WorldWideScience

Sample records for bacterial surface layer

  1. The Bacterial Surface Layer Provides Protection against Antimicrobial Peptides

    OpenAIRE

    de la Fuente-Núñez, César; Mertens, Jan; Smit, John; Hancock, Robert E. W.

    2012-01-01

    This report describes a previously unrecognized role for bacterial surface layers as barriers that confer protection against antimicrobial peptides. As antimicrobial peptides exist in natural environments, S-layers may provide a bacterial survival mechanism that has been selected for through evolution.

  2. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    Science.gov (United States)

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles. PMID:26552090

  3. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    Science.gov (United States)

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-01

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. PMID:27155306

  4. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Dustin W Kemp

    Full Text Available Coral surface mucus layer (SML microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance, underside (low irradiance, and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  5. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Science.gov (United States)

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations. PMID:26659364

  6. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.; Sleytr, U.B.; Cuvillier, N.; Kjær, K.; Howes, P.B.; Lösche, M.

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer str...

  7. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  8. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    International Nuclear Information System (INIS)

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated

  9. The influence of soft layer electrokinetics on bacterial electroporation

    Science.gov (United States)

    Moran, Jeffrey; Dingari, Naga Neehar; Buie, Cullen

    2015-11-01

    Electroporation of mammalian cells has received a significant amount of theoretical attention over the last decade because of its ability to deliver biologically active molecules into cells using short and strong electric field pulses. However, application of the same theory to bacterial electroporation presents significant challenges because of the presence of charged soft layers around bacteria. The soft layer charge distribution has been found to significantly influence bacterial electrophoretic mobility and polarizability because it alters the electric potential spatial distribution around the cell envelope. In addition, the RC charging time scale of both the soft layer and electric double layer is of the order of microseconds, which is also of similar order of magnitude as the pore creation time scale. Therefore in this study, we investigate the influence of soft layer electrokinetics on the spatial pore distribution and the temporal pore radius evolution during bacteria electroporation, which are quantitative measures of a bacterium's amenability to electroporation. The study will have significant impact on designing and optimizing bacteria electroporation platforms for gene and drug delivery applications.

  10. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  11. Friction contact mechanisms of layered surface

    Institute of Scientific and Technical Information of China (English)

    Fan Xue; Diao Dongfeng

    2013-01-01

    In this paper,we firstly review the carbon layered surface prepared with electron cyclotron resonance (ECR) plasma sputtering.Secondly,the friction behavior of carbon layered surface under pin-on-disk testing is described.Furthermore,the contact stress evolution processes of layered surface with and without transfer layer during wear are given for understanding the contact mechanisms.Finally,a three-dimension (3D) local yield map of layered surface is introduced,which is useful to predict the possible contact mechanisms.

  12. The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host.

    Science.gov (United States)

    Stewart, George C

    2015-12-01

    Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts. PMID:26512126

  13. Estimating Bacterial Loadings to Surface Waters from Agricultural Watersheds

    OpenAIRE

    Panhorst, Kimberly A.

    2002-01-01

    Fecal bacteria and pathogens are a major source of surface water impairment. In Virginia alone, approximately 73% of impaired waters are impaired due to fecal coliforms (FC). Because bacteria are a significant cause of water body impairment and existing bacterial models are predominantly based upon laboratory-derived information, bacterial models are needed that describe bacterial die-off and transport processes under field conditions. Before these bacterial models can be developed, more f...

  14. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    NARCIS (Netherlands)

    Frade, P.R.; Roll, K.; Bergauer, K.; Herndl, G.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associatedwith the surface mucus layer of corals have rarely taken place. It has thereforeremained enigmatic whether mucus-associated archaeal and bacterial communities exhibita similar specificity towards coral hosts a

  15. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  16. Uncertainties in Surface Layer Modeling

    Science.gov (United States)

    Pendergrass, W.

    2015-12-01

    A central problem for micrometeorologists has been the relationship of air-surface exchange rates of momentum and heat to quantities that can be predicted with confidence. The flux-gradient profile developed through Monin-Obukhov Similarity Theory (MOST) provides an integration of the dimensionless wind shear expression where is an empirically derived expression for stable and unstable atmospheric conditions. Empirically derived expressions are far from universally accepted (Garratt, 1992, Table A5). Regardless of what form of these relationships might be used, their significance over any short period of time is questionable since all of these relationships between fluxes and gradients apply to averages that might rarely occur. It is well accepted that the assumption of stationarity and homogeneity do not reflect the true chaotic nature of the processes that control the variables considered in these relationships, with the net consequence that the levels of predictability theoretically attainable might never be realized in practice. This matter is of direct relevance to modern prognostic models which construct forecasts by assuming the universal applicability of relationships among averages for the lower atmosphere, which rarely maintains an average state. Under a Cooperative research and Development Agreement between NOAA and Duke Energy Generation, NOAA/ATDD conducted atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of legacy flux-gradient formulations (the ϕ functions, see Monin and Obukhov, 1954) for the exchange of heat and momentum. At the Duke Energy Ocotillo site, NOAA/ATDD installed sonic anemometers reporting wind and temperature fluctuations at 10Hz at eight elevations. From these observations, ϕM and ϕH were derived from a two-year database of mean and turbulent wind and temperature observations. From this extensive measurement database, using a

  17. Surface-induced layer formation in polyelectrolytes

    OpenAIRE

    Solis, F. J.; de la Cruz, M. Olvera

    1998-01-01

    We analyze, by means of an RPA calculation, the conditions under which a mixture of oppositely charged polyelectrolytes can micro-segregate in the neighborhood of a charged surface creating a layered structure. A number of stable layers can be formed if the surface is sufficiently strongly charged even at temperatures at which the bulk of the mixture is homogeneous.

  18. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  19. Selective detection of bacterial layers with terahertz plasmonic antennas

    CERN Document Server

    Berrier, Audrey; Nonglaton, Guillaume; Bergquist, Jonas; Rivas, Jaime Gómez

    2012-01-01

    Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate complex, time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

  20. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    International Nuclear Information System (INIS)

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length. (paper)

  1. Producing of multicomponent and composite surface layers

    International Nuclear Information System (INIS)

    The paper presents a new method of producing multicomponent and composite layers on steel substrate. The combination of nickel plating with glow-discharge bordering or impulse-plasma deposition method gives an opportunity to obtain good properties of surface layers. The results of examinations of carbon 45 (0.45%C) steel, nickel plated and then borided under glow discharge conditions or covered with TiN layers are presented. The corrosion and friction wear resistance of such layers are markedly higher than for layer produced on non nickel plated substrates. (author). 19 refs, 5 figs

  2. Contaminated concrete surface layer removal

    International Nuclear Information System (INIS)

    Equipment is being developed to economically remove contaminated concrete surfaces in nuclear facilities. To be effective this equipment should minimize personnel radiation exposure, minimize the volume of material removed, and perform the operation quickly with the least amount of energy. Several methods for removing concrete surfaces are evaluated for use in decontaminating such facilities. Two unique methods especially suited for decontamination are described: one, the water cannon, is a device that fires a high-velocity jet of fluid causing spallation of the concrete surface; the other, a concrete spaller, is a tool that exerts radial pressure agains the sides of a pre-dilled shallow cylindrical hole causing spallation to occur. Each method includes a means for containing airborne contamination. Results of tests show that these techniques can rapidly and economically remove surfaces, and leave minimal rubble for controlled disposal

  3. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems. PMID:26856872

  4. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  5. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  6. Variability of refractivity in the surface layer

    OpenAIRE

    Mabey, Deborah L.

    2002-01-01

    The author and members of the Boundary Layer Studies Group collected atmospheric surface layer profile properties affecting RF propagation during the Roughness and Evaporation Duct experiment off the windward coast of Oahu. We measured temperature, humidity and pressure profiles from the surface and up to 100 m by multi-level buoy-mounted sensors and a rawinsonde attached to a kite flown from a small vessel. We obtained the profiles concurrently with S-, X- and Ku-Band propagation measurement...

  7. Layering of ionic liquids on rough surfaces

    Science.gov (United States)

    Sheehan, Alexis; Jurado, L. Andres; Ramakrishna, Shivaprakash N.; Arcifa, Andrea; Rossi, Antonella; Spencer, Nicholas D.; Espinosa-Marzal, Rosa M.

    2016-02-01

    Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact.Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL-solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contact. Electronic supplementary information (ESI) available: Optimized geometries and sizes for [HMIM] Ntf2, SEM images of the smooth and rough colloids, frequency of occurrence of layering in the resolved force-distance curves for all investigated systems with [HMIM] Ntf2, layer size and layering force measured with a sharp tip on mica for the same IL, and results of the kinetics experiments. See DOI: 10.1039/c5nr07805a

  8. Ice nucleation protein as a bacterial surface display protein

    OpenAIRE

    Sarhan Mohammed A.A.

    2011-01-01

    Surface display technology can be defined as that phenotype (protein or peptide) which is linked to a genotype (DNA or RNA) through an appropriate anchoring motif. A bacterial surface display system is based on expressing recombinant proteins fused to sorting signals (anchoring motifs) that direct their incorporation on the cell surface.

  9. Surface-layer gusts for aircraft operation

    DEFF Research Database (Denmark)

    Young, G.S.; Kristensen, L.

    1992-01-01

    We use Monin-Obukhov similarity theory to extend the Kristensen et al. (1991) aviation gust estimation technique from the neutral to the diabatic surface layer. Example calculations demonstrate the importance of this correction. Simple stability class methods using only standard aviation surface ...

  10. Bacterially Antiadhesive, Optically Transparent Surfaces Inspired from Rice Leaves.

    Science.gov (United States)

    Oh, Jun Kyun; Lu, Xiaoxu; Min, Younjin; Cisneros-Zevallos, Luis; Akbulut, Mustafa

    2015-09-01

    Because of the growing prevalence of antimicrobial resistance strains, there is an increasing need to develop material surfaces that prevent bacterial attachment and contamination in the absence of antibiotic agents. Herein, we present bacterial antiadhesive materials inspired from rice leaves. "Rice leaf-like surfaces" (RLLS) were fabricated by a templateless, self-masking reactive-ion etching approach. Bacterial attachment on RLLS was characterized under both static and dynamic conditions using Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. RLLS surfaces showed exceptional bacterial antiadhesion properties with a >99.9% adhesion inhibition efficiency. Furthermore, the optical properties of RLLS were investigated using UV-vis-NIR spectrophotometry. In contrast to most other bacterial antiadhesive surfaces, RLLS demonstrated optical-grade transparency (i.e., ≥92% transmission). We anticipate that the combination of bacterial antiadhesion efficiency, optical grade transparency, and the convenient single-step method of preparation makes RLLS a very attractive candidate for the surfaces of biosensors; endoscopes; and microfluidic, bio-optical, lab-on-a-chip, and touchscreen devices. PMID:26237234

  11. Surface strains in iron oxide heterogeneous layer

    International Nuclear Information System (INIS)

    Recently the oxidation study at high temperature, have been glance to examine the influence of the surface strains. The samples of the pure iron were oxidized among 850 and 1050 deg C, under argon-water vapor atmosphere. The oxide layer was analyzed by optics and scanning electrons microscopy, and X-ray diffraction. The results showed a heterogeneous layer consisting of three distinct oxides. On the other hand it was possible to observe the presence of the strains on the mentioned layer. (author)

  12. Bacterial pollution of the riverine surface microlayer and subsurface water.

    Science.gov (United States)

    Skórczewski, Piotr; Mudryk, Zbigniew

    2009-01-01

    The density and distribution of bacteria indicative of pollution in the surface microlayer and subsurface water of the River Słupia were estimated. The number of heterotrophic bacteria, total coliforms, fecal coliforms and fecal streptococci were higher in the surface microlayer than in the underlying water. The average bacterial enrichment factor (EF) of the parameters studied in the bacterioneuston was 1.7 to 1.8 times higher than in bacterioplankton. During the annual study cycle, bacterial pollution indicators inhabiting the surface microlayer and subsurface water showed considerable monthly changes. PMID:19587410

  13. Reversibility of bacterial adhesion at an electrode surface

    NARCIS (Netherlands)

    Poortinga, AT; Busscher, HJ; Bos, R.R.M.

    2001-01-01

    Deposition of four bacterial strains from a 1 mM potassium phosphate buffer (pH 7) to an indium tin oxide (ITO) electrode surface has been studied in a parallel plate flow chamber at three electrode potentials (-0.2, 0.1, and 0.5 V). Capacitance measurements demonstrated that the ITO surface was neg

  14. Robotized PTA surfacing of nanomaterial layers

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2009-12-01

    Full Text Available Purpose: of this research was to investigate the influence of heat input in robotized surfacing on quality and properties of nanomaterial layers.Design/methodology/approach: quality of single and multilayer, stringer and weave beads was assessed by abrasion resistance tests according to ASTMG65 standard, erosion resistance tests according to G76 standard, metallographic examinations and hardness tests.Findings: due to the fact that the robotized surfacing stand was used, the analysis of properties of the deposits was performed for single and multilayer, stringer and weave beads.Research limitations/implications: for complete information about tested deposits it is needed to compare deposits properties PTA surfaced with other technologies of nanomaterial layers manufacturing products.Practical implications: Results of this paper is an optimal range of parameters of surfacing of single and multilayer, stringer and weave beads of nanomaterial layers.Originality: tests, abrasion and erosion resistance tests were provided for surfacing of single and multilayer, stringer and weave beads, and the results were compared. The influence of heat input on layers properties and theirs structure was defined.

  15. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  16. Robotized GMA surfacing of cermetalic layers

    OpenAIRE

    Klimpel, A; L.A. Dobrzański; T. Kik; A. Rzeźnikiewicz

    2006-01-01

    Purpose: Purpose of these researches was to investigate of influence of heat input in robotized surfacing on quality and properties of cermetalic layers.Design/methodology/approach: The quality of single and multilayer, stringer and weave beads was assessed by abrasion resistance tests according to ASTMG65 standard, erosion resistance tests according to G76 standard, metallographic examinations and hardness tests. Findings: Due to the fact that the it was used robotized surfacing stand, the a...

  17. The surface layer of cleaved bilayer manganites

    International Nuclear Information System (INIS)

    Recently, several informative reports have been published on spectroscopy experiments performed on cleaved surfaces of the bilayered colossal magnetoresistive manganite La2-2xSr1+2xMn2O7 (Konoto et al 2004 Phys. Rev. Lett. 93 107201, Freeland et al 2005 Nat. Mater. 4 62, Mannella et al 2005 Nature 438 474, Roennow et al 2006 Nature 440 1025). For the detailed interpretation of these results, it is of importance to know exactly which layer within the crystal structure is exposed to the surface upon cleavage. Here we combine crystal structure arguments, scanning tunnelling microscopy and x-ray photoelectron spectroscopy measurements to demonstrate that the crystals cleave between the rare-earth rock-salt oxide layers, leaving one outermost rare-earth oxide layer before the first electronically active MnO bilayer

  18. Barriers to bacterial motility on unsaturated surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    characterized by complex 3D geometry and variable hydration. To approach these questions we take advantage of the Porous Surface Model (PSM) a unique experimental platform that allows direct monitoring of microbial motion under precisely controlled matric potential. Using gfp-tagged Pseudomonas strains and......Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also...... contributes to microbial spatial dynamics. In bacteria, active dispersal is enabled by a diversity of appendages and, in the case of swarming motility, by the secretion of surface active biomolecules. It is however unclear to which degree di_erent types of motility can take place in the soil pores, a habitat...

  19. Barriers to bacterial motility on unsaturated surfaces

    OpenAIRE

    Dechesne, Arnaud; Smets, Barth F

    2013-01-01

    Our knowledge of the spatial organization and spatial dynamics of microbial populations in soil at a scale close to that of the microorganisms is scarce. While passive dispersal via water ow or soil biota is probably a major dispersal route, it is reasonable to consider that active dispersal also contributes to microbial spatial dynamics. In bacteria, active dispersal is enabled by a diversity of appendages and, in the case of swarming motility, by the secretion of surface active biomolecules...

  20. Characterization of the Martian Surface Layer

    OpenAIRE

    Martínez, Germán; Valero Rodríguez, Francisco; Vázquez Martínez, Luis

    2009-01-01

    We have estimated the diurnal evolution of Monin- Obukhov length, friction velocity, temperature scale, surface heat flux, eddy-transfer coefficients for momentum and heat, and turbulent viscous dissipation rate on the Martian surface layer for a complete Sol belonging to the Pathfinder mission. All these magnitudes have been derived from in situ wind and temperature measurements at around 1.3 m height, and simulated ground temperature (from 6 a.m. Sol 25 to 6 a.m. Sol 26). Up to the momen...

  1. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-09-03

    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  2. Characteristics of the Martian atmosphere surface layer

    Science.gov (United States)

    Clow, G. D.; Haberle, R. M.

    1991-01-01

    Researchers extend elements of various terrestrial boundary layer models to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface layer. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed. Parameterizations for specific heat and and binary diffusivity were also determined. The Prandtl and Schmidt numbers derived from these thermophysical properties were found to range from 0.78 - 1.0 and 0.47 - 0.70, respectively, for Mars. Brutsaert's model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the researchers modified the definition of the Monin-Obukhov length to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. This length scale was then utilized with similarity theory turbulent flux profiles with the same form as those used by Businger et al. and others. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  3. Bacterial populations and adaptations in the mucus layers on living corals

    Energy Technology Data Exchange (ETDEWEB)

    Ducklow, H.W.; Mitchell, R.

    1979-07-01

    The external mucus layers of the stony coral Porites astreoides and the soft corals Palythoa sp. and Heteroxenia fuscesens are inhabited by communities of marine heterotrophic bacteria. Population levels of bacteria in coral mucus may be regulated by the self-cleaning behavior of the host. Bacterial populations in coral mucus respond to stresses applied to the host coral by growing to higher population levels in the mucus, indicating that these are populations of viable organisms closely attuned to host metabolism. Members of these microbial populations utilize the mucus compounds and may play a role in processing coral mucus for reef detritus feeders. One such species, Vibrio alginolyticus, grows rapidly on Heteroxenia mucus, is attracted to dissolved mucus, and possesses a mechanism to maintain itself on the coral surface.

  4. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  5. Abundance of bacterial and diatom fouling on various surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi

    , Coscinodiscus sp, Fragilaria sp, Liemophora sp, Chaetoceros sp and Rhizoselenia sp. Pennate forms were more dominant as compared to the centrales. The mucilaginous fibrillar material entrapping bacteria and diatoms formed a two-tiered layer on study surfaces...

  6. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.;

    1999-01-01

    -filled cavities near its center. The protein volume fraction reaches maxima of >60% in two horizontal sections of the S-layer, close to the lipid monolayer and close to the free subphase. In between it drops to similar to 20%. Four S-layer protein monomers are located within the unit cell of a square lattice with...

  7. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  8. Bioactive surfaces with atomic layer deposition

    OpenAIRE

    Kvalvik, Julie Nitsche

    2015-01-01

    The overall goal of this work has been to make bioactive surfaces with atomic layer deposition (ALD). To do this, a new ALD system with titanium tetraisopropoxide (TTIP) and lysine as precursors was developed with emphasis on studying the effects of pulsing times and deposition temperatures. TTIP was chosen as titanium is regarded to be biocompatible and lysine was chosen as poly-L-lysine is a part of the extra-cellular matrix (ECM) and hence affects cell adhesion. The effect of a water pulse...

  9. Bacterial adhesion to glass and metal-oxide surfaces.

    Science.gov (United States)

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  10. Atmospheric boundary layer over steep surface waves

    Science.gov (United States)

    Troitskaya, Yuliya; Sergeev, Daniil A.; Druzhinin, Oleg; Kandaurov, Alexander A.; Ermakova, Olga S.; Ezhova, Ekaterina V.; Esau, Igor; Zilitinkevich, Sergej

    2014-08-01

    Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.

  11. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  12. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.

    Science.gov (United States)

    Ali, N; Asghar, Z; Anwar Bég, O; Sajid, M

    2016-05-21

    Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-shaped cells. In the present study we employ an undulating surface model to investigate the motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is characterized by an appropriate constitutive equation, namely the Carreau model. Employing the balances of mass and momentum conservation, the hydrodynamic undulating surface model is transformed into a fourth-order nonlinear differential equation in terms of a stream function under the long wavelength assumption. A perturbation approach is adopted to obtain closed form expressions for stream function, pressure rise per wavelength, forces generated by the organism and power required for propulsion. A numerical technique based on an implicit finite difference scheme is also employed to investigate various features of the model for large values of the rheological parameters of the slime. Verification of the numerical solutions is achieved with a variational finite element method (FEM). The computations demonstrate that the speed of the glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the organism is not free to move but instead generates a net fluid flow beneath it) is also investigated in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics. PMID:26903204

  13. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared im

  14. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  15. Surface layer characterisation of bearing rings

    Directory of Open Access Journals (Sweden)

    S.J. Skrzypek

    2007-11-01

    Full Text Available austenite. Theoretical calculation of residual macro-stresses due to volume fraction of transformed austenite in bearing rings and following measurements of residual stresses were carried out as well. The bearing elements were made of 100Cr6 steel and they were smoothed and grinded.Design/methodology/approach: Particular features of diffraction patterns like angle position; shape and intensity are used to characterize phase composition, residual micro and macro-stresses, crystallographic texture, lattice parameter, defects density and crystalline size.Findings: Machining by micro-deformation causes microstructural changes i.e. mechanically induced phase transformation of retained austenite and residual macrostresses. E.g. grinding cased tension and small compression whereas the mechanical smoothing of bearing rings caused high compresive residual stresses about -713 MPa.Research limitations/implications: For precise interpretation of differences between following results needs another investigations: i.e. measurement of retained austenite and residual stresses in rings after heat treatment before any mechanical treatment.Practical implications: The non-destructive character and large number of structural informations contained in diffraction pattern are the beneficial feature of diffraction methods. Therefore they have potential ability in application to technological operations and to diagnostic during fatigue.Originality/value: The non-destructive structure characterisation of surface layers for various kinds of bearing rings can be powerful method in surface characterization and in quality control. This results contribute in general relations between microstructure and properties.

  16. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  17. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  18. Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration.

    Science.gov (United States)

    Wirth, Stacy M; Bertuccio, Alex J; Cao, Feng; Lowry, Gregory V; Tilton, Robert D

    2016-04-01

    Immobilization of antimicrobial silver nanoparticles (AgNPs) on surfaces has been proposed as a method to inhibit biofouling or as a possible route by which incidental releases of AgNPs may interfere with biofilms in the natural environment or in wastewater treatment. This study addresses the ability of planktonic Pseudomonas fluorescens bacteria to colonize surfaces with pre-adsorbed AgNPs. The ability of the AgNP-coated surfaces to inhibit colonization was controlled by the dissolved silver in the system, with a strong dependence on the initial planktonic cell concentration in the suspension, i.e., a strong inoculum effect. This dependence was attributed to a decrease in dissolved silver ion bioavailability and toxicity caused by its binding to cells and/or cell byproducts. Therefore, when the initial cell concentration was high (∼1×10(7)CFU/mL), an excess of silver binding capacity removed most of the free silver and allowed both planktonic growth and surface colonization directly on the AgNP-coated surface. When the initial cell concentration was low (∼1×10(5)CFU/mL), 100% killing of the planktonic cell inoculum occurred and prevented colonization. When an intermediate initial inoculum concentration (∼1×10(6)CFU/mL) was sufficiently large to prevent 100% killing of planktonic cells, even with 99.97% initial killing, the planktonic population recovered and bacteria colonized the AgNP-coated surface. In some conditions, colonization of AgNP-coated surfaces was enhanced relative to silver-free controls, and the bacteria demonstrated a preferential attachment to AgNP-coated, rather than bare, surface regions. The degree to which the bacterial concentration dictates whether or not surface-immobilized AgNPs can inhibit colonization has significant implications both for the design of antimicrobial surfaces and for the potential environmental impacts of AgNPs. PMID:26771749

  19. Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion

    DEFF Research Database (Denmark)

    Kingshott, Peter; Wei, Jiang; Bagge, Dorthe;

    2003-01-01

    The effects of different poly(ethylene glycol) (PEG) attachment strategies upon the adhesion of a Gram-negative bacteria (Pseudomonas sp.) was tested. PEG was covalently immobilized, at the lower critical solution temperature of PEG, to a layer of branched poly(ethylenimine) (PEI). PEI was both...... physically adsorbed to a stainless-steel (SS) substrate and covalently immobilized to a carboxylated poly(ethylene terephthalate) (PET-COOH) surface. On both substrates, the PEI and PEG grafting conditions were optimized so that the levels of surface coverage after each step were maximized and were the same...... attachment of PEI to the substrate. In bacterial adhesion experiments, the optimal SS-PEG surface was not capable of reducing the number of adherent Pseudomonas sp. when compared to the controls. However, the PET-PEG surface reduced the level of adhesion by between 2 and 4 orders of magnitude for up to 5 h...

  20. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  1. Bacterial diversity in the bottom boundary layer of the inner continental shelf of Oregon, USA

    KAUST Repository

    Bertagnolli, AD

    2011-06-21

    There have been few studies of the bacterial community within the bottom boundary layer (BBL) the turbulent region of the water column above the benthos in shallow seas. Typically, the BBL has large amounts of particulate organic matter suspended by turbulence, and it is often the first region of the water column to become hypoxic when oxygen declines. Communities at the surface (5 m) and in the BBL (1 to 10 m above the sea floor) were compared by terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA gene. Multivariate statistical methods (hierarchical clustering, non-metric multidimensional scaling, and analysis of similarity (ANOSIM)) indicated that the microbial community of the BBL is distinct from the surface community. ANOSIM supported the distinction between surface and BBLs (R values 0.427 and 0.463, based on analysis with restriction enzymes BsuR1 and Hin6I, respectively, p < 0.1%). Six terminal restriction fragments showed an increase in abundance with depth. Cloning, screening and sequencing identified these as a novel environmental clade (Eastern North Pacific Chromatiales (ENPC) clade), the ARTIC96BD-19 clade of Gammaproteobacteria, the 6N14 and Agg8 clades of the phylum Planctomycetes, the OM60/NOR5 clade of Gammaproteobacteria, and uncultivated members of the Roseobacter clade in the MB11C09 and ULA23 subgroups. To the best of our knowledge, this analysis is the first to focus on the unique composition of microbial communities of the BBL in shallow, inner-shelf regions off the coast of Oregon, USA, and the first to report that an uncharacterized clade of Chromatiales is indigenous in this habitat.

  2. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    Science.gov (United States)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface

  3. Some peculiarities of steel surface layer after electron beam superheating

    International Nuclear Information System (INIS)

    Fractographic investigations of a carbon steel surface layer subjected to electron beam hardening are made. It is found that the surface hardened layer of the steel is substantially nonuniform in depth. Undesirable markings of metal superheating are observed to a depth of 50-100 μm. Superheated zone fracture is shown to be of clearly defined intercrystalline nature. The superheating of surface layer results in increased brittleness, in degradation of contact fatigue and abrasive resistance

  4. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    OpenAIRE

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shr...

  5. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  6. Bacterial S-layer protein coupling to lipids: x-ray reflectivity and grazing incidence diffraction studies.

    Science.gov (United States)

    Weygand, M; Wetzer, B; Pum, D; Sleytr, U B; Cuvillier, N; Kjaer, K; Howes, P B; Lösche, M

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows that the phosphatidylethanolamine headgroups must reorient toward the surface normal to accommodate such changes. In terms of the protein structure (which is as yet unknown in three dimensions), the electron density profile reveals a thickness lz approximately 90 A of the recrystallized S-layer and shows water-filled cavities near its center. The protein volume fraction reaches maxima of >60% in two horizontal sections of the S-layer, close to the lipid monolayer and close to the free subphase. In between it drops to approximately 20%. Four S-layer protein monomers are located within the unit cell of a square lattice with a spacing of approximately 131 A. PMID:9876158

  7. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    OpenAIRE

    Doreene Kang; Qing Wang

    2016-01-01

    New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL) in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxe...

  8. White Layer of Hard Turned Surface by Sharp CBN Tool

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-ping; SONG He-chuan; C.Richard Liu

    2005-01-01

    White layers in hard turned surfaces were identified and measured as a function of turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool flank wear, and white layer depth varies with the different combinations of hard turning parameters. Turning speed has the most important impact on white layer depth, feed rate follows, and cutting depth at last. The white layer generation consequently suggests a strong couple relation to the heat generation and thermal process of hard turning operation. White layer disappears under an optimal combination of turning parameters by Taguchi method. It suggests that a superior surface integrity without white layer is feasible under some selected combinations of turning parameters by a sharp CBN cutting tool.

  9. Reusable nanoengineered surfaces for bacterial recruitment and decontamination.

    Science.gov (United States)

    Ista, Linnea K; Yu, Qian; Parthasarathy, Anand; Schanze, Kirk S; López, Gabriel P

    2016-03-01

    Biofouling, or accumulation of unwanted biofilms, on surfaces is a major concern for public health and human industry. Materials either avoiding contamination (fouling resistant) and/or directly killing attached microbes (biocidal) have thus far failed to achieve the goal of eliminating biofouling; fouling resistant surfaces eventually foul and biocidal surfaces accumulate debris that eventually decrease their efficacy. Combined biocidal and fouling release materials offer the potential for both killing and removing debris and are promising candidates for reducing biofouling on manufactured materials. Interference lithography was used to create nanopatterns of initiators, which were then used to initiate atom transfer radical polymerization of the temperature-responsive polymer, poly(N-isopropylacrylamide) (PNIPAAm) as a fouling release component. Biocidal activity was conferred by subsequent layer-by-layer deposition of cationic and anionic poly(phenylene ethynylenes) into the valleys between the PNIPAAm. For both Gram positive and Gram negative model bacteria, dark-regime biocidal activity was observed that did not increase upon exposure to light, suggesting that the mode of antimicrobial activity is due to ionic disruption of the cell wall. Subsequent to killing, bacteria and cellular debris were removed upon a temperature-induced phase transition of the PNIPAAm. These materials exhibited capture, killing, and release activity over multiple cycles of use. PMID:26739292

  10. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value......The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...

  11. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    Science.gov (United States)

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. PMID:26302067

  12. Gradient Ni-Cr-Mo-Nb surface alloying layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xu [Key Lab. of Beam Technology and Material Modification of Ministry of Education, Inst. of Low Energy Nuclear Physics, Beijing Normal Univ., Beijing Radiation Center, Beijing, BJ (China); Xie Xishan [School of Materials Science and Technology, Univ. of Science and Technology Beijing (China); Xu Zhong [Research Inst. of Surface Engineering, Taiyuan Univ. of Technology (China)

    2003-07-01

    In this paper the gradient surface-alloying layer similar to superalloy Inconel 625 is obtained at the surface of three kind steels (low carbon steel, industrial pure iron, stainless steel 304) by using Double Glow Plasma Surface Alloying Technique. These gradient superalloy surface alloying layers are formed by high temperature diffusion of alloy elements at Double Glow Plasma Surface Alloying. The chemical composition of surface layer can be controlled by source electrode material and technological parameters such as power of source electrode and cathode and processing times etc. The microstructures analyzed by XRD show that the alloying layer consists of {gamma} matrix and some precipitates (Laves intermetallic phase etc.) which depends on the local area composition. The corrosion resistance of nickel base surface alloying layer has been investigated by electrochemical method in 3.5%NaCl and 5%HCl solution. The results indicate: the corrosion resistance of surface alloying layer formed at pure iron substrate is better than that of nickel base superalloy Inconel 625. The results of 200 h exposure tests in 20%H{sub 2}SO{sub 4} and 20%HCl solution show that the corrosion rates of surface alloying layer on pure iron are also equal to that of nickel base alloy Inconel 625 and one order of magnitude lower than that of AISI304 stainless steel. (orig.)

  13. Bacterial processes in the intermediate and deep layers of the Ionian Sea in winter 1999: Vertical profiles and their relationship to the different water masses

    Science.gov (United States)

    Zaccone, R.; Monticelli, L. S.; Seritti, A.; Santinelli, C.; Azzaro, M.; Boldrin, A.; La Ferla, R.; Ribera D'Alcalã, M.

    2003-09-01

    Dissolved and particulate organic carbon, bacterial biomass, microbial enzymatic activities (EEA: leucine aminopeptidase, β-glucosidase, and alkaline phosphatase), bacterial production, respiration rates, and bacterial growth efficiency were determined in 10 stations of the Ionian Sea (winter 1998-1999) with the aim of characterizing the recycling of biogenic carbon and phosphorus in the different water masses, previously identified on the basis of their hydrographical properties. All microbial activities decreased markedly with depth, with a sharp increase in the benthic boundary layer, where potential remineralization rates of phosphorus up to 1.03 μg P·dm-3d-1 and bacterial carbon production of 0.078 μg C·dm-3 d-1 were recorded. Those rates were close to the surface ones; the bacterial growth efficiency was also around 20%, similar to the surface value, sustaining the microbial food chain at the bottom. The daily hydrolysis of the organic carbon pool estimated by EEA varied from 0.67% (Ionian Surface Water) to 0.02% (Deep Water). Alkaline phosphatase activity was generally low in the intermediate and deep layers, in relation to the higher inorganic P content. The last facts support the hypothesis that deep waters of Ionian Sea, and in general of the entire Mediterranean basin, because of their young age, carry a larger amount of labile dissolved organic carbon, which reduces the need for a high recycling activity by bacterial community. As a matter of fact, a relatively higher activity per cell in carbon production rates was found in the deep layer where a large volume of the very recently formed Cretan Sea Outflow Water was present.

  14. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals.

    Directory of Open Access Journals (Sweden)

    Michael John Sweet

    Full Text Available Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm were assessed. Changes in bacterial diversity (16S rRNA gene, were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05 from that of the water column and from the surface mucus layer (SML of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as

  15. Interaction between surface and atmosphere in a convective boundary layer /

    OpenAIRE

    Garai, Anirban

    2013-01-01

    Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on t...

  16. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2015-10-01

    Full Text Available Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$ notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or “feiras” in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  17. Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules

    Science.gov (United States)

    Jiang, Wei

    Toxicity of nano-scaled Al2O3, SiO2, TiO2 and ZnO to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles (NPs) but TiO2 showed higher toxicity than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three NPs, causing 100% mortality to the three tested bacteria. TEM images showed attachment of NPs to the bacteria, suggesting that the toxicity was affected by bacterial attachment. The effects of oxide NPs on bacteria cells and bacterial surface biomolecules were studied by FTIR spectroscopy to provide a better understanding of their cytotoxicity. Lipopolysaccharide (LPS) and lipoteichoic acid could bind to oxide NPs through hydrogen bonding and ligand exchange, but the cytotoxicity of NPs seemed largely related to the function-involved or structural changes to proteins and phospholipids. The three NPs decreased the intensity ratio of beta-sheets/alpha-helices, indicating protein structure change, which may affect cell physiological activities. The phosphodiester bond of L-alpha-Phosphatidyl-ethanolamine (PE) was broken by ZnO NPs, forming phosphate monoesters and resulting in the highly disordered alkyl chain. Such damage to phospholipid molecular structure may lead to membrane rupture and cell leaking, which is consistent with the fact that ZnO is the most toxic of the three NPs. LPS and PE are amphiphilic biomolecules that are major constituents of the outer membrane of Gram-negative bacteria. Their micelles and vesicles were studied as model cell membranes to evaluate NP effects on membrane construction. The adsorption of polysaccharides on Al2O3 and TiO 2 NPs dispersed LPS vesicles and micelles. LPS coated Al2O 3 NPs, while it caused the aggregation of TiO2 NPs according to atom force microscopy images. Desorption from the two NPs was slow due

  18. TEM studies of the nitrided Ni-Ti surface layer.

    Science.gov (United States)

    Lelatko, J; Paczkowski, P; Wierzchoń, T; Morawiec, H

    2006-09-01

    The structure of surface layer, obtained on the nearly equiatomic Ni-Ti alloy after nitriding under glow discharge conditions at temperatures 700 or 800 degrees C, was investigated. The structural characterization of the intruded layer was performed on cross-sectional thin foils by the use of the transmission and scanning electron microscopes. The obtained results show that the nitrided layers consist mainly of the nanocrystalline TiN phase and small amount of Ti(2)N. Between the nitrided layers and beta-NiTi matrix an intermediate Ti(2)Ni phase layer was observed. PMID:17059538

  19. Tunable hybrid surface waves supported by a graphene layer

    CERN Document Server

    Iorsh, Ivan; Belov, Pavel; Kivshar, Yuri

    2012-01-01

    We study surface waves localized near a surface of a semi-infinite dielectric medium covered by a layer of graphene in the presence of a strong external magnetic field. We demonstrate that both TE-TM hybrid surface plasmons can propagate along the graphene surface. We analyze the effect of the Hall conductivity on the disper- sion of hybrid surface waves and suggest a possibility to tune the plasmon dispersion by the magnetic field.

  20. Generation and characterization of surface layers on acoustically levitated drops.

    Science.gov (United States)

    Tuckermann, Rudolf; Bauerecker, Sigurd; Cammenga, Heiko K

    2007-06-15

    Surface layers of natural and technical amphiphiles, e.g., octadecanol, stearic acid and related compounds as well as perfluorinated fatty alcohols (PFA), have been investigated on the surface of acoustically levitated drops. In contrast to Langmuir troughs, traditionally used in the research of surface layers at the air-water interface, acoustic levitation offers the advantages of a minimized and contact-less technique. Although the film pressure cannot be directly adjusted on acoustically levitated drops, it runs through a wide pressure range due to the shrinking surface of an evaporating drop. During this process, different states of the generated surface layer have been identified, in particular the phase transition from the gaseous or liquid-expanded to the liquid-condensed state of surface layers of octadecanol and other related amphiphiles. Characteristic parameters, such as the relative permeation resistance and the area per molecule in a condensed surface layer, have been quantified and were found comparable to results obtained from surface layers generated on Langmuir troughs. PMID:17376468

  1. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow

    Directory of Open Access Journals (Sweden)

    Anna Lopatina

    2016-03-01

    Full Text Available The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.

  2. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    Science.gov (United States)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  3. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    OpenAIRE

    Frade, Pedro R.; Katharina Roll; Kristin Bergauer; Herndl, Gerhard J.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and ...

  4. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface.

    Science.gov (United States)

    Saidin, Syafiqah; Chevallier, Pascale; Abdul Kadir, Mohammed Rafiq; Hermawan, Hendra; Mantovani, Diego

    2013-12-01

    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application. PMID:24094179

  5. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM.

    Science.gov (United States)

    Johnson, Brant; Selle, Kurt; O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd

    2013-11-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  6. Fructose-enhanced reduction of bacterial growth on nanorough surfaces

    Directory of Open Access Journals (Sweden)

    Durmus NG

    2012-02-01

    Full Text Available Naside Gozde Durmus1, Erik N Taylor1, Fatih Inci3,4, Kim M Kummer1, Keiko M Tarquinio5, Thomas J Webster1,21School of Engineering, Brown University, Providence, RI, USA; 2Department of Orthopedics, Brown University, Providence, RI, USA; 3Bio-Acoustic-MEMS in Medicine (BAMM Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology, Harvard Medical School, MA, USA; 4Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, Mobgam, Maslak, Istanbul, Turkey; 5Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence, RI, USAAbstract: Patients on mechanical ventilators for extended periods of time often face the risk of developing ventilator-associated pneumonia. During the ventilation process, patients incapable of breathing are intubated with polyvinyl chloride (PVC endotracheal tubes (ETTs. PVC ETTs provide surfaces where bacteria can attach and proliferate from the contaminated oropharyngeal space to the sterile bronchoalveolar area. To overcome this problem, ETTs can be coated with antimicrobial agents. However, such coatings may easily delaminate during use. Recently, it has been shown that changes in material topography at the nanometer level can provide antibacterial properties. In addition, some metabolites, such as fructose, have been found to increase the efficiency of antibiotics used to treat Staphylococcus aureus (S. aureus infections. In this study, we combined the antibacterial effect of nanorough ETT topographies with sugar metabolites to decrease bacterial growth and biofilm formation on ETTs. We present for the first time that the presence of fructose on the nanorough surfaces decreases the number of planktonic S. aureus bacteria in the solution and biofilm formation on the surface after 24 hours. We thus envision that this method has the potential to impact the future of surface engineering of

  7. Surface physicochemistry and ionic strength affects eDNA's role in bacterial adhesion to abiotic surfaces

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Modrzynski, Jakub Jan;

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent e......DNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with...... different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired...

  8. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...... from the pattern size and filling factor of the active material are analyzed for tuned permittivity of the ITO layer. Direct simulation of the device functionality validates optimization design....

  9. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions.

    Science.gov (United States)

    Fowler, T A; Crundwell, F K

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  10. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0 to 3 Hz. Analyses show that soil stratification may lead to a significant changes in the impedance related...

  11. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0-3 Hz. Analyses show that soil stratification may lead to significant changes in the impedance related to...

  12. 2nd international conference on ion beam surface layer analysis

    International Nuclear Information System (INIS)

    The papers of this conference are concerned with the fundamental aspects and with the application of surface layer analysis. It is reported amongst others about backscattering analysis, Auger electron spectroscopy, channelling and microprobe. (HPOE)

  13. Surfactant-associated bacteria in the near-surface layer of the ocean.

    Science.gov (United States)

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  14. Spatial Organization of Dual-Species Bacterial Aggregates on Leaf Surfaces

    OpenAIRE

    Monier, J.-M.; Lindow, S E

    2005-01-01

    The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green...

  15. New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: critical issues.

    Science.gov (United States)

    Nesic, Jelena; Rtimi, Sami; Laub, Danièle; Roglic, Goran M; Pulgarin, Cesar; Kiwi, John

    2014-11-01

    This study presents new evidence for the events leading to Escherichia coli reduction in the absence of light irradiation on TiO2-polyester (from now on TiO2-PES. By transmission electron microscopy (TEM) the diffusion of TiO2 NP's aggregates with the E. coli outer lipo-polyssacharide (LPS) layer is shown to be a prerequisite for the loss of bacterial cultivability. Within 30 min in the dark the TiO2 aggregates interact with E. coli cell wall leading within 120 min to the complete loss of bacterial cultivability on a TiO2-PES 5% TiO2 sample. The bacterial reduction was observed to increase with a higher TiO2 loading on the PES up to 5%. Bacterial disinfection on TiO2-PES in the dark was slower compared to the runs under low intensity simulated sunlight light irradiation. The interaction between the TiO2 aggregates and the E. coli cell wall is discussed in terms of the competition between the TiO2 units collapsing to form TiO2-aggregates at a physiologic pH-value followed by the electrostatic interaction with the bacteria surface. TiO2-PES samples were able to carry repetitive bacterial inactivation. This presents a potential for practical applications. X-ray photoelectron spectroscopy (XPS) evidence was found for the reduction of Ti4+ to Ti3+ contributing to redox interactions between TiO2-PES and the bacterial cell wall. Insight is provided into the mechanism of interaction between the E. coli cell wall and TiO2 NP's. The properties of the TiO2-PES surface like percentage atomic concentration, TiO2-loading, optical absorption, surface charge and crystallographic phases are reported in this study. PMID:25444660

  16. ALTERNATIVE FOR PHENOL BIODEGRADATION IN OIL CONTAMINATED WASTEWATERS USING AN ADAPTED BACTERIAL BIOFILM LAYER

    Directory of Open Access Journals (Sweden)

    Maria Kopytko

    2008-12-01

    Full Text Available The project studied the biodegradation potential of phenols in an industrial wastewater from an oil field in the province of Santander, Colombia. An elevated potential was established, according to three important factors: the great abundance of microorganisms found in the wastewater and sludge samples collected, the bacterial adaptation to high phenol concentrations (10 mg/l and the elevated elimination efficiencies (up to 86% obtained in the laboratory tests. The laboratory scale treatment system, which consisted of fixed-bed bioreactors with adapted bacterial biofilm, was optimized using a 22 factorial experimental design. The selected variables, studied in their maximum and minimum level were: HRT (hydraulic retention time and the presence or absence of GAC (granular activated carbon layer. The response variable was phenol concentration. The optimum treatment conditions for low and high phenol concentrations (2.14 y 9.30 mg/l, were obtained with the presence of GAC and 18 hours of HRT. The best result for the intermediate phenol concentration (6.13 mg/l was obtained with a 24 hour HRT and the presence of GAC. Nevertheless, the presence of the GAC layer was not significantly important in terms of phenol removal. Moreover, the increase of HRT from 18 to 24 hours, showed no significant improvement in phenol removal.

  17. Erosion resistance of Fe-C-Cr weld surfacing layers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fe-C-Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr and C in the layers the microstructures are changed from hypoeutectoid steel, hypereutectoid steel to hypoeutectic iron and hypereutectic iron. When the weld surfacing layers belong to the alloyed cast irons the erosion resistance can be raised with the eutectic increase and the austenite decrease. Good erosion resistance can be obtained when the proportion of the primary carbides is within 10 %. The experimental results lay a foundation to make double-metal percussive plates by surfacing wear resistant layers on the substrates of the low carbon steels.

  18. Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion.

    Science.gov (United States)

    Arnold, J W; Boothe, D H; Suzuki, O; Bailey, G W

    2004-12-01

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. The complementarity of the microscopy methods, scanning electron microscopy, electron probe microanalysis and atomic force microscopy assessed and correlated form and function of the surface modifications. Stainless steel disks (1 cm in diameter) were laser-cut from the same sheets of stainless steel and treated by electropolishing or left untreated for controls. Each treatment was analysed separately using each technique. First, the disks were examined by visual inspection and electron probe microanalysis for surface characteristics and elemental composition, respectively. Aliquots of bacterial suspensions (saline rinses of poultry carcasses from a commercial broiler processing plant) were then diluted in broth and monitored for growth by spectrophotometry. Stainless steel disks (1 cm in diameter) were added and the cultures were grown to sufficient density to allow attachment of bacterial cells to test surfaces. Relative differences in the surface morphology shown by atomic force microscopy, including Z ranges, roughness and other measurements, corresponded by treatment with the differences in reduction of bacterial counts shown by scanning electron microscopy. A model of wet-processing conditions tested the effects of corrosive treatment of surfaces. Less bacterial attachment occurred after corrosive treatment on controls and electropolished samples. Electropolishing significantly reduced bacterial numbers and the effects of corrosive action compared to the controls. Thus, the multiple imaging techniques showed that engineered changes on stainless steel surfaces improved the resistance of the surface finish to bacterial attachment, biofilm formation, and corrosive action. PMID:15566492

  19. Surface potential of functionalised nanodiamond layers

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Taylor, A.; Fendrych, František; Kovalenko, Alexander; Nesládek, Miloš

    Warrendale, PA: Materials Research Society, 2010 - (Bergonzo, P.; Butler, J.; Jackman, R.; Loh, K.; Nesladek, M.), 1203-J17-01 /5 s. ( MRS Symposium Proceedings. Vol. 1203). ISBN 978-1-60511-176-6. [ MRS Fall Meeting 2009. Boston (US), 26.11.2009-02.12.2009] R&D Projects: GA ČR GA203/08/1594; GA AV ČR KAN401770651; GA MŠk OC 137; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanodiamond * Kelvin probe * surface potential Subject RIV: BM - Solid Matter Physics ; Magnetism http://www. mrs .org/s_mrs/sec_subscribe.asp?CID=24691&DID=303759&action=detail

  20. Whisker Formation On Galvanic Tin Surface Layer

    Directory of Open Access Journals (Sweden)

    Radanyi A.L.

    2015-06-01

    Full Text Available The present work reports the effect of substrate composition, thickness of the tin electroplate and its morphology on pressure-induced tin whisker formation. Pure tin deposits of different thickness were obtained on a copper and brass substrates using methane sulfonic industrial bath. The deposits were compressed by a steel bearing ball forming imprint on the surface. The microstructure of tin whiskers obtained at the boundary of each imprint, their length and number were studied using both light and scanning electron microscopy. It was shown that the most intensive formation and growth of whiskers was observed in the first two hours. In general, brass substrate was shown to be more prone to whisker formation than copper independently of the tin coating thickness. The results have been compared with industrial bright tin finish on control unit socket leads and proposals have been made as to modification of the production process in order to minimize the risk of whiskering.

  1. Boundary Layer Flow Over a Moving Wavy Surface

    Science.gov (United States)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  2. Vapor layer evolution during drop impact on a heated surface

    Science.gov (United States)

    Lee, Sanghyeon; Lee, Sangjun; Lee, Jisan; Fezzaa, Kamel; Je, Jung Ho

    2015-11-01

    When a liquid drop impacts on a sufficiently hot surface above the boiling point, a vapor layer is formed between the drop and the surface, preventing direct contact between them and as a result levitating the drop, known as the Leidenfrost effect. Understanding the evolution of the vapor layer is largely unexplored despite its importance in estimating heat transfer in cooling systems of thermal or nuclear power plants. The side-profile visualization of the vapor layer, as absolutely required for investigating its evolution, has been however unavailable by conventional optical microscopy. In this study, by employing ultrafast X-ray phase contrast imaging, we directly visualize the profiles of the vapor layers during liquid drop impact on a hot surface and elucidate the evolution of the vapor layers during spreading and retraction of the drop as functions of impact height and surface temperature. We reveal that the evolution is governed by the propagation of capillary waves generated in retraction and the wavelength of capillary waves λ is inversely proportional to the impact height h with a relation ~σ/ρh ~We-1 where We is weber number. Capillary waves that converge at the center of the vapor layers are linked to the bouncing behavior of the drop.

  3. Mechanical and Wear Properties of Nanostructured Surface Layer in Iron Induced by Surface Mechanical Attrition Treatment

    Institute of Scientific and Technical Information of China (English)

    Nairong TAO; Weiping TONG; Zhenbo WANG; Wei WANG; Manling SUI; Jian LU; Ke LU

    2003-01-01

    A porosity-free and contamination-free surface layer with grain sizes ranging from nanometer to micrometer in Fe samples was obtained by surface mechanical attrition treatment (SMAT) technique. Mechanical and wear properties of the surface layer in the SMATed and annealed Fe samples were measured by means of nanoindentation and nanoscratch tests, respectively. Experimental results showed that the hardness of the surface layer in the SMATed Fe sample increased evidently due to the grain refinement. The elastic noduli of the surface layers in the SMATed and annealed Fe samples were unchanged, independent of grain size in the present grain size regime. Compared with the original Fe sample, the wear resistance enhanced and the coefficient of friction decreased in the surface layer of the SMATed Fe sample.

  4. SURFACE HYDROPHOBICITY MODIFICATION OF CELLULOSE FIBERS BY LAYER-BY-LAYER SELF-ASSSEMBLY OF LIGNOSULFONATES

    Directory of Open Access Journals (Sweden)

    Hui Li

    2011-03-01

    Full Text Available Self-assembled multilayers of lignosulfonates (LS were built up on both quartz slides and cellulose fibers using a Cu2+-mediated layer-by-layer (LBL technique. The growth of LS multilayers on quartz slides was monitored by UV-Vis spectroscopy, and the absorbance at 205 nm as well as at 280 nm was found to linearly increase with the number of layers. The formation of LS multilayers on fibers surfaces was characterized by X-ray photoelectron spectroscopy (XPS and atomic force microscopy (AFM. The XPS results showed that the surface contents of the characteristic elements, S and Cu, of LS multilayers were increased with the number of layers, which suggests the deposition of LS-Cu2+ complexes on cellulose fibers. Furthermore, there was a good linear relationship between the calculated surface LS content and the increment of LS layers. The AFM morphology results confirmed that the cellulose microfibrils on fiber surface were gradually covered by LS particles, resulting in the increase of surface roughness as self-assembly proceeded. The hydrophobicity of cellulose fiber probed by dynamic contact angle was significantly increased due to LBL self-assembly of LS on its surface. The initial contact angle was increased from 0° to 115° as the cellulose fibers were modified with a 5-layer LS multilayer. The reduction rate of the contact angle was dependent on the number of layers. When the cellulose fiber was modified by a 5-layer LS multilayer, the contact angle shifted from 115 to 98° after 0.12 s, suggesting some degree of hydrophobic character. Therefore, this technique provides a simple but effective way for promoting hydrophobicity of cellulose fibers in a controllable manner.

  5. Atomic and molecular layer deposition for surface modification

    International Nuclear Information System (INIS)

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al2O3 due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO2. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt

  6. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  7. Multi-layer surface profiling using gated wavefront sensing

    Science.gov (United States)

    Wang, Xin; Nordin, Nur Dalilla; Tik, Eddy Chow Mun; Tan, ChingSeong; Chew, Kuew Wai; Menoni, Carmen

    2015-01-01

    Recently, multi-layer surface profiling and inspection has been considered an emerging topic that can be used to solve various manufacturing inspection problems, such as graded index lenses, TSV (Thru-Silicon Via), and optical coating. In our study, we proposed a gated wavefront sensing approach to estimate the multi-layer surface profile. In this paper, we set up an experimental platform to validate our theoretical models and methods. Our test bed consists of pulse laser, collimator, prism, well-defined focusing lens, testing specimen, and gated wavefront sensing assembly (e.g., lenslet and gated camera). Typical wavefront measurement steps are carried out for the gated system, except the reflectance is timed against its time of flight as well as its intensity profile. By synchronizing the laser pulses to the camera gate time, it is possible to discriminate a multi-layer wavefront from its neighbouring discrete layer reflections.

  8. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    2014-12-01

    Full Text Available Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc. within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water. Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users.

  9. Surface waves versus negative refractive index in layered superconductors

    OpenAIRE

    Golick, V. A.; Kadygrob, D. V.; Yampol'skii, V. A.; Rakhmanov, A. L.; Ivanov, B. A.; Nori, Franco

    2010-01-01

    We predict a new branch of surface Josephson plasma waves (SJPWs) in layered superconductors for frequencies higher than the Josephson plasma frequency. In this frequency range, the permittivity tensor components along and transverse to the layers have different signs, which is usually associated with negative refraction. However, for these frequencies, the bulk Josephson plasma waves cannot be matched with the incident and reflected waves in the vacuum, and, instead of the negative-refractiv...

  10. Synthesis and characterization of macromolecular layers grafted to polymer surfaces

    Science.gov (United States)

    Burtovyy, Oleksandr

    The composition and behavior of surfaces and interfaces play a pivotal role in dictating the overall efficiency of the majority of polymeric materials and devices. Surface properties of the materials can be altered using surface modification techniques. It is necessary to highlight that successful methods of surface modification should affect only the upper layer of the polymer material without changing bulk properties. The processes must introduce new functionalities to the surface, optimize surface roughness, lubrication, hydrophobicity, hydrophilicity, adhesion, conductivity, and/or biocompatibility. Research presented in this dissertation is dedicated to the synthesis, characterization, and application of thin macromolecular layers anchored to polymer substrates. Specifically, attachment of functional polymers via a "grafting to" approach has been extensively studied using PET and nylon model substrates. First, poly(glycidyl methacrylate) was used to introduce permanent functionalities to the model substrates by anchoring it to model films. Then, three different functional polymers were grafted on top of the previous layer. As one part of this study, the temperature and time dependence of grafting functional layers were studied. The surface coverage by hydrophobic polymer was determined from experimental data and predicted by a model. In general, the model has a high degree of predictive capability. Next, surface modification of polymeric fibers and membranes is presented as an important application of the polymer thin layers targeted in the study. Specifically, the procedures developed for surface modification of model substrates was employed for modification of PET, nylon, and cotton fabrics as well as PET track-etched membranes. Since epoxy groups are highly reactive in various chemical reactions, the approach becomes virtually universal, allowing both various surfaces and end-functionalized macromolecules to be used in the grafted layer synthesis. PET

  11. Surface stress of graphene layers supported on soft substrate

    Science.gov (United States)

    Du, Feng; Huang, Jianyong; Duan, Huiling; Xiong, Chunyang; Wang, Jianxiang

    2016-05-01

    We obtain the surface stress of a single layer and multilayers of graphene supported on silicone substrates by measuring the deformation of the graphene-covered substrates induced by the surface tension of liquid droplets together with the Neumann’s triangle concept. We find that the surface stress of the graphene-covered substrate is significant larger than that of the bare substrate, and it increases with increasing graphene layers, and finally reaches a constant value of about 120 mN/m on three and more layers of graphene. This work demonstrates that the apparent surface stress of graphene-substrate systems can be tuned by the substrate and the graphene layers. The surface stress and the tuning effect of the substrate on it may have applications in design and characterization of graphene-based ultra-sensitive sensors and other devices. Moreover, the method may also be used to measure the surface stress of other ultrathin films supported on soft substrates.

  12. Surface stress of graphene layers supported on soft substrate

    Science.gov (United States)

    Du, Feng; Huang, Jianyong; Duan, Huiling; Xiong, Chunyang; Wang, Jianxiang

    2016-01-01

    We obtain the surface stress of a single layer and multilayers of graphene supported on silicone substrates by measuring the deformation of the graphene-covered substrates induced by the surface tension of liquid droplets together with the Neumann’s triangle concept. We find that the surface stress of the graphene-covered substrate is significant larger than that of the bare substrate, and it increases with increasing graphene layers, and finally reaches a constant value of about 120 mN/m on three and more layers of graphene. This work demonstrates that the apparent surface stress of graphene-substrate systems can be tuned by the substrate and the graphene layers. The surface stress and the tuning effect of the substrate on it may have applications in design and characterization of graphene-based ultra-sensitive sensors and other devices. Moreover, the method may also be used to measure the surface stress of other ultrathin films supported on soft substrates. PMID:27166087

  13. Surface stress of graphene layers supported on soft substrate.

    Science.gov (United States)

    Du, Feng; Huang, Jianyong; Duan, Huiling; Xiong, Chunyang; Wang, Jianxiang

    2016-01-01

    We obtain the surface stress of a single layer and multilayers of graphene supported on silicone substrates by measuring the deformation of the graphene-covered substrates induced by the surface tension of liquid droplets together with the Neumann's triangle concept. We find that the surface stress of the graphene-covered substrate is significant larger than that of the bare substrate, and it increases with increasing graphene layers, and finally reaches a constant value of about 120 mN/m on three and more layers of graphene. This work demonstrates that the apparent surface stress of graphene-substrate systems can be tuned by the substrate and the graphene layers. The surface stress and the tuning effect of the substrate on it may have applications in design and characterization of graphene-based ultra-sensitive sensors and other devices. Moreover, the method may also be used to measure the surface stress of other ultrathin films supported on soft substrates. PMID:27166087

  14. Surface Force and Friction : effects of adsorbed layers and surface topography

    OpenAIRE

    Liu, Xiaoyan

    2014-01-01

    Interfacial features of polymers are a complex, fascinating topic, and industrially very important. There is clearly a need to understand interactions between polymer layers as they can be used for controlling surface properties, colloidal stability and lubrication. The aim of my Ph.D study was to investigate fundamental phenomena of polymers at interfaces, covering adsorption, interactions between polymer layers and surfactants, surface forces and friction between adsorbed layers. A branched...

  15. The effect of silver impregnation of surgical scrub suits on surface bacterial contamination

    OpenAIRE

    Freeman, A.I.; Halladay, L.J.; Cripps, P.

    2012-01-01

    Silver-impregnated fabrics are widely used for their antibacterial and antifungal effects, including for clinical clothing such as surgical scrub suits (scrubs). This study investigated whether silver impregnation reduces surface bacterial contamination of surgical scrubs during use in a veterinary hospital. Using agar contact plates, abdominal and lumbar areas of silver-impregnated nylon or polyester/cotton scrubs were sampled for surface bacterial contamination before (0 h) and after 4 and ...

  16. Evidence of the surface layer in tungstated zirconia

    Science.gov (United States)

    Torres-García, E.; Rosas, G.; Ascencio, J. A.; Haro-Poniatowski, E.; Pérez, R.

    We characterized the structure of tungstated zirconia (WOx-ZrO2) by combining X-ray diffraction, Raman spectroscopy and High Resolution Electron Microscopy (HREM) together with molecular simulations. Our results indicate that the structure of this material consists of metastable tetragonal ZrO2 nanoparticles (WOx). Although the X-ray diffraction pattern matched the spectra of the tetragonal ZrO2 bulk phase the lattice fringes of the ZrO2 nanoparticles observed by HREM were locally distorted, presumably as a result of the interaction with the surface WOx layer. The local interplanar distances of the surface layer were close to those present in different bulk tungsten oxocompounds, and its variability was also an indication of the WOx-ZrO2 interaction. Molecular simulations corroborated our structural assignment. The results presented here are a direct evidence for the presence of a surface WOx layer in the case of WOx-ZrO2.

  17. Surface modification of Ti-surfaces by alginate polyelectrolyte layers

    Czech Academy of Sciences Publication Activity Database

    Kubies, Dana; Pop-Georgievski, Ognen; Mázl Chánová, Eliška; Zemek, Josef; Neykova, Neda; Demianchuk, Roman; Houska, Milan; Filová, Elena; Bačáková, Lucie; Rypáček, František

    Liverpool : European Society for Biomaterials, 2014. P314. [Annual Conference European Society for Biomaterials /26./. 31.08.2014-03.09.2014, Liverpool] R&D Projects: GA MZd(CZ) NT13297; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:68378271 ; RVO:67985823 Keywords : surface modification * titanium * alginate Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D); EI - Biotechnology ; Bionics (FGU-C)

  18. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection.

    Science.gov (United States)

    Golda-Cepa, M; Syrek, K; Brzychczy-Wloch, M; Sulka, G D; Kotarba, A

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function-bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. PMID:27207043

  19. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Energy Technology Data Exchange (ETDEWEB)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Baelum, Jacob; Tas, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Phillip; Prieme, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  20. Surface tension in plasmas related to double layer formation

    International Nuclear Information System (INIS)

    Self-organized space charge configurations bordered by electric double layers appear in plasma as the result of the transition into a state characterized by local minimum of the free energy. Considering the self-assemblage process of such a complex well-confined space-charge configuration in plasma, known by the name of ball of fire, as a nucleation process, it becomes possible to define an equivalent surface tension for the double layer that covers the core of the ball of fire and to make some predictions for its surface tension coefficient and capacitance. (author)

  1. Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Krzysztof Fyderek, Magdalena Strus, Kinga Kowalska-Duplaga, Tomasz Gosiewski, Andrzej Wędrychowicz, Urszula Jedynak-Wąsowicz, Małgorzata Sładek, Stanisław Pieczarkowski, Paweł Adamski, Piotr Kochan, Piotr B Heczko

    2009-11-01

    Full Text Available AIM: To assess the mucosa-associated bacterial microflora and mucus layer in adolescents with inflammatory bowel disease (IBD.METHODS: Sixty-one adolescents (mean age 15 years, SD ± 4.13 were included in the study. Intestinal biopsies from inflamed and non-inflamed mucosa of IBD patients and from controls with functional abdominal pain were cultured under aerobic and anaerobic conditions. The number of microbes belonging to the same group was calculated per weight of collected tissue. The mucus thickness in frozen samples was measured under a fluorescent microscope.RESULTS: The ratios of different bacterial groups in inflamed and non-inflamed mucosa of IBD patients and controls were specific for particular diseases. Streptococcus spp. were predominant in the inflamed mucosa of Crohn’s disease (CD patients (80% of all bacteria, and Lactobacillus spp. were predominant in ulcerative colitis patients (90%. The differences were statistically significant (P = 0.01-0.001. Lower number of bifidobacteria was observed in the whole IBD group. A relation was also found between clinical and endoscopic severity and decreased numbers of Lactobacillus and, to a lesser extent, of Streptococcus in biopsies from CD patients. The mucus layer in the inflamed sites was significantly thinner as compared to controls (P = 0.0033 and to non-inflamed areas in IBD patients (P = 0.031.CONCLUSION: The significantly thinner mucosa of IBD patients showed a predominance of some aerobes specific for particular diseases, their numbers decreased in relation to higher clinical and endoscopic activity of the disease.

  2. Surface morphological evolution of epitaxial CrN(001) layers

    International Nuclear Information System (INIS)

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at Ts=600-800 deg. C by ultrahigh-vacuum magnetron sputter deposition in pure N2 discharges from an oblique deposition angle α=80 deg. . Layers grown at 600 deg. C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 deg. C is characterized by dendritic ridge patterns extending along the orthogonal directions superposed by square-shaped super mounds with edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 deg. C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as Ts is raised from 600 to 700 to 800 deg. C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 deg. C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent β>0.5. In contrast, kinetic roughening controls the surface morphology for Ts=800 deg. C, as well as the epitaxial fraction of the layers grown at 600 and 700 deg. C, yielding relatively smooth surfaces and β≤0.27

  3. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  4. Bacterial populations on brewery filling hall surfaces as revealed by next-generation sequencing.

    Science.gov (United States)

    Priha, Outi; Raulio, Mari; Maukonen, Johanna; Vehviläinen, Anna-Kaisa; Storgårds, Erna

    2016-01-01

    Due to the presence of moisture and nutrients, brewery filling line surfaces are susceptible to unwanted microbial attachment. Knowledge of the attaching microbes will aid in designing hygienic control of the process. In this study the bacterial diversity present on brewery filling line surfaces was revealed by next generation sequencing. The two filling lines studied maintained their characteristic bacterial community throughout three sampling times (13-163 days). On the glass bottle line, γ-proteobacteria dominated (35-82% of all OTUs), whereas on the canning line α-, β- and γ-proteobacteria and actinobacteria were most common. The most frequently detected genera were Acinetobacter, Propinobacterium and Pseudomonas. The halophilic genus Halomonas was commonly detected, which might be due to its tolerance to alkaline foam cleaners. This study has revealed a detailed overall picture of the bacterial groups present on filling line surfaces. Further effort should be given to determine the efficacy of washing procedures on different bacterial groups. PMID:27064426

  5. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  6. The structure of alteration layers on cast glass surfaces

    International Nuclear Information System (INIS)

    Alteration layers developed on SRL-165 simulated waste glasses in dilute sodium silicate/bicarbonate leaching solutions have been examined by Secondary Ionization Mass Spectroscopy (SIMS) using fine-scale, multiple-element depth profiling. Selected samples were examined with an imaging detector system, which demonstrated the horizontal homogeneity of the layer development at all depths within the layer. After 1 day of reaction at 90 degrees C the reaction layer shows depletion of glass elements to a depth of 0.2 μm. The surface of the layer in contact with the solution shows enrichment of Si, Al, and alkali elements even at this short reaction time, suggesting the early stages of development of secondary aluminosilicate phases. With increased reaction time, the layer thickens to about 1.3 μm at 91 days, while the evidence for aluminosilicate development at the surface of the layer becomes more prominent. Penetration of hydrogen into the ''unreacted'' glass proceeds to a depth of about 0.5 μm deeper than the alkali depletion zone. This suggests the mechanism of initial reaction of the glass is by attack of the silicate structure by molecular water or hydroxide ion rather than by alkali-hydrogen ion exchange. The simple structure of the layers developed in the silicate solution is in contrast to the complexity of layer structure found when glasses are reacted in deionized water. Since the conditions for geologic disposal will be closer to those used in the silicate leaching experiments, these results hold promise for the ability to model the system to predict long-term performance after disposal in a repository

  7. SURFACE HYDROPHOBICITY MODIFICATION OF CELLULOSE FIBERS BY LAYER-BY-LAYER SELF-ASSSEMBLY OF LIGNOSULFONATES

    OpenAIRE

    Hui Li; Hao Liu; Shiyu Fu; Huaiyu Zhan

    2011-01-01

    Self-assembled multilayers of lignosulfonates (LS) were built up on both quartz slides and cellulose fibers using a Cu2+-mediated layer-by-layer (LBL) technique. The growth of LS multilayers on quartz slides was monitored by UV-Vis spectroscopy, and the absorbance at 205 nm as well as at 280 nm was found to linearly increase with the number of layers. The formation of LS multilayers on fibers surfaces was characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM...

  8. Bacterial colonization of metallic surfaces exposed in marine environment. Use of bacterial lipids

    International Nuclear Information System (INIS)

    Addressing fouling and more particularly biofouling phenomena occurring notably on structures in marine environment, this research thesis first describes the fouling phenomenon (components, sequences of biofouling development, bio-film chemical composition). The author reports the study of the composition of the biological veil (microbiological methods, presentation of the different components), addresses the various types of lipids (bacterial markers and others). Then, after a presentation of the experimental equipment and methods (test cells, sample preparation, gas phase chromatography, hydrogenation and bromination, mass spectrometry), the author discusses the influence of different parameters such as the substrate type, speed, season, chlorination, and correlation with thermal transfer

  9. [Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea].

    Science.gov (United States)

    Li, Tao; Wang, Peng; Wang, Pinxian

    2008-03-01

    Diversity of bacteria and archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rDNA. Sample analysed was from IMAGES (International Marine Past Global Change Study) 147 at site of the south slope of the South China Sea. DNA was amplified from samples at the surface layer of core MD05-2896. Phylogenetic analysis of clone libraries showed a wide variety of uncultured bacteria and archeae. The most abundant bacterial sequences (phylotypes) corresponded to the Proteobacteria, followed by the Planctomycete, Acidobacteria and candidate division OP10. Phylotypes ascribing to Deferrobacteres, Verrucomicrobia, Spirochaetes and candidate division clades of OP3, OP11, OP8 and TM6 were also identified. Archaeal 16S rDNA sequences were within phylums of Crenarchaeota and Euryarchaeota, respectively. The majority of archaeal phylotypes were Marine Benthic Group B (MBGB), Marine Crenarchaeotic Group I (MG I), Marine Benthic Group D (MBGD) and South African Gold Mine Euryarchaeotic Group (SAGMEG). Additional sequences grouped with the C3, Methanobacteriales and Novel Euryarchaeotic Group (NEG). These results indicate that bacteria and archaea are abundant and diversified in surface environment of subseafloor sediments. PMID:18479058

  10. The effect of silver impregnation of surgical scrub suits on surface bacterial contamination.

    Science.gov (United States)

    Freeman, A I; Halladay, L J; Cripps, P

    2012-06-01

    Silver-impregnated fabrics are widely used for their antibacterial and antifungal effects, including for clinical clothing such as surgical scrub suits (scrubs). This study investigated whether silver impregnation reduces surface bacterial contamination of surgical scrubs during use in a veterinary hospital. Using agar contact plates, abdominal and lumbar areas of silver-impregnated nylon or polyester/cotton scrubs were sampled for surface bacterial contamination before (0 h) and after 4 and 8h of use. The number of bacterial colonies on each contact plate was counted after 24 and 48 h incubation at 37°C. Standard basic descriptive statistics and mixed-effects linear regression were used to investigate the association of possible predictors of the level of bacterial contamination of the scrubs with surface bacterial counts. Silver-impregnated scrubs had significantly lowered bacterial colony counts (BCC) at 0 h compared with polyester/cotton scrubs. However, after 4 and 8h of wear, silver impregnation had no effect on BCC. Scrub tops with higher BCC at 0 h had significantly higher BCC at 4 and 8h, suggesting that contamination present at 0 h persisted during wear. Sampling from the lumbar area was associated with lower BCC at all three time points. Other factors (contamination of the scrub top with a medication/drug, restraint of patients, working in the anaesthesia recovery area) also affected BCC at some time points. Silver impregnation appeared to be ineffective in reducing bacterial contamination of scrubs during use in a veterinary hospital. PMID:22015140

  11. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion.

    Science.gov (United States)

    Venkat Kumar, Govindarajan; Su, Chia-Hung; Velusamy, Palaniyandi

    2016-09-13

    Bacterial adhesion is a major problem that can lead to the infection of implanted urological stents. In this study, kanamycin-chitosan nanoparticles (KMCSNPs) were immobilized on the surface of a polyurethane ureteral stent (PUS) to prevent urinary bacterial infection. KMCSNPs were synthesized using the ionic gelation method. The synthesized KMCSNPs appeared spherical with a ζ-average particle size of 225 nm. KMCSNPs were immobilized on the PUS surface by covalent immobilization techniques. The surface-modified PUS was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The surface-modified PUS showed significantly increased antibacterial activity against Escherichia coli MTCC 729 and Proteus mirabilis MTCC 425 relative to the surface of an unmodified PUS. These findings suggest that the KMCSNP-immobilized PUS has the potential to prevent bacterial infection in the human urinary tract. PMID:27436679

  12. Design improvement of three-surface-multi-layered channel by reinforcing inner metal layer

    International Nuclear Information System (INIS)

    The three-surface-multi-layered channel has been proposed to reduce magnetohydrodynamic (MHD) pressure drop in a liquid lithium blanket for a future fusion reactor. The channel has three inner side coated with an insulating layer other than the first wall side. Furthermore, a thin vanadium alloy layer is placed on the insulating layer. Our previous study showed that the thin metal layer having a thickness less than 0.02 mm, which is too small to insure its structural integrity, is needed for the reduction of MHD pressure drop. In this study, therefore, we propose a new design for the channel, in which the thin vanadium alloy layer is partially reinforced by attaching reinforcing structure such as wires or columns on the insulating-layer side. As a first step, we conduct a three-dimensional MHD flow analysis by taking interval and length of the reinforcing structure as parameters. The results show that MHD pressure drop induced by the reinforcing structures does not show simple correlation with averaged electric conductance of thin metal layer with the reinforcing structures. Furthermore, a high velocity region appears in region of the first wall's side by changing the length of reinforcing structures. (author)

  13. Investigations of surface layers by wide-angle Rutherford scattering

    International Nuclear Information System (INIS)

    The energy spectrum of elastically scattered light ions of some MeV gives important informations on surface layers: 1. The energy of the scattered ions depends on the weight of the scattering centre and the depth where scattering takes place. The composition of surface layers of 1-3 μm in thickness can be examined. 2. In case of a mono-crystal target channel effect can arise which results in a decrease of the scattering yield by one or two orders of magnitude. This can be used for investigating the lattice localisation of the additive. Two examples demonstrate the method: the analysis of a magnetic thin-layer (Gd-Co) and the study of the mechanism of diffusion of additions (Sb) used in semi-conductor technic. (V.N.)

  14. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface

    Energy Technology Data Exchange (ETDEWEB)

    Saidin, Syafiqah, E-mail: syafiqahsaidin@gmail.com [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Chevallier, Pascale, E-mail: pascale.chevallier@crsfa.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Department of Mining, Metallurgical and Materials Engineering and University Hospital Research Center, Laval University, Quebec City, QC, G1V 0A6 (Canada); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Hermawan, Hendra, E-mail: hendra.hermawan@biomedical.utm.my [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Mantovani, Diego, E-mail: Diego.Mantovani@gmn.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Department of Mining, Metallurgical and Materials Engineering and University Hospital Research Center, Laval University, Quebec City, QC, G1V 0A6 (Canada)

    2013-12-01

    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application. - Highlights: • Successful immobilisation of Ag and HA on SS316L functionalised with polydopamine • Development of antibacterial film at 97.88% bactericidal ratio • The functionalised films were stable under ageing test at 7 days.

  15. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application. - Highlights: • Successful immobilisation of Ag and HA on SS316L functionalised with polydopamine • Development of antibacterial film at 97.88% bactericidal ratio • The functionalised films were stable under ageing test at 7 days

  16. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.;

    1986-01-01

    specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  17. Analysis of the surface layer of the brake disk

    Czech Academy of Sciences Publication Activity Database

    Švábenská, Eva; Roupcová, Pavla; Podstranská, Ivana; Petr, M.; Filip, J.; Schneeweiss, Oldřich

    Ostrava : TANGER Ltd, 2015. ISBN 978-80-87294-58-1. [METAL 2015. International Conference on Metallurgy and Materials /24./. Brno (CZ), 03.06.2015-05.06.2015] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : grey cast iron * brake disk * microstructure analysis * surface layer Subject RIV: JG - Metallurgy

  18. Hierarchy of adhesion forces in patterns of photoreactive surface layers

    Science.gov (United States)

    Hlawacek, Gregor; Shen, Quan; Teichert, Christian; Lex, Alexandra; Trimmel, Gregor; Kern, Wolfgang

    2009-01-01

    Precise control of surface properties including electrical characteristics, wettability, and friction is a prerequisite for manufacturing modern organic electronic devices. The successful combination of bottom up approaches for aligning and orienting the molecules and top down techniques to structure the substrate on the nano- and micrometer scale allows the cost efficient fabrication and integration of future organic light emitting diodes and organic thin film transistors. One possibility for the top down patterning of a surface is to utilize different surface free energies or wetting properties of a functional group. Here, we used friction force microscopy (FFM) to reveal chemical patterns inscribed by a photolithographic process into a photosensitive surface layer. FFM allowed the simultaneous visualization of at least three different chemical surface terminations. The underlying mechanism is related to changes in the chemical interaction between probe and film surface.

  19. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  20. Diversity of Bacterial Communities on Four Frequently Used Surfaces in a Large Brazilian Teaching Hospital.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Felix, Alvina Clara; Sanabani, Sabri Saeed

    2016-01-01

    Frequently used hand-touch surfaces in hospital settings have been implicated as a vehicle of microbial transmission. In this study, we aimed to investigate the overall bacterial population on four frequently used surfaces using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Surface samples were collected from four sites, namely elevator buttons (EB), bank machine keyboard buttons (BMKB), restroom surfaces, and the employee biometric time clock system (EBTCS), in a large public and teaching hospital in São Paulo. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Actinobacteria and Proteobacteria, with a total of 926 bacterial families and 2832 bacterial genera. Moreover, our analysis revealed the presence of some potential pathogenic bacterial genera, including Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus. The presence of these pathogens in frequently used surfaces enhances the risk of exposure to any susceptible individuals. Some of the factors that may contribute to the richness of bacterial diversity on these surfaces are poor personal hygiene and ineffective routine schedules of cleaning, sanitizing, and disinfecting. Strict standards of infection control in hospitals and increased public education about hand hygiene are recommended to decrease the risk of transmission in hospitals among patients. PMID:26805866

  1. Diversity of Bacterial Communities on Four Frequently Used Surfaces in a Large Brazilian Teaching Hospital

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2016-01-01

    Full Text Available Frequently used hand-touch surfaces in hospital settings have been implicated as a vehicle of microbial transmission. In this study, we aimed to investigate the overall bacterial population on four frequently used surfaces using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Surface samples were collected from four sites, namely elevator buttons (EB, bank machine keyboard buttons (BMKB, restroom surfaces, and the employee biometric time clock system (EBTCS, in a large public and teaching hospital in São Paulo. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Actinobacteria and Proteobacteria, with a total of 926 bacterial families and 2832 bacterial genera. Moreover, our analysis revealed the presence of some potential pathogenic bacterial genera, including Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus. The presence of these pathogens in frequently used surfaces enhances the risk of exposure to any susceptible individuals. Some of the factors that may contribute to the richness of bacterial diversity on these surfaces are poor personal hygiene and ineffective routine schedules of cleaning, sanitizing, and disinfecting. Strict standards of infection control in hospitals and increased public education about hand hygiene are recommended to decrease the risk of transmission in hospitals among patients.

  2. The role of surface waves in the ocean mixed layer

    Institute of Scientific and Technical Information of China (English)

    QIAO Fangli; YANG Yongzeng; XIA Changshui; YUAN Yeli

    2008-01-01

    Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under- prediction of the mixing layer (ML) depth and an over- prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean-atmospheric models and hence the cli-mate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this sys-tematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be cor-rected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.

  3. Aspects of the atmospheric surface layers on Mars and Earth

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Landberg, L.;

    2002-01-01

    mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance of the...... for the same surface features. The scaling laws have been validated analysing the Martian surface-layer data for the relations between the power spectra of wind and temperature turbulence and the corresponding mean values of wind speed and temperature. Usual spectral formulations were used based on...... the scaling laws ruling the Earth atmospheric surface layer, whereby the Earth's atmosphere is used as a standard for the Martian atmosphere....

  4. Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform

    Directory of Open Access Journals (Sweden)

    J. Hong

    2009-10-01

    Full Text Available Turbulence statistics such as flux-variance relationship is critical information in measuring and modeling carbon, water, energy, and momentum exchanges at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding of the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environment such as nocturnal stable boundary layer.

  5. Surface layer similarity in the nocturnal boundary layer: the application of Hilbert-Huang transform

    Directory of Open Access Journals (Sweden)

    J. Hong

    2010-04-01

    Full Text Available Turbulence statistics such as flux-variance relationship are critical information in measuring and modeling ecosystem exchanges of carbon, water, energy, and momentum at the biosphere-atmosphere interface. Using a recently proposed mathematical technique, the Hilbert-Huang transform (HHT, this study highlights its possibility to quantify impacts of non-turbulent flows on turbulence statistics in the stable surface layer. The HHT is suitable for the analysis of non-stationary and intermittent data and thus very useful for better understanding the interplay of the surface layer similarity with complex nocturnal environment. Our analysis showed that the HHT can successfully sift non-turbulent components and be used as a tool to estimate the relationships between turbulence statistics and atmospheric stability in complex environments such as nocturnal stable boundary layer.

  6. Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media.

    OpenAIRE

    Rijnaarts, H.H.M.

    1994-01-01

    Interactions between bacteria and solid surfaces strongly influence the behaviour of bacteria in natural and engineered ecosystems. Many biofilm reactors and terrestrial environments are porous media. The purpose of the research presented in this thesis is to gain a better insight into the basic mechanims of bacterial adhesion and transport in such systems. This knowledge is essential for bacterial adhesion science in general, and important for practical applications such as the bioremediatio...

  7. Modification of Surface Layers by Surfacing Intermetallic Coatings with Variable Properties

    Science.gov (United States)

    Makeev, D. N.; Zakharov, O. V.; Vinogradov, A. N.; Kochetkov, A. V.

    2016-02-01

    The paper considers the possibility of forming coating layers for parts within wide limits of microhardness. The technology uses surfacing of intermetallic coatings provided by a unique experimental setup. Theoretical and experimental dependence of the coating layer microhardness on the filler concentration using the changes in the speed of the filler wire feed and current intensity were determined.

  8. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).

    Science.gov (United States)

    Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo

    2015-01-27

    A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration. PMID:25525956

  9. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.;

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º...

  10. Boundary layer for non-newtonian fluids on curved surfaces

    International Nuclear Information System (INIS)

    By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author)

  11. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Tas, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Prieme, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º...... phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.......N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable...... significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and...

  12. Surface roughness : causal factors : and its relation to bacterial adhesion

    OpenAIRE

    Tellefsen, Georg

    2013-01-01

    Inflammation around teeth and dental implants is considered to be due to microorganisms producing biofilm and thereby initiating the inflammatory reaction. The etiology is not yet fully understood though many risk factors have been identified, e.g. smoking, oral hygiene, stress etc. That surface roughness plays a role both in the development of the biofilm and discoloration of teeth is nowadays beyond doubt. To create a smooth surface is an important part of the oral hygien...

  13. D-amino carboxamide-based recruitment of dinitrophenol antibodies to bacterial surfaces via peptidoglycan remodeling.

    Science.gov (United States)

    Fura, Jonathan M; Pires, Marcos M

    2015-07-01

    During the past few decades there has been a rapid emergence of multidrug resistant bacteria afflicting human patients. At the same time, reduced output from pharmaceutical industry in this area precipitated a sharp decrease in the approval of new antibiotics. The combination of these factors potentially compromises the ability to effectively combat bacterial infections. While traditional drug discovery efforts continue in the pursuit of small molecule agents that disrupt bacterial growth, non-traditional efforts could serve to complement antimicrobial strategies. We recently demonstrated our ability to remodel the surface of bacterial cells using unnatural D-amino acids displaying the antigenic dinitrophenyl (DNP) handle. These immune stimulant D-amino acids derivatives were metabolically incorporated onto the peptidoglycan of bacteria via a promiscuous surface-anchored transpeptidase. The covalent modification of DNP moieties onto the peptidoglycan led to the anti-DNP antibody opsonization of the bacterial cell surface. Herein, we show that the amidation of the C-terminus to generate DNP-displaying D-amino carboxamide drastically improves antibody recruitment. Antibody opsonization using the D-amino carboxamide agent is observed at lower concentrations than the D-amino acid counterpart. In addition, the recruitment of endogenous antibodies in pooled human serum to the DNP-modified bacterial cell surface is demonstrated for the first time. We envision that the C-terminus amidation of DNP-conjugated D-amino acids could potentially facilitate translation of these results to in vivo animal disease models. PMID:25653048

  14. Formation of intermetallic surface layers with high intensity ion implantation

    International Nuclear Information System (INIS)

    Full text: Ion implantation is an effective method to produce the intermetallic phases and for improving of surface properties of the construction materials. From the variety of the well-known methods, the high intensity ion implantation is the most attractive one, since it allows us to obtain in the target materials the ion ion-alloyed layers with the thickness several orders greater than the ion projected range. The increase of the thickness of ion-alloyed surface layers at high intensity implantation can be achieved by the means of controlled heating of target by the ion beam, as well as by the saturation of the surface layer by high concentrated ion beam, followed by radiation-stimulated diffusion. Now the task of obtaining of high intensity ion beams is successfully solved not only for the gas ions, but also for the metals ions. The new vacuum-arc beam and plasma flow source 'Raduga-5' has the opportunity to carry out the implantation of the conductive material ions in the high intensity mode. The high intensity ion implantation allows us to form in the surface layer the fine dispersed intermetallic phases in order to improve the wear resistance and the heat resistance of the metallic work pieces. In the present work, titanium was used as a target for ion implantation. Ion implantation of aluminum ions into titanium was carried out using the 'Raduga-5' ion source at the accelerating voltage 20 kV. The surface sputtering was compensated by plasma deposition of ions. The variation of the time of the ion implantation allowed us to change the dose of the implanted aluminium ions. The chemical and phase composition, as well as morphologic structure of the ion-alloyed surface layers were analyzed by the Auger spectroscopy and by the transmission electron microscopy. Additionally, the tests of the tribological and mechanical properties of the implanted materials have been carried out. It was found out that increasing of the dose of aluminum ions from 2.2·1017 up to

  15. On the Effects of Surface Roughness on Boundary Layer Transition

    Science.gov (United States)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  16. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders;

    L.Biofilm formation on surfaces in food production and processing can deteriorate the quality of food products and be a hazard to consumers. The food industry currently uses a number of approaches to either remove biofilm or prevent its formation. Due to the inherent resilience of bacteria...... in biofilm, a particularly attractive approach is the modification of surfaces with the aim to impede the first step in biofilm formation, namely bacterial adhesion. Surface properties such as hydrophobicity, roughness and predisposition for fouling by protein are recognised as important in bacterial......) and compare it to two nanostructured sol-gel coatings with variable hydrophobicity. Test surfaces were characterised with respect to surface roughness by atomic force microscopy, surface hydrophobicity by contact angle (CA) measurements, protein adsorption by quartz crystal microbalance analyses...

  17. Influence of Oxynitrided Surface in the Production of a Less Susceptible Titanium Surface to Skin-Borne Bacterial Adhesion.

    Science.gov (United States)

    Aires, Michelle de Medeiros; Treter, Janine; Braz, Danilo Cavalcante; Krug, Cristiano; Macedo, Alexandre José; Alves Júnior, Clodomiro

    2016-05-01

    There is a growing quest for an ideal biomaterial that shows appropriate cellular response and is not susceptible to microbial adhesion. In this study, commercial grade II titanium was submitted to RF/DC plasma surface modification at 2.2 mbar, using gas mixtures of argon, nitrogen, and oxygen at proportions 4:1:2 and 4:1:3. The surfaces were physically and chemically characterized. In order to evaluate bacterial response, the surfaces were exposed to Staphylococcus epidermidis. Oxynitrided samples, although having a higher roughness as compared with untreated samples, exhibited lower bacterial growth. This observation is probably due to the formation of different crystalline phases of nitrides and oxides caused by plasma treatment. The surface with highest contact angle and highest surface tension showed lower bacterial adhesion. These results were confirmed by scanning electron microscopy. The role of nitrogen in reducing bacterial adhesion is clear when this material is compared with untreated titanium, on which only an oxide film is present. PMID:26611366

  18. Fluid-dynamics of the nuclear surface Fermi-layer

    International Nuclear Information System (INIS)

    In the framework of the long-mean-free-path approach the fluid-dynamical model of the nuclear surface as a spherical Fermi-layer is formulated. It is shown that the model reproduces known results of Fermi-drop dynamics and permits the description of more low energy collective states in spherical nuclei. The quantum-capillary branch of low-lying surface excitations is predicted. The model gives an adequate description of both lowest and highest experimental collective energies. (author) 18 refs.; 8 figs

  19. Studies of stability of blade cascade suction surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    DONG Xue-zhi; YAN Pei-gang; HAN Wan-jin

    2007-01-01

    Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations(PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved.

  20. The appearance of liquid surfaces and layers in routine radiographs

    International Nuclear Information System (INIS)

    As has been demonstrated, the interfaces between a gas and a body fluid or a contrast medium may be visualized in the radiographic image as various kinds of boundaries, as also may interfaces between a contrast medium and a body fluid. These can provide little diagnostic information. Data of clinical value are usually derived from boundaries that represent bounding surfaces of anatomic structures touched by the roentgen rays. In the interpretation of the radiographic image it is important to recognize whether a boundary represents an anatomic structure, a liquid surface or a diffusion layer. It is a traditional view that a liquid surface is visualized by a horizontal beam as a straight horizontal boundary and that the imaged surface is then also horizontal. As has been shown in the earlier investigations and the present one, this is not always the case, for these boundaries are usually curved with an upward concavity. It is important to bear in mind that also rays departing considerably from the horizontal may still touch the liquid surface in its meniscoid. Even a vertical beam will form a boundary when touching a meniscoid. It would also appear that the simple layering phenomenon can present difficulty in interpretation. Examples of this phenomenon that illustrate particularly important situations have been presented. Ambiguity associated with the interpretation of images produced by a vertical beam may be resolved with the aid of supplementary films exposed with a horizontal beam. (orig.)

  1. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    Directory of Open Access Journals (Sweden)

    Doreene Kang

    2016-01-01

    Full Text Available New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxes of momentum, sensible heat, and latent heat are derived based on Monin-Obukhov Similarity Theory (MOST. This research develops an improved method to derive surface fluxes and the corresponding MASL mean profiles of wind, temperature, and humidity with a least-squares optimization method using the profiling measurements. This approach allows the use of all available independent data. We use a weighted cost function based on the framework of MOST with the cost being optimized using a quasi-Newton method. This approach was applied to seven sets of data collected from the Monterey Bay. The derived fluxes and mean profiles show reasonable results. An empirical bias analysis is conducted using 1000 synthetic datasets to evaluate the robustness of the method.

  2. Bacterial Biofilm Morphology on a Failing Implant with an Oxidized Surface: A Scanning Electron Microscope Study.

    Science.gov (United States)

    Simion, Massimo; Kim, David M; Pieroni, Stefano; Nevins, Myron; Cassinelli, Clara

    2016-01-01

    This case report provided a unique opportunity to investigate the extent of microbiota infiltration on the oxidized implant surface that has been compromised by peri-implantitis. Scanning electron microscopic analysis confirmed the etiologic role of the bacteria on the loss of supporting structure and the difficulty in complete removal of bacterial infiltration on the implant surface. This case report emphasizes the need to perform definitive surface decontamination on failing dental implants prior to a regeneration procedure. PMID:27333005

  3. Bacterial Surface Display of Metal-Binding Sites

    Czech Academy of Sciences Publication Activity Database

    Kotrba, P.; Rulíšek, Lubomír; Ruml, T.

    Dordrecht: Springer, 2011 - (Kotrba, P.; Macková, M.; Macek, T.), s. 249-283 ISBN 978-94-007-0442-8 Grant ostatní: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z40550506 Keywords : bioremediation * biosorption * metal-binding peptide * cell-surface display Subject RIV: EI - Biotechnology ; Bionics

  4. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    Science.gov (United States)

    Rassner, Sara M E; Anesio, Alexandre M; Girdwood, Susan E; Hell, Katherina; Gokul, Jarishma K; Whitworth, David E; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  5. In-situ surface hardening of cast iron by surface layer metallurgy

    International Nuclear Information System (INIS)

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV0.1±52 HV0.1 to 505 HV0.1±87 HV0.1. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values

  6. Open Contours Extraction of Rotational Surface Oriented to Layer Measurement

    Institute of Scientific and Technical Information of China (English)

    亓利伟; 赵毅; 李明辉

    2003-01-01

    With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.

  7. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    Science.gov (United States)

    Sobel, Nicolas; Hess, Christian

    2015-12-01

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy. PMID:26538495

  8. A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces

    International Nuclear Information System (INIS)

    Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H2O2) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH3COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 deg. C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.

  9. Soil moisture sensor calibration for organic soil surface layers

    Directory of Open Access Journals (Sweden)

    S. Bircher

    2015-12-01

    Full Text Available This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankyl

  10. Soil moisture sensor calibration for organic soil surface layers

    Science.gov (United States)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  11. Processing and properties of electrodeposited layered surface coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    1998-01-01

    clacks and spalls off early on. For thick, non-compliant coatings, much thicker coatings can be formed. Fracture resistance must be considered in relation to both specimen and loading geometries. Since the inherent bending moment causes a maximum tensile stress at the coating surface, the loading......Hard chromium, produced by conventional dir ect curl ent (DC) electrodeposition, cannot be deposited to thicknesses gl enter than about 5 mu m because of the buildup of processing stresses which cause channel cracks in the coating. Much thicker chromium coatings map be produced by depositing a...... layered structure using alternate DC plating and periodic current reversal (PR). Such layering produces a through thickness stepped gradient in residual stresses. Most importantly a bending moment develops in the coating whenever the substrate is compliant. For thin, compliant substrates, the coating...

  12. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola;

    1998-01-01

    We investigated the effects of halogenated furanones from the red alga Delisea pulchra on colonisation of surfaces by marine bacteria. Bacterial abundance on the surface of D. pulchra, assessed using scanning electron microscopy (SEM), was significantly lower than on the surfaces of 3 co-occurrin......We investigated the effects of halogenated furanones from the red alga Delisea pulchra on colonisation of surfaces by marine bacteria. Bacterial abundance on the surface of D. pulchra, assessed using scanning electron microscopy (SEM), was significantly lower than on the surfaces of 3 co...... experimentally investigated inhibition of marine bacteria by furanones, initially testing the effects of crude extract of D. pulchra (about 50 % of which is furanones) on the growth of 144 strains of bacteria isolated from the surfaces of D. pulchra, nearby rocks, or a co-occurring alga (Sasgassum vestitum......, suggesting that swarming may be ecologically important in these systems. Overall, we found that the effects of furanones on bacteria varied among (1) furanones, (2) bacterial phenotypes, (3) different isolates and (4) different sources of isolation (e.g. rocks or algae). This differential inhibition of...

  13. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology

    Directory of Open Access Journals (Sweden)

    Pietro Mandracci

    2016-01-01

    Full Text Available Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Improving or accelerating the osseointegration process is usually the main goal of these surface processes, but the improvement of biocompatibility and the prevention of bacterial adhesion are also of considerable importance. In this review, we report on the research of the recent years in the field of surface treatments and coatings deposition for the improvement of dental implants performance, with a main focus on the osseointegration acceleration, the reduction of bacterial adhesion and the improvement of biocompatibility.

  14. Effect of corrosion rate and surface energy of silver coatings on bacterial adhesion.

    Science.gov (United States)

    Shao, Wei; Zhao, Q

    2010-03-01

    Many studies suggest a strong antimicrobial activity of silver coatings. The biocidal activity of silver is related to the biologically active silver ion released from silver coatings. However, no studies have been reported on the effect of surface energy of silver coatings on antibacterial performance. In this paper, three silver coatings with various corrosion rates and surface energies were prepared on stainless steel plates using AgNO(3) based electroless plating solutions. The corrosion rate and surface energy of the silver coatings were characterized with CorrTest Electrochemistry Workstation and Dataphysics OCA-20 contact angle analyzer, respectively. The antibacterial performance of the silver coatings was evaluated with Pseudomonas aeruginosa PA01, which frequently causes medical device-associated infections. The experimental results showed that surface energy had significant influence on initial bacterial adhesion at low corrosion rate. The extended DLVO theory was used to explain the bacterial adhesion behavior. PMID:19910169

  15. Bacterial flagellar motility on hydrated rough surfaces controlled by aqueous film thickness and connectedness.

    Science.gov (United States)

    Tecon, Robin; Or, Dani

    2016-01-01

    Recent studies have shown that rates of bacterial dispersion in soils are controlled by hydration conditions that define size and connectivity of the retained aqueous phase. Despite the ecological implications of such constraints, microscale observations of this phenomenon remain scarce. Here, we quantified aqueous film characteristics and bacterial flagellated motility in response to systematic variations in microhydrological conditions on porous ceramic surfaces that mimic unsaturated soils. We directly measured aqueous film thickness and documented its microscale heterogeneity. Flagellar motility was controlled by surface hydration conditions, as cell velocity decreased and dispersion practically ceased at water potentials exceeding -2 kPa (resulting in thinner and disconnected liquid films). The fragmentation of aquatic habitats was delineated indirectly through bacterial dispersal distances within connected aqueous clusters. We documented bacterial dispersal radii ranging from 100 to 10 μm as the water potential varied from 0 to -7 kPa, respectively. The observed decrease of flagellated velocity and dispersal ranges at lower matric potentials were in good agreement with mechanistic model predictions. Hydration-restricted habitats thus play significant role in bacterial motility and dispersal, which has potentially important impact on soil microbial ecology and diversity. PMID:26757676

  16. Effect of Surface Attachment on Synthesis of Bacterial Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R [ORNL; O' Neill, Hugh Michael [ORNL

    2005-01-01

    Gluconacetobacter spp. synthesize a pure form of hydrophilic cellulose that has several industrial specialty applications. Literature reports have concentrated on intensive investigation of static and agitated culture in liquid media containing high nutrient concentrations optimized for maximal cellulose production rates. The behavior of these bacteria on semisolid and solid surfaces has not been specifically addressed. The species Gluconacetobacter hansenii was examined for cellulose synthesis and colony morphology on a range of solid supports, including cotton linters, and on media thickened with agar, methyl cellulose, or gellan. The concentration and chemical structure of the thickening agent were found to be directly related to the formation of contiguous cellulose pellicules. Viability of the bacteria following freezer storage was improved when the bacteria were frozen in their cellulose pellicules.

  17. Plasma boundary layer with active surface. Pt. 1

    International Nuclear Information System (INIS)

    The space-charge boundary layer between plasma and wall which is normally (almost) homogeneous may become instable and may decay into largely independent spots of plasma-induced unipolar-like discharges. In Tokamaks the existence of such highly inhomogeneous boundary plasmas often has been found by observation of arc tracks and of ''hot spots'' a.s.o. In this way wall erosion and production rates of plasma impurities will be enhanced, and several special phenomena of intense wall erosion (like ''carbon blooming'') may be traced back to such effects. In this paper the influence of electron emission from the wall (i.e. of an ''active'' surface) on the parameter of the space charge sheath is investigated, applying simple balance equations, as a first step towards an explanation of the transition from a homogeneous into an inhomogeneous boundary layer. Several variations of such models are calculated, using typical plasma parameters. Essential result is the dependence of the sheath potential and of the surface power density on the emission yield and on the net current density. Irrespective of the chosen constants the potential drop between plasma and wall turns out to become the higher the lower is the electron emission and the higher is the net current. Opposite is the dependence of the energy flux to the wall which, however, passes a minimum and increases rapidly again near the maximum net current jmax (with jmax∼jis(γ-1), where jis=ion saturation current, and γ=emission yield per ion). As a consequence, the wall loading is strongly enhanced as well in case of high negative net currents and intense electron emission, as near the maximum net current. This will be infavour of an instability of the boundary layer, resulting - with high probability - in the decay of the layer into plasma-induced arc spots. As a next step in this investigation of such plasma boundary layers a careful analysis of this transition is provided for, taking the specified conditions of the

  18. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  19. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers

    CERN Document Server

    Friedt, J M; Francis, L; Zhou, C; Campitelli, A; Friedt, Jean-Michel; Denis, Frederic; Francis, Laurent; Zhou, Cheng; Campitelli, Andrew

    2003-01-01

    We use an instrument combining optical (surface plasmon resonance) and acoustic (Love mode acoustic wave device) real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition, the bound mass and its physical properties -- density and optical index -- are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70+/-20 % water and are 16+/-3 to 19+/-3 nm thick for bulk concentrations ranging from 30 to 300 ug/ml. Fibrinogen layers include 50+/-10 % water for layer thicknesses in the 6+/-1.5 to 13+/-2 nm range when the bulk concentration is in the 46 to 460 ug/ml range.

  20. Anomalous magnetotransport of a surface electron layer above liquid helium

    International Nuclear Information System (INIS)

    The magnetoconductivity σxx of a surface electron layer above liquid helium has been measured at temperatures between 0.5-1.6 K, for concentrations up to about 4x108 cm-2, in magnetic fields up to 25 kOe. As was observed, σxx first decreases with lowering temperature, then has a minimum and at T xy, the earlier ascertained anomalous behaviour of the magnetoresistance ρxx taken into consideration. The calculated dependence of ρxx on T is in satisfactory agreement with the anomalous dependence ρxx(T) found earlier by experiment

  1. Structure-phase states of the nickel surface layers after electroexplosive carburizing

    Institute of Scientific and Technical Information of China (English)

    Budovskikh; E.; A.; Bagautdinov; A.; Y.; Ivanov; Yu.; F.; Martusevich; E.; V.; Gromov; V.; E.

    2005-01-01

    The layer by layer study of the structure-phase states of the nickel surface layer carburizing with use the phenomena of the electrical explosion has conducted by the method TEM of the fine foils.……

  2. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    Science.gov (United States)

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters. PMID:26648916

  3. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    Science.gov (United States)

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. PMID:26572322

  4. Layer by Layer, Nano-particle "Only" Surface Modification of Filtration Membranes

    Science.gov (United States)

    Escobar-Ferrand, Luis

    Layer by Layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for the modification of polymeric micro and ultrafiltration (MF/UF) membranes to produce thin film composites (TFC) with potential nanofiltration (NF) and reverse osmosis (RO) capabilities.. A variety of porous substrate membranes with different membrane surface characteristics are employed, but exhibiting in common that wicking of water does not readily occur into the pore structure, including polycarbonate track etched (PCTE), polyethersulfone (PES) and sulfonated PES (SPEES) MF/UF membranes. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those reported by Lee et al. Appropriate selection of the pH's for anionic and cationic particle deposition enables the construction of nanoparticle only layers 100--1200 nm in thickness atop the original membrane substrates. The surface layer thickness varies monotonically with the number of bilayers (anionic/cationic deposition cycles) as expected. The deposition process is optimized to eliminate drying induced cracking and to improve mechanical durability via thickness control and post-deposition hydro-thermal treatment. The hydrodynamic permeability of these TFC membranes is measured to evaluate their performance under typical NF operating conditions using dead-end permeation experiments and their performance compared quantitatively with realistic hydrodynamic models, with favorable results. For track etched polycarbonate MF substrates, surface modification causes a permeability reduction of approximately two orders of magnitude with respect to the bare substrates, to values comparable to those for typical commercial NF membranes. Good quantitative agreement with hydrodynamic models with no adjustable parameters was also established for this case, providing indirect confirmation that the LbL deposited surface layers are largely defect (crack) free

  5. Surface Physicochemistry and Ionic Strength Affects eDNA’s Role in Bacterial Adhesion to Abiotic Surfaces

    OpenAIRE

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Jakub J Modrzyński; Sutherland, Duncan S; Rikke L Meyer

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequen...

  6. Formation of gradient surface layers on high speed steel by laser surface alloying process

    Directory of Open Access Journals (Sweden)

    M. Bonek

    2012-12-01

    Full Text Available Purpose: The purpose of this research paper is focused on the high speed steel HS6-5-3-8 surface layers improvement properties using HPDL laser. The paper present laser surface technologies, investigation of structure and properties of the high speed steel alloying with the WC, VC, TiC, SiC, Si3N4 and Al2O3 particles using high power diode laser HPDL.Design/methodology/approach: Investigation indicate the influence of the alloying elements on the structure and properties of the surface layer of investigated steel depending on the kind of alloying carbides, oxides, nitrides and power implemented laser (HPDL.Findings: Laser alloying of surface layer of investigated steel without introducing alloying additions into liquid molten metal pool, in the whole range of used laser power, causes size reduction of dendritic microstructure with the direction of crystallization consistent with the direction of heat carrying away from the zone of impact of laser beam. In the effect of laser alloying with powder of the WC, VC, TiC, SiC, Si3N4and Al2O3 particles occurs size reduction of microstructure as well as dispersion hardening through fused in but partially dissolved particles and consolidation through enrichment of surface layer in alloying additions coming from dissolving elements. Introduced particles of carbides, oxides, nitrides and in part remain undissolved, creating conglomerates being a result of fusion of undissolved powder grains into molten metal base. In effect of convection movements of material in the liquid state, conglomerates of carbides arrange themselves in the characteristic of swirl. Practical implications: Laser surface modification has the important cognitive significance and gives grounds to the practical employment of these technologies for forming the surfaces of new tools and regeneration of the used ones.Originality/value: The structural mechanism was determined of surface layers development, effect was studied of alloying

  7. Water-soluble sacrificial layers for surface micromachining.

    Science.gov (United States)

    Linder, Vincent; Gates, Byron D; Ryan, Declan; Parviz, Babak A; Whitesides, George M

    2005-07-01

    This manuscript describes the use of water-soluble polymers for use as sacrificial layers in surface micromachining. Water-soluble polymers have two attractive characteristics for this application: 1) They can be deposited conveniently by spin-coating, and the solvent removed at a low temperature (95-150 degrees C), and 2) the resulting layer can be dissolved in water; no corrosive reagents or organic solvents are required. This technique is therefore compatible with a number of fragile materials, such as organic polymers, metal oxides and metals-materials that might be damaged during typical surface micromachining processes. The carboxylic acid groups of one polymer-poly(acrylic acid) (PAA)-can be transformed by reversible ion-exchange from water-soluble (Na+ counterion) to water-insoluble (Ca2+ counterion) forms. The use of PAA and dextran polymers as sacrificial materials is a useful technique for the fabrication of microstructures: Examples include metallic structures formed by the electrodeposition of nickel, and freestanding, polymeric structures formed by photolithography. PMID:17193516

  8. Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair.

    Science.gov (United States)

    Karahaliloğlu, Zeynep; Demirbilek, Murat; Şam, Mesut; Sağlam, Necdet; Mızrak, Alpay Koray; Denkbaş, Emir Baki

    2016-01-01

    The aim of the study is in vitro investigation of the feasibility of surface-modified bacterial nanofibrous poly [(R)-3-hydroxybutyrate] (PHB) graft for bladder reconstruction. In this study, the surface of electrospun bacterial PHB was modified with PEG- or EDA via radio frequency glow discharge method. After plasma modification, contact angle of EDA-modified PHB scaffolds decreased from 110 ± 1.50 to 23 ± 0.5 degree. Interestingly, less calcium oxalate stone deposition was observed on modified PHB scaffolds compared to that of non-modified group. Results of this study show that surface-modified scaffolds not only inhibited calcium oxalate growth but also enhanced the uroepithelial cell viability and proliferation. PMID:24863802

  9. Plasma Nitriding of Austenitic Stainless Steel with Severe Surface Deformation Layer

    Institute of Scientific and Technical Information of China (English)

    JI Shi-jun; GAO Yu-zhou; WANG Liang; SUN Jun-cai; HEI Zu-kun

    2004-01-01

    The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.

  10. Bacterial Diversity of Gut Content in Sea Cucumber (Apostichopus japonicus) and Its Habitat Surface Sediment

    Institute of Scientific and Technical Information of China (English)

    GAO Fei; TAN Jie; SUN Huiling; YAN Jingping

    2014-01-01

    This study investigated the bacterial diversity of gut content of sea cucumber (Apostichopus japonicus) and its habitat surface sediment in a bottom enhancement area using PCR-based denaturing gradient gel electrophoresis (DGGE) technique. Bacte-rial diversity evaluation showed that the value of the Shannon-Wiener index of gut content in different intestinal segments of A. ja-ponicus varied between 2.88 and 3.00, lower than that of the surrounding sediment (3.23). Phylogenetic analysis showed that bacte-rial phylotypes in gut content and the surrounding sediment of A. japonicus were closely related to Proteobacteria includingγ-,α-,δ-andε-proteobacteria, Bacteroidetes, Firmicute, and Actinobacteria, of whichγ-proteobacteria were predominant. These results sug-gested that the sea cucumber A. japonicus was capable of feeding selectively, and PCR-DGGE was applicable for characterizing the bacterial community composition in gut content and the surrounding sediment of sea cucumber. Further investigation targeting longer 16S rDNA gene fragments and/or functional genes was recommended for obtaining more information of the diversity and function of bacterial community in the gut content of sea cucumber.

  11. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    Science.gov (United States)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  12. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    Science.gov (United States)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  13. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    International Nuclear Information System (INIS)

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  14. Exploring the bronzing effect at the surface of ink layers

    Science.gov (United States)

    Hébert, Mathieu; Mallet, Maxime; Deboos, Alexis; Chavel, Pierre; Kuang, Deng-Feng; Hugonin, Jean-Paul; Besbes, Mondher; Cazier, Anthony

    2015-03-01

    We investigate the optical phenomenon responsible for the colored shine that sometimes appears at the surface of ink layers in the specular direction, often called bronzing or gloss differential. It seems to come from the wavelength-dependent refractive index of the ink, which induces a wavelength-dependent reflectance of the ink-air interface. Our experiments on cyan and magenta inkjet inks confirm this theory. Complex refractive indices can be obtained from measurements of the spectral reflectance and transmittance of a transparency film coated with the ink. We propose a correction of the classical Clapper-Yule model in order to include the colored gloss in the prediction of the spectral reflectance of an inked paper. We also explored effects of scattering by the micrometric or nanometric roughness of the ink surface. The micrometric roughness, easy to model with a geometrical optics model, can predict the spreading of the colored gloss over a large cone. Electromagnetic models accounting for the effect of the nanometric roughness of the surface also predict the attenuation of short wavelengths observed under collimated illumination.

  15. Electron tunneling in tantalum surface layers on niobium

    International Nuclear Information System (INIS)

    We have performed electron tunneling measurements on tantalum surface layers on niobium. The tunnel junctions comprise 2000-A-circle Nb base electrodes with 10--100-A-circle in situ--deposited Ta overlayers, an oxide barrier, and Ag, Pb, or Pb-Bi alloy counterelectrodes. The base electrodes were prepared by ion-beam sputter deposition. The characteristics of these junctions have been studied as a function of Ta-layer thickness. These include the critical current, bound-state energy, phonon structure, and oxide barrier shape. We have compared our results for the product I/sub c/R versus tantalum-layer thickness with an extended version of the Gallagher theory which accounts for both the finite mean free path in the Ta overlayers and suppression of the I/sub c/R product due to strong-coupling effects. Excellent fits to the data yield a value of the intrinsic scattering probability for electrons at the Ta/Nb interface of r2 = 0.01. This is consistent with the value expected from simple scattering off the potential step created by the difference between the Fermi energies of Ta and Nb. We have found a universal empirical correlation in average barrier height phi-bar and width s in the form phi-bar = 6 eV/(s-10 A-circle) for measured junctions which holds both for our data and results for available data in the literature for oxide-barrier junctions. The latter are composed of a wide variety of base and counterelectrode materials. These results are discussed in the general context of oxide growth and compared with results for artificial tunnel barriers

  16. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  17. Thermodynamic model of hydrogen-induced silicon surface layer cleavage

    International Nuclear Information System (INIS)

    A thermodynamic model of hydrogen-induced silicon surface layer splitting with the help of a bonded silicon wafer is proposed in this article. Wafer splitting is the result of lateral growth of hydrogen blisters in the entire hydrogen-implanted region during annealing. The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion. The hydrogen blister radius was studied as a function of annealing time, annealing temperature, and implantation dose. The critical radius was obtained according to the Griffith energy condition. The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters. [copyright] 2001 American Institute of Physics

  18. The theoretical model of atmospheric turbulence spectrum in surface layer

    Science.gov (United States)

    Liu, Shida; Liu, Shikuo; Xin, Guojun; Liang, Fuming

    1994-12-01

    It is shown that the slope of energy spectrum obtained from the velocity solution of Kdv—Burgers equation lies between —5/3 and—2 in the dilogarithmic coordinates paper. The spectrum is very close to one of Kolmogorov's isotropic turbulence and Frisch's intermittent turbulence in inertial region. In this paper, the Kdv-Burgers equation to describe atmospheric boundary layer turbulence is obtained. In the equation, the 1 / R e corresponds to dissipative coefficient v, R /2 t to dispersive coefficient β, then ( v/2 β)2 corresponds to 1 / R 2 e • Ri. We prove that the wave number corresponding to maximum energy spectrum S(k) decreases with the decrease of stability (i.e., the increase of ( v / 2 β)2 in eddy—containing region. And the spectrim amplitude decreases with the increase of ( v / 2 β)2 (i.e., the decrease of stability). These results are consistent with actual turbulence spectrum of atmospheric surface layer from turbulence data.

  19. Cone model for two surface foundations on layered soil

    Institute of Scientific and Technical Information of China (English)

    Chen Wenhua

    2006-01-01

    In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scattering field. Seed's simplified method is adopted for the free-field analysis,while the cone model is proposed for analyzing the dynamic scattering stress wave field.The shear stress field and the compressive stress field in the layered stratum with two scattering sources are calculated by shear cone and compressive cone, respectively. Furthermore, the stress fields in the subsoil with two foundations are divided into six zones, and the P wave and S wave are analyzed in each zone. Numerical results are provided to illustrate features of the added stress field for two surface foundations under vertical and horizontal sinusoidal force excitation. The proposed cone model may be useful in handling some of the complex problems associated with multi-scattering sources.

  20. Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis

    DEFF Research Database (Denmark)

    De Corte, Simon; Bechstein, Stefanie; Lokanathan, Arcot R.;

    2013-01-01

    An increasing demand for catalytic Pd nanoparticles has motivated the search for sustainable production methods. An innovative approach uses bacterial cells as support material for synthesizing Pd nanoparticles by reduction of Pd(II) with e.g. hydrogen or formate. Nevertheless, drawbacks of...... on these surfaces was higher than for Pd particles formed on Shewanella oneidensis cells. Smaller Pd nanoparticles generally have better catalytic properties, and previous studies have shown that the particle size can be lowered by increasing the amount of support material used during Pd particle...... materials were visualized by transmission electron microscopy, and their activity was evaluated by catalysis of p-nitrophenol reduction. Surfaces functionalized with 3-aminopropyltriethoxysilane and chitosan were interesting alternatives to bacterial cells, as the catalytic activity of Pd particles formed...

  1. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  2. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: Synthesis and spectroscopic characterization of zincite-coated Fe2O3 nanoparticles

    Science.gov (United States)

    Habibi, Neda

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  3. Effects of Surface Area and Flow Rate on Marine Bacterial Growth in Activated Carbon Columns

    OpenAIRE

    Shimp, Robert J.; Pfaender, Frederic K.

    1982-01-01

    The colonization of granular activated carbon columns by bacteria can have both beneficial and potentially detrimental consequences. Bacterial growth on the carbon surface can remove adsorbed organics and thus partially regenerate the carbon bed. However, growth can also increase the levels of bacteria in the column effluents, which can adversely affect downstream uses of the treated water. This study of a sand column and several activated carbon columns demonstrated that considerable marine ...

  4. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens.

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  5. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus

    OpenAIRE

    Frade, P.R.; Schwaninger, V.; Glasl, B.; Sintes, E.; Hill, R. W.; Simó, R.; Herndl, G.

    2016-01-01

    Corals produce copious amounts of dimethylsulfoniopropionate (DMSP), a sulfur compound thought toplay a role in structuring coral-associated bacterial communities. We tested the hypothesis that a linkage exists betweenDMSP availability in coral tissues and the community dynamics of bacteria in coral surface mucus. We determinedDMSP concentrations in three coral species (Meandrina meandrites, Porites astreoides and Siderastrea siderea) at twosampling depths (5 and 25 m) and times of day (dawn ...

  6. A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces

    OpenAIRE

    Absalon, Cedric; Van Dellen, Katrina; Paula I. Watnick

    2011-01-01

    Author Summary The bacterial multilayer biofilm consists of matrix-enclosed cells attached to each other to form large aggregates. The base of these aggregates may be attached to a living or non-living surface. The biofilm matrix most often contains at least one exopolysaccharide component and may also contain protein and DNA. While much is known about the exopolysaccharide component of the Gram-negative biofilm matrix, little is known about the function of biofilm matrix proteins. We hypothe...

  7. The viscous boundary layer at the free surface of a rotating baroclinic fluid

    OpenAIRE

    Hide, R.

    2011-01-01

    The properties of the viscous boundary layer at the free surface of a rotating baroclinic fluid are analyzed and compared with those of the well-known Ekman boundary layer at a rigid surface. Although the ageostrophic components of the flow in the free surface boundary layer are weaker than in the Ekman layer, there are problems of practical interest in which their effects are not negligible.DOI: 10.1111/j.2153-3490.1964.tb00188.x

  8. Immobilization of gold nanoparticles on a polycarbonate surface layer during molding

    International Nuclear Information System (INIS)

    Highlights: → A new nanoparticle layer system is constructed. → Nanoparticles are transferred to a thermoplastic surface during a molding step. → The nanoparticles are permanently embedded in the outermost surface layer. → Applications are selective heating for chemical reactions or physical processes. - Abstract: A gold nanoparticle layer on a substrate is deposited by electrostatic deposition from a colloidal solution. This layer is transferred to the surface of a polycarbonate sheet by molding. Our investigations reveal that the nanoparticles are almost completely transferred. A random distribution over the surface is found, which is almost equivalent to that on the substrate surface. The particles are embedded into the outermost surface layer of polycarbonate and covered by a polycarbonate layer of about 5 nm in thickness. This ensures an effective immobilization of the particles. Such a layer may be used for applications where, for example, a selective surface activation by irradiation is desired.

  9. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2013-12-01

    Full Text Available Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a, B1a with zirconium oxide (ZrO2 coating (B2a, B1a with zirconia-based composite coating (B1b and B1a with zirconia-based composite and ZrO2 coatings (B2b. Bovine enamel slabs (BES served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM; DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22% were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80% were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  10. Turbulent boundary layer over a convergent and divergent superhydrophobic surface

    Science.gov (United States)

    Nadeem, Muhammad; Hwang, Jinyul; Sung, Hyung Jin

    2015-11-01

    Direct numerical simulation (DNS) of spatially developing turbulent boundary layer (TBL) over a convergent and divergent superhydrophobic surface (SHS) was performed. The convergent and divergent SHS was aligned in the streamwise direction. The SHS was modeled as a pattern of slip and no-slip surfaces. For comparison, DNS of TBL over a straight SHS was also carried out. The momentum thickness Reynolds number was varied from 800 to 1400. The gas fraction of the convergent and divergent SHS was the same as that of the straight SHS, keeping the slip area constant. The slip velocity in the convergent SHS was higher than that of the straight SHS. An optimal streamwise length of the convergent and divergent SHS was obtained. The convergent and divergent SHS gave more drag reduction than the straight SHS. The convergent and divergent SHS led to the modification of near wall-turbulent structures, resembling the narrowing and widening streaky structures near the wall. The convergent and divergent SHS had a relatively larger damping effect on near-wall turbulence than the straight SHS. These observations will be further analyzed statistically to demonstrate the effect of the convergent and divergent SHS on the interaction of inner and outer regions of TBL.

  11. Ion doping of surface layers in conducting electrical materials

    International Nuclear Information System (INIS)

    The presented article gives basic component elements of an implanter MKPCz-99, its parameters and methods for doping surface layers of conducting electrical materials. The discussed device makes possible to dope the materials with ions of gaseous elements. At the application of cones made of solid-element sheets it is possible to perform doping with atoms that do not chemically react with the modified material. By performing voltage drop measurements with a specialized circuit between a movable testing electrode and the modified sample the dependence of transition resistance on pressure force of the testing electrode on the sample can be determined. The testing can be performed at the current passage of a determined value for surfaces modified with ions of gaseous elements or atoms of solid elements. A computer stand for switch testing makes possible to measure temperature of switch contacts and voltage drop at the contact and thereby to determine contact resistance of a switch depending on the number of switch cycles (ON-OFF). Pattern recording of current and voltage at the switch contacts and the application of an adequate computer software makes possible to determined the value of energy between fixed and moving contacts at their getting apart. In order to eliminate action of the environment onto the switch operation measurements can be performed at placing the tested switch together with the driving system in an atmosphere of noble gas like argon. (authors)

  12. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    International Nuclear Information System (INIS)

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (α,α) backscattering and the resonant nuclear reaction 1H(15N,αγ)12C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of marrow bone cells on the implanted sample surface with that of titanium

  13. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    Science.gov (United States)

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. PMID:26657250

  14. Emanation thermal analysis for characterization of surface and near surface layers of advanced materials

    International Nuclear Information System (INIS)

    A non traditional method, called emanation thermal analysis (ETA), was used the for characterization of surface and near surface layers of SiC based materials. This method consists in the measurement of the release of inert gas (radon) from the samples previously labeled to the depth of several tens of nanometers with the inert gas atoms. The ETA results brought about information about microstructure changes and transport properties of SiC/SiCf composites on heating in the range 30-1300degC in argon and air, respectively. The annealing of structure irregularities which served as diffusion paths for radon was evaluated. The temperature range of the formation and crystallization of the silica layer resulting after oxidation of the SiC/SiCf sample on heating in air was determined from the ETA results. (author)

  15. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Science.gov (United States)

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants. PMID:27088315

  16. Effect of treatment time on characterization and properties of nanocrystalline surface layer in copper induced by surface mechanical attrition treatment

    Indian Academy of Sciences (India)

    Farzad Kargar; M Laleh; T Shahrabi; A Sabour Rouhaghdam

    2014-08-01

    Nanocrystalline surface layers were synthesized on pure copper by means of surface mechanical attrition treatment (SMAT) at various treatment times. The microstructural features of the surface layers produced by SMAT were systematically characterized by optical microscopy (OM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Hardness and surface roughness measurements were also carried out. It is found that the thickness of the deformed layer increased from 50 to 500 m with increasing treatment time from 10 to 300 min, while the average grain size of the top surface layer decreased from 20 to 7 nm. Hardness of the all SMATed samples decreased with depth. Furthermore, the hardness of the top surface layer of the SMATed samples was at least two times higher than that of the un-treated counterpart. Surface roughness results showed different trend with treatment time. Amounts of PV and a values first sharply increased and then decreased.

  17. Investigation of surface layer on rolled recycled AA5050 in relation to Filiform Corrosion

    OpenAIRE

    Premendra

    2007-01-01

    The presence of a heavily deformed surface layer (a few microns thick) on rolled aluminium alloy is understood to be one of the main reasons contributing to the Filiform Corrosion (FFC) susceptibility of the alloy. The surface layer is formed during the thermo-mechanical processing of the sheet metal, in the rolling mills. The surface layer characteristics are process dependent, i.e. depends on thermo-mechanical processing and the composition of the alloy in addition to post-production surfac...

  18. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    Science.gov (United States)

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  19. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    Science.gov (United States)

    Frade, Pedro R.; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. PMID:26788724

  20. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Directory of Open Access Journals (Sweden)

    Pedro R Frade

    Full Text Available Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%. About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater, host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  1. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Science.gov (United States)

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. PMID:26788724

  2. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    Science.gov (United States)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  3. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    Science.gov (United States)

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  4. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    Science.gov (United States)

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  5. Dual Nature of Heat Flux in Stable Atmospheric Surface Layer

    Science.gov (United States)

    Srivastava, P.; Sharan, M.

    2015-12-01

    The behavior of heat flux (H) with respect to the stability parameter (ζ) in stable surface layer (SSL) is analyzed with in the framework of Monin-Obukhov similarity (MOS) theory. The analytical expressions of H are obtained as functions of wind speed (U) and wind shear (dU/dz) using the linear similarity functions and accordingly two cases, (i) U = δ (constant) and (ii) dU/dz = δ are considered. The mathematical analysis shows that the magnitude of H increases with ζ till it attains a maximum value at ζ =ζc and then starts decreasing with increasing stability suggesting the dual characteristic of heat flux with stability parameter. The point of maximum heat flux is found to be dependent on the roughness length (z0) as well as the height above the surface. An attempt has been made to analyze the sensitivity of this dual characteristic of H with ζ using the non-linear similarity functions. The analysis shows that the dual nature of H persists in the case of linear as well as non-linear similarity functions. However, the point of extremum appears to be dependent on the nature of the similarity functions. Turbulent data over a tropical site Ranchi (India) is analyzed to validate the observed nature of H with the theoretical nature as predicted by MOS. The analysis of observational data reveals the non-existence of any preferred stability state in SSL as speculated by Wang and Bras (2010, 2011) and supports the conclusions of Malhi 1995, Derbyshire 1999, van de Wiel et al. 2007, Basu et al. 2008, and van de Wiel et al. 2011. Thus, the non-uniqueness of MOS equations does not appear to be a mathematical artifact and it is consistent with the observations as far as the nature of heat flux with respect to stability parameter in SSL is concerned.

  6. Layer by layer removal of Au atoms from passivated Au(111) surfaces using the scanning tunneling microscope: Nanoscale ``paint stripping''

    Science.gov (United States)

    Keel, J. M.; Yin, J.; Guo, Q.; Palmer, R. E.

    2002-04-01

    Layer by layer removal of gold atoms from the (111) surface of gold has been performed using the scanning tunneling microscope. The process is made possible by a chemisorbed self-assembled monolayer (SAM) of dodecanethiol molecules on the surface, which gives rise to a reduced bonding strength between the top two layers of gold atoms. The gold atoms and associated adsorbed molecules are peeled off and displaced laterally by the STM tip, and the size of the modified area (down to ˜10×10 nm) is more or less determined by the scan size.

  7. Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device

    Science.gov (United States)

    Charpentier, Paul A.; Maguire, Anne; Wan, Wan-kei

    2006-07-01

    The surface of medical grade polyesters was modified to impart hydrophilic character for attachment to bacterial synthesized cellulose to produce a vascular prosthetic device. The polyesters were treated with UV/ozone, air plasma, and nitrogen plasma for various lengths of time. The unmodified and modified surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and advancing contact angle measurements. The surfaces were then coated with bacterial produced cellulose to study adhesion properties through tensile testing (peel testing). UV/ozone and plasma treatment XPS results indicated an increase in the oxygen concentration in the form of C sbnd O(H) on the treated polyester surfaces. The treatment time to reach steady state in the case of air and nitrogen plasmas took the order of seconds, while 7 min and longer were required for UV/ozone treatment. Peel strength tests to measure adhesion of modified polyester to cellulose reached their maximum values when the C sbnd O(H) concentrations were at the highest level. It was also at this level that the contact angle measurements showed no further decrease.

  8. Modeling bacterial attachment to surfaces as an early stage of biofilm development.

    Science.gov (United States)

    El Moustaid, Fadoua; Eladdadi, Amina; Uys, Lafras

    2013-06-01

    Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation. In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set. The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation. Our work gives rise to results that agree with the biological description of the early stages of biofilm formation. PMID:23906151

  9. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-09-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  10. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-12-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  11. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    Directory of Open Access Journals (Sweden)

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  12. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    Science.gov (United States)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract

  13. Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar; Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-07-01

    The steady mixed convection boundary layer flow through a stable stratified medium adjacent to a vertical surface is investigated. The velocity outside the boundary layer and the surface temperature are assumed to vary linearly from the leading edge of the surface. The transformed ordinary differential equations are solved numerically by the Keller-box method. It is found that dual solutions exist, and the thermal stratification delays the boundary layer separation. (author)

  14. Microstructure of Ni / WC Surface Composite Layer on Gray Iron Substrate

    Institute of Scientific and Technical Information of China (English)

    YANG Guirong; SONG Wenming; MA Ying; LU Jinjun; HAO Yuan; LI Yuandong; WANG Haitang

    2011-01-01

    The surface infiltrated composite (Ni/WC) layers on gray iron substrate were fabricated through a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials.The microstructures of surface infiltrated composite layer,the interface structures between surface composite layer and the substrate,the changes of macro-hardness with the increasing of WC content and the micro-hardness distribution are investigated.The infiltrated composite layer includes a surface composite layer and a transition layer,and the thickness of the transition layer decreases with the increasing content of WC.The thickness of transition layer with 20%WC content in the surface infiltrated composite layer was 170 μrn which was the thickest for all transition layers with different WC content.The surface composite layer was mainly composed of WC,W2C,FeB and NiB,along with Ni-Cr-Fe,Ni (Cr) solid solution,Ni (Si) solid solution and Ni (Fe) solid solution.The transition layer was composed of Ni (Cr) solid solution,Ni (Fe) solid solution,Ni (Si) solid solution,Fe (Ni) solid solution and eutectic.The surface macrohardness and micro-hardness of the infiltrated layer had been evaluated.The macro-hardness of the surface composite layer decreases with the WC content increasing,and the average macro-hardness is HRC60.The distribution of micro-hardness presents gradient change.The average micro-hardness of the infiltrated layer is about HV 1000.

  15. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  16. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. PMID:26289961

  17. Frequency, Size, and Localization of Bacterial Aggregates on Bean Leaf Surfaces

    Science.gov (United States)

    Monier, J.-M.; Lindow, S. E.

    2004-01-01

    Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 104 cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 103 cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed. PMID:14711662

  18. The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling.

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    Full Text Available The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa.

  19. Spatial Organization of Dual-Species Bacterial Aggregates on Leaf Surfaces

    Science.gov (United States)

    Monier, J.-M.; Lindow, S. E.

    2005-01-01

    The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% ± 8.2%) than that in monospecific aggregates of these two strains (1.6% ± 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions

  20. Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity

    Science.gov (United States)

    French, S.; Fakra, S.; Glasauer, S.

    2009-05-01

    Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of

  1. Local scaling characteristics of Antarctic surface layer turbulence

    Directory of Open Access Journals (Sweden)

    S. Basu

    2010-03-01

    Full Text Available Over the past years, several studies have validated Nieuwstadt's local scaling hypothesis by utilizing turbulence observations from the mid-latitude, nocturnal stable boundary layers. In this work, we probe into the local scaling characteristics of polar, long-lived stable boundary layers by analyzing turbulence data from the South Pole region of the Antarctic Plateau.

  2. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    A stack of Al2O3/SiNx dual layer was applied for the back side surface passivation of p-type multi-crystalline silicon solar cells, with laser-opened line metal contacts, forming a local aluminum back surface field (local Al-BSF) structure. A slight amount of Al2O3, wrapping around to the front side of the wafer during the thermal atomic layer deposition process, was found to have a negative influence on cell performance. The different process flow was found to lead to a different cell performance, because of the Al2O3 wrapping around the front surface. The best cell performance, with an absolute efficiency gain of about 0.6% compared with the normal full Al-BSF structure solar cell, was achieved when the Al2O3 layer was deposited after the front surface of the wafer had been covered by a SiNx layer. We discuss the possible reasons for this phenomenon, and propose three explanations as the Ag paste, being hindered from firing through the front passivation layer, degraded the SiNx passivation effect and the Al2O3 induced an inversion effect on the front surface. Characterization methods like internal quantum efficiency and contact resistance scanning were used to assist our understanding of the underlying mechanisms. (semiconductor physics)

  3. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    International Nuclear Information System (INIS)

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  4. Surface tension-driven convection patterns in two liquid layers

    CERN Document Server

    Juel, A; McCormick, W D; Swift, J B; Swinney, H L; Juel, Anne; Burgess, John M.; Swinney, Harry L.

    1999-01-01

    Two superposed liquid layers display a variety of convective phenomena that are inaccessible in the traditional system where the upper layer is a gas. We consider several pairs of immiscible liquids. Once the liquids have been selected, the applied temperature difference and the depths of the layers are the only independent control parameters. Using a perfluorinated hydrocarbon and silicone oil system, we have made the first experimental observation of convection with the top plate hotter than the lower plate. Since the system is stably stratified, this convective flow is solely due to thermocapillary forces. We also have found oscillatory convection at onset in an acetonitrile and n-hexane system heated from below.

  5. Bacterial migration and motion in a fluid phase and near a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Frymier, P.D. Jr.

    1995-01-01

    An understanding of the migration and motion of bacteria in a fluid phase and near solid surfaces is necessary to characterize processes such as the bioremediation of hazardous waste, the pathogenesis of infection, industrial biofouling and wastewater treatment, among others. This study addresses three questions concerning the prediction of the distribution of a population of bacteria in a fluid phase and the motion of bacteria near a solid surface: Under what conditions does a one-dimensional phenomenological model for the density of a population of chemotactic bacteria yield an adequate representation of the migration of bacteria subject to a one-dimensional attractant gradient? How are the values of transport coefficients obtained from experimental data affected by the use of the one-dimensional phenomenological model and also by the use of different descriptions of bacterial swimming behavior in a mathematically rigorous balance equation? How is the characteristic motion of bacteria swimming in a fluid affected by the presence of a solid phase? A computer simulation that rigorously models the movement of a large population of individual chemotactic bacteria in three dimensions is developed to test the validity of a one-dimensional phenomenological model for bacterial migration in a fluid.

  6. Properties Evaluation of Thin Microhardened Surface Layer of Tool Steel after Wire EDM

    OpenAIRE

    Ľuboslav Straka; Ivan Čorný; Ján Piteľ

    2016-01-01

    This paper describes results of experimental research on the thin microhardened surface layer of a machined surface that occurs in materials using wire electrical discharge machining (WEDM) with brass wire electrode. The direct influence of microhardened surface layer on resulting machined surface quality of tool steel EN X210Cr12 (W.-Nr. 1.2080) was examined. The aim of the experiment was to contribute to the knowledge of mutual interactions between main WEDM technological parameters, the in...

  7. Bacterial communities of surface and deep hydrocarbon-contaminated waters of the Deepwater Horizon oil spill

    Science.gov (United States)

    Yang, T.; Nigro, L. M.; McKay, L.; Ziervogel, K.; Gutierrez, T.; Teske, A.

    2010-12-01

    We performed a 16S rRNA gene sequencing survey of bacterial communities within oil-contaminated surface water, deep hydrocarbon plume water, and deep water samples above and below the plume to determine spatial and temporal patterns of oil-degrading bacteria growing in response to the Deepwater Horizon oil leak. In addition, we are reporting 16S rRNA sequencing results from time series incubation, enrichment and cultivation experiments. Surface oil slick samples were collected 3 nautical miles from ground zero, (5/6/10, RV Pelican) and were added to uncontaminated surface water (collected within a 30 nautical mile radius of ground zero, 5/6/10 - 5/9/10, RV Pelican). This mixture was incubated for 20 days in a rolling bottle at 25°C. 16S rRNA clone libraries from marine snow-like microbial flocs that had formed during the incubation yielded a highly diverse bacterial community, predominately composed of the Alpha- and Gammaproteobacteria, and a smaller number of Planktomycetes and other bacterial lineages. The most frequently recovered proteobacterial sequences were closely related to cultured species of the genus Cycloclasticus, specialists in aerobic oxidation of aromatic hydrocarbons. These time series incubation results will be compared to the microbial community structure of contaminated surface water, sampled on the same cruise with RV Pelican (5/6/10-5/9/10) and frozen immediately. Stable isotope probing (SIP) experiments with C13-labelled alkanes and polycyclic aromatic substrates and gulf water samples have yielded different enrichments. With naphthalene, predominantly Alteromonas-related clones and a smaller share of Cycloclasticus clones were recovered; phenanthrene yielded predominantly clones related to Cycloclasticus, and diverse other Gamma- and Alphaproteobacteria. Analyses of SIP experiments with hexadecane are in progress. The microbial community composition of the deep hydrocarbon plume was characterized using water column profile samples taken

  8. Investigation of the Surface Properties of Titanium Biomaterial with Oxide Layer of Rutile Structure

    Institute of Scientific and Technical Information of China (English)

    Huang Nan; Chen Yuanru; Xiao Jing; Xue Zhennan; Liu Xianghuai

    1994-01-01

    Structural characteristics of titanium oxide layer on titanium matrix were investigated by Rutherford Backscattering Spectroscopy (RBS), Auger Electron Spectroscopy(AES) and X-ray diffraction, It has been identified that the titanium oxide layers have rutile structure. The mechanical properties of its surface were ineasured by microhardness test, pin-on-disc wear experiment and scratch adhesion test. The blood-compatibility of the titanium oxide layers of different thickness was studied by blood clotting time measurement. It is shown that as the thickness of the titanium oxide layers increases, the surface mechanical properties and bloodcompatibility of these layers are obviously improved.

  9. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  10. Measurement of the dynamic shear modulus of surface layers I. Theory

    OpenAIRE

    Waterman, Herman A.

    1984-01-01

    In measuring the dynamic surface-shear modulus of a surface layer on a liquid, conditions may occur—low-shear modulus and/or high frequencies—which promote wave-propagation effects to play a predominant role. A theory is presented with the help of which the (complex) wave number of the wave in the layer can be expressed in the densities and shear moduli of both the surface layer and the liquid. The theory can also be applied to an interfacial layer between two liquids. It predicts that in pra...

  11. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  12. Metallurgical investigations of dry sliding surface layer in phosphorous iron/steel friction pairs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Surface layer behaviors of composition concentration and micro-hardness were inves-tigated on phosphorous cast irons after dry sliding. The experimental results indicate that thehardness and chemical composition unevenly distribute in the surface layer. The sliding conditionand microstructure of the pin specimen have greatly effects on the distributions.

  13. Surface Layer Formation When Finish-Hardening Processing of the Parts by Smoothing

    Science.gov (United States)

    Belyaev, V. N.; Tatarkin, E. Ju

    2016-04-01

    Problems of surface layer formation of the parts, when hydraulic smoothing, are considered in this work. The results of theoretical and pilot studies of smoothing in case of nanocarbons and copper salts introduction into the process liquid are given. The influence dependences of the processing modes on roughness and microhardness of surface layer are defined.

  14. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    OpenAIRE

    Tales Lyra Oliveira; Návylla Candeia-Medeiros; Polliane M. Cavalcante-Araújo; Igor Santana Melo; Elaine Fávaro-Pípi; Luciana Alves Fátima; Antônio Augusto Rocha; Luiz Ricardo Goulart; Ubiratan Fabres Machado; Ruy R. Campos; Robinson Sabino-Silva

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-...

  15. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Chen, Yangxi; de Vries, Joop; Ren, Yijin

    2009-01-01

    Bacterial adhesion to biomaterial surfaces constituting the bracket-adhesive-enamel junction represents a growing problem in orthodontics, because bacteria can adversely affect treatment by causing demineralization of the enamel surface around the brackets. It is important to know the forces with wh

  16. Potential mode of protection of silkworm pupae from environmental stress by harboring the bacterial biofilm on the surfaces of silk cocoons.

    Science.gov (United States)

    Halder, Pranab K; Naskar, Deboki; Kumar, Akash; Yao, Juming; Kundu, Subhas C; Ghosh, Anindya S

    2015-02-01

    The silkworm forms cocoon to protect its pupa that survives for months inside the cocoon without being affected by various environmental stresses. To understand the possible mode of pupal survival within the cocoon encasement, we investigate the cause that protects the cocoon. During the end of the spinning process, we have isolated different bacterial species from the cocoon surface. These are identified using molecular techniques and checked for their abilities to form biofilm in vitro. The bacteria are able to form biofilm either individually or in consortia. Of which, Bacillus and Erwinia species are prominent biofilm formers. Interestingly, these bacteria have the ability to form biofilm on the cocoon mimetic surface of the silk protein Sericin Hope that contains only sericin. The origin and the behavior of the bacteria lead us to hypothesize the possible role of biofilm layer on the cocoon surface, which provides protection from adverse environmental conditions. PMID:25292249

  17. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs

    Directory of Open Access Journals (Sweden)

    Osama Shekhah

    2010-02-01

    Full Text Available A layer-by-layer method has been developed for the synthesis of metal-organic frameworks (MOFs and their deposition on functionalized organic surfaces. The approach is based on the sequential immersion of functionalized organic surfaces into solutions of the building blocks of the MOF, i.e., the organic ligand and the inorganic unit. The synthesis and growth of different types of MOFs on substrates with different functionalization, like COOH, OH and pyridine terminated surfaces, were studied and characterized with different surface characterization techniques. A controlled and highly oriented growth of very homogenous films was obtained using this method. The layer-by-layer method offered also the possibility to study the kinetics of film formation in more detail using surface plasmon resonance and quartz crystal microbalance. In addition, this method demonstrates the potential to synthesize new classes of MOFs not accessible by conventional methods. Finally, the controlled growth of MOF thin films is important for many applications like chemical sensors, membranes and related electrodes.

  18. Surface Modification of Titanium with Heparin-Chitosan Multilayers via Layer-by-Layer Self-Assembly Technique

    International Nuclear Information System (INIS)

    Extracellular matrix (ECM), like biomimetic surface modification of titanium implants, is a promising method for improving its biocompatibility. In this paper chitosan (Chi) and heparin (Hep) multilayer was coated on pure titanium using a layer-by-layer (LbL) self-assembly technique. The Hep-Chi multilayer growth was carried out by first depositing a single layer of positively charged poly-L-lysine (PLL) on the NaOH-treated titanium substrate (negatively charged surface), followed by alternate deposition of negatively charged Hep and positively charged Chi, and terminated by an outermost layer of Chi. The multilayer was characterized by DR-FTIR, SEM, and AFM, and osteoblasts were cocultured with the modified titanium and untreated titanium surfaces, respectively, to evaluate their cytocompatibility in vitro. The results confirmed that Hep-Chi multilayer was fabricated gradually on the titanium surface. The Hep-Chi multilayer-coated titanium improved the adhesion, proliferation and differentiation of osteoblasts. Thus, the approach described here may provide a basis for the preparation of modified titanium surfaces for use in dental or orthopedic implants

  19. Surface Layer Investigation of a Shot-Peened Duplex Stainless Steel Utilizing X-ray Diffraction

    Science.gov (United States)

    Feng, Qiang; Wu, Xueyan; Jiang, Chuanhai; Xu, Zhou; Wu, Lihong

    2013-07-01

    Distributions of residual stresses and microstructure in the surface layers of shot-peened duplex stainless steel (DSS) S32205 were investigated. The results reveal that both compressive residual stresses (CRS) and microhardness increase with the enhancement of shot-peening (SP) intensity in the surface deformation layers. The maximum value of CRS of ferrite lies in the surface layer but that of austenite locates below the surface layer after SP. SP influence on the microstructure of DSS was studied using x-ray diffraction profiles, and the domain size and microstrain were calculated via Voigt method. After SP, the domain sizes are refined, and microstrain becomes severe at surface layers in both phases. On comparing the calculated results, it is found that the more evident domain size subdivision and the more serious microstrain increase in austenite than those in ferrite are due to the higher work hardening of austenite.

  20. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  1. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    OpenAIRE

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-01-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing i...

  2. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  3. Surface Layers of Clostridium difficile Endospores▿†

    OpenAIRE

    Permpoonpattana, Patima; Tolls, Elisabeth H.; Nadem, Ramez; Tan, Sisareuth; Brisson, Alain; Cutting, Simon M.

    2011-01-01

    Clostridium difficile is an important human pathogen and one where the primary cause of disease is due to the transmission of spores. We have investigated the proteins found in the outer coat layers of C. difficile spores of pathogenic strain 630 (CD630). Five coat proteins, CotA, CotB, CotCB, CotD, and CotE, were shown to be expressed on the outer coat layers of the spore. We demonstrate that purified spores carry catalase, peroxiredoxin, and chitinase activity and that this activity correla...

  4. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J, E-mail: antonia.terriza@icmse.csic.es

    2010-11-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF{sub X}). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  5. Molecule Recognition Imaging and Highly Ordered Gold Nanoparticle Templating of Functional Bacterial S-Layer Nanoarrays

    Institute of Scientific and Technical Information of China (English)

    Jilin TANG; Andreas Ebner; Helga Badelt-Lichtblau; Christian Rankl; Michael Leitner; Hermann J.Gruber; Uwe B.Sleytr; Nicola Ilk; Peter Hinterdorfer

    2009-01-01

    @@ Molecular recognition between receptors and their cognate ligands plays an important role in life sciences.Such specific interactions include those between complementary strands of DNA,enzyme and substrate,antigen and antibody,lectin and carbohydrate,ligands and cell surface receptors as well as between cell adhesion proteins.

  6. Thermal healing of the sub-surface damage layer in sapphire

    International Nuclear Information System (INIS)

    The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 deg. C for 72 h.

  7. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination.

    Science.gov (United States)

    Mandal, Asit; Biswas, Bhabananda; Sarkar, Binoy; Patra, Ashok K; Naidu, Ravi

    2016-04-15

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30mgL(-1) metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10mgL(-1)), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72-78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP-bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. PMID:26849325

  8. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Sarıışık Merih

    2010-01-01

    Full Text Available Abstract ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL process on cotton fabrics properties.

  9. Layer-by-layer modification of high surface curvature nanoparticles with weak polyelectrolytes using a multiphase solvent precipitation process.

    Science.gov (United States)

    Nagaraja, Ashvin T; You, Yil-Hwan; Choi, Jeong-Wan; Hwang, Jin-Ha; Meissner, Kenith E; McShane, Michael J

    2016-03-15

    The layer-by-layer modification of ≈5 nm mercaptocarboxylic acid stabilized gold nanoparticles was studied in an effort to illustrate effective means to overcome practical issues in handling and performing surface modification of such extremely small materials. To accomplish this, each layer deposition cycle was separated into a multi-step process wherein solution pH was controlled in two distinct phases of polyelectrolyte adsorption and centrifugation. Additionally, a solvent precipitation step was introduced to make processing more amenable by concentrating the sample and exchanging solution pH before ultracentrifugation. The pH-dependent assembly on gold nanoparticles was assessed after each layer deposition cycle by monitoring the plasmon peak absorbance location, surface charge, and the percentage of nanoparticles recovered. The selection of solution pH during the adsorption phase was found to be a critical parameter to enhance particle recovery and maximize surface charge when coating with weak polyelectrolytes. One bilayer was deposited with a high yield and the modified particles exhibited enhanced colloidal stability across a broad pH range and increased ionic strength. These findings support the adoption of this multi-step processing approach as an effective and generalizable approach to improve stability of high surface curvature particles. PMID:26771506

  10. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Science.gov (United States)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won; Yang, Hae Woong; Ko, Young Gun; Shin, Dong Hyuk

    2015-08-01

    This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  11. The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the Central Namib Desert.

    Science.gov (United States)

    Gombeer, S; Ramond, J-B; Eckardt, F D; Seely, M; Cowan, D A

    2015-09-01

    Notwithstanding, the severe environmental conditions, deserts harbour a high diversity of adapted micro-organisms. In such oligotrophic environments, soil physicochemical characteristics play an important role in shaping indigenous microbial communities. This study investigates the edaphic bacterial communities of three contrasting desert terrain types (gravel plains, sand dunes and ephemeral rivers) with different surface geologies in the Central Namib Desert. For each site, we evaluated surface soil physicochemistries and used explorative T-RFLP methodology to get an indication of bacterial community diversities. While grain size was an important parameter in separating the three terrain types physicochemically and specific surface soil types could be distinguished, the desert edaphic bacterial communities displayed a high level of local spatial heterogeneity. Ten variables contributed significantly (P Namib Desert and stress the importance of recording a wide variety of environmental descriptors to comprehensively assess the role of edaphic parameters in shaping microbial communities. PMID:25939371

  12. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    Science.gov (United States)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085

  13. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions

    Science.gov (United States)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  14. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.; Als-Nielsen, Jens Aage; Deutsch, M.

    1986-01-01

    The authors report X-ray reflectivity measurements on the free surface of dodecylcyanobiphenyl (12CB) at the isotropic to smectic-A phase transition. At about 10°C above TIA, smectic-A-like ordering develops at the surface while the bulk phase remains isotropic. The angular dependence of the spec...

  15. Surface conductive layers on (111) diamonds after oxygen treatments

    Czech Academy of Sciences Publication Activity Database

    Ri, S.-G.; Nebel, C.E.; Takeuchi, D.; Rezek, Bohuslav; Tokuda, N.; Yamasaki, S.; Okushi, H.

    2006-01-01

    Roč. 15, - (2006), s. 692-697. ISSN 0925-9635 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * oxidation * surface electronic properties * surface structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.935, year: 2006

  16. Electronic Structure of Surfaces in GeSe Layered Semiconductor

    OpenAIRE

    Jahangirli, Z. A.; ZARBALIYEV, M. Z.

    2007-01-01

    Green´s function method in bases sets of Linear Combinations of Atomic Orbitals (LCAO) is used to calculate the electronic structure of the (010) surface of GeSe semiconductor. The energy states in energy gaps, their origin, orbital content, resonances and local changes in the density of states due to the surface are discussed.

  17. Thermal Stability of Surface Layer Microstructures of Commercially Pure Titanium Treated by High Energy Shot Peening

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-juan; CHEN Chun-huan; REN Rui-ming

    2004-01-01

    Commercially pure titanium was treated by high energy shot peening, and annealed at a series of temperatures. The surface layers are characterized by means of scan electronic microscope, X-Ray diffraction, transmission electronic microscope and micro-hardness testing machine. The results showed that microhardness of surface layers decreases with anneal temperature, the tendency of microhardness is similar to unannealed one, in other words, the more close to the surface, the more rapidly the hardness decreases, after reaches the depth of 50 μm, the decrease becomes steadily. But the sub-surface microhardness decreased suddenly over 500 ℃, From 550 ℃ to 650 ℃, the microhardness of surface layers almost unchanged.Observing by TEM and SEM, the grain sizes of pure titanium surface layers have increased below 500 ℃; Deformation twins begin disappearing obviously at 550 ℃; The nano-scaled grains within about 10 micrometers from surface existed even at 550℃.Surface nanocrystallization is well known as one of important methods to improve surface properties. The thermal stability of nanocrystalline microstructures was related to their preparation and application. The commercial pure Ti thermal stability of nanocrystalline and deformed microstructures induced by high-energy-shot-peening (HESP) technique was investigated. The nanostructured surface and deformed sub-surface layers of specimens were prepared through HESP treatment. The thermal stability was characterized through XRD analyses of surface layers, SEM and TEM microstructure observation and microhardness measurement of specimens annealed in different temperature in the air after HESP treatments. The results showed that after HESP treatment, the microhardness of surface layers increased with treatment time, especially in the rang of about 40 micrometers from the surface, the microhardness increase was obvious. The surface microhardness decreased gradually with annealing temperature, but the sub-surface

  18. Electrical conductivity of reconstructed Si(111) surface with sodium-doped C60 layers

    International Nuclear Information System (INIS)

    Electrical conductance of sodium-doped C60 ultra-thin layers (1–6 monolayers) grown on the Na-adsorbed Si(111)√3 × √3-Au surface has been studied in situ by four-point probe technique, combined with low-energy electron diffraction observations. Evidence of conductance channel formation through the C60 ultrathin layer is demonstrated as a result of Na dosing of 3 and 6 monolayers thick C60 layers. The observed changes in surface conductivity can be attributed to the formation of fulleride-like NaC60 and Na2C60 compound layers

  19. Where surface physics and fluid dynamics meet: rupture of an amphiphile layer by fluid flow

    OpenAIRE

    Bandi, Mahesh; Goldburg, Walter; Cressman Jr., John; Kellay, Hamid

    2006-01-01

    We investigate the fluctuating pattern created by a jet of fluid impingent upon an amphiphile-covered surface. This microscopically thin layer is initially covered with 50 $\\mu$m floating particles so that the layer can be visualized. A vertical jet of water located below the surface and directed upward drives a hole in this layer. The hole is particle-free and is surrounded by the particle-laden amphiphile region. The jet ruptures the amphiphile layer creating a particle-free region that is ...

  20. Layered Gold and Titanium Dioxide Substrates for Improved Surface Enhanced Raman Spectroscopic Sensing.

    Science.gov (United States)

    Strobbia, Pietro; Henegar, Alex J; Gougousi, Theodosia; Cullum, Brian M

    2016-08-01

    This manuscript describes a simple process for fabricating gold-based, multi-layered, surface-enhanced Raman scattering (SERS) substrates that can be applied to a variety of different nanostructures, while still providing multi-layer enhancement factors comparable to those previously achieved only with optimized silver/silver oxide/silver substrates. In particular, gold multi-layered substrates generated by atomic layer deposition (ALD) have been fabricated and characterized in terms of their optimal performance, revealing multi-layer enhancements of 2.3-fold per spacer layer applied. These substrates were fabricated using TiO2 as the dielectric spacer material between adjacent gold layers, with ALD providing a conformal thin film with high surface coverage and low thickness. By varying the spacer layer thicknesses from sub-monolayer (non-contiguous) films through multiple TiO2 layer thick films, the non-monotonic spacer layer thickness response has been elucidated, revealing the importance of thin, contiguous dielectric spacer layers for optimal enhancement. Furthermore, the extended shelf life of these gold multi-layered substrates was characterized, demonstrating usable lifetimes (i.e. following storage in ambient conditions) of greater than five months, with the further potential for simple limited electrochemical regeneration even after this time. PMID:27329834

  1. Sorption Ceramic Membranes with a Functionalized Surface Layer

    Czech Academy of Sciences Publication Activity Database

    Zub, Yu.L.; Tomina, V.V.; Melnyk, I.V.; Stolyarchuk, N.V.; Nazarchuk, H.I.; Sliesarenko, V.V. (ed.); Sliesarenko, V.M.; Topka, Pavel; Šolcová, Olga

    Prague : Orgit, 2014, s. 39. ISBN 978-80-02-02555-9. [International Congress of Chemical and Process Engineering /21./ - CHISA 2014 and Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction /17./ - PRES 2014. Prague (CZ), 23.08.2014-27.08.2014] Grant ostatní: NATO(US) SPP984398 Institutional support: RVO:67985858 Keywords : ceramic membranes * polysiloxane * layers Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  2. Nanoscale imaging and hydrophobicity mapping of the antimicrobial effect of copper on bacterial surfaces.

    Science.gov (United States)

    Wang, Congzhou; Ehrhardt, Christopher J; Yadavalli, Vamsi K

    2016-09-01

    Copper has a long historical role in the arena of materials with antimicrobial properties. Various forms of copper ranging from surfaces to impregnation in textiles and particles, have attracted considerable interest owing to their versatility, potency, chemical stability, and low cost. However, the effects and mechanisms of their antimicrobial action is still unclear. In this study, the effect of copper particles on Escherichia coli was studied at the nanoscale using atomic force microscopy (AFM). Time-lapse AFM images at the single cell level show the morphological changes on live E. coli during antimicrobial treatment, in which for the first time, this process was followed in situ on the same cell over time. AFM-based hydrophobicity mapping further showed that incubating cells with Cu decreased the surface hydrophobicity with an increase of incubation time. Specifically, we are able to visualize both morphology and physico-chemical nature of the bacterial cell surface change in response to copper treatment, leading to the membrane damage and cytoplasm leakage. Overall, the time-lapse AFM imaging combined with hydrophobicity mapping approach presented here provides spatio-temporal insight into the antimicrobial mechanisms of copper at the single cell level, and can be applied to design of better metallic antimicrobial materials as well as investigate different microorganisms. PMID:27258941

  3. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    Science.gov (United States)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  4. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    International Nuclear Information System (INIS)

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism

  5. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, William J. [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Kirby, Jonathan M. [Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Thiyagarajan, Nethaji [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Chambers, Christopher J.; Davies, Abigail H. [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Roberts, April K.; Shone, Clifford C. [Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Acharya, K. Ravi, E-mail: bsskra@bath.ac.uk [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.

  6. Study on plasma-spraying Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties

    International Nuclear Information System (INIS)

    Plasma-spraying Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties are studied. The analysis items include chemical composition, phase structure, average microhardness, wear resistance and corrosion resistance. The experimental results indicate that metallurgical combination has been achieved completely between the spraying layer and the surface of chrome cast iron, and that the chemical composition and micro-structure in the surface layer of the sample have been changed basically, and that the microhardness, the wear resistance, the corrosion resistance in the surface layer are increased by a large margin

  7. Characterization of SCC crack tips and surface oxide layers in alloy 600

    International Nuclear Information System (INIS)

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  8. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: rmn72my@yahoo.com; Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2008-03-31

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x{sup m}, where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation.

  9. Properties Evaluation of Thin Microhardened Surface Layer of Tool Steel after Wire EDM

    Directory of Open Access Journals (Sweden)

    Ľuboslav Straka

    2016-04-01

    Full Text Available This paper describes results of experimental research on the thin microhardened surface layer of a machined surface that occurs in materials using wire electrical discharge machining (WEDM with brass wire electrode. The direct influence of microhardened surface layer on resulting machined surface quality of tool steel EN X210Cr12 (W.-Nr. 1.2080 was examined. The aim of the experiment was to contribute to the knowledge of mutual interactions between main WEDM technological parameters, the influence of these parameters on the total affected depth, and on the variation of microhardness of sub-surface layers of machined surface. Based on the microhardness experimental measurements, mathematical models were established by the Least Square Method (LSM in order to simulate and predict final quality of machined surface after WEDM. Recommendations are given for setting the main technological parameters of the discharge process concerning minimization of total microhardened surface layer depth and microhardened surface layer homogeneity along the whole cross-section profile of the machined surface.

  10. Hydrogen sorption kinetics of FeTi alloy with nano-structured surface layers

    International Nuclear Information System (INIS)

    Highlights: •A FeTi with nano-structured surface exhibits markedly improved initial activation. •Nano-structuring reduces markedly work function of electrons of the ally surface. •The rate-controlling steps are changed by thickness of surface oxide layers. -- Abstract: This paper aims to elucidate the mechanisms of the initial activation of the FeTi alloy with nano-structured surface layers (n-FeTi) by the kinetic measurement of hydrogen absorption of the alloy. The alloy sample was prepared by mechanical grinding. The n-FeTi exhibits much higher initial rate of hydrogen absorption than an untreated FeTi alloy. From the measurements of pressure and temperature dependences of the initial rate of hydrogen absorption, the rate controlling step was found to shift from the dissociation of H2 molecules on the surface to the permeation of H atoms through grown surface oxide layers with the growth of surface oxide layers. From the measurement of work function, the n-FeTi surface was found to exhibit a much lower value for the work function of 4.73 eV than an untreated surface. These results suggest that the nano-structured surface layers easily exchange electrons with the H2 molecules, which promote the H2 dissociation, and hence, results in an enhanced hydrogen absorption rate

  11. Moessbauer conversion electron studies of tantalum metal surface layers

    International Nuclear Information System (INIS)

    Conversion electrons following the Moessbauer absorption of the 6.2 keV γ-rays of 181Ta were observed in backscattering geometry. Moessbauer spectra for tantalum single crystal and foil surfaces (mean-depth 330 A) are compared with normal transmission spectra for tantalum foils (bulk). While no broadening of lines is observed for carefully polished single crystal surfaces, foil surfaces show considerably broader lines than bulk spectra. The linewidth and isomer shift indicate an increase of the concentration of absorbed residual gases at the foil surfaces. The observed dispersion term arising from the interference between photo- and conversion electrons for this E1-transition, depends only on the absorber thickness. (Auth.)

  12. In Situ Synthesis of Nanocrystalline Intermetallic Compound Layer during Surface Mechanical Attrition Treatment of Zirconium

    Institute of Scientific and Technical Information of China (English)

    SUNCai-yun; XIEJi-jia; WUXiao-lei; HONGYou-shi; LIUGang; LUJian; LUKe

    2004-01-01

    The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25μm thick and consisted of the intermetallic compound FeCr with an average grain size of 25+10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.

  13. In Situ Synthesis of Nanocrystalline Intermetallic Compound Layer during Surface Mechanical Attrition Treatment of Zirconium

    Institute of Scientific and Technical Information of China (English)

    SUN Cai-yun; XIE Ji-jia; WU Xiao-lei; HONG You-shi; LIU Gang; LU Jian; LU Ke

    2004-01-01

    The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC)layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 μm thick and consisted of the intermetallic compound FeCr with an average grain size of 25+10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.

  14. GaAs surface passivation by plasma-enhanced atomic-layer-deposited aluminum nitride

    International Nuclear Information System (INIS)

    A low-temperature passivation method for GaAs surfaces is investigated. Ultrathin AlN layers are deposited by plasma-enhanced atomic-layer-deposition at 200 deg. C on top of near-surface InGaAs/GaAs quantum well structures. A significant passivation effect is seen as shown by up to 30 times higher photoluminescence intensity and up to seven times longer lifetime compared to uncoated reference samples. The improved optical properties are accompanied by a redshift of the quantum well photoluminescence peak likely caused by a combination of the nitridation of the GaAs capping layer and a surface coupling effect.

  15. GaAs surface passivation by plasma-enhanced atomic-layer-deposited aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Bosund, M., E-mail: Markus.Bosund@tkk.fi [Department of Micro and Nanosciences, Aalto University School of Science and Technology, P.O. Box 13500, FI-00076 Aalto (Finland); Mattila, P.; Aierken, A.; Hakkarainen, T.; Koskenvaara, H.; Sopanen, M.; Airaksinen, V.-M.; Lipsanen, H. [Department of Micro and Nanosciences, Aalto University School of Science and Technology, P.O. Box 13500, FI-00076 Aalto (Finland)

    2010-10-01

    A low-temperature passivation method for GaAs surfaces is investigated. Ultrathin AlN layers are deposited by plasma-enhanced atomic-layer-deposition at 200 deg. C on top of near-surface InGaAs/GaAs quantum well structures. A significant passivation effect is seen as shown by up to 30 times higher photoluminescence intensity and up to seven times longer lifetime compared to uncoated reference samples. The improved optical properties are accompanied by a redshift of the quantum well photoluminescence peak likely caused by a combination of the nitridation of the GaAs capping layer and a surface coupling effect.

  16. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    Full Text Available Abstract Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG 25 and diazo-dye Acid Red (AR 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l with relative decolorization values of 91.2% (3 h and 97.1% (18 h, as well as high activity to AR18 (1 g/l by 80.5% (3 h and 89.0% (18 h, was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l. No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved

  17. Wettability of terminally anchored polymer brush layers on a polyamide surface.

    Science.gov (United States)

    Varin, Kari J Moses; Cohen, Yoram

    2014-12-15

    Surface wettability of terminally anchored hydrophilic polymer brush layers on polyamide-silicon (PA-Si) surfaces was evaluated with respect to surface topography at the nanoscale. Hydrophilic polyvinylpyrrolidone (PVP) and polyacrylamide (PAAm) brush layers were synthesized via graft polymerization onto a PA-Si surface previously activated by surface treatment with atmospheric pressure plasma. Hydrophilicity (or wettability) of the PA substrate, as quantified by the free energy of hydration, was increased upon surface coverage with the PVP and PAAm brush layers by 13-24% (-101.4 to -111.3 mJ/m(2)) and 19-37% (-106.1 to -122.4 mJ/m(2)), respectively. Surface hydrophilicity increased with both increasing surface roughness (0.55-2.89 nm and 1.54-5.84 nm for PVP and PAAm, respectively) and polymer volume (1.3×10(6)-7.3×10(6) nm(3)/μm(2) and 3.3×10(6)-2.8×10(7) nm(3)/μm(2) for PVP and PAAm surfaces, respectively). The present study suggests that a specific level of surface wettability can be attained by tailor-designing the polymer brush layer's physicochemical characteristics (e.g., surface roughness, wettability, and polymer water affinity) by adjusting surface topography and surface chemistry, which are controlled by surface activation and polymerization conditions. The above indicates that there is merit in structuring various surfaces with hydrophilic brush layers to increase surface wettability in membrane filtration, biomedical devices, and lubrication applications. PMID:25305445

  18. Advancing the use of Lactobacillus acidophilus surface layer protein A for the treatment of intestinal disorders in humans.

    Science.gov (United States)

    Sahay, Bikash; Ge, Yong; Colliou, Natacha; Zadeh, Mojgan; Weiner, Chelsea; Mila, Ashley; Owen, Jennifer L; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immunity is subject to complex and fine-tuned regulation dictated by interactions of the resident microbial community and their gene products with host innate cells. Deterioration of this delicate process may result in devastating autoinflammatory diseases, including inflammatory bowel disease (IBD), which primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Efficacious interventions to regulate proinflammatory signals, which play critical roles in IBD, require further scientific investigation. We recently demonstrated that rebalancing intestinal immunity via the surface layer protein A (SlpA) from Lactobacillus acidophilus NCFM potentially represents a feasible therapeutic approach to restore intestinal homeostasis. To expand on these findings, we established a new method of purifying bacterial SlpA, a new SlpA-specific monoclonal antibody, and found no SlpA-associated toxicity in mice. Thus, these data may assist in our efforts to determine the immune regulatory efficacy of SlpA in humans. PMID:26647142

  19. Gas phase water in the surface layer of protoplanetary disks

    CERN Document Server

    Dominik, C; Hollenbach, D; Kaufman, M

    2005-01-01

    Recent observations of the ground state transition of HDO at 464 GHz towards the protoplanetary disk of DM Tau have detected the presence of water vapor in the regions just above the outer disk midplane (Ceccarelli et al 2005). In the absence of non-thermal desorption processes, water should be almost entirely frozen onto the grain mantles and HDO undetectable. In this Letter we present a chemical model that explores the possibility that the icy mantles are photo-desorbed by FUV (6eV < h nu < 13.6eV) photons. We show that the average Interstellar FUV field is enough to create a layer of water vapor above the disk midplane over the entire disk. Assuming a photo-desorption yield of 10^{-3}, the water abundance in this layer is predicted to be ~ 3 x 10^{-7} and the average H2O column density is ~ 1.6x 10^{15} cm^{-2}. The predictions are very weakly dependent on the details of the model, like the incident FUV radiation field, and the gas density in the disk. Based on this model, we predict a gaseous HDO/H2...

  20. Structure of adsorption layers of amphiphilic copolymers on inorganic or organic particle surfaces

    OpenAIRE

    Bulychev, Nikolay; Dervaux, Bart; Dimberger, Klaus; Zubov, Vitali; Du Prez, Filip; Eisenbach, Claus D

    2010-01-01

    The structure of adsorption layers of amphiphilic block and block-like copolymers of poly(isobornyl acrylate) and poly(acrylic acid) on the surface of hydrophilic titanium dioxide and hydrophobic copper phthalocyanine (CuPc) pigments in an aqueous studied by the electrokinetic sonic amplitude (ESA) method. The electroacoustic behaviour of the polyelectrolyte block copolymer-coated particles could be described in the context of the polymer gel layer theory. The polymer layer around the particl...

  1. The Effect of Interface Layer on the Binding Ability in PVD Surface Coating

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-jun; ZHU Hua-ming; ZOU Wei-feng; LI Guo-qing

    2004-01-01

    The effect of the interface layer on binding ability PVD surface coating was researched . the experiment result showed that TiN was bonded to bulk material with the interface layer. The interface layer made the tow-phase region of α-Ti and TiN to chang to single-phase of TiN. the bonding strength of film and base interface was increased.

  2. Influence of magnetic field on microstructure and properties of Ni60 plasma surfacing layer

    Institute of Scientific and Technical Information of China (English)

    Liu Zhengjun; Sun Jinggang; Liu Duo; Wang Jibing; Zhang Guiqing

    2005-01-01

    In order to control the shape and distribution of hardening phase in plasma surfacing deposit, a longitudinal DC magnetic field was applied during plasma surfacing of nickel-based alloy Ni60. Hardness, wearing resistance, microstructure and phase constituent of the plasma surfacing layer were investigated. It was revealed that the hardness and wearing resistance of the Ni60 plasma surfacing layer could gotten significantly enhanced through introducing magnetic field. The mechanical properties of the surfacing deposit were optimal when magnetic field current is 1 A. The metallurgical analysis showed that the microstructure of the Ni60 plasma surfacing layer was mainly composed of γ solid solution and some hardening phase particles such as Cr7 C3 with an application of the magnetic field.

  3. Passivation of GaAs surface by atomic-layer-deposited titanium nitride

    International Nuclear Information System (INIS)

    The suitability of titanium nitride (TiN) for GaAs surface passivation and protection is investigated. A 2-6-nm thick TiN passivation layer is deposited by atomic layer deposition (ALD) at 275 deg. C on top of InGaAs/GaAs near surface quantum well (NSQW) structures to study the surface passivation. X-ray reflectivity measurements are used to determine the physical properties of the passivation layer. TiN passivation does not affect the surface morphology of the samples, but increases significantly the photoluminescence intensity and carrier lifetime of the NSQWs, and also provides long-term protection of the sample surface. This study shows that ALD TiN coating is a promising low-temperature method for ex situ GaAs surface passivation

  4. Passivation of GaAs surface by atomic-layer-deposited titanium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Bosund, M. [Micro and Nanosciences Laboratory, Helsinki University of Technology, P.O. Box 3500, FI-02015 TKK (Finland)], E-mail: Markus.Bosund@tkk.fi; Aierken, A.; Tiilikainen, J.; Hakkarainen, T.; Lipsanen, H. [Micro and Nanosciences Laboratory, Helsinki University of Technology, P.O. Box 3500, FI-02015 TKK (Finland)

    2008-06-30

    The suitability of titanium nitride (TiN) for GaAs surface passivation and protection is investigated. A 2-6-nm thick TiN passivation layer is deposited by atomic layer deposition (ALD) at 275 deg. C on top of InGaAs/GaAs near surface quantum well (NSQW) structures to study the surface passivation. X-ray reflectivity measurements are used to determine the physical properties of the passivation layer. TiN passivation does not affect the surface morphology of the samples, but increases significantly the photoluminescence intensity and carrier lifetime of the NSQWs, and also provides long-term protection of the sample surface. This study shows that ALD TiN coating is a promising low-temperature method for ex situ GaAs surface passivation.

  5. Bacterial DNA of Ocean and Land on the Surface of the International Space Station.

    Science.gov (United States)

    Grebennikova, Tatiana

    A.V. Syroeshkin2, T.V. Grebennikova1, E.V. Shubralova3, V.A. Shuvalov3, O.S. Tsygankov4, V.B. Lapshin2 1D. I. Ivanovsky Virology Institute, Moscow, Russia 2 Academician E. K. Fedorov Institute of Applied Geophysics, Moscow, Russia 3S.P. Korolev Rocket and Space Corporation «Energia» Korolev, Russia 4Central Research Institute of Machine Building, Korolev, Russia Existence of biological molecules as markers of microorganisms in the space environment has always attracted attention of researchers. There is great attention to the search for extraterrestrial life forms [Nicholson W.L. 2009, Kawaguchi Y. et al 2013], and as well as the coping mechanisms of living organisms in the interplanetary space [Hotchin J. et al 1965, Baranov V.M. 2009, Horneck G. et al 2010]. Experiments on American and Japanese segments of the International Space Station (ISS) over the different nature of resistance during prolonged stay in space were conducted [Scalzi G et al 2012, Wassmann M. et al 2012]. As a result of these experiments confirmed the possibility of preserving the viability of organisms in an open space for a long time. Consequence, became interested in the transfer of living matter from the stratosphere to near-Earth space [Smith D.J. 2013]. We hypothesized that viable forms, or at least, intact DNA can be transferred to the orbit of the ISS with the ascending branch of the global electric circuit. Samples of cosmic dust collected from the surface of the window of the ISS during the exit of an astronaut in space. Samples (washes with material of tampons and tampons) which were in vacuo, were analyzed for the presence of bacterial DNA by nested PCR using primers specific DNA genus Mycobacterium, the DNA of the strain of the genus Bacillus anthracis and DNA encoding the bacterial 16S ribosomal RNA after transportation of the samples to Earth. The results of amplification, followed by sequencing and phylogenetic analysis showed the presence in samples of cosmic dust DNA

  6. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  7. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    International Nuclear Information System (INIS)

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material

  8. Surface layer temperature inversion in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P.M.; Reddy, G.V.; Araligidad, N.; Shenoy, Shrikant

    and Godavari rivers. The inversion is stable with a mean stability of 3600x10 sup(-8) m sup(-1). Inter-annual variability of the inversion is significantly high and it is caused by the inter-annual variability of fresh water flux and surface cooling...

  9. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  10. Phase analysis of nickel surface layer implanted by aluminium

    International Nuclear Information System (INIS)

    The experimental result of study of microstructure and phase composition in the surface zone of nickel target under intensive implantation of aluminium ions on a vacuum-arc and plasma flow source Raduga-5 are presented. It was established that the fine dispersed intermetallic precipitates Ni3Al and NiAl and the variable composition solid solution of aluminium in nickel are formed

  11. Surface Phonon Dispersion of the Layered Transition-metal Oxides

    Science.gov (United States)

    Zhang, J.; Ismail; Matzdorf, R.; Plummer, E. W.; Kimura, T.; Tokura, Y.

    2000-03-01

    Transition-metal oxides exhibit strong coupling between the charge and spin of the electrons and the lattice. Creating a surface by cleaving a single crystal breaks the symmetry of the lattice and disturbs the correlated system without changing the stoichiometry, providing the opportunity to study the response of electronic, structural, and magnetic properties. We have utilized electron-energy loss sprectroscopy (EELS) to study the electronic and lattice excitations of the Sr_2RuO4 and La_0.5Sr_1.5MnO4 surfaces. For both of these materials there are many more than three modes; three dominate surface optical phonons with small dispersion and with higher energies compared to those in the bulk materials. However, these phonons show completely different temperature dependence for different samples. The surface phonons become soft for Sr_2RuO4 while they become stiff for La_0.5Sr_1.5MnO4 with increasing temparature. The change of phonon energy of La_0.5Sr_1.5MnO4 with temperature is also in opposite direction to that of (La, Ca)MnO_4( Zhang et al., Surf. Sci. 393, 64(1997) * LMER Corp. for U.S. DOE under contract No. DE-AC05-96OR22464). These behaviors will be discussed in terms of the electronic, magnetic, and structural properties.

  12. Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions.

    Science.gov (United States)

    Czarnowska, E; Morgiel, J; Ossowski, M; Major, R; Sowinska, A; Wierzchon, T

    2011-10-01

    The disadvantages of titanium implants are their low wear resistance and the release of titanium elements into surrounding tissue. These can be eliminated by modifying the surface by surface engineering methods, among them nitriding under glow discharge conditions which allow to produce diffusive surface layers. Their combining with an oxide layer might be valuable for biological events occurring at the bone implant interface. The aim of this study was to enhance the titanium biomaterial performance via combining nitriding and oxidizing treatments in one process under glow discharge conditions. The oxynitrided surface layers were produced at 680 degrees C. The obtained layer was TiO + TiN + Ti2N + alphaTi(N) type and about 4-microm thick and was of diffusive character. This layer significantly increased wear resistance and slightly corrosion resistance compared to that of the reference titanium alloy. The produced titanium oxide was about 400-nm thick and built from fine crystallites. This oxide exhibits bioactivity in SBF (simulated body fluid). Osteoblasts of Saos-2 line incubated on this surface exhibited good adhesion and proliferation and ALP release comparable with cells cultured on the reference titanium alloy and TiN + Ti2N + alphaTi(N) surface layers. A quantitative analysis of blood platelets adhering to this layer revealed their highest amount in comparison to that on both the nitrided surface layer and titanium alloy. The presented study provided a simple and reproducible method of combining oxidizing and nitriding under glow discharge in one process. Experimental data in vitro suggests that titanium alloy oxynitriding under low temperatures at glow discharge conditions improves titanium alloy properties and biocompatibility and tissue healing. Therefore, the layer of TiO + TiN +Ti2N + alphaTi(N) type could be valuable for long-term bone implants. PMID:22400281

  13. The endothelial surface layer: a new target of research in kidney failure and peritoneal dialysis

    NARCIS (Netherlands)

    C.A. Vlahu

    2016-01-01

    The endothelial glycocalyx is an important regulator of vascular homeostasis, and damage to this complex structure results in increased vascular vulnerability. Together with associated plasma molecules it forms the endothelial surface layer. Because of its vasculoprotective effects, the endothelial

  14. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II: Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  15. Rapid Melt and Resolidification of Surface Layers Using Intense, Pulsed Ion Beams Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy J.

    1998-10-02

    The emerging technology of pulsed intense ion beams has been shown to lead to improvements in surface characteristics such as hardness and wear resistance, as well as mechanical smoothing. We report hereon the use of this technology to systematically study improvements to three types of metal alloys - aluminum, iron, and titanium. Ion beam tieatment produces a rapid melt and resolidification (RMR) of the surface layer. In the case of a predeposited thin-fihn layer, the beam mixes this layer into the substrate, Ieading to improvements that can exceed those produced by treatment of the alloy alone, In either case, RMR results in both crystal refinement and metastable state formation in the treated surface layer not accessible by conventional alloy production. Although more characterization is needed, we have begun the process of relating these microstructural changes to the surface improvements we discuss in this report.

  16. Formation of Nanoscale Intermetallic Phases in Ni Surface Layer at High Intensity Implantation of Al Ions

    Institute of Scientific and Technical Information of China (English)

    I.A.Bozhko; S.V.Fortuna; I.A.Kurzina; I.B.Stepanov; E.V.Kozlov; Yu.P. Sharkeev

    2004-01-01

    The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source "Raduga-5". It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3Al, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-Al phase diagram.

  17. FORMATION OF SURFACE LAYERS OF NANOSTRUCTURED TINICO, STIMULATED WITH MECHANICAL ACTIVATION

    Directory of Open Access Journals (Sweden)

    Rusinov P. O.

    2014-10-01

    Full Text Available This article presents a complex method of formation of the surface-modified layers of materials with shape memory effect, including high-speed flame spraying powders TiNiCo with a cobalt content of 2 and 5%, subsequent thermal and thermomechanical treatment, allowed forming nanostructured surface layers with a high level of functional and operational properties. It is shown that the TiNiCo complex processing layer allowed reducing the porosity of coatings and increasing the strength of adhesion of the coating to the substrate. Surface modification TiNiCo for optimal regimes allowed increasing fatigue life under high cycle loading by 30-40% and wearing 3-3.5 times. Based on comprehensive research metallophysical surface layers obtained new information on the nanoscale composition

  18. X-ray diffraction study of surface-layer structure in parallel grazing rays

    International Nuclear Information System (INIS)

    An x-ray diffraction method is described for study of thin polycrystalline and amorphous films and surface layers in an extremely asymmetrical diffraction system in parallel grazing rays using a DRON-3.0 diffractometer. The minimum grazing angles correspond to diffraction under conditions of total external reflection and a layer depth of ∼ 2.5-8 nm

  19. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    NARCIS (Netherlands)

    Janssen, R.H.H.; Vilà-Guerau de Arellano, J.; Ganzeveld, L.N.; Kabat, P.; Jimenez, J.L.; Farmer, D.K.; Heerwaarden, van C.C.; Mammarella, I.

    2012-01-01

    We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the mod

  20. Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100).

    Science.gov (United States)

    Shklyaev, A A; Latyshev, A V

    2016-12-01

    We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications. PMID:27541814

  1. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  2. Formation of Hard Surfacing Layers of WC-Co with Electron Beam Cladding Method

    Science.gov (United States)

    Abe, Nobuyuki; Morimoto, Junji

    Hard surfacing layers of WC-Co/Ni-base self-fluxing alloy were successfully formed on a steel substrate using an electron beam cladding method. The WC particles were densely and homogenously dispersed within the Ni-base self-fluxing alloy without porosity. The effect of the electron beam conditions on layer formation was investigated, and the cladding layer properties were examined by hardness tests, abrasive wear tests and immersion corrosion tests. It was found that the cladding layers showed higher hardness and abrasion resistance with increasing WC-Co mixing ratio, however, corrosion resistance decreased with WC-Co mixing ratio. A coating layer having high abrasive and corrosion resistance simultaneously was achieved by multiple cladding of high WC-Co mixing ratio layers after low WC-Co mixing ratio layers.

  3. Transport processes of conversion electron in surface layers

    International Nuclear Information System (INIS)

    Transportation of 7.3 keV K-conversion electron is simulated by a Monte Carlo method in different depth of iron film (1.0 nm ∼ 300.0 nm). The analysis of results has shown that when the depth of the film is greater than 150 nm, the electron emittance is very low. According to the relationship between the energy and angle and the depth, the energy of emitted electron can be detected, and the information the film depth can be obtained by detecting the angles of emitted electrons. Therefore, angular conversion electron Moessbauer spectroscopy (ACEMS) in iron film seems to be a new way for depth-selected layer investigation

  4. Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces

    Science.gov (United States)

    Ji, Wei-Jie; Tong, Chuang-Ming

    2013-02-01

    A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature. The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method (PILE+FB-SA), and the back scattering data are obtained. Then, a conventional synthetic aperture radar (SAR) imaging procedure called back projection method is used to generate a two-dimensional (2D) image of the layered rough surfaces. Combined with the relative dielectric permittivity of realistic soil, the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces. Since the back scattering data are computed by using the fast numerical method, this method can be used to study layered rough surfaces with any parameter, which has a great application value in the detection and remote sensing areas.

  5. Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces

    Institute of Scientific and Technical Information of China (English)

    Ji Wei-Jie; Tong Chuang-Ming

    2013-01-01

    A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature.The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method (PILE+FB-SA),and the back scattering data are obtained.Then,a conventional synthetic aperture radar (SAR) imaging procedure called back projection method is used to generate a two-dimensional (2D) image of the layered rough surfaces.Combined with the relative dielectric permittivity of realistic soil,the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces.Since the back scattering data are computed by using the fast numerical method,this method can be used to study layered rough surfaces with any parameter,which has a great application value in the detection and remote sensing areas.

  6. Research on synthetic aperture radar imaging technology of one-dimensional layered rough surfaces

    International Nuclear Information System (INIS)

    A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature. The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method (PILE+FB-SA), and the back scattering data are obtained. Then, a conventional synthetic aperture radar (SAR) imaging procedure called back projection method is used to generate a two-dimensional (2D) image of the layered rough surfaces. Combined with the relative dielectric permittivity of realistic soil, the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces. Since the back scattering data are computed by using the fast numerical method, this method can be used to study layered rough surfaces with any parameter, which has a great application value in the detection and remote sensing areas. (general)

  7. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    Science.gov (United States)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  8. Detection of Entrainment Influences on Surface-Layer Measurements and Extension of Monin–Obukhov Similarity Theory

    NARCIS (Netherlands)

    Boer, van de A.; Moene, A.F.; Graf, A.; Schüttemeyer, D.; Simmer, C.

    2014-01-01

    We present a method to detect influences of boundary-layer processes on surface-layer measurements, using statistics and spectra of surface-layer variables only. We validated our detection method with boundary-layer measurements. Furthermore, we confirm that Monin–Obukhov similarity functions fit we

  9. Fine-Resolution Mapping of Near-Surface Internal Layers

    Science.gov (United States)

    Parthasarathy, R.; Kanagaratnam, P.; Akins, T.; Wuite, J.; Braaten, D.; Jezek, K.; Gogineni, P.

    2003-12-01

    Knowledge of the mass balance of the Greenland Ice Sheet is necessary to assess its contribution to the rising sea level. The accumulation rate of snow on ice sheets is an important variable in determining this mass balance and in interpreting data from ICESAT and CRYOSAT missions. Using a small number of ice pits and cores to determine accumulation rate is unreliable, due to the small number of samples. In order to reduce this uncertainty, we have developed a wideband radar to generate a continuous profile of the isochronous layers in the ice sheet. Such a profile can be used to estimate long-term accumulation rate with reduced uncertainty. We built a wideband FM-CW radar that operates from 500 to 2000 MHz with range resolution of about 10 cm. We used a YIG oscillator to generate this signal. Since FM radar performance is affected by any non-linearity in the YIG oscillator, we developed a method for correcting any non-linearity in the YIG oscillator by using it in a phase-locked loop configuration. We simulated the performance and built a prototype radar. We tested the radar during the 2003 field season at North GRIP, and collected data over a long transect of 5 km. We collected radar data in conjunction with detailed snow pit studies at several locations along the radar tracks. Also we extracted a 15 m core for isotope analysis. Our preliminary results show that we can map layers to a depth of about 150 m with about 10 cm resolution. We will present the design considerations, laboratory test results of radar performance, results from experiments at NGRIP and comparison of the radar data with information derived from snow pits.

  10. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  11. Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion

    NARCIS (Netherlands)

    Vermeltfoort, Petronella; Rustema-Abbing, Mina; de Vries, Jacob; Bruinsma, Gerda M; Busscher, Hendrik; van der Linden, Matthijs L; Hooymans, Johanna MM; van der Mei, Henderina

    2006-01-01

    Purpose: The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. Methods: In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H contac

  12. A simple method to determine evaporation duct height in the sea surface boundary layer

    Science.gov (United States)

    Musson-Genon, Luc; Gauthier, Sylvie; Bruth, Eric

    1992-09-01

    A formulation to determine the evaporation duct height in the sea surface boundary layer is presented. This formulation is based upon the theory of similarity of Monin Obukhov by using analytical solutions currently used in the field of numerical weather prediction. The proposed solution is simple, coherent with the surface boundary layer parameterization used in the Meteo France and European Centre for Medium-Range Weather Forecasts weather prediction models and gives good results when compared to more traditional methods.

  13. Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments

    DEFF Research Database (Denmark)

    Christensen, Poul; Majborn, Benny

    1980-01-01

    A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....

  14. Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles

    OpenAIRE

    Jaehong Lee; Sera Shin; Subin Kang; Sanggeun Lee; Jungmok Seo; Taeyoon Lee

    2015-01-01

    Graphene can be effectively applied as an ultrathin barrier for fluids, gases, and atoms based on its excellent impermeability. In this work, few-layer graphene was encapsulated on silver (Ag) nanoparticles for the fabrication of highly stable surface-enhanced Raman scattering (SERS) substrates, which has strong resistance to oxidation of the Ag nanoparticles. The few-layer graphene can be successfully grown on the surface of the Ag nanoparticles through a simple heating process. To prevent t...

  15. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    OpenAIRE

    Jun Liu; Qiwen Qiu; Feng Xing; Dong Pan

    2014-01-01

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride tran...

  16. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    The surface structures of uranium metal and triuranium octaoxide (U3O8) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U3O8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  17. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    Science.gov (United States)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide

  18. A surface layer variance heat budget for ENSO

    Science.gov (United States)

    Boucharel, Julien; Timmermann, Axel; Santoso, Agus; England, Matthew H.; Jin, Fei-Fei; Balmaseda, Magdalena A.

    2015-05-01

    Characteristics of the El Niño-Southern Oscillation (ENSO), such as frequency, propagation, spatial extent, and amplitude, strongly depend on the climatological background state of the tropical Pacific. Multidecadal changes in the ocean mean state are hence likely to modulate ENSO properties. To better link background state variations with low-frequency amplitude changes of ENSO, we develop a diagnostic framework that determines locally the contributions of different physical feedback terms on the ocean surface temperature variance. Our analysis shows that multidecadal changes of ENSO variance originate from the delicate balance between the background-state-dependent positive thermocline feedback and the atmospheric damping of sea surface temperatures anomalies. The role of higher-order processes and atmospheric and oceanic nonlinearities is also discussed. The diagnostic tool developed here can be easily applied to other tropical ocean areas and climate phenomena.

  19. Identification of surface layers of early medieval age axe

    International Nuclear Information System (INIS)

    We have used Moessbauer spectrometry for a study of an iron axe. Two experimental techniques were applied: (a) non-destructive measurements performed in backscattering geometry, and (b) identification of small pieces of surface covering substance which has accidentally disintegrated with the investigated axe. These measurements were performed at room and also at low (77 K) temperature. Presence of corrosion products including goethite, magnetite and lepidocrocite was confirmed (Authors)

  20. Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid

    OpenAIRE

    Walsh, F. C.; Ponce De Leon, Carlos

    2014-01-01

    Ever tightening environmental pressure together with the continued need for coatings able to meet challenging service environments have stimulated advances in coating technology. In the case of electrochemical techniques, the classical techniques of electrodeposition and anodising are being upgraded to meet the need for modern surface engineering coatings (including nanostructured films) on metals. A major challenge is to retain conventional processing, including aqueous solutions, simple pow...

  1. Design of Matched Absorbing Layers for Surface Plasmon-Polaritons

    Directory of Open Access Journals (Sweden)

    Sergio de la Cruz

    2012-01-01

    Full Text Available We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

  2. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    Science.gov (United States)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  3. Synthesis of superhydrophobic SiO2 layers via combination of surface roughness and fluorination

    International Nuclear Information System (INIS)

    We describe the preparation of superhydrophobic SiO2 layers through a combination of surface roughness and fluorination. Electrospraying SiO2 precursor solutions that were prepared by a sol–gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO2 layers. In sharp contrast to the fluorinated flat SiO2 layer, the fluorinated rough SiO2 layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO2 layers were determined, respectively, based on Cassie–Baxter and Young–Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 oC of the superhydrophobic SiO2 layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO2 layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO2 layer deposited on a silicon wafer. Highlights: ► Superhydrophobic SiO2 layers are realized by a combination of surface roughness and fluorination. ► The fluorinated rough SiO2 layer shows enhanced repellency toward various liquid droplets. ► The wetting behavior is explained based on Cassie–Baxter and Young–Dupre equations. ► The superhydrophobic SiO2 layers confirm a promising practical application.

  4. Synthesis of superhydrophobic SiO{sub 2} layers via combination of surface roughness and fluorination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Kyeong; Yeong Kim, Ji [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Sub Kim, Sang, E-mail: sangsub@inha.ac.kr [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2013-01-15

    We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.

  5. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm2 for 300 s in potassium pyrophosphate (K4P2O7) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity

  6. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of); Yang, Hae Woong [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ko, Young Gun, E-mail: younggun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of)

    2015-08-30

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm{sup 2} for 300 s in potassium pyrophosphate (K{sub 4}P{sub 2}O{sub 7}) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  7. Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard Corals

    OpenAIRE

    Michael John Sweet; Aldo Croquer; John Christopher Bythell

    2011-01-01

    Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passi...

  8. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule.

    Directory of Open Access Journals (Sweden)

    Stephanie N Bartley

    Full Text Available We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.

  9. Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2015-05-01

    Full Text Available In the autumn of 1976 bacteria of the genera Bacillus, Pseudomonas, Flavobacterium, Erwinia and Cellulomonas were isolated from the bark surface of poplars growing in protective belts around several industrial plants. It was found that the qualitative and quantitative composition of the surface bacterial microflora changes in dependence on the degree of resistance of the poplars to the action of the dust emitted by the industrial establishment and containing high amounts of heavy metals.

  10. Wear and Corrosion Properties of Mo Surface-modiifed Layer in TiNi Alloy Prepared by Plasma Surface Alloying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongqian; WANG Zhenxia; YANG Hongyu; SHAN Xiaolin; LIU Xiaoping; YU Shengwang; HE Zhiyong

    2016-01-01

    In order to improve the wear resistance and restrain nickel release of TiNi alloys, the Mo modified layers on TiNi substrates were obtained using the double glow plasma surface alloying technique. Scanning electron microscopy (SEM), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD) were employed to investigate the morphology, composition and structure. Microhardness test and scratch test were performed to analyze the microhardness and coating/substrate adhesion. Tribological and electrochemical behaviors of the Mo modified layers on TiNi were tested by the reciprocating wear instrument and electrochemical measurement system. The Ni concentrations in Hanks’ solution where surface electrochemical tests took place were measured by mass spectrometry. The surface-modiifed layer contained a Mo deposition layer and a Mo diffusion layer. The X-ray diffraction analysis revealed that the modiifed layers were composed of Mo, MoTi, MoNi, and Ti2Ni. The microhardnesses of the Mo modiifed layers treated at 900℃and 950℃ were 832.8 HV and 762.4 HV, respectively, which was about 3 times the microhardness of the TiNi substrate. Scratch tests indicated that the modified layers possessed good adhesion with the substrate. Compared with as-received TiNi alloy, the modiifed alloys exhibited signiifcant improvement of wear resistance against Si3N4 with low normal loads during the sliding tests. Mass spectrometry displayed that the Mo alloy layers had successfully inhibited the Ni release into the body.

  11. The influence of the size of ferrochromium grain on the surface composite layer forming process

    OpenAIRE

    J. Szajnar; C. Baron; A. Walasek

    2010-01-01

    The aim of the researches was to determine the influence of the size of high - carbon ferrochromium grain (which was used to make the pad) on the quality of the composite layer on the steel cast. This kind of cast was obtain by pouring the mould with the pad placed on the chosen surface with liquid metal. As thick as possible composite layer without any defects and discontinuity was required. Both good quality and required thickness of surface composite layer depend on many factors. The pouri...

  12. Effect of electric spark pulses on surface layer structure of chromium monocrystals

    International Nuclear Information System (INIS)

    Effect of electric spark pulses on the character of fracture of surface layers of chromium monocrystals during cutting in crystallographic planes (100), (110) and (111) is established. Crystallographical anisotropy of defect formation is determined and the value of defective layers during cutting in the above planes is found. A conclusion is made that cracks in chromium monocrystals of commercial grade during electric-spark cutting are formed in planes (100) and more seldom in (111) ones. A high-temperature annealing for the reduction of initial properties of chromium surface layers is suggested

  13. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Brümmer, B.;

    2007-01-01

    Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at H phi vs phi re (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a...... height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov...

  14. The mechanism of the surface alloy layer creation for cast steel

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2012-01-01

    Full Text Available The paper presents a detailed description of the process of creation of a surface alloy layer (using high-carbon ferrochromium on the cast steel casting. The mechanism of the surface alloy layer is based on the known theories [5,6]. The proposed course of formation of the layers has been extended to decarburization stage of steel. The research included proving the presence of carbon-lean zone. The experiment included the analysis of the distribution of elements and microhardness measurement.

  15. Polyethylenimine surface layer for enhanced virus immobilization on cellulose

    Science.gov (United States)

    Tiliket, Ghania; Ladam, Guy; Nguyen, Quang Trong; Lebrun, Laurent

    2016-05-01

    Thin regenerated cellulose films are prepared by hydrolysis of cellulose acetate (CA). A polycation, namely polyethylenimine (PEI), is then adsorbed onto the films. From QCM-D analysis, PEI readily adsorbs from a 0.1% w/v solution in NaCl 0.2 M (ca. 100 ng cm-2). Further PEI adsorption steps at higher PEI concentrations induce a linear growth of the PEI films, suggesting that free adsorption sites still exist after the initial adsorption. The adsorbed PEI chains are resistant to variations of the ionic strength up to NaCl 1 M. Promisingly, the adsorption of T4D bacteriophages are 15-fold more efficient onto the PEI-treated, compared to the native regenerated cellulose films, as measured by QCM-D. This confirms the strong affinity between the negatively charged viruses and PEI, even at low PEI concentration, probably governed by strong electrostatic attractive interactions. This result explains the remarkable improvement of the affinity of medical masks for virus droplets when one of their cellulose layers was changed by two-PEI-functionalized cellulose-based filters.

  16. Surface and ultrathin-layer absorptance spectroscopy for solar cells

    Czech Academy of Sciences Publication Activity Database

    Holovský, Jakub; Remeš, Zdeněk; De Wolf, S.; Ballif, C.

    Vol. 60. Amsterdam: Elsevier Ltd, 2014 - (Gordon, I.; Valenta, J.; Turan, R.; Atwater, H.; Mirabella, S.), s. 57-62 ISSN 1876-6102. [E- MRS Spring Meeting 2014. Lille (FR), 26.05.2014-30.05.2014] R&D Projects: GA MŠk 7E12029; GA ČR(CZ) GA14-05053S EU Projects: European Commission(XE) 283501 - FAST TRACK Institutional support: RVO:68378271 Keywords : surface states * thin-film limit * ATR-FTIR * photothermal deflection spectrscopy * photocurrent spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Reflection of Electromagnetic Waves by a Nonuniform Plasma Layer Covering a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-Mei; FA Peng-Ting

    2008-01-01

    Reflection coefficients of electromagnetic waves in a nonuniform plasma layer with electrons, positive ions and negative ions, covering a metal surface are investigated by using the finite-difference-time-domain method. It is shown that the reflection coefficients are influenced greatly by the density gradient on the layer edge, layer thickness and electron proportion, i.e., the effect of the negative ions. It is also found that low reflection or high attenuation can be reached by properly choosing high electron proportion, thick plasma layer, and smooth density gradient in the low frequency regime, but sharp density gradient in the high frequency regime.

  18. Selective laser removal of the dimer layer from Si(100) surfaces revealed by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Scanning tunneling microscopy (STM) of laser-irradiated Si(100) surfaces shows that the dimerized outermost layer can be selectively removed by a pulsed Nd:YAG laser with a fluence below the melt threshold. The atoms in the laser-uncovered second layer are close to positions of a bulk terminated (1x1) structure, but with a slight pairing, while dimers retain a (2x1) configuration in the first layer. The pairing distance and fraction of the remaining dimers decrease with increasing laser exposures. The laser-uncovered layer also remains free of vacancies. copyright 1996 The American Physical Society

  19. Anisotropy Characteristics of Magnetostatic Surface Wave Propagating in YIG/Dielectric/Metal Layered Structure

    Institute of Scientific and Technical Information of China (English)

    Qing-Hui Yang; Huai-Wu Zhang; Ying-Li Liu

    2007-01-01

    The anisotropy of magnetostatic surface wave (MSSW) propagating in finite width YIG/dielectric/metal layered structure is analyzed. This problem is solved by finding the rigorous solution of each layer from Maxwell equation and the appropriate transmission Green's function matrix (G). From the relationship of Green's function matrixes of dielectric layer and ferrite layer, the dispersion equation is obtained.The MSSW filter is designed to verify the dispersion characteristics. The experiment results are in good agreement with the calculating data from the model.

  20. Effect of tethering on the surface dynamics of a thin polymer melt layer.

    Science.gov (United States)

    Uğur, Gökçe; Akgun, Bulent; Jiang, Zhang; Narayanan, Suresh; Satija, Sushil; Foster, Mark D

    2016-06-28

    The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of "untethered chains" a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. The portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. Since these hybrid samples containing a covalently tethered layer at the bottom do not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates, they provide a route for tailoring polymer layer surface properties such as wetting, adhesion and friction. PMID:27222250

  1. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed...... which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...... produced as droplets at the surface and ‘continental’ background aerosols brought into the boundary layer at the top by entrainment and gravitational settling. Estimates of Si are provided....

  2. Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in Eastern Australia.

    Science.gov (United States)

    Molino, Paul J; Childs, Samantha; Eason Hubbard, Maeve R; Carey, Janet M; Burgman, Mark A; Wetherbee, Richard

    2009-01-01

    The role played by bacteria during the pioneering stages of colonisation on marine coatings was investigated over three distinct seasons in both tropical and temperate environments. Novel methods were developed to facilitate the study of the adhered bacterial population on the test coatings in their native, hydrated state. The approach eliminated destructive sample preparation techniques, including sample dehydration and/or removal from the substratum surface prior to analysis. Bacterial colonisation during initial biofilm formation was evaluated on two antifouling paints, Intersmooth 360 and Super Yacht 800, and a fouling release coating, Intersleek 700. Bacterial colonisation was quantified on all three coating surfaces. Intersleek 700 displayed the quickest colonisation by bacteria, resulting in major modification of the substratum surface within 2-4 days following immersion in the ocean. Whilst fouling accumulated more quickly on Intersleek 700, by 16 days all three coatings were fouled significantly. Bacterial fouling was correlated to both location and season, with fouling occurring at a more rapid rate at the Cairns location, as well as during the summer months, when higher water temperatures were recorded. Successful colonisation of all coatings by bacteria soon after immersion modifies the characteristics of the surfaces at the hull/water interface, and subsequent settlement by higher biofouling organisms must be moderated by these modified surfaces. PMID:19031306

  3. Effect of Thickness on Surface Morphology of Silver Nanoparticle Layer During Furnace Sintering

    Science.gov (United States)

    Moon, Yoon Jae; Kang, Heuiseok; Kang, Kyungtae; Moon, Seung-Jae; Young hwang, Jun

    2015-04-01

    In printed electronics applications, specific resistances of conductive lines are critical to the performance of the devices. The specific resistance of a silver (Ag) nanoparticle electrode is affected by surface morphology of the layered nanoparticles which were sintered by the heat treatment after printing. In this work, the relationship between surface morphology and specific resistance was investigated with various sintering temperatures and various layer thicknesses of Ag nanoparticle ink. Ag nanoparticles with an average size of approximately 50 nm were spin-coated on Eagle XG glass substrates with various spin speed to change the layer thickness of Ag nanoparticles from 200 nm to 900 nm. Coated Ag nanoparticle layers were heated from 150°C to 450°C for 30 min in a furnace. The result showed that higher sintering temperature produces larger grains in an Ag layer and decreases specific resistance of the layer, but that the maximum allowable heating temperature is limited by the thickness of the layer. When grain size exceeded the thickness of the layer, the morphology of the Ag nanoparticles changed to submicron-sized islands and the Ag layers did not have electrical conductivity any more.

  4. The influence of the size of ferrochromium grain on the surface composite layer forming process

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available The aim of the researches was to determine the influence of the size of high - carbon ferrochromium grain (which was used to make the pad on the quality of the composite layer on the steel cast. This kind of cast was obtain by pouring the mould with the pad placed on the chosen surface with liquid metal. As thick as possible composite layer without any defects and discontinuity was required. Both good quality and required thickness of surface composite layer depend on many factors. The pouring temperature, module of cast solidification, size and shape of the cast are the most important ones. The suitable graininess of pad material is also significant parameter. The conducted researches allowed to take the suitable graininess of the pad material which improved the quality of the surface composite layer.

  5. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    International Nuclear Information System (INIS)

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C6+ ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation

  6. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    International Nuclear Information System (INIS)

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare

  7. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: rogus@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Steski, Dannie; Kanesue, Takeshi [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, Shunsuke [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan); Okamura, Masahiro [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  8. Enhanced magneto-optical imaging of internal stresses in the removed surface layer

    Science.gov (United States)

    Agalidi, Yuriy; Kozhukhar, Pavlo; Levyi, Sergii; Turbin, Dmitriy

    2015-10-01

    The paper describes a software method of reconstructing the state of the removed surface layer by visualising internal stresses in the underlying layers of the sample. Such a problem typically needs to be solved as part of forensic investigation that aims to reveal original marking of a sample with removed surface layer. For example, one may be interested in serial numbers of weapons or vehicles that had the surface layer of metal removed from the number plate. Experimental results of studying gradient internal stress fields in ferromagnetic sample using the NDI method of magneto-optical imaging (MOI) are presented. Numerical modelling results of internal stresses enclosed in the surface marking region are analysed and compared to the experimental results of magneto-optical imaging (MOI). MOI correction algorithm intended for reconstructing internal stress fields in the removed surface layer by extracting stresses retained by the underlying layers is described. Limiting ratios between parameters of a marking font are defined for the considered correction algorithm. Enhanced recognition properties for hidden stresses left by marking symbols are experimentally verified and confirmed.

  9. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  10. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed...... which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...

  11. Optimizing the distance for bacterial treatment using surface micro-discharge plasma

    International Nuclear Information System (INIS)

    Reactive plasma species generated by a surface micro-discharge (SMD) electrode are delivered to the target by diffusion and/or convection. In humid air conditions, the diffusion process is coupled with complicated plasma chemical reactions, which affect the density profiles of bactericidal agents. One may expect that the production of reactive plasma species can be optimized at a certain distance. Our experimental results found the optimum distance for achieving the highest bactericidal efficiency with plasma treatment using an SMD electrode. The optimum distance is about 2-4 mm from the SMD electrode to the target and depends on the geometry of the experiment. The bactericidal efficiency in the plasma-treated area can be improved by a factor of 30 if the bacterial samples are placed at the optimum distance. The results show the predominant role of the long-lived reactive plasma species. It is seen that the diffusion model of multi-plasma species with coupled plasma chemical reactions would be highly important for understanding the bactericidal property of cold atmospheric plasmas and therefore for optimizing cold atmospheric plasma sources for medical and biological applications. (paper)

  12. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  13. Interactions between bacterial surface and nanoparticles govern the performance of "chemical nose" biosensors.

    Science.gov (United States)

    Verma, Mohit S; Wei, Shih-Chung; Rogowski, Jacob L; Tsuji, Jackson M; Chen, Paul Z; Lin, Chii-Wann; Jones, Lyndon; Gu, Frank X

    2016-09-15

    Rapid and portable diagnosis of pathogenic bacteria can save lives lost from infectious diseases. Biosensors based on a "chemical nose" approach are attracting interest because they are versatile but the governing interactions between bacteria and the biosensors are poorly understood. Here, we use a "chemical nose" biosensor based on gold nanoparticles to explore the role of extracellular polymeric substances in bacteria-nanoparticle interactions. We employ simulations using Maxwell-Garnett theory to show how the type and extent of aggregation of nanoparticles influence their colorimetric response to bacteria. Using eight different species of Gram-positive and Gram-negative bacteria, we demonstrate that this "chemical nose" can detect and identify bacteria over two orders of magnitude of concentration (89% accuracy). Additionally, the "chemical nose" differentiates between binary and tertiary mixtures of the three most common hospital-isolated pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa (100% accuracy). We demonstrate that the complex interactions between nanoparticles and bacterial surface determine the colorimetric response of gold nanoparticles and thus, govern the performance of "chemical nose" biosensors. PMID:27108254

  14. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Marc G. J. Feuilloley

    2013-06-01

    Full Text Available Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37 to GABA (10−5 M increased its necrotic-like activity on eukaryotic (glial cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains.

  15. A novel quantitative kinase assay using bacterial surface display and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Sónia Troeira Henriques

    Full Text Available The inhibition of tyrosine kinases is a successful approach for the treatment of cancers and the discovery of kinase inhibitor drugs is the focus of numerous academic and pharmaceutical laboratories. With this goal in mind, several strategies have been developed to measure kinase activity and to screen novel tyrosine kinase inhibitors. Nevertheless, a general non-radioactive and inexpensive approach, easy to implement and adapt to a range of applications, is still missing. Herein, using Bcr-Abl tyrosine kinase, an oncogenic target and a model protein for cancer studies, we describe a novel cost-effective high-throughput screening kinase assay. In this approach, named the BacKin assay, substrates displayed on a Bacterial cell surface are incubated with Kinase and their phosphorylation is examined and quantified by flow cytometry. This approach has several advantages over existing approaches, as using bacteria (i.e. Escherichia coli to display peptide substrates provides a self renewing solid support that does not require laborious chemical strategies. Here we show that the BacKin approach can be used for kinetic and mechanistic studies, as well as a platform to characterize and identify small-molecule or peptide-based kinase inhibitors with potential applications in drug development.

  16. Measurement of the dynamic shear modulus of surface layers I. Theory

    NARCIS (Netherlands)

    Waterman, Herman A.

    1984-01-01

    In measuring the dynamic surface-shear modulus of a surface layer on a liquid, conditions may occur—low-shear modulus and/or high frequencies—which promote wave-propagation effects to play a predominant role. A theory is presented with the help of which the (complex) wave number of the wave in the l

  17. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    Matthias J. Mayser

    2014-06-01

    Full Text Available Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  18. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer

    Science.gov (United States)

    Chen, Jian; Deng, Xin; Gong, Manfeng; Liu, Wei; Wu, Shanghua

    2016-09-01

    This paper systematically investigated a set of functionally graded WC-TiC-Mo-Co cemented carbides with modified surface layer (called fcc-rich surface layer in this study), which is mainly composed of fcc phases (Ti(CN) and TiN) and WC. Nitridation at liquid phase sintering temperature is the key process making this fcc-rich surface layer. The functionally graded WC-TiC-Mo-Co cemented carbides synthesized in this study show 3 layer structure: the outer layer, i.e. the fcc-rich surface layer; the intermediate layer, which is characterized by abnormally large WC and high Co content; and the inner layer. It was found that TiC is the most critical component for the formation of fcc-rich surface layer. The higher content of TiC results in the thicker fcc-rich outer layer, higher (Ti(CN) and TiN) content in the outer layer, and higher hardness of the fcc-rich outer layer. The formation of this fcc-rich surface layer is mainly due to the nitridation process between Ti and N, which leads to the diffusion of Ti outwards (from the inside of the sample to the surface) and the subsequent migration of liquid cobalt inwards (from surface to the inside of the sample). The three-layer structure developed in this study provides the excellent combination of high wear resistance and high toughness, which is favorable for some applications.

  19. Evaluation of mechanical properties and microstructure in ion-irradiated surface layer

    International Nuclear Information System (INIS)

    Target vessel materials used in spallation neutron source will be exposed to proton and neutron irradiation and mercury immersion environments. In order to evaluate the surface degradation of the vessel candidate materials due to such environment, the triple-ion beam irradiation taking the spallation reaction into account and mercury immersion tests were carried out. Mechanical properties of the gradient surface layer were evaluated by the inverse analysis with multi-layer model that considers distribution of surface characteristic was applied to the load and depth curves measured by using the instrumented indentation machine. Transition electron microscopic observations were performed to evaluate the changes of microstructure in irradiated surface layer using focused ion-beam cut micro-specimen. The mechanical properties distributions in the surface layer were evaluated quantitatively and the changes in microstructures were correspondent to the property distribution. It was confirmed that the ductility loss is enhanced by the irradiation and mercury immersion, and simulated stress and strain curves of the ion-irradiated surface layer were adequately in good agreement with the curves of experimental equivalent neutron-irradiated material. (author)

  20. Investigation of surface corrosion layers of fast reactor heat exchanger tubes

    International Nuclear Information System (INIS)

    The potential reasons of fast reactor heat exchanger tubes destruction and the ways of corrosion inhibition are studied. Using the methods of Auger spectroscopy and X-ray diffraction microanalysis element distribution in depth of corrosion layers from coolant (sodium) side and from surface contacting with steam is investigated. It is shown that sodium is present through all thickness of the tube. Pulsed plasma treatment of steel 12Cr18Ni9 surface decreases intercrystalline corrosion susceptibility due to structural changes of surface layer (near 20 μm), its enrichment by chromium and protecting chromium oxide film formation

  1. Transformation behavior and mechanical properties of an equiatomic Ti-Ni alloy with surface sulfide layers

    Energy Technology Data Exchange (ETDEWEB)

    Nam, T.H.; Park, S.M.; Cho, G.B. [Information Technology Research Center for Energy Storage and Conversion, Gyeongsang National Univ., Jinju, Gyeongnam (Korea)

    2005-07-01

    Surface sulfide layers were formed on the surface of Ti-50.0(at%)Ni alloys by isothermal annealing at 873 K for 3.6 ks under the sulfur pressure of 80 kPa, and then transformation behavior and mechanical properties were investigated by means of differential scanning calorimetery(DSC), thermal cycling tests under constant load, and tensile tests. The DSC peaks were broadened and martensitic transformation start temperature(Ms) increased from 281 K to 289 K by sulfurization. An equiatomic Ti-Ni alloy with surface sulfide layers showed good shape memory characteristics and partial superelasticity. (orig.)

  2. Helicity and potential vorticity in the surface boundary layer turbulence

    Science.gov (United States)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  3. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.

    Science.gov (United States)

    Wang, Qichen; Uzunoglu, Emel; Wu, Yong; Libera, Matthew

    2012-05-01

    We explored the use of self-assembled microgels to inhibit the bacterial colonization of synthetic surfaces both by modulating surface cell adhesiveness at length scales comparable to bacterial dimensions (∼1 μm) and by locally storing/releasing an antimicrobial. Poly(ethylene glycol) [PEG] and poly(ethylene glycol)-co-acrylic acid [PEG-AA] microgels were synthesized by suspension photopolymerization. Consistent with macroscopic gels, a pH dependence of both zeta potential and hydrodynamic diameter was observed in AA-containing microgels but not in pure PEG microgels. The microgels were electrostatically deposited onto poly(l-lysine) (PLL) primed silicon to form submonolayer surface coatings. The microgel surface density could be controlled via the deposition time and the microgel concentration in the parent suspension. In addition to their intrinsic antifouling properties, after deposition, the microgels could be loaded with a cationic antimicrobial peptide (L5) because of favorable electrostatic interactions. Loading was significantly higher in PEG-AA microgels than in pure PEG microgels. The modification of PLL-primed Si by unloaded PEG-AA microgels reduced the short-term (6 h) S. epidermidis surface colonization by a factor of 2, and the degree of inhibition increased when the average spacing between microgels was reduced. Postdeposition L5 peptide loading into microgels further reduced bacterial colonization to the extent that, after 10 h of S. epidermidis culture in tryptic soy broth, the colonization of L5-loaded PEG-AA microgel-modified Si was comparable to the very small level of colonization observed on macroscopic PEG gel controls. The fact that these microgels can be deposited by a nonline-of-sight self-assembly process and hinder bacterial colonization opens the possibility of modifying the surfaces of topographically complex biomedical devices and reduces the rate of biomaterial-associated infection. PMID:22519439

  4. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    Science.gov (United States)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  5. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    Science.gov (United States)

    Oliveira, Tales Lyra; Candeia-Medeiros, Návylla; Cavalcante-Araújo, Polliane M.; Melo, Igor Santana; Fávaro-Pípi, Elaine; Fátima, Luciana Alves; Rocha, Antônio Augusto; Goulart, Luiz Ricardo; Machado, Ubiratan Fabres; Campos, Ruy R.; Sabino-Silva, Robinson

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it. PMID:26902517

  6. Influence of the Outer Surface Layers of Crystals on the X-Ray Diffraction Intensity of Basal Reflections

    OpenAIRE

    Sakharov, Boris A.; Plançon, Alain; Lanson, Bruno; Drits, Victor A.

    2004-01-01

    This study presents a mathematical formalism describing diffraction effects from periodic and mixed-layer minerals in which the outer surface layers of crystals differ from layers forming the core of the crystals. XRD patterns calculated for structure models of chlorite and irregular chlorite-smectites terminated on both sides of the crystals by either brucite-like or 2:1 layers show the strong influence that different outer surface layers make on the distribution of basal reflection intensit...

  7. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    2010-01-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the ami

  8. Formation of Cadmium Selenide Layers on the Polyamide Film Surface by Sorption-Diffusion Method

    Directory of Open Access Journals (Sweden)

    Neringa Petrašauskienė

    2015-03-01

    Full Text Available The layers containing cadmium selenide, CdxSe,were formed on the surface of semihydrophilic polymer – polyamide 6 (PA using acidified 0.10 mol/dm3 solution of potassium selenotrithionate, K2SeS2O6,as precursor of selenium. The concentration of sorbed selenium (at 60 oC increases with the increase of the duration of PA treatment in K2SeS2O6solution. The cadmium selenide containing layers are formed on the surface of PA after the treatment of seleniumized polymer with cadmium acetate, (Cd(CH3COO2·2H2O, solution (60–80 oC:the anions SeS2O62– containing selenium atoms of low oxidation state react with the cadmium(II ions. The conditions of a polymer initial seleniumization and of seleniumized PA treatment with cadmium acetate solution determine the concentration of cadmium and the composition of chalcogenide layer. The concentration of cadmium in the chalcogenide layer increases with the increase of initial chalcogenization duration only up to about 2 h and the temperature of selenotrithionate solution. The results of XPS and XRD confirmed the formation of cadmium selenide layers on the surface of PA. XRD patterns study of not earlier studied CdSe layers on PA showed their phase composition of two cadmium selenides phases – Zinc blende (cubic CdSe,wurtzite (hexagonal CdSe and cadmium(II hydroxide, Cd(OH2. Accordingly data of XRD and XPS analysis the macrostructure and composition ofCuSe layers depends on the conditions of these layers formation. The data determined enable formation of the layers of cadmium selenide on the surface of PA by thesorption-diffusion method using the solution of potassium selenotrithionate as a precursor of selenium.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5097

  9. Relaxation of surface tension in the free-surface boundary layer of simple Lennard-Jones liquids

    OpenAIRE

    Lukyanov, Alex V.; Likhtman, Alexei E.

    2013-01-01

    In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards e...

  10. TEM studies of the nitrided/oxided Ni-Ti surface layer.

    Science.gov (United States)

    Lelatko, J; Goryczka, T; Paczkowski, P; Wierzchoń, T; Morawiec, H

    2010-03-01

    TiN and TiO(2) coatings, which are known from their low chemical reactivity, high hardness and wear and corrosion resistance, are used for protecting the NiTi surface. In the present work, nearly equiatomic NiTi (50.6 at.%) shape memory alloy was covered with the layers obtained by nitriding under glow discharge at 1073 K. Additionally, at the end of the process some amount of oxygen was added. Characterization of the nitrided/oxided layers structure was carried out using transmission and scanning electron microscopy. The investigations were focused on the structure of the multilayer nitrided/oxided NiTi surface. The surface is formed from nanocrystalline and columnar grains of the TiN phase. Between the top layer and beta-NiTi substrate the interface Ti(2)Ni layer was formed. Addition of oxygen at the end of the process created a thin layer of TiO(2) phase nanograins at the surface of the TiN phase. In the same areas, small amount of amorphous phase was identified. The combination of nitriding and oxidation formed layers that reveal relatively high corrosion resistance. PMID:20500413

  11. Superhydrophobic surfaces via electroless displacement of nanometric Cu layers by Ag{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Brenier, R., E-mail: roger.brenier@lpmcn.univ-lyon1.fr [Universite de Lyon, Universite Lyon1, Laboratoire PMCN, CNRS, UMR 5586, F69622 Villeurbanne Cedex (France); Ramos, S.M.M.; Montchanin, M. [Universite de Lyon, Universite Lyon1, Laboratoire PMCN, CNRS, UMR 5586, F69622 Villeurbanne Cedex (France)

    2009-05-30

    This paper explores the possibility of making hydrophobic and superhydrophobic surfaces from electroless displacement of Cu by Ag{sup +}, in the case where Cu oxidation is limited owing to Cu layers of nanometric thicknesses. The morphology of the Ag layers is studied by scanning electron microscopy for Cu thicknesses between 10 and 80 nm. The mapping of the elemental content of the layers by electron dispersive X-ray analysis also has been used to clarify the particle growing by diffusion limited aggregation. It is shown that the average size and the shape complexity of the Ag particles increase with the Cu thickness. The addition of dimethyl sulfoxide in the Ag{sup +} aqueous solution improves the surface homogeneity, increases the particle density and decreases their sizes. The wetting behaviour of the surfaces, after grafting with octadecanethiol, has been studied from measurements of the contact angles of a drop of water. According to the thickness of the initial Cu layer and the morphology of the Ag layer, contact angles range between 110{sup o} and 154{sup o}. Superhydrophobic surfaces are obtained from 80 nm thick Cu layers.

  12. Layer-by-layer Grafting of Titanium Phosphate onto Mesoporous Silica SBA-15 Surfaces: Synthesis, Characterization, and Applications

    International Nuclear Information System (INIS)

    Metal phosphates have many applications in catalysis, separation, and proton conduction, but their small surface areas and/or constrained pore structures limit their utilization. Here, we report two new methods for the liquid-phase grafting of titanium phosphate onto mesoporous silica (SBA-15) surfaces: (1) alternate grafting of Ti(OPri)4 and then POCl3 and (2) one-pot grafting of titanium phosphate formed in situ by employing Ti(OPri)4 (a base) and POCl3 (an acid) as an appropriate acid-base pair . Both the size of mesopores and the content of titanium phosphate can be changed by increasing the number of modification cycles in a stepwise (or layer-by-layer) fashion. The obtained products were characterized by inductively coupled plasma optical emission spectroscopy, X-ray diffraction, N2 adsorption desorption, transmission electron microscopy, 31P and 29Si magic-angle spinning NMR, and NH3 temperature programmed desorption, and their performance in acid catalysis and metal ion adsorption was investigated. This work provides new methodologies for the general synthesis of supported metal phosphates with large surface areas, ordered nanoporous structures, and acid properties.

  13. Laser nitriding of the surface layer of Ti6Al4V titanium alloy

    Directory of Open Access Journals (Sweden)

    R. Filip

    2008-03-01

    Full Text Available Purpose: The purpose of this paper is modification of the surface layer of the Ti6Al4V titanium alloymicrostructure and properties by laser remelting in nitrogen atmosphere.Design/methodology/approach: Laser treatment was performed on the samples in stream of nitrogen.Microstructure of laser treated layer was investigated by using Epiphot 300 optical microscope and Novascan30 scanning electron microscope. Phase composition was determined using X-ray diffractometry. The roughnessof surface of treated material was examined using topography scanning system T 8000 made by HommelwerkeGMBH. The Vickers hardness under load of 1.96 N was measured on the cross sections of surface layer. The wearproperties of alloyed zone were tested on the testing machine T 08M using ‘pin on disc’ test.Findings: Laser remelting process has produced a surface layer consists of hard ceramics particles of TiN andTi2N phases spaced in martensitic matrix. The hardness of surface layer increases clearly in comparison withuntreated alloy due to formation of TiN and Ti2N particles and depends on the volume fraction of nitrides. Theirmaximum value of the hardness (1500 HV 0.2 occurs on the surface of laser treated zone. Wear resistance of lasernitrided layer increases considerably in relation to base alloy.Research limitations/implications: Research range was limited to microstructure, phase composition,hardness, fractography and wear resistance investigations. To estimate the influence of the laser nitriding processon corrosion resistance of the layer additional examinations will be performed in future research.Practical implications: Laser remelting of titanium alloy in nitrogen atmosphere makes possible to obtain coatingscomposed of ceramic particles spaced in metallic matrix characterised by high hardness and wear resistance.Originality/value: The range of investigation included microstructure, phase composition, hardness as well asfractographic estimation and wear

  14. Molecular investigation of bacterial communities: Data from two frequently used surfaces in the São Paulo Institute of Tropical Medicine.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2016-09-01

    This article contains data on the bacterial population of two frequently used surfaces in the São Paulo Institute of Tropical Medicine (ITM) using the Illumina sequencing for massive parallel investigation of the bacterial 16S ribosomal RNA gene. Surface samples were obtained from restroom surfaces and the fingerprint door clock system. Mothur package and Shannon-ace-table.pl software programs (Chunlab Inc.: Seoul, Korea) were used to compute the diversity indices of bacterial community. The sequencing data from both surfaces have been uploaded to Zenodo: http://dx.doi.org/10.5281/zenodo.47709. PMID:27331120

  15. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  16. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    Science.gov (United States)

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug. PMID:26450150

  17. Quantitative auger electron spectroscopy of the interface carbon layer formation on the vacuum cleavage surfaces of layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    The results of the qualitative Auger electron spectroscopy of the interface carbon layer formation on the high vacuum cleavage surfaces of layered semiconductor In4Se3 crystals are presented. The kinetics of interfacial carbon layer formation on the cleavage surfaces of crystals and the elemental and phase composition of the interface dependent on the exposition time in high vacuum and on the dose of electron irradiation have been studied by the quantitative Auger electron and mass-spectroscopy methods

  18. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    Science.gov (United States)

    Lomov, A. A.; Myakon'kikh, A. V.; Oreshko, A. P.; Shemukhin, A. A.

    2016-03-01

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2-5)-keV helium ions to a dose of D = 6 × 1015-5 × 1017 cm-2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ( z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm-2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.

  19. Extent of oxide layer at the inner surface of burst cladding

    International Nuclear Information System (INIS)

    The extent of oxide layer at the inner surface of burst cladding is one of very important items in the heat-up calculation during a postulated LOCA transient in LWRs. The extent of oxide layers were measured on burst claddings being conducted over a range of oxidation temperature from 900 to 11500C, oxidation time varying from 35 to 240s, steam flow rate varying from 2 to 1530 g/m2s and rupture varying in length from about 5 to 26 mm. The extent of oxide layer at the inner surface of burst cladding is influenced by oxidation temperature, oxidation time and supplied amount of steam entering a rupture of burst cladding. The extent of oxide layer, in paticular, becomes large as the length of a rupture is longer. The thickness of oxide near the burst, which is thicker than that away from the burst, exceeds the value calculated by the reaction rate. (author)

  20. Physical mechanism and numerical simulations of surface layer temperature inversion in tropical ocean

    Institute of Scientific and Technical Information of China (English)

    FAN Haimei; LI Bingrui; ZHANG Qinghua; LIU Zhiliang

    2005-01-01

    The one-dimensional Kraus-Tumer mixed layer model improved by Liu is developed to consider the effect of salinity and the equations of temperature and salinity under the mixed layer. On this basis, the processes of growth and death of surface layer temperature inversion is numerically simulated under different environmental parameters. At the same time, the physical mechanism is preliminarily discussed combining the observations at the station of TOGA-COARE 0°N, 156°E. The results indicate that temperature inversion sensitively depends on the mixed layer depth, sea surface wind speed and solar shortwave radiation, etc., and appropriately meteorological and hydrological conditions often lead to the similarly periodical occurrence of this inversion phenomenon.

  1. Surface structure and surface kinetics of InN grown by plasma-assisted atomic layer epitaxy: A HREELS study

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Ananta R., E-mail: aacharya@georgiasouthern.edu, E-mail: anantaach@gmail.com [Department of Physics, Georgia Southern University, Statesboro, Georgia 30460 (United States); Thoms, Brian D. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Nepal, Neeraj [American Association for Engineering Education, 1818 N Street NW, Washington, DC 20034 (United States); Eddy, Charles R. [Electronics Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2015-03-15

    The surface bonding configuration and kinetics of hydrogen desorption from InN grown by plasma-assisted atomic layer epitaxy have been investigated. High resolution electron energy loss spectra exhibited loss peaks assigned to a Fuchs–Kliewer surface phonon, N-N and N-H surface species. The surface N-N vibrations are attributed to surface defects. The observation of N-H but no In-H surface species suggested N-terminated InN. Isothermal desorption data were best fit by the first-order desorption kinetics with an activation energy of (0.88 ± 0.06) eV and pre-exponential factor of (1.5 ± 0.5) × 10{sup 5 }s{sup −1}.

  2. Structural and electronic properties of single molecules and organic layers on surfaces

    OpenAIRE

    Sotthewes, Kai

    2016-01-01

    Single molecules and organic layers on well-defined solid surfaces have attracted tremendous attention owing to their interesting physical and chemical properties. The ultimate utility of single molecules or self-assembled monolayers (SAMs) for potential applications is critically dependent on the structural, electronic and dynamic properties. Therefore is it important to study the structural and electronic properties as well as the dynamic processes of single molecules and organic layers on ...

  3. IMPROVEMENT OF METHODS AND MEANS OF ULTRASONIC CONTROL OF METAL GOODS WITH MODIFIED SURFACE LAYER

    Directory of Open Access Journals (Sweden)

    A. R. Baev

    2011-01-01

    Full Text Available In the report perspective methods of diagnostics of surface layers state of products after various technological processes (a face hardening by means of induction or after cementation, coating are viewed. The testing is carried out to geometrical attributes (thickness of a layer and presence of flaws. The offered methods of measuring allow making the test in a work cycle of products manufacture.

  4. Surface properties of Mars' polar layered deposits and polar landing sites

    OpenAIRE

    Vasavada, Ashwin R.; Williams, Jean-Pierre; Paige, David A.; Herkenhoff, Ken E.; Bridges, Nathan T.; Greeley, Ronald; Murray, Bruce C.; Bass, Deborah S.; McBride, Karen S.

    2000-01-01

    On December 3, 1999, the Mars Polar Lander and Mars Microprobes will land on the planet's south polar layered deposits near (76°S, 195°W) and conduct the first in situ studies of the planet's polar regions. The scientific goals of these missions address several poorly understood and globally significant issues, such as polar meteorology, the composition and volatile content of the layered deposits, the erosional state and mass balance of their surface, their possible relationship to climate c...

  5. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Fu Weiling

    2011-06-01

    Full Text Available Abstract Background Early detection of mixed aerobic-anaerobic infection has been a challenge in clinical practice due to the phenotypic changes in complex environments. Surface plasmon resonance (SPR biosensor is widely used to detect DNA-DNA interaction and offers a sensitive and label-free approach in DNA research. Methods In this study, we developed a single-stranded DNA (ssDNA amplification technique and modified the traditional SPR detection system for rapid and simultaneous detection of mixed infections of four pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium tetani and Clostridium perfringens. Results We constructed the circulation detection well to increase the sensitivity and the tandem probe arrays to reduce the non-specific hybridization. The use of 16S rDNA universal primers ensured the amplification of four target nucleic acid sequences simultaneously, and further electrophoresis and sequencing confirmed the high efficiency of this amplification method. No significant signals were detected during the single-base mismatch or non-specific probe hybridization (P 2 values of >0.99. The lowest detection limits were 0.03 nM for P. aeruginosa, 0.02 nM for S. aureus, 0.01 nM for C. tetani and 0.02 nM for C. perfringens. The SPR biosensor had the same detection rate as the traditional culture method (P Conclusions Our method can rapidly and accurately identify the mixed aerobic-anaerobic infection, providing a reliable alternative to bacterial culture for rapid bacteria detection.

  6. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface

    NARCIS (Netherlands)

    Rochford, E. T. J.; Poulsson, A. H. C.; Salavarrieta Varela, J.; Lezuo, P.; Richards, R. G.; Moriarty, T. F.

    2014-01-01

    Despite extensive use of polyetheretherketone (PEEK) in biomedical applications, information about bacterial adhesion to this biomaterial is limited. This study investigated Staphylococcus aureus and Staphylococcus epidermidis adhesion to injection moulded and machined PEEK OPTIMA (R) using a custom

  7. Linking the Presence of Surfactant Associated Bacteria on the Sea Surface and in the Near Surface Layer of the Ocean to Satellite Imagery

    Science.gov (United States)

    Hamilton, Bryan; Dean, Cayla; Kurata, Naoko; Soloviev, Alex; Tartar, Aurelien; Shivji, Mahmood; Perrie, William; Lehner, Susanne

    2015-04-01

    Several genera of bacteria residing on the sea surface and in the near-surface layer of the ocean have been found to be involved in the production and decay of surfactants. Under low wind speed conditions, these surfactants can suppress short gravity capillary waves at the sea surface and form natural sea slicks. These features can be observed with both airborne and satellite-based synthetic aperture radar (SAR). We have developed a new method for sampling the sea surface microlayer that has reduced contamination from the boat and during lab handling of samples. Using this new method, a series of experiments have been conducted to establish a connection between the presence of surfactant-associated bacteria in the upper layer of the ocean and sea slicks. DNA analysis of in situ samples taken during a RADARSAT-2 satellite overpass in the Straits of Florida during the 2010 Deepwater Horizon oil spill showed a higher abundance of surfactant-associated bacterial genera in the slick area as compared to the non-slick area. These genera were found to be more abundant in the subsurface water samples collected as compared to samples taken from the sea surface. The experiment was repeated in the Straits of Florida in September 2013 and was coordinated with TerraSAR-X satellite overpasses. The observations suggest that the surfactants contributing to sea slick formation are produced by marine bacteria in the organic matter-rich water column and move to the sea surface by diffusion or advection. Thus, within a range of wind-wave conditions, the organic materials present in the water column (such as dissolved oil spills) can be monitored with SAR satellite imagery. In situ sampling was also performed in the Gulf of Mexico in December 2013 during RADARSAT-2 and TerraSAR-X satellite overpasses. Areas near natural oil seeps identified from archived TerraSAR-X imagery were targeted for in situ sampling. A number of samples from this location have been analyzed to determine the

  8. Bacterial diversity and community structure of a sub-surface aquifer exposed to realistic low herbicide concentrations

    DEFF Research Database (Denmark)

    Lipthay, Julia R. de; Johnsen, Kaare; Albrechtsen, H.-J.;

    2004-01-01

    community analyses. In contrast, no significant effect was found on the bacterial diversity, except for the culturable fraction where a significantly increased richness and Shannon index was found in the herbicide acclimated sediments. The results of this study show that in situ exposure of sub...... contaminants. We examined the effect of in situ exposure to realistic low concentrations of herbicides on the microbial diversity and community structure of sub-surface sediments from a shallow aquifer near Vejen (Denmark). Three different community analyses were performed: colony morphology typing, sole......-surface aquifers to realistic low concentrations of herbicides may alter the overall structure of a natural bacterial community, although significant effects on the genetic diversity and carbon substrate usage cannot be detected. The observed impact was probably due to indirect effects. In future investigations...

  9. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    International Nuclear Information System (INIS)

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms

  10. Microstructural Evolution of Surface Layer of TWIP Steel Deformed by Mechanical Attrition Treatment

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de- formation layer. Microstructural characteristics of the surface at the TWIP steel SMATed for 90 min were observed and analyzed by optical microscope, x-ray diffraction, transmission and high-resolution electron microscope. The re- sults show that the orientation of austenite grains weakens, and a-martensite transformation occurs during SMAT. During the process of SMAT, the deformation twins generate and divide the austenite grains firstly~ then a-martens- ite transformation occurs beside and between the twin bundles~ after that the martensite and austenite grains rotate to accommodate deformation, and the orientations of martensite and between martensite and residual austenite increase; lastly the randomly oriented and uniform-sized nanocrystallir~e layers are formed under continuous deformation.

  11. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bashchenko, Lyudmila P., E-mail: luda.baschenko@gmail.com; Gromov, Viktor E., E-mail: gromov@physics.sibsiu.ru; Budovskikh, Evgenii A., E-mail: budovskih-ea@physics.sibsiu.ru; Soskova, Nina A., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation); Ivanov, Yurii F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB{sub 2}, silicon carbide SiC and zirconium oxide ZrO{sub 2}) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  12. Hardening of the surface layers of commercial pure titanium VT1-0 under combined treatment

    Science.gov (United States)

    Bashchenko, Lyudmila P.; Gromov, Viktor E.; Budovskikh, Evgenii A.; Ivanov, Yurii F.; Soskova, Nina A.

    2015-10-01

    The treatment of VT1-0 titanium samples was carried out by concentrated energy fluxes. The combined treatment included surface carburizing with the joint use of powder samples of compounds with high physical and mechanical properties (namely, titanium diboride TiB2, silicon carbide SiC and zirconium oxide ZrO2) and subsequent electron beam treatment of surface layers formed in electroexplosive treatment. The combined treatment of surface layers resulted in the multifold increase in microhardness, which reduces depending on the depth of hardening zone. After electron-beam treatment, the depth of hardening zone is increased. During electron-beam treatment, the two-layer hardening zone forms.

  13. Highly Stable Surface-Enhanced Raman Spectroscopy Substrates Using Few-Layer Graphene on Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jaehong Lee

    2015-01-01

    Full Text Available Graphene can be effectively applied as an ultrathin barrier for fluids, gases, and atoms based on its excellent impermeability. In this work, few-layer graphene was encapsulated on silver (Ag nanoparticles for the fabrication of highly stable surface-enhanced Raman scattering (SERS substrates, which has strong resistance to oxidation of the Ag nanoparticles. The few-layer graphene can be successfully grown on the surface of the Ag nanoparticles through a simple heating process. To prevent the agglomeration of the Ag nanoparticles in the fabrication process, poly(methyl methacrylate (PMMA layers were used as a solid carbon source instead of methane (CH4 gas generally used as a carbon source for the synthesis of graphene. X-ray diffraction (XRD spectra of the few-layer graphene-encapsulated Ag nanoparticles indicate that the few-layer graphene can protect the Ag nanoparticles from surface oxidation after intensive annealing processes in ambient conditions, giving the highly stable SERS substrates. The Raman spectra of Rhodamine 6G (R6G deposited on the stable SERS substrates exhibit maintenance of the Raman signal intensity despite the annealing process in air. The facile approach to fabricate the few-layer graphene-encapsulated Ag nanoparticles can be effectively useful for various applications in chemical and biological sensors by providing the highly stable SERS substrates.

  14. To definition of theory of boundary layer connected with motion on free liquid surface

    International Nuclear Information System (INIS)

    A modified theory of a boundary layer associated with a periodic capillary-gravitational motion on the free surface of an infinitely deep viscous liquid is proposed. The flow in the boundary layer is described in terms of a simplified (compared with the complete statement) model problem a solution to which correctly reflects the main features of an exact asymptotic solution: the rapid decay of the flow eddy part with depth of the liquid and insignificance of some terms appearing in the complete statement. The boundary layer thickness at which the discrepancy between the exact asymptotic solution and model solution is within a given margin is estimated

  15. Adsorption studies at ionized surface layers by means of hot atoms

    International Nuclear Information System (INIS)

    Adsorption of ions at the surface of solutions of ionic surface-active substances can directly be studied using hot atoms. Extremely small amounts of suitable radioactive ions, or ions liable to undergo induced nuclear transformations in situ, are added to such solutions, replacing some of the normal counter ions coadsorbed at the primary-adsorbed organic ions. Hot atoms with energies from about 100 keV down to a few electron volts give ranges in water from about 1000 A down to monomoleeular layers. This makes them suitable for sensitive surface layer studies. The hot atoms ejected from the surface are collected and counted. Among α-disintegration recoils, the system Bi212/Tl208 has proved to be suitable. Now, by refining the method, valuable information about adsorption conditions at sodium dodecyl sulphate surface layers could be found. The kinetics of adsorption was studied by following in time the collected recoil activity caused by Bi-ion adsorption. Adsorption isotherms of Bi-ions as a function of the bulk concentration of the surface-active substance under varying conditions of ionic strength, pH and Bi212 activity were measured. By comparing these isotherms with those obtained by measuring the surface tension of the solutions and calculating the surface excess with the aid of a suitably modified Gibbs' isotherm, the adsorption of Bi+++ and Pb++ relative to that of Na+ and H3O+, and by this the extent of ion exchange in the adsorbed layer could be determined. As the method measures the adsorption of charged species, surface reactions transforming primary-adsorbed organic anions to a non-ionic state could be followed. Conclusions could be drawn about the formation of a non-ionized acid soap in the surface and about micelle formation in the bulk under various experimental conditions. (author)

  16. CD4+ T Cells and Toll-Like Receptors Recognize Salmonella Antigens Expressed in Bacterial Surface Organelles

    OpenAIRE

    Bergman, Molly A.; Cummings, Lisa A.; Barrett, Sara L. Rassoulian; Smith, Kelly D.; Lara, J. Cano; Aderem, Alan; Cookson, Brad T.

    2005-01-01

    A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysacc...

  17. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    International Nuclear Information System (INIS)

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO4) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO2) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO2) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell

  18. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  19. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  20. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  1. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    International Nuclear Information System (INIS)

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS

  2. Covalent assembly of poly(ethyleneimine) via layer-by-layer deposition for enhancing surface density of protein and bacteria attachment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing, E-mail: xiabing@njfu.edu.cn [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037 (China); Shi, Jisen; Dong, Chen; Zhang, Wenyi; Lu, Ye [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Guo, Ping [Nanjing College of Information Technology, Nanjing 210023 (China)

    2014-02-15

    Covalently assembly of low molecular weight poly(ethyleneimine) was introduced to glass surfaces via glutaraldehyde crosslinking, with focus on its application on protein immobilization or bacteria attachment. Characterizations of Fourier transform infrared spectroscopy and ellipsometry measurement revealed a stepwise growth of poly(ethyleneimine) films by layer-by-layer deposition. After fluorescein isothiocyanate labelling, photoluminescence spectroscopy measurement indicated that the amount of surface accessible amine groups had been gradually enhanced with increasing poly(ethyleneimine) layers deposition. As compared with traditional aminosilanized surfaces, the surface density of amine groups was enhanced by ∼11 times after five layers grafting, which resulted in ∼9-time increasing of surface density of immobilized bovine serum albumin. Finally, these as-prepared PEI multi-films with excellent biocompatibility were adopted as culture substrates to improve Escherichia coli adherence, which showed that their surface density had been increased by ∼251 times.

  3. Delivery of surface-mediated non-viral gene nanoparticles from ultrathin layer-by-layer multilayers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An efficient and safe gene delivery system remains a challenge in the development of gene therapy.Polycation-based gene nanoparticles are a typical non-viral gene delivery system,which are able to transfect cells in vitro and in vivo.This paper reported a facile method for constructing biodegradable multilayers via layer-by-layer self-assembly,in which the polycation-based gene nanoparticles were loaded.Through this surface-mediated delivery system,adherent cells on the multilayer could be transfected in situ.Gene nanoparticles-loaded multilayers transfect cells with higher efficiency than naked DNA-loaded multilayers because of the complex configuration of the DNA.DNA nanoparticles/PGA multilayers constructed on the scaffold surface could also realize in situ transfection on the adherent cells.The well-structured,easy-processed multilayers may provide a novel approach to precisely controlled delivery of gene nanoparticles,which may have potential applications for gene therapy in tissue engineering and medical implants.

  4. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    International Nuclear Information System (INIS)

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%

  5. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...... antiferroelectric double layers develop that can be distinguished from the bulk single layer structure. A model is developed that separates the electron density in a contribution from the molecular form factor, and from the structure factor of the mono- and the bilayers, respectively. It shows that (i) the first...

  6. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Potekaev, A. I., E-mail: potekaev@spti.tsu.ru [National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Kopanitsa, G. D., E-mail: georgy.kopanitsa@mail.com [National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  7. CVD Delta-Doped Boron Surface Layers for Ultra-Shallow Junction Formation

    OpenAIRE

    Sarubbi, F.; Nanver, L.K.; Scholtes, T.L.M.

    2006-01-01

    A new doping technique is presented that uses a pure boron atmospheric/low-pressure chemical vapor deposition (AP/LPCVD) in a commercially available epitaxial reactor to form less than 2-nm-thick δ-doped boron-silicide (BxSi) layers on the silicon surface. For long exposure B segregates at the surface to form a very slow growing amorphous layer of pure B (α-B). The electrical properties of the as-deposited α- B/BxSi stack have been studied by fabricating and measuring diodes where the B depos...

  8. On the strain hardening of near-surface layers in materials under indentation

    International Nuclear Information System (INIS)

    The effect of hydrastatic pressure arising under indentation on the strain hardening coefficient of ST3, L62 and Kh18N9T realized in the material volume and near-surface layers of 0.2-3μm thickness is investigated. It is shown that the hydrostatic pressUre factor in imprint determines the correlation accuracy of hardness and tension diagrams. High-sensitive technique for estimating the level of accumulated in the material volume and in its thin near-surface layers of damages based on the comparison of hardness measured in depth and by residual imprint size is suggested

  9. Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests

    Directory of Open Access Journals (Sweden)

    M. Zeleňák

    2012-07-01

    Full Text Available The objective of the paper is a mutual comparison of different methods for evaluation of mechanical properties of surface layers. Mechanical properties were tested with the use of nanoindentation and microindentation tests. Different loads and constant deformation speed were used in both cases. For the evaluation of mechanical properties, the AISI 304 type Chromium-Nickel steel commonly used in mechanical engineering industry was tested. Knowledge of relations and differences between nano and micromechanical properties is necessary for understanding of mechanical processes continuously occurring in surface layers during cutting processes.

  10. On the influence of nanometer-thin antiferromagnetic surface layer on ferromagnetic CrO$_2$

    OpenAIRE

    Das, Pintu; Bajpai, Ashna; Ohno, Yuzo; Ohno, Hideo; Jens MÜLLER

    2012-01-01

    We present magnetic stray field measurements performed on a single micro-crystal of the half metallic ferromagnet CrO$_2$, covered by a naturally grown 2\\,-\\,5\\,nm surface layer of antiferromagnetic (AFM) Cr$_2$O$_3$. The temperature variation of the stray field of the micro-crystal measured by micro-Hall magnetometry shows an anomalous increase below $\\sim$\\,60\\,K. We find clear evidence that this behavior is due to the influence of the AFM surface layer, which could not be isolated in the c...

  11. Puzzling evidence for surface superconductivity in the layered dichalcogenide Cu10%TiSe2

    Science.gov (United States)

    Levy-Bertrand, F.; Michon, B.; Marcus, J.; Marcenat, C.; Kačmarčík, J.; Klein, T.; Cercellier, H.

    2016-04-01

    We report on specific heat and magnetotransport measurements performed on superconducting Cu10%TiSe2 single crystals. We show that superconductivity persists in transport measurements up to magnetic fields HR well above the upper critical field Hc2 deduced from the calorimetric measurements. Surprisingly this "surface" superconductivity is present for all magnetic field orientations, either parallel or perpendicular to the layers. For H‖ab, the temperature dependence of the HR/Hc2 ratio can be well reproduced by solving the Ginzburg-Landau equations in presence of a surface layer with reduced superconducting properties. Unexpectedly this temperature dependence does not depend on the field orientation.

  12. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    Science.gov (United States)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to

  13. Observations and proxies of the surface layer throughflow in Lombok Strait

    Science.gov (United States)

    Susanto, R. Dwi; Gordon, Arnold L.; Sprintall, Janet

    2007-03-01

    Seasonal to interannual variability of the Lombok Strait surface layer transport is investigated. The geostrophic transport within the surface layer is estimated from the cross-channel pressure gradient measured by a pair of shallow pressure gauges positioned on opposing sides of Lombok Strait during 1996-1999. The Ekman transport through Lombok Strait, derived from scatterometer winds, is less than 10% or ˜0.15 Sv of the estimated surface layer geostrophic transport. Monsoonal forcing is clearly evident in the regional sea surface height anomalies (SSHA) as derived from the satellite altimeter measurements. During the southeast monsoon, relatively low sea level is observed to the south of Lombok Strait, with relatively high sea level to the north; conditions reverse during the northwest monsoon. Estimated transports from the cross-channel pressure gradient, winds, SSHA and thermocline depth anomalies all reveal interannual variability associated with ENSO. Both the thermocline depth anomaly and the SSHA to the south of the East Java coast correlate significantly (r = 0.7) with the Lombok Strait total surface layer throughflow. The difference of SSHA from the south of the East Java coast minus the SSHA north of Lombok shows a higher correlation (r = 0.84). These high correlation values suggest that SSHA and thermocline depth anomalies can be used as proxies for the Lombok Strait surface layer throughflow. Qualitatively, such proxy transports agree with the surface transport inferred from the pressure gauges and Ekman transport in Lombok Strait from 1996 to 1999, and also with direct velocity measurements from current meter data obtained in 1985 and 2004-2005.

  14. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, T.; /IIT, Chicago /Argonne; Zasadzinski, J.; /IIT, Chicago; Moore, J.; Pellin, M.; Elam, J.; /Argonne; Cooley, L.; /Fermilab; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  15. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-05-01

    Full Text Available This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP test and the scanning electron microscopy (SEM images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days.

  16. Polarization-Conversion Guided Mode (PCGM) technique for exploring thin anisotropic surface layers.

    Science.gov (United States)

    Yang, Fuzi; Ruan, Lizhen; Sambles, John R

    2007-09-01

    A Polarization-Conversion Guided Mode (PCGM) technique has been developed to quantify optical anisotropy as low as 10-5 for a surface layer only 10 nm thick. The optical geometry consists of an index-fluid matched prism-coupler and an air-gap waveguide comprising the thin sample on a glass plate as the incident surface with a gold reflector forming the other surface of the guide. This allows non-destructive characterization of the optical anisotropy of surface layers. The polarization conversion signal is extraordinarily sensitive. Thus the influence of the polarization purity of the incoming beam, very small twists and/or tilts between the normal to the prism bottom surface and the sample plane, have all been analyzed in detail to allow extraction of the sought for information about the thin layer. Rubbed polyimide thin films and incline-evaporated SiOx layers, both used for liquid crystal alignment, have been examined by this PCGM technique to demonstrate its power. PMID:19547479

  17. Gallium nitride surface protection during RTA annealing with a GaOxNy cap-layer

    Science.gov (United States)

    Khalfaoui, Wahid; Oheix, T.; Cayrel, F.; Benoit, R.; Yvon, A.; Collard, E.; Alquier, D.

    2016-04-01

    Gallium nitride (GaN) is generally considered a good candidate for power electronic devices such as Schottky barrier diodes (SBDs). Nevertheless, GaN has a strong sensitivity to high temperature treatments and a cap-layer is mandatory to protect the material surface during annealing at high temperature such as post-implantation treatments. In this work, an oxidized gallium nitride layer (GaOxNy) was generated with Oxford PECVD equipment using a N2O plasma treatment to protect the GaN surface during a rapid thermal annealing (RTA), in the range of 1000 °C-1150 °C for a few minutes. Before annealing, c-TLM patterns were processed on the GaOxNy/GaN sample to characterize its sheet resistance. After the N2O plasma treatment, the sample exhibited lower sheet resistance, indicating a better n-type conduction of the GaOxNy layer due to an excess of free carriers, compared to the as-grown GaN layer. The GaOxNy/GaN surface was then annealed at 1150 °C for 3 min and observed through AFM imaging. The surface exhibited a good quality with a low roughness, nevertheless, a low density of small hexagonal pits appeared after annealing. Finally, studies to determine an efficient etching process of the GaOxNy cap-layer were conducted using both chemical and physical approaches. We observed that efficient etching of the layer was achieved using a heated hydrofluoridric acid (HF 25%) solution. To conclude, GaOxNy has proved to be an efficient cap-layer for GaN protection at high temperature.

  18. Bioavailability of surface dissolved organic matter to aphotic bacterial communities in the Amundsen Sea Polynya, Antarctica

    Directory of Open Access Journals (Sweden)

    Rachel E. Sipler

    2015-07-01

    Full Text Available Abstract Antarctic seas, and particularly the Amundsen Sea Polynya, are some of the most productive oceanic regions on Earth. Ice-algal production during austral spring is followed by open-water pelagic production later in the season. Although ice-free growth accounts for a greater percentage of the annual net primary production, ice algae provide an important source of nutrients to organisms throughout the water column and benthos in areas and seasons when open-water production is insignificant. The objectives of this study were to assess the bioavailability of dissolved organic matter (DOM, sourced from ice algae or the chlorophyll maximum (chl max, to marine bacterioplankton and to determine the fate of carbon within these different DOM pools, including loss to respiration, incorporation into bacterial biomass and retention within the DOM pool itself. Nutrient concentrations and bacterial abundance, production, and cell volume were monitored during a 7-day bioassay study involving four treatments conducted shipboard in the Amundsen Sea Polynya, Antarctica. The greatest response in bacterial abundance and activity was observed when ice-algal meltwater was supplied to aphotic zone bacterioplankton collected from 170-m depth. However, bacterial growth efficiency was higher (24% when chl max water was supplied to the same aphotic zone bacterial community compared to the bacterial growth efficiency of the ice-algal treatment (15%. Approximately 15% of dissolved organic carbon (DOC from the ice-algal source and 18% from the chl max was consumed by aphotic bacterial communities over the relatively short, one-week incubation. In contrast, 65% of the dissolved organic nitrogen (DON added as an integral part of the ice-algal DOM was consumed, but none of the DON supplied with chl max water was labile. This study underscores the importance of considering DOM sources when investigating or predicting changes in carbon and nitrogen cycling within the

  19. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Directory of Open Access Journals (Sweden)

    Sizhong Yang

    Full Text Available The buried China-Russia Crude Oil Pipeline (CRCOP across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs. The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  20. Study on laser-cladding Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties

    International Nuclear Information System (INIS)

    Laser-cladding Ni-Al-WC alloy layer on the surface of chrome cast iron and alloy layer's micro-structure and properties are studied. The chemical composition, the phase structure, the average micro-hardness, the wear resistance and the corrosion resistance are analyzed for the Ni-Al-WC and the matrix, respectively. The results show that the metallurgical combination is achieved between the spray alloy layer and the surface of chrome cast iron, the chemical composition and micro-structure in the surface layer of the specimen are changed basically, and the micro-hardness, the wear resistance, the corrosion resistance in the surface layer are increased with a large range

  1. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  2. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    Science.gov (United States)

    Keturakis, Christopher J.; Notis, Ben; Blenheim, Alex; Miller, Alfred C.; Pafchek, Rob; Notis, Michael R.; Wachs, Israel E.

    2016-07-01

    Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE-244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1-3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300-1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu2O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu2O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu2O layer. Depth profiling revealed the presence of K, Na, Cl, and S as key corrosion components for both sets of coins with S, most likely as Ag2S, concentrated towards the surface while the Cl, most likely as AgCl, penetrated deeper. Schema to understand the overall chemistry of the corrosion layers present on these silver alloy coins were developed from the equipment limitations encountered and are presented.

  3. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    Science.gov (United States)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  4. 2D-isothermal compressibility of deposited gold layer on Au(1 1 1) surface

    International Nuclear Information System (INIS)

    Based on thermodynamic arguments, a simple formula is derived that relates the 2D-isothermal compressibility, κ2D, directly to (∂LD/∂E)T and (∂LD/∂N)T, where LD is the stripe separation of the Au(1 1 1) surface, E is the applied electrode potential and N is the surface concentration of deposit. It accounts for the deposition-induced compression of the top most Au(1 1 1) surface layer during gold deposition. Furthermore, the value of κ2D for the deposited gold layer on Au(1 1 1) surface has been experimentally determined. The results reveal that the κ2Dvalue for gold does not match the reported trend for other metals.

  5. Plastic Deformation and Softening of the Surface Layer of Railway Wheel

    OpenAIRE

    Ławrynowicz Z.

    2015-01-01

    In this study scanning electron microscope (SEM) and optical micrograph observations were used to investigate the plastic deformation near the surface of the worn railway wheel following service. Microstructure, plastic deformation and micro-hardness of the material in the outermost tread layer of used passenger railway wheel were characterised. It was found that the material in the contact surface of wheel undergoes severe plastic deformation. Vickers micro-hardness measurements in the highl...

  6. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly.

    OpenAIRE

    Steel, A B; Levicky, R L; Herne, T M; Tarlov, M J

    2000-01-01

    This report investigates the effect of DNA length and the presence of an anchoring group on the assembly of presynthesized oligonucleotides at a gold surface. The work seeks to advance fundamental insight into issues that impact the structure and behavior of surface-immobilized DNA layers, as in, for instance, DNA microarray and biosensor devices. The present study contrasts immobilization of single-stranded DNA (ssDNA) containing a terminal, 5' hexanethiol anchoring group with that of unfunc...

  7. Carbon Surface Layers on a High-Rate LiFePO4

    OpenAIRE

    Gabrisch, Heike; Wilcox, James D.; Doeff, Marca M.

    2005-01-01

    Transmission electron microscopy (TEM) was used to image particles of a high-rate LiFePO4 sample containing a small amount of in situ carbon. The particle morphology is highly irregular, with a wide size distribution. Nevertheless, coatings, varying from about 5-10 nm in thickness, could readily be detected on surfaces of particles as well as on edges of agglomerates. Elemental mapping using Energy Filtered TEM (EFTEM) indicates that these very thin surface layers are composed of carbon....

  8. The advantages of combining ion beam techniques for surface layer analysis

    International Nuclear Information System (INIS)

    The problem of elemental composition analysis for a variable thickness surface layer has been investigated. Both protons and alpha-particles with a range of energy were used as the incident ions for PIXE, PIGME and RBS measurements so that the variation of elemental composition as a function of surface thickness could be studied. An example of measurements on desert varnish coatings on underlying rock is given

  9. Microhardness changes gradient of the duplex stainless steel (DSS) surface layer after dry turning

    OpenAIRE

    G. Krolczyk; Nieslony, P.; S. Legutko; A. Stoic

    2014-01-01

    The article presents the gradient of microhardness changes as a function of the distance from the material surface after turning with a wedge provided with a coating with a ceramic intermediate layer. The investigation comprised the influence of cutting speed on surface integrity microhardness in dry machining. The tested material was duplex stainless steel (DSS) with two-phase, ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts ...

  10. An Experimental Study of the Statistical Scaling of Turbulent Surface Pressure in the Atmospheric Boundary Layer

    Science.gov (United States)

    Lyons, G. W.; Murray, N. E.

    2015-12-01

    Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.

  11. Influence of Surface Transition Layers on Phase Transformation and Pyroelectric Properties of Ferroelectric Thin Film

    Institute of Scientific and Technical Information of China (English)

    SUN Pu-Nan; L(U) Tian-Quan; CHEN Hui; CAO Wen-Wu

    2008-01-01

    Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding bulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.

  12. Hybrid surface layers, made by nitriding with DLC coating, for application in machine parts regeneration

    Directory of Open Access Journals (Sweden)

    L. Klimek

    2013-03-01

    Full Text Available Purpose: The article presents a concept of a hybrid layer, consisting of a gradient layer and anti-wear coat, intended for machine parts regeneration.Design/methodology/approach: The essence of method lies in the use of universal replacement material and its surface processing, which increases the hardness of the part that is being regenerated. The study was conducted on a material covered with a layer made of vacuum-nitraded padding weld of 17CrNi6-6, followed by an anti-wear DCL carbon coat. The morphology of thus created layers and their wear strength has been examined and their utility value has been evaluated.Findings: The hybrid layers under study have been found to improve the machine parts strength, while at the same time reducing frictional resistance, reducing the adhesion forces of the elements in contact and improving the corrosion resistance.Research limitations/implications: The method provides for making use of a versatile restoration material, which subsequently enables application of specific surface processing to improve the durability of the part being regenerated.Practical implications: It is a new concept of a hybrid layer, intended for machine parts regeneration.

  13. Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer.

    Science.gov (United States)

    Liu, Hong; Wang, Bing; Leong, Eunice S P; Yang, Ping; Zong, Yun; Si, Guangyuan; Teng, Jinghua; Maier, Stefan A

    2010-06-22

    This paper reports an effective method to enhance the surface plasmon resonance (SPR) on Ag films by using a thin Ni seed layer assisted deposition. Ag films with a thickness of about 50 nm were deposited by electron beam evaporation above an ultrathin Ni seed layer of approximately 2 nm on both silicon and quartz substrates. The root-mean-square (rms) surface roughness and the correlation length have been reduced from >4 nm and 28 nm for a pure Ag film to approximately 1.3 and 19 nm for Ag/Ni films, respectively. Both experimental and simulation results show that the Ag/Ni films exhibit an enhanced SPR over the pure Ag film with a narrower full width at half-maximum. Ag films with a Ge seed layer have also been prepared under the same conditions. The surface roughness can be reduced to less than 0.7 nm, but narrowing of the SPR curve is not observed due to increased absorptive damping in the Ge seed layer. Our results show that Ni acts as a roughness-diminishing growth layer for the Ag film while at the same time maintaining and enhancing the plasmonic properties of the combined structures. This points toward its use for low-loss plasmonic devices and optical metamaterials applications. PMID:20515054

  14. Substrate surface treatment and YSZ buffer layers by IBAD method for coated conductors

    International Nuclear Information System (INIS)

    In this work, an Ion Beam Assisted Deposition (IBAD) system was utilized to fabricate Yttria-Stabilized Zirconia (YSZ) template films for coated conductors. The surface of the Hastelloy C276 substrate was modified by rolling and electropolishing. The effect of the electropolishing parameters of the substrate on the texture of the YSZ buffer layers was studied. The electropolishing current and time were optimized for short samples of 1 cmx1 cm square shape as 1 A and 60 s, respectively. And the relationship between the roughness of the substrate surface and the texture of the YSZ layer is discussed. Reel-to-reel metal tape moving apparatus was installed and used to produce meter-long buffer layer for coated conductors. The YSZ template film was deposited by IBAD method on meter-long Hastelloy tape with tape shifting speed of 15-20 m/h, and the thickness of the buffer layer was up to about 1.7 μm. The Hastelloy substrate surface was measured by Atomic Force Microscope. The thickness of the YSZ films over length was measured by Thermal Field Emission Scan Electronic Microscopy. X Ray Diffraction Ω-scan and φ-scan measurements were performed in order to examine the out-of-plane and in-plane texture of the YSZ buffer layers, respectively.

  15. Substrate surface treatment and YSZ buffer layers by IBAD method for coated conductors

    Science.gov (United States)

    Feng, F.; Liu, R.; Chen, H.; Shi, K.; Wang, Z.; Wu, W.; Han, Z.

    2009-10-01

    In this work, an Ion Beam Assisted Deposition (IBAD) system was utilized to fabricate Yttria-Stabilized Zirconia (YSZ) template films for coated conductors. The surface of the Hastelloy C276 substrate was modified by rolling and electropolishing. The effect of the electropolishing parameters of the substrate on the texture of the YSZ buffer layers was studied. The electropolishing current and time were optimized for short samples of 1 cm×1 cm square shape as 1 A and 60 s, respectively. And the relationship between the roughness of the substrate surface and the texture of the YSZ layer is discussed. Reel-to-reel metal tape moving apparatus was installed and used to produce meter-long buffer layer for coated conductors. The YSZ template film was deposited by IBAD method on meter-long Hastelloy tape with tape shifting speed of 15-20 m/h, and the thickness of the buffer layer was up to about 1.7 μm. The Hastelloy substrate surface was measured by Atomic Force Microscope. The thickness of the YSZ films over length was measured by Thermal Field Emission Scan Electronic Microscopy. X Ray Diffraction Ω-scan and ϕ-scan measurements were performed in order to examine the out-of-plane and in-plane texture of the YSZ buffer layers, respectively.

  16. Substrate surface treatment and YSZ buffer layers by IBAD method for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Feng, F. [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu, R. [Innova Superconductor Technology Co., Ltd., 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Developemnt Area, Beijing 100176 (China); Chen, H. [Department of Physics, Tsinghua University, Beijing 100084 (China); Shi, K., E-mail: shikai@tsinghua.edu.c [Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Z. [Department of Physics, School of Science, Beijing Institute of Technology, Beijing 100081 (China); Wu, W.; Han, Z. [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2009-10-15

    In this work, an Ion Beam Assisted Deposition (IBAD) system was utilized to fabricate Yttria-Stabilized Zirconia (YSZ) template films for coated conductors. The surface of the Hastelloy C276 substrate was modified by rolling and electropolishing. The effect of the electropolishing parameters of the substrate on the texture of the YSZ buffer layers was studied. The electropolishing current and time were optimized for short samples of 1 cmx1 cm square shape as 1 A and 60 s, respectively. And the relationship between the roughness of the substrate surface and the texture of the YSZ layer is discussed. Reel-to-reel metal tape moving apparatus was installed and used to produce meter-long buffer layer for coated conductors. The YSZ template film was deposited by IBAD method on meter-long Hastelloy tape with tape shifting speed of 15-20 m/h, and the thickness of the buffer layer was up to about 1.7 mum. The Hastelloy substrate surface was measured by Atomic Force Microscope. The thickness of the YSZ films over length was measured by Thermal Field Emission Scan Electronic Microscopy. X Ray Diffraction OMEGA-scan and phi-scan measurements were performed in order to examine the out-of-plane and in-plane texture of the YSZ buffer layers, respectively.

  17. Effects of surface source/sink distributions on the flux-gradient similarity in the unstable surface layer

    Science.gov (United States)

    Huo, Qing; Cai, Xuhui; Kang, Ling; Zhang, Hongsheng; Song, Yu

    2015-01-01

    Based on the micrometeorological measurements at a heterogeneous farmland in the North China Plain, this study focused on the effects of surface source/sink distributions on the flux-gradient similarity theory in the unstable surface layer. Firstly, the quality of the micrometeorological measurements was evaluated by the analysis of the surface energy balance closure and the integral turbulence characteristics. In general, a 22 % deficit of energy balance was found at this site, with the sum of sensible and latent heat being smaller than the available energy. The normalized standard deviations of turbulent quantities behaved in accordance with Monin-Obukhov similarity theory. However, slight departures from the classical formulations might be caused by the surface heterogeneity. Then, the applicability of flux-gradient similarity over the heterogeneous surface was examined. The observed normalized wind gradients agreed with the classical universal function established over homogeneous surface. However, due to the effects of surface source/sink distributions, the observed normalized humidity and temperature gradients deviated from the classical universal functions. Our study shows that the classical universal functions, when adjusted by a coefficient considering the effects of surface heterogeneity, can be utilized to estimate fluxes via gradient method even though over the heterogeneous surface. This adjustment coefficient was found to decrease linearly from unity with the increase of the absolute value of the vertical flux divergence.

  18. Analysis of the impact of surface layer parameters on wear intensity of friction pairs

    Directory of Open Access Journals (Sweden)

    R. Burdzik

    2012-12-01

    Full Text Available Purpose: The study discussed in the paper consisted in testing the impact of surface layer parameters on wear intensity of friction pair components. The study was conducted having taken additional operational factors into consideration, namely the friction conditions (presence of lubricant and the value of loads affecting the contact zone of the samples being tested.Design/methodology/approach: The study constituted laboratory tests of wear and were conducted by means of a T-01M type laboratory test stand used to experimentally analyse frictional cooperation of various materials used in structural components of motor vehicles. The friction pairs examined were previously operating in a pin-on-disk system under various conditions. The materials of the friction pairs tested at the stand were subjected to heat treatment and chemical processing in order to attain specific parameters of their surface layers.Findings: The studies conducted enabled determination of the abrasive wear values for the material samples tested having entailed the surface layer parameters and the factors related to operation of actual structural components used in automotive engineering. An additional advantage of the studies conducted was the possibility to establish actual coefficients of friction occurring in specific friction pairs. Research limitations/implications: Establishing the actual values of friction coefficients for the materials of friction pairs under specific conditions and having taken the impact of the surface layer parameters into consideration enabled identification of the reasons for excessive surface wear. Hence a reference can be made between the stationary tests undertaken and actual components cooperating with one another in kinematic pairs of machines.Originality/value: The utilitarian premise resulting from the studies conducted is the necessity of paying particular attention to surface layer parameters while designing friction pairs for machines.

  19. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  20. Planetary boundary layer depth in Global climate models induced biases in surface climatology

    CERN Document Server

    Davy, Richard

    2014-01-01

    The Earth has warmed in the last century with the most rapid warming occurring near the surface in the arctic. This enhanced surface warming in the Arctic is partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The warming of the surface air due to the extra heat depends upon the amount of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). In this way the depth of the ABL determines the effective response of the surface air temperature to perturbations in the climate forcing. The ABL depth can vary from tens of meters to a few kilometers which presents a challenge for global climate models which cannot resolve the shallower layers. Here we show that the uncertainties in the depth of the ABL can explain up to 60 percent of the difference between the simulated and observed surface air temperature trends and 50 percent of the difference in temperature variability...

  1. The dynamic deformation of a layered viscoelastic medium under surface excitation

    International Nuclear Information System (INIS)

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. (paper)

  2. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-01-01

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales. PMID:24670975

  3. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Chen, C.-W.; Ducheyne, Paul [Center for Bioactive Materials and Tissue Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: liucs@ecust.edu.cn, E-mail: ducheyne@seas.upenn.edu

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 deg. C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO{sub 4} and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 {mu}m and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  4. The surface layer observed by a high-resolution sodar at DOME C, Antarctica

    Directory of Open Access Journals (Sweden)

    Stefania Argentini

    2014-01-01

    Full Text Available One year field experiment has started on December 2011 at the French - Italian station of Concordia at Dome C, East Antarctic Plateau. The objective of the experiment is the study of the surface layer turbulent processes under stable/very stable stratifications, and the mechanisms leading to the formation of the warming events. A sodar was improved to achieve the vertical/time resolution needed to study these processes. The system, named Surface Layer sodar (SL-sodar, may operate both in high vertical resolution (low range and low vertical resolution (high range modes. In situ turbulence and radiation measurements were also provided in the framework of this experiment. A few preliminary results, concerning the standard summer diurnal cycle, a summer warming event, and unusually high frequency boundary layer atmospheric gravity waves are presented.

  5. Mass Transport in a Thin Layer of Bi-Viscous Mud Under Surface Waves

    Institute of Scientific and Technical Information of China (English)

    NG Chiu-on; FU Sau-chung; BAI Yu-chuan(白玉川)

    2002-01-01

    The mass transport in a thin layer of non-Newtonian bed mud under surface waves is examined with a two-fluidStokes boundary layer model. The mud is assumed to be a bi-viscous fluid, which tends to resist motion for small-appliedstresses, but flows readily when the yield stress is exceeded. Asymptotic expansions suitable for shallow fluid layers areapplied, and the second-order solutions for the mass transport induced by surface progressive waves are obtained numeri-cally. It is found that the stronger the non-Newtonian behavior of the mud, the more pronounced intermittency of theflow. Consequently, the mass transport velocity is diminished in magnitude, and can even become negative (i. e., oppo-site to wave propagation) for a certain range of yield stress.

  6. Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, Anuar [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)], E-mail: anuar_mi@ukm.my

    2009-05-15

    The steady mixed convection boundary layer flow along a vertical cylinder with prescribed surface heat flux is investigated in this study. The free stream velocity and the surface heat flux are assumed to vary linearly with the distance from the leading edge. Both the case of the buoyancy forces assisting and opposing the development of the boundary layer are considered. Similarity equations are derived, their solutions being dependent on the mixed convection parameter, the curvature parameter, as well as of the Prandtl number. Dual solutions are found to exist for both buoyancy assisting and opposing flows. It is also found that the boundary layer separation is delayed for a cylinder compared to a flat plate.

  7. On the Temperature and Humidity Dissimilarity in the Marine Surface Layer

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kelly, Mark C.; Sempreviva, Anna Maria

    2014-01-01

    The dissimilarity of temperature and humidity transfer in the marine surface layer (MSL) is investigated through the relative transport efficiency and correlation coefficient of these two scalars. We examine their variability and relationship with mean values, as well as spectral characteristics....... It is shown that the dissimilarity between these two scalars in the MSL is a function of stability, the boundary-layer depth, and flow steadiness. In general the temperature and humidity are less correlated in shallow marine boundary layers compared to deep marine boundary layers, due to the stronger......-neutral conditions, when there is an efficient latent heat transfer but negligible sensible heat transfer. Our data suggest that parametrization of humidity fluxes via similarity theory could still be reliable when the correlation coefficient >0.5, and in near-neutral conditions the humidity flux can be estimated...

  8. Structural state and phase composition of titanium surface layers implanted by aluminium ions

    International Nuclear Information System (INIS)

    The elemental, phase composition, morphology and structural state of the ion-alloyed surface layers of titanium implanted by the Al ions have been investigated. It was found out that increase of the Al ions dose led to increasing the ion-alloyed layers thickness. It was established that the fine dispersed equilibrium intermetallic phases Ti3Al, TiAl and the solid solution of aluminium in titanium were formed in the modified layers. The agglomeration of the intermetallide phases occurred above the dose 6.2 x 1017 ion/cm2. The dependence of the structure state and phase composition of the implanted titanium layers on the implantation condition was considered

  9. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 450 to 1350 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  10. Preservation of the Pt(100) surface reconstruction after growth of a continuous layer of graphene

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Bjerre, Jacob; Balog, Richard; Hammer, Bjørk; Hornekær, Liv; Stensgaard, Ivan

    Scanning tunneling microscopy shows that a layer of graphene can be grown on the hex-reconstructed Pt(100) surface and that the reconstruction is preserved after growth. A continuous sheet of graphene can be grown across domain boundaries and step edges without loss of periodicity or change in...

  11. Glomerular endothelial surface layer acts as a barrier against albumin filtration

    NARCIS (Netherlands)

    Dane, M.J.; Berg, B.M. van den; Avramut, M.C.; Faas, F.G.; Vlag, J. van der; Rops, A.L.; Ravelli, R.B.; Koster, B.J.; Zonneveld, A.J. van; Vink, H.; Rabelink, T.J.

    2013-01-01

    Glomerular endothelium is highly fenestrated, and its contribution to glomerular barrier function is the subject of debate. In recent years, a polysaccharide-rich endothelial surface layer (ESL) has been postulated to act as a filtration barrier for large molecules, such as albumin. To test this hyp

  12. Endothelial surface layer degradation by chronic hyaluronidase infusion induces proteinuria in apolipoprotein e-deficient mice

    NARCIS (Netherlands)

    M.C. Meuwese; L.N. Broekhuizen; M. Kuikhoven; S. Heeneman; E. Lutgens; M.J.J. Gijbels; M. Nieuwdorp; C.J. Peutz; E.S.G. Stroes; H. Vink; B.M. van den Berg

    2010-01-01

    Functional studies show that disruption of endothelial surface layer (ESL) is accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli. However, relevance of ESL disruption as causal mechanism for vascular dysfunction remains to be demonstrated. We examined if loss of ESL t

  13. Structure fragmentation of a surface layer of commercial purity titanium during ultrasonic impact treatment

    International Nuclear Information System (INIS)

    The mechanisms of surface layer fragmentation of titanium specimens subjected to ultrasonic impact treatment is investigated by atomic force microscopy, transmission electron microscopy and electron backscatter diffraction. It is shown that the twin boundaries Σ7b and Σ11b are unable to be strong obstacles for propagation of dislocations and other twins

  14. Study on mechanics of driving drum with superelastic convexity surface covering-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.J.; Sui, X.H.; Miao, D.J. [Shandong University of Science & Technology, Qingdao (China)

    2008-09-15

    Belt conveyor is one of the main transport equipment in coal mine and the driving drum is its key part. With the method of bionic design, the mushroom morphological structure is applied to the design of covering-layer structure of driving drum surface of belt conveyor. Superelastic rubber with large deformation is adopted as the covering-layer material. Nonlinear constitutive model of rubber, which is of superelasticity and large deformation, is established. The stress states and deformation principles of driving drums including both bionic covering-layer and common covering-layer are obtained by static intensity analysis with Finite Element Analysis (FEA) software ANSYS. The values of the stress and strain on the driving drum surface are gotten and the dangerous area is determined. FEA results show that the superelastic convexity surface structure can enlarge the contact area between the driving drum and viscoelastic belt. The results also show that in comparison with common driving drum, the bionic surface driving drum can not only increase the friction coefficient between drum and belt but also prolong its service life.

  15. Formation of a nanocrystalline layer on the surface of stone wool fibers

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise Frank; Heide, Gerhard

    2009-01-01

    In the present paper, we report a simple approach for creating a nanocrystalline layer on the surface of stone wool fibers (SWFs) with a basalt-like composition. The approach is based on a preoxidation process of the SWFs in atmospheric air at a temperature around the glass transition temperature...

  16. Seasonal cyclogenesis and the role of near-surface stratified layer in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, M.S.S.; Tilvi, V.

    for Cyclogenesis (EOLC) and the associated effective heat potential, the parameters that represent the thermo-haline regime of the near-surface stratified layer, is discussed in relation to the seasonal cyclogenesis over the Bay. It is found that the zones...

  17. Use of Physical Methods for Establishment of the Surface Layer Structure in Functionalized Mesoporous Silicas

    Czech Academy of Sciences Publication Activity Database

    Zub, Yu.L.; Šolcová, Olga

    Praha: Process Engineering Publisher, 2008, s. 421-422. ISBN 978-80-02-02049-3. [18th International Congress of Chemical and Process Engineering CHISA 2008. Praha (CZ), 24.08.2008-28.08.2008] Institutional research plan: CEZ:AV0Z40720504 Keywords : sol-gel * template methods * surface layer structure Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  18. Surface fluxes and convective boundary layer instability in summer over harvested wheat fields in Oklahoma

    Science.gov (United States)

    Li, W.; Barros, A. P.

    2008-05-01

    Vertical profiles of wind, pressure, air temperature and humidity up to 500 m obtained from measurements by a tethersonde system were used in combination with upper level temperature and humidity soundings from Rapid Update Cycle (RUC), to calculate Convective Available Potential Energy (CAPE) in an unstable boundary layer. The surface fluxes of sensible and latent heat were also calculated based on turbulent similarity theory for the atmospheric surface layer. The measurements were performed during the Cloud and Land Surface Interaction Campaign (CLASIC) June 2007 that includes pre-storm and post-storm conditions for a record monthly rainfall in excess of 300 mm at the site. The daytime trajectories of the surface layer in the Relative-Humidity and Bowen Ratio phase-space are consistent with the rainfall and aridity attractors in previous studies, with strong decrease in the post-storm periods. The decrease of Bowen ratio was the result of a strong decrease in the magnitude of sensible heat fluxes. The latent heat fluxes in the post-storm environment were not significantly different from the pre-storm environment, which is explained by a significant decrease in the net radiation. High soil moisture and increased moisture in boundary layer in the post-storm environment led to sustained low-level instability and daily evening showers. The diurnal cycle of potential temperature and specific humidity during the duration of the field campaign with an emphasis on conditions before and after one major rainy event are also discussed in this study.

  19. Residual stresses in the surface layer of laser-treated steels

    NARCIS (Netherlands)

    Brussel, B.A. van; Hosson, J.Th.M. De

    1993-01-01

    Although laser treatment of certain metals may enhance the wear performance in general it may result equally well in large residual stresses which affect the wear performance detrimentally. Tensile stresses generated in the surface layer may lead to severe cracking of the material. This paper descri

  20. Effect of surface layer depth on fatigue life of carburized steel and analysis of fracture proces

    Czech Academy of Sciences Publication Activity Database

    Major, Štěpán; Jakl, L.

    Kazan: Foliant Kazan, 2012 - (Shlyannikov, V.; Goldstein, R.; Makhutov, N.), s. 224-231 ISBN 978-5-905576-18-8. [European conference on fracture /19./. Kazan (RU), 26.08.2012-31.08.2012] Institutional support: RVO:68378297 Keywords : carburization * fatigue life * surface layer Subject RIV: JL - Materials Fatigue, Friction Mechanics

  1. Theoretical investigation of layered zeolite frameworks: Surface properties of 2D zeolites

    Czech Academy of Sciences Publication Activity Database

    Hermann, Jan; Trachta, Michal; Nachtigall, P.; Bludský, Ota

    2014-01-01

    Roč. 227, May 15 (2014), s. 2-8. ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388963 Keywords : layered zeolite frameworks * surface properties * 2D zeolite s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  2. Thin layer activation analysis of α induced reactions for surface wear studies in some natural isotopes

    International Nuclear Information System (INIS)

    The thin layer activation technique is widely used to study surface wear and erosion by employing medium energy, light charged particle accelerators in the micrometer range. In the present work, TLA technique has been explored using gamma spectroscopy for a large number of reactions in several isotopes, which may be of interest for the reactor technology

  3. Nanoindentation characterization of surface layers of electrical discharge machined WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Qu Jun; Riester, Laura; Shih, Albert J.; Scattergood, Ronald O.; Lara-Curzio, Edgar; Watkins, Thomas R

    2003-03-15

    This study applies nanoindentation and other analysis techniques to investigate the influence of wire electrical discharge machining (EDM) process on the structure and properties of machined surface layers of WC-Co composites. Multiple indents were conducted on the cross-section of the surface recast layer, sub-surface heat-affected zone, and bulk material. The energy disperse X-ray spectrometry and X-ray diffraction were used to analyze the material compositions in the heat-affected zone and recast layer and to study the electrical spark eroded surface. The indents were inspected by scanning electron microscopy to distinguish between regular and irregular indents in these three regions. Irregular indents were caused by the porosity, soft matrix material, separation of grain boundaries, and thermal cracks caused by EDM process. The hardness and modulus of elasticity obtained from regular indents in bulk material and heat-affected zone were comparable to those of WC. It was found that the recast layer had lower hardness and modulus of elasticity than the bulk material and heat-affected zone.

  4. a Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models.

    Science.gov (United States)

    Liang, Xu.

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) was developed. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. In the upper layer, the spatial distribution of infiltration and soil moisture capacities is included. The lower layer is lumped spatially and uses a nonlinear drainage representation. The model partitions the area of interest into multiple land surface cover types; for each land cover type the fraction of plant roots in the upper and lower zone is specified. Evaporation occurs via canopy evaporation, evaporation from bare soil, and transpiration, which is represented using a canopy and architectural resistance formulation. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the model -simulated surface energy fluxes and surface temperature. In addition, a derived distribution approach which accounts for the effects of subgrid scale spatial variabilities of precipitation on surface energy fluxes, soil moisture, and runoff production was developed for an extended version of VIC-2L model. The derived distribution approach differs from pixel-based approaches which discretize precipitation over a spatial domain, and from previous statistical approaches that combine the point precipitation distribution

  5. Crystal structure analysis reveals Pseudomonas PilY1 as an essential calcium-dependent regulator of bacterial surface motility

    Energy Technology Data Exchange (ETDEWEB)

    Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.; Sperlazza, Justin R.; Heiniger, Ryan W.; Wolfgang, Matthew C.; Redinbo, Matthew R. (UNC)

    2010-09-21

    Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calcium binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.

  6. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    Science.gov (United States)

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-11-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main.

  7. Influence of ionic strength on the surface charge and interaction of layered silicate particles.

    Science.gov (United States)

    Liu, Jing; Miller, Jan D; Yin, Xihui; Gupta, Vishal; Wang, Xuming

    2014-10-15

    The surface charge densities and surface potentials of selected phyllosilicate surfaces were calculated from AFM surface force measurements and reported as a function of ionic strength at pH 5.6. The results show that the silica faces of clay minerals follow the constant surface charge model because of isomorphous substitution in the silica tetrahedral layer. A decreasing surface charge density sequence was observed as follows: muscovite silica face>kaolinite silica face>talc silica face, which is expected to be due to the extent of isomorphous substitution. In contrast, at pH 5.6, the alumina face and the edge surface of kaolinite follow the constant surface potential model with increasing ionic strength, and the surface charge density increased with increasing ionic strength. The cluster size of suspended kaolinite particles at pH 5.6 was found to increase with increasing ionic strength due to an increase in the surface charge density for the alumina face and the edge surface. However, the cluster size decreased at 100mM KCl as a result of an unexpected decrease in the surface charge of the alumina face. When the ionic strength continued to increase above 100mM KCl, the van der Waals attraction dominated and larger clusters of micron size were stabilized. PMID:25086721

  8. Fabrication of Functional Wrinkled Interfaces from Polymer Blends: Role of the Surface Functionality on the Bacterial Adhesion

    Directory of Open Access Journals (Sweden)

    Marta Palacios-Cuesta

    2014-11-01

    Full Text Available The generation of nano-microstructured surfaces is a current challenge in polymer science. The fabrication of such surfaces has been accomplished mainly following two different alternatives i.e., by adapting techniques, such as molding (embossing or nano/microimprinting, or by developing novel techniques including laser ablation, soft lithography or laser scanning. Surface instabilities have been recently highlighted as a promising alternative to induce surface features. In particular, wrinkles have been extensively explored for this purpose. Herein, we describe the preparation of wrinkled interfaces by confining a photosensitive monomeric mixture composed of monofunctional monomer and a crosslinking agent within a substrate and a cover. The wrinkle characteristics can be controlled by the monomer mixture and the experimental conditions employed for the photopolymerization. More interestingly, incorporation within the material of a functional copolymer allowed us to vary the surface chemical composition while maintaining the surface structure. For that purpose we incorporated either a fluorinated copolymer that enhanced the surface hydrophobicity of the wrinkled interface or an acrylic acid containing copolymer that increased the hydrophilicity of the wrinkled surface. Finally, the role of the hydrophobicity on the bacterial surface adhesion will be tested by using Staphylococcus aureus.

  9. The boundary layer over turbine blade models with realistic rough surfaces

    Science.gov (United States)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  10. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study

    OpenAIRE

    Hossam, A. Eid; Rafi, A. Togoo; Ahmed, A Saleh; Sumanth, Phani CR

    2013-01-01

    Background: This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities.

  11. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique

    International Nuclear Information System (INIS)

    Bacterial cellulose is considered to be a potential material for tissue engineering. However, the absence of enough activity restricts its practical application as tissue engineering scaffold. This paper describes the synthesis of a novel bacterial cellulose/gelatin composite via crosslinking by procyanidin (PA). The morphology of the bacterial cellulose/gelatin composite was observed by field emission scanning electron microscopy (FE-SEM) and transmission electronic microscope (TEM). The composites were further characterized by fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). It was found that the 0.25 wt.% Gel solution was the appropriate concentration for the BC/Gel composite. Furthermore, the proliferation, infiltration and adhesion of NIH3T3 cells on the BC/Gel-025 composite were evaluated. The results showed that the composite had better bioactivity than pure bacterial cellulose, and the composite supported cell growth. - Highlights: ► Herein, procyanidin is an effective and bioactive reagent for gelatin materials. ► The 0.25% Gel solution is appropriate for the BC/Gel composite. ► It is proved that the BC/Gel composite is a new choice for the biomaterials.

  12. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics

    NARCIS (Netherlands)

    Muszanska, L.H.; Nejadnik, M.R.; Chen, Y.; Heuvel, van den E.R.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Sta

  13. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola; Gram, Lone; Givskov, Michael Christian; Crass, Kathy; Kjelleberg, Staffan; Steinberg, Peter

    1998-01-01

    . pulchra the most. As inhibition of growth did not provide an adequate explanation for the inverse relationship between levels of furanones and bacteria abundance on D. pulchra, we proceeded to investigate the effects of these metabolites on other bacterial characteristics relevant to colonisation...

  14. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus

    NARCIS (Netherlands)

    Frade, P.R.; Schwaninger, V.; Glasl, B.; Sintes, E.; Hill, R.W.; Simó, R.; Herndl, G.

    2016-01-01

    Corals produce copious amounts of dimethylsulfoniopropionate (DMSP), a sulfur compound thought toplay a role in structuring coral-associated bacterial communities. We tested the hypothesis that a linkage exists betweenDMSP availability in coral tissues and the community dynamics of bacteria in coral

  15. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Wan, Y.Z.; Luo, H.L.; Gao, C.; Huang, Y., E-mail: bacteria.cellulose@gmail.com

    2012-04-01

    Bacterial cellulose is considered to be a potential material for tissue engineering. However, the absence of enough activity restricts its practical application as tissue engineering scaffold. This paper describes the synthesis of a novel bacterial cellulose/gelatin composite via crosslinking by procyanidin (PA). The morphology of the bacterial cellulose/gelatin composite was observed by field emission scanning electron microscopy (FE-SEM) and transmission electronic microscope (TEM). The composites were further characterized by fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). It was found that the 0.25 wt.% Gel solution was the appropriate concentration for the BC/Gel composite. Furthermore, the proliferation, infiltration and adhesion of NIH3T3 cells on the BC/Gel-025 composite were evaluated. The results showed that the composite had better bioactivity than pure bacterial cellulose, and the composite supported cell growth. - Highlights: Black-Right-Pointing-Pointer Herein, procyanidin is an effective and bioactive reagent for gelatin materials. Black-Right-Pointing-Pointer The 0.25% Gel solution is appropriate for the BC/Gel composite. Black-Right-Pointing-Pointer It is proved that the BC/Gel composite is a new choice for the biomaterials.

  16. Bacterial composition in sediment and surface water as indicators for pollution in a mixed watershed

    Science.gov (United States)

    Microbes in rivers are diverse and dynamic in composition due to different environmental factors and therefore, the composition of microbial community in a river may be indicators for pollution. However, the use of total bacterial composition as indicator for river pollution has not been studied in ...

  17. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Science.gov (United States)

    Moraczewski, Krzysztof; Stepczyńska, Magdalena; Malinowski, Rafał; Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian

    2016-07-01

    The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  18. Structure of ultrathin oxide layers on metal surfaces from grazing scattering of fast atoms

    International Nuclear Information System (INIS)

    The structure of ultrathin oxide layers grown on metal substrates is investigated by grazing scattering of fast atoms from the film surface. We present three recent experimental techniques which allow us to study the structure of ordered oxide films on metal substrates in detail. (1) A new variant of a triangulation method with fast atoms based on the detection of emitted electrons, (2) rainbow scattering under axial surface channeling conditions, and (3) fast atom diffraction (FAD) for studies on the structure of oxide films. Our examples demonstrate the attractive features of grazing fast atom scattering as a powerful analytical tool in surface physics.

  19. Two Improvements of an Operational Two-Layer Model for Terrestrial Surface Heat Flux Retrieval

    OpenAIRE

    Jun Xia; Shaohui Chen; Xiaomin Sun; Hongbo Su; Jing Tian; Renhua Zhang

    2008-01-01

    In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that t...

  20. Optical properties of ZnTe layers formed over surface-modified ZnSe substrates

    Energy Technology Data Exchange (ETDEWEB)

    Makhniy, V.P.; Mel' nyk, V.V.; Slyotov, M.M.; Gorley, P.N. [Chernivtsi National University, 58012 Chernivtsi (Ukraine); Horley, P.P. [Chernivtsi National University, 58012 Chernivtsi (Ukraine); Centro de Fisica das Interaccoes Fundamentais (CFIF), 1049-001 Lisboa (Portugal); Vorobiev, Yu.V. [Laboratorio de Investigacion en Materiales, CINVESTAV, 76230 Queretaro (Mexico)], E-mail: vorobiev@qro.cinvestav.mx; Gonzalez-Hernandez, J. [CIMAV, Miguel de Cervantes 120, 31109 Chihuahua (Mexico)

    2008-11-30

    Heterolayers of zinc telluride were created using the isovalent replacement method over the low-resistive mono-crystalline substrates of zinc selenide, doped with the isovalent tellurium impurity. It was found that the surface structure of the heterolayer is being determined by the treatment of the substrate layers and inherits its properties, namely mirror-smooth or matte (modified) surfaces. The latter type corresponds to the quantum-scale surface formations responsible for the wide unstructured spectral band with photon energies significantly exceeding the bandwidth of the materials studied.