged polyelectrolytes can micro-segregate in the neighborhood of a charged surface creating a layered structure. A number of stable layers can be formed if the surface is sufficiently strongly charged even at temperatures at which the bulk of the mixture is homogeneous.

  13. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  14. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    NARCIS (Netherlands)

    Frade, P.R.; Roll, K.; Bergauer, K.; Herndl, G.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associatedwith the surface mucus layer of corals have rarely taken place. It has thereforeremained enigmatic whether mucus-associated archaeal and bacterial communities exhibita similar specificity towards coral hosts a

  15. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  16. Estimating Bacterial Loadings to Surface Waters from Agricultural Watersheds

    OpenAIRE

    Panhorst, Kimberly A.

    2002-01-01

    Fecal bacteria and pathogens are a major source of surface water impairment. In Virginia alone, approximately 73% of impaired waters are impaired due to fecal coliforms (FC). Because bacteria are a significant cause of water body impairment and existing bacterial models are predominantly based upon laboratory-derived information, bacterial models are needed that describe bacterial die-off and transport processes under field conditions. Before these bacterial models can be developed, more f...

  17. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  18. Contaminated concrete surface layer removal

    International Nuclear Information System (INIS)

    Equipment is being developed to economically remove contaminated concrete surfaces in nuclear facilities. To be effective this equipment should minimize personnel radiation exposure, minimize the volume of material removed, and perform the operation quickly with the least amount of energy. Several methods for removing concrete surfaces are evaluated for use in decontaminating such facilities. Two unique methods especially suited for decontamination are described: one, the water cannon, is a device that fires a high-velocity jet of fluid causing spallation of the concrete surface; the other, a concrete spaller, is a tool that exerts radial pressure agains the sides of a pre-dilled shallow cylindrical hole causing spallation to occur. Each method includes a means for containing airborne contamination. Results of tests show that these techniques can rapidly and economically remove surfaces, and leave minimal rubble for controlled disposal

  19. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems. PMID:26856872

  20. Barriers to bacterial motility on unsaturated surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    and their isogenic mutants unable to express various type of motility we aimed to quantify the physical limits of bacterial motility. Our results demonstrate how hydration controls bacterial motility under unsaturated conditions. They can form the base of improved biodegradation models that include microbial...

  1. Variability of refractivity in the surface layer

    OpenAIRE

    Mabey, Deborah L.

    2002-01-01

    The author and members of the Boundary Layer Studies Group collected atmospheric surface layer profile properties affecting RF propagation during the Roughness and Evaporation Duct experiment off the windward coast of Oahu. We measured temperature, humidity and pressure profiles from the surface and up to 100 m by multi-level buoy-mounted sensors and a rawinsonde attached to a kite flown from a small vessel. We obtained the profiles concurrently with S-, X- and Ku-Band propagation measurement...

  2. Layering of ionic liquids on rough surfaces

    Science.gov (United States)

    Sheehan, Alexis; Jurado, L. Andres; Ramakrishna, Shivaprakash N.; Arcifa, Andrea; Rossi, Antonella; Spencer, Nicholas D.; Espinosa-Marzal, Rosa M.

    2016-02-01

    Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact.Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact. Electronic supplementary information (ESI) available: Optimized geometries and sizes for [HMIM] Ntf2, SEM images of the smooth and rough colloids, frequency of occurrence of layering in the resolved force-distance curves for all investigated systems with [HMIM] Ntf2, layer size and layering force measured with a sharp tip on mica for the same IL, and results of the kinetics experiments. See DOI: 10.1039/c5nr07805a

  3. Selective detection of bacterial layers with terahertz plasmonic antennas

    CERN Document Server

    Berrier, Audrey; Nonglaton, Guillaume; Bergquist, Jonas; Rivas, Jaime Gómez

    2012-01-01

    Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate complex, time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

  4. Selective detection of bacterial layers with terahertz plasmonic antennas.

    Science.gov (United States)

    Berrier, Audrey; Schaafsma, Martijn C; Nonglaton, Guillaume; Bergquist, Jonas; Rivas, Jaime Gómez

    2012-11-01

    Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate but complex and time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

  5. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    Science.gov (United States)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  6. Surface-layer gusts for aircraft operation

    DEFF Research Database (Denmark)

    Young, G.S.; Kristensen, L.

    1992-01-01

    We use Monin-Obukhov similarity theory to extend the Kristensen et al. (1991) aviation gust estimation technique from the neutral to the diabatic surface layer. Example calculations demonstrate the importance of this correction. Simple stability class methods using only standard aviation surface...

  7. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    2012-01-01

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we pr

  8. Multipole surface solitons in layered thermal media

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2008-01-01

    We address the existence and properties of multipole solitons localized at a thermally insulating interface between uniform or layered thermal media and a linear dielectric. We find that in the case of uniform media, only surface multipoles with less than three poles can be stable. In contrast, we reveal that periodic alternation of the thermo-optic coefficient in layered thermal media makes possible the stabilization of higher order multipoles.

  9. Bacterial adhesion on ion-implanted stainless steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Q. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom)]. E-mail: q.zhao@dundee.ac.uk; Liu, Y. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, C. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, S. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Peng, N. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom); Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom)

    2007-08-31

    Stainless steel disks were implanted with N{sup +}, O{sup +} and SiF{sub 3} {sup +}, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF{sub 3} {sup +}-implanted stainless steel performed much better than N{sup +}-implanted steel, O{sup +}-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  10. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  11. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  12. Abundance of bacterial and diatom fouling on various surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi

    Abundance of bacterial and diatom fouling on aluminium, fibreglass and stainless steel were studied from Dona Paula waters of the Zuari Estuary. Both these forms were reversibly attached in large numbers to surfaces during the initial 24 hr...

  13. A simple method to assess bacterial attachment to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    The crystal violet microplate adhension assay was modified to evaluate bacterial adhesion to metal and non-metal surfaces. Both viable cell count and the absorbance of the crystal violet stained cells attached to aluminium increased over the period...

  14. Robotized PTA surfacing of nanomaterial layers

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2009-12-01

    Full Text Available Purpose: of this research was to investigate the influence of heat input in robotized surfacing on quality and properties of nanomaterial layers.Design/methodology/approach: quality of single and multilayer, stringer and weave beads was assessed by abrasion resistance tests according to ASTMG65 standard, erosion resistance tests according to G76 standard, metallographic examinations and hardness tests.Findings: due to the fact that the robotized surfacing stand was used, the analysis of properties of the deposits was performed for single and multilayer, stringer and weave beads.Research limitations/implications: for complete information about tested deposits it is needed to compare deposits properties PTA surfaced with other technologies of nanomaterial layers manufacturing products.Practical implications: Results of this paper is an optimal range of parameters of surfacing of single and multilayer, stringer and weave beads of nanomaterial layers.Originality: tests, abrasion and erosion resistance tests were provided for surfacing of single and multilayer, stringer and weave beads, and the results were compared. The influence of heat input on layers properties and theirs structure was defined.

  15. Ice nucleation protein as a bacterial surface display protein

    OpenAIRE

    Sarhan Mohammed A.A.

    2011-01-01

    Surface display technology can be defined as that phenotype (protein or peptide) which is linked to a genotype (DNA or RNA) through an appropriate anchoring motif. A bacterial surface display system is based on expressing recombinant proteins fused to sorting signals (anchoring motifs) that direct their incorporation on the cell surface.

  16. Robotized GMA surfacing of cermetalic layers

    OpenAIRE

    Klimpel, A; L.A. Dobrzański; T. Kik; A. Rzeźnikiewicz

    2006-01-01

    Purpose: Purpose of these researches was to investigate of influence of heat input in robotized surfacing on quality and properties of cermetalic layers.Design/methodology/approach: The quality of single and multilayer, stringer and weave beads was assessed by abrasion resistance tests according to ASTMG65 standard, erosion resistance tests according to G76 standard, metallographic examinations and hardness tests. Findings: Due to the fact that the it was used robotized surfacing stand, the a...

  17. The surface layer of cleaved bilayer manganites

    International Nuclear Information System (INIS)

    Recently, several informative reports have been published on spectroscopy experiments performed on cleaved surfaces of the bilayered colossal magnetoresistive manganite La2-2xSr1+2xMn2O7 (Konoto et al 2004 Phys. Rev. Lett. 93 107201, Freeland et al 2005 Nat. Mater. 4 62, Mannella et al 2005 Nature 438 474, Roennow et al 2006 Nature 440 1025). For the detailed interpretation of these results, it is of importance to know exactly which layer within the crystal structure is exposed to the surface upon cleavage. Here we combine crystal structure arguments, scanning tunnelling microscopy and x-ray photoelectron spectroscopy measurements to demonstrate that the crystals cleave between the rare-earth rock-salt oxide layers, leaving one outermost rare-earth oxide layer before the first electronically active MnO bilayer

  18. Reversibility of bacterial adhesion at an electrode surface

    NARCIS (Netherlands)

    Poortinga, AT; Busscher, HJ; Bos, R.R.M.

    2001-01-01

    Deposition of four bacterial strains from a 1 mM potassium phosphate buffer (pH 7) to an indium tin oxide (ITO) electrode surface has been studied in a parallel plate flow chamber at three electrode potentials (-0.2, 0.1, and 0.5 V). Capacitance measurements demonstrated that the ITO surface was neg

  19. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  20. Characterization of the Martian Surface Layer

    OpenAIRE

    Martínez, Germán; Valero Rodríguez, Francisco; Vázquez Martínez, Luis

    2009-01-01

    We have estimated the diurnal evolution of Monin- Obukhov length, friction velocity, temperature scale, surface heat flux, eddy-transfer coefficients for momentum and heat, and turbulent viscous dissipation rate on the Martian surface layer for a complete Sol belonging to the Pathfinder mission. All these magnitudes have been derived from in situ wind and temperature measurements at around 1.3 m height, and simulated ground temperature (from 6 a.m. Sol 25 to 6 a.m. Sol 26). Up to the momen...

  1. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  2. Characteristics of the Martian atmosphere surface layer

    Science.gov (United States)

    Clow, G. D.; Haberle, R. M.

    1991-01-01

    Researchers extend elements of various terrestrial boundary layer models to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface layer. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed. Parameterizations for specific heat and and binary diffusivity were also determined. The Prandtl and Schmidt numbers derived from these thermophysical properties were found to range from 0.78 - 1.0 and 0.47 - 0.70, respectively, for Mars. Brutsaert's model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the researchers modified the definition of the Monin-Obukhov length to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. This length scale was then utilized with similarity theory turbulent flux profiles with the same form as those used by Businger et al. and others. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  3. Barriers to bacterial motility on unsaturated surfaces

    OpenAIRE

    Dechesne, Arnaud; Smets, Barth F

    2013-01-01

    Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also contributes to microbial spatial dynamics. In bacteria, active dispersal is enabled by a diversity of appendages and, in the case of swarming motility, by the secretion of surface active biomolecules...

  4. Surface roughness scattering in multisubband accumulation layers

    Science.gov (United States)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-06-01

    Accumulation layers with very large concentrations of electrons where many subbands are filled became recently available due to ionic liquid and other new methods of gating. The low-temperature mobility in such layers is limited by the surface roughness scattering. However, theories of roughness scattering so far dealt only with the small-density single subband two-dimensional electron gas (2DEG). Here we develop a theory of roughness-scattering limited mobility for the multisubband large concentration case. We show that with growing 2D electron concentration n the surface dimensionless conductivity σ /(2 e2/h ) first decreases as ∝n-6 /5 and then saturates as ˜(d aB/Δ2)≫1 , where d and Δ are the characteristic length and height of the surface roughness and aB is the effective Bohr radius. This means that in spite of the shrinkage of the 2DEG thickness and the related increase of the scattering rate the 2DEG remains a good metal.

  5. Bioactive surfaces with atomic layer deposition

    OpenAIRE

    Kvalvik, Julie Nitsche

    2015-01-01

    The overall goal of this work has been to make bioactive surfaces with atomic layer deposition (ALD). To do this, a new ALD system with titanium tetraisopropoxide (TTIP) and lysine as precursors was developed with emphasis on studying the effects of pulsing times and deposition temperatures. TTIP was chosen as titanium is regarded to be biocompatible and lysine was chosen as poly-L-lysine is a part of the extra-cellular matrix (ECM) and hence affects cell adhesion. The effect of a water pulse...

  6. Bacterial populations and adaptations in the mucus layers on living corals

    Energy Technology Data Exchange (ETDEWEB)

    Ducklow, H.W.; Mitchell, R.

    1979-07-01

    The external mucus layers of the stony coral Porites astreoides and the soft corals Palythoa sp. and Heteroxenia fuscesens are inhabited by communities of marine heterotrophic bacteria. Population levels of bacteria in coral mucus may be regulated by the self-cleaning behavior of the host. Bacterial populations in coral mucus respond to stresses applied to the host coral by growing to higher population levels in the mucus, indicating that these are populations of viable organisms closely attuned to host metabolism. Members of these microbial populations utilize the mucus compounds and may play a role in processing coral mucus for reef detritus feeders. One such species, Vibrio alginolyticus, grows rapidly on Heteroxenia mucus, is attracted to dissolved mucus, and possesses a mechanism to maintain itself on the coral surface.

  7. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  8. Wear measurement by surface layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Blatchley, C.

    1987-05-01

    The purpose of these projects was to demonstrate the capability for precisely but remotely measuring small increments of wear, erosion or corrosion in utility components using detectors mounted outside the system to monitor the presence of radionuclide surface markers. These gamma ray emitting markers are produced by surface layer activation (SLA) using a high energy particle beam from a Van de Graaff or cyclotron particle accelerator. The work was divided into three major projects: (1) determination of the feasibility of applying SLA based surface monitoring techniques to key power plant systems; (2) a field demonstration of SLA monitoring in steam turbine components subject to severe solid particle erosion; and (3) a field demonstration of SLA wear or corrosion monitoring of components in boiler auxiliaries. In the field tests, surface material removal was successfully measured from both selected systems, demonstrating the feasibility of the technique for long term diagnostic condition monitoring. Three bearing components in a boiler circulation pump were monitored almost continuously for a period of over 5 months until the pump was stopped due to electrical problems unrelated to the wear measurements. Solid particle erosion from two stop valve bypass valves was measured during a series of nine startup cycles. Both test demonstrations confirmed the earlier feasibility estimates and showed how SLA markers can be used to provide valuable diagnostic information to plant operators. 22 refs., 63 figs., 29 tabs.

  9. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  10. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared im

  11. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0 to 3 Hz. Analyses show that soil stratification may lead to a significant changes in the impedance related......Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  12. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0-3 Hz. Analyses show that soil stratification may lead to significant changes in the impedance related......Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  13. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  14. X-ray lattice strain determination in surface layers

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Pantleon, Karen

    2002-01-01

    The present article describes several aspects of lattice strain determination in surface layers by means of X-ray diffraction analysis. Several possibilities and the origins of stress in surface layers are illustrated by the following three cases: 200 nm thick Mo layers on glass substrates; 5.5 m.......5 microns thick TiN layers on heat treatable steel and 21 microns thick gamma prime-Fe4N1-x layers on iron....

  15. Lethal bacterial trap: Cationic surface for endodontic sealing.

    Science.gov (United States)

    Kesler Shvero, Dana; Zaltsman, Nathan; Weiss, Ervin I; Polak, David; Hazan, Ronen; Beyth, Nurit

    2016-02-01

    Insoluble antibacterial cationic nanoparticles have been previously shown to have potent and long-lasting antibacterial properties. Our tested hypothesis was that root canal pathogens will be attracted to and eliminated when exposed to epoxy resin-based surfaces incorporating cationic nanoparticles. In our research, an epoxy resin-based surface incorporating quaternary ammonium polyethyleneimine (QPEI) nanoparticles was evaluated. Surface characterization was performed using atomic force microscopy and X-ray photoelectron spectra. The surface anti-Enterococcus faecalis effect was evaluated in an anti-gravitational model. Cell membrane potential, viability, biofilm thickness, and biomass were tested using flow cytometry and confocal laser scanning microscopy. Additionally, the antibiofilm activity of the bacterial supernatant was assessed. The surface characterization showed QPEI nanoparticle embedment on the modified sealer. The epoxy resin-based surface incorporating the QPEI nanoparticles actively attracted bacteria, causing membrane destabilization, and bacterial death. The supernatant of bacteria pre-exposed to QPEI showed an antibacterial effect. In conclusion, the tested epoxy resin-based surface incorporating QPEI nanoparticles traps and kills bacteria. The nanoparticles attracted bacteria, reducing their viability, and promoting cell death. PMID:26418438

  16. Bacterial adhesion to glass and metal-oxide surfaces.

    Science.gov (United States)

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  17. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  18. Surface layer characterisation of bearing rings

    Directory of Open Access Journals (Sweden)

    S.J. Skrzypek

    2007-11-01

    Full Text Available austenite. Theoretical calculation of residual macro-stresses due to volume fraction of transformed austenite in bearing rings and following measurements of residual stresses were carried out as well. The bearing elements were made of 100Cr6 steel and they were smoothed and grinded.Design/methodology/approach: Particular features of diffraction patterns like angle position; shape and intensity are used to characterize phase composition, residual micro and macro-stresses, crystallographic texture, lattice parameter, defects density and crystalline size.Findings: Machining by micro-deformation causes microstructural changes i.e. mechanically induced phase transformation of retained austenite and residual macrostresses. E.g. grinding cased tension and small compression whereas the mechanical smoothing of bearing rings caused high compresive residual stresses about -713 MPa.Research limitations/implications: For precise interpretation of differences between following results needs another investigations: i.e. measurement of retained austenite and residual stresses in rings after heat treatment before any mechanical treatment.Practical implications: The non-destructive character and large number of structural informations contained in diffraction pattern are the beneficial feature of diffraction methods. Therefore they have potential ability in application to technological operations and to diagnostic during fatigue.Originality/value: The non-destructive structure characterisation of surface layers for various kinds of bearing rings can be powerful method in surface characterization and in quality control. This results contribute in general relations between microstructure and properties.

  19. Photocatalytic bacterial inactivation by TiO2-coated surfaces

    OpenAIRE

    Bonetta, Silvia; Bonetta, Sara; Motta, Francesca; Strini, Alberto; Carraro, Elisabetta

    2013-01-01

    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Li...

  20. Surface Layer Turbulence During a Frontal Passage

    Energy Technology Data Exchange (ETDEWEB)

    Piper, M; Lundquist, J K

    2004-06-15

    Some recent investigations have begun to quantify turbulence and dissipation in frontal zones to address the question of what physical mechanism counteracts the intensification of temperature and velocity gradients across a developing front. Frank (1994) examines the turbulence structure of two fronts that passed a 200m instrumented tower near Karlsruhe, Germany. In addition to showing the mean vertical structure of the fronts as they pass the tower, Frank demonstrates that there is an order of magnitude or more increase in turbulent kinetic energy across the frontal zone. Blumen and Piper (1999) reported turbulence statistics, including dissipation rate measurements, from the MICROFRONTS field experiment, where high-frequency turbulence data were collected from tower-mounted hotwire and sonic anemometers in a cold front and in a density current. Chapman and Browning (2001) measured dissipation rate in a precipitating frontal zone with high-resolution Doppler radar. Their measurements were conducted above the surface layer, to heights of 5km. The dissipation rate values they found are comparable to those measured in Kennedy and Shapiro (1975) in an upper-level front. Here, we expand on these recent studies by depicting the behavior of the fine scales of turbulence near the surface in a frontal zone. The primary objective of this study is to quantify the levels of turbulence and dissipation occurring in a frontal zone through the calculation of kinetic energy spectra and dissipation rates. The high-resolution turbulence data used in this study are taken during the cold front that passed the MICROFRONTS site in the early evening hours of 20 March 1995. These new measurements can be used as a basis for parameterizing the effects of surface-layer turbulence in numerical models of frontogenesis. We present three techniques for calculating the dissipation rate: direct dissipation technique, inertial dissipation technique and Kolmogorov's four-fifths law. Dissipation

  1. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.

    Science.gov (United States)

    Ali, N; Asghar, Z; Anwar Bég, O; Sajid, M

    2016-05-21

    Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-shaped cells. In the present study we employ an undulating surface model to investigate the motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is characterized by an appropriate constitutive equation, namely the Carreau model. Employing the balances of mass and momentum conservation, the hydrodynamic undulating surface model is transformed into a fourth-order nonlinear differential equation in terms of a stream function under the long wavelength assumption. A perturbation approach is adopted to obtain closed form expressions for stream function, pressure rise per wavelength, forces generated by the organism and power required for propulsion. A numerical technique based on an implicit finite difference scheme is also employed to investigate various features of the model for large values of the rheological parameters of the slime. Verification of the numerical solutions is achieved with a variational finite element method (FEM). The computations demonstrate that the speed of the glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the organism is not free to move but instead generates a net fluid flow beneath it) is also investigated in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics. PMID:26903204

  2. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  3. Surface Instability of a Vertically Oscillating Granular Layer

    Institute of Scientific and Technical Information of China (English)

    SUI Lei; MIAO Guo-Qing; WEI Rong-Jue

    2001-01-01

    In the study of the surface instability of a vertically oscillating granular layer, we obtained experimentally thephase diagram for the surface states of the layer in the driving frequency-acceleration plane, and measured thedispersion relation for the surface waves in a granular layer in comparison to that in viscous fluids. Our experiments show that the onset dimensionless acceleration increases with the driving frequency, and the wavelengthof the surface waves increases with the depth of granular layer. These experimental results are in agreement withour theoretical model qualitatively.

  4. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    Science.gov (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs. PMID:26771749

  5. Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion

    DEFF Research Database (Denmark)

    Kingshott, Peter; Wei, Jiang; Bagge, Dorthe;

    2003-01-01

    The effects of different poly(ethylene glycol) (PEG) attachment strategies upon the adhesion of a Gram-negative bacteria (Pseudomonas sp.) was tested. PEG was covalently immobilized, at the lower critical solution temperature of PEG, to a layer of branched poly(ethylenimine) (PEI). PEI was both......F-SIMS analysis showed that both PEG surfaces adsorbed low but comparable levels of proteinaceous growth medium components (tryptic soy broth), as indicated by the addition of unique amino acid fragment ions in the spectra, most likely small peptides. Thus, bacterial adhesion was strongly dependent on the PEG...

  6. Bacterial diversity in the bottom boundary layer of the inner continental shelf of Oregon, USA

    KAUST Repository

    Bertagnolli, AD

    2011-06-21

    There have been few studies of the bacterial community within the bottom boundary layer (BBL) the turbulent region of the water column above the benthos in shallow seas. Typically, the BBL has large amounts of particulate organic matter suspended by turbulence, and it is often the first region of the water column to become hypoxic when oxygen declines. Communities at the surface (5 m) and in the BBL (1 to 10 m above the sea floor) were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA gene. Multivariate statistical methods (hierarchical clustering, non-metric multidimensional scaling, and analysis of similarity (ANOSIM)) indicated that the microbial community of the BBL is distinct from the surface community. ANOSIM supported the distinction between surface and BBLs (R values 0.427 and 0.463, based on analysis with restriction enzymes BsuR1 and Hin6I, respectively, p < 0.1%). Six terminal restriction fragments showed an increase in abundance with depth. Cloning, screening and sequencing identified these as a novel environmental clade (Eastern North Pacific Chromatiales (ENPC) clade), the ARTIC96BD-19 clade of Gammaproteobacteria, the 6N14 and Agg8 clades of the phylum Planctomycetes, the OM60/NOR5 clade of Gammaproteobacteria, and uncultivated members of the Roseobacter clade in the MB11C09 and ULA23 subgroups. To the best of our knowledge, this analysis is the first to focus on the unique composition of microbial communities of the BBL in shallow, inner-shelf regions off the coast of Oregon, USA, and the first to report that an uncharacterized clade of Chromatiales is indigenous in this habitat.

  7. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    OpenAIRE

    Doreene Kang; Qing Wang

    2016-01-01

    New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL) in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxe...

  8. White Layer of Hard Turned Surface by Sharp CBN Tool

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-ping; SONG He-chuan; C.Richard Liu

    2005-01-01

    White layers in hard turned surfaces were identified and measured as a function of turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool flank wear, and white layer depth varies with the different combinations of hard turning parameters. Turning speed has the most important impact on white layer depth, feed rate follows, and cutting depth at last. The white layer generation consequently suggests a strong couple relation to the heat generation and thermal process of hard turning operation. White layer disappears under an optimal combination of turning parameters by Taguchi method. It suggests that a superior surface integrity without white layer is feasible under some selected combinations of turning parameters by a sharp CBN cutting tool.

  9. Diamond nucleation on surface of C60 thin layers

    Institute of Scientific and Technical Information of China (English)

    杨国伟; 袁放成; 刘大军; 何金田; 张兵临

    1997-01-01

    Diamond nucleation on the surface of C60 thin layers and intermediate layer of Si substrates are studied by scanning electron microscopy (SEM). The cross-section SEM images of diamond films show that diamond grains really nucleate on the surface of C60 thin layers. The SEM images of diamond nucleating sites show the nucleating aggregation of diamond on C60 surfaces. The preferential oriented diamond films are observed. The plasma pre-treatment of C60 sublimating layers is a key factor for diamond nucleation.

  10. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value......The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...

  11. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  12. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-01

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  13. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    OpenAIRE

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shr...

  14. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    Science.gov (United States)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface

  15. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  16. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers.

    Science.gov (United States)

    Zakrisson, Johan; Singh, Bhupender; Svenmarker, Pontus; Wiklund, Krister; Zhang, Hanqing; Hakobyan, Shoghik; Ramstedt, Madeleine; Andersson, Magnus

    2016-05-10

    Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria. PMID:27088225

  17. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    Science.gov (United States)

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  18. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    Science.gov (United States)

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  19. Tunable hybrid surface waves supported by a graphene layer

    CERN Document Server

    Iorsh, Ivan; Belov, Pavel; Kivshar, Yuri

    2012-01-01

    We study surface waves localized near a surface of a semi-infinite dielectric medium covered by a layer of graphene in the presence of a strong external magnetic field. We demonstrate that both TE-TM hybrid surface plasmons can propagate along the graphene surface. We analyze the effect of the Hall conductivity on the disper- sion of hybrid surface waves and suggest a possibility to tune the plasmon dispersion by the magnetic field.

  20. Generation and characterization of surface layers on acoustically levitated drops.

    Science.gov (United States)

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs. PMID:17376468

  1. Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering

    Science.gov (United States)

    Saprykina, N. A.; Saprykin, A. A.; Ibragimov, E. A.; Arkhipova, D. A.

    2016-07-01

    The paper presents data on state of the art in selective laser sintering of products. Layer-by-layer sintering is shown to be a future-oriented technology, making it possible to synthesize products of metal powder materials. Factors, influencing the quality of a sintered product, are revealed in the paper. It presents outcomes of experiments, focused on the dependence of surface layer thickness of sintered aluminum powder PA-4 on laser processing conditions. Basic factors, influencing the quality of a sintered surface layer include laser power, speeds of scanning and moving the laser beam on the layer of powder. Thickness of the sintered layer varies from 0.74 to 1.55 mm, as the result of changing the laser processing conditions.

  2. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface.

    Science.gov (United States)

    Saidin, Syafiqah; Chevallier, Pascale; Abdul Kadir, Mohammed Rafiq; Hermawan, Hendra; Mantovani, Diego

    2013-12-01

    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application. PMID:24094179

  3. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    Science.gov (United States)

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. PMID:26302067

  4. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola;

    1998-01-01

    We investigated the effects of halogenated furanones from the red alga Delisea pulchra on colonisation of surfaces by marine bacteria. Bacterial abundance on the surface of D. pulchra, assessed using scanning electron microscopy (SEM), was significantly lower than on the surfaces of 3 co-occurrin......We investigated the effects of halogenated furanones from the red alga Delisea pulchra on colonisation of surfaces by marine bacteria. Bacterial abundance on the surface of D. pulchra, assessed using scanning electron microscopy (SEM), was significantly lower than on the surfaces of 3 co...... in the light of recent evidence demonstrating that furanones interfere with bacterial acylated homoserine lactone regulatory systems....

  5. Surface tension-like forces determine bacterial shapes: Streptococcus faecium.

    Science.gov (United States)

    Koch, A L; Higgins, M L; Doyle, R J

    1981-03-01

    The same tendency that causes soap bubbles to achieve a minimum surface area for the volume enclosed seems to account for many of the features of growth and division of bacteria, including both bacilli and cocci. It is only necessary to assume that growth takes place in zones and that only in these zones does the tension caused by hydrostatic pressure create the strain that forces the cell to increase the wall area. The stress developed by osmotic pressure creates strains that significantly lower the free energy of bond splitting by hydrolysis or transfer. We believe this is sufficient to make growing wall have some of the properties ordinarily associated with surface tension. The feature common to all bacterial cell wall growth is that peptidoglycan is inserted under strain-free conditions. Only after the covalent links have been formed are the intervening stressed peptide bonds cleaved so that the new unit supports the stress due to hydrostatic pressure. The present paper analyses the growth of Streptococcus faecium in these terms. This is a particularly simple case and detailed data concerning morphology are available. The best fit to the data is achieved by assuming that growth takes place in a narrow region near the splitting septum and that the septal material is already under tension as it is externalized and is twice as thick as the external wall throughout the development of the nascent poles. Constancy of the ratio of hydrostatic pressure to the effective surface tension, P/T, is also consistent with electron microscopic observations. PMID:7320694

  6. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals.

    Directory of Open Access Journals (Sweden)

    Michael John Sweet

    Full Text Available Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm were assessed. Changes in bacterial diversity (16S rRNA gene, were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05 from that of the water column and from the surface mucus layer (SML of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as

  7. Influence of the nano-micro structure of the surface on bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Carolina Díaz

    2007-03-01

    Full Text Available Biomaterials failures are frequently associated to the formation of bacterial biofilms on the surface. The aim of this work is to study the adhesion of non motile bacteria streptococci consortium and motile Pseudomonas fluorescens. Substrates with micro and nanopatterned topography were used. The influence of surface characteristics on bacterial adhesion was investigated using optical and epifluorescence microscopy, scanning electron microscopy (SEM and atomic force microscopy (AFM. Results showed an important influence of the substratum nature. On microrough surfaces, initial bacterial adhesion was less significant than on smooth surfaces. In contrast, nanopatterned samples showed more bacterial attachment than the smooth control. It was also noted a remarkable difference in morphology, orientation and distribution of bacteria between the smooth and the nanostructured substrate. The results show the important effect of substratum nature and topography on bacterial adhesion which depended on the relation between roughness characteristics dimensions and bacterial size.

  8. Erosion resistance of Fe-C-Cr weld surfacing layers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fe-C-Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr and C in the layers the microstructures are changed from hypoeutectoid steel, hypereutectoid steel to hypoeutectic iron and hypereutectic iron. When the weld surfacing layers belong to the alloyed cast irons the erosion resistance can be raised with the eutectic increase and the austenite decrease. Good erosion resistance can be obtained when the proportion of the primary carbides is within 10 %. The experimental results lay a foundation to make double-metal percussive plates by surfacing wear resistant layers on the substrates of the low carbon steels.

  9. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-01

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  10. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2015-10-22

    Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$) notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or "feiras" in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  11. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2015-10-01

    Full Text Available Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$ notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or “feiras” in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  12. Surfactant-associated bacteria in the near-surface layer of the ocean.

    Science.gov (United States)

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  13. Boundary Layer Flow Over a Moving Wavy Surface

    Science.gov (United States)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  14. Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules

    Science.gov (United States)

    Jiang, Wei

    Toxicity of nano-scaled Al2O3, SiO2, TiO2 and ZnO to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles (NPs) but TiO2 showed higher toxicity than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three NPs, causing 100% mortality to the three tested bacteria. TEM images showed attachment of NPs to the bacteria, suggesting that the toxicity was affected by bacterial attachment. The effects of oxide NPs on bacteria cells and bacterial surface biomolecules were studied by FTIR spectroscopy to provide a better understanding of their cytotoxicity. Lipopolysaccharide (LPS) and lipoteichoic acid could bind to oxide NPs through hydrogen bonding and ligand exchange, but the cytotoxicity of NPs seemed largely related to the function-involved or structural changes to proteins and phospholipids. The three NPs decreased the intensity ratio of beta-sheets/alpha-helices, indicating protein structure change, which may affect cell physiological activities. The phosphodiester bond of L-alpha-Phosphatidyl-ethanolamine (PE) was broken by ZnO NPs, forming phosphate monoesters and resulting in the highly disordered alkyl chain. Such damage to phospholipid molecular structure may lead to membrane rupture and cell leaking, which is consistent with the fact that ZnO is the most toxic of the three NPs. LPS and PE are amphiphilic biomolecules that are major constituents of the outer membrane of Gram-negative bacteria. Their micelles and vesicles were studied as model cell membranes to evaluate NP effects on membrane construction. The adsorption of polysaccharides on Al2O3 and TiO 2 NPs dispersed LPS vesicles and micelles. LPS coated Al2O 3 NPs, while it caused the aggregation of TiO2 NPs according to atom force microscopy images. Desorption from the two NPs was slow due

  15. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow

    Directory of Open Access Journals (Sweden)

    Anna eLopatina

    2016-03-01

    Full Text Available The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.

  16. Fructose-enhanced reduction of bacterial growth on nanorough surfaces

    Directory of Open Access Journals (Sweden)

    Durmus NG

    2012-02-01

    Full Text Available Naside Gozde Durmus1, Erik N Taylor1, Fatih Inci3,4, Kim M Kummer1, Keiko M Tarquinio5, Thomas J Webster1,21School of Engineering, Brown University, Providence, RI, USA; 2Department of Orthopedics, Brown University, Providence, RI, USA; 3Bio-Acoustic-MEMS in Medicine (BAMM Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology, Harvard Medical School, MA, USA; 4Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, Mobgam, Maslak, Istanbul, Turkey; 5Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence, RI, USAAbstract: Patients on mechanical ventilators for extended periods of time often face the risk of developing ventilator-associated pneumonia. During the ventilation process, patients incapable of breathing are intubated with polyvinyl chloride (PVC endotracheal tubes (ETTs. PVC ETTs provide surfaces where bacteria can attach and proliferate from the contaminated oropharyngeal space to the sterile bronchoalveolar area. To overcome this problem, ETTs can be coated with antimicrobial agents. However, such coatings may easily delaminate during use. Recently, it has been shown that changes in material topography at the nanometer level can provide antibacterial properties. In addition, some metabolites, such as fructose, have been found to increase the efficiency of antibiotics used to treat Staphylococcus aureus (S. aureus infections. In this study, we combined the antibacterial effect of nanorough ETT topographies with sugar metabolites to decrease bacterial growth and biofilm formation on ETTs. We present for the first time that the presence of fructose on the nanorough surfaces decreases the number of planktonic S. aureus bacteria in the solution and biofilm formation on the surface after 24 hours. We thus envision that this method has the potential to impact the future of surface engineering of

  17. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    OpenAIRE

    Frade, Pedro R.; Katharina Roll; Kristin Bergauer; Herndl, Gerhard J.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and ...

  18. Surface Physicochemistry and Ionic Strength Affects eDNA's Role in Bacterial Adhesion to Abiotic Surfaces

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Lokanathan, Arcot R; Modrzynski, Jakub;

    2014-01-01

    with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired......Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent e......DNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised...

  19. Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles.

    Science.gov (United States)

    Trubetskoy, V S; Loomis, A; Hagstrom, J E; Budker, V G; Wolff, J A

    1999-08-01

    DNA can be condensed with an excess of poly-cations in aqueous solutions forming stable particles of submicron size with positive surface charge. This charge surplus can be used to deposit alternating layers of polyanions and polycations on the surface surrounding the core of condensed DNA. Using poly-L-lysine (PLL) and succinylated PLL (SPLL) as polycation and polyanion, respectively, we demonstrated layer-by-layer architecture of the particles. Polyanions with a shorter carboxyl/backbone distance tend to disassemble binary DNA/PLL complexes by displacing DNA while polyanions with a longer carboxyl/backbone distance effectively formed a tertiary complex. The zeta potential of such complexes became negative, indicating effective surface recharging. The charge stoichiometry of the DNA/PLL/SPLL complex was found to be close to 1:1:1, resembling poly-electrolyte complexes layered on macrosurfaces. Recharged particles containing condensed plasmid DNA may find applications as non-viral gene delivery vectors.

  20. Vapor layer evolution during drop impact on a heated surface

    Science.gov (United States)

    Lee, Sanghyeon; Lee, Sangjun; Lee, Jisan; Fezzaa, Kamel; Je, Jung Ho

    2015-11-01

    When a liquid drop impacts on a sufficiently hot surface above the boiling point, a vapor layer is formed between the drop and the surface, preventing direct contact between them and as a result levitating the drop, known as the Leidenfrost effect. Understanding the evolution of the vapor layer is largely unexplored despite its importance in estimating heat transfer in cooling systems of thermal or nuclear power plants. The side-profile visualization of the vapor layer, as absolutely required for investigating its evolution, has been however unavailable by conventional optical microscopy. In this study, by employing ultrafast X-ray phase contrast imaging, we directly visualize the profiles of the vapor layers during liquid drop impact on a hot surface and elucidate the evolution of the vapor layers during spreading and retraction of the drop as functions of impact height and surface temperature. We reveal that the evolution is governed by the propagation of capillary waves generated in retraction and the wavelength of capillary waves λ is inversely proportional to the impact height h with a relation ~σ/ρh ~We-1 where We is weber number. Capillary waves that converge at the center of the vapor layers are linked to the bouncing behavior of the drop.

  1. Mechanical and Wear Properties of Nanostructured Surface Layer in Iron Induced by Surface Mechanical Attrition Treatment

    Institute of Scientific and Technical Information of China (English)

    Nairong TAO; Weiping TONG; Zhenbo WANG; Wei WANG; Manling SUI; Jian LU; Ke LU

    2003-01-01

    A porosity-free and contamination-free surface layer with grain sizes ranging from nanometer to micrometer in Fe samples was obtained by surface mechanical attrition treatment (SMAT) technique. Mechanical and wear properties of the surface layer in the SMATed and annealed Fe samples were measured by means of nanoindentation and nanoscratch tests, respectively. Experimental results showed that the hardness of the surface layer in the SMATed Fe sample increased evidently due to the grain refinement. The elastic noduli of the surface layers in the SMATed and annealed Fe samples were unchanged, independent of grain size in the present grain size regime. Compared with the original Fe sample, the wear resistance enhanced and the coefficient of friction decreased in the surface layer of the SMATed Fe sample.

  2. SURFACE HYDROPHOBICITY MODIFICATION OF CELLULOSE FIBERS BY LAYER-BY-LAYER SELF-ASSSEMBLY OF LIGNOSULFONATES

    Directory of Open Access Journals (Sweden)

    Hui Li

    2011-03-01

    Full Text Available Self-assembled multilayers of lignosulfonates (LS were built up on both quartz slides and cellulose fibers using a Cu2+-mediated layer-by-layer (LBL technique. The growth of LS multilayers on quartz slides was monitored by UV-Vis spectroscopy, and the absorbance at 205 nm as well as at 280 nm was found to linearly increase with the number of layers. The formation of LS multilayers on fibers surfaces was characterized by X-ray photoelectron spectroscopy (XPS and atomic force microscopy (AFM. The XPS results showed that the surface contents of the characteristic elements, S and Cu, of LS multilayers were increased with the number of layers, which suggests the deposition of LS-Cu2+ complexes on cellulose fibers. Furthermore, there was a good linear relationship between the calculated surface LS content and the increment of LS layers. The AFM morphology results confirmed that the cellulose microfibrils on fiber surface were gradually covered by LS particles, resulting in the increase of surface roughness as self-assembly proceeded. The hydrophobicity of cellulose fiber probed by dynamic contact angle was significantly increased due to LBL self-assembly of LS on its surface. The initial contact angle was increased from 0° to 115° as the cellulose fibers were modified with a 5-layer LS multilayer. The reduction rate of the contact angle was dependent on the number of layers. When the cellulose fiber was modified by a 5-layer LS multilayer, the contact angle shifted from 115 to 98° after 0.12 s, suggesting some degree of hydrophobic character. Therefore, this technique provides a simple but effective way for promoting hydrophobicity of cellulose fibers in a controllable manner.

  3. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  4. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  5. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Arabian Sea shows a very strong locality. Surface layer temperature inversion in the south eastern Arabian sea and the south western Bay of Bengal is a small scale thermal feature very widely reported with little analysis (Panakala Rao et al., 1981... along the west coast of India. 1. Introduction Temperature inversion layers usually occur where the thermal structure is complicated and isotherms are rugged. Nagata (1968, 1979) studied temperature inversions in the seas adjacent to Japan using...

  6. Surface stress of graphene layers supported on soft substrate

    Science.gov (United States)

    Du, Feng; Huang, Jianyong; Duan, Huiling; Xiong, Chunyang; Wang, Jianxiang

    2016-05-01

    We obtain the surface stress of a single layer and multilayers of graphene supported on silicone substrates by measuring the deformation of the graphene-covered substrates induced by the surface tension of liquid droplets together with the Neumann’s triangle concept. We find that the surface stress of the graphene-covered substrate is significant larger than that of the bare substrate, and it increases with increasing graphene layers, and finally reaches a constant value of about 120 mN/m on three and more layers of graphene. This work demonstrates that the apparent surface stress of graphene-substrate systems can be tuned by the substrate and the graphene layers. The surface stress and the tuning effect of the substrate on it may have applications in design and characterization of graphene-based ultra-sensitive sensors and other devices. Moreover, the method may also be used to measure the surface stress of other ultrathin films supported on soft substrates.

  7. ALTERNATIVE FOR PHENOL BIODEGRADATION IN OIL CONTAMINATED WASTEWATERS USING AN ADAPTED BACTERIAL BIOFILM LAYER

    Directory of Open Access Journals (Sweden)

    Maria Kopytko

    2008-12-01

    Full Text Available The project studied the biodegradation potential of phenols in an industrial wastewater from an oil field in the province of Santander, Colombia. An elevated potential was established, according to three important factors: the great abundance of microorganisms found in the wastewater and sludge samples collected, the bacterial adaptation to high phenol concentrations (10 mg/l and the elevated elimination efficiencies (up to 86% obtained in the laboratory tests. The laboratory scale treatment system, which consisted of fixed-bed bioreactors with adapted bacterial biofilm, was optimized using a 22 factorial experimental design. The selected variables, studied in their maximum and minimum level were: HRT (hydraulic retention time and the presence or absence of GAC (granular activated carbon layer. The response variable was phenol concentration. The optimum treatment conditions for low and high phenol concentrations (2.14 y 9.30 mg/l, were obtained with the presence of GAC and 18 hours of HRT. The best result for the intermediate phenol concentration (6.13 mg/l was obtained with a 24 hour HRT and the presence of GAC. Nevertheless, the presence of the GAC layer was not significantly important in terms of phenol removal. Moreover, the increase of HRT from 18 to 24 hours, showed no significant improvement in phenol removal.

  8. Chromized Layers Produced on Steel Surface by Means of CVD

    Institute of Scientific and Technical Information of China (English)

    KASPRZYCKA Ewa; BOGDA(N)SKI Bogdan; JEZIORSKI Leopold; JASI(N)SKI J(o)zef; TORBUS Roman

    2004-01-01

    Chemical vapour deposition of chromium on the surface of carbon steel has been investigated using a novel CVD method that combines the low cost of pack cementation method with advantages of vacuum technique. The processes have been performed in chromium chlorides atmosphere at a low pressure range from 1 to 800 hPa, the treatment temperature 800 to 950℃. Studies of the layers thickness, the phase composition, Cr, C and Fe depth profiles in diffusion zone have been conducted. The effect of the vacuum level during the process and the process parameters such as time and temperature on layer diffusion growth on the carbon steel surface has been investigated.

  9. Surface tension in plasmas related to double layer formation

    International Nuclear Information System (INIS)

    Self-organized space charge configurations bordered by electric double layers appear in plasma as the result of the transition into a state characterized by local minimum of the free energy. Considering the self-assemblage process of such a complex well-confined space-charge configuration in plasma, known by the name of ball of fire, as a nucleation process, it becomes possible to define an equivalent surface tension for the double layer that covers the core of the ball of fire and to make some predictions for its surface tension coefficient and capacitance. (author)

  10. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU; Yuewu; CHEN; Huixin; LIU; Qingquan; GONG; Xin; ZHANG

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  11. Surface morphological evolution of epitaxial CrN(001) layers

    International Nuclear Information System (INIS)

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at Ts=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N2 discharges from an oblique deposition angle α=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal directions superposed by square-shaped super mounds with edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as Ts is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent β>0.5. In contrast, kinetic roughening controls the surface morphology for Ts=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and β≤0.27

  12. Effect of nanoconfinement on polymer dynamics: surface layers and interphases.

    Science.gov (United States)

    Krutyeva, M; Wischnewski, A; Monkenbusch, M; Willner, L; Maiz, J; Mijangos, C; Arbe, A; Colmenero, J; Radulescu, A; Holderer, O; Ohl, M; Richter, D

    2013-03-01

    We present neutron spin echo experiments that address the much debated topic of dynamic phenomena in polymer melts that are induced by interacting with a confining surface. We find an anchored surface layer that internally is highly mobile and not glassy as heavily promoted in the literature. The polymer dynamics in confinement is, rather, determined by two phases, one fully equal to the bulk polymer and another that is partly anchored at the surface. By strong topological interaction, this phase confines further chains with no direct contact to the surface. These form the often invoked interphase, where the full chain relaxation is impeded through the interaction with the anchored chains. PMID:23521308

  13. New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: critical issues.

    Science.gov (United States)

    Nesic, Jelena; Rtimi, Sami; Laub, Danièle; Roglic, Goran M; Pulgarin, Cesar; Kiwi, John

    2014-11-01

    This study presents new evidence for the events leading to Escherichia coli reduction in the absence of light irradiation on TiO2-polyester (from now on TiO2-PES. By transmission electron microscopy (TEM) the diffusion of TiO2 NP's aggregates with the E. coli outer lipo-polyssacharide (LPS) layer is shown to be a prerequisite for the loss of bacterial cultivability. Within 30 min in the dark the TiO2 aggregates interact with E. coli cell wall leading within 120 min to the complete loss of bacterial cultivability on a TiO2-PES 5% TiO2 sample. The bacterial reduction was observed to increase with a higher TiO2 loading on the PES up to 5%. Bacterial disinfection on TiO2-PES in the dark was slower compared to the runs under low intensity simulated sunlight light irradiation. The interaction between the TiO2 aggregates and the E. coli cell wall is discussed in terms of the competition between the TiO2 units collapsing to form TiO2-aggregates at a physiologic pH-value followed by the electrostatic interaction with the bacteria surface. TiO2-PES samples were able to carry repetitive bacterial inactivation. This presents a potential for practical applications. X-ray photoelectron spectroscopy (XPS) evidence was found for the reduction of Ti4+ to Ti3+ contributing to redox interactions between TiO2-PES and the bacterial cell wall. Insight is provided into the mechanism of interaction between the E. coli cell wall and TiO2 NP's. The properties of the TiO2-PES surface like percentage atomic concentration, TiO2-loading, optical absorption, surface charge and crystallographic phases are reported in this study. PMID:25444660

  14. SURFACE HYDROPHOBICITY MODIFICATION OF CELLULOSE FIBERS BY LAYER-BY-LAYER SELF-ASSSEMBLY OF LIGNOSULFONATES

    OpenAIRE

    Hui Li; Hao Liu; Shiyu Fu; Huaiyu Zhan

    2011-01-01

    Self-assembled multilayers of lignosulfonates (LS) were built up on both quartz slides and cellulose fibers using a Cu2+-mediated layer-by-layer (LBL) technique. The growth of LS multilayers on quartz slides was monitored by UV-Vis spectroscopy, and the absorbance at 205 nm as well as at 280 nm was found to linearly increase with the number of layers. The formation of LS multilayers on fibers surfaces was characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM...

  15. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion.

    Science.gov (United States)

    Arnold, J W; Boothe, D H; Suzuki, O; Bailey, G W

    2004-12-01

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. The complementarity of the microscopy methods, scanning electron microscopy, electron probe microanalysis and atomic force microscopy assessed and correlated form and function of the surface modifications. Stainless steel disks (1 cm in diameter) were laser-cut from the same sheets of stainless steel and treated by electropolishing or left untreated for controls. Each treatment was analysed separately using each technique. First, the disks were examined by visual inspection and electron probe microanalysis for surface characteristics and elemental composition, respectively. Aliquots of bacterial suspensions (saline rinses of poultry carcasses from a commercial broiler processing plant) were then diluted in broth and monitored for growth by spectrophotometry. Stainless steel disks (1 cm in diameter) were added and the cultures were grown to sufficient density to allow attachment of bacterial cells to test surfaces. Relative differences in the surface morphology shown by atomic force microscopy, including Z ranges, roughness and other measurements, corresponded by treatment with the differences in reduction of bacterial counts shown by scanning electron microscopy. A model of wet-processing conditions tested the effects of corrosive treatment of surfaces. Less bacterial attachment occurred after corrosive treatment on controls and electropolished samples. Electropolishing significantly reduced bacterial numbers and the effects of corrosive action compared to the controls. Thus, the multiple imaging techniques showed that engineered changes on stainless steel surfaces improved the resistance of the surface finish to bacterial attachment, biofilm formation, and corrosive action. PMID:15566492

  16. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.;

    1986-01-01

    specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  17. Removal of surface layers from plated materials: upgrading of scrap

    NARCIS (Netherlands)

    Dapper, G.; Sloterdijk, W.; Verbraak, C.A.

    1978-01-01

    In this paper a description is given of a method developed for the purpose of removing surface layers from plated materials. The principle of separation is based on the difference in vapour pressures and stabilities with the formation of metal chlorides. A series of pyrolytic experiments was carried

  18. Convective boundary layers driven by nonstationary surface heat fluxes

    NARCIS (Netherlands)

    Van Driel, R.; Jonker, H.J.J.

    2011-01-01

    In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change

  19. Hierarchy of adhesion forces in patterns of photoreactive surface layers

    Science.gov (United States)

    Hlawacek, Gregor; Shen, Quan; Teichert, Christian; Lex, Alexandra; Trimmel, Gregor; Kern, Wolfgang

    2009-01-01

    Precise control of surface properties including electrical characteristics, wettability, and friction is a prerequisite for manufacturing modern organic electronic devices. The successful combination of bottom up approaches for aligning and orienting the molecules and top down techniques to structure the substrate on the nano- and micrometer scale allows the cost efficient fabrication and integration of future organic light emitting diodes and organic thin film transistors. One possibility for the top down patterning of a surface is to utilize different surface free energies or wetting properties of a functional group. Here, we used friction force microscopy (FFM) to reveal chemical patterns inscribed by a photolithographic process into a photosensitive surface layer. FFM allowed the simultaneous visualization of at least three different chemical surface terminations. The underlying mechanism is related to changes in the chemical interaction between probe and film surface.

  20. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  1. The role of surface waves in the ocean mixed layer

    Institute of Scientific and Technical Information of China (English)

    QIAO Fangli; YANG Yongzeng; XIA Changshui; YUAN Yeli

    2008-01-01

    Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under- prediction of the mixing layer (ML) depth and an over- prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean-atmospheric models and hence the cli-mate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this sys-tematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be cor-rected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.

  2. First-order chemistry in the surface-flux layer

    DEFF Research Database (Denmark)

    Kristensen, L.; Andersen, C.E.; Ejsing Jørgensen, Hans;

    1997-01-01

    We have discussed the behavior of a non-conserved scalar in the stationary, horizontally homogeneous, neutral surface-flux layer and, on the basis of conventional second-order closure, derived analytic expressions for flux and for mean concentration of a gas, subjected to a first-order removal...... process, The analytic flux solution showed a clear deviation from the constant flux, characterizing a conserved scalar in the surface-flux layer. It decreases with height and is reduced by an order of magnitude of the surface flux at a height equal to about the typical mean distance a molecule can travel...... of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damkohler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental...

  3. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface

    Energy Technology Data Exchange (ETDEWEB)

    Saidin, Syafiqah, E-mail: syafiqahsaidin@gmail.com [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Chevallier, Pascale, E-mail: pascale.chevallier@crsfa.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Department of Mining, Metallurgical and Materials Engineering and University Hospital Research Center, Laval University, Quebec City, QC, G1V 0A6 (Canada); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Hermawan, Hendra, E-mail: hendra.hermawan@biomedical.utm.my [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Mantovani, Diego, E-mail: Diego.Mantovani@gmn.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Department of Mining, Metallurgical and Materials Engineering and University Hospital Research Center, Laval University, Quebec City, QC, G1V 0A6 (Canada)

    2013-12-01

    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application. - Highlights: • Successful immobilisation of Ag and HA on SS316L functionalised with polydopamine • Development of antibacterial film at 97.88% bactericidal ratio • The functionalised films were stable under ageing test at 7 days.

  4. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    2014-12-01

    Full Text Available Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc. within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water. Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users.

  5. The effect of silver impregnation of surgical scrub suits on surface bacterial contamination

    OpenAIRE

    Freeman, A.I.; Halladay, L.J.; Cripps, P.

    2012-01-01

    Silver-impregnated fabrics are widely used for their antibacterial and antifungal effects, including for clinical clothing such as surgical scrub suits (scrubs). This study investigated whether silver impregnation reduces surface bacterial contamination of surgical scrubs during use in a veterinary hospital. Using agar contact plates, abdominal and lumbar areas of silver-impregnated nylon or polyester/cotton scrubs were sampled for surface bacterial contamination before (0 h) and after 4 and ...

  6. Influencing factors on elastic-plastic deformation of multi-layered surfaces under sliding contact

    Institute of Scientific and Technical Information of China (English)

    YAN Li; PAN Xin-xiang; XU Jiu-jun; CHENG Dong

    2004-01-01

    Stress distribution in the gradient multi-layered surface under a sliding contact was investigated using finite element method(FEM). The main structure parameters of layered surface discussed are total layer thickness,layer number and elastic modulus ratio of layer to the substrate. A model of multi-layered surface contact with rough slider was studied. The effect of the surface structure parameters on the elastic-plastic deformation was analyzed.

  7. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Energy Technology Data Exchange (ETDEWEB)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Baelum, Jacob; Tas, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Phillip; Prieme, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  8. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection.

    Science.gov (United States)

    Golda-Cepa, M; Syrek, K; Brzychczy-Wloch, M; Sulka, G D; Kotarba, A

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function-bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. PMID:27207043

  9. Bacterial surface antigen-specific monoclonal antibodies used to detect beer spoilage pediococci.

    Science.gov (United States)

    Whiting, M S; Ingledew, W M; Lee, S Y; Ziola, B

    1999-08-01

    Fourteen monoclonal antibodies (Mabs) were isolated that react with surface antigens of Pediococcus beer spoilage organisms, including P. damnosus, P. pentosaceous, P. acidilactici, and unspeciated isolates. Immunoblotting, enzyme immunoassays (EIAs) of protease- and neuraminidase-treated surface antigen extracts, carbohydrate competition EIAs, and cardiolipin EIAs were used to characterize the bacterial antigens involved in Mab binding. Antigen stability in situ was tested by protease treatment or surface antigen extraction of washed bacteria. In most cases, the Mabs bind to Pediococcus surface antigens that appear to be covalently bound cell wall polymers resistant to alteration or removal from the bacterial surface. These bacterial surface antigen reactive Mabs show good potential for rapid, sensitive, and specific immunoassay detection of Pediococcus beer spoilage organisms.

  10. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  11. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  12. Bacterial populations on brewery filling hall surfaces as revealed by next-generation sequencing.

    Science.gov (United States)

    Priha, Outi; Raulio, Mari; Maukonen, Johanna; Vehviläinen, Anna-Kaisa; Storgårds, Erna

    2016-01-01

    Due to the presence of moisture and nutrients, brewery filling line surfaces are susceptible to unwanted microbial attachment. Knowledge of the attaching microbes will aid in designing hygienic control of the process. In this study the bacterial diversity present on brewery filling line surfaces was revealed by next generation sequencing. The two filling lines studied maintained their characteristic bacterial community throughout three sampling times (13-163 days). On the glass bottle line, γ-proteobacteria dominated (35-82% of all OTUs), whereas on the canning line α-, β- and γ-proteobacteria and actinobacteria were most common. The most frequently detected genera were Acinetobacter, Propinobacterium and Pseudomonas. The halophilic genus Halomonas was commonly detected, which might be due to its tolerance to alkaline foam cleaners. This study has revealed a detailed overall picture of the bacterial groups present on filling line surfaces. Further effort should be given to determine the efficacy of washing procedures on different bacterial groups. PMID:27064426

  13. The studies of scale surface produced on outer diffusion layers

    Directory of Open Access Journals (Sweden)

    J. Augustyn-Pieniążek

    2011-04-01

    Full Text Available In this study at attempt was made to examine the scale formed on ferritic-austenitic duplex type steel subjected to previous thermochemical treatment. The treatment consisted in diffusion aluminising in a metallising mixture composed of Fe-Al powder. As an activator, ammonium chloride (NH4Cl added in an amount of 2 wt.% was used. Then, both the base material and samples with the diffusiondeposited surface layers were oxidised at 1000°C in the air. Thus formed scales were identified by light microscopy, SEM and X-ray phase analysis. The aim of the oxidation tests carried out under isothermal conditions was to compare the scale morphology when obtained on untreated substrate material and on the surface layers rich in aluminium.

  14. On the Effects of Surface Roughness on Boundary Layer Transition

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  15. Fluid-dynamics of the nuclear surface Fermi-layer

    International Nuclear Information System (INIS)

    In the framework of the long-mean-free-path approach the fluid-dynamical model of the nuclear surface as a spherical Fermi-layer is formulated. It is shown that the model reproduces known results of Fermi-drop dynamics and permits the description of more low energy collective states in spherical nuclei. The quantum-capillary branch of low-lying surface excitations is predicted. The model gives an adequate description of both lowest and highest experimental collective energies. (author) 18 refs.; 8 figs

  16. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  17. Bacterial colonization of metallic surfaces exposed in marine environment. Use of bacterial lipids

    International Nuclear Information System (INIS)

    Addressing fouling and more particularly biofouling phenomena occurring notably on structures in marine environment, this research thesis first describes the fouling phenomenon (components, sequences of biofouling development, bio-film chemical composition). The author reports the study of the composition of the biological veil (microbiological methods, presentation of the different components), addresses the various types of lipids (bacterial markers and others). Then, after a presentation of the experimental equipment and methods (test cells, sample preparation, gas phase chromatography, hydrogenation and bromination, mass spectrometry), the author discusses the influence of different parameters such as the substrate type, speed, season, chlorination, and correlation with thermal transfer

  18. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    Directory of Open Access Journals (Sweden)

    Doreene Kang

    2016-01-01

    Full Text Available New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxes of momentum, sensible heat, and latent heat are derived based on Monin-Obukhov Similarity Theory (MOST. This research develops an improved method to derive surface fluxes and the corresponding MASL mean profiles of wind, temperature, and humidity with a least-squares optimization method using the profiling measurements. This approach allows the use of all available independent data. We use a weighted cost function based on the framework of MOST with the cost being optimized using a quasi-Newton method. This approach was applied to seven sets of data collected from the Monterey Bay. The derived fluxes and mean profiles show reasonable results. An empirical bias analysis is conducted using 1000 synthetic datasets to evaluate the robustness of the method.

  19. Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling

    Directory of Open Access Journals (Sweden)

    Mary V. Graham

    2014-01-01

    Full Text Available Bacterial surface fouling is problematic for a wide range of applications and industries, including, but not limited to medical devices (implants, replacement joints, stents, pacemakers, municipal infrastructure (pipes, wastewater treatment, food production (food processing surfaces, processing equipment, and transportation (ship hulls, aircraft fuel tanks. One method to combat bacterial biofouling is to modify the topographical structure of the surface in question, thereby limiting the ability of individual cells to attach to the surface, colonize, and form biofilms. Multiple research groups have demonstrated that micro and nanoscale topographies significantly reduce bacterial biofouling, for both individual cells and bacterial biofilms. Antifouling strategies that utilize engineered topographical surface features with well-defined dimensions and shapes have demonstrated a greater degree of controllable inhibition over initial cell attachment, in comparison to undefined, texturized, or porous surfaces. This review article will explore the various approaches and techniques used by researches, including work from our own group, and the underlying physical properties of these highly structured, engineered micro/nanoscale topographies that significantly impact bacterial surface attachment.

  20. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion.

    Science.gov (United States)

    Venkat Kumar, Govindarajan; Su, Chia-Hung; Velusamy, Palaniyandi

    2016-09-13

    Bacterial adhesion is a major problem that can lead to the infection of implanted urological stents. In this study, kanamycin-chitosan nanoparticles (KMCSNPs) were immobilized on the surface of a polyurethane ureteral stent (PUS) to prevent urinary bacterial infection. KMCSNPs were synthesized using the ionic gelation method. The synthesized KMCSNPs appeared spherical with a ζ-average particle size of 225 nm. KMCSNPs were immobilized on the PUS surface by covalent immobilization techniques. The surface-modified PUS was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The surface-modified PUS showed significantly increased antibacterial activity against Escherichia coli MTCC 729 and Proteus mirabilis MTCC 425 relative to the surface of an unmodified PUS. These findings suggest that the KMCSNP-immobilized PUS has the potential to prevent bacterial infection in the human urinary tract. PMID:27436679

  1. The effect of silver impregnation of surgical scrub suits on surface bacterial contamination.

    Science.gov (United States)

    Freeman, A I; Halladay, L J; Cripps, P

    2012-06-01

    Silver-impregnated fabrics are widely used for their antibacterial and antifungal effects, including for clinical clothing such as surgical scrub suits (scrubs). This study investigated whether silver impregnation reduces surface bacterial contamination of surgical scrubs during use in a veterinary hospital. Using agar contact plates, abdominal and lumbar areas of silver-impregnated nylon or polyester/cotton scrubs were sampled for surface bacterial contamination before (0 h) and after 4 and 8h of use. The number of bacterial colonies on each contact plate was counted after 24 and 48 h incubation at 37°C. Standard basic descriptive statistics and mixed-effects linear regression were used to investigate the association of possible predictors of the level of bacterial contamination of the scrubs with surface bacterial counts. Silver-impregnated scrubs had significantly lowered bacterial colony counts (BCC) at 0 h compared with polyester/cotton scrubs. However, after 4 and 8h of wear, silver impregnation had no effect on BCC. Scrub tops with higher BCC at 0 h had significantly higher BCC at 4 and 8h, suggesting that contamination present at 0 h persisted during wear. Sampling from the lumbar area was associated with lower BCC at all three time points. Other factors (contamination of the scrub top with a medication/drug, restraint of patients, working in the anaesthesia recovery area) also affected BCC at some time points. Silver impregnation appeared to be ineffective in reducing bacterial contamination of scrubs during use in a veterinary hospital. PMID:22015140

  2. Diversity of Bacterial Communities on Four Frequently Used Surfaces in a Large Brazilian Teaching Hospital.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Felix, Alvina Clara; Sanabani, Sabri Saeed

    2016-02-01

    Frequently used hand-touch surfaces in hospital settings have been implicated as a vehicle of microbial transmission. In this study, we aimed to investigate the overall bacterial population on four frequently used surfaces using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Surface samples were collected from four sites, namely elevator buttons (EB), bank machine keyboard buttons (BMKB), restroom surfaces, and the employee biometric time clock system (EBTCS), in a large public and teaching hospital in São Paulo. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Actinobacteria and Proteobacteria, with a total of 926 bacterial families and 2832 bacterial genera. Moreover, our analysis revealed the presence of some potential pathogenic bacterial genera, including Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus. The presence of these pathogens in frequently used surfaces enhances the risk of exposure to any susceptible individuals. Some of the factors that may contribute to the richness of bacterial diversity on these surfaces are poor personal hygiene and ineffective routine schedules of cleaning, sanitizing, and disinfecting. Strict standards of infection control in hospitals and increased public education about hand hygiene are recommended to decrease the risk of transmission in hospitals among patients. PMID:26805866

  3. Diversity of Bacterial Communities on Four Frequently Used Surfaces in a Large Brazilian Teaching Hospital

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2016-01-01

    Full Text Available Frequently used hand-touch surfaces in hospital settings have been implicated as a vehicle of microbial transmission. In this study, we aimed to investigate the overall bacterial population on four frequently used surfaces using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Surface samples were collected from four sites, namely elevator buttons (EB, bank machine keyboard buttons (BMKB, restroom surfaces, and the employee biometric time clock system (EBTCS, in a large public and teaching hospital in São Paulo. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Actinobacteria and Proteobacteria, with a total of 926 bacterial families and 2832 bacterial genera. Moreover, our analysis revealed the presence of some potential pathogenic bacterial genera, including Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus. The presence of these pathogens in frequently used surfaces enhances the risk of exposure to any susceptible individuals. Some of the factors that may contribute to the richness of bacterial diversity on these surfaces are poor personal hygiene and ineffective routine schedules of cleaning, sanitizing, and disinfecting. Strict standards of infection control in hospitals and increased public education about hand hygiene are recommended to decrease the risk of transmission in hospitals among patients.

  4. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV0.1±52 HV0.1 to 505 HV0.1±87 HV0.1. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  5. In-situ surface hardening of cast iron by surface layer metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian F., E-mail: s.fischer@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Muschna, Stefan, E-mail: smuschna@yahoo.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bührig-Polaczek, Andreas, E-mail: sekretariat@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bünck, Matthias, E-mail: m.buenck@access-techcenter.de [Access e.V., Intzestraße 5, 52072 Aachen (Germany)

    2014-10-06

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV{sub 0.1}±52 HV{sub 0.1} to 505 HV{sub 0.1}±87 HV{sub 0.1}. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values.

  6. Open Contours Extraction of Rotational Surface Oriented to Layer Measurement

    Institute of Scientific and Technical Information of China (English)

    亓利伟; 赵毅; 李明辉

    2003-01-01

    With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.

  7. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    Science.gov (United States)

    Sobel, Nicolas; Hess, Christian

    2015-12-01

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  8. Multi-layer topological transmissions of spoof surface plasmon polaritons

    Science.gov (United States)

    Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-01

    Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than ‑0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above ‑1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits.

  9. Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall

    CERN Document Server

    Washuta, Nathan; Duncan, James H

    2016-01-01

    The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...

  10. Nanoscale Cell Wall Deformation Impacts Long-Range Bacterial Adhesion Forces on Surfaces

    NARCIS (Netherlands)

    Chen, Yun; Harapanahalli, Akshay K.; Busscher, Henk J.; Norde, Willem; van der Mei, Henny C.

    2014-01-01

    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of

  11. Nanoscale cell wall deformation impacts long-range bacterial adhesion forces on surfaces

    NARCIS (Netherlands)

    Chen, Y.; Harapanahalli, A.K.; Busscher, H.J.; Norde, W.; Mei, van der H.C.

    2014-01-01

    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of

  12. Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media.

    OpenAIRE

    Rijnaarts, H.H.M.

    1994-01-01

    Interactions between bacteria and solid surfaces strongly influence the behaviour of bacteria in natural and engineered ecosystems. Many biofilm reactors and terrestrial environments are porous media. The purpose of the research presented in this thesis is to gain a better insight into the basic mechanims of bacterial adhesion and transport in such systems. This knowledge is essential for bacterial adhesion science in general, and important for practical applications such as the bioremediatio...

  13. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.;

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º...

  14. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.

    Science.gov (United States)

    Nuri, Reut; Shprung, Tal; Shai, Yechiel

    2015-11-01

    Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  15. Soil moisture sensor calibration for organic soil surface layers

    Directory of Open Access Journals (Sweden)

    S. Bircher

    2015-12-01

    Full Text Available This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankyl

  16. Soil moisture sensor calibration for organic soil surface layers

    Science.gov (United States)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  17. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing...... clacks and spalls off early on. For thick, non-compliant coatings, much thicker coatings can be formed. Fracture resistance must be considered in relation to both specimen and loading geometries. Since the inherent bending moment causes a maximum tensile stress at the coating surface, the loading...... a layered structure using alternate DC plating and periodic current reversal (PR). Such layering produces a through thickness stepped gradient in residual stresses. Most importantly a bending moment develops in the coating whenever the substrate is compliant. For thin, compliant substrates, the coating...

  18. Surface roughness : causal factors : and its relation to bacterial adhesion

    OpenAIRE

    Tellefsen, Georg

    2013-01-01

    Inflammation around teeth and dental implants is considered to be due to microorganisms producing biofilm and thereby initiating the inflammatory reaction. The etiology is not yet fully understood though many risk factors have been identified, e.g. smoking, oral hygiene, stress etc. That surface roughness plays a role both in the development of the biofilm and discoloration of teeth is nowadays beyond doubt. To create a smooth surface is an important part of the oral hygien...

  19. Plasma boundary layer with active surface. Pt. 1

    International Nuclear Information System (INIS)

    The space-charge boundary layer between plasma and wall which is normally (almost) homogeneous may become instable and may decay into largely independent spots of plasma-induced unipolar-like discharges. In Tokamaks the existence of such highly inhomogeneous boundary plasmas often has been found by observation of arc tracks and of ''hot spots'' a.s.o. In this way wall erosion and production rates of plasma impurities will be enhanced, and several special phenomena of intense wall erosion (like ''carbon blooming'') may be traced back to such effects. In this paper the influence of electron emission from the wall (i.e. of an ''active'' surface) on the parameter of the space charge sheath is investigated, applying simple balance equations, as a first step towards an explanation of the transition from a homogeneous into an inhomogeneous boundary layer. Several variations of such models are calculated, using typical plasma parameters. Essential result is the dependence of the sheath potential and of the surface power density on the emission yield and on the net current density. Irrespective of the chosen constants the potential drop between plasma and wall turns out to become the higher the lower is the electron emission and the higher is the net current. Opposite is the dependence of the energy flux to the wall which, however, passes a minimum and increases rapidly again near the maximum net current jmax (with jmax∼jis(γ-1), where jis=ion saturation current, and γ=emission yield per ion). As a consequence, the wall loading is strongly enhanced as well in case of high negative net currents and intense electron emission, as near the maximum net current. This will be infavour of an instability of the boundary layer, resulting - with high probability - in the decay of the layer into plasma-induced arc spots. As a next step in this investigation of such plasma boundary layers a careful analysis of this transition is provided for, taking the specified conditions of the

  20. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  1. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers

    CERN Document Server

    Friedt, J M; Francis, L; Zhou, C; Campitelli, A; Friedt, Jean-Michel; Denis, Frederic; Francis, Laurent; Zhou, Cheng; Campitelli, Andrew

    2003-01-01

    We use an instrument combining optical (surface plasmon resonance) and acoustic (Love mode acoustic wave device) real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition, the bound mass and its physical properties -- density and optical index -- are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70+/-20 % water and are 16+/-3 to 19+/-3 nm thick for bulk concentrations ranging from 30 to 300 ug/ml. Fibrinogen layers include 50+/-10 % water for layer thicknesses in the 6+/-1.5 to 13+/-2 nm range when the bulk concentration is in the 46 to 460 ug/ml range.

  2. Structure-phase states of the nickel surface layers after electroexplosive carburizing

    Institute of Scientific and Technical Information of China (English)

    Budovskikh; E.; A.; Bagautdinov; A.; Y.; Ivanov; Yu.; F.; Martusevich; E.; V.; Gromov; V.; E.

    2005-01-01

    The layer by layer study of the structure-phase states of the nickel surface layer carburizing with use the phenomena of the electrical explosion has conducted by the method TEM of the fine foils.……

  3. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    Science.gov (United States)

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. PMID:26572322

  4. Bacterial Biofilm Morphology on a Failing Implant with an Oxidized Surface: A Scanning Electron Microscope Study.

    Science.gov (United States)

    Simion, Massimo; Kim, David M; Pieroni, Stefano; Nevins, Myron; Cassinelli, Clara

    2016-01-01

    This case report provided a unique opportunity to investigate the extent of microbiota infiltration on the oxidized implant surface that has been compromised by peri-implantitis. Scanning electron microscopic analysis confirmed the etiologic role of the bacteria on the loss of supporting structure and the difficulty in complete removal of bacterial infiltration on the implant surface. This case report emphasizes the need to perform definitive surface decontamination on failing dental implants prior to a regeneration procedure. PMID:27333005

  5. Layer by Layer, Nano-particle "Only" Surface Modification of Filtration Membranes

    Science.gov (United States)

    Escobar-Ferrand, Luis

    Layer by Layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for the modification of polymeric micro and ultrafiltration (MF/UF) membranes to produce thin film composites (TFC) with potential nanofiltration (NF) and reverse osmosis (RO) capabilities.. A variety of porous substrate membranes with different membrane surface characteristics are employed, but exhibiting in common that wicking of water does not readily occur into the pore structure, including polycarbonate track etched (PCTE), polyethersulfone (PES) and sulfonated PES (SPEES) MF/UF membranes. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those reported by Lee et al. Appropriate selection of the pH's for anionic and cationic particle deposition enables the construction of nanoparticle only layers 100--1200 nm in thickness atop the original membrane substrates. The surface layer thickness varies monotonically with the number of bilayers (anionic/cationic deposition cycles) as expected. The deposition process is optimized to eliminate drying induced cracking and to improve mechanical durability via thickness control and post-deposition hydro-thermal treatment. The hydrodynamic permeability of these TFC membranes is measured to evaluate their performance under typical NF operating conditions using dead-end permeation experiments and their performance compared quantitatively with realistic hydrodynamic models, with favorable results. For track etched polycarbonate MF substrates, surface modification causes a permeability reduction of approximately two orders of magnitude with respect to the bare substrates, to values comparable to those for typical commercial NF membranes. Good quantitative agreement with hydrodynamic models with no adjustable parameters was also established for this case, providing indirect confirmation that the LbL deposited surface layers are largely defect (crack) free

  6. Surface characterization of bacterial cells relevant to the mineral industry

    NARCIS (Netherlands)

    Sharma, PK; Rao, KH

    2005-01-01

    Bacteria belonging to the Acidithiobacilli group are widely used in the mineral processing industry in bioleaching and biobeneficiation operations. Paenibacillus polymyxa has also found application in biobeneficiation studies. Microbial adhesion to mineral surface is an essential step,for both biobe

  7. Possible Albedo Proton Signature of Hydrated Lunar Surface Layer

    Science.gov (United States)

    Schwadron, N.; Wilson, J. K.; Looper, M. D.; Jordan, A.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J. E.; Petro, N. E.; Pieters, C. M.; Robinson, M. S.; Smith, S. S.; Townsend, L. W.; Zeitlin, C. J.

    2015-12-01

    We find evidence for a surface layer of hydrated material in the lunar regolith using "albedo protons" measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high-energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and cannot be accounted for by either heavy element enrichment (e.g., enhanced Fe abundance), or by deeply buried (> 50 cm) hydrogenous material. The latitudinal distribution of albedo protons does not correlate with that of epithermal or high-energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in a thin (~ 1-10 cm) layer of hydrated regolith near the surface that is more prevalent near the poles. The CRaTER instrument thus provides critical measurements of volatile distributions within lunar regolith and potentially, with similar sensors and observations, at other bodies within the Solar System.

  8. Plasma Nitriding of Austenitic Stainless Steel with Severe Surface Deformation Layer

    Institute of Scientific and Technical Information of China (English)

    JI Shi-jun; GAO Yu-zhou; WANG Liang; SUN Jun-cai; HEI Zu-kun

    2004-01-01

    The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.

  9. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    Science.gov (United States)

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  10. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    Science.gov (United States)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  11. Layer-by-Layer Surface Molecular Imprinting on Polyacrylonitrile Nanofiber Mats.

    Science.gov (United States)

    Liu, Yuxuan; Cao, Bing; Jia, Peng; An, Junhu; Luo, Chao; Ma, Lijing; Chang, Jiao; Pan, Kai

    2015-06-25

    Surface molecular imprinting in layer-by-layer (SMI-LbL) film is known as a facile and effective strategy to build imprinting sites that are more accessible to template molecules compared with molecular imprinting in polymers. Herein, we accomplished the formation of SMI-LbL film on electrospun nanofibers for the first time. The SMI-LbL nanofibers were prepared by a template-induced LbL process on the polyacrylonitrile (PAN) nanofiber substrates, followed by postinfiltrating and photo-cross-linking of photosensitive agent 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt (DAS). The obtained nanofiber mat maintained the nanofibrous structure and showed rapid absorption and extraction of template molecules of meso-tetra(4-carboxyphenyl)-porphine (Por). The binding capacity of Por reached 2.1 mg/g when 3.5 bilayers were deposited on the nanofibers. After six cycles of extraction and reabsorption, the binding capacity of Por remained at 83%. Moreover, the absorption results of the targeted templated molecule of Por and the control molecule of Fast Green, which had a very similar chemical structure and charge status to Por, indicated the specific absorption for template molecule of Por. Thus, a surface molecular imprinted nanofiber mat with high selectivity of the templated molecule has been demonstrated. PMID:26038802

  12. Exploring the bronzing effect at the surface of ink layers

    Science.gov (United States)

    Hébert, Mathieu; Mallet, Maxime; Deboos, Alexis; Chavel, Pierre; Kuang, Deng-Feng; Hugonin, Jean-Paul; Besbes, Mondher; Cazier, Anthony

    2015-03-01

    We investigate the optical phenomenon responsible for the colored shine that sometimes appears at the surface of ink layers in the specular direction, often called bronzing or gloss differential. It seems to come from the wavelength-dependent refractive index of the ink, which induces a wavelength-dependent reflectance of the ink-air interface. Our experiments on cyan and magenta inkjet inks confirm this theory. Complex refractive indices can be obtained from measurements of the spectral reflectance and transmittance of a transparency film coated with the ink. We propose a correction of the classical Clapper-Yule model in order to include the colored gloss in the prediction of the spectral reflectance of an inked paper. We also explored effects of scattering by the micrometric or nanometric roughness of the ink surface. The micrometric roughness, easy to model with a geometrical optics model, can predict the spreading of the colored gloss over a large cone. Electromagnetic models accounting for the effect of the nanometric roughness of the surface also predict the attenuation of short wavelengths observed under collimated illumination.

  13. Effect of Surface Attachment on Synthesis of Bacterial Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R [ORNL; O' Neill, Hugh Michael [ORNL

    2005-01-01

    Gluconacetobacter spp. synthesize a pure form of hydrophilic cellulose that has several industrial specialty applications. Literature reports have concentrated on intensive investigation of static and agitated culture in liquid media containing high nutrient concentrations optimized for maximal cellulose production rates. The behavior of these bacteria on semisolid and solid surfaces has not been specifically addressed. The species Gluconacetobacter hansenii was examined for cellulose synthesis and colony morphology on a range of solid supports, including cotton linters, and on media thickened with agar, methyl cellulose, or gellan. The concentration and chemical structure of the thickening agent were found to be directly related to the formation of contiguous cellulose pellicules. Viability of the bacteria following freezer storage was improved when the bacteria were frozen in their cellulose pellicules.

  14. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders;

    adhesion. Sol-gel technology and the recent availability of organic modified silicas have lead to development of hybrid organic/inorganic glass ceramic coatings with specialised surface properties. In this study we investigate bacterial adhesion and the subsequent biofilm formation on stainless steel (SS...

  15. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology

    Directory of Open Access Journals (Sweden)

    Pietro Mandracci

    2016-01-01

    Full Text Available Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Improving or accelerating the osseointegration process is usually the main goal of these surface processes, but the improvement of biocompatibility and the prevention of bacterial adhesion are also of considerable importance. In this review, we report on the research of the recent years in the field of surface treatments and coatings deposition for the improvement of dental implants performance, with a main focus on the osseointegration acceleration, the reduction of bacterial adhesion and the improvement of biocompatibility.

  16. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  17. Thermodynamic model of hydrogen-induced silicon surface layer cleavage

    International Nuclear Information System (INIS)

    A thermodynamic model of hydrogen-induced silicon surface layer splitting with the help of a bonded silicon wafer is proposed in this article. Wafer splitting is the result of lateral growth of hydrogen blisters in the entire hydrogen-implanted region during annealing. The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion. The hydrogen blister radius was studied as a function of annealing time, annealing temperature, and implantation dose. The critical radius was obtained according to the Griffith energy condition. The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters. [copyright] 2001 American Institute of Physics

  18. Surface topology and electronic structure of layered strontium ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, Robert; Klinke, Melanie; Waelsch, Michael; Mietke, Sebastian; Matzdorf, Rene [Experimentalphysik II, Universitaet Kassel (Germany); Peng, Jin; Mao, Zhiqiang [Department of Physics, Tulane University, New Orleans (United States)

    2012-07-01

    In complex materials the interplay of properties like crystal structure, electronic structure and magnetism results in very interesting physical phenomena. The Ruddlesden-Popper series of layered Strontium Ruthenates Sr{sub n+1}Ru{sub n}O{sub 3n+1} describes one class of these materials. The double and triple layer systems behave like a Fermi liquid up to the transition temperature of 15 K and 24 K, respectively. In both compounds the local density of states (LDOS) shows a peak within the dip-like feature around the Fermi energy E{sub F}. Using low-temperature (LT) STM and STS we studied the temperature dependence of the LDOS in the range from 4.7 to 35 K. By increasing the temperature the peak within the dip in the LDOS at E{sub F} is only affected by thermal broadening. The surface unit cell of the Strontium Ruthenates exhibits a c(2 x 2) super structure, which is stable from 4.7 K up to room temperature as shown by our atomically resolved LT STM images and room temperature LEED experiments.

  19. Cone model for two surface foundations on layered soil

    Institute of Scientific and Technical Information of China (English)

    Chen Wenhua

    2006-01-01

    In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scattering field. Seed's simplified method is adopted for the free-field analysis,while the cone model is proposed for analyzing the dynamic scattering stress wave field.The shear stress field and the compressive stress field in the layered stratum with two scattering sources are calculated by shear cone and compressive cone, respectively. Furthermore, the stress fields in the subsoil with two foundations are divided into six zones, and the P wave and S wave are analyzed in each zone. Numerical results are provided to illustrate features of the added stress field for two surface foundations under vertical and horizontal sinusoidal force excitation. The proposed cone model may be useful in handling some of the complex problems associated with multi-scattering sources.

  20. Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness.

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2016-01-01

    Recent studies have shown that rates of bacterial dispersion in soils are controlled by hydration conditions that define size and connectivity of the retained aqueous phase. Despite the ecological implications of such constraints, microscale observations of this phenomenon remain scarce. Here, we quantified aqueous film characteristics and bacterial flagellated motility in response to systematic variations in microhydrological conditions on porous ceramic surfaces that mimic unsaturated soils. We directly measured aqueous film thickness and documented its microscale heterogeneity. Flagellar motility was controlled by surface hydration conditions, as cell velocity decreased and dispersion practically ceased at water potentials exceeding -2 kPa (resulting in thinner and disconnected liquid films). The fragmentation of aquatic habitats was delineated indirectly through bacterial dispersal distances within connected aqueous clusters. We documented bacterial dispersal radii ranging from 100 to 10 μm as the water potential varied from 0 to -7 kPa, respectively. The observed decrease of flagellated velocity and dispersal ranges at lower matric potentials were in good agreement with mechanistic model predictions. Hydration-restricted habitats thus play significant role in bacterial motility and dispersal, which has potentially important impact on soil microbial ecology and diversity. PMID:26757676

  1. Bacterial Adhesion and Surface Roughness for Different Clinical Techniques for Acrylic Polymethyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Lucas Costa de Medeiros Dantas

    2016-01-01

    Full Text Available This study sought to assess the effect of different surface finishing and polishing protocols on the surface roughness and bacterial adhesion (S. sanguinis to polymethyl methacrylates (PMMA. Fifty specimens were divided into 5 groups (n=10 according to their fabrication method and surface finishing protocol: LP (3 : 1 ratio and laboratory polishing, NF (Nealon technique and finishing, NP (Nealon technique and manual polishing, MF (3 : 1 ratio and manual finishing, and MP (3 : 1 ratio and manual polishing. For each group, five specimens were submitted to bacterial adhesion tests and analyzed by scanning electron microscopy (SEM. Two additional specimens were subjected to surface topography analysis by SEM and the remaining three specimens were subjected to surface roughness measurements. Data were compared by one-way ANOVA. The mean bacterial counts were as follows: NF, 19.6±3.05; MP, 5.36±2.08; NP, 4.96±1.93; MF, 7.36±2.45; and LP, 1.56±0.62 (CFU. The mean surface roughness values were as follows: NF, 3.23±0.15; MP, 0.52±0.05; NP, 0.60±0.08; MF, 2.69±0.12; and LP, 0.07±0.02 (μm. A reduction in the surface roughness was observed to be directly related to a decrease in bacterial adhesion. It was verified that the laboratory processing of PMMA might decrease the surface roughness and consequently the adhesion of S. sanguinis to this material.

  2. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    Science.gov (United States)

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  3. The viscous boundary layer at the free surface of a rotating baroclinic fluid

    OpenAIRE

    Hide, R.

    2011-01-01

    The properties of the viscous boundary layer at the free surface of a rotating baroclinic fluid are analyzed and compared with those of the well-known Ekman boundary layer at a rigid surface. Although the ageostrophic components of the flow in the free surface boundary layer are weaker than in the Ekman layer, there are problems of practical interest in which their effects are not negligible.DOI: 10.1111/j.2153-3490.1964.tb00188.x

  4. Surface Physicochemistry and Ionic Strength Affects eDNA’s Role in Bacterial Adhesion to Abiotic Surfaces

    OpenAIRE

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Jakub J Modrzyński; Sutherland, Duncan S; Rikke L Meyer

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequen...

  5. Does virus-induced lysis contribute significantly to bacterial mortality in the oxygenated sediment layer of shallow oxbow lakes?

    Science.gov (United States)

    Fischer, Ulrike R; Wieltschnig, Claudia; Kirschner, Alexander K T; Velimirov, Branko

    2003-09-01

    Despite the recognition that viruses are ubiquitous components of aquatic ecosystems, the number of studies on viral abundance and the ecological role of viruses in sediments is scarce. In this investigation, the interactions between viruses and bacteria were studied in the oxygenated silty sediment layer of a mesotrophic oxbow lake. A long-term study (13 months) and a diel study revealed that viruses are a numerically important and dynamic component of the microbial community. The abundance and decay rates ranged from 4.3 x 10(9) to 7.2 x 10(9) particles ml of wet sediment(-1) and from undetectable to 22.2 x 10(7) particles ml(-1) h(-1), respectively, and on average the values were 2 orders of magnitude higher than the values for the overlying water. In contrast to our expectations, viruses did not contribute significantly to the bacterial mortality in the sediment, since on average only 6% (range, 0 to 25%) of the bacterial secondary production was controlled by viruses. The low impact of viruses on the bacterial community may be associated with the quantitatively low viral burden that benthic bacteria have to cope with compared to the viral burden with which bacterial assemblages in the water column are confronted. The virus-to-bacterium ratio of the sediment varied between 0.9 and 3.2, compared to a range of 5.0 to 12.4 obtained for the water column. We speculate that despite high numbers of potential hosts, the possibility of encountering a host cell is limited by the physical conditions in the sediment, which is therefore not a favorable environment for viral proliferation. Our data suggest that viruses do not play an important role in the processing and transfer of bacterial carbon in the oxygenated sediment layer of the environment investigated. PMID:12957915

  6. Surface Roughness and Dislocation Distribution in Compositionally Graded Relaxed SiGe Buffer Layer with Inserted Strained Si Layers

    Science.gov (United States)

    Yoon, Tae-Sik

    2005-03-01

    We report the experimental investigation of surface roughness and dislocation distribution of 1 μm-thick, compositionally graded, relaxed SiGe buffer layer with a final Ge surface content of 30%. Tensile-strained Si layers are inserted at various locations in the graded buffer during SiGe epitaxial growths. Slight reduction in surface roughness from about 10.3 nm to about 7.8 nm by inserting two 20 nm thick tensile-strained Si layers followed by SiGe growths. It turns out that majority of the residual surface roughness is developed during the SiGe growths on top of the topmost strain Si layer. The surface immediately after the growth of tensile strained Si is very flat with about 1.1 nm RMS roughness and without crosshatch morphology. Cross-sectional TEM shows clear signs of increased interaction between dislocation half-loops at the top surface of the strained Si layers. Our observation shows that although thin Si layers under tensile-strain are effective in reducing cross-hatch, they could in the meantime impede dislocation propagation leading to higher threading dislocation density. Considerations for an optimized scheme exploiting the flattening function of tensile-strained layers will be discussed.

  7. Turbulent boundary layer over a convergent and divergent superhydrophobic surface

    Science.gov (United States)

    Nadeem, Muhammad; Hwang, Jinyul; Sung, Hyung Jin

    2015-11-01

    Direct numerical simulation (DNS) of spatially developing turbulent boundary layer (TBL) over a convergent and divergent superhydrophobic surface (SHS) was performed. The convergent and divergent SHS was aligned in the streamwise direction. The SHS was modeled as a pattern of slip and no-slip surfaces. For comparison, DNS of TBL over a straight SHS was also carried out. The momentum thickness Reynolds number was varied from 800 to 1400. The gas fraction of the convergent and divergent SHS was the same as that of the straight SHS, keeping the slip area constant. The slip velocity in the convergent SHS was higher than that of the straight SHS. An optimal streamwise length of the convergent and divergent SHS was obtained. The convergent and divergent SHS gave more drag reduction than the straight SHS. The convergent and divergent SHS led to the modification of near wall-turbulent structures, resembling the narrowing and widening streaky structures near the wall. The convergent and divergent SHS had a relatively larger damping effect on near-wall turbulence than the straight SHS. These observations will be further analyzed statistically to demonstrate the effect of the convergent and divergent SHS on the interaction of inner and outer regions of TBL.

  8. Global ocean wind power sensitivity to surface layer stability

    Science.gov (United States)

    Capps, Scott B.; Zender, Charles S.

    2009-05-01

    Global ocean wind power has recently been assessed (W. T. Liu et al., 2008) using scatterometry-based 10 m winds. We characterize, for the first time, wind power at 80 m (typical wind turbine hub height) above the global ocean surface, and account for the effects of surface layer stability. Accounting for realistic turbine height and atmospheric stability increases mean global ocean wind power by +58% and -4%, respectively. Our best estimate of mean global ocean wind power is 731 W m-2, about 50% greater than the 487 W m-2 based on previous methods. 80 m wind power is 1.2-1.5 times 10 m power equatorward of 30° latitude, between 1.4 and 1.7 times 10 m power in wintertime storm track regions and >6 times 10 m power in stable regimes east of continents. These results are relatively insensitive to methodology as wind power calculated using a fitted Weibull probability density function is within 10% of power calculated from discrete wind speed measurements over most of the global oceans.

  9. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  10. Effect of treatment time on characterization and properties of nanocrystalline surface layer in copper induced by surface mechanical attrition treatment

    Indian Academy of Sciences (India)

    Farzad Kargar; M Laleh; T Shahrabi; A Sabour Rouhaghdam

    2014-08-01

    Nanocrystalline surface layers were synthesized on pure copper by means of surface mechanical attrition treatment (SMAT) at various treatment times. The microstructural features of the surface layers produced by SMAT were systematically characterized by optical microscopy (OM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Hardness and surface roughness measurements were also carried out. It is found that the thickness of the deformed layer increased from 50 to 500 m with increasing treatment time from 10 to 300 min, while the average grain size of the top surface layer decreased from 20 to 7 nm. Hardness of the all SMATed samples decreased with depth. Furthermore, the hardness of the top surface layer of the SMATed samples was at least two times higher than that of the un-treated counterpart. Surface roughness results showed different trend with treatment time. Amounts of PV and a values first sharply increased and then decreased.

  11. Characterization of Floating Surface Layers of Lipids and Lipopolymers by Surface-Sensitive Scattering

    Science.gov (United States)

    Krüger, Peter; Lösche, Mathias

    Nanotechnology and molecular (bio-)engineering are making ever deepening inroads into everybodys daily life. Physicochemical and biotechnological achievements in the design of physiologically active supramolecular assemblies have brought about the quest for their submolecular-level characterization. We employ surface-sensitive scattering techniques for the investigation of planar lipid membranes - floating monolayers on aqueous surfaces - to correlate structural, functional and dynamic aspects of biomembrane models. This chapter surveys recent work on the submolecular structure of floating phospholipid monolayers - where the advent of third-generation synchrotron X-ray sources has driven the development of realistic, submolecular-scale quasi-chemical models - as well as of more complex systems: cation binding to anionic lipid surfaces; conformational changes of lipopolymers undergoing phase transitions; the conformational organization of phosphatidylinositol and phosphatidylinositides, as examples of physiologically important lipids; and the adsorption of peptides (neuropeptide Y, NPY) or solvents (dimethylsulfoxide, DMSO) onto phospholipid surface layers.

  12. INVESTIGATIONS INTO THE DETACHMENT OF DIFFERENTLY STRUCTURED DUST LAYERS FROM SURFACES

    Institute of Scientific and Technical Information of China (English)

    Eberhard; Schmidt

    2005-01-01

    A technique is presented for creating surface-adhering dust layers under defined conditions, and characterizing and stressing the layers created. The procedure described is shown to be suitable for the quantitative evaluation of the effects of different parameters such as particle size, porosity and surface roughness etc. on the stability of particle layers.

  13. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    Science.gov (United States)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  14. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  15. The bacterial flora of the skin surface following routine MAL-PDT.

    Science.gov (United States)

    Bryld, Lars Eeik; Jemec, Gregor B E

    2006-01-01

    Photodynamic therapy using methylated 5-aminolevulate (MAL-PDT) appears to have an effect on non-neoplastic skin diseases, for example acne vulgaris and rosacea, for which antibiotics are sometimes used, and a possible antibiotic effect of PDT has previously been suggested. It does, however, also cause local immunosuppression and post-treatment barrier defects, which may promote infection. At the same time, PDT-induced therapeutic skin damage is sometimes confused with secondary bacterial infection by non-dermatologists. The possible changes in bacterial flora associated with MAL-PDT were therefore studied in 47 patients undergoing treatment. Skin swabs were taken immediately before applying the MAL and instantly after light irradiation. Bacterial growth was identified in 18 cases. No statistically significant changes were seen, either in the specific species found or the estimated bacterial density on the skin surface. The observations do not support the notion that routine MAL-PDT affects the bacterial flora of the skin in a clinically significant manner. Therefore, the possible antibacterial effect of routine MAL-PDT is probably not the main explanation of its apparent effect on non-neoplastic skin disease.

  16. Bacterial Diversity of Gut Content in Sea Cucumber (Apostichopus japonicus) and Its Habitat Surface Sediment

    Institute of Scientific and Technical Information of China (English)

    GAO Fei; TAN Jie; SUN Huiling; YAN Jingping

    2014-01-01

    This study investigated the bacterial diversity of gut content of sea cucumber (Apostichopus japonicus) and its habitat surface sediment in a bottom enhancement area using PCR-based denaturing gradient gel electrophoresis (DGGE) technique. Bacte-rial diversity evaluation showed that the value of the Shannon-Wiener index of gut content in different intestinal segments of A. ja-ponicus varied between 2.88 and 3.00, lower than that of the surrounding sediment (3.23). Phylogenetic analysis showed that bacte-rial phylotypes in gut content and the surrounding sediment of A. japonicus were closely related to Proteobacteria includingγ-,α-,δ-andε-proteobacteria, Bacteroidetes, Firmicute, and Actinobacteria, of whichγ-proteobacteria were predominant. These results sug-gested that the sea cucumber A. japonicus was capable of feeding selectively, and PCR-DGGE was applicable for characterizing the bacterial community composition in gut content and the surrounding sediment of sea cucumber. Further investigation targeting longer 16S rDNA gene fragments and/or functional genes was recommended for obtaining more information of the diversity and function of bacterial community in the gut content of sea cucumber.

  17. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  18. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation.

    Science.gov (United States)

    Maolin, Sha; Fuchun, Zhang; Guozhong, Wu; Haiping, Fang; Chunlei, Wang; Shimou, Chen; Yi, Zhang; Jun, Hu

    2008-04-01

    Microscopic structures of room temperature ionic liquid (IL) [bmim][PF6] on hydrophobic graphite surfaces have been studied in detail by molecular dynamics simulation. It is clearly shown that both the mass and electron densities of the surface adsorbed ionic liquid are oscillatory, and the first peak adjacent to the graphite surface is considerably higher than others, corresponding to a solidlike IL bottom layer of 6 angstroms thick. Three IL layers are indicated between the graphite surface and the inner bulk IL liquid. The individually simulated properties of single-, double-, and triple-IL layers on the graphite surface are very similar to those of the layers between the graphite surface and the bulk liquid, indicating an insignificant effect of vapor-IL interface on the ordered IL layers. The simulation also indicates that the imidazolium ring and butyl tail of the cation (bmim+) of the IL bottom layer lie flat on the graphite surface.

  19. Surface layer temperature inversion in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P.M.; Reddy, G.V.; Araligidad, N.

    distribution of the layer thickness, layer gradient, starting depth and their inter-annual variability, ii) static stability of the layer and iii) generating mechanism/s. It is seen that organized inversions in the bay occur during winter (from November...

  20. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: Synthesis and spectroscopic characterization of zincite-coated Fe2O3 nanoparticles

    Science.gov (United States)

    Habibi, Neda

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  1. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    Science.gov (United States)

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  2. Dual Nature of Heat Flux in Stable Atmospheric Surface Layer

    Science.gov (United States)

    Srivastava, P.; Sharan, M.

    2015-12-01

    The behavior of heat flux (H) with respect to the stability parameter (ζ) in stable surface layer (SSL) is analyzed with in the framework of Monin-Obukhov similarity (MOS) theory. The analytical expressions of H are obtained as functions of wind speed (U) and wind shear (dU/dz) using the linear similarity functions and accordingly two cases, (i) U = δ (constant) and (ii) dU/dz = δ are considered. The mathematical analysis shows that the magnitude of H increases with ζ till it attains a maximum value at ζ =ζc and then starts decreasing with increasing stability suggesting the dual characteristic of heat flux with stability parameter. The point of maximum heat flux is found to be dependent on the roughness length (z0) as well as the height above the surface. An attempt has been made to analyze the sensitivity of this dual characteristic of H with ζ using the non-linear similarity functions. The analysis shows that the dual nature of H persists in the case of linear as well as non-linear similarity functions. However, the point of extremum appears to be dependent on the nature of the similarity functions. Turbulent data over a tropical site Ranchi (India) is analyzed to validate the observed nature of H with the theoretical nature as predicted by MOS. The analysis of observational data reveals the non-existence of any preferred stability state in SSL as speculated by Wang and Bras (2010, 2011) and supports the conclusions of Malhi 1995, Derbyshire 1999, van de Wiel et al. 2007, Basu et al. 2008, and van de Wiel et al. 2011. Thus, the non-uniqueness of MOS equations does not appear to be a mathematical artifact and it is consistent with the observations as far as the nature of heat flux with respect to stability parameter in SSL is concerned.

  3. Layer by layer removal of Au atoms from passivated Au(111) surfaces using the scanning tunneling microscope: Nanoscale ``paint stripping''

    Science.gov (United States)

    Keel, J. M.; Yin, J.; Guo, Q.; Palmer, R. E.

    2002-04-01

    Layer by layer removal of gold atoms from the (111) surface of gold has been performed using the scanning tunneling microscope. The process is made possible by a chemisorbed self-assembled monolayer (SAM) of dodecanethiol molecules on the surface, which gives rise to a reduced bonding strength between the top two layers of gold atoms. The gold atoms and associated adsorbed molecules are peeled off and displaced laterally by the STM tip, and the size of the modified area (down to ˜10×10 nm) is more or less determined by the scan size.

  4. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-09-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  5. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-12-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  6. Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis

    DEFF Research Database (Denmark)

    De Corte, Simon; Bechstein, Stefanie; Lokanathan, Arcot R.;

    2013-01-01

    An increasing demand for catalytic Pd nanoparticles has motivated the search for sustainable production methods. An innovative approach uses bacterial cells as support material for synthesizing Pd nanoparticles by reduction of Pd(II) with e.g. hydrogen or formate. Nevertheless, drawbacks of...... on these surfaces was higher than for Pd particles formed on Shewanella oneidensis cells. Smaller Pd nanoparticles generally have better catalytic properties, and previous studies have shown that the particle size can be lowered by increasing the amount of support material used during Pd particle...... materials were visualized by transmission electron microscopy, and their activity was evaluated by catalysis of p-nitrophenol reduction. Surfaces functionalized with 3-aminopropyltriethoxysilane and chitosan were interesting alternatives to bacterial cells, as the catalytic activity of Pd particles formed...

  7. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  8. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    Full Text Available Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological

  9. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens.

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  10. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus

    OpenAIRE

    Frade, P.R.; Schwaninger, V.; Glasl, B.; Sintes, E.; Hill, R. W.; Simó, R.; Herndl, G.

    2016-01-01

    Corals produce copious amounts of dimethylsulfoniopropionate (DMSP), a sulfur compound thought toplay a role in structuring coral-associated bacterial communities. We tested the hypothesis that a linkage exists betweenDMSP availability in coral tissues and the community dynamics of bacteria in coral surface mucus. We determinedDMSP concentrations in three coral species (Meandrina meandrites, Porites astreoides and Siderastrea siderea) at twosampling depths (5 and 25 m) and times of day (dawn ...

  11. Effects of Surface Area and Flow Rate on Marine Bacterial Growth in Activated Carbon Columns

    OpenAIRE

    Shimp, Robert J.; Pfaender, Frederic K.

    1982-01-01

    The colonization of granular activated carbon columns by bacteria can have both beneficial and potentially detrimental consequences. Bacterial growth on the carbon surface can remove adsorbed organics and thus partially regenerate the carbon bed. However, growth can also increase the levels of bacteria in the column effluents, which can adversely affect downstream uses of the treated water. This study of a sand column and several activated carbon columns demonstrated that considerable marine ...

  12. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2013-12-01

    Full Text Available Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a, B1a with zirconium oxide (ZrO2 coating (B2a, B1a with zirconia-based composite coating (B1b and B1a with zirconia-based composite and ZrO2 coatings (B2b. Bovine enamel slabs (BES served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM; DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22% were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80% were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  13. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Science.gov (United States)

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants. PMID:27088315

  14. Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar; Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-07-01

    The steady mixed convection boundary layer flow through a stable stratified medium adjacent to a vertical surface is investigated. The velocity outside the boundary layer and the surface temperature are assumed to vary linearly from the leading edge of the surface. The transformed ordinary differential equations are solved numerically by the Keller-box method. It is found that dual solutions exist, and the thermal stratification delays the boundary layer separation. (author)

  15. Microstructure of Ni / WC Surface Composite Layer on Gray Iron Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Guirong; SONG Wenming; MA Ying; LU Jinjun; HAO Yuan; LI Yuandong; WANG Haitang

    2011-01-01

    The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μrn which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macrohardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV 1000.

  16. Layer-by-layer construction of the heparin/fibronectin coatings on titanium surface:stability and functionality

    Science.gov (United States)

    Li, Guicai; Yang, Ping; Huang, Nan

    Layer-by-layer assembly as a versatile bottom-up nanofabrication technique has been widely used in the development of biomimetic materials with superior mechanical and biological properties. In this study, layer-by-layer assembled heparin/fibronectin biofunctional films were fabricated on titanium (Ti) surface to enhance the blood anticoagulation and accelerate the endothelialization simultaneously. The wettability and chemical changes of the assembled films were investigated by static water contact angle measurement and fourier transform infrared spectroscopy (FTIR). The morphology of modified Ti surfaces were observed using scanning electron microscopy (SEM). The real time assembly process was in-situ monitored by quartz crystal microbalance with dissipation (QCM-D). The stability of the films was evaluated by measuring the changes in wettability and the quantity of heparin and fibronectin on the surfaces. The anticoagulation properties of the films were quantitatively rated using Activated partial thromboplastin time (APTT) analysis. New peaks of hydroxyl and amino group were observed on the assembled Ti srufaces by FTIR. The contact angles varied among the films with different bilayer numbers, indicating the successful graft of the heparin and fibronectin layer-by-layer. QCM-D results showed that the frequency shift increased with the bilayer numbers, and the heparin and fibronectin could form multilayers. The assembly films were stable after incubation in PBS for 24 h based on the results of the contact angle measurement and the quantity of heparin and fibronectin analysis. APTT results suggested that the assembled films kept excellent antithrombotic properties. All these results revealed that the assembled heparin/fibronectin films with stabiltiy and anticoagulation property could be firmly formed on titanium surfaces. Our study further demonstrates that layer-by-layer assembly of heparin and fibronectin will provide a potential and effective tool for

  17. Cell surface hydrophobicity is conveyed by S-layer proteins - A study in recombinant lactobacilli

    NARCIS (Netherlands)

    Mei, H.C. van der; Belt-Gritter, B. van de; Pouwels, P.H.; Martinez, B.; Busscher, H.J.

    2003-01-01

    Cell surface hydrophobicity is one of the most important factors controlling adhesion of microorganisms to surfaces. In this paper, cell surface properties of lactobacilli and recombinant lactobacilli with and without a surface layer protein (SLP) associated with cell surface hydrophobicity were det

  18. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  19. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    Science.gov (United States)

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. PMID:26657250

  20. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    Science.gov (United States)

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition.

  1. Local scaling characteristics of Antarctic surface layer turbulence

    Directory of Open Access Journals (Sweden)

    S. Basu

    2010-03-01

    Full Text Available Over the past years, several studies have validated Nieuwstadt's local scaling hypothesis by utilizing turbulence observations from the mid-latitude, nocturnal stable boundary layers. In this work, we probe into the local scaling characteristics of polar, long-lived stable boundary layers by analyzing turbulence data from the South Pole region of the Antarctic Plateau.

  2. DLC coatings for UHMWPE: relationship between bacterial adherence and surface properties.

    Science.gov (United States)

    Del Prado, G; Terriza, A; Ortiz-Pérez, A; Molina-Manso, D; Mahillo, I; Yubero, F; Puértolas, J A; Manrubia-Cobo, M; Gómez Barrena, E; Esteban, J

    2012-10-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopedic surgery. This work presents a thorough study of several plasma-based coatings that may be used with this functionality: diamond-like carbon (DLC), fluorine-doped DLC (F-DLC), and a high-fluorine-content-carbon-fluor polymer (CF(X)). The coatings were obtained by a radio-frequency plasma-assisted deposition on ultra high molecular weight polyethylene (UHMWPE) samples and physicochemical properties of the coated surfaces were correlated with their antibacterial performance against collection and clinical Staphylococcus aureus and Staphylococcus epidermidis strains. The fluorine content and the relative amount of C-C and C-F bonds were controlled by X-ray photoelectron spectroscopy, and hydrophobicity and surface tension by contact angle measurements. Surface roughness was studied by Atomic Force Microscopy. Additional nanoidentation studies were performed for DLC and F-DLC coatings. Unpaired t test and regression linear models evaluated the adherence of S. aureus and S. epidermidis on raw and coated UHMWPE samples. Comparing with UHMWPE, DLC/UHMWPE was the least adherent surface with independence of the bacterial species, finding significant reductions (p ≤ 0.001) for nine staphylococci strains. Bacterial adherence was also significantly reduced in F-DLC/ UHMWPE and CFx/UHMWPE for six strains.

  3. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    A stack of Al2O3/SiNx dual layer was applied for the back side surface passivation of p-type multi-crystalline silicon solar cells, with laser-opened line metal contacts, forming a local aluminum back surface field (local Al-BSF) structure. A slight amount of Al2O3, wrapping around to the front side of the wafer during the thermal atomic layer deposition process, was found to have a negative influence on cell performance. The different process flow was found to lead to a different cell performance, because of the Al2O3 wrapping around the front surface. The best cell performance, with an absolute efficiency gain of about 0.6% compared with the normal full Al-BSF structure solar cell, was achieved when the Al2O3 layer was deposited after the front surface of the wafer had been covered by a SiNx layer. We discuss the possible reasons for this phenomenon, and propose three explanations as the Ag paste, being hindered from firing through the front passivation layer, degraded the SiNx passivation effect and the Al2O3 induced an inversion effect on the front surface. Characterization methods like internal quantum efficiency and contact resistance scanning were used to assist our understanding of the underlying mechanisms. (semiconductor physics)

  4. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    International Nuclear Information System (INIS)

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  5. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates.

    Science.gov (United States)

    Li, Hui; Peng, Lincai

    2015-06-25

    To confer cellulose fibers antimicrobial and antioxidant activities, chitosan (CS)/lignosulfonates (LS) multilayers were constructed on fibers surfaces through layer-by-layer deposition technique. The formation of CS/LS multilayers on cellulose fibers surfaces was verified by X-ray photoelectron spectroscopy (XPS) and zeta potential measurement. The surface morphologies of CS/LS multilayers on fibers surfaces were observed by atomic force microscopy (AFM). The results showed that characteristic element (i.e. N and S element) content increased with increasing bilayers number, the surface LS content increased linearly as a function of bilayers. Zeta potential of modified fibers was inversed after deposition of each layer. AFM phase images indicated that the cellulose microfibrils on fibers surfaces were gradually covered by granular LS aggregate. The antimicrobial testing results demonstrated that CS/LS multilayers modified fibers with CS in the outermost layer exhibited higher antimicrobial activity against Escherichia coli. The antioxidant testing results showed that antioxidant activity of CS/LS multilayers modified fibers was better than that of original fibers under the same oxidation conditions. PMID:25839791

  6. Surface tension-driven convection patterns in two liquid layers

    CERN Document Server

    Juel, A; McCormick, W D; Swift, J B; Swinney, H L; Juel, Anne; Burgess, John M.; Swinney, Harry L.

    1999-01-01

    Two superposed liquid layers display a variety of convective phenomena that are inaccessible in the traditional system where the upper layer is a gas. We consider several pairs of immiscible liquids. Once the liquids have been selected, the applied temperature difference and the depths of the layers are the only independent control parameters. Using a perfluorinated hydrocarbon and silicone oil system, we have made the first experimental observation of convection with the top plate hotter than the lower plate. Since the system is stably stratified, this convective flow is solely due to thermocapillary forces. We also have found oscillatory convection at onset in an acetonitrile and n-hexane system heated from below.

  7. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    applying voltage to electrodes the carrier density in the transparent conducting oxide layer (we study indium tin oxide - ITO) changes according to the Thomas-Fermi screening theory. We employ analytical solutions for a multilayered system as well as numerical simulations with the commercial software...... package CST Microwave Studio in the frequency domain. We explore different permittivities of the ITO layer, which can be achieved by utilizing different anneal conditions. To increase transmittance and enhance modulation depth or efficiency, we propose to pattern the continuous active layer. Dependence...

  8. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...... produced as droplets at the surface and ‘continental’ background aerosols brought into the boundary layer at the top by entrainment and gravitational settling. Estimates of Si are provided....

  9. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Directory of Open Access Journals (Sweden)

    Pedro R Frade

    Full Text Available Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%. About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater, host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  10. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Science.gov (United States)

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. PMID:26788724

  11. Investigation of the Surface Properties of Titanium Biomaterial with Oxide Layer of Rutile Structure

    Institute of Scientific and Technical Information of China (English)

    Huang Nan; Chen Yuanru; Xiao Jing; Xue Zhennan; Liu Xianghuai

    1994-01-01

    Structural characteristics of titanium oxide layer on titanium matrix were investigated by Rutherford Backscattering Spectroscopy (RBS), Auger Electron Spectroscopy(AES) and X-ray diffraction, It has been identified that the titanium oxide layers have rutile structure. The mechanical properties of its surface were ineasured by microhardness test, pin-on-disc wear experiment and scratch adhesion test. The blood-compatibility of the titanium oxide layers of different thickness was studied by blood clotting time measurement. It is shown that as the thickness of the titanium oxide layers increases, the surface mechanical properties and bloodcompatibility of these layers are obviously improved.

  12. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels.

    Science.gov (United States)

    Krsko, Peter; Kaplan, Jeffrey B; Libera, Matthew

    2009-02-01

    We constructed surface-patterned hydrogels using low-energy focused electron beams to locally crosslink poly(ethylene glycol) (PEG) thin films on silanized glass substrates. Derived from electron-beam lithography, this technique was used to create patterned hydrogels with well-defined spatial positions and degrees of swelling. We found that cells of the bacterium Staphylococcus epidermidis adhered to and grew on the silanized glass substrates. These cells did not, however, adhere to surfaces covered by high-swelling lightly crosslinked PEG hydrogels. This finding is consistent with the cell-repulsiveness generally attributed to PEGylated surfaces. In contrast, S. epidermidis cells did adhere to surfaces covered by low-swelling highly crosslinked hydrogels. By creating precise patterns of repulsive hydrogels combined with adhesive hydrogels or with exposed glass substrate, we were able to spatially control the adhesion of S. epidermidis. Significantly, adhesive areas small enough to trap single bacterial cells could be fabricated. The results suggest that the lateral confinement imposed by cell-repulsive hydrogels hindered the cell proliferation and development into larger bacterial colonies.

  13. Modeling bacterial attachment to surfaces as an early stage of biofilm development.

    Science.gov (United States)

    El Moustaid, Fadoua; Eladdadi, Amina; Uys, Lafras

    2013-06-01

    Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation. In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set. The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation. Our work gives rise to results that agree with the biological description of the early stages of biofilm formation. PMID:23906151

  14. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    Science.gov (United States)

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  15. Measurement of the dynamic shear modulus of surface layers I. Theory

    OpenAIRE

    Waterman, Herman A.

    1984-01-01

    In measuring the dynamic surface-shear modulus of a surface layer on a liquid, conditions may occur—low-shear modulus and/or high frequencies—which promote wave-propagation effects to play a predominant role. A theory is presented with the help of which the (complex) wave number of the wave in the layer can be expressed in the densities and shear moduli of both the surface layer and the liquid. The theory can also be applied to an interfacial layer between two liquids. It predicts that in pra...

  16. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  17. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  18. EFFECT OF ELECTRIC FIELD STRENGTH ON SURFACE LAYER DESTRUCTION IN INSULATION CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Y.G. Gontar

    2013-09-01

    Full Text Available Results of theoretical and experimental studies of surface layer destruction in electrical insulation under lightning surge pulses are given, their impact on the insulation construction durability shown. Causes of water treeing in the surface layers of polymer insulation are analyzed.

  19. Surface Layer Formation When Finish-Hardening Processing of the Parts by Smoothing

    Science.gov (United States)

    Belyaev, V. N.; Tatarkin, E. Ju

    2016-04-01

    Problems of surface layer formation of the parts, when hydraulic smoothing, are considered in this work. The results of theoretical and pilot studies of smoothing in case of nanocarbons and copper salts introduction into the process liquid are given. The influence dependences of the processing modes on roughness and microhardness of surface layer are defined.

  20. Metallurgical investigations of dry sliding surface layer in phosphorous iron/steel friction pairs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Surface layer behaviors of composition concentration and micro-hardness were inves-tigated on phosphorous cast irons after dry sliding. The experimental results indicate that thehardness and chemical composition unevenly distribute in the surface layer. The sliding conditionand microstructure of the pin specimen have greatly effects on the distributions.

  1. Analysis of Laser Surface Hardened Layers of Automobile Engine Cylinder Liner

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-bo; YU Gang; GUO Jian; SHANG Quan-yi; ZHANG Zhen-guo; GU Yi-jie

    2007-01-01

    Gray cast iron that is used for automobile engine cylinder liners was laser surface hardened using Nd∶YAG quasi-continuous and CO2 continuous wave laser, respectively. The macromorphology and microstructure of the laser surface hardened layers were investigated using an optical microscope. Geometric dimensions including depth and width and microhardness distribution of the hardened layers were also examined in order to evaluate the quality of the hardened layers.

  2. Surface Modification of Titanium with Heparin-Chitosan Multilayers via Layer-by-Layer Self-Assembly Technique

    Directory of Open Access Journals (Sweden)

    Yao Shu

    2011-01-01

    Full Text Available Extracellular matrix (ECM, like biomimetic surface modification of titanium implants, is a promising method for improving its biocompatibility. In this paper chitosan (Chi and heparin (Hep multilayer was coated on pure titanium using a layer-by-layer (LbL self-assembly technique. The Hep-Chi multilayer growth was carried out by first depositing a single layer of positively charged poly-L-lysine (PLL on the NaOH-treated titanium substrate (negatively charged surface, followed by alternate deposition of negatively charged Hep and positively charged Chi, and terminated by an outermost layer of Chi. The multilayer was characterized by DR-FTIR, SEM, and AFM, and osteoblasts were cocultured with the modified titanium and untreated titanium surfaces, respectively, to evaluate their cytocompatibility in vitro. The results confirmed that Hep-Chi multilayer was fabricated gradually on the titanium surface. The Hep-Chi multilayer-coated titanium improved the adhesion, proliferation and differentiation of osteoblasts. Thus, the approach described here may provide a basis for the preparation of modified titanium surfaces for use in dental or orthopedic implants.

  3. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs

    Directory of Open Access Journals (Sweden)

    Osama Shekhah

    2010-02-01

    Full Text Available A layer-by-layer method has been developed for the synthesis of metal-organic frameworks (MOFs and their deposition on functionalized organic surfaces. The approach is based on the sequential immersion of functionalized organic surfaces into solutions of the building blocks of the MOF, i.e., the organic ligand and the inorganic unit. The synthesis and growth of different types of MOFs on substrates with different functionalization, like COOH, OH and pyridine terminated surfaces, were studied and characterized with different surface characterization techniques. A controlled and highly oriented growth of very homogenous films was obtained using this method. The layer-by-layer method offered also the possibility to study the kinetics of film formation in more detail using surface plasmon resonance and quartz crystal microbalance. In addition, this method demonstrates the potential to synthesize new classes of MOFs not accessible by conventional methods. Finally, the controlled growth of MOF thin films is important for many applications like chemical sensors, membranes and related electrodes.

  4. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    Science.gov (United States)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract

  5. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Directory of Open Access Journals (Sweden)

    Xue Zhong

    Full Text Available The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL, on which multilayer coatings can incorporate silver nanoparticles (AgNP using chitosan (CS and hyaluronic acid (HA via a layer-by-layer (LbL self-assembly technique.In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethylphosphine (TCEP to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates.The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration.The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections

  6. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  7. Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-quan; LIANG Hui-Min; SHI Sha; DU Jing-Lei

    2009-01-01

    Interference nanolithography techniques based on long-range surface plasmon polaritons (LR-SPP) are hardly ever achieved by experiments at present.One key reason is that suitable liquid materials are difficult to find as the match layer connects the metal film and the resist.We redesign a Kretschmann-Raether structure for interference lithography.A polymer layer is coated under the metal film,and an air layer is placed between the polymer layer and the resist layer.This design not only avoids the above-mentioned question of the match layer,but also can form a soft contact between the polymer layer and the resist layer and can protect the exposure pattern.Simulation results confirm that a device with an appropriately thick polymer layer can form high intensity and contrast interference fringes with a critical dimension of about λ/7 in the resist.In addition,the fabrication of the device is very easy.

  8. Frequency, Size, and Localization of Bacterial Aggregates on Bean Leaf Surfaces

    Science.gov (United States)

    Monier, J.-M.; Lindow, S. E.

    2004-01-01

    Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 104 cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 103 cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed. PMID:14711662

  9. The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling.

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    Full Text Available The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa.

  10. Surface Layers of Clostridium difficile Endospores▿†

    OpenAIRE

    Permpoonpattana, Patima; Tolls, Elisabeth H.; Nadem, Ramez; Tan, Sisareuth; Brisson, Alain; Cutting, Simon M.

    2011-01-01

    Clostridium difficile is an important human pathogen and one where the primary cause of disease is due to the transmission of spores. We have investigated the proteins found in the outer coat layers of C. difficile spores of pathogenic strain 630 (CD630). Five coat proteins, CotA, CotB, CotCB, CotD, and CotE, were shown to be expressed on the outer coat layers of the spore. We demonstrate that purified spores carry catalase, peroxiredoxin, and chitinase activity and that this activity correla...

  11. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. PMID:26289961

  12. Spatial Organization of Dual-Species Bacterial Aggregates on Leaf Surfaces

    Science.gov (United States)

    Monier, J.-M.; Lindow, S. E.

    2005-01-01

    The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions

  13. Thermal Stability of Surface Layer Microstructures of Commercially Pure Titanium Treated by High Energy Shot Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-juan; CHEN Chun-huan; REN Rui-ming

    2004-01-01

    Commercially pure titanium was treated by high energy shot peening, and annealed at a series of temperatures. The surface layers are characterized by means of scan electronic microscope, X-Ray diffraction, transmission electronic microscope and micro-hardness testing machine. The results showed that microhardness of surface layers decreases with anneal temperature, the tendency of microhardness is similar to unannealed one, in other words, the more close to the surface, the more rapidly the hardness decreases, after reaches the depth of 50 μm, the decrease becomes steadily. But the sub-surface microhardness decreased suddenly over 500 ℃, From 550 ℃ to 650 ℃, the microhardness of surface layers almost unchanged.Observing by TEM and SEM, the grain sizes of pure titanium surface layers have increased below 500 ℃; Deformation twins begin disappearing obviously at 550 ℃; The nano-scaled grains within about 10 micrometers from surface existed even at 550℃.Surface nanocrystallization is well known as one of important methods to improve surface properties. The thermal stability of nanocrystalline microstructures was related to their preparation and application. The commercial pure Ti thermal stability of nanocrystalline and deformed microstructures induced by high-energy-shot-peening (HESP) technique was investigated. The nanostructured surface and deformed sub-surface layers of specimens were prepared through HESP treatment. The thermal stability was characterized through XRD analyses of surface layers, SEM and TEM microstructure observation and microhardness measurement of specimens annealed in different temperature in the air after HESP treatments. The results showed that after HESP treatment, the microhardness of surface layers increased with treatment time, especially in the rang of about 40 micrometers from the surface, the microhardness increase was obvious. The surface microhardness decreased gradually with annealing temperature, but the sub-surface

  14. Inverse method for the determination of elastic properties of coating layers by the surface ultrasonic waves

    Institute of Scientific and Technical Information of China (English)

    CHANG Jun; YANG Zhen; XU Jin-quan

    2005-01-01

    As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space,an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.

  15. Where surface physics and fluid dynamics meet: rupture of an amphiphile layer by fluid flow

    OpenAIRE

    Bandi, Mahesh; Goldburg, Walter; Cressman Jr., John; Kellay, Hamid

    2006-01-01

    We investigate the fluctuating pattern created by a jet of fluid impingent upon an amphiphile-covered surface. This microscopically thin layer is initially covered with 50 $\\mu$m floating particles so that the layer can be visualized. A vertical jet of water located below the surface and directed upward drives a hole in this layer. The hole is particle-free and is surrounded by the particle-laden amphiphile region. The jet ruptures the amphiphile layer creating a particle-free region that is ...

  16. Layered Gold and Titanium Dioxide Substrates for Improved Surface Enhanced Raman Spectroscopic Sensing.

    Science.gov (United States)

    Strobbia, Pietro; Henegar, Alex J; Gougousi, Theodosia; Cullum, Brian M

    2016-08-01

    This manuscript describes a simple process for fabricating gold-based, multi-layered, surface-enhanced Raman scattering (SERS) substrates that can be applied to a variety of different nanostructures, while still providing multi-layer enhancement factors comparable to those previously achieved only with optimized silver/silver oxide/silver substrates. In particular, gold multi-layered substrates generated by atomic layer deposition (ALD) have been fabricated and characterized in terms of their optimal performance, revealing multi-layer enhancements of 2.3-fold per spacer layer applied. These substrates were fabricated using TiO2 as the dielectric spacer material between adjacent gold layers, with ALD providing a conformal thin film with high surface coverage and low thickness. By varying the spacer layer thicknesses from sub-monolayer (non-contiguous) films through multiple TiO2 layer thick films, the non-monotonic spacer layer thickness response has been elucidated, revealing the importance of thin, contiguous dielectric spacer layers for optimal enhancement. Furthermore, the extended shelf life of these gold multi-layered substrates was characterized, demonstrating usable lifetimes (i.e. following storage in ambient conditions) of greater than five months, with the further potential for simple limited electrochemical regeneration even after this time. PMID:27329834

  17. Characterization and Properties of Nanostructured Surface Layer in a Low Carbon Steel Subjected to Surface Mechanical Attrition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A nanostructured surface layer was synthesized on a Iow carbon steel by using surface mechanical attrition (SMA)technique. The refined microstructure of the surface layer was characterized by means of different techniques,and the hardness variation along the depth was examined. Experimental results show that the microstructure isinhomogeneous along the depth. In the region from top surface to about 40μm deep, the grain size increases fromabout 10 nm to 100 nm. In the adjacent region of about 40~80μm depth, the grain size increases from about 100nm to 1000 nm. The grain refinement can be associated with the activity of dislocations. After the SMA treatment,the hardness of the surface layer is enhanced significantly compared with that of the original sample, which canprimarily be attributed to the grain refinement.

  18. Bacterial migration and motion in a fluid phase and near a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Frymier, P.D. Jr.

    1995-01-01

    An understanding of the migration and motion of bacteria in a fluid phase and near solid surfaces is necessary to characterize processes such as the bioremediation of hazardous waste, the pathogenesis of infection, industrial biofouling and wastewater treatment, among others. This study addresses three questions concerning the prediction of the distribution of a population of bacteria in a fluid phase and the motion of bacteria near a solid surface: Under what conditions does a one-dimensional phenomenological model for the density of a population of chemotactic bacteria yield an adequate representation of the migration of bacteria subject to a one-dimensional attractant gradient? How are the values of transport coefficients obtained from experimental data affected by the use of the one-dimensional phenomenological model and also by the use of different descriptions of bacterial swimming behavior in a mathematically rigorous balance equation? How is the characteristic motion of bacteria swimming in a fluid affected by the presence of a solid phase? A computer simulation that rigorously models the movement of a large population of individual chemotactic bacteria in three dimensions is developed to test the validity of a one-dimensional phenomenological model for bacterial migration in a fluid.

  19. Bacterial sulfur cycle shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field

    DEFF Research Database (Denmark)

    Schauer, Regina; Røy, Hans; Augustin, Nico;

    2011-01-01

    RNA sequence analysis, was characterized by the capability to metabolize sulfur components. High sulfate reduction rates as well as sulfide depleted in (34)S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat......, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper......-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic-hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen....

  20. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Science.gov (United States)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Yang, Hae Woong; Ko, Young Gun; Shin, Dong Hyuk

    2015-08-01

    This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  1. Investigation of thermal processes during test operation of ingot mould with composite surface layer

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-08-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of grey cast iron EN-GJL-200 ingot mould, by put directly in founding process a composite surface layer on the basis of corundum Al2O3 and quartz sand SiO2. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel and cast iron castings on machine elements. This technology can be competition for generally applied welding technology (surfacing by welding and thermal spraying. The results of studies show, that is positive influence of composite surface layer with ceramic particles on increase in life of cast iron ingot moulds.

  2. Characterization of SCC crack tips and surface oxide layers in alloy 600

    International Nuclear Information System (INIS)

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  3. Surface-Engineered Fire Protective Coatings for Fabrics through Sol-Gel and Layer-by-Layer Methods: An Overview

    Directory of Open Access Journals (Sweden)

    Giulio Malucelli

    2016-07-01

    Full Text Available Fabric flammability is a surface-confined phenomenon: in fact, the fabric surface represents the most critical region, through which the mass and heat transfers, responsible for fueling the flame, are controlled and exchanged with the surroundings. More specifically, the heat the fabric surface is exposed to is transferred to the bulk, from which volatile products of thermal degradation diffuse toward the surface and the gas phase, hence feeding the flame. As a consequence, the chemical and physical characteristics of the fabric surface considerably affect the ignition and combustion processes, as the surface influences the flux of combustible volatile products toward the gas phase. In this context, it is possible to significantly modify (and improve the fire performance of textile materials by “simply” tailoring their surface: currently, one of the most effective approaches exploits the deposition of tailored coatings able to slow down the heat and mass transfer phenomena occurring during the fire stages. This paper reviews the current state of the art related to the design of inorganic, hybrid, or organic flame-retardant coatings suitable for the fire protection of different fabric substrates (particularly referring to cotton, polyester, and their blends. More specifically, the use of sol-gel and layer-by-layer (LbL methods is thoroughly discussed; then, some recent examples of flame retardant coatings are presented, showing their potential advances and their current limitations.

  4. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: rmn72my@yahoo.com; Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-03-31

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x{sup m}, where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation.

  5. Moessbauer conversion electron studies of tantalum metal surface layers

    International Nuclear Information System (INIS)

    Conversion electrons following the Moessbauer absorption of the 6.2 keV γ-rays of 181Ta were observed in backscattering geometry. Moessbauer spectra for tantalum single crystal and foil surfaces (mean-depth 330 A) are compared with normal transmission spectra for tantalum foils (bulk). While no broadening of lines is observed for carefully polished single crystal surfaces, foil surfaces show considerably broader lines than bulk spectra. The linewidth and isomer shift indicate an increase of the concentration of absorbed residual gases at the foil surfaces. The observed dispersion term arising from the interference between photo- and conversion electrons for this E1-transition, depends only on the absorber thickness. (Auth.)

  6. In Situ Synthesis of Nanocrystalline Intermetallic Compound Layer during Surface Mechanical Attrition Treatment of Zirconium

    Institute of Scientific and Technical Information of China (English)

    SUNCai-yun; XIEJi-jia; WUXiao-lei; HONGYou-shi; LIUGang; LUJian; LUKe

    2004-01-01

    The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25μm thick and consisted of the intermetallic compound FeCr with an average grain size of 25+10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.

  7. In Situ Synthesis of Nanocrystalline Intermetallic Compound Layer during Surface Mechanical Attrition Treatment of Zirconium

    Institute of Scientific and Technical Information of China (English)

    SUN Cai-yun; XIE Ji-jia; WU Xiao-lei; HONG You-shi; LIU Gang; LU Jian; LU Ke

    2004-01-01

    The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC)layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 μm thick and consisted of the intermetallic compound FeCr with an average grain size of 25+10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.

  8. GaAs surface passivation by plasma-enhanced atomic-layer-deposited aluminum nitride

    International Nuclear Information System (INIS)

    A low-temperature passivation method for GaAs surfaces is investigated. Ultrathin AlN layers are deposited by plasma-enhanced atomic-layer-deposition at 200 deg. C on top of near-surface InGaAs/GaAs quantum well structures. A significant passivation effect is seen as shown by up to 30 times higher photoluminescence intensity and up to seven times longer lifetime compared to uncoated reference samples. The improved optical properties are accompanied by a redshift of the quantum well photoluminescence peak likely caused by a combination of the nitridation of the GaAs capping layer and a surface coupling effect.

  9. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    OpenAIRE

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-01-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing i...

  10. Potential mode of protection of silkworm pupae from environmental stress by harboring the bacterial biofilm on the surfaces of silk cocoons.

    Science.gov (United States)

    Halder, Pranab K; Naskar, Deboki; Kumar, Akash; Yao, Juming; Kundu, Subhas C; Ghosh, Anindya S

    2015-02-01

    The silkworm forms cocoon to protect its pupa that survives for months inside the cocoon without being affected by various environmental stresses. To understand the possible mode of pupal survival within the cocoon encasement, we investigate the cause that protects the cocoon. During the end of the spinning process, we have isolated different bacterial species from the cocoon surface. These are identified using molecular techniques and checked for their abilities to form biofilm in vitro. The bacteria are able to form biofilm either individually or in consortia. Of which, Bacillus and Erwinia species are prominent biofilm formers. Interestingly, these bacteria have the ability to form biofilm on the cocoon mimetic surface of the silk protein Sericin Hope that contains only sericin. The origin and the behavior of the bacteria lead us to hypothesize the possible role of biofilm layer on the cocoon surface, which provides protection from adverse environmental conditions. PMID:25292249

  11. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    International Nuclear Information System (INIS)

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism

  12. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, William J. [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Kirby, Jonathan M. [Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Thiyagarajan, Nethaji [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Chambers, Christopher J.; Davies, Abigail H. [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Roberts, April K.; Shone, Clifford C. [Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Acharya, K. Ravi, E-mail: bsskra@bath.ac.uk [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.

  13. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay

    Science.gov (United States)

    Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul

    2016-01-01

    ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have

  14. Molecule Recognition Imaging and Highly Ordered Gold Nanoparticle Templating of Functional Bacterial S-Layer Nanoarrays

    Institute of Scientific and Technical Information of China (English)

    Jilin TANG; Andreas Ebner; Helga Badelt-Lichtblau; Christian Rankl; Michael Leitner; Hermann J.Gruber; Uwe B.Sleytr; Nicola Ilk; Peter Hinterdorfer

    2009-01-01

    @@ Molecular recognition between receptors and their cognate ligands plays an important role in life sciences.Such specific interactions include those between complementary strands of DNA,enzyme and substrate,antigen and antibody,lectin and carbohydrate,ligands and cell surface receptors as well as between cell adhesion proteins.

  15. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Chen, Yangxi; de Vries, Joop; Ren, Yijin

    2009-01-01

    Bacterial adhesion to biomaterial surfaces constituting the bracket-adhesive-enamel junction represents a growing problem in orthodontics, because bacteria can adversely affect treatment by causing demineralization of the enamel surface around the brackets. It is important to know the forces with wh

  16. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    OpenAIRE

    Tales Lyra Oliveira; Návylla Candeia-Medeiros; Polliane M. Cavalcante-Araújo; Igor Santana Melo; Elaine Fávaro-Pípi; Luciana Alves Fátima; Antônio Augusto Rocha; Luiz Ricardo Goulart; Ubiratan Fabres Machado; Ruy R. Campos; Robinson Sabino-Silva

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-...

  17. Gas phase water in the surface layer of protoplanetary disks

    CERN Document Server

    Dominik, C; Hollenbach, D; Kaufman, M

    2005-01-01

    Recent observations of the ground state transition of HDO at 464 GHz towards the protoplanetary disk of DM Tau have detected the presence of water vapor in the regions just above the outer disk midplane (Ceccarelli et al 2005). In the absence of non-thermal desorption processes, water should be almost entirely frozen onto the grain mantles and HDO undetectable. In this Letter we present a chemical model that explores the possibility that the icy mantles are photo-desorbed by FUV (6eV < h nu < 13.6eV) photons. We show that the average Interstellar FUV field is enough to create a layer of water vapor above the disk midplane over the entire disk. Assuming a photo-desorption yield of 10^{-3}, the water abundance in this layer is predicted to be ~ 3 x 10^{-7} and the average H2O column density is ~ 1.6x 10^{15} cm^{-2}. The predictions are very weakly dependent on the details of the model, like the incident FUV radiation field, and the gas density in the disk. Based on this model, we predict a gaseous HDO/H2...

  18. Microhydrodynamics of flotation processes in the sea surface layer

    Science.gov (United States)

    Grammatika, Marianne; Zimmerman, William B.

    2001-10-01

    The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of

  19. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    Science.gov (United States)

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm. PMID:26429141

  20. Structure of adsorption layers of amphiphilic copolymers on inorganic or organic particle surfaces

    OpenAIRE

    Bulychev, Nikolay; Dervaux, Bart; Dimberger, Klaus; Zubov, Vitali; Du Prez, Filip; Eisenbach, Claus D

    2010-01-01

    The structure of adsorption layers of amphiphilic block and block-like copolymers of poly(isobornyl acrylate) and poly(acrylic acid) on the surface of hydrophilic titanium dioxide and hydrophobic copper phthalocyanine (CuPc) pigments in an aqueous studied by the electrokinetic sonic amplitude (ESA) method. The electroacoustic behaviour of the polyelectrolyte block copolymer-coated particles could be described in the context of the polymer gel layer theory. The polymer layer around the particl...

  1. The Effect of Interface Layer on the Binding Ability in PVD Surface Coating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-jun; ZHU Hua-ming; ZOU Wei-feng; LI Guo-qing

    2004-01-01

    The effect of the interface layer on binding ability PVD surface coating was researched . the experiment result showed that TiN was bonded to bulk material with the interface layer. The interface layer made the tow-phase region of α-Ti and TiN to chang to single-phase of TiN. the bonding strength of film and base interface was increased.

  2. Influence of magnetic field on microstructure and properties of Ni60 plasma surfacing layer

    Institute of Scientific and Technical Information of China (English)

    Liu Zhengjun; Sun Jinggang; Liu Duo; Wang Jibing; Zhang Guiqing

    2005-01-01

    In order to control the shape and distribution of hardening phase in plasma surfacing deposit, a longitudinal DC magnetic field was applied during plasma surfacing of nickel-based alloy Ni60. Hardness, wearing resistance, microstructure and phase constituent of the plasma surfacing layer were investigated. It was revealed that the hardness and wearing resistance of the Ni60 plasma surfacing layer could gotten significantly enhanced through introducing magnetic field. The mechanical properties of the surfacing deposit were optimal when magnetic field current is 1 A. The metallurgical analysis showed that the microstructure of the Ni60 plasma surfacing layer was mainly composed of γ solid solution and some hardening phase particles such as Cr7 C3 with an application of the magnetic field.

  3. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.

  4. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  5. Layer-by-layer TiO(2)/WO(3) thin films as efficient photocatalytic self-cleaning surfaces.

    Science.gov (United States)

    Patrocinio, Antonio Otavio T; Paula, Leonardo F; Paniago, Roberto M; Freitag, Janna; Bahnemann, Detlef W

    2014-10-01

    New TiO2/WO3 films were produced by the layer-by-layer (LbL) technique and successfully applied as self-cleaning photocatalytic surfaces. The films were deposited on fluorine doped tin oxide (FTO) glass substrates from the respective metal oxide nanoparticles obtained by the sol-gel method. Thirty alternative immersions in pH = 2 TiO2 and pH = 10 WO3 sols resulted in ca. 400 nm thick films that exhibited a W(VI)/Ti(IV) molar ratio of 0.5, as determined by X-ray photoelectron spectroscopy. Scanning electron microscopy, along with atomic force images, showed that the resulting layers are constituted by aggregates of very small nanoparticles (cleaning, antifogging applications.

  6. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  7. Aspects of the atmospheric surface layers on Mars and Earth

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Landberg, L.;

    2002-01-01

    is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T-*, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow...

  8. Surface Phonon Dispersion of the Layered Transition-metal Oxides

    Science.gov (United States)

    Zhang, J.; Ismail; Matzdorf, R.; Plummer, E. W.; Kimura, T.; Tokura, Y.

    2000-03-01

    Transition-metal oxides exhibit strong coupling between the charge and spin of the electrons and the lattice. Creating a surface by cleaving a single crystal breaks the symmetry of the lattice and disturbs the correlated system without changing the stoichiometry, providing the opportunity to study the response of electronic, structural, and magnetic properties. We have utilized electron-energy loss sprectroscopy (EELS) to study the electronic and lattice excitations of the Sr_2RuO4 and La_0.5Sr_1.5MnO4 surfaces. For both of these materials there are many more than three modes; three dominate surface optical phonons with small dispersion and with higher energies compared to those in the bulk materials. However, these phonons show completely different temperature dependence for different samples. The surface phonons become soft for Sr_2RuO4 while they become stiff for La_0.5Sr_1.5MnO4 with increasing temparature. The change of phonon energy of La_0.5Sr_1.5MnO4 with temperature is also in opposite direction to that of (La, Ca)MnO_4( Zhang et al., Surf. Sci. 393, 64(1997) * LMER Corp. for U.S. DOE under contract No. DE-AC05-96OR22464). These behaviors will be discussed in terms of the electronic, magnetic, and structural properties.

  9. New surface layers with low rolling resistance tested in Denmark

    DEFF Research Database (Denmark)

    Pettinari, Matteo; Schmidt, Bjarne; Jensen, Bjarne Bo;

    2014-01-01

    Rolling Resistance coefficient that could improve energy efficiency of the roads. In particular, two new types of Split Mastic Asphalt (SMA) were developed and compared to a reference one; both mixtures have a relatively small maximum grain-size, 6 mm and 8 mm, respectively. Surface measurements...

  10. Surface modification of layered silicates. II. Factors affecting thermal stability

    Science.gov (United States)

    Mittal, Vikas

    2012-12-01

    Different aluminosilicates, such as montmorillonite, vermiculite and mica, were surface-treated with a variety of organic modifiers to quantify factors affecting the thermal stability of the modified fillers. Montmorillonites with different cation exchange capacities were also used. Thermal characterisation was carried out via high resolution thermogravimetric analysis and the results were correlated with X-ray diffraction measurements. Modified substrates, such as montmorillonite, vermiculite and mica, differed in their thermal behaviour even when modified with the same surface modifiers. Phosphonium-based modifiers were the most thermally stable, compared to pyridinium and ammonium ions. Mixed brushes from the modifiers also influenced the thermal behaviour of the modified substrates. When further modified using physical adsorption or chemical reactions on the surface, the modified minerals also displayed alterations in the thermal behaviour of the fillers. The results can be used as a guide for the selection of surface modifiers in the nanocomposite synthesis process where compounding of the filler with the polymer at high temperature and shear is required.

  11. Surface modification of layered silicates. I. Factors affecting thermal stability

    Science.gov (United States)

    Mittal, Vikas

    2012-12-01

    The resistance of modification molecules bound to montmorillonite platelet surfaces towards structural damage at high temperature is a major parameter guiding the formation of optimal interface between the filler and polymer phases in a nanocomposite material. As nanocomposites are generated by melt-blending of modified mineral and polymer, it is necessary to quantify the thermal resistance of the filler surface modification at the compounding conditions because different modifications differ in chain length, chemical structure, chain density, and thermal performance. A number of different alkyl ammonium modifications were exchanged on the montmorillonites with cation exchange capacities in the range 680-900 µequiv. g-1 and their thermal behaviour was characterised using high resolution thermogravimetric analysis. Quantitative comparisons between different modified minerals were achieved by comparing temperature at 10% weight loss as well peak degradation temperature. Various factors affecting thermal stability, such as length and density (or number) of alkyl chains in the modification, presence of excess modification molecules on the filler surface, the chemical structure of the surface modifications, etc. were studied. The TGA findings were also correlated with X-ray diffraction of the modified platelets.

  12. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  13. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application.

    Science.gov (United States)

    Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim

    2014-10-01

    Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

  14. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J, E-mail: antonia.terriza@icmse.csic.es

    2010-11-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF{sub X}). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  15. The endothelial surface layer: a new target of research in kidney failure and peritoneal dialysis

    NARCIS (Netherlands)

    C.A. Vlahu

    2016-01-01

    The endothelial glycocalyx is an important regulator of vascular homeostasis, and damage to this complex structure results in increased vascular vulnerability. Together with associated plasma molecules it forms the endothelial surface layer. Because of its vasculoprotective effects, the endothelial

  16. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II: Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  17. FORMATION OF SURFACE LAYERS OF NANOSTRUCTURED TINICO, STIMULATED WITH MECHANICAL ACTIVATION

    Directory of Open Access Journals (Sweden)

    Rusinov P. O.

    2014-10-01

    Full Text Available This article presents a complex method of formation of the surface-modified layers of materials with shape memory effect, including high-speed flame spraying powders TiNiCo with a cobalt content of 2 and 5%, subsequent thermal and thermomechanical treatment, allowed forming nanostructured surface layers with a high level of functional and operational properties. It is shown that the TiNiCo complex processing layer allowed reducing the porosity of coatings and increasing the strength of adhesion of the coating to the substrate. Surface modification TiNiCo for optimal regimes allowed increasing fatigue life under high cycle loading by 30-40% and wearing 3-3.5 times. Based on comprehensive research metallophysical surface layers obtained new information on the nanoscale composition

  18. FORMING A PARTING LAYER OF COATING ON THE SURFACE OF THE MOULD DURING DIE-CASTING

    Directory of Open Access Journals (Sweden)

    A. Pivovarchik

    2015-01-01

    Full Text Available The paper presents the results of research on the study of the possibility of accumulation of the lubricating layer coating on the surface of the separation process of foundry equipment with high pressure die casting aluminum alloys.

  19. Formation of Nanoscale Intermetallic Phases in Ni Surface Layer at High Intensity Implantation of Al Ions

    Institute of Scientific and Technical Information of China (English)

    I.A.Bozhko; S.V.Fortuna; I.A.Kurzina; I.B.Stepanov; E.V.Kozlov; Yu.P. Sharkeev

    2004-01-01

    The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source "Raduga-5". It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3Al, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-Al phase diagram.

  20. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  1. Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100).

    Science.gov (United States)

    Shklyaev, A A; Latyshev, A V

    2016-12-01

    We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications. PMID:27541814

  2. Formation of Hard Surfacing Layers of WC-Co with Electron Beam Cladding Method

    Science.gov (United States)

    Abe, Nobuyuki; Morimoto, Junji

    Hard surfacing layers of WC-Co/Ni-base self-fluxing alloy were successfully formed on a steel substrate using an electron beam cladding method. The WC particles were densely and homogenously dispersed within the Ni-base self-fluxing alloy without porosity. The effect of the electron beam conditions on layer formation was investigated, and the cladding layer properties were examined by hardness tests, abrasive wear tests and immersion corrosion tests. It was found that the cladding layers showed higher hardness and abrasion resistance with increasing WC-Co mixing ratio, however, corrosion resistance decreased with WC-Co mixing ratio. A coating layer having high abrasive and corrosion resistance simultaneously was achieved by multiple cladding of high WC-Co mixing ratio layers after low WC-Co mixing ratio layers.

  3. Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces

    Institute of Scientific and Technical Information of China (English)

    Ji Wei-Jie; Tong Chuang-Ming

    2013-01-01

    A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature.The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method (PILE+FB-SA),and the back scattering data are obtained.Then,a conventional synthetic aperture radar (SAR) imaging procedure called back projection method is used to generate a two-dimensional (2D) image of the layered rough surfaces.Combined with the relative dielectric permittivity of realistic soil,the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces.Since the back scattering data are computed by using the fast numerical method,this method can be used to study layered rough surfaces with any parameter,which has a great application value in the detection and remote sensing areas.

  4. Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces

    International Nuclear Information System (INIS)

    A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature. The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method (PILE+FB-SA), and the back scattering data are obtained. Then, a conventional synthetic aperture radar (SAR) imaging procedure called back projection method is used to generate a two-dimensional (2D) image of the layered rough surfaces. Combined with the relative dielectric permittivity of realistic soil, the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces. Since the back scattering data are computed by using the fast numerical method, this method can be used to study layered rough surfaces with any parameter, which has a great application value in the detection and remote sensing areas. (general)

  5. Site-specific immobilization of protein layers on gold surfaces via orthogonal sortases.

    Science.gov (United States)

    Raeeszadeh-Sarmazdeh, Maryam; Parthasarathy, Ranganath; Boder, Eric T

    2015-04-01

    We report a site-specific, sortase-mediated ligation to immobilize proteins layer-by-layer on a gold surface. Recombinant fluorescent proteins with a Sortase A recognition tag at the C-terminus were immobilized on peptide-modified gold surfaces. We used two sortases with different substrate specificities (Streptococcus pyogenes Sortase A and Staphylococcus aureus Sortase A) to immobilize layers of GFP and mCherry site-specifically on the gold surface. Surfaces were characterized using fluorescence and atomic force microscopy after immobilizing each layer of protein. Fluorescent micrographs showed that both protein immobilization on the modified gold surface and protein oligomerization are sortase-dependent. AFM images showed that either homogenous protein monolayers or layers of protein oligomers can be generated using appropriately tagged substrate proteins. Using Sortase A variants with orthogonal peptide substrate specificities, site-specific immobilization of appropriately tagged GFP onto a layer of immobilized mCherry was achieved without disruption of the underlying protein layer.

  6. Detection of Entrainment Influences on Surface-Layer Measurements and Extension of Monin–Obukhov Similarity Theory

    NARCIS (Netherlands)

    Boer, van de A.; Moene, A.F.; Graf, A.; Schüttemeyer, D.; Simmer, C.

    2014-01-01

    We present a method to detect influences of boundary-layer processes on surface-layer measurements, using statistics and spectra of surface-layer variables only. We validated our detection method with boundary-layer measurements. Furthermore, we confirm that Monin–Obukhov similarity functions fit we

  7. A simple method to determine evaporation duct height in the sea surface boundary layer

    Science.gov (United States)

    Musson-Genon, Luc; Gauthier, Sylvie; Bruth, Eric

    1992-09-01

    A formulation to determine the evaporation duct height in the sea surface boundary layer is presented. This formulation is based upon the theory of similarity of Monin Obukhov by using analytical solutions currently used in the field of numerical weather prediction. The proposed solution is simple, coherent with the surface boundary layer parameterization used in the Meteo France and European Centre for Medium-Range Weather Forecasts weather prediction models and gives good results when compared to more traditional methods.

  8. Nanostructured Hardening of Hard Alloys Surface Layers Through Electron Irradiation in Heavy Inert Gas Plasma Conditions

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, Yu F.; Ivanov, K. V.; Mokhovikov, A. A.; Baohai, Yu; Hua, Xu Yun

    2016-08-01

    The paper presents research and experimental findings which prove that metal ceramic composite surface layer contains micro constituents’ hierarchies in the form of secondary nano sized inclusions inside ceramic phases. These inclusions have typical dimensions from several tens to several hundreds of nano meters. It has been shown that multi level structure-phase condition, developed in a nano sized area, effects physical and tribological properties of a metal ceramic composite surface layer.

  9. Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments

    DEFF Research Database (Denmark)

    Christensen, Poul; Majborn, Benny

    1980-01-01

    A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....

  10. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    OpenAIRE

    Jun Liu; Qiwen Qiu; Feng Xing; Dong Pan

    2014-01-01

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride tran...

  11. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    Science.gov (United States)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide

  12. Surface damping effect of anchored constrained viscoelastic layers on the flexural response of simply supported structures

    Science.gov (United States)

    Karim, K. R.; Chen, G. D.

    2012-02-01

    Viscoelastic (VE) materials are commonly used to control vibration-induced fatigue in airframes and to suppress general vibration in various structures. This study investigates the effects of anchored constrained VE layers on the flexural response of simply supported Euler beams or plate strips under base excitations. Emphasis is placed on the development of two surface damping treatments: one VE layer anchored at one end, and two VE layers anchored at their different ends. Each anchorage is realized with a thin stiff layer in tension, such as a fiber reinforced polymer sheet, bonded to the surface of a VE layer and anchored to one end of the beam for maximum shear deformation in the constrained VE layer. Non-uniform shear deformation in VE layers is taken into account in the new solution formulation. Sensitivity analyses are performed to understand and quantify the effects of various parameters on flexural responses of the structures. The minimum thickness of VE layers is mainly bounded by the relative stiffness between the VE layers and the constraining face layer. The performances of various configurations are compared and the two-end anchored configuration is found most effective in vibration suppression.

  13. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  14. A surface layer variance heat budget for ENSO

    Science.gov (United States)

    Boucharel, Julien; Timmermann, Axel; Santoso, Agus; England, Matthew H.; Jin, Fei-Fei; Balmaseda, Magdalena A.

    2015-05-01

    Characteristics of the El Niño-Southern Oscillation (ENSO), such as frequency, propagation, spatial extent, and amplitude, strongly depend on the climatological background state of the tropical Pacific. Multidecadal changes in the ocean mean state are hence likely to modulate ENSO properties. To better link background state variations with low-frequency amplitude changes of ENSO, we develop a diagnostic framework that determines locally the contributions of different physical feedback terms on the ocean surface temperature variance. Our analysis shows that multidecadal changes of ENSO variance originate from the delicate balance between the background-state-dependent positive thermocline feedback and the atmospheric damping of sea surface temperatures anomalies. The role of higher-order processes and atmospheric and oceanic nonlinearities is also discussed. The diagnostic tool developed here can be easily applied to other tropical ocean areas and climate phenomena.

  15. Identification of surface layers of early medieval age axe

    International Nuclear Information System (INIS)

    We have used Moessbauer spectrometry for a study of an iron axe. Two experimental techniques were applied: (a) non-destructive measurements performed in backscattering geometry, and (b) identification of small pieces of surface covering substance which has accidentally disintegrated with the investigated axe. These measurements were performed at room and also at low (77 K) temperature. Presence of corrosion products including goethite, magnetite and lepidocrocite was confirmed (Authors)

  16. Design of Matched Absorbing Layers for Surface Plasmon-Polaritons

    Directory of Open Access Journals (Sweden)

    Sergio de la Cruz

    2012-01-01

    Full Text Available We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

  17. Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid

    OpenAIRE

    Walsh, F. C.; Ponce De Leon, Carlos

    2014-01-01

    Ever tightening environmental pressure together with the continued need for coatings able to meet challenging service environments have stimulated advances in coating technology. In the case of electrochemical techniques, the classical techniques of electrodeposition and anodising are being upgraded to meet the need for modern surface engineering coatings (including nanostructured films) on metals. A major challenge is to retain conventional processing, including aqueous solutions, simple pow...

  18. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions.

    Directory of Open Access Journals (Sweden)

    Yulia M Serkebaeva

    Full Text Available Northern peatlands play a key role in the global carbon and water budget, but the bacterial diversity in these ecosystems remains poorly described. Here, we compared the bacterial community composition in the surface (0-5 cm depth and subsurface (45-50 cm peat layers of an acidic (pH 4.0 Sphagnum-dominated wetland, using pyrosequencing of 16S rRNA genes. The denoised sequences (37,229 reads, average length ∼430 bp were affiliated with 27 bacterial phyla and corresponded to 1,269 operational taxonomic units (OTUs determined at 97% sequence identity. Abundant OTUs were affiliated with the Acidobacteria (35.5±2.4% and 39.2±1.2% of all classified sequences in surface and subsurface peat, respectively, Alphaproteobacteria (15.9±1.7% and 25.8±1.4%, Actinobacteria (9.5±2.0% and 10.7±0.5%, Verrucomicrobia (8.5±1.4% and 0.6±0.2%, Planctomycetes (5.8±0.4% and 9.7±0.6%, Deltaproteobacteria (7.1±0.4% and 4.4%±0.3%, and Gammaproteobacteria (6.6±0.4% and 2.1±0.1%. The taxonomic patterns of the abundant OTUs were uniform across all the subsamples taken from each peat layer. In contrast, the taxonomic patterns of rare OTUs were different from those of the abundant OTUs and varied greatly among subsamples, in both surface and subsurface peat. In addition to the bacterial taxa listed above, rare OTUs represented the following groups: Armatimonadetes, Bacteroidetes, Chlamydia, Chloroflexi, Cyanobacteria, Elusimicrobia, Fibrobacteres, Firmicutes, Gemmatimonadetes, Spirochaetes, AD3, WS1, WS4, WS5, WYO, OD1, OP3, BRC1, TM6, TM7, WPS-2, and FCPU426. OTU richness was notably higher in the surface layer (882 OTUs than in the anoxic subsurface peat (483 OTUs, with only 96 OTUs common to both data sets. Most members of poorly studied phyla, such as the Acidobacteria, Verrucomicrobia, Planctomycetes and the candidate division TM6, showed a clear preference for growth in either oxic or anoxic conditions. Apparently, the bacterial communities in surface and

  19. Investigation on electromagnetic scattering from rough soil surface of layered medium using the small perturbation method

    Institute of Scientific and Technical Information of China (English)

    Ren Xin-Cheng; Guo Li-Xin

    2008-01-01

    Electromagnetic scattering from a rough surface of layered medium is investigated, and the formulae of the scattering coefficients for different polarizations are derived using the small perturbation method. A rough surface with exponential correlation function is presented for describing a rough soil surface of layered medium, the formula of its scattering coefficient is derived by considering the spectrum of the rough surface with exponential correlation function; the curves of the bistatic scattering coefficient of HH polarization with variation of the scattering angle are obtained by numerical calculation. The influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the roughness surface parameters and the frequency of the incident wave on the bistatic scattering coefficient is discussed. Numerical results show that the influence of the permittivity of layered medium, the mean layer thickness of intermediate medium, the rms and the correlation length of the rough surface, and the frequency of the incident wave on the bistatic scattering coefficient is very complex.

  20. Tailoring of anodic surface layer properties on titanium and its implant alloys for biomedical purposes

    Directory of Open Access Journals (Sweden)

    E. Krasicka-Cydzik

    2010-11-01

    Full Text Available and nanostructural titania and alloy component oxides. Evaluation of their properties for various biomedical applications in implantology and biosensing.Design/methodology/approach: Samples of titanium and its alloys were anodized in phosphoric acid solutions at different concentrations (0.5 ~ 4 M with or without additions according to appropriate polarization regimes. Anodized samples were characterized by SED+EDS, electrochemical and impedance (EIS tests and biocompability examination. Titanium and its alloys (Ti6Al4V and Ti6Al7Nb samples were also used to form the nanostructural layer (nanotubes by anodizing. The latter was used as a platform for glucose biosensing.Findings: Anodizing of titanium materials in phosphoric acid solutions allowed to obtain surface layers of various morphology and topography. They differ in porosity, thickness and chemical composition and according to their specific properties can be used in various biomedical applications. The development of gel-like layer and formation of nanotube layer was observed while anodizing in higher concentration of electrolyte or anodizing in the presence of fluorides. Both surface layers are much more bioactive than anodic barrier oxide layers on titanium. The primary tests to use nanostructured layer as platform for the third generation biosensors were promising.Practical implications: Use of medical implants covered with porous and nanostructural anodic layers tailored to particular biomedical purposes enables new practical applications in implantology and biosensing.Originality/value: Phosphate gel-like layer over surface oxide layer on titanium materials and nanostructural surface layer rich in both: phosphates and fluorides, are highly bioactive, which is the desirable property of implant materials.

  1. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    Science.gov (United States)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  2. The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the Central Namib Desert.

    Science.gov (United States)

    Gombeer, S; Ramond, J-B; Eckardt, F D; Seely, M; Cowan, D A

    2015-09-01

    Notwithstanding, the severe environmental conditions, deserts harbour a high diversity of adapted micro-organisms. In such oligotrophic environments, soil physicochemical characteristics play an important role in shaping indigenous microbial communities. This study investigates the edaphic bacterial communities of three contrasting desert terrain types (gravel plains, sand dunes and ephemeral rivers) with different surface geologies in the Central Namib Desert. For each site, we evaluated surface soil physicochemistries and used explorative T-RFLP methodology to get an indication of bacterial community diversities. While grain size was an important parameter in separating the three terrain types physicochemically and specific surface soil types could be distinguished, the desert edaphic bacterial communities displayed a high level of local spatial heterogeneity. Ten variables contributed significantly (P Namib Desert and stress the importance of recording a wide variety of environmental descriptors to comprehensively assess the role of edaphic parameters in shaping microbial communities. PMID:25939371

  3. Preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens and their use for bacterial detection.

    Science.gov (United States)

    Dykman, Lev A; Staroverov, Sergei A; Guliy, Olga I; Ignatov, Oleg V; Fomin, Alexander S; Vidyasheva, Irina V; Karavaeva, Olga A; Bunin, Viktor D; Burygin, Gennady L

    2012-01-01

    This article reports the first preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens by using a combinatorial phage library of sheep antibodies. The prepared phage antibodies were used for the first time for lipopolysaccharide and flagellin detection by dot assay, electro-optical analysis of cell suspensions, and transmission electron microscopy. Interaction of A. brasilense Sp245 with antilipopolysaccharide and antiflagellin phage-displayed miniantibodies caused the magnitude of the electro-optical signal to change considerably. The electro-optical results were in good agreement with the electron microscopic data. This is the first reported possibility of employing phage-displayed miniantibodies in bacterial detection aided by electro-optical analysis of cell suspensions.

  4. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    Science.gov (United States)

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-01-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology. PMID:26997474

  5. Wear and Corrosion Properties of Mo Surface-modiifed Layer in TiNi Alloy Prepared by Plasma Surface Alloying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongqian; WANG Zhenxia; YANG Hongyu; SHAN Xiaolin; LIU Xiaoping; YU Shengwang; HE Zhiyong

    2016-01-01

    In order to improve the wear resistance and restrain nickel release of TiNi alloys, the Mo modified layers on TiNi substrates were obtained using the double glow plasma surface alloying technique. Scanning electron microscopy (SEM), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD) were employed to investigate the morphology, composition and structure. Microhardness test and scratch test were performed to analyze the microhardness and coating/substrate adhesion. Tribological and electrochemical behaviors of the Mo modified layers on TiNi were tested by the reciprocating wear instrument and electrochemical measurement system. The Ni concentrations in Hanks’ solution where surface electrochemical tests took place were measured by mass spectrometry. The surface-modiifed layer contained a Mo deposition layer and a Mo diffusion layer. The X-ray diffraction analysis revealed that the modiifed layers were composed of Mo, MoTi, MoNi, and Ti2Ni. The microhardnesses of the Mo modiifed layers treated at 900℃and 950℃ were 832.8 HV and 762.4 HV, respectively, which was about 3 times the microhardness of the TiNi substrate. Scratch tests indicated that the modified layers possessed good adhesion with the substrate. Compared with as-received TiNi alloy, the modiifed alloys exhibited signiifcant improvement of wear resistance against Si3N4 with low normal loads during the sliding tests. Mass spectrometry displayed that the Mo alloy layers had successfully inhibited the Ni release into the body.

  6. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Brümmer, B.;

    2007-01-01

    Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at H phi vs phi re (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a...... height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov...

  7. The mechanism of the surface alloy layer creation for cast steel

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2012-01-01

    Full Text Available The paper presents a detailed description of the process of creation of a surface alloy layer (using high-carbon ferrochromium on the cast steel casting. The mechanism of the surface alloy layer is based on the known theories [5,6]. The proposed course of formation of the layers has been extended to decarburization stage of steel. The research included proving the presence of carbon-lean zone. The experiment included the analysis of the distribution of elements and microhardness measurement.

  8. Polyethylenimine surface layer for enhanced virus immobilization on cellulose

    Science.gov (United States)

    Tiliket, Ghania; Ladam, Guy; Nguyen, Quang Trong; Lebrun, Laurent

    2016-05-01

    Thin regenerated cellulose films are prepared by hydrolysis of cellulose acetate (CA). A polycation, namely polyethylenimine (PEI), is then adsorbed onto the films. From QCM-D analysis, PEI readily adsorbs from a 0.1% w/v solution in NaCl 0.2 M (ca. 100 ng cm-2). Further PEI adsorption steps at higher PEI concentrations induce a linear growth of the PEI films, suggesting that free adsorption sites still exist after the initial adsorption. The adsorbed PEI chains are resistant to variations of the ionic strength up to NaCl 1 M. Promisingly, the adsorption of T4D bacteriophages are 15-fold more efficient onto the PEI-treated, compared to the native regenerated cellulose films, as measured by QCM-D. This confirms the strong affinity between the negatively charged viruses and PEI, even at low PEI concentration, probably governed by strong electrostatic attractive interactions. This result explains the remarkable improvement of the affinity of medical masks for virus droplets when one of their cellulose layers was changed by two-PEI-functionalized cellulose-based filters.

  9. Reflection of Electromagnetic Waves by a Nonuniform Plasma Layer Covering a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-Mei; FA Peng-Ting

    2008-01-01

    Reflection coefficients of electromagnetic waves in a nonuniform plasma layer with electrons, positive ions and negative ions, covering a metal surface are investigated by using the finite-difference-time-domain method. It is shown that the reflection coefficients are influenced greatly by the density gradient on the layer edge, layer thickness and electron proportion, i.e., the effect of the negative ions. It is also found that low reflection or high attenuation can be reached by properly choosing high electron proportion, thick plasma layer, and smooth density gradient in the low frequency regime, but sharp density gradient in the high frequency regime.

  10. Anisotropy Characteristics of Magnetostatic Surface Wave Propagating in YIG/Dielectric/Metal Layered Structure

    Institute of Scientific and Technical Information of China (English)

    Qing-Hui Yang; Huai-Wu Zhang; Ying-Li Liu

    2007-01-01

    The anisotropy of magnetostatic surface wave (MSSW) propagating in finite width YIG/dielectric/metal layered structure is analyzed. This problem is solved by finding the rigorous solution of each layer from Maxwell equation and the appropriate transmission Green's function matrix (G). From the relationship of Green's function matrixes of dielectric layer and ferrite layer, the dispersion equation is obtained.The MSSW filter is designed to verify the dispersion characteristics. The experiment results are in good agreement with the calculating data from the model.

  11. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  12. Trapping and depth profile of tritium in surface layers of metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, M., E-mail: masao@ctg.u-toyama.ac.jp [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Chen, Z. [The Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); Nisimura, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Akamaru, S.; Torikai, Y.; Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Ashikawa, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Oya, Y.; Okuno, K. [Radiochemistry Research Laboratory, Shizuoka University, Shizuoka 422-8529 (Japan); Hino, T. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-10-01

    Tritium amount retained in surface layers and release behavior from surface layers were examined using SS316L samples exposed to plasmas in the Large Helical Device and a commercial Cu-Be alloy plate. BIXS analyses and observation by SEM indicate that carbon and titanium deposited on the plasma-facing surface of the SS316L samples. Larger amount of tritium was trapped in the plasma-facing surface in comparison with the polished surface. Higher enrichment of tritium in surface layers was similarly found in the polished surface of both samples. The amount of surface tritium in both samples was almost same, while the bulk concentration of tritium in Cu-Be was much lower than that in SS316L. Tritium release from the SS316L and Cu-Be samples into water was examined by immersion experiments. Tritium elution was observed for both samples, but changes in the residual tritium amount in surface layers were different from each other.

  13. Nanoscale imaging and hydrophobicity mapping of the antimicrobial effect of copper on bacterial surfaces.

    Science.gov (United States)

    Wang, Congzhou; Ehrhardt, Christopher J; Yadavalli, Vamsi K

    2016-09-01

    Copper has a long historical role in the arena of materials with antimicrobial properties. Various forms of copper ranging from surfaces to impregnation in textiles and particles, have attracted considerable interest owing to their versatility, potency, chemical stability, and low cost. However, the effects and mechanisms of their antimicrobial action is still unclear. In this study, the effect of copper particles on Escherichia coli was studied at the nanoscale using atomic force microscopy (AFM). Time-lapse AFM images at the single cell level show the morphological changes on live E. coli during antimicrobial treatment, in which for the first time, this process was followed in situ on the same cell over time. AFM-based hydrophobicity mapping further showed that incubating cells with Cu decreased the surface hydrophobicity with an increase of incubation time. Specifically, we are able to visualize both morphology and physico-chemical nature of the bacterial cell surface change in response to copper treatment, leading to the membrane damage and cytoplasm leakage. Overall, the time-lapse AFM imaging combined with hydrophobicity mapping approach presented here provides spatio-temporal insight into the antimicrobial mechanisms of copper at the single cell level, and can be applied to design of better metallic antimicrobial materials as well as investigate different microorganisms. PMID:27258941

  14. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    Science.gov (United States)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  15. Second-order random interfacial wave solutions for two-layer fluid with a free surface

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A previous study (Song. 2004. Geophys Res Lett, 31(15):L15302) of the second-order solutions for random interfacial waves is extended in a constant depth, two-layer fluid system with a rigid lid is extended into a more general case of two-layer fluid with a top free surface. The rigid boundary condition on the upper surface is replaced by the kinematical and dynamical boundary conditions of a free surface, and the equations describing the random displacements of free surface, density-interface and the associated velocity potentials in the two-layer fluid are solved to the second order using the same expansion technology as that of Song (2004. Geophys Res Lett, 31 (15):L15302). The results show that the interface and the surface will oscillate synchronously, and the wave fields to the first-order both at the free surface and at the density-interface are made up of a linear superposition of many waves with different amplitudes,wave numbers and frequencies. The second-order solutions describe the second-order wave-wave interactions of the surface wave components, the interface wave components and among the surface and the interface wave components. The extended solutions also include special cases obtained by Thorpe for progressive interfacial waves (Thorpe. 1968a. Trans R Soc London, 263A:563~614) and standing interfacial waves (Thorpe. 1968b. J Fluid Mech, 32:489~528) for the two-layer fluid with a top free surface. Moreover, the solutions reduce to those derived for random surface waves by Sharma and Dean (1979.Ocean Engineering Rep 20) ifthe density of the upper layer is much smaller than that of the lower layer.

  16. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    Science.gov (United States)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085

  17. Effect of tethering on the surface dynamics of a thin polymer melt layer.

    Science.gov (United States)

    Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; Narayanan, Suresh; Satija, Sushil; Foster, Mark D

    2016-06-28

    The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of "untethered chains" a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. The portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. Since these hybrid samples containing a covalently tethered layer at the bottom do not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates, they provide a route for tailoring polymer layer surface properties such as wetting, adhesion and friction. PMID:27222250

  18. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: rogus@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Steski, Dannie; Kanesue, Takeshi [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, Shunsuke [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan); Okamura, Masahiro [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  19. On stratification, barotropic tides, and secular changes in surface tidal elevations: Two-layer analytical models

    CERN Document Server

    Wetzel, Alfredo N; Cerovecki, Ivana; Hendershott, Myrl C; Karsten, Richard H; Miller, Peter D

    2013-01-01

    In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitrary topography. Both large scale (barotropic) and small scale (baroclinic) components of the surface tidal elevation are shown to be affected by stratification. It is also shown that the topography and basin boundaries affect the sensitivity of the barotropic surface tide to stratification significantly. In a companion paper it is shown that the barotropic tide in two-layer numerical models run in realistic global domains differs from its value in one-layer numerical models by amounts qualitatively consistent with analytic predictions from this paper. The analytical model also roughly predicts the sensitivity to perturbations in stratification in the two-layer domain model. Taken together, this paper and the companion paper therefore provide a framework to underst...

  20. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    International Nuclear Information System (INIS)

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare

  1. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  2. Leaching and Redistribution of Nutrients in Surface Layer of Red Soils in Southeast China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The leaching and redistribution of nutrients in the surface layer of 4 types of red soils in Southeast China were studied with a lysimeter experiment under field conditions. Results showed that the leaching concentrated in the rainy season (from April to June). Generally, the leaching of soil nutrients from the surface layer of red soils was in the order of Ca > Mg > K > NO3-N. In fertilization treatment, the total amount of soil nutrients leached out of the surface layer in a red soil derived from granite was the highest in all soils. The uptake by grass decreased the leaching of fertilizer ions in surface layer, particularly for NO3-N. Soil total N and exchangeable K, Ca and Mg in the surface layer decreased with leaching and grass uptake during the 2 years without new fertilization of urea, Ca(H2PO4)2, KCl, CaCO3 and MgCO3. Ca moved from the application layer (0~5 cm) of fertilizer and accumulated in the 10~30 cm depth in the soils studied except that derived from Quaternary red clay. The deficiency of soil exchangeable K will become a serious degradation process facing the Southeast China.

  3. Enhanced magneto-optical imaging of internal stresses in the removed surface layer

    Science.gov (United States)

    Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy

    2015-10-01

    The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.

  4. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of); Yang, Hae Woong [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ko, Young Gun, E-mail: younggun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of)

    2015-08-30

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm{sup 2} for 300 s in potassium pyrophosphate (K{sub 4}P{sub 2}O{sub 7}) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  5. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity

  6. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium.

    Science.gov (United States)

    Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta

    2008-02-01

    Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.

  7. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    Full Text Available Abstract Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG 25 and diazo-dye Acid Red (AR 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l with relative decolorization values of 91.2% (3 h and 97.1% (18 h, as well as high activity to AR18 (1 g/l by 80.5% (3 h and 89.0% (18 h, was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l. No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved

  8. Turbulent Structures and Coherence in the Atmospheric Surface Layer

    Science.gov (United States)

    Träumner, K.; Damian, Th.; Stawiarski, Ch.; Wieser, A.

    2015-01-01

    Organized structures in turbulent flow fields are a well-known and still fascinating phenomenon. Although these so-called coherent structures are obvious from visual inspection, quantitative assessment is a challenge and many aspects e.g., formation mechanisms and contribution to turbulent fluxes, are discussed controversially. During the "High Definition Clouds and Precipitation for Advancing Climate Prediction" Observational Prototype Experiment (HOPE) from April to May 2013, an advanced dual Doppler lidar technique was used to image the horizontal wind field near the surface for approximately 300 h. A visual inspection method, as well as a two-dimensional integral length scale analysis, were performed to characterize the observations qualitatively and quantitatively. During situations with forcing due to shear, the wind fields showed characteristic patterns in the form of clearly bordered, elongated areas of enhanced or reduced wind speed, which can be associated with near-surface streaks. During calm situations with strong buoyancy forcing, open cell patterns in the horizontal divergence field were observed. The measurement technique used enables the calculation of integral length scales of both horizontal wind components in the streamwise and cross-stream directions. The individual length scales varied considerably during the observation period but were on average shorter during situations with compared to strongly stable situations. During unstable situations, which were dominated by wind fields with structures, the streamwise length scales increased with increasing wind speed, whereas the cross-stream length scales decreased. Consequently, the anisotropy increased from 1 for calm situations to values of 2-3 for wind speeds of 8-10. During neutral to stable situations, the eddies were on average quite isotropic in the horizontal plane.

  9. A METHOD FOR DETERMINING TURBULENT TRANSFER IN THE ATMOSPHERIC SURFACE LAYER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Derivation of bulk transport coefficients helps solving land surface processes. A similarity-based method for determining the turbulent transfer (including the flux exchange, the vertical distribution of wind and potential temperature) in the atmospheric surface layer is presented. Comparisons with iterative schemes (Businger, 1971) are given to demonstrate the advantages of the calculation methods.

  10. Measurement of the dynamic shear modulus of surface layers I. Theory

    NARCIS (Netherlands)

    Waterman, Herman A.

    1984-01-01

    In measuring the dynamic surface-shear modulus of a surface layer on a liquid, conditions may occur—low-shear modulus and/or high frequencies—which promote wave-propagation effects to play a predominant role. A theory is presented with the help of which the (complex) wave number of the wave in the l

  11. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    Matthias J. Mayser

    2014-06-01

    Full Text Available Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  12. Data-driven inversion of GPR surface reflection data for lossless layered media

    NARCIS (Netherlands)

    Slob, E.C.; Wapenaar, C.P.A.

    2014-01-01

    Two wavefields can be retrieved from the measured reflection response at the surface. One is the Green’s function at a chosen virtual receiver depth level in a layered model generated by a source at the surface. The other wavefield consists of the upgoing and downgoing parts of a wavefield that focu

  13. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; Rooij, de Matthijn; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  14. Land-surface and boundary layer processes in a semi-arid heterogeneous landscape

    NARCIS (Netherlands)

    Jochum, A.M.

    2003-01-01

    The European Field Experiment in a Desertification-threatened Area (EFEDA) provides a comprehensive land-surface dataset for a semiarid Mediterranean environment. It is used here to study heat and moisture transport processes in the atmospheric boundary layer (ABL), to derive grid-scale surface flux

  15. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer

    Science.gov (United States)

    Chen, Jian; Deng, Xin; Gong, Manfeng; Liu, Wei; Wu, Shanghua

    2016-09-01

    This paper systematically investigated a set of functionally graded WC-TiC-Mo-Co cemented carbides with modified surface layer (called fcc-rich surface layer in this study), which is mainly composed of fcc phases (Ti(CN) and TiN) and WC. Nitridation at liquid phase sintering temperature is the key process making this fcc-rich surface layer. The functionally graded WC-TiC-Mo-Co cemented carbides synthesized in this study show 3 layer structure: the outer layer, i.e. the fcc-rich surface layer; the intermediate layer, which is characterized by abnormally large WC and high Co content; and the inner layer. It was found that TiC is the most critical component for the formation of fcc-rich surface layer. The higher content of TiC results in the thicker fcc-rich outer layer, higher (Ti(CN) and TiN) content in the outer layer, and higher hardness of the fcc-rich outer layer. The formation of this fcc-rich surface layer is mainly due to the nitridation process between Ti and N, which leads to the diffusion of Ti outwards (from the inside of the sample to the surface) and the subsequent migration of liquid cobalt inwards (from surface to the inside of the sample). The three-layer structure developed in this study provides the excellent combination of high wear resistance and high toughness, which is favorable for some applications.

  16. Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique.

    Science.gov (United States)

    Lin, Chien-Hong; Cho, Hsien-Lung; Yeh, Yi-Hsing; Yang, Ming-Chien

    2015-12-01

    The surface wettability and anti-protein adsorption of a silicone-based hydrogel that was synthesized by a block copolymer of polydimethylsiloxane (PDMS) and poly (ethylene glycol) methacrylate (PEGMA) was improved via polyelectrolyte multilayer (PEM) immobilization. Polysaccharide PEMs of chitosan (CS, as a positive-charged agent) and hyaluronic acid (HA, as a negative-charged and anti-adhesive agent) were successfully assembled on the PDMS-PU-PEGMA silicone hydrogel in a layer-by-layer (LBL) self-assembly manner. Atomic force microscopy (AFM) and dyeing data verified the progressive buildup of the PEM silicone hydrogel. The results showed that the contact angle of the silicone hydrogel decreased with an increase in the number of PEM grafting layers. Furthermore, after immobilizing five layers of CS/HA, the protein adsorption decreased from 78 ± 11 to 26 ± 4 μg/cm(2) for HSA and from 55 ± 10 to 20 ± 4 μg/cm(2) for lysozymes. This indicates that CS/HA PEM-immobilized silicone hydrogels can resist protein adsorption. Furthermore, these hydrogels were non-cytotoxic according to an in vitro L929 fibroblast assay. Overall, the results demonstrated that the modified silicone hydrogels exhibited hydrophilicity and anti-protein adsorption, as well as relatively high oxygen permeability and optical transparency. Therefore, they would be applicable as a contact lens material. PMID:26519935

  17. Transformation behavior and mechanical properties of an equiatomic Ti-Ni alloy with surface sulfide layers

    Energy Technology Data Exchange (ETDEWEB)

    Nam, T.H.; Park, S.M.; Cho, G.B. [Information Technology Research Center for Energy Storage and Conversion, Gyeongsang National Univ., Jinju, Gyeongnam (Korea)

    2005-07-01

    Surface sulfide layers were formed on the surface of Ti-50.0(at%)Ni alloys by isothermal annealing at 873 K for 3.6 ks under the sulfur pressure of 80 kPa, and then transformation behavior and mechanical properties were investigated by means of differential scanning calorimetery(DSC), thermal cycling tests under constant load, and tensile tests. The DSC peaks were broadened and martensitic transformation start temperature(Ms) increased from 281 K to 289 K by sulfurization. An equiatomic Ti-Ni alloy with surface sulfide layers showed good shape memory characteristics and partial superelasticity. (orig.)

  18. Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings.

    Science.gov (United States)

    Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio

    2015-04-01

    Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications.

  19. Helicity and potential vorticity in the surface boundary layer turbulence

    Science.gov (United States)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  20. Efficiency of silver nanoparticles against bacterial contaminants isolated from surface and ground water in Egypt

    Directory of Open Access Journals (Sweden)

    Reem Dosoky

    2015-06-01

    Full Text Available The bactericidal efficiency of silver nanoparticles (AgNP was evaluated against bacteria isolated from surface and ground water samples in Egypt. The AgNP were synthesized by typical one-step synthesis protocol, and were characterized using transmission electron microscopy and atomic absorption spectrophotometer. The bactericidal efficiency of AgNP was evaluated by its application in three concentrations i.e., 0.1, 0.05 and 0.01 ppm to water sample, and allowed to interact with bacteria for different duration e.g., 5 min 15 min, 30 min, 1 h and 2 h. Then, the bactericidal efficiency of AgNPs was determined by comparing the counted bacteria before and after the treatments. Higher mean values of total bacterial count (TBC, total coliform count (TCC, and total streptococcal count (TFS were detected in surface water than in ground water. Also, the results showed that TBC, TCC and TFS exceeded permissible limits. Application of AgNP at different concentration, the number of bacteria in TBC was significantly reduced in all AgNP-exposed samples as compared to the control group (p<0.05. The highest concentration of AgNP exhibited highest bactericidal efficiency in TBC, where, after two hours, 0.1, 0.05 and 0.01 mg/L AgNP was found to be sufficient to inhibit 91.85, 89.14 and 74.92%, and 92.33, 85.23 and 53.17% in TBC of surface and ground water, respectively. Moreover, the inhibition efficiency of the highest concentration (0.1 ppm against TCC reached to 98.10 and 99.88% in surface water and 95.54 and 99.20% in ground water after 1 h and 2 h, respectively. Similar results were found against TFS count. The AgNPs were found to be effective against bacteria of water origin.

  1. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    Science.gov (United States)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  2. Bacterial DNA of Ocean and Land on the Surface of the International Space Station.

    Science.gov (United States)

    Grebennikova, Tatiana

    A.V. Syroeshkin2, T.V. Grebennikova1, E.V. Shubralova3, V.A. Shuvalov3, O.S. Tsygankov4, V.B. Lapshin2 1D. I. Ivanovsky Virology Institute, Moscow, Russia 2 Academician E. K. Fedorov Institute of Applied Geophysics, Moscow, Russia 3S.P. Korolev Rocket and Space Corporation «Energia» Korolev, Russia 4Central Research Institute of Machine Building, Korolev, Russia Existence of biological molecules as markers of microorganisms in the space environment has always attracted attention of researchers. There is great attention to the search for extraterrestrial life forms [Nicholson W.L. 2009, Kawaguchi Y. et al 2013], and as well as the coping mechanisms of living organisms in the interplanetary space [Hotchin J. et al 1965, Baranov V.M. 2009, Horneck G. et al 2010]. Experiments on American and Japanese segments of the International Space Station (ISS) over the different nature of resistance during prolonged stay in space were conducted [Scalzi G et al 2012, Wassmann M. et al 2012]. As a result of these experiments confirmed the possibility of preserving the viability of organisms in an open space for a long time. Consequence, became interested in the transfer of living matter from the stratosphere to near-Earth space [Smith D.J. 2013]. We hypothesized that viable forms, or at least, intact DNA can be transferred to the orbit of the ISS with the ascending branch of the global electric circuit. Samples of cosmic dust collected from the surface of the window of the ISS during the exit of an astronaut in space. Samples (washes with material of tampons and tampons) which were in vacuo, were analyzed for the presence of bacterial DNA by nested PCR using primers specific DNA genus Mycobacterium, the DNA of the strain of the genus Bacillus anthracis and DNA encoding the bacterial 16S ribosomal RNA after transportation of the samples to Earth. The results of amplification, followed by sequencing and phylogenetic analysis showed the presence in samples of cosmic dust DNA

  3. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  4. Relaxation of surface tension in the free-surface boundary layer of simple Lennard-Jones liquids

    OpenAIRE

    Lukyanov, Alex V.; Likhtman, Alexei E.

    2013-01-01

    In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards e...

  5. Superhydrophobic surfaces via electroless displacement of nanometric Cu layers by Ag{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Brenier, R., E-mail: roger.brenier@lpmcn.univ-lyon1.fr [Universite de Lyon, Universite Lyon1, Laboratoire PMCN, CNRS, UMR 5586, F69622 Villeurbanne Cedex (France); Ramos, S.M.M.; Montchanin, M. [Universite de Lyon, Universite Lyon1, Laboratoire PMCN, CNRS, UMR 5586, F69622 Villeurbanne Cedex (France)

    2009-05-30

    This paper explores the possibility of making hydrophobic and superhydrophobic surfaces from electroless displacement of Cu by Ag{sup +}, in the case where Cu oxidation is limited owing to Cu layers of nanometric thicknesses. The morphology of the Ag layers is studied by scanning electron microscopy for Cu thicknesses between 10 and 80 nm. The mapping of the elemental content of the layers by electron dispersive X-ray analysis also has been used to clarify the particle growing by diffusion limited aggregation. It is shown that the average size and the shape complexity of the Ag particles increase with the Cu thickness. The addition of dimethyl sulfoxide in the Ag{sup +} aqueous solution improves the surface homogeneity, increases the particle density and decreases their sizes. The wetting behaviour of the surfaces, after grafting with octadecanethiol, has been studied from measurements of the contact angles of a drop of water. According to the thickness of the initial Cu layer and the morphology of the Ag layer, contact angles range between 110{sup o} and 154{sup o}. Superhydrophobic surfaces are obtained from 80 nm thick Cu layers.

  6. Surface roughness and dislocation density in InP/InGaAs layers

    Science.gov (United States)

    Masson, Denis P.; Laframboise, Sylvain

    2004-12-01

    A subtle roughening of the surface of a buried 60 nm InGaAs epitaxial layer was detected using a combination of sample cleaving, selective chemical etching and Field Emission Scanning Electron Microscopy (FESEM). In our technology, InGaAs is the photo-absorbing layer of Metal Organic Chemical Vapor Deposition (MOCVD) grown layers used in the monolithic integration of active photo detectors and a passive mux/demux. Conventional Photo-Luminescence (PL) and X-Ray Diffraction (XRD) techniques used to monitor and optimize the growth of epitaxial layers did not show this microscopic surface roughness. The appearance of roughness in the InGaAs layer was linked to very large changes in the dislocation density of the layers grown over the rough surface. Increases of up to three orders of magnitude in the Etch Pit Density (EPD from 104 to 107 cm-2) were revealed using a standard Huber Etch. The Huber Etch also showed the preferred formation of "pairs" of dislocations threading out from a common point on the rough InGaAs surface. Changes in growth conditions resulted in the complete elimination of roughness and of excessive dislocation densities

  7. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  8. Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer.

    Directory of Open Access Journals (Sweden)

    Beth L Zimmer

    Full Text Available Black band disease (BBD of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs and for autoinducer-2 (AI-2 activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153 of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S-4,5-dihydroxy-2,3-pentanedione (DPD, the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome.

  9. Laser nitriding of the surface layer of Ti6Al4V titanium alloy

    Directory of Open Access Journals (Sweden)

    R. Filip

    2008-03-01

    Full Text Available Purpose: The purpose of this paper is modification of the surface layer of the Ti6Al4V titanium alloymicrostructure and properties by laser remelting in nitrogen atmosphere.Design/methodology/approach: Laser treatment was performed on the samples in stream of nitrogen.Microstructure of laser treated layer was investigated by using Epiphot 300 optical microscope and Novascan30 scanning electron microscope. Phase composition was determined using X-ray diffractometry. The roughnessof surface of treated material was examined using topography scanning system T 8000 made by HommelwerkeGMBH. The Vickers hardness under load of 1.96 N was measured on the cross sections of surface layer. The wearproperties of alloyed zone were tested on the testing machine T 08M using ‘pin on disc’ test.Findings: Laser remelting process has produced a surface layer consists of hard ceramics particles of TiN andTi2N phases spaced in martensitic matrix. The hardness of surface layer increases clearly in comparison withuntreated alloy due to formation of TiN and Ti2N particles and depends on the volume fraction of nitrides. Theirmaximum value of the hardness (1500 HV 0.2 occurs on the surface of laser treated zone. Wear resistance of lasernitrided layer increases considerably in relation to base alloy.Research limitations/implications: Research range was limited to microstructure, phase composition,hardness, fractography and wear resistance investigations. To estimate the influence of the laser nitriding processon corrosion resistance of the layer additional examinations will be performed in future research.Practical implications: Laser remelting of titanium alloy in nitrogen atmosphere makes possible to obtain coatingscomposed of ceramic particles spaced in metallic matrix characterised by high hardness and wear resistance.Originality/value: The range of investigation included microstructure, phase composition, hardness as well asfractographic estimation and wear

  10. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Directory of Open Access Journals (Sweden)

    Gabriela S Lorite

    Full Text Available The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  11. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  12. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  13. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    Science.gov (United States)

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug. PMID:26450150

  14. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    Science.gov (United States)

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug.

  15. Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion

    NARCIS (Netherlands)

    Vermeltfoort, Petronella; Rustema-Abbing, Mina; de Vries, Jacob; Bruinsma, Gerda M; Busscher, Hendrik; van der Linden, Matthijs L; Hooymans, Johanna MM; van der Mei, Henderina

    2006-01-01

    Purpose: The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. Methods: In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H contac

  16. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating: Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P.F.; Currie, E.P.K.; Thies, J.C.; Mei, van der H.C.; Busscher, H.J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  17. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  18. Quantitative auger electron spectroscopy of the interface carbon layer formation on the vacuum cleavage surfaces of layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    The results of the qualitative Auger electron spectroscopy of the interface carbon layer formation on the high vacuum cleavage surfaces of layered semiconductor In4Se3 crystals are presented. The kinetics of interfacial carbon layer formation on the cleavage surfaces of crystals and the elemental and phase composition of the interface dependent on the exposition time in high vacuum and on the dose of electron irradiation have been studied by the quantitative Auger electron and mass-spectroscopy methods

  19. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    Science.gov (United States)

    Lomov, A. A.; Myakon'kikh, A. V.; Oreshko, A. P.; Shemukhin, A. A.

    2016-03-01

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2-5)-keV helium ions to a dose of D = 6 × 1015-5 × 1017 cm-2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ( z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm-2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.

  20. Extent of oxide layer at the inner surface of burst cladding

    International Nuclear Information System (INIS)

    The extent of oxide layer at the inner surface of burst cladding is one of very important items in the heat-up calculation during a postulated LOCA transient in LWRs. The extent of oxide layers were measured on burst claddings being conducted over a range of oxidation temperature from 900 to 11500C, oxidation time varying from 35 to 240s, steam flow rate varying from 2 to 1530 g/m2s and rupture varying in length from about 5 to 26 mm. The extent of oxide layer at the inner surface of burst cladding is influenced by oxidation temperature, oxidation time and supplied amount of steam entering a rupture of burst cladding. The extent of oxide layer, in paticular, becomes large as the length of a rupture is longer. The thickness of oxide near the burst, which is thicker than that away from the burst, exceeds the value calculated by the reaction rate. (author)

  1. Physical mechanism and numerical simulations of surface layer temperature inversion in tropical ocean

    Institute of Scientific and Technical Information of China (English)

    FAN Haimei; LI Bingrui; ZHANG Qinghua; LIU Zhiliang

    2005-01-01

    The one-dimensional Kraus-Tumer mixed layer model improved by Liu is developed to consider the effect of salinity and the equations of temperature and salinity under the mixed layer. On this basis, the processes of growth and death of surface layer temperature inversion is numerically simulated under different environmental parameters. At the same time, the physical mechanism is preliminarily discussed combining the observations at the station of TOGA-COARE 0°N, 156°E. The results indicate that temperature inversion sensitively depends on the mixed layer depth, sea surface wind speed and solar shortwave radiation, etc., and appropriately meteorological and hydrological conditions often lead to the similarly periodical occurrence of this inversion phenomenon.

  2. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Ananta R., E-mail: aacharya@georgiasouthern.edu, E-mail: anantaach@gmail.com [Department of Physics, Georgia Southern University, Statesboro, Georgia 30460 (United States); Thoms, Brian D. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Nepal, Neeraj [American Association for Engineering Education, 1818 N Street NW, Washington, DC 20034 (United States); Eddy, Charles R. [Electronics Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  3. Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard Corals

    OpenAIRE

    Michael John Sweet; Aldo Croquer; John Christopher Bythell

    2011-01-01

    Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passi...

  4. Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2015-05-01

    Full Text Available In the autumn of 1976 bacteria of the genera Bacillus, Pseudomonas, Flavobacterium, Erwinia and Cellulomonas were isolated from the bark surface of poplars growing in protective belts around several industrial plants. It was found that the qualitative and quantitative composition of the surface bacterial microflora changes in dependence on the degree of resistance of the poplars to the action of the dust emitted by the industrial establishment and containing high amounts of heavy metals.

  5. Structural and electronic properties of single molecules and organic layers on surfaces

    OpenAIRE

    Sotthewes, Kai

    2016-01-01

    Single molecules and organic layers on well-defined solid surfaces have attracted tremendous attention owing to their interesting physical and chemical properties. The ultimate utility of single molecules or self-assembled monolayers (SAMs) for potential applications is critically dependent on the structural, electronic and dynamic properties. Therefore is it important to study the structural and electronic properties as well as the dynamic processes of single molecules and organic layers on ...

  6. IMPROVEMENT OF METHODS AND MEANS OF ULTRASONIC CONTROL OF METAL GOODS WITH MODIFIED SURFACE LAYER

    Directory of Open Access Journals (Sweden)

    A. R. Baev

    2011-01-01

    Full Text Available In the report perspective methods of diagnostics of surface layers state of products after various technological processes (a face hardening by means of induction or after cementation, coating are viewed. The testing is carried out to geometrical attributes (thickness of a layer and presence of flaws. The offered methods of measuring allow making the test in a work cycle of products manufacture.

  7. Surface properties of Mars' polar layered deposits and polar landing sites

    OpenAIRE

    Vasavada, Ashwin R.; Williams, Jean-Pierre; Paige, David A.; Herkenhoff, Ken E.; Bridges, Nathan T.; Greeley, Ronald; Murray, Bruce C.; Bass, Deborah S.; McBride, Karen S.

    2000-01-01

    On December 3, 1999, the Mars Polar Lander and Mars Microprobes will land on the planet's south polar layered deposits near (76°S, 195°W) and conduct the first in situ studies of the planet's polar regions. The scientific goals of these missions address several poorly understood and globally significant issues, such as polar meteorology, the composition and volatile content of the layered deposits, the erosional state and mass balance of their surface, their possible relationship to climate c...

  8. Methods of improvement in hardness of composite surface layer on cast steel

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-08-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in founding process a composite surface layer on the basis of Fe-Cr-C alloy and next its remelting with use of welding technology TIG – Tungsten Inert Gas. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel castings on machine elements. This technology can be competition for generally applied welding technology (surfacing by welding and thermal spraying. However the results of studies show, that is possible to connection of both methods founding and welding of surface hardening of cast steel castings. In range of experimental plan was made test castings with composite surface layer, which next were remelted with energy 0,8 and 1,6 kJ/cm. Usability for industrial applications of test castings was estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  9. Anomalous hexagonal superstructure of aluminum oxide layer grown on NiAl(110) surface

    Science.gov (United States)

    Krukowski, Pawel; Chaunchaiyakul, Songpol; Minagawa, Yuto; Yajima, Nami; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    2016-11-01

    A modified method for the fabrication of a highly crystallized layer of aluminum oxide on a NiAl(110) surface is reported. The fabrication method involves the multistep selective oxidation of aluminum atoms on a NiAl(110) surface resulting from successive oxygen deposition and annealing. The surface morphology and local electronic structure of the novel aluminum oxide layer were investigated by high-resolution imaging using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy. In contrast to the standard fabrication method of aluminum oxide on a NiAl(110) surface, the proposed method produces an atomically flat surface exhibiting a hexagonal superstructure. The superstructure exhibits a slightly distorted hexagonal array of close-packed bright protrusions with a periodicity of 4.5 ± 0.2 nm. Atomically resolved STM imaging of the aluminum oxide layer reveals a hexagonal arrangement of dark contrast spots with a periodicity of 0.27 ± 0.02 nm. On the basis of the atomic structure of the fabricated layer, the formation of α-Al2O3(0001) on the NiAl(110) surface is suggested.

  10. IMPACT OF VIBRATORY AND ROTATIONAL SHOT PEENING ONTO SELECTED PROPERTIES OF TITANIUM ALLOY SURFACE LAYER

    Directory of Open Access Journals (Sweden)

    Kazimierz Zaleski

    2014-06-01

    Full Text Available This study presents the results of tests on impact of vibratory and rotational shot peening of the Ti6A12Mo2Cr titanium alloy onto the processed object surface roughness and surface layer microhardness. The external surfaces of ring-shaped samples were shot peened. The preceding process consisted of turning with a cubic boron nitride blade knife. Steel beads, having a diameter of 6 mm, were used as a processing medium. The variable parameters of shot peening were vibrator amplitude and shot peening time. The range of recommended technological parameters for vibratory and rotational shot peening was determined. As a result of shot peening, the surface roughness could be reduced by approximately 4 times and the surface layer could be hardened to the depth of approximately 0.4 mm.

  11. Effect of irradiation by argon ions on hydrogen transport through the surface oxide layer of zirconium

    Science.gov (United States)

    Evsin, A. E.; Begrambekov, L. B.; Gumarov, A. I.; Kashapov, N. F.; Luchkin, A. G.; Vakhitov, I. R.; Yanilkin, I. V.; Tagirov, L. R.

    2016-09-01

    Effect of zirconium irradiation by 1 keV Ar+ ions on hydrogen transport through the surface oxide layer is studied. It is shown that deuterium trapping under subsequent irradiation of the Ar-treated sample by deuterium atoms of thermal energies in D2 + 30at.% O2 gas mixture is 2 times less than trapping in the untreated sample. Besides, irradiation of the untreated sample by D-atoms provokes desorption of ≈25% of hydrogen contained therein, whereas hydrogen desorption from the ion-treated zirconium surface does not occur. It is proposed that oxygen depletion of the surface oxide layer, caused by ion bombardment, is a reason of mitigation of the hydrogen transport through this layer in both directions.

  12. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    International Nuclear Information System (INIS)

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms

  13. Surface modification of oxide layer on Si using highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, M., E-mail: msakurai@kobe-u.ac.jp [Department of Physics, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501 (Japan); Liu, S.; Sakai, S. [Department of Physics, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501 (Japan); Ohtani, S. [Institute for Laser Science, University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan); Terui, T. [National Institute of Information and Communications Technology, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Sakaue, H.A. [National Institute for Fusion Science, Oroshi-cho, Toki 509-5292 (Japan)

    2013-11-15

    Surface modification using highly charged ions is presented. The surface of a Si wafer which is covered with a native oxide layer is used as a sample. The sample was irradiated with Ar{sup 11+} ions at a fluence of 10{sup 13}–10{sup 14}/cm{sup 2}. The Ar{sup 11+} ions were obtained from an electron beam ion source (Kobe EBIS). The surface was investigated using secondary electron microscopy, X-ray photoelectron spectroscopy and high-resolution electron energy loss spectroscopy. The obtained results suggest that the native oxide layer is sputtered by the irradiation of Ar{sup 11+} ions and that the structural modification makes the density of the oxide layer lower and the electric conductivity higher.

  14. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bashchenko, Lyudmila P., E-mail: luda.baschenko@gmail.com; Gromov, Viktor E., E-mail: gromov@physics.sibsiu.ru; Budovskikh, Evgenii A., E-mail: budovskih-ea@physics.sibsiu.ru; Soskova, Nina A., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation); Ivanov, Yurii F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB{sub 2}, silicon carbide SiC and zirconium oxide ZrO{sub 2}) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  15. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    Science.gov (United States)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  16. Function mechanism of carbide layer on surface of La2O3-Mo cathode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ion implanting method has been taken for implanting lanthanum ions into the surface layer of molybdenum wires in order to study the function of carbide layer on the surface of La2O3-Mo cathode in the emission. The function mechanism has been discussed by using XPS and AES methods. The results show that the carbide layer mainly acts as a reduction reagent to produce metallic lanthanum. Moreover, it can store the activator substance and carry them to the surface. Based on the research results, the carbonization technique has been changed. By applying the new technique, the lifetime of the La2O3-Mo cathode has been improved from 14  h to more than 1  000  h—the minimum lifetime for practical uses.

  17. Microstructural Evolution of Surface Layer of TWIP Steel Deformed by Mechanical Attrition Treatment

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de- formation layer. Microstructural characteristics of the surface at the TWIP steel SMATed for 90 min were observed and analyzed by optical microscope, x-ray diffraction, transmission and high-resolution electron microscope. The re- sults show that the orientation of austenite grains weakens, and a-martensite transformation occurs during SMAT. During the process of SMAT, the deformation twins generate and divide the austenite grains firstly~ then a-martens- ite transformation occurs beside and between the twin bundles~ after that the martensite and austenite grains rotate to accommodate deformation, and the orientations of martensite and between martensite and residual austenite increase; lastly the randomly oriented and uniform-sized nanocrystallir~e layers are formed under continuous deformation.

  18. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    Science.gov (United States)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  19. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    Science.gov (United States)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  20. Adsorption studies at ionized surface layers by means of hot atoms

    International Nuclear Information System (INIS)

    Adsorption of ions at the surface of solutions of ionic surface-active substances can directly be studied using hot atoms. Extremely small amounts of suitable radioactive ions, or ions liable to undergo induced nuclear transformations in situ, are added to such solutions, replacing some of the normal counter ions coadsorbed at the primary-adsorbed organic ions. Hot atoms with energies from about 100 keV down to a few electron volts give ranges in water from about 1000 A down to monomoleeular layers. This makes them suitable for sensitive surface layer studies. The hot atoms ejected from the surface are collected and counted. Among α-disintegration recoils, the system Bi212/Tl208 has proved to be suitable. Now, by refining the method, valuable information about adsorption conditions at sodium dodecyl sulphate surface layers could be found. The kinetics of adsorption was studied by following in time the collected recoil activity caused by Bi-ion adsorption. Adsorption isotherms of Bi-ions as a function of the bulk concentration of the surface-active substance under varying conditions of ionic strength, pH and Bi212 activity were measured. By comparing these isotherms with those obtained by measuring the surface tension of the solutions and calculating the surface excess with the aid of a suitably modified Gibbs' isotherm, the adsorption of Bi+++ and Pb++ relative to that of Na+ and H3O+, and by this the extent of ion exchange in the adsorbed layer could be determined. As the method measures the adsorption of charged species, surface reactions transforming primary-adsorbed organic anions to a non-ionic state could be followed. Conclusions could be drawn about the formation of a non-ionized acid soap in the surface and about micelle formation in the bulk under various experimental conditions. (author)

  1. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  2. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  3. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  4. Covalent assembly of poly(ethyleneimine) via layer-by-layer deposition for enhancing surface density of protein and bacteria attachment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing, E-mail: xiabing@njfu.edu.cn [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037 (China); Shi, Jisen; Dong, Chen; Zhang, Wenyi; Lu, Ye [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Guo, Ping [Nanjing College of Information Technology, Nanjing 210023 (China)

    2014-02-15

    Covalently assembly of low molecular weight poly(ethyleneimine) was introduced to glass surfaces via glutaraldehyde crosslinking, with focus on its application on protein immobilization or bacteria attachment. Characterizations of Fourier transform infrared spectroscopy and ellipsometry measurement revealed a stepwise growth of poly(ethyleneimine) films by layer-by-layer deposition. After fluorescein isothiocyanate labelling, photoluminescence spectroscopy measurement indicated that the amount of surface accessible amine groups had been gradually enhanced with increasing poly(ethyleneimine) layers deposition. As compared with traditional aminosilanized surfaces, the surface density of amine groups was enhanced by ∼11 times after five layers grafting, which resulted in ∼9-time increasing of surface density of immobilized bovine serum albumin. Finally, these as-prepared PEI multi-films with excellent biocompatibility were adopted as culture substrates to improve Escherichia coli adherence, which showed that their surface density had been increased by ∼251 times.

  5. Delivery of surface-mediated non-viral gene nanoparticles from ultrathin layer-by-layer multilayers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An efficient and safe gene delivery system remains a challenge in the development of gene therapy.Polycation-based gene nanoparticles are a typical non-viral gene delivery system,which are able to transfect cells in vitro and in vivo.This paper reported a facile method for constructing biodegradable multilayers via layer-by-layer self-assembly,in which the polycation-based gene nanoparticles were loaded.Through this surface-mediated delivery system,adherent cells on the multilayer could be transfected in situ.Gene nanoparticles-loaded multilayers transfect cells with higher efficiency than naked DNA-loaded multilayers because of the complex configuration of the DNA.DNA nanoparticles/PGA multilayers constructed on the scaffold surface could also realize in situ transfection on the adherent cells.The well-structured,easy-processed multilayers may provide a novel approach to precisely controlled delivery of gene nanoparticles,which may have potential applications for gene therapy in tissue engineering and medical implants.

  6. Puzzling evidence for surface superconductivity in the layered dichalcogenide Cu10%TiSe2

    Science.gov (United States)

    Levy-Bertrand, F.; Michon, B.; Marcus, J.; Marcenat, C.; Kačmarčík, J.; Klein, T.; Cercellier, H.

    2016-04-01

    We report on specific heat and magnetotransport measurements performed on superconducting Cu10%TiSe2 single crystals. We show that superconductivity persists in transport measurements up to magnetic fields HR well above the upper critical field Hc2 deduced from the calorimetric measurements. Surprisingly this "surface" superconductivity is present for all magnetic field orientations, either parallel or perpendicular to the layers. For H‖ab, the temperature dependence of the HR/Hc2 ratio can be well reproduced by solving the Ginzburg-Landau equations in presence of a surface layer with reduced superconducting properties. Unexpectedly this temperature dependence does not depend on the field orientation.

  7. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...... antiferroelectric double layers develop that can be distinguished from the bulk single layer structure. A model is developed that separates the electron density in a contribution from the molecular form factor, and from the structure factor of the mono- and the bilayers, respectively. It shows that (i) the first...

  8. CVD Delta-Doped Boron Surface Layers for Ultra-Shallow Junction Formation

    OpenAIRE

    Sarubbi, F.; Nanver, L.K.; Scholtes, T.L.M.

    2006-01-01

    A new doping technique is presented that uses a pure boron atmospheric/low-pressure chemical vapor deposition (AP/LPCVD) in a commercially available epitaxial reactor to form less than 2-nm-thick δ-doped boron-silicide (BxSi) layers on the silicon surface. For long exposure B segregates at the surface to form a very slow growing amorphous layer of pure B (α-B). The electrical properties of the as-deposited α- B/BxSi stack have been studied by fabricating and measuring diodes where the B depos...

  9. On the influence of nanometer-thin antiferromagnetic surface layer on ferromagnetic CrO$_2$

    OpenAIRE

    Das, Pintu; Bajpai, Ashna; Ohno, Yuzo; Ohno, Hideo; Jens MÜLLER

    2012-01-01

    We present magnetic stray field measurements performed on a single micro-crystal of the half metallic ferromagnet CrO$_2$, covered by a naturally grown 2\\,-\\,5\\,nm surface layer of antiferromagnetic (AFM) Cr$_2$O$_3$. The temperature variation of the stray field of the micro-crystal measured by micro-Hall magnetometry shows an anomalous increase below $\\sim$\\,60\\,K. We find clear evidence that this behavior is due to the influence of the AFM surface layer, which could not be isolated in the c...

  10. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    Science.gov (United States)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to

  11. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (pbiofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  12. Interactions between bacterial surface and nanoparticles govern the performance of "chemical nose" biosensors.

    Science.gov (United States)

    Verma, Mohit S; Wei, Shih-Chung; Rogowski, Jacob L; Tsuji, Jackson M; Chen, Paul Z; Lin, Chii-Wann; Jones, Lyndon; Gu, Frank X

    2016-09-15

    Rapid and portable diagnosis of pathogenic bacteria can save lives lost from infectious diseases. Biosensors based on a "chemical nose" approach are attracting interest because they are versatile but the governing interactions between bacteria and the biosensors are poorly understood. Here, we use a "chemical nose" biosensor based on gold nanoparticles to explore the role of extracellular polymeric substances in bacteria-nanoparticle interactions. We employ simulations using Maxwell-Garnett theory to show how the type and extent of aggregation of nanoparticles influence their colorimetric response to bacteria. Using eight different species of Gram-positive and Gram-negative bacteria, we demonstrate that this "chemical nose" can detect and identify bacteria over two orders of magnitude of concentration (89% accuracy). Additionally, the "chemical nose" differentiates between binary and tertiary mixtures of the three most common hospital-isolated pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa (100% accuracy). We demonstrate that the complex interactions between nanoparticles and bacterial surface determine the colorimetric response of gold nanoparticles and thus, govern the performance of "chemical nose" biosensors. PMID:27108254

  13. A novel quantitative kinase assay using bacterial surface display and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Sónia Troeira Henriques

    Full Text Available The inhibition of tyrosine kinases is a successful approach for the treatment of cancers and the discovery of kinase inhibitor drugs is the focus of numerous academic and pharmaceutical laboratories. With this goal in mind, several strategies have been developed to measure kinase activity and to screen novel tyrosine kinase inhibitors. Nevertheless, a general non-radioactive and inexpensive approach, easy to implement and adapt to a range of applications, is still missing. Herein, using Bcr-Abl tyrosine kinase, an oncogenic target and a model protein for cancer studies, we describe a novel cost-effective high-throughput screening kinase assay. In this approach, named the BacKin assay, substrates displayed on a Bacterial cell surface are incubated with Kinase and their phosphorylation is examined and quantified by flow cytometry. This approach has several advantages over existing approaches, as using bacteria (i.e. Escherichia coli to display peptide substrates provides a self renewing solid support that does not require laborious chemical strategies. Here we show that the BacKin approach can be used for kinetic and mechanistic studies, as well as a platform to characterize and identify small-molecule or peptide-based kinase inhibitors with potential applications in drug development.

  14. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden

    Science.gov (United States)

    Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei

    2016-09-01

    Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world’s oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.

  15. Observations and proxies of the surface layer throughflow in Lombok Strait

    Science.gov (United States)

    Susanto, R. Dwi; Gordon, Arnold L.; Sprintall, Janet

    2007-03-01

    Seasonal to interannual variability of the Lombok Strait surface layer transport is investigated. The geostrophic transport within the surface layer is estimated from the cross-channel pressure gradient measured by a pair of shallow pressure gauges positioned on opposing sides of Lombok Strait during 1996-1999. The Ekman transport through Lombok Strait, derived from scatterometer winds, is less than 10% or ˜0.15 Sv of the estimated surface layer geostrophic transport. Monsoonal forcing is clearly evident in the regional sea surface height anomalies (SSHA) as derived from the satellite altimeter measurements. During the southeast monsoon, relatively low sea level is observed to the south of Lombok Strait, with relatively high sea level to the north; conditions reverse during the northwest monsoon. Estimated transports from the cross-channel pressure gradient, winds, SSHA and thermocline depth anomalies all reveal interannual variability associated with ENSO. Both the thermocline depth anomaly and the SSHA to the south of the East Java coast correlate significantly (r = 0.7) with the Lombok Strait total surface layer throughflow. The difference of SSHA from the south of the East Java coast minus the SSHA north of Lombok shows a higher correlation (r = 0.84). These high correlation values suggest that SSHA and thermocline depth anomalies can be used as proxies for the Lombok Strait surface layer throughflow. Qualitatively, such proxy transports agree with the surface transport inferred from the pressure gauges and Ekman transport in Lombok Strait from 1996 to 1999, and also with direct velocity measurements from current meter data obtained in 1985 and 2004-2005.

  16. Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers

    Science.gov (United States)

    Tetreault-Friend, Melanie; Azizian, Reza; Bucci, Matteo; McKrell, Thomas; Buongiorno, Jacopo; Rubner, Michael; Cohen, Robert

    2016-06-01

    Porous hydrophilic surfaces have been shown to enhance the critical heat flux (CHF) in boiling heat transfer. In this work, the separate effects of pore size and porous layer thickness on the CHF of saturated water at atmospheric pressure were experimentally investigated using carefully engineered surfaces. It was shown that, for a fixed pore diameter (˜20 nm), there is an optimum layer thickness (˜2 μm), for which the CHF value is maximum, corresponding to ˜115% enhancement over the value for uncoated surfaces. Similarly, a maximum CHF value (˜100% above the uncoated surface CHF) was observed while changing the pore size at a constant layer thickness (˜1 μm). To explain these CHF maxima, we propose a mechanistic model that can capture the effect of pore size and pore thickness on CHF. The good agreement found between the model and experimental data supports the hypothesis that CHF is governed by the competition between capillary wicking, viscous pressure drop and evaporation, as well as conduction heat transfer within the porous layer. The model can be used to guide the development of engineered surfaces with superior boiling performance.

  17. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-05-01

    Full Text Available This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP test and the scanning electron microscopy (SEM images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days.

  18. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  19. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    Science.gov (United States)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  20. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    Science.gov (United States)

    Keturakis, Christopher J.; Notis, Ben; Blenheim, Alex; Miller, Alfred C.; Pafchek, Rob; Notis, Michael R.; Wachs, Israel E.

    2016-07-01

    Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE-244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1-3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300-1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu2O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu2O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu2O layer. Depth profiling revealed the presence of K, Na, Cl, and S as key corrosion components for both sets of coins with S, most likely as Ag2S, concentrated towards the surface while the Cl, most likely as AgCl, penetrated deeper. Schema to understand the overall chemistry of the corrosion layers present on these silver alloy coins were developed from the equipment limitations encountered and are presented.

  1. Modulating the bacterial surface with small RNAs: a new twist on PhoP/Q-mediated lipopolysaccharide modification

    DEFF Research Database (Denmark)

    Overgaard, Martin; Kallipolitis, Birgitte; Valentin-Hansen, Poul

    2009-01-01

    Summary In recent years, small non-coding RNAs have emerged as important regulatory components in bacterial stress responses and in bacterial virulence. Many of these are conserved in related species and act on target mRNAs by sequence complementarity. They are tightly controlled...... of bacterial surface properties by regulating lipopolysaccharide modification. The small RNA is expressed as part of the PhoP/PhoQ two-component system that plays a major role in virulence of pathogenic species. This work expands the list of global regulators known to control small RNA expression...... at the transcription level, and are frequently elements of global regulatory systems. In Escherichia coli and Salmonella, almost one-third of the functional characterized small RNAs participate in control of outer membrane protein production. A subset of these genes is under the control of the sigma...

  2. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.

    Science.gov (United States)

    Wang, Qichen; Uzunoglu, Emel; Wu, Yong; Libera, Matthew

    2012-05-01

    We explored the use of self-assembled microgels to inhibit the bacterial colonization of synthetic surfaces both by modulating surface cell adhesiveness at length scales comparable to bacterial dimensions (∼1 μm) and by locally storing/releasing an antimicrobial. Poly(ethylene glycol) [PEG] and poly(ethylene glycol)-co-acrylic acid [PEG-AA] microgels were synthesized by suspension photopolymerization. Consistent with macroscopic gels, a pH dependence of both zeta potential and hydrodynamic diameter was observed in AA-containing microgels but not in pure PEG microgels. The microgels were electrostatically deposited onto poly(l-lysine) (PLL) primed silicon to form submonolayer surface coatings. The microgel surface density could be controlled via the deposition time and the microgel concentration in the parent suspension. In addition to their intrinsic antifouling properties, after deposition, the microgels could be loaded with a cationic antimicrobial peptide (L5) because of favorable electrostatic interactions. Loading was significantly higher in PEG-AA microgels than in pure PEG microgels. The modification of PLL-primed Si by unloaded PEG-AA microgels reduced the short-term (6 h) S. epidermidis surface colonization by a factor of 2, and the degree of inhibition increased when the average spacing between microgels was reduced. Postdeposition L5 peptide loading into microgels further reduced bacterial colonization to the extent that, after 10 h of S. epidermidis culture in tryptic soy broth, the colonization of L5-loaded PEG-AA microgel-modified Si was comparable to the very small level of colonization observed on macroscopic PEG gel controls. The fact that these microgels can be deposited by a nonline-of-sight self-assembly process and hinder bacterial colonization opens the possibility of modifying the surfaces of topographically complex biomedical devices and reduces the rate of biomaterial-associated infection. PMID:22519439

  3. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    2010-01-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the ami

  4. Influence of Surface Transition Layers on Phase Transformation and Pyroelectric Properties of Ferroelectric Thin Film

    Institute of Scientific and Technical Information of China (English)

    SUN Pu-Nan; L(U) Tian-Quan; CHEN Hui; CAO Wen-Wu

    2008-01-01

    Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding bulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.

  5. Helioseismic Imaging of Supergranulation throughout the Sun’s Near-Surface Shear Layer

    Science.gov (United States)

    Greer, Benjamin J.; Hindman, Bradley W.; Toomre, Juri

    2016-06-01

    We present measurements of the Sun’s sub-surface convective flows and provide evidence that the pattern of supergranulation is driven at the surface. The pattern subsequently descends slowly throughout the near-surface shear layer in a manner that is inconsistent with a 3D cellular structure. The flow measurements are obtained through the application of a new helioseismic technique based on traditional ring analysis. We measure the flow field over the course of eleven days and perform a correlation analysis between all possible pairs of depths and temporal separations. In congruence with previous studies, we find that the supergranulation pattern remains coherent at the surface for slightly less than two days and the instantaneous surface pattern is imprinted to a depth of 7 Mm. However, these correlation times and depths are deceptive. When we admit a potential time lag in the correlation, we find that peak correlation in the convective flows descends at a rate of 10-40 m s-1 (or equivalently 1-3 Mm per day). Furthermore, the correlation extends throughout all depths of the near-surface shear layer. This pattern-propagation rate is well matched by estimates of the speed of downflows obtained through the anelastic approximation. Direct integration of the measured speed indicates that the supergranulation pattern that first appears at the surface eventually reaches the bottom of the near-surface shear layer a month later. Thus, the downflows have a Rossby radius of deformation equal to the depth of the shear layer and we suggest that this equality may not be coincidental.

  6. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly.

    OpenAIRE

    Steel, A B; Levicky, R L; Herne, T M; Tarlov, M J

    2000-01-01

    This report investigates the effect of DNA length and the presence of an anchoring group on the assembly of presynthesized oligonucleotides at a gold surface. The work seeks to advance fundamental insight into issues that impact the structure and behavior of surface-immobilized DNA layers, as in, for instance, DNA microarray and biosensor devices. The present study contrasts immobilization of single-stranded DNA (ssDNA) containing a terminal, 5' hexanethiol anchoring group with that of unfunc...

  7. An Experimental Study of the Statistical Scaling of Turbulent Surface Pressure in the Atmospheric Boundary Layer

    Science.gov (United States)

    Lyons, G. W.; Murray, N. E.

    2015-12-01

    Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.

  8. Carbon Surface Layers on a High-Rate LiFePO4

    OpenAIRE

    Gabrisch, Heike; Wilcox, James D.; Doeff, Marca M.

    2005-01-01

    Transmission electron microscopy (TEM) was used to image particles of a high-rate LiFePO4 sample containing a small amount of in situ carbon. The particle morphology is highly irregular, with a wide size distribution. Nevertheless, coatings, varying from about 5-10 nm in thickness, could readily be detected on surfaces of particles as well as on edges of agglomerates. Elemental mapping using Energy Filtered TEM (EFTEM) indicates that these very thin surface layers are composed of carbon....

  9. Plastic Deformation and Softening of the Surface Layer of Railway Wheel

    OpenAIRE

    Ławrynowicz Z.

    2015-01-01

    In this study scanning electron microscope (SEM) and optical micrograph observations were used to investigate the plastic deformation near the surface of the worn railway wheel following service. Microstructure, plastic deformation and micro-hardness of the material in the outermost tread layer of used passenger railway wheel were characterised. It was found that the material in the contact surface of wheel undergoes severe plastic deformation. Vickers micro-hardness measurements in the highl...

  10. The advantages of combining ion beam techniques for surface layer analysis

    International Nuclear Information System (INIS)

    The problem of elemental composition analysis for a variable thickness surface layer has been investigated. Both protons and alpha-particles with a range of energy were used as the incident ions for PIXE, PIGME and RBS measurements so that the variation of elemental composition as a function of surface thickness could be studied. An example of measurements on desert varnish coatings on underlying rock is given

  11. Spectroscopic detection of atom-surface interactions in an atomic vapour layer with nanoscale thickness

    CERN Document Server

    Whittaker, K A; Hughes, I G; Sargsyan, A; Sarkisyan, D; Adams, C S

    2015-01-01

    We measure the resonance line shape of atomic vapor layers with nanoscale thickness confined between two sapphire windows. The measurement is performed by scanning a probe laser through resonance and collecting the scattered light. The line shape is dominated by the effects of Dicke narrowing, self-broadening, and atom-surface interactions. By fitting the measured line shape to a simple model we discuss the possibility to extract information about the atom-surface interaction.

  12. Receptivity of the Boundary Layer to Vibrations of the Wing Surface

    Science.gov (United States)

    Bernots, Tomass; Ruban, Anatoly; Pryce, David; Laminar Flow Control UK Group Team

    2014-11-01

    In this work we study generation of Tollmien-Schlichting (T-S) waves in the boundary layer due to elastic vibrations of the wing surface. The flow is investigated based on the asymptotic analysis of the Navier-Stokes equations at large values of the Reynolds number. It is assumed that in the spectrum of the wing vibrations there is a harmonic which comes in resonance with the T-S wave on the lower branch of the stability curve. It was found that the vibrations of the wing surface produce pressure perturbations in the flow outside the boundary layer which can be calculated with the help of the piston theory. As the pressure perturbations penetrate into the boundary layer, a Stokes layer forms on the wing surface which appears to be influenced significantly by the compressibility of the flow, and is incapable of producing the T-S waves. The situation changes when the Stokes layer encounters an roughness; near which the flow is described using the triple-deck theory. The solution of the triple-deck problem can be found in an analytic form. Our main concern is with the flow behaviour downstream of the roughness and, in particular, with the amplitude of the generated Tollmien-Schlichting waves. This research was performed in the Laminar Flow Control Centre (LFC-UK) at Imperial College London. The centre is supported by EPSRC, Airbus UK and EADS Innovation Works.

  13. Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer.

    Science.gov (United States)

    Liu, Hong; Wang, Bing; Leong, Eunice S P; Yang, Ping; Zong, Yun; Si, Guangyuan; Teng, Jinghua; Maier, Stefan A

    2010-06-22

    This paper reports an effective method to enhance the surface plasmon resonance (SPR) on Ag films by using a thin Ni seed layer assisted deposition. Ag films with a thickness of about 50 nm were deposited by electron beam evaporation above an ultrathin Ni seed layer of approximately 2 nm on both silicon and quartz substrates. The root-mean-square (rms) surface roughness and the correlation length have been reduced from >4 nm and 28 nm for a pure Ag film to approximately 1.3 and 19 nm for Ag/Ni films, respectively. Both experimental and simulation results show that the Ag/Ni films exhibit an enhanced SPR over the pure Ag film with a narrower full width at half-maximum. Ag films with a Ge seed layer have also been prepared under the same conditions. The surface roughness can be reduced to less than 0.7 nm, but narrowing of the SPR curve is not observed due to increased absorptive damping in the Ge seed layer. Our results show that Ni acts as a roughness-diminishing growth layer for the Ag film while at the same time maintaining and enhancing the plasmonic properties of the combined structures. This points toward its use for low-loss plasmonic devices and optical metamaterials applications. PMID:20515054

  14. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    Science.gov (United States)

    Oliveira, Tales Lyra; Candeia-Medeiros, Návylla; Cavalcante-Araújo, Polliane M.; Melo, Igor Santana; Fávaro-Pípi, Elaine; Fátima, Luciana Alves; Rocha, Antônio Augusto; Goulart, Luiz Ricardo; Machado, Ubiratan Fabres; Campos, Ruy R.; Sabino-Silva, Robinson

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it. PMID:26902517

  15. Effects of surface source/sink distributions on the flux-gradient similarity in the unstable surface layer

    Science.gov (United States)

    Huo, Qing; Cai, Xuhui; Kang, Ling; Zhang, Hongsheng; Song, Yu

    2015-01-01

    Based on the micrometeorological measurements at a heterogeneous farmland in the North China Plain, this study focused on the effects of surface source/sink distributions on the flux-gradient similarity theory in the unstable surface layer. Firstly, the quality of the micrometeorological measurements was evaluated by the analysis of the surface energy balance closure and the integral turbulence characteristics. In general, a 22 % deficit of energy balance was found at this site, with the sum of sensible and latent heat being smaller than the available energy. The normalized standard deviations of turbulent quantities behaved in accordance with Monin-Obukhov similarity theory. However, slight departures from the classical formulations might be caused by the surface heterogeneity. Then, the applicability of flux-gradient similarity over the heterogeneous surface was examined. The observed normalized wind gradients agreed with the classical universal function established over homogeneous surface. However, due to the effects of surface source/sink distributions, the observed normalized humidity and temperature gradients deviated from the classical universal functions. Our study shows that the classical universal functions, when adjusted by a coefficient considering the effects of surface heterogeneity, can be utilized to estimate fluxes via gradient method even though over the heterogeneous surface. This adjustment coefficient was found to decrease linearly from unity with the increase of the absolute value of the vertical flux divergence.

  16. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  17. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-01-01

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales. PMID:24670975

  18. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  19. Planetary boundary layer depth in Global climate models induced biases in surface climatology

    CERN Document Server

    Davy, Richard

    2014-01-01

    The Earth has warmed in the last century with the most rapid warming occurring near the surface in the arctic. This enhanced surface warming in the Arctic is partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The warming of the surface air due to the extra heat depends upon the amount of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). In this way the depth of the ABL determines the effective response of the surface air temperature to perturbations in the climate forcing. The ABL depth can vary from tens of meters to a few kilometers which presents a challenge for global climate models which cannot resolve the shallower layers. Here we show that the uncertainties in the depth of the ABL can explain up to 60 percent of the difference between the simulated and observed surface air temperature trends and 50 percent of the difference in temperature variability...

  20. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Chen, C.-W.; Ducheyne, Paul [Center for Bioactive Materials and Tissue Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: liucs@ecust.edu.cn, E-mail: ducheyne@seas.upenn.edu

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 deg. C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO{sub 4} and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 {mu}m and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  1. Mass Transport in a Thin Layer of Bi-Viscous Mud Under Surface Waves

    Institute of Scientific and Technical Information of China (English)

    NG Chiu-on; FU Sau-chung; BAI Yu-chuan(白玉川)

    2002-01-01

    The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluidStokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-appliedstresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers areapplied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numeri-cally. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of theflow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i. e., oppo-site to wave propagation) for a certain range of yield stress.

  2. Modeling vertical heat transport in the wave affected surface layer of the ocean

    Institute of Scientific and Technical Information of China (English)

    WANG Jinliang; SONG Jinbao

    2009-01-01

    In considering the vertical heat transport problems in the upper ocean, the flat upper boundary approximation for the free surface and the horizontal homogenous hypothesis are usually applied. However, due to the existence of the wave motion, the application of this approximation may result in some errors to the solar irradiation since it decays quickly in respect to the actual thickness of the water layer below the surface; on the other hand, due to the fluctuation of the water layer depth, it is improper to neglect the effects of the horizontal advection and turbulent diffusion since they also contribute to the vertical heat transport. A new model is constructed in this study to reflect these effects. The corresponding numerical simulations show that the wave motion may remarkably accelerate the vertical heat transferring process and the variation of the temperature in the wave affected layer appears in an oscillating manner.

  3. The surface layer observed by a high-resolution sodar at DOME C, Antarctica

    Directory of Open Access Journals (Sweden)

    Stefania Argentini

    2014-01-01

    Full Text Available One year field experiment has started on December 2011 at the French - Italian station of Concordia at Dome C, East Antarctic Plateau. The objective of the experiment is the study of the surface layer turbulent processes under stable/very stable stratifications, and the mechanisms leading to the formation of the warming events. A sodar was improved to achieve the vertical/time resolution needed to study these processes. The system, named Surface Layer sodar (SL-sodar, may operate both in high vertical resolution (low range and low vertical resolution (high range modes. In situ turbulence and radiation measurements were also provided in the framework of this experiment. A few preliminary results, concerning the standard summer diurnal cycle, a summer warming event, and unusually high frequency boundary layer atmospheric gravity waves are presented.

  4. Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: anuar_mi@ukm.my

    2009-05-15

    The steady mixed convection boundary layer flow along a vertical cylinder with prescribed surface heat flux is investigated in this study. The free stream velocity and the surface heat flux are assumed to vary linearly with the distance from the leading edge. Both the case of the buoyancy forces assisting and opposing the development of the boundary layer are considered. Similarity equations are derived, their solutions being dependent on the mixed convection parameter, the curvature parameter, as well as of the Prandtl number. Dual solutions are found to exist for both buoyancy assisting and opposing flows. It is also found that the boundary layer separation is delayed for a cylinder compared to a flat plate.

  5. [XPS characterization of auto-reconditioning layer on worn metal surfaces].

    Science.gov (United States)

    Yang, He; Zhang, Zheng-ye; Li, Sheng-hua; Jin, Yuan-sheng

    2005-06-01

    An auto-reconditioner package for in situ reconditioning of worn surfaces of machinery parts under normal running was applied to diesel engines of DF locomotives. A reconditioning layer was generated on the cylinder bore after running a mileage of 300,000 km, and no wear was measured for the piston rings and cylinder bores. Evaluations with SEM, nanohardness tester and XPS indicated that the protective layer assumed a thickness of 8-10 microm, a nano-hardness twice as high as that of the cast iron substrate, and a main elemental composition of Fe, O and C corresponding to the existence of Fe3O4 and Fe3C. A possible formation mechanism of the protective layer was suggested based on the mechanochemical activation of metal surfaces and the catalytic activation of the auto-reconditioner molecules.

  6. Surface Wave Propagation in a Microstretch Thermoelastic Diffusion Material under an Inviscid Liquid Layer

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.

  7. Surface acoustic wave resonators on a ZnO-on-Si layered medium

    Science.gov (United States)

    Martin, S. J.; Schwartz, S. S.; Gunshor, R. L.; Pierret, R. F.

    1983-02-01

    The adaptation of surface acoustic wave resonator technology to a ZnO-on-Si layered medium is presented. Several distributed reflector schemes are considered, including shorted and isolated metallic strips, as well as grooves etched in the ZnO layer. In the case of etched groove reflectors, a first-order velocity perturbation arises due to the dispersive nature of the layered medium. Unique resonator design considerations result from the reflector array velocity and reflectivity characteristics. Transverse mode resonances are characterized and their effect on resonator response eliminated by a novel transducer design. A technique for temperature compensating the devices by use of a thermal SiO2 layer is discussed.

  8. On the Temperature and Humidity Dissimilarity in the Marine Surface Layer

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kelly, Mark C.; Sempreviva, Anna Maria

    2014-01-01

    The dissimilarity of temperature and humidity transfer in the marine surface layer (MSL) is investigated through the relative transport efficiency and correlation coefficient of these two scalars. We examine their variability and relationship with mean values, as well as spectral characteristics....... It is shown that the dissimilarity between these two scalars in the MSL is a function of stability, the boundary-layer depth, and flow steadiness. In general the temperature and humidity are less correlated in shallow marine boundary layers compared to deep marine boundary layers, due to the stronger......-neutral conditions, when there is an efficient latent heat transfer but negligible sensible heat transfer. Our data suggest that parametrization of humidity fluxes via similarity theory could still be reliable when the correlation coefficient >0.5, and in near-neutral conditions the humidity flux can be estimated...

  9. Convective boundary layer wind dynamics and inertial oscillations: the influence of surface stress

    NARCIS (Netherlands)

    Schröter, J.S.; Moene, A.F.; Holtslag, A.A.M.

    2013-01-01

    Investigating the influence of surface friction on the inertial oscillation (IO) of an extratropical, non-growing, convective boundary layer (CBL), we paid particular attention to the stability-dependent interactive coupling of shear-induced turbulence and turbulent friction, which leads to a nonlin

  10. Structure fragmentation of a surface layer of commercial purity titanium during ultrasonic impact treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kozelskaya, Anna, E-mail: annakozelskaya@gmail.com; Kazachenok, Marina, E-mail: kms@ispms.tsc.ru; Sinyakova, Elena, E-mail: mea@ispms.tsc.ru; Pochivalov, Yurii, E-mail: pochiv@ispms.tsc.ru; Perevalova, Olga, E-mail: perevalova52@mail.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Panin, Alexey, E-mail: pav@ispms.tsc.ru; Hairullin, Rustam, E-mail: hairullin@list.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The mechanisms of surface layer fragmentation of titanium specimens subjected to ultrasonic impact treatment is investigated by atomic force microscopy, transmission electron microscopy and electron backscatter diffraction. It is shown that the twin boundaries Σ7b and Σ11b are unable to be strong obstacles for propagation of dislocations and other twins.

  11. Glomerular endothelial surface layer acts as a barrier against albumin filtration

    NARCIS (Netherlands)

    Dane, M.J.; Berg, B.M. van den; Avramut, M.C.; Faas, F.G.; Vlag, J. van der; Rops, A.L.; Ravelli, R.B.; Koster, B.J.; Zonneveld, A.J. van; Vink, H.; Rabelink, T.J.

    2013-01-01

    Glomerular endothelium is highly fenestrated, and its contribution to glomerular barrier function is the subject of debate. In recent years, a polysaccharide-rich endothelial surface layer (ESL) has been postulated to act as a filtration barrier for large molecules, such as albumin. To test this hyp

  12. Endothelial surface layer degradation by chronic hyaluronidase infusion induces proteinuria in apolipoprotein e-deficient mice

    NARCIS (Netherlands)

    M.C. Meuwese; L.N. Broekhuizen; M. Kuikhoven; S. Heeneman; E. Lutgens; M.J.J. Gijbels; M. Nieuwdorp; C.J. Peutz; E.S.G. Stroes; H. Vink; B.M. van den Berg

    2010-01-01

    Functional studies show that disruption of endothelial surface layer (ESL) is accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli. However, relevance of ESL disruption as causal mechanism for vascular dysfunction remains to be demonstrated. We examined if loss of ESL t

  13. Structure fragmentation of a surface layer of commercial purity titanium during ultrasonic impact treatment

    International Nuclear Information System (INIS)

    The mechanisms of surface layer fragmentation of titanium specimens subjected to ultrasonic impact treatment is investigated by atomic force microscopy, transmission electron microscopy and electron backscatter diffraction. It is shown that the twin boundaries Σ7b and Σ11b are unable to be strong obstacles for propagation of dislocations and other twins

  14. Nanoindentation characterization of surface layers of electrical discharge machined WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Qu Jun; Riester, Laura; Shih, Albert J.; Scattergood, Ronald O.; Lara-Curzio, Edgar; Watkins, Thomas R

    2003-03-15

    This study applies nanoindentation and other analysis techniques to investigate the influence of wire electrical discharge machining (EDM) process on the structure and properties of machined surface layers of WC-Co composites. Multiple indents were conducted on the cross-section of the surface recast layer, sub-surface heat-affected zone, and bulk material. The energy disperse X-ray spectrometry and X-ray diffraction were used to analyze the material compositions in the heat-affected zone and recast layer and to study the electrical spark eroded surface. The indents were inspected by scanning electron microscopy to distinguish between regular and irregular indents in these three regions. Irregular indents were caused by the porosity, soft matrix material, separation of grain boundaries, and thermal cracks caused by EDM process. The hardness and modulus of elasticity obtained from regular indents in bulk material and heat-affected zone were comparable to those of WC. It was found that the recast layer had lower hardness and modulus of elasticity than the bulk material and heat-affected zone.

  15. CVD Delta-Doped Boron Surface Layers for Ultra-Shallow Junction Formation

    NARCIS (Netherlands)

    Sarubbi, F.; Nanver, L.K.; Scholtes, T.L.M.

    2006-01-01

    A new doping technique is presented that uses a pure boron atmospheric/low-pressure chemical vapor deposition (AP/LPCVD) in a commercially available epitaxial reactor to form less than 2-nm-thick δ-doped boron-silicide (BxSi) layers on the silicon surface. For long exposure B segregates at the surfa

  16. Thin layer activation analysis of α induced reactions for surface wear studies in some natural isotopes

    International Nuclear Information System (INIS)

    The thin layer activation technique is widely used to study surface wear and erosion by employing medium energy, light charged particle accelerators in the micrometer range. In the present work, TLA technique has been explored using gamma spectroscopy for a large number of reactions in several isotopes, which may be of interest for the reactor technology

  17. Residual stresses in the surface layer of laser-treated steels

    NARCIS (Netherlands)

    Brussel, B.A. van; Hosson, J.Th.M. De

    1993-01-01

    Although laser treatment of certain metals may enhance the wear performance in general it may result equally well in large residual stresses which affect the wear performance detrimentally. Tensile stresses generated in the surface layer may lead to severe cracking of the material. This paper descri

  18. Surface dynamics of organic layers explored by scanning probe microscopy techniques

    NARCIS (Netherlands)

    Wu, Hairong

    2015-01-01

    Organic thin layers, especially self-assembled monolayers (SAMs), on well-defined solid surfaces have attracted tremendous attention owing to their interesting physical and chemical behavior as well as potential applications. The aim of this PhD thesis was to study the structural properties, electro

  19. Study on mechanics of driving drum with superelastic convexity surface covering-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.J.; Sui, X.H.; Miao, D.J. [Shandong University of Science & Technology, Qingdao (China)

    2008-09-15

    Belt conveyor is one of the main transport equipment in coal mine and the driving drum is its key part. With the method of bionic design, the mushroom morphological structure is applied to the design of covering-layer structure of driving drum surface of belt conveyor. Superelastic rubber with large deformation is adopted as the covering-layer material. Nonlinear constitutive model of rubber, which is of superelasticity and large deformation, is established. The stress states and deformation principles of driving drums including both bionic covering-layer and common covering-layer are obtained by static intensity analysis with Finite Element Analysis (FEA) software ANSYS. The values of the stress and strain on the driving drum surface are gotten and the dangerous area is determined. FEA results show that the superelastic convexity surface structure can enlarge the contact area between the driving drum and viscoelastic belt. The results also show that in comparison with common driving drum, the bionic surface driving drum can not only increase the friction coefficient between drum and belt but also prolong its service life.

  20. Accuracy of bone surface size and cortical layer thickness measurements using cone beam computerized tomography

    NARCIS (Netherlands)

    Gerlach, N.L.; Meijer, G.J.; Borstlap, W.A.; Bronkhorst, E.M.; Berge, S.J.; Maal, T.J.J.

    2013-01-01

    OBJECTIVES: The purpose of this study was to determine the accuracy of Cone Beam Computerized Tomography (CBCT) reconstructions in displaying bone surface size and cortical layer thickness. MATERIALS AND METHODS: Two fresh frozen cadaver heads were scanned using a CBCT (i-CAT() 3D Imaging System; Im

  1. Complex Boronized Layer on the Hot-dip Aluminized Steels and Its Surface Performances

    Institute of Scientific and Technical Information of China (English)

    LUO Xin-min; LI Dian-kai; WANG Lan; CHEN Kang-min

    2004-01-01

    Plain carbon steels were dipped in molten aluminum bath at 720℃±5℃ and diffused for 1, 2.5 and 6 hours respectively and then boronized at 950℃ for 6 hours. The oxidation, hot-corrosion and abrasion resistance behavior were examined. The experimental results showed the compounds of the aluminized layer, from the surface to the matrix, were composed of Fe2Al5 ( η -phase )、 Fe3Al ( β 1-phase ) and α phase. The microstructure of aluminized plus complex boronized were similar to that simplex boronized. The XRD analysis results indicated that there existed Fe2B、 Fe2AlB2 and Fe2Al5 in this kind of layer. The simplex aluminized layers still remained bright gray appearance when oxidized at 950℃, but complex boronized layer was not able to resist oxidization at the temperature. Both the layers of complex boronized and aluminized had the same anti-oxidization level in the circulative oxidization tests, and also good anti-corrosion ability in molten salt medium. Under dry abrasive conditions, wear resistance of complex boronized layer was superior to the aluminized layer.

  2. Complex Boronized Layer on the Hot-dip Aluminized Steels and Its Surface Performances

    Institute of Scientific and Technical Information of China (English)

    LUOXin-min; LIDian-kai; WANGLan; CHENKang-min

    2004-01-01

    Plain carbon steels were dipped in molten aluminum bath at 720℃±5℃ and diffused for 1.2.5 and 6 hours respectively and then horonized at 950℃ for 6 hours. The oxidation, hot-corrosion and abrasion resistance behavior were examined. The experimental results showed the compounds of the aluminized layer, from the surface to the matrix, were composed of Fe2Al5(η-phase/.Fe3Al(β1-phase)and α phase. The microstructure of aluminized plus complex boronized were similar to that simplex boronized. The XRD analysis results indicated that there existed Fe.B. Fe2AlB2 and Fe2Al5 in this kind of layer, The simplex aluminized layers still remained bright gray appearance when oxidized at 950℃, but complex horonized layer was not able to resist oxidization at the temperature. Both the layers of complex botanized and aluminized had the same anti-oxidizatian level in the circulative oxidization tesfs, and also good anti-corrosion abilily in molten salt medium. Under dry abrasive conditions, wear resistance of complex botanized layer was superior to the aluminized layer.

  3. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    Science.gov (United States)

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-11-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main.

  4. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA-evolution

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2012-04-01

    Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to well reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentration shows that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically examine the role of the land surface, which governs both the surface energy balance partitioning and terpene-emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene-emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore it influences the relationship between organic aerosol and terpene-concentrations. Our findings indicate that the diurnal evolution of SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  5. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2012-08-01

    Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  6. 'Should I stay or should I go?' Bacterial attachment vs biofilm formation on surface-modified membranes.

    Science.gov (United States)

    Bernstein, Roy; Freger, Viatcheslav; Lee, Jin-Hyung; Kim, Yong-Guy; Lee, Jintae; Herzberg, Moshe

    2014-01-01

    A number of techniques are used for testing the anti-biofouling activity of surfaces, yet the correlation between different results is often questionable. In this report, the correlation between initial bacterial deposition (fast tests, reported previously) and biofilm growth (much slower tests) was analyzed on a pristine and a surface-modified reverse osmosis membrane ESPA-1. The membrane was modified with grafted hydrophilic polymers bearing negatively charged, positively charged and zwitter-ionic moieties. Using three different bacterial strains it was found that there was no general correlation between the initial bacterial deposition rates and biofilm growth on surfaces, the reasons being different for each modified surface. For the negatively charged surface the slowest deposition due to the charge repulsion was eventually succeeded by the largest biofilm growth, probably due to secretion of extracellular polymeric substances (EPS) that mediated a strong attachment. For the positively charged surface, short-term charge attraction by quaternary amine groups led to the fastest deposition, but could be eventually overridden by their antimicrobial activity, resulting in non-consistent results where in some cases a lower biofilm formation rate was observed. The results indicate that initial deposition rates have to be used and interpreted with great care, when used for assessing the anti-biofouling activity of surfaces. However, for a weakly interacting 'low-fouling' zwitter-ionic surface, the positive correlation between initial cell deposition and biofilm growth, especially under flow, suggests that for this type of coating initial deposition tests may be fairly indicative of anti-biofouling potential.

  7. Molecular investigation of bacterial communities: Data from two frequently used surfaces in the São Paulo Institute of Tropical Medicine.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2016-09-01

    This article contains data on the bacterial population of two frequently used surfaces in the São Paulo Institute of Tropical Medicine (ITM) using the Illumina sequencing for massive parallel investigation of the bacterial 16S ribosomal RNA gene. Surface samples were obtained from restroom surfaces and the fingerprint door clock system. Mothur package and Shannon-ace-table.pl software programs (Chunlab Inc.: Seoul, Korea) were used to compute the diversity indices of bacterial community. The sequencing data from both surfaces have been uploaded to Zenodo: http://dx.doi.org/10.5281/zenodo.47709. PMID:27331120

  8. Characterization of Nanocrystallizatin Surface Layer of 0.4C-1Cr Low Alloy Steel Prepared by Ultrasonic Particulate Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANGJun-bao; LIUYu-liang; ZHAOXin-qi; WUJie; SONGHong-wei; XIONGTian-ying

    2004-01-01

    A nanostructured surface layer was fabricated in a quenched and tempered 0.4C-ICr low alloy steel by ultrasonic particulate peening technique. The microstructure of the nanocrystalline surface layer was characterized by means of TEM and Moessbauer spectroscopy. Experimental results reveal that both cementite and ferrite nanocrystals with an average size of 5 nm were formed in the surface layer of the steel, phase transformation of austenite and dissolution of cementite maybe occur in the process of ultrasonic particulate peening.

  9. Characterization of Nanocrystallizatin Surface Layer of 0.4C-1Cr Low Alloy Steel Prepared by Ultrasonic Particulate Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bao; LIU Yu-liang; ZHAO Xin-qi; WU Jie; SONG Hong-wei; XIONG Tian-ying

    2004-01-01

    A nanostructured surface layer was fabricated in a quenched and tempered 0.4C-1Cr low alloy steel by ultrasonic particulate peening technique. The microstructure of the nanocrystalline surface layer was characterized by means of TEM and Mossbauer spectroscopy. Experimental results reveal that both cementite and ferrite nanocrystals with an average size of 5 nm were formed in the surface layer of the steel, phase transformation of austenite and dissolution of cementite maybe occur in the process of ultrasonic particulate peening.

  10. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    Science.gov (United States)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  11. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M; Gil, Francisco J; Rodriguez, Daniel

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria-cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties.

  12. The boundary layer over turbine blade models with realistic rough surfaces

    Science.gov (United States)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  13. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Science.gov (United States)

    Moraczewski, Krzysztof; Stepczyńska, Magdalena; Malinowski, Rafał; Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian

    2016-07-01

    The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  14. Effect of bending on anodized Ti6Al4V alloy: I. Surface layers characteristics

    Directory of Open Access Journals (Sweden)

    A. Kierzkowska

    2006-08-01

    Full Text Available Purpose: The plastic deformation behaviour of the anodized binary titanium alloy Ti6Al4V was characterizedin mechanical and electrochemical tests.Design/methodology/approach: The effect of tensile and compressive stresses on properties of differentclinically relevant surfaces of the deformed by bending implant rods was investigated. The deformationbehaviour was characterized by FEM analysis. Relevant surfaces in tensile and compressive zones werecharacteristics by microhardness and roughness measurements, and electrochemical testing (Ecor, anodicpolarization, EIS in oxygen-saturated Ringer’s solution.Findings: It was concluded that bending influenced mostly the properties of material in the tensile zone of thespecimen, whereas the properties of surface layer in the compressive zone and the properties of surface layer intensile zone after rebending are comparable and not so severe.Research limitations/implications: Studies were performed in static conditions, fatique studies are planned inthe future.Practical implications: Results are of great importance in for surgical practice in the in the evaluation of theinfluence of shaping process applied during pre-operative procedures on the performance of spinal implantsystems.Originality/value: In the paper a typical pre-operative procedure of shaping was applied to anodized titaniumimplants in order to evaluate its influence on the characteristics of the surface layer. Studies were focused onthe safety their application in vivo.

  15. Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma.

    Science.gov (United States)

    Irzh, Alexander; Ghindes, Lee; Gedanken, Aharon

    2011-12-01

    We report herein on a very fast and simple process for the fabrication of transparent superhydrophobic surfaces by using microwave (MW) plasma. It was found that the reaction of various organic liquids in MW argon plasma yields hydrophobic polymeric layers on a large assortment of surfaces, including glass, polymeric surfaces, ceramics, metals, and even paper. In most cases, these polymers are deposited as a rough layer composed of 10-15 nm nanoparticles (NPs). This roughness, together with the chemical hydrophobic nature of the coated materials, is responsible for the superhydrophobic nature of the surface. The typical reaction time of the coating procedure was 1-10 s. The stability of these superhydrophobic surfaces was examined outdoors, and was found to last 2-5 days under direct exposure to the environment and to last 2 months when the sample was protected by a quartz cover. A detailed characterization study of the chemical composition of the layers followed using XPS, solid-state NMR, and IR measurements. Modifications were introduced in the products leading to a substantial improvement in the stability of the products outdoors.

  16. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface

    NARCIS (Netherlands)

    Rochford, E. T. J.; Poulsson, A. H. C.; Salavarrieta Varela, J.; Lezuo, P.; Richards, R. G.; Moriarty, T. F.

    2014-01-01

    Despite extensive use of polyetheretherketone (PEEK) in biomedical applications, information about bacterial adhesion to this biomaterial is limited. This study investigated Staphylococcus aureus and Staphylococcus epidermidis adhesion to injection moulded and machined PEEK OPTIMA (R) using a custom

  17. Surface morphology and photoluminescence studies of Sb-doped ZnO layers grown using MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sartel, Corinne; Haneche, Nadia; Jomard, Francois; Lusson, Alain; Vilar, Christele; Laroche, Jean-Michel; Galtier, Pierre; Sallet, Vincent [Groupe d' Etude de la Matiere Condensee (GEMaC), CNRS-Universite de Versailles Saint Quentin, Meudon (France)

    2010-07-15

    ZnO and ZnO:Sb films were deposited using low pressure metal organic chemical vapor deposition on C- and R-oriented sapphire and O-polar ZnO substrates. Surface morphologies were studied using scanning electron microscopy. Whereas ZnO films grown on C-sapphire show a rough surface and hexagonal rods, the doped ZnO:Sb layers exhibit a relatively smoother surface, indicating a possible surfactant effect of antimony. The secondary ion mass spectrometry measurements permit to determine the antimony profile in the doped layers. Sb concentrations from 10{sup 18} to 10{sup 20} at/cm{sup 3} were measured, depending on the growth conditions and substrate nature. Photoluminescence spectra exhibit donor-acceptor pair emission at 3.22 eV. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Non-Metallic Inclusion Distribution in Surface Layer of IF Steel Slabs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiao-ying; WANG Li-tao; WANG Xin-hua; LI Hong; WANG Wan-jun

    2008-01-01

    Non-metallic inclusion distribution in the surface layer of IF steel slabs during unsteady casting was investigated using the original position statistic distribution analysis (OPA) method. It was found that most non-metallic inclusions larger than 10 μm existed in the subsurface layers of 0.5-3.5 mm from the slab surfaces and very few large non-metallic inclusions were found in the inner regions (≥4.5 mm from slab surfaces). In addition, it was found that at high casting speed level (1.4 m/min), even a slight change of casting speed could result in a remarkable increase of the non-metallic inclusions. Thus, at high casting speed, changing the casting speed should be avoided or considerably lower speed changing rate must be used.

  19. Plastic Deformation and Softening of the Surface Layer of Railway Wheel

    Directory of Open Access Journals (Sweden)

    Ławrynowicz Z.

    2015-12-01

    Full Text Available In this study scanning electron microscope (SEM and optical micrograph observations were used to investigate the plastic deformation near the surface of the worn railway wheel following service. Microstructure, plastic deformation and micro-hardness of the material in the outermost tread layer of used passenger railway wheel were characterised. It was found that the material in the contact surface of wheel undergoes severe plastic deformation. Vickers micro-hardness measurements in the highly deformed layer could be correlated with softening of the outer wheel rim and the spheroidisation of the cementite phase. Examination of worn, railway wheel taken out of service, has indicated that cracks are predominantly initiated at the wheel surface down the edges of highly strained, pro-eutectoid ferrite zones (situated along prior austenite grain boundaries and that such pro-eutectoid ferrite zones also facilitate crack propagation.

  20. Surface Layer Properties after Successive EDM or EDA and Then Superficial Roto-Peen Machining

    Directory of Open Access Journals (Sweden)

    Agnieszka Dmowska

    2012-01-01

    Full Text Available The paper presents the results of the influence of basic electrical discharge machining EDM parameters and electrical discharge alloying EDA parameters on surface layer properties and on selected performance properties of machine parts after such machining but also the influence of superficial cold-work treatment applied after the EDM of EDA on modification of these properties. The investigations included texture of the surface, metallographic microstructure, microhardness distribution, fatigue strength, and resistance to abrasive wear. It was proved that the application of the roto-peen after the EDM and the EDA resulted in lowering roughness height up to 70%, the elevation of surface layer microhardness by 300–700 μHV, and wear resistance uplifting by 300%.

  1. Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2010-07-01

    Full Text Available The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model. The simulations exhibit little variation in net radiation. Rather, a change in the partitioning of the surface energy between sensible and latent heat flux is responsible for differences in boundary layer dynamics. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to surface heterogeneity than water vapor, which implies that the role of surface heterogeneity in modifying the local temperature gradients in order to maximize convective heat fluxes. More homogeneous surface conditions, on the other hand, tend to maximize latent heat flux. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w, T and q and associated cospectra (w'T', w'q' and T'q', however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the

  2. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Science.gov (United States)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  3. Surface mixed layer deepening through wind shear alignment in a seasonally stratified shallow sea

    Science.gov (United States)

    Lincoln, B. J.; Rippeth, T. P.; Simpson, J. H.

    2016-08-01

    Inertial oscillations are a ubiquitous feature of the surface ocean. Here we combine new observations with a numerical model to investigate the role of inertial oscillations in driving deepening of the surface mixed layer in a seasonally stratified sea. Observations of temperature and current structure, from a mooring in the Western Irish Sea, reveal episodes of strong currents (>0.3 m s-1) lasting several days, resulting in enhanced shear across the thermocline. While the episodes of strong currents are coincident with windy periods, the variance in the shear is not directly related to the wind stress. The shear varies on a subinertial time scale with the formation of shear maxima lasting several hours occurring at the local inertial period of 14.85 h. These shear maxima coincide with the orientation of the surface current being at an angle of approximately 90° to the right of the wind direction. Observations of the water column structure during windy periods reveal deepening of the surface mixed layer in a series of steps which coincide with a period of enhanced shear. During the periods of enhanced shear gradient, Richardson number estimates indicate Ri-1 ≥ 4 at the base of the surface mixed layer, implying the deepening as a result of shear instability. A one-dimensional vertical exchange model successfully reproduces the magnitude and phase of the shear spikes as well as the step-like deepening. The observations and model results therefore identify the role of wind shear alignment as a key entrainment mechanism driving surface mixed layer deepening in a shallow, seasonally stratified sea.

  4. Surface Recombination Investigation in Thin 4H-SiC Layers

    Directory of Open Access Journals (Sweden)

    Karolis GULBINAS

    2011-07-01

    Full Text Available n- and p-type 4H-SiC epilayers were grown on heavily doped SiC substrates. The thickness of the p-type layer was 7 µm and the doping level around 1017 cm 3, while the n-type epilayers were 15 µm thick and had a doping concentration of 3 - 5*1015 cm 3. Several different surface treatments were then applied on the epilayers for surface passivation: SiO2 growth, Al2O3 deposited by atomic layer deposition, and Ar-ion implantation. Using collinear pump - probe technique the effective carrier lifetimes were measured from various places and statistical lifetime distributions were obtained. For surface recombination evaluation, two models are presented. One states that surface recombination velocity (SRV is equal on both the passivation/epi layer interface (S2 and the deeper interface between the epilayer and the SiC substrate i. e. (S1 = S2. The other model is simulated assuming that SRV in the epilayer/substrate (S1 interface is constant while in the passivation layer/epilayer (S2 interface SRV can be varied S2 < S1. Empirical nomograms are presented with various parameters sets to evaluate S2 values. We found that on the investigated 4H-SiC surfaces S2 ranges from 3x104 to 5x104 assuming that the bulk lifetime is 4 (µs. In Ar+ implanted surfaces S2 is between (105 - 106 cm/s.http://dx.doi.org/10.5755/j01.ms.17.2.479

  5. Cool Indonesian throughflow as a consequence of restricted surface layer flow.

    Science.gov (United States)

    Gordon, Arnold L; Susanto, R Dwi; Vranes, Kevin

    2003-10-23

    Approximately 10 million m3 x s(-1) of water flow from the Pacific Ocean into the Indian Ocean through the Indonesian seas. Within the Makassar Strait, the primary pathway of the flow, the Indonesian throughflow is far cooler than estimated earlier, as pointed out recently on the basis of ocean current and temperature measurements. Here we analyse ocean current and stratification data along with satellite-derived wind measurements, and find that during the boreal winter monsoon, the wind drives buoyant, low-salinity Java Sea surface water into the southern Makassar Strait, creating a northward pressure gradient in the surface layer of the strait. This surface layer 'freshwater plug' inhibits the warm surface water from the Pacific Ocean from flowing southward into the Indian Ocean, leading to a cooler Indian Ocean sea surface, which in turn may weaken the Asian monsoon. The summer wind reversal eliminates the obstructing pressure gradient, by transferring more-saline Banda Sea surface water into the southern Makassar Strait. The coupling of the southeast Asian freshwater budget to the Pacific and Indian Ocean surface temperatures by the proposed mechanism may represent an important negative feedback within the climate system. PMID:14574409

  6. CD4+ T Cells and Toll-Like Receptors Recognize Salmonella Antigens Expressed in Bacterial Surface Organelles

    OpenAIRE

    Bergman, Molly A.; Cummings, Lisa A.; Barrett, Sara L. Rassoulian; Smith, Kelly D.; Lara, J. Cano; Aderem, Alan; Cookson, Brad T.

    2005-01-01

    A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysacc...

  7. Helioseismic Imaging of Supergranulation throughout the Sun's Near-Surface Shear Layer

    Science.gov (United States)

    Hindman, Bradley; Greer, Benjamin; Toomre, Juri

    2016-05-01

    We present measurements of the Sun's sub-surface convective flows and provide evidence that the pattern of supergranulation is driven at the surface. The pattern subsequently descends slowly throughout the near-surface shear layer in a manner that is inconsistent with a 3-D cellular structure. The flow measurements are obtained through the application of a new helioseismic technique based on traditional ring analysis. We measure the flow field over the course of eleven days and perform a correlation analysis between all possible pairs of depths and temporal separations. In congruence with previous studies, we find that the supergranulation pattern remains coherent at the surface for slightly less than two days and the instantaneous surface pattern is imprinted to a depth of 7 Mm. However, these correlation times and depths are deceptive. When we admit a potential time lag in the correlation, we find that peak correlation in the convective flows descends at a rate of 10 - 30 m s-1 (or equivalently 1 - 3 Mm per day). Furthermore, the correlation extends throughout all depths of the near-surface shear layer. This pattern-propagation rate is well matched by estimates of the speed of down flows obtained through the anelastic approximation. Direct integration of the measured speed indicates that the supergranulation pattern that first appears at the surface eventually reaches the bottom of the near-surface shear layer a month later. Thus, the transit time is roughly equal to a solar rotation period and we suggest this equality may not be coincidental.

  8. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  9. Surface modification of the polyethyleneimine layer on silicone oxide film via UV radiation

    International Nuclear Information System (INIS)

    We herein report a novel method of employing 254 nm of UV radiation (UV) for the modification of a polyethyleneimine (PEI) layer on silicone oxide film. In this study, a PEI layer composed of a 50 mM sodium carbonate solution (pH 8.2) was formed on the surface of a silicone oxide film with spontaneous adsorption. Then, thin film of PEI was patterned by UV radiation. To determine the effect of the UV radiation, fluorescence microscopy, X-ray electron spectroscopy (XPS), and Fourier Transform Infrared spectroscopy (FT-IR) analyses were performed. These results indicated that UV radiation could cause changes in the surface characteristics of the PEI layer. Subsequently, FT-IR analysis showed changes in the chemical composition of the PEI exposed to UV radiation, such as the disappearance of the amine. Based on these results, we can conclude that UV radiation could be used to eliminate the amine group selectively and that this technique could be applied to create a pattern on the surface of a PEI layer.

  10. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  11. Faraday instability of a two-layer liquid film with a free upper surface

    Science.gov (United States)

    Pototsky, Andrey; Bestehorn, Michael

    2016-06-01

    We study the linear stability of a laterally extended flat two-layer liquid film under the influence of external vertical vibration. The first liquid layer rests on a vibrating solid plate and is overlaid by a second layer of immiscible fluid with deformable upper surface. Surface waves, excited as the result of the Faraday instability, can be characterized by a time-dependent relative amplitude of the displacements of the liquid-liquid and the liquid-gas interfaces. The in-phase displacements are associated with a zigzag (barotropic) mode and the antiphase displacement corresponds to the varicose thinning mode. We numerically determine the stability threshold in the vibrated two-layer film and compute the dispersion relation together with the decay rates of the surface waves in the absence of vibration. The in-phase and the antiphase displacements are strongly coupled in the vibrated system. The interplay between the Faraday and the Rayleigh-Taylor instabilities in the system with heavier fluid on top of a lighter fluid is analyzed.

  12. Selenopentathionic and Telluropentathionic Acids as Precursors for Formation of Semiconducting Layers on the Surface of Polyamide

    Directory of Open Access Journals (Sweden)

    Skirma Zalenkiene

    2007-01-01

    Full Text Available The layers of copper chalcogenides, which were formed on the surface of semihydrophilic polymer—polyamide 6 (PA using monoselenopentathionic H2SeS4O6 and monotelluropentathionic H2TeS4O6 acids as precursors of chalcogens, were characterized. Fourier transform infrared (FT-IR and UV spectroscopy were used to monitor the effect of chalcogens on the changes in structure of PA corresponding to the concentration of the precursor's solution and an exposure time. The IR spectra of modified PA were completely different from that of the initial PA. Further interaction of chalcogenized PA with copper (II/I salt solution leads to the formation of CuxS, CuxSe, CuxTe, and mixed –CuxS–CuySe and CuxS–CuyTe layers which have different electric transport properties. The surface properties of PA after treatment are studied using AFM and XRD. The electrical resistances of layers with various composition formed over a wide concentration range 0.01–0.5 mol⋅dm−3 of precursor's solution were measured. Variation in the conductivity of layers of Cu–Se–S and Cu–Te–S on the surface of PA shows an evident increase with the increasing of the mass fraction of selenium or tellurium.

  13. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    Science.gov (United States)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  14. Surface layer response to topographic solar shading in Antarctica's dry valleys

    Science.gov (United States)

    Katurji, Marwan; Zawar-Reza, Peyman; Zhong, Shiyuan

    2013-11-01

    The effects of topographic shading on local flow transitioning and atmospheric surface layer properties are investigated using observational data from the Miers Valley, one of the dry valleys of Antarctica. A unique data set was collected during a 9 day period in the summer of 2012 using an eddy covariance system and a sound detection and ranging that provided vertical profiles of wind and turbulence characteristics in the surface layer and the lower part of the boundary layer within the Miers Valley. This data set is ideal for investigating the dynamics of flow transitioning due to topographic shading, without the atmosphere experiencing complete darkness. The lack of atmospheric humidity, soil moisture, and surface vegetation in the dry valleys creates an atmosphere within which the microclimatic responses are amplified, and as a result, the valley atmosphere is extremely sensitive to solar radiation. The entire measured valley boundary layer (up to 250 m above ground level) feels the transition from an unstable to a stable stratification as the surface temperature drops by 10°C in response to the topographic shading. Wavelet analysis reveals the dynamics of flow deceleration, stagnation, and oscillations as the flow transitions from an unstable to a stable boundary layer. The larger air mass (along valley) scales to the longer terrain fetch, and as the shade is cast over the valley, it retains some of the longer wavelengths of the flow. The cross-valley component influenced by the slopes is quicker to adjust to short-period oscillations and takes around three more hours before it couples with the oscillatory pattern of the along-valley flow.

  15. Effect of SPD surface layer on plasma nitriding of Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farokhzadeh, K.; Qian, J.; Edrisy, A., E-mail: edrisy@uwindsor.ca

    2014-01-01

    A severe plastic deformation (SPD) surface layer was introduced by shot peening to enhance the nitriding kinetics in low-temperature (600 °C) plasma nitriding of Ti–6Al–4V alloy. The effect of this pretreatment on the nitrided microstructures and phase compositions was investigated by analytical microscopy techniques e.g. scanning and transmission electron microscopy (SEM, TEM) and X-ray diffraction (XRD) analysis. Microstructural investigations revealed the formation of a compound layer consisting of a 0.6 µm thick nanocrystalline TiN layer followed by a 0.5 µm thick layer of Ti{sub 2}N with a larger grain size (0.1–0.5 µm). The development of TiN nanograins was attributed to accelerated nitriding kinetics due to the increased preferential nucleation sites in the SPD layer. Furthermore, the thickness of nitrogen diffusion zone (DZ) increased by 50% in the pretreated plasma nitrided alloy when compared with that of the untreated one. This is likely promoted by an increase in density of subsurface microstructural defects, such as twins and grain boundaries. The sliding behaviour and interfacial adhesion of the nitrided surfaces were evaluated by micro-scratch tests within a load range of 1–20 N. Compared with untreated-plasma-nitrided alloy, the pretreated nitrided surfaces exhibited a higher load bearing capacity and better interfacial bonding. They exhibited no chipping or spallation, even after multiple sliding passes at the highest applied load of 20 N in contrary to the untreated plasma nitrided surfaces.

  16. Structure and properties of surface layers obtained by alloying of the hot work tool steels

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-04-01

    Full Text Available Purpose: The aim of the present work was to study the microstructure and properties produced after laser alloying of the 55NiCrMoV7 and X40CrMoV5-1 an alloy hot-work tool steels.Design/methodology/approach: Structure investigation was performed using the light microscope Leica MEF4A supplied by Zeiss. Phase composition and crystallographic structure were determined by the X-ray diffraction method using the DRON 2.0. The measurements of microhardness have been performed using Shimadzu microhardness intender equipped with electronic sensor that allows the direct readout of the hardness values.Findings: The metallographic investigations on light microscope show that steel after laser remelting can be characterized by a dendrite structure. Metallographic examinations on the scanning microscope with the EDX attachment confirm the occurrence of the niobium carbides in the surface layer of the investigated steels.Research limitations/implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the layers.Practical implications: The surface layer of the hot work steel alloyed with ceramic powder have good properties and make possibility for uses it in various technical and industrial applications.Originality/value: The microstructure and properties of the surface layer of the 55NiCrMoV7 and X40CrMoV5-1 hot-work tool steels alloying with ceramic powder were compared.

  17. Formation of VC- composites surface layers on spheroidized graphite cast iron by laser surface cladding process

    Directory of Open Access Journals (Sweden)

    Essam R.I. Mahmoud

    2015-01-01

    Full Text Available Spheroidal graphite cast iron was laser cladded with VC powder of 44-53 μm particle size using YAG Fiber laser at 500, 1000, and 1500 W processing power and fixed travelling speed of 4 mm/s. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. To prevent the oxidation, argon gas was used as a shielding gas. After the treatment, three zones were resulted: build-up (cladding, fusion, and heat affected zones. The build-up zone was a composite structure consisted of VC particles/dendrites dispersed in a matrix of martensite, carbides and ledeburite structure. At 500 W, most of the VC particles were appeared as their original large size. When the laser power was increased to 1000 W or more, the VC particles were melted and then re-solidified in the form of fine dendrites. The surface hardness of the cladded area was remarkably improved. As the distance from the free surface increases, the hardness decreases. The average hardness value at the surface treated by 500 W was about 710 HV (3 times of the hardness of substrate, while it reached to about 1340 HV and 1520 HV at powers of 1000 W and 1500 W, respectively. The wear resistance of the laser treated samples was improved at all investigated laser processing powers, especially at 1000W and 1500 W.

  18. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Directory of Open Access Journals (Sweden)

    Sizhong Yang

    Full Text Available The buried China-Russia Crude Oil Pipeline (CRCOP across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs. The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  19. Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties.

    Science.gov (United States)

    Muthiah, Palanikkumaran; Bhushan, Bharat; Yun, Kyungsung; Kondo, Hirofumi

    2013-11-01

    Bio-inspired surfaces that exhibit high contact angle and low contact angle hysteresis for various liquids and demonstrate mechanical durability and anti-smudge properties are of interest for various applications. The fabrication of such surfaces has often involved complex or expensive processes, required techniques that may not be suitable for various substrates and particles, may require surface post-treatment, or may lack durability. Dual layered coatings of roughness-induced superomniphobic surfaces that demonstrate good mechanical durability were fabricated on glass substrates using hydrophobic SiO2 nanoparticles and low surface energy fluorobinders using dip coating and spray coating techniques. The particle-to-binder ratio was optimized for contact angles of interest. The mechanical durability of these coatings was examined under mechanical rubbing action. The anti-smudge properties were examined by wiping an artificially contaminated coating using oil-impregnated microfiber cloth.

  20. Fine scale variability in methanol uptake and oxidation in the micro-layer and near-surface waters of the Atlantic

    Directory of Open Access Journals (Sweden)

    J. L. Dixon

    2012-04-01

    Full Text Available The aim of this research was to make the first depth profiles of the microbial assimilation of methanol carbon, and its oxidation to carbon dioxide and use as an energy source from the micro-layer to 1000 m. Some of the highest reported methanol oxidation rate constants of 0.5–0.6 d−1 were occasionally found in the micro-layer, and immediately underlying waters (10 cm depth, albeit these samples also showed the greatest heterogeneity compared to other depths down to 1000 m. Methanol uptake into the particulate phase was exceptionally low in micro-layer samples, suggesting that any methanol utilised by microbes in this environment is for energy generation. The sea surface micro-layer and 10 cm depth also showed a higher proportion of bacteria with a low DNA content, and bacterial leucine uptake rates in surface micro-layer samples were either less than, or the same as those in the underlying 10 cm layer. The average methanol oxidation and particulate rates were however statistically the same throughout the depths sampled, although the later were highly variable in the near surface 0.25–2 m compared to deeper depths. The statistically significant relationship demonstrated between uptake of methanol into particles and bacterial leucine incorporation suggests that heterotrophic bacteria use methanol carbon for cellular growth, but the lack of relationships observed with methanol oxidation, perhaps suggest that a wider group of marine microbes use methanol for energy generation. Whilst the statistically significant relationship observed between the uptake of methanol into cell particles and the numbers of Prochlorococcus during diel experiments could also suggest that this abundant group of marine cyanobacteria are capable of mixotrophy, using methanol as a carbon source for growth. We conclude that microbial methanol uptake rates, i.e., loss from seawater are highly variable, particularly close to the seawater surface, which