WorldWideScience

Sample records for bacterial strain identification

  1. Identification of bacterial strains in viili by molecular taxonomy and ...

    African Journals Online (AJOL)

    Identification of bacterial strains in viili by molecular taxonomy and their synergistic effects on milk curd and exopolysaccharides production. T Chen, Q Tan, M Wang, S Xiong, S Jiang, Q Wu, S Li, C Luo, H Wei ...

  2. Identification and characterisation of potential biofertilizer bacterial strains

    Science.gov (United States)

    Karagöz, Kenan; Kotan, Recep; Dadaşoǧlu, Fatih; Dadaşoǧlu, Esin

    2016-04-01

    In this study we aimed that isolation, identification and characterizations of PGPR strains from rhizosphere of legume plants. 188 bacterial strains isolated from different legume plants like clover, sainfoin and vetch in Erzurum province of Turkey. These three plants are cultivated commonly in the Erzurum province. It was screen that 50 out of 188 strains can fix nitrogen and solubilize phosphate. These strains were identified via MIS (Microbial identification system). According to MIS identification results, 40 out of 50 strains were identified as Bacillus, 5 as Pseudomonas, 3 as Paenibacillus, 1 as Acinetobacter, 1 as Brevibacterium. According to classical test results, while the catalase test result of all isolates are positive, oxidase, KOH and starch hydrolysis rest results are variable.

  3. Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains : a web-based resource

    Directory of Open Access Journals (Sweden)

    Vergnaud Gilles

    2004-01-01

    Full Text Available Abstract Background Polymorphic tandem repeat typing is a new generic technology which has been proved to be very efficient for bacterial pathogens such as B. anthracis, M. tuberculosis, P. aeruginosa, L. pneumophila, Y. pestis. The previously developed tandem repeats database takes advantage of the release of genome sequence data for a growing number of bacteria to facilitate the identification of tandem repeats. The development of an assay then requires the evaluation of tandem repeat polymorphism on well-selected sets of isolates. In the case of major human pathogens, such as S. aureus, more than one strain is being sequenced, so that tandem repeats most likely to be polymorphic can now be selected in silico based on genome sequence comparison. Results In addition to the previously described general Tandem Repeats Database, we have developed a tool to automatically identify tandem repeats of a different length in the genome sequence of two (or more closely related bacterial strains. Genome comparisons are pre-computed. The results of the comparisons are parsed in a database, which can be conveniently queried over the internet according to criteria of practical value, including repeat unit length, predicted size difference, etc. Comparisons are available for 16 bacterial species, and the orthopox viruses, including the variola virus and three of its close neighbors. Conclusions We are presenting an internet-based resource to help develop and perform tandem repeats based bacterial strain typing. The tools accessible at http://minisatellites.u-psud.fr now comprise four parts. The Tandem Repeats Database enables the identification of tandem repeats across entire genomes. The Strain Comparison Page identifies tandem repeats differing between different genome sequences from the same species. The "Blast in the Tandem Repeats Database" facilitates the search for a known tandem repeat and the prediction of amplification product sizes. The "Bacterial

  4. Identification of bacterial strains isolated from the Mediterranean Sea exhibiting different abilities of biofilm formation.

    Science.gov (United States)

    Brian-Jaisson, Florence; Ortalo-Magné, Annick; Guentas-Dombrowsky, Linda; Armougom, Fabrice; Blache, Yves; Molmeret, Maëlle

    2014-07-01

    The Mediterranean Sea has rarely been investigated for the characterization of marine bacteria as compared to other marine environments such as the Atlantic or Pacific Ocean. Bacteria recovered from inert surfaces are poorly studied in these environments, when it has been shown that the community structure of attached bacteria can be dissimilar from that of planktonic bacteria present in the water column. The objectives of this study were to identify and characterize marine bacteria isolated from biofilms developed on inert surfaces immersed in the Mediterranean Sea and to evaluate their capacity to form a biofilm in vitro. Here, 13 marine bacterial strains have been isolated from different supports immersed in seawater in the Bay of Toulon (France). Phylogenetic analysis and different biological and physico-chemical properties have been investigated. Among the 13 strains recovered, 8 different genera and 12 different species were identified including 2 isolates of a novel bacterial species that we named Persicivirga mediterranea and whose genus had never been isolated from the Mediterranean Sea. Shewanella sp. and Pseudoalteromonas sp. were the most preponderant genera recovered in our conditions. The phenotypical characterization revealed that one isolate belonging to the Polaribacter genus differed from all the other ones by its hydrophobic properties and poor ability to form biofilms in vitro. Identifying and characterizing species isolated from seawater including from Mediterranean ecosystems could be helpful for example, to understand some aspects of bacterial biodiversity and to further study the mechanisms of biofilm (and biofouling) development in conditions approaching those of the marine environment.

  5. Isolation, screening and molecular identification of novel bacterial strain removing methylene blue from water solutions

    Science.gov (United States)

    Kilany, Mona

    2017-11-01

    The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.

  6. Identification of electrode respiring, hydrocarbonoclastic bacterial strain Stenotrophomonas maltophilia MK2 highlights the untapped potential for environmental bioremediation

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2016-12-01

    Full Text Available Electrode respiring bacteria (ERB possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential towards organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8-C36 of petroleum hydrocarbons including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells, maximum current density of 273±8 mA/m2 (1000Ω was produced (power density 113±7 mW/m2 by strain MK2 with a coulombic efficiency of 34.8 %. Further, the presence of possible alkane hydroxylase genes (alkB and rubA in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS.

  7. Isolation and Identification of an Indigenous Probiotic Lactobacillus Strain: Its Encapsulation with Natural Branched Polysaccharids to Improve Bacterial Viability

    OpenAIRE

    Nafiseh Sadat Foroutan; Fatemeh Tabandeh; Mahvash Khodabandeh; Naheed Mojgani; Amir Maghsoudi; Meisam Moradi

    2017-01-01

    Background and Objective: Probiotics have to reach their site of action in certain numbers in order to exhibit positive health effects. Encapsulation has shown remarkable enhancing effects on probiotic survival in simulated gastric conditions compared to free bacteria. The purpose of this study was identification and evaluation of a potential probiotic strain using encapsulation process by new carriers in order to improve probiotic viability during in vitro simulated conditions.Material and M...

  8. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    Science.gov (United States)

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  9. Isolation and Identification of an Indigenous Probiotic Lactobacillus Strain: Its Encapsulation with Natural Branched Polysaccharids to Improve Bacterial Viability

    Directory of Open Access Journals (Sweden)

    Nafiseh Sadat Foroutan

    2017-06-01

    Full Text Available Background and Objective: Probiotics have to reach their site of action in certain numbers in order to exhibit positive health effects. Encapsulation has shown remarkable enhancing effects on probiotic survival in simulated gastric conditions compared to free bacteria. The purpose of this study was identification and evaluation of a potential probiotic strain using encapsulation process by new carriers in order to improve probiotic viability during in vitro simulated conditions.Material and Methods: A native Lactobacillus was isolated from yogurt, identified as Lactobacillus casei PM01 (NCBI registered and analyzed for probiotic properties alongside established probiotic strains of Lactobacillus acidophilus ATCC 43556, and Lactobacillus rhamnosus ATCC 7469. Acid and bile resistance, adhesion to Caco-2 cells and antibiotic resistance were evaluated. Lactobacillus casei PM01 was encapsulated with alginate, chitosan and natural branched polysaccharides (pectin, tragacanth gum and gum Arabic by using extrusion technique. Encapsulation efficiency, acidification activity and viability of entrapped Lactobacillus casei PM01 in simulated gastric pH were determined. Results and Conclusion: Based on the results, all the three strains could be considered as potential probiotics, and are good candidates for further in vitro and in vivo evaluation. The results showed that the survival of encapsulated Lactobacillus casei PM01 was significantly (p≤0.05 increased when it was incubated in simulated gastric pH. It can be concluded that indigenous Lactobacillus casei PM01 in encapsulated form is introduced as an efficient probiotic strain for using in dairy products.Conflict of interest: The authors declare no conflict of interest.

  10. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    Science.gov (United States)

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater.

  11. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    Science.gov (United States)

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Development of a duplex Taqman real-time PCR assay for rapid identification of Vibrio splendidus-related and V. aestuarianus strains from bacterial cultures.

    Science.gov (United States)

    Saulnier, Denis; De Decker, Sophie; Tourbiez, Delphine; Travers, Marie Agnès

    2017-09-01

    To enable the rapid and accurate identification of Vibrio splendidus-related and V. aestuarianus strains associated with Pacific cupped oyster Crassostrea gigas mortality, we developed a duplex Taqman real-time PCR assay and evaluated its efficacy. This technique proved to be rapid, sensitive, and specific and will be particularly valuable for epidemiologic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Detection of antibiotic resistance in clinical bacterial strains from pets

    OpenAIRE

    Poeta, P.; Rodrigues, J.

    2008-01-01

    The identification of different bacterial strains and the occurrence of antibiotic resistance were investigated in several infection processes of pets as skin abscess with purulent discharge, bronco alveolar fluid, earwax, urine, mammary, and eye fluid. Streptococcus spp. and Staphylococcus spp. were the most detected in the different samples. A high frequency of antimicrobial resistance has been observed and this could reflect the wide use of antimicrobials in pets, making the effectiveness ...

  14. Identification of Pseudomonas syringae pv. actinidiae strains causing bacterial canker of kiwifruit in the Anhui Province of China, and determination of their streptomycin sensitivities.

    Science.gov (United States)

    Yang, X; Yi, X-K; Chen, Y; Zhang, A-F; Zhang, J-Y; Gao, Z-H; Qi, Y-J; Xu, Y-L

    2015-07-27

    Bacterial canker, caused by Pseudomonas syringae pv. actinidiae, is one of the most severe diseases of kiwifruit. It has become an international pandemic and threatens the sustainable development of kiwifruit production in all main kiwi-growing regions worldwide. Streptomycin has been the major bactericide for the control of kiwifruit canker, especially in Anhui Province, one of the main kiwifruit production regions in China. However, until now, no studies on the baseline sensitivity to streptomycin of field isolates of P. syringae pv. actinidiae from China have been available. During 2012-2013, a total of 102 single-colony P. syringae pv. actinidiae strains were isolated: 36, 12, 13, 26, and 15 strains from Yuexi, Jinzhai, Huoshan, Qianshan, and Taihu counties, respectively. All strains were confirmed by production of a 280-bp fragment using the specific primers PsaF1/R2 upon polymerase chain reaction amplification, followed by an assay for confirmation of pathogenicity to fulfill Koch's postulates. In this study, the streptomycin sensitivity of the 102 isolated strains was determined. The half-maximal effective concentration values for inhibition of growth by streptomycin were 0.03-0.42 μg/mL (average 0.12 ± 0.06 μg/mL). The baseline sensitivity curve was unimodal, representing range-of-variation factors of 14.0. No resistant subpopulation was identified among the strains used in the study. Thus, these sensitivity data could be used as a baseline for monitoring the shift in sensitivity of P. syringae pv. actinidiae populations to streptomycin in Anhui Province. Continuous resistance monitoring should be carried out, as streptomycin is an at-risk bactericide agent.

  15. Identification and characterization of a Bacillus subtilis strain TS06 ...

    African Journals Online (AJOL)

    Replant disease is a major limitation for strawberry production in greenhouse. Bio-control may be a good way to cope with the replant diseases. Here, we report identification and characterization of a bacterial strain TS06 that may be used as a bio-control agent against the replant diseases in strawberry. TS06 was identified ...

  16. Identification of the Bacterial Community Responsible for ...

    African Journals Online (AJOL)

    Identification of bacteria community responsible for decontaminating Eleme petrochemical industrial effluent using 16S PCR denaturing gradient gel electrophoresis (DGGE) was determined. Gene profiles were determined by extracting DNA from bacterial isolates and amplified by polymerase chain reaction (PCR) using ...

  17. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  18. Biodegradation of phenol by a newly isolated marine bacterial strain ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    peptone agar plates with. 1500 mg/L phenol. ... biodegradation of the strain was up to 92.0% under the optimum conditions even when the phenol ... Growth of marine bacterial isolates in various concentration of phenol. Isolate.

  19. Antimicrobial resistance of bacterial strains isolated from orange ...

    African Journals Online (AJOL)

    The organisms encountered include Saccharomyces cerevisiae, Saccharomyces sp, Rhodotorula sp, Bacillus cereus, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes and Micrococcus sp. The resistances of thirty bacterial strains isolated from orange juice products to the commonly used ...

  20. Specific detection and identification of mulberry-infecting strains of Xylella fastidiosa by polymerase chain reaction

    Science.gov (United States)

    X. fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular land...

  1. Hexadecane degradation by bacterial strains isolated from ...

    African Journals Online (AJOL)

    A study was undertaken to detect and monitor the degradation of hexadecane by three potential degrading bacteria (Pseudomonas putida, Rhodococcus erythroplolis and Bacillus thermoleovorans) isolated from contaminated soils in Riyadh, Saudi Arabia. The extraction of the bacterial populations from these polluted soils ...

  2. Bacterial identification in the diagnostic laboratory: How much is enough?

    Directory of Open Access Journals (Sweden)

    B N Kootallur

    2011-01-01

    Full Text Available The major impetus for bacterial identification came after the advent of solid culture media. Morphological appearance of bacterial colonies was often sufficient for their identification in the laboratory. Even in modern times, preliminary identification of most cultivable bacteria is based on such morphological characters. Advances have been made media for the presumptive identifi cation of common organisms encountered in clinical samples. Phenotypic characterisation of bacteria with, physiological tests with a battery of biochemical tests differentiate related bacterial genera as well as confirm their identity. . Each laboratory can select its own method(s of identification, provided they are based on scientific / epidemiological evidence; clinical laboratory and standards institute (CLSI is a widely accepted organization and laboratories in many parts of the world follow its recommendations for bacterial identification. Some of the latest advances in identification include Matrix Assisted Laser Desorption Ionization - Time of Flight Mass Spectroscopy (MALDI-TOF is a state of art facility used for fast and reliable species-specific identification of bacteria including Mycobacteria and fungi including yeasts. However the single most important factor that decides the method of bacterial identification in any laboratory is the cost involved. In the final analysis, selection of tests for bacterial identification should be based on their standardization with proper scientific basis. Considering the cost and lack of easy availability of commercial kits, we have put forward a simplified and rapid method of identification for most commonly encountered bacterial pathogens causing human infection in India

  3. Broad spectrum microarray for fingerprint-based bacterial species identification

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-02-01

    Full Text Available Abstract Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups.

  4. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    user

    2011-06-08

    Jun 8, 2011 ... This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was.

  5. Biodegradation of orange G by a novel isolated bacterial strain ...

    African Journals Online (AJOL)

    This research article deals with biodegradation of azo dyes by a newly isolated bacterial strain from soil. Azo dyes are recalcitrant to the conventional modes of treatment due to their complex structure. This article reports decolorization of azo dye by, Gram positive, endospore forming and azo reducing, Bacillus megaterium ...

  6. Diversity of Streptococcus mutans strains in bacterial interspecies interactions

    NARCIS (Netherlands)

    Li, X.; Hoogenkamp, M.A.; Ling, J.; Crielaard, W.; Deng, D.M.

    2014-01-01

    Biofilms are matrix-enclosed microbial population adhere to each other and to surfaces. Compared to planktonic bacterial cells, biofilm cells show much higher levels of antimicrobial resistance. We aimed to investigate Streptococcus mutans strain diversity in biofilm formation and chlorhexidine

  7. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  8. In silico comparison of bacterial strains using mutual information

    Indian Academy of Sciences (India)

    Fast-sequencing throughput methods have increased the number of completely sequenced bacterial genomes to about 400 by December 2006, with the number increasing rapidly. These include several strains. In silico methods of comparative genomics are of use in categorizing and phylogenetically sorting these bacteria ...

  9. Antibiotic Activity Assessment of Bacterial Strains Isolated from Urine ...

    African Journals Online (AJOL)

    Urinary tract infections (UTI) are common worldwide and affect all sexes and age groups. An estimated 20% or more of the female population suffers from some form of UTIs in their lifetime. Although antibiotics are the first choice of treatment for many urinary tract infections, antibiotic-resistant strains of bacterial species ...

  10. [Bacterial identification methods in the microbiology laboratory].

    Science.gov (United States)

    Bou, Germán; Fernández-Olmos, Ana; García, Celia; Sáez-Nieto, Juan Antonio; Valdezate, Sylvia

    2011-10-01

    In order to identify the agent responsible of the infectious process and understanding the pathogenic/pathological implications, clinical course, and to implement an effective antimicrobial therapy, a mainstay in the practice of clinical microbiology is the allocation of species to a microbial isolation. In daily routine practice microbiology laboratory phenotypic techniques are applied to achieve this goal. However, they have some limitations that are seen more clearly for some kinds of microorganism. Molecular methods can circumvent some of these limitations, although its implementation is not universal. This is due to higher costs and the level of expertise required for thei implementation, so molecular methods are often centralized in reference laboratories and centers. Recently, proteomics-based methods made an important breakthrough in the field of diagnostic microbiology and will undoubtedly have a major impact on the future organization of the microbiology services. This paper is a short review of the most noteworthy aspects of the three bacterial identification methods described above used in microbiology laboratories. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  11. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    Science.gov (United States)

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils.

  12. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  13. Identification of bacterial blight resistance genes Xa4 in Pakistani ...

    African Journals Online (AJOL)

    Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. M Arif, M Jaffar, M Babar, MA Sheikh, S Kousar, A Arif, Y Zafar. Abstract. Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is a major biotic constraint in the irrigated rice belts. Genetic resistance is the most ...

  14. PyBact: an algorithm for bacterial identification.

    Science.gov (United States)

    Nantasenamat, Chanin; Preeyanon, Likit; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2011-01-01

    PyBact is a software written in Python for bacterial identification. The code simulates the predefined behavior of bacterial species by generating a simulated data set based on the frequency table of biochemical tests from diagnostic microbiology textbook. The generated data was used for predictive model construction by machine learning approaches and results indicated that the classifiers could accurately predict its respective bacterial class with accuracy in excess of 99 %.

  15. Carbazole degradation in the soil microcosm by tropical bacterial strains

    Directory of Open Access Journals (Sweden)

    Lateef B. Salam

    2015-01-01

    Full Text Available In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonassp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg, 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg, 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.

  16. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evaluation of different lactic acid bacterial strains for probiotic characteristics

    OpenAIRE

    B. Srinu,; T. Madhava Rao,; P. V. Mallikarjuna Reddy; K. Kondal Reddy

    2013-01-01

    Objective: The objective of the present study was to collect different Lactic acid bacterial strains from culture collection centers and screen their functional probiotic characteristics such as acid tolerance, bile tolerance, antibacterial activity and antibiotic sensitivity for their commercial use. Materials and Methods: Acid and bile tolerence of selected LAB(Lactic acid bacteria) was determined. The antibiotic resistance of Lactobacillus species was assessed using different antibiotic di...

  18. Diversity of Streptococcus mutans strains in bacterial interspecies interactions.

    Science.gov (United States)

    Li, Xiaolan; Hoogenkamp, Michel A; Ling, Junqi; Crielaard, Wim; Deng, Dong Mei

    2014-02-01

    Biofilms are matrix-enclosed microbial population adhere to each other and to surfaces. Compared to planktonic bacterial cells, biofilm cells show much higher levels of antimicrobial resistance. We aimed to investigate Streptococcus mutans strain diversity in biofilm formation and chlorhexidine (CHX) resistance of single S. mutans and dual S. mutans-Enterococcus faecalis biofilms. Four clinical S. mutans strains (C180-2, C67-1, HG723 and UA159) formed 24-h biofilms with or without an E. faecalis strain. These biofilms were treated for 10 min with 0.025% CHX. Biofilm formation, CHX resistance and S.mutans-E. faecalis interactions were evaluated by biomass staining, resazurin metabolism, viable count and competition agar assays. The main finding is that the presence of E. faecalis generally reduced all dual-species biofilm formation, but the proportions of S. mutans in the dual-species biofilms as well as CHX resistance displayed a clear S. mutans strain dependence. In particular, decreased resistance against CHX was observed in dual S. mutans C67-1 biofilms, while increased resistance was found in dual S. mutans UA159 biofilms. In conclusion, the interaction of S. mutans with E. faecalis in biofilms varies between strains, which underlines the importance of studying strain diversity in inter-species virulence modulation and biofilm antimicrobial resistance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Method for construction of bacterial strains with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  20. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    Directory of Open Access Journals (Sweden)

    Brian O'Farrell

    Full Text Available Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of 200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  1. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives

    OpenAIRE

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-01-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop ad...

  2. Drug resistance analysis of bacterial strains isolated from burn patients.

    Science.gov (United States)

    Wang, L F; Li, J L; Ma, W H; Li, J Y

    2014-01-22

    This study aimed to analyze the spectrum and drug resistance of bacteria isolated from burn patients to provide a reference for rational clinical use of antibiotics. Up to 1914 bacterial strain specimens isolated from burn patients admitted to hospital between 2001 and 2010 were subjected to resistance monitoring by using the K-B paper disk method. Retrospective analysis was performed on drug resistance analysis of burn patients. The top eight bacterium strains according to detection rate. A total of 1355 strains of Gram-negative (G(-)) bacteria and 559 strains of Gram-positive (G(+)) bacteria were detected. The top eight bacterium strains, according to detection rate, were Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Enterococcus. Drug resistance rates were higher than 90% in A. baumannii, P. aeruginosa, S. epidermidis, and S. aureus, which accounted for 52.2, 21.7, 27.8, and 33.3%, respectively, of the entire sample. Those with drug resistance rates lower than 30% accounted for 4.3, 30.4, 16.7, and 16.7%, respectively. Multidrug-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) accounted for 49.2 and 76.4% of the S. epidermis and S. aureus resistance, respectively. Antibacterial drugs that had drug resistance rates to MRSE and MRSA higher than 90% accounted for 38.9 and 72.2%, respectively, whereas those with lower than 30% drug resistance rates accounted for 11.1 and 16.7%, respectively. The burn patients enrolled in the study were mainly infected with G(-) bacteria. These results strongly suggest that clinicians should practice rational use of antibiotics based on drug susceptibility test results.

  3. Effect of isolate of ruminal fibrolytic bacterial culture supplementation on fibrolytic bacterial population and survivability of inoculated bacterial strain in lactating Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    Brishketu Kumar

    2013-02-01

    Full Text Available Aim: The present study was conducted to evaluate the effect of bacterial culture supplementation on ruminal fibrolytic bacterial population as well as on survivability of inoculated bacterial strain in lactating Murrah buffaloes kept on high fibre diet. Materials and Methods: Fibrolytic bacterial strains were isolated from rumen liquor of fistulated Murrah buffaloes and live bacterial culture were supplemented orally in treatment group of lactating Murrah buffaloes fed on high fibre diet to see it's effect on ruminal fibrolytic bacterial population as well as to see the effect of survivability of the inoculated bacterial strain at three different time interval in comparison to control group. Results: It has been shown by real time quantification study that supplementation of bacterial culture orally increases the population of major fibre degrading bacteria i.e. Ruminococcus flavefaciens, Ruminococcus albus as well as Fibrobacter succinogenes whereas there was decrease in secondary fibre degrading bacterial population i.e. Butyrivibrio fibrisolvens over the different time periods. However, the inoculated strain of Ruminococcus flavefaciens survived significantly over the period of time, which was shown in stability of increased inoculated bacterial population. Conclusion: The isolates of fibrolytic bacterial strains are found to be useful in increasing the number of major ruminal fibre degrading bacteria in lactating buffaloes and may act as probiotic in large ruminants on fibre-based diets. [Vet World 2013; 6(1.000: 14-17

  4. Antimicrobial Activity of Monoramnholipids Produced by Bacterial Strains Isolated from the Ross Sea (Antarctica

    Directory of Open Access Journals (Sweden)

    Pietro Tedesco

    2016-04-01

    Full Text Available Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc. Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 μg/mL and unreported antimicrobial activity against Bcc strains.

  5. Characterization and identification of newly isolated Acinetobacter baumannii strain serdang 1 for phenol removal

    Science.gov (United States)

    Yadzir, Z. H. M.; Shukor, M. Y.; Nazir, M. S.; Abdullah, M. A.

    2012-09-01

    A new indigenous bacterial strain from Malaysian soil contaminated with petroleum waste had been successfully isolated, characterized and identified for phenol removal. The gram negative bacteria showed 98% identity with Acinetobacter baumannii based on Biolog{trade mark, serif} Identification System and the determination of a partial 16S ribosomal RNA (rRNA) sequence. The isolate clustered with species belonging to Acinetobacter clade in a 16S rDNA-based neighbour-joining phylogenetic tree.

  6. [Screening and identification of marine fungi against bacterial quorum sensing].

    Science.gov (United States)

    Yin, Shouliang; Chang, Yajing; Deng, Suping; Wang, Qingchi; Yu, Wengong; Gong, Qianhong

    2011-09-01

    The discovery of quorum sensing (QS) system and its critical role in bacterial virulence have revealed a new way to attack pathogenic bacterium. The pathogenecity of QS deletion mutants decreases significantly. Targeting bacterial QS system is a promising therapeutic approach to control infections and anti-microbial resistance. To obtain natural QS inhibitors from marine organisms, marine fungi (69 strains) were isolated from marine mollusca, and their extracts were screened using improved QSIS2 (Quorum Sensing Inhibitor Selector 2) assay and Chromobacterium violaceum CV026. To improve the efficiency of QSIS2 screening, 2,3,5-triphenyltetrazolium chloride (TTC) staining method was used. Extract from strain QY013 was found to have QS inhibitory activity. Further experiment indicated that pyocyanin in Pseudomonas aeruginosa PAOI and violacein in C. violaceum CV026 were reduced by QY013 extract, without affecting bacterial growth. Morphological and 18S rDNA sequence analysis revealed that strain QY013 was most closely related to Penicillium species. The above results suggest that active constituents from QY013 may be used as novel antimicrobial agents against bacterial infection.

  7. BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae: P. viridiflava group

    Directory of Open Access Journals (Sweden)

    Abi S.A. Marques

    2008-01-01

    Full Text Available The phenotypic characteristics and genetic fingerprints of a collection of 120 bacterial strains, belonging to Pseudomonas syringae sensu lato group, P. viridiflava and reference bacteria were evaluated, with the aim of species identification. The numerical analysis of 119 nutritional characteristics did not show patterns that would help with identification. Regarding the genetic fingerprinting, the results of the present study supported the observation that BOX-PCR seems to be able to identify bacterial strains at species level. After numerical analyses of the bar-codes, all pathovars belonging to each one of the nine described genomospecies were clustered together at a distance of 0.72, and could be separated at genomic species level. Two P. syringae strains of unknown pathovars (CFBP 3650 and CFBP 3662 and the three P. syringae pv. actinidiae strains were grouped in two extra clusters and might eventually constitute two new species. This genomic species clustering was particularly evident for genomospecies 4, which gathered P. syringae pvs. atropurpurea, coronafaciens, garçae, oryzae, porri, striafaciens, and zizaniae at a noticeably low distance.

  8. Identification of leptospiral isolates by bacterial restriction endonuclease analysis (Brenda

    Directory of Open Access Journals (Sweden)

    Venkatesha M

    2001-01-01

    Full Text Available DNA samples from 19 reference serovars belonging to 19 different serogroups of Leptospira interrogans and two serovars belonging to Leptospira biflexa were examined by bacterial restriction endonuclease analysis using EcoR I and Hae III enzymes. All the serovars gave unique restriction patterns that differed from each other. DNA from 10 local isolates digested with these enzymes produced patterns which on comparison with the standard patterns produced by reference strains could be identified to serovar level.

  9. MALDI-TOF-MS with PLS Modeling Enables Strain Typing of the Bacterial Plant Pathogen Xanthomonas axonopodis

    Science.gov (United States)

    Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.

    2017-11-01

    Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms. [Figure not available: see fulltext.

  10. Evaluation of different lactic acid bacterial strains for probiotic characteristics

    Directory of Open Access Journals (Sweden)

    B. Srinu,

    2013-08-01

    Full Text Available Objective: The objective of the present study was to collect different Lactic acid bacterial strains from culture collection centers and screen their functional probiotic characteristics such as acid tolerance, bile tolerance, antibacterial activity and antibiotic sensitivity for their commercial use. Materials and Methods: Acid and bile tolerence of selected LAB(Lactic acid bacteria was determined. The antibiotic resistance of Lactobacillus species was assessed using different antibiotic discs on de Mann Rogosa Sharpe broth (MRS agar plates seeded with the test probiotic organism. The antibacterial activity of LAB was assessed by using well diffusion method.Results: Among the six probiotic strains tested, all showed good survivability at high bile salt concentration (0.3 to 2.0 % oxgall and good growth at a low pH of 1.5 to 3.5. These probiotic species showed good survival abilities in acidic pH of 2.0 to 3.5 except Lactobacillus delbrueckii subspp. bulgaricus 281 which did not grown at pH of 2.0. Lactobacillus fermentum 141 was able to grow even at pH of 1.5 also. Among the six lactic acid species, Lactobacillus fermentum 141 (except Tetracycline, Lactobacillus delbrueckii subspp. Bulgaricus 281 except (Cefpodoxime and all other LAB were resistant to all the antibiotics tested (Ampicillin, Nalidixic acid , Ciprofloxacin ,Co-Trimoxazole, Gentamicin and Cefpodoxime. All these probiotic organisms were screened for their in vitro inhibition ability against pathogenic microorganisms namely, E.coli ATCC (American type culture collection centre, Pseudomonas aeruginosa, Salmonella paratyphi, Staphylococcus aureus. Lactobacillus delbrueckii subspp. bulgaricus 281, Lactobacillus casei 297 and Lactobacillus fermentum 141 inhibited the growth of all the pathogenic bacteria used in the study. Conclusion: The study indicated Lactobacillus fermentum 141 and Lactobacillus casei 297 as potential functional probiotics for future in vivo studies for

  11. Identification of Bacillus Strains for Biological Control of Catfish Pathogens

    Science.gov (United States)

    Ran, Chao; Carrias, Abel; Williams, Malachi A.; Capps, Nancy; Dan, Bui C. T.; Newton, Joseph C.; Kloepper, Joseph W.; Ooi, Ei L.; Browdy, Craig L.; Terhune, Jeffery S.; Liles, Mark R.

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×107 CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (PBacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture. PMID:23029244

  12. Identification of Bacillus strains for biological control of catfish pathogens.

    Science.gov (United States)

    Ran, Chao; Carrias, Abel; Williams, Malachi A; Capps, Nancy; Dan, Bui C T; Newton, Joseph C; Kloepper, Joseph W; Ooi, Ei L; Browdy, Craig L; Terhune, Jeffery S; Liles, Mark R

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×10(7) CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (PBacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture.

  13. Frequent major errors in antimicrobial susceptibility testing of bacterial strains distributed under the Deutsches Krebsforschungszentrum Quality Assurance Program.

    Science.gov (United States)

    Boot, R

    2012-07-01

    The Quality Assurance Program (QAP) of the Deutsches Krebsforschungszentrum (DKFZ) was a proficiency testing system developed to service the laboratory animal discipline. The QAP comprised the distribution of bacterial strains from various species of animals for identification to species level and antibiotic susceptibility testing (AST). Identification capabilities were below acceptable standards. This study evaluated AST results using the DKFZ compilations of test results for all bacterial strains showing the number of participants reporting the strain as resistant (R), sensitive (S) or intermediate susceptible (I) to each antibiotic substance used. Due to lack of information about methods used, it was assumed that what the majority of the participants reported (R or S) was the correct test result and that an opposite result was a major error (ME). MEs occurred in 1375 of 14,258 (9.7%) of test results and ME% ranged from 0% to 23.2% per bacterial group-agent group combination. Considerable variation in MEs was found within groups of bacteria and within groups of agents. In addition to poor performance in proper species classification, the quality of AST in laboratory animal diagnostic laboratories seems far below standards considered acceptable in human diagnostic microbiology.

  14. Resistance and inactivation kinetics of bacterial strains isolated from the non-chlorinated and chlorinated effluents of a WWTP.

    Science.gov (United States)

    Martínez-Hernández, Sylvia; Vázquez-Rodríguez, Gabriela A; Beltrán-Hernández, Rosa I; Prieto-García, Francisco; Miranda-López, José M; Franco-Abuín, Carlos M; Álvarez-Hernández, Alejandro; Iturbe, Ulises; Coronel-Olivares, Claudia

    2013-08-06

    The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains), Enterobacter cloacae, Kluyvera cryocrescens (three strains), Kluyvera intermedia, Citrobacter freundii (two strains), Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L(-1)), contact time (0, 15 and 30 min) and water temperature (20, 25 and 30 °C). The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L(-1) dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L(-1) with various retention times (0, 10, 20, 30, 60 and 90 min). The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  15. Resistance and Inactivation Kinetics of Bacterial Strains Isolated from the Non-Chlorinated and Chlorinated Effluents of a WWTP

    Directory of Open Access Journals (Sweden)

    Claudia Coronel-Olivares

    2013-08-01

    Full Text Available The microbiological quality of water from a wastewater treatment plant that uses sodium hypochlorite as a disinfectant was assessed. Mesophilic aerobic bacteria were not removed efficiently. This fact allowed for the isolation of several bacterial strains from the effluents. Molecular identification indicated that the strains were related to Aeromonas hydrophila, Escherichia coli (three strains, Enterobacter cloacae, Kluyvera cryocrescens (three strains, Kluyvera intermedia, Citrobacter freundii (two strains, Bacillus sp. and Enterobacter sp. The first five strains, which were isolated from the non-chlorinated effluent, were used to test resistance to chlorine disinfection using three sets of variables: disinfectant concentration (8, 20 and 30 mg·L−1, contact time (0, 15 and 30 min and water temperature (20, 25 and 30 °C. The results demonstrated that the strains have independent responses to experimental conditions and that the most efficient treatment was an 8 mg·L−1 dose of disinfectant at a temperature of 20 °C for 30 min. The other eight strains, which were isolated from the chlorinated effluent, were used to analyze inactivation kinetics using the disinfectant at a dose of 15 mg·L−1 with various retention times (0, 10, 20, 30, 60 and 90 min. The results indicated that during the inactivation process, there was no relationship between removal percentage and retention time and that the strains have no common response to the treatments.

  16. Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity.

    Science.gov (United States)

    Vivas, A; Azcón, R; Biró, B; Barea, J M; Ruiz-Lozano, J M

    2003-10-01

    We isolated two bacterial strains from an experimentally lead (Pb)-polluted soil in Hungary, 10 years after soil contamination. These strains represented the two most abundant cultivable bacterial groups in such soil, and we tested their influence on Trifolium pratense L. growth and on the functioning of native mycorrhizal fungi under Pb toxicity in a second Pb-spiked soil. Our results showed that bacterial strain A enhanced plant growth, nitrogen and phosphorus accumulations, nodule formation, and mycorrhizal infection, demonstrating its plant-growth-promoting activity. In addition, strain A decreased the amount of Pb absorbed by plants, when expressed on a root weight basis, because of increased root biomass due to the production of indoleacetic acid. The positive effect of strain A was not only evident after a single inoculation but also in dual inoculation with arbuscular mycorrhizal fungi. Strain A also exhibited higher tolerance than strain B when cultivated under increasing Pb levels in the spiked soil. Molecular identification unambiguously placed strain A within the genus Brevibacillus. We showed that it is important to select the most tolerant and efficient bacterial strain for co-inoculation with arbuscular mycorrhizal fungi to promote effective symbiosis and thus stimulate plant growth under adverse environmental conditions, such as heavy-metal contamination.

  17. Identification and antifungal activity of an actinomycete strain against Alternaria spp.

    Directory of Open Access Journals (Sweden)

    Fen Gao

    2014-10-01

    Full Text Available Alternaria alternata (Fries Keissler is a phytopathogenic fungus responsible for tobacco brown spot disease. This study aims to evaluate the antifungal activity of strain 163 against A. alternata and clarify its taxonomic status. The evaluation of the antifungal activity of strain 163 and its bacteria-free filtrate of fermentation broth was done through measuring the diameters of inhibition zones, and testing the antimicrobial spectrum and the inhibition effect on mycelial growth in vitro. The biocontrol activity of the bacteria-free filtrate in vivo was evaluated by using detached tobacco leaves method and assaying the inhibition rate to disease incidence in growth chamber. A polyphasic approach was taken in the identification of strain 163. The bacterial strain 163 showed inhibitory effect in vitro against A. alternata. The bacteria-free filtrate of the strain 163 fermentation broth showed a 56.7% inhibition rate in a detached leaf assay. In growth chamber conditions, it showed greater biocontrol activity when applied before plants being inoculated with A. alternata than after, the inhibition rate being 46.05%. Investigations into the morphological, cultural, physiological and biochemical properties of strain 163 found it to be most similar to Streptomyces microflavus. Its classification into cell wall type I and sugar type C further confirmed its Streptomyces characteristics. Construction of a phylogenetic tree based on 16S rDNA verified that strain 163 was most closely related to Streptomyces microflavus. From polyphasic taxonomical analysis, strain 163 was found to be identical to S. microflavus.

  18. NEW PRODUCER STRAINS OF BIOBUTANOL. І. ISOLATION AND IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    O. A. Tigunova

    2013-02-01

    Full Text Available Getting new, more productive strains of microorganisms that produce butanol is a topical problem. Studing of morphological and physiological characteristics of the isolated strains, improvement of their cultivation conditions, optimization of biobutanol synthesis gives the possibility to organize a cost-effective butanol production technology. The aim of this work was searching new butanol and butyric acid producer strains, their identification and studying the main steps of the selective strains biosynthesis. The objects of this study were microorganisms that had allocated from soils and sludges samples of Kiev’s lakes. Obtained cultures have been screened. Three strains were obtained as promising and identified as C. acetobutylicum, C. tyrobutylicum, C. butylicum. Selective medium have been developed and modified for the microorganisms. Producer’s features were investigated in order to maximize the accumulation of target metabolites.

  19. Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media

    Directory of Open Access Journals (Sweden)

    Maryam Jalili Tabaii

    2015-12-01

    Full Text Available The effect of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus (PTCC 1734 and two newly isolated strains (from vinegar under static culture conditions was studied. The production of bacterial cellulose was examined in modified Hestrin-Shramm medium by replacing D-glucose with other carbon sources. The results showed that the yield and characteristics of bacterial cellulose were influenced by the type of carbon source. Glycerol gave the highest yield in all of the studied strains (6%, 9.7% and 3.8% for S, A2 strain and Gluconacetobacter xylinus (PTCC 1734, respectively. The maximum dry bacterial cellulose weight in the glycerol containing medium is due to A2 strain (1.9 g l-1 in comparison to Gluconacetobacter xylinus as reference strain (0.76 g l-1. Although all of the studied strains were in Gluconacetobacter family, each used different sugars for maximum production after glycerol (mannitol and fructose for two newly isolated strains and glucose for Gluconacetobacter xylinus. The maximum moisture content was observed when sucrose and food-grade sucrose were used as carbon source. Contrary to expectations, while the maximum thickness of bacterial cellulose membrane was attained when glycerol was used, bacterial cellulose from glycerol had less moisture content than the others. The oxidized cellulose showed antibacterial activities, which makes it as a good candidate for food-preservatives.

  20. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    Science.gov (United States)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  1. Isolation, Identification, and Evaluation of Novel Probiotic Strains Isolated from Feces of Breast-Fed Infants.

    Science.gov (United States)

    Panya, Marutpong; Lulitanond, Viraphong; Rattanachaikunsopon, Pongsak; Srivoramas, Thanyakarn; Chaiwong, Tarinee

    2016-01-01

    To isolate, identify, and evaluate the probiotic properties of lactic acid bacteria (LAB) isolated from the feces of breast-fed infants. The probiotic tests included investigation of hemolysis activity, survival in simulated gastrointestinal tract conditions (acid and bile salt tolerance), susceptibility to antibiotics, and ability to inhibit selected bacterial pathogens (Escherichia coli O157:H7, Vibrio cholerae and Salmonella enterica subsp enterica serovar Typhimurium). The bacterial species identification was performed by both carbohydrate utilization and partial 16S ribosomal RNA sequencing. Five of fifty LAB isolates (UBU-03, UBU-06, UBU-09, UBU-34, and UBU-37) showed good probiotic properties. These five isolates showed non-hemolysis type (gamma-hemolysis), susceptibility to all antibiotics tested except for vancomycin, ability to survive in the simulated gastrointestinal conditions of both acid and bile salt solution, and ability to inhibit growth of E. coli O157: H7 and V. cholerae. Bacterial species identification revealed that all five isolates were firmly identified as Lactobacillus rhamnosus species. The L. rhamnosus strains that were isolated and characterized in this study could be considered as probiotic strains, and then used for further probiotic characterization in human cell cultures or animal models.

  2. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hana Šuranská

    2016-03-01

    Full Text Available Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  4. Traditional approaches versus mass spectrometry in bacterial identification and typing.

    Science.gov (United States)

    Sloan, Angela; Wang, Gehua; Cheng, Keding

    2017-10-01

    Biochemical methods such as metabolite testing and serotyping are traditionally used in clinical microbiology laboratories to identify and categorize microorganisms. Due to the large variety of bacteria, identifying representative metabolites is tedious, while raising high-quality antisera or antibodies unique to specific biomarkers used in serotyping is very challenging, sometimes even impossible. Although serotyping is a certified approach for differentiating bacteria such as E. coli and Salmonella at the subspecies level, the method is tedious, laborious, and not practical during an infectious disease outbreak. Mass spectrometry (MS) platforms, especially matrix assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS), have recently become popular in the field of bacterial identification due to their fast speed and low cost. In the past few years, we have used liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches to solve various problems hindering serotyping and have overcome some insufficiencies of the MALDI-TOF-MS platform. The current article aims to review the characteristics, advantages, and disadvantages of MS-based platforms over traditional approaches in bacterial identification and categorization. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

    KAUST Repository

    Herrera Sarrias, Marcela

    2017-05-02

    Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.

  6. Performance of the Vitek 2 system software version 5.03 in the bacterial identification and antimicrobial susceptibility test: evaluation study of clinical and reference strains of Gram-positive cocci

    Directory of Open Access Journals (Sweden)

    Thiago Galvão da Silva Paim

    2014-06-01

    Full Text Available Introduction. The genera Enterococcus, Staphylococcus and Streptococcus are recognized as important Gram-positive human pathogens. The aim of this study was to evaluate the performance of Vitek 2 in identifying Gram-positive cocci and their antimicrobial susceptibilities. Methods. One hundred four isolates were analyzed to determine the accuracy of the automated system for identifying the bacteria and their susceptibility to oxacillin and vancomycin. Results. The system correctly identified 77.9% and 97.1% of the isolates at the species and genus levels, respectively. Additionally, 81.8% of the Vitek 2 results agreed with the known antimicrobial susceptibility profiles. Conclusion. Vitek 2 correctly identified the commonly isolated strains; however, the limitations of the method may lead to ambiguous findings.

  7. Biodegradation of petroleum oil by certain bacterial strains

    International Nuclear Information System (INIS)

    Zakaria, A.E.M.

    1998-01-01

    Balaeam base oil was chosen as a model oil in the present study through which some abiotic treatments were implemented aiming at attenuating its naphthenic and aromatic contents; such as the adsorptive technique and the gamma-irradiation technique . In an attempt to apply the biodegrading bacteria as oil pollutant bio indicators upon coastal water samples, a correlation between hydrocarbon concentration and the relative enumeration of the bacterial oil degraders was detected for some litter locations along the mediterranean Sea shore west and east Delta, Suez canal. and suez gulf. 24 petroleum utilizing bacterial isolates were isolated from El-Zayteia port (suez) and identified by morphological, physiological and environmental examination . the biodegradation capacity of the isolates towards the chosen model oil and its separate components was studied in comparison with the standard isolate pseudomonas aeruginosa. Further, the role of the bacterial plasmids taking part in the biodegradation process was investigated as well

  8. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy.

    Science.gov (United States)

    Weigand, Michael R; Pena-Gonzalez, Angela; Shirey, Timothy B; Broeker, Robin G; Ishaq, Maliha K; Konstantinidis, Konstantinos T; Raphael, Brian H

    2015-08-15

    Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Portable bacterial identification system based on elastic light scatter patterns

    Directory of Open Access Journals (Sweden)

    Bae Euiwon

    2012-08-01

    Full Text Available Abstract Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  10. The molecular identification of Streptococcus equi subsp. equi strains isolated within New Zealand.

    Science.gov (United States)

    Patty, O A; Cursons, R T M

    2014-03-01

    To identify Streptococcus equi subsp. equi (S. equi) by PCR analysis and obtain isolates by culture, in order to investigate the strains of S. equi infecting horses within New Zealand. A diagnostic PCR, based on the amplification of the seeI gene for S. equi, was used on 168 samples submitted from horses with and without clinical signs of strangles. Samples were also processed and cultured on selective media for the isolation of β-haemolytic colonies. In addition, the hypervariable region of the seM gene of S. equi was amplified and then sequenced for strain typing purposes. Of the 168 samples, 35 tested positive for S. equi using PCR. Thirty-two confirmed samples were from horses with a clinical diagnosis of strangles and three were from horses where clinical information was unavailable. Only 22/35 (63%) confirmed S. equi samples were successfully isolated following culture. Strain typing demonstrated that two novel seM alleles of S. equi were found in New Zealand with SeM-99 strains being restricted to the North Island while SeM-100 strains were found in both North and South Islands. The application of PCR for the laboratory confirmation of strangles allowed for a rapid and sensitive identification of S. equi. Moreover, seM typing revealed that within the samples examined two strains of S. equi co-circulated within the North Island of New Zealand but only one strain in the South Island. PCR reduces the time required to obtain laboratory confirmation of strangles compared with culture methods. It also has greater sensitivity in detecting S. equi infections, which is of particular importance in the detection of carrier animals which normally shed low numbers of bacteria. Additionally, seM molecular typing can differentiate between bacterial strains, assisting in the monitoring of local strains of S. equi subsp. equi causing disease.

  11. Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Ogier, Jean-Claude; Son, Olivier; Gruss, Alexandra; Tailliez, Patrick; Delacroix-Buchet, Agnes

    2002-08-01

    Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and Staphylococcus. The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products.

  12. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Science.gov (United States)

    Trefz, Phillip; Koehler, Heike; Klepik, Klaus; Moebius, Petra; Reinhold, Petra; Schubert, Jochen K; Miekisch, Wolfram

    2013-01-01

    Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP) emits volatile organic compounds (VOCs). Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0), 10(-2), 10(-4) and 10(-6). Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME), thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to diagnose MAP

  13. Volatile emissions from Mycobacterium avium subsp. paratuberculosis mirror bacterial growth and enable distinction of different strains.

    Directory of Open Access Journals (Sweden)

    Phillip Trefz

    Full Text Available Control of paratuberculosis in livestock is hampered by the low sensitivity of established direct and indirect diagnostic methods. Like other bacteria, Mycobacterium avium subsp. paratuberculosis (MAP emits volatile organic compounds (VOCs. Differences of VOC patterns in breath and feces of infected and not infected animals were described in first pilot experiments but detailed information on potential marker substances is missing. This study was intended to look for characteristic volatile substances in the headspace of cultures of different MAP strains and to find out how the emission of VOCs was affected by density of bacterial growth. One laboratory adapted and four field strains, three of MAP C-type and one MAP S-type were cultivated on Herrold's egg yolk medium in dilutions of 10(-0, 10(-2, 10(-4 and 10(-6. Volatile substances were pre-concentrated from the headspace over the MAP cultures by means of Solid Phase Micro Extraction (SPME, thermally desorbed from the SPME fibers and separated and identified by means of GC-MS. Out of the large number of compounds found in the headspace over MAP cultures, 34 volatile marker substances could be identified as potential biomarkers for growth and metabolic activity. All five MAP strains could clearly be distinguished from blank culture media by means of emission patterns based on these 34 substances. In addition, patterns of volatiles emitted by the reference strain were significantly different from the field strains. Headspace concentrations of 2-ethylfuran, 2-methylfuran, 3-methylfuran, 2-pentylfuran, ethyl acetate, 1-methyl-1-H-pyrrole and dimethyldisulfide varied with density of bacterial growth. Analysis of VOCs emitted from mycobacterial cultures can be used to identify bacterial growth and, in addition, to differentiate between different bacterial strains. VOC emission patterns may be used to approximate bacterial growth density. In a perspective volatile marker substances could be used to

  14. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species

    Science.gov (United States)

    Merino, Enrique; Bonomi, Hernán Ruy; Goldbaum, Fernando Alberto; García-Angulo, Víctor Antonio

    2015-01-01

    Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP) genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria. PMID:25938806

  15. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species.

    Directory of Open Access Journals (Sweden)

    Ana Gutiérrez-Preciado

    Full Text Available Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria.

  16. Proteome characterization of Brachyspira strains. Identification of bacterial antigens

    OpenAIRE

    Casas López, Mª Vanessa

    2017-01-01

    El género Brachyspira incluye varias especies patogénicas que afectan a cerdos, perros, pájaros y humanos. En cerdos, Brachyspira (anteriormente Serpulina y Treponema) hyodysenteriae y Brachyspira pilosicoli son patógenos intestinales bien conocidos. Estas especies son espiroquetas gram-negativas, flageladas y anaeróbicas, las cuales viven en el intestino grueso y que tienen una asociación estrecha con la mucosa del colon. Brachyspira hyodysenteriae es el agente causante de la disentería porc...

  17. Proteome characterization of Brachyspira strains: identification of bacterial antigens /

    OpenAIRE

    Casas López, Ma. Vanessa,

    2017-01-01

    El género Brachyspira incluye varias especies patogénicas que afectan a cerdos, perros, pájaros y humanos. En cerdos, Brachyspira (anteriormente Serpulina y Treponema) hyodysenteriae y Brachyspira pilosicoli son patógenos intestinales bien conocidos. Estas especies son espiroquetas gram-negativas, flageladas y anaeróbicas, las cuales viven en el intestino grueso y que tienen una asociación estrecha con la mucosa del colon. Brachyspira hyodysenteriae es el agente causante de la disentería porc...

  18. In silico comparison of bacterial strains using mutual information

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Mutual information M(k) vs base separation k : Bacillus anthracis and Bacillus cereus strains : Ames ancestor – red; Ames. – green; Sterne – blue; cereus: ATCC 10987 – pink; ATCC 14579 – turquoise; E33 – yellow; smoothened plot : Ames ancestor – black;. ATCC 10987 – rust; Bacillus thuringiensis konkukian – grey. 0.01.

  19. Effect of Selected Azotobacter Bacterial Strains on the Enrichment of ...

    African Journals Online (AJOL)

    Target Audience: Local farmers, Livestock researchers, microbiologist. The effect of three different strains of Azotobacter bacteria in solid substrate fermentation on cassava waste was evaluated. The substrate was incubated at 300c for 10 days inoculation with the Azotobacter bacteria species. One non-inoculated batch ...

  20. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel

    2009-12-01

    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  1. Specificity of monoclonal antibodies to strains of Dickeya sp. that cause bacterial heart rot of pineapple.

    Science.gov (United States)

    Peckham, Gabriel D; Kaneshiro, Wendy S; Luu, Van; Berestecky, John M; Alvarez, Anne M

    2010-10-01

    During a severe outbreak of bacterial heart rot that occurred in pineapple plantations on Oahu, Hawaii, in 2003 and years following, 43 bacterial strains were isolated from diseased plants or irrigation water and identified as Erwinia chrysanthemi (now Dickeya sp.) by phenotypic, molecular, and pathogenicity assays. Rep-PCR fingerprint patterns grouped strains from pineapple plants and irrigation water into five genotypes (A-E) that differed from representatives of other Dickeya species, Pectobacterium carotovorum and other enteric saprophytes isolated from pineapple. Monoclonal antibodies produced following immunization of mice with virulent type C Dickeya sp. showed only two specificities. MAb Pine-1 (2D11G1, IgG1 with kappa light chain) reacted to all 43 pineapple/water strains and some reference strains (D. dianthicola, D. chrysanthemi, D. paradisiaca, some D. dadantii, and uncharacterized Dickeya sp.) but did not react to reference strains of D. dieffenbachiae, D. zeae, or one of the two Malaysian pineapple strains. MAb Pine-2 (2A7F2, IgG3 with kappa light chain) reacted to all type B, C, and D strains but not to any A or E strains or any reference strains except Dickeya sp. isolated from Malaysian pineapple. Pathogenicity tests showed that type C strains were more aggressive than type A strains when inoculated during cool months. Therefore, MAb Pine-2 distinguishes the more virulent type C strains from less virulent type A pineapple strains and type E water strains. MAbs with these two specificities enable development of rapid diagnostic tests that will distinguish the systemic heart rot pathogen from opportunistic bacteria associated with rotted tissues. Use of the two MAbs in field assays also permits the monitoring of a known subpopulation and provides additional decision tools for disease containment and management practices.

  2. Identification of resistance and virulence factors in an epidemic Enterobacter hormaechei outbreak strain

    NARCIS (Netherlands)

    Paauw, A.; Caspers, M.P.M.; Leverstein-van Hall, M.A.; Schuren, F.H.J.; Montijn, R.C.; Verhoef, J.; Fluit, A.C.

    2009-01-01

    Bacterial strains differ in their ability to cause hospital outbreaks. Using comparative genomic hybridization, Enterobacter cloacae complex isolates were studied to identify genetic markers specific for Enterobacter cloacae complex outbreak strains. No outbreak-specific genes were found that were

  3. Characterization and optimization of antibiotic resistant bacterial strains for polyhydroxyalkanoates (phas) production

    International Nuclear Information System (INIS)

    Rehman, S. U.; Jamil, N.; Hussain, S.

    2005-01-01

    In this investigation, sugarcane soil, sewage water and soil containing long chain hydrocarbons was screened to obtain bacterial strains that were able to synthesize poly-beta-hydroxyalkanoates (PHA). The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in glucose and sucrose. Sixteen bacterial strains were isolated, purified and characterized for Gram reaction, biochemical analysis and PHA production. Isolates showed a wide range of tolerance to different commonly used antibiotics. PHA extraction was done by solvent extraction and hypochlorite digestion method. PHA production was optimized for different nitrogen concentrations. (author)

  4. Isolation of Bacterial Strain for Biodegradation of Fats, Oil and Grease

    International Nuclear Information System (INIS)

    Alkhatib, M.F.; Mohd Zahangir Alam; Shabana, H.F.M.

    2015-01-01

    Fat, oil and grease (FOG) deposition is one of the major problems that harm the environment and cause dissatisfaction for human. Uncontrolled and un-pre-treated FOG removal from the kitchen could lead to its accumulation in the piping system. Problems include the interference of fat with the aerobic microorganisms that are responsible in treating the wastewater by reducing oxygen transfer rates and for anaerobic microorganisms; their efficiency could also be reduced due to the reduction of the transport of soluble substrates to the bacterial biomass. Biodegradation could be one of the effective means to treat FOG. The main objective of this study is to isolate bacterial strains from the FOG waste and identify the strains that are capable in biodegrading FOG waste. FOG sample was collected from a sewer manhole. Enrichment technique was applied, followed by isolation of bacterial strains to determine which strain is able to degrade the FOG deposition. Some morphology for the bacterial strain was done to determine its characteristics. (author)

  5. Computational identification of strain-, species- and genus-specific proteins

    Directory of Open Access Journals (Sweden)

    Thiagarajan Rathi

    2005-11-01

    Full Text Available Abstract Background The identification of unique proteins at different taxonomic levels has both scientific and practical value. Strain-, species- and genus-specific proteins can provide insight into the criteria that define an organism and its relationship with close relatives. Such proteins can also serve as taxon-specific diagnostic targets. Description A pipeline using a combination of computational and manual analyses of BLAST results was developed to identify strain-, species-, and genus-specific proteins and to catalog the closest sequenced relative for each protein in a proteome. Proteins encoded by a given strain are preliminarily considered to be unique if BLAST, using a comprehensive protein database, fails to retrieve (with an e-value better than 0.001 any protein not encoded by the query strain, species or genus (for strain-, species- and genus-specific proteins respectively, or if BLAST, using the best hit as the query (reverse BLAST, does not retrieve the initial query protein. Results are manually inspected for homology if the initial query is retrieved in the reverse BLAST but is not the best hit. Sequences unlikely to retrieve homologs using the default BLOSUM62 matrix (usually short sequences are re-tested using the PAM30 matrix, thereby increasing the number of retrieved homologs and increasing the stringency of the search for unique proteins. The above protocol was used to examine several food- and water-borne pathogens. We find that the reverse BLAST step filters out about 22% of proteins with homologs that would otherwise be considered unique at the genus and species levels. Analysis of the annotations of unique proteins reveals that many are remnants of prophage proteins, or may be involved in virulence. The data generated from this study can be accessed and further evaluated from the CUPID (Core and Unique Protein Identification system web site (updated semi-annually at http://pir.georgetown.edu/cupid. Conclusion CUPID

  6. MESSI: metabolic engineering target selection and best strain identification tool.

    Science.gov (United States)

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae's ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae's metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains' natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels.Database URL: http://sbb.hku.hk/MESSI/. © The Author(s) 2015. Published by Oxford University

  7. Radioprotective effect of garlic extract on some bacterial strains with different radiation sensitivities

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Abushady, M.R.

    1992-01-01

    The radioprotective effect of garlic on four bacterial strains with different degrees of radiation sensitivities was investigated. The presence of garlic led to an increase in d-10 value of Ps. Aeruginosa, S. aureus and S. typhimurium by 160%, 50%, and 30% respectively. The protective efficiency of garlic against radiation was noticed to be proportional to its concentration in a given inoculum size. Garlic extract up to 180 micro liter per 10 8 inoculum size of B. cereus showed no protective effect. This fact was attributed to the existence of sulphur compounds in the given strain. Higher garlic concentrations appeared to affect the cloning efficiency of a given strain. 4fig., 2tab

  8. Identification of Lactobacillus strains with probiotic features from the bottlenose dolphin (Tursiops truncatus)

    Science.gov (United States)

    Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J

    2013-01-01

    Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505

  9. Identification and characterization of a bacterial hydrosulphide ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, Bryan K.; Wang, Da-Neng (NYUSM)

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

  10. Effect of CuO Nanoparticles over Isolated Bacterial Strains from Agricultural Soil

    International Nuclear Information System (INIS)

    Concha-Guerrero, S.I.; Pinon-Castillo, H.A.; Luna-Velasco, A.; Orrantia-Borunda, E.; Brito, E.M.S.; Tarango-Rivero, S.H.; Caretta, C.A.; Duran, R.

    2014-01-01

    The increased use of the nanoparticles (NPs) on several processes is notorious. In contrast the eco toxicological effects of NPs have been scarcely studied. The main current researches are related to the oxide metallic NPs. In the present work, fifty-six bacterial strains were isolated from soil, comprising 17 different OTUs distributed into 3 classes: Bacilli (36 strains), Flavobacteria (2 strains), and Gamma proteobacteria (18 strains). Copper oxide nanoparticles (CuONPs) were synthesized using a process of chemical precipitation. The obtained CuONPs have a spherical shape and primary size less than 17 nm. Twenty-one strains were used to evaluate the cytotoxicity of CuONPs and 11 of these strains showed high sensibility. Among those 11 strains, 4 (Brevibacillus later osporus strain CSS8, Chryseobacterium indoltheticum strain CSA28, and Pantoea ananatis strains CSA34 and CSA35) were selected to determine the kind of damage produced. The CuONPs toxic effect was observed at expositions over 25 mg·L -1 and the damage to cell membrane above 160 mg·L -1 . The electron microscopy showed the formation of cavities, holes, membrane degradation, blebs, cellular collapse, and lysis. These toxic effects may probably be due to the ions interaction, the oxide-reduction reactions, and the generation of reactive species

  11. Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Amruta, Narayanappa; Prasanna Kumar, M. K.; Puneeth, M. E.; Sarika, Gowdiperu; Kandikattu, Hemanth Kumar; Vishwanath, K.; Narayanaswamy, Sonnappa

    2018-01-01

    Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant’s rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides. PMID:29628819

  12. Pyroprinting: a rapid and flexible genotypic fingerprinting method for typing bacterial strains.

    Science.gov (United States)

    Black, Michael W; VanderKelen, Jennifer; Montana, Aldrin; Dekhtyar, Alexander; Neal, Emily; Goodman, Anya; Kitts, Christopher L

    2014-10-01

    Bacterial strain typing is commonly employed in studies involving epidemiology, population ecology, and microbial source tracking to identify sources of fecal contamination. Methods for differentiating strains generally use either a collection of phenotypic traits or rely on some interrogation of the bacterial genotype. This report introduces pyroprinting, a novel genotypic strain typing method that is rapid, inexpensive, and discriminating compared to the most sensitive methods already in use. Pyroprinting relies on the simultaneous pyrosequencing of polymorphic multicopy loci, such as the intergenic transcribed spacer regions of rRNA operons in bacterial genomes. Data generated by sequencing combinations of variable templates are reproducible and intrinsically digitized. The theory and development of pyroprinting in Escherichia coli, including the selection of similarity thresholds to define matches between isolates, are presented. The pyroprint-based strain differentiation limits and phylogenetic relevance compared to other typing methods are also explored. Pyroprinting is unique in its simplicity and, paradoxically, in its intrinsic complexity. This new approach serves as an excellent alternative to more cumbersome or less phylogenetically relevant strain typing methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Biodegradation of Ochratoxin A by Bacterial Strains Isolated from Vineyard Soils

    Directory of Open Access Journals (Sweden)

    Palmira De Bellis

    2015-11-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin with a main nephrotoxic activity contaminating several foodstuffs. In the present report, five soil samples collected from OTA-contaminated vineyards were screened to isolate microorganisms able to biodegrade OTA. When cultivated in OTA-supplemented medium, OTA was converted in OTα by 225 bacterial isolates. To reveal clonal relationships between isolates, molecular typing by using an automated rep-PCR system was carried out, thus showing the presence of 27 different strains (rep-PCR profiles. The 16S-rRNA gene sequence analysis of an isolate representative of each rep-PCR profiles indicated that they belonged to five bacterial genera, namely Pseudomonas, Leclercia, Pantoea, Enterobacter, and Acinetobacter. However, further evaluation of OTA-degrading activity by the 27 strains revealed that only Acinetobacter calcoaceticus strain 396.1 and Acinetobacter sp. strain neg1, consistently conserved the above property; their further characterization showed that they were able to convert 82% and 91% OTA into OTα in six days at 24 °C, respectively. The presence of OTα, as the unique OTA-degradation product was confirmed by LC-HRMS. This is the first report on OTA biodegradation by bacterial strains isolated from agricultural soils and carried out under aerobic conditions and moderate temperatures. These microorganisms might be used to detoxify OTA-contaminated feed and could be a new source of gene(s for the development of a novel enzymatic detoxification system.

  14. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Limited diffusive fluxes of substrate facilitate coexistence of two competing bacterial strains

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Smets, Barth F.

    2008-01-01

    . It has been proposed, but never unambiguously experimentally tested, that a low substrate diffusive flux would impact bacterial diversity, by promoting the coexistence between slow-growing bacteria and their potentially faster-growing competitors. We used a simple experimental system, based on a Petri...... dish and a perforated Teflon((R)) membrane to control diffusive fluxes of substrate (benzoate) whilst permitting direct observation of bacterial colonies. The system was inoculated with prescribed strains of Pseudomonas, whose growth was quantified by microscopic monitoring of the fluorescent proteins...... they produced. We observed that substrate diffusion limitation reduced the growth rate of the otherwise fast-growing Pseudomonas putida KT2440 strain. This strain out-competed Pseudomonas fluorescens F113 in liquid culture, but its competitive advantage was less marked on solid media, and even disappeared under...

  16. A Fluorescence-Based Assay for Identification of Bacterial Topoisomerase I Poisons.

    Science.gov (United States)

    Annamalai, Thirunavukkarasu; Cheng, Bokun; Keswani, Neelam; Tse-Dinh, Yuk-Ching

    2018-01-01

    Bacterial Topoisomerase I is a potential target for the identification of novel topoisomerase poison inhibitors that could provide leads for a new class of antibacterial compounds. Here we describe in detail a fluorescence-based cleavage assay that is successfully used in HTS for the discovery of bacterial topoisomerase Ι poisons.

  17. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Faiz, M.; Bashir, T.

    2004-01-01

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  18. Inheritance and identification of SCAR marker linked to bacterial wilt ...

    African Journals Online (AJOL)

    In the present work, the combinations (F1) were crossed between highly resistant and susceptible to bacterial wilt eggplant parents and its F2, BC1 segregation population plants were inoculated with race1 of Ralstonia solanacearum in greenhouse. In this paper, we reported that the inheritance of bacterial wilt resistance in ...

  19. Identification of bacterial blight resistance genes Xa4 in Pakistani ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is a major biotic constraint in the irrigated rice belts. Genetic resistance is the most effective and economical control for bacterial blight. Molecular survey was conducted to identify the rice germplasm/lines for the presence of Xa4, a.

  20. Inheritance and identification of SCAR marker linked to bacterial wilt ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... In the present work, the combinations (F1) were crossed between highly resistant and susceptible to bacterial wilt eggplant parents and its F2, BC1 segregation population plants were inoculated with race1 of Ralstonia solanacearum in greenhouse. In this paper, we reported that the inheritance of bacterial ...

  1. Identification of microcystins from three collection strains of Microcystis aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Francisca F. del [Departamento de Biologia, Universidad Autonoma de Madrid, Cantoblanco, 28049-Madrid (Spain); Ouahid, Youness, E-mail: ouahidyouness@gmail.co [Departamento de Biologia, Universidad Autonoma de Madrid, Cantoblanco, 28049-Madrid (Spain)

    2010-09-15

    Microcystins (MCs) are toxic cyclic heptapeptides produced by various cyanobacteria genera, especially Microcystis. We identified 10 out of 12 MCs produced by three Microcystis aeruginosa strains from cyanobacteria collections, UTEX 2666, UTEX 2670 and UAM 1303, by using two analytical methods: Matrix-assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF/MS) and HPLC Photodiode Array Detector coupled to a hybrid Quadrupole Time of Flight Mass Spectrometry (HPLC-PDA-QTOF/MS). MALDI-TOF/MS failed to detect non-polar MCs, such as MC-LY and MC-LW. HPLC-QTOF/MS permitted the accurate identification of most MCs present in methanolic extracts. Besides, three new MCs, namely: [D-Glu(OCH{sub 3}){sup 6}, D-Asp{sup 3}] MC-LAba, MC-YL and MC-YM were detected by HPLC-QTOF/MS. - Three new microcystin variants identified by HPLC-QTOF/MS.

  2. ANTIMICROBIAL POTENTIAL OF GARLIC AND OREGANO EXTRACTS AND ESSENTIAL OILS AGAINST DIFFERENT BACTERIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2017-12-01

    Full Text Available The modern world is often concerned about the bacterial diseases and the diversity of treatment possibilities. The herbal medicines overreach the medical world because the less number of side effects than synthetic drugs and their low costs. In addition to conventional drugs, the natural remedies can solve exceptional health problems. In this study the antibacterial actions of ethanolic, methanolic and aqueous plant extracts (Allium sativum L. and Origanum vulgare L. were tested. Also, we tested the antimicrobial effects of garlic and oregano essential oils against three bacterial strains. The extracts were tested by diffusion method and certain variants were used. The antibacterial effects were read after 24h of incubation at 37°C. The most obvious effect was observed for oregano essential oil and the smallest growth inhibition was registered for aqueous extracts. The alcoholic extracts were more efficient after concentration by evaporation. The most sensitive bacterial strain was Staphylococcus aureus strain. However the Citrobacter freundii clinical strain had not so high sensitivity at plant extracts, we shall consider the plant extracts as a good alternative to synthetic drugs.

  3. Solubilization of municipal sewage waste activated sludge by novel lytic bacterial strains.

    Science.gov (United States)

    Lakshmi, M Veera; Merrylin, J; Kavitha, S; Kumar, S Adish; Banu, J Rajesh; Yeom, Ick-Tae

    2014-02-01

    Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.

  4. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  5. Metabolic fingerprinting of bacterial strains isolated from northern areas of Pakistan

    International Nuclear Information System (INIS)

    Zaheer, A.; Latif, Z.

    2017-01-01

    The diversity of Plant Growth Promoting Rhizobacteria (PGPR) in the rhizosphere plays a key role in the maintenance of sustainable agricultural system. In this study, samples were obtained from northern areas of Pakistan. Thirty bacterial strains were isolated, purified, characterized biochemically and subjected to the metabolic fingerprinting by performing nitrogen fixation, phosphate solubilization, protease, indole acetic acid (IAA) production, antibiotic susceptibility and heavy metal resistance test, lead acetate assay for the H2S production. Strains showing distinct characteristics were further characterized by 16S rDNA sequencing and characterized as Bacillus pumilus (KT273321), Acinetobacter baumanii (KT273323), Acinetobacter junii (KT273324), Pseudomonas aeruginosa (KT273325), Bacillus circulans (KT273326) and Bacillus cereus (KT273327). As most of the strains show positive results for resistance against heavy metals, phosphate solubilization, nitrogen fixation, IAA production, and so these strains might be utilized for the removal of heavy metals from the ecosystem as well as biofertilizer in agriculture lands of northern areas. (author)

  6. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains.

    Science.gov (United States)

    Sienkiewicz, Monika; Łysakowska, Monika; Denys, Paweł; Kowalczyk, Edward

    2012-04-01

    The aim of this work was to investigate the antimicrobial activity of thyme essential oil against clinical multidrug resistant strains of Staphylococcus, Enterococcus, Escherichia, and Pseudomonas genus. The antibacterial activity of oil was tested against standard strains of bacteria and 120 clinical strains isolated from patients with infections of the oral cavity, abdominal cavity, respiratory and genitourinary tracts, skin, and from the hospital environment. Agar diffusion was used to determine the microbial growth inhibition of bacterial growth at various concentrations of oil from Thymus vulgaris. Susceptibility testing to antibiotics was carried out using disk diffusion. Thyme essential oil strongly inhibited the growth of the clinical strains of bacteria tested. The use of phytopharmaceuticals based on an investigated essential oil from thyme in the prevention and treatment of various human infections may be reasonable.

  7. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains.

    Science.gov (United States)

    Zamzuri, N A; Abd-Aziz, S; Rahim, R A; Phang, L Y; Alitheen, N B; Maeda, T

    2014-04-01

    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method. For the production of vanillin, a natural aroma compound, we attempted to isolate a potential strain using a simple screening method based on pH change resulting from the degradation of ferulic acid. The strain Pseudomonas sp. AZ10 UPM exhibited a significant result because of colour changes observed on the assay plate on day 1 with a high intensity of yellow colour. The biotransformation of ferulic acid into vanillic acid by the AZ10 strain provided the yield (Yp/s ) and productivity (Pr ) of 1·08 mg mg(-1) and 53·1 mg L(-1) h(-1) , respectively. In fact, new investigations regarding lignin degradation revealed that the strain was not able to produce vanillin and vanillic acid directly from lignin; however, partially digested lignin by mixed enzymatic treatment allowed the strain to produce 30·7 mg l(-1) and 1·94 mg l(-1) of vanillic acid and biovanillin, respectively. (i) The rapid colorimetric screening method allowed the isolation of a biovanillin producer using ferulic acid as the sole carbon source. (ii) Enzymatic treatment partially digested lignin, which could then be utilized by the strain to produce biovanillin and vanillic acid. To the best of our knowledge, this is the first study reporting the use of a rapid colorimetric screening method for bacterial strains producing vanillin and vanillic acid from ferulic acid. © 2013 The Society for Applied Microbiology.

  8. Comparison of two multimetal resistant bacterial strains: Enterobacter sp. YSU and Stenotrophomonas maltophilia ORO2.

    Science.gov (United States)

    Holmes, Andrew; Vinayak, Anubhav; Benton, Cherise; Esbenshade, Aaron; Heinselman, Carlisle; Frankland, Daniel; Kulkarni, Samatha; Kurtanich, Adrienne; Caguiat, Jonathan

    2009-11-01

    The Y-12 plant in Oak Ridge, TN, which manufactured nuclear weapons during World War II and the Cold War, contaminated East Fork Poplar Creek with heavy metals. The multimetal resistant bacterial strain, Stenotrophomonas maltophilia Oak Ridge strain O2 (S. maltophilia O2), was isolated from East Fork Poplar Creek. Sequence analysis of 16s rDNA suggested that our working strain of S. maltophilia O2 was a strain of Enterobacter. Phylogenetic tree analysis and biochemical tests confirmed that it belonged to an Enterobacter species. This new strain was named Enterobacter sp. YSU. Using a modified R3A growth medium, R3A-Tris, the Hg(II), Cd(II), Zn(II), Cu(II), Au(III), Cr(VI), Ag(I), As(III), and Se(IV) MICs for a confirmed strain of S. maltophilia O2 were 0.24, 0.33, 5, 5, 0.25, 7, 0.03, 14, and 40 mM, respectively, compared to 0.07, 0.24, 0.8, 3, 0.05, 0.4, 0.08, 14, and 40 mM, respectively, for Enterobacter sp. YSU. Although S. maltophilia O2 was generally more metal resistant than Enterobacter sp. YSU, in comparison to Escherichia coli strain HB101, Enterobacter sp. YSU was resistant to Hg(II), Cd(II), Zn(II), Au(III), Ag(I), As(III), and Se(IV). By studying metal resistances in these two strains, it may be possible to understand what makes one microorganism more metal resistant than another microorganism. This work also provided benchmark MICs that can be used to evaluate the metal resistance properties of other bacterial isolates from East Fork Poplar Creek and other metal contaminated sites.

  9. Synergism between hydrogen peroxide and seventeen acids against six bacterial strains.

    Science.gov (United States)

    Martin, H; Maris, P

    2012-09-01

    The objective of this study was to evaluate the bactericidal efficacy of hydrogen peroxide administered in combination with 17 mineral and organic acids authorized for use in the food industry. The assays were performed on a 96-well microplate using a microdilution technique based on the checkerboard titration method. The six selected strains were reference strains and strains representative of contaminating bacteria in the food industry. Each synergistic hydrogen peroxide/acid combination found after 5-min contact time at 20°C in distilled water was then tested in conditions simulating four different use conditions. Thirty-two combinations were synergistic in distilled water; twenty-five of these remained synergistic with one or more of the four mineral and organic interfering substances selected. Hydrogen peroxide/formic acid combination was synergistic for all six bacterial strains in distilled water and remained synergistic with interfering substances. Six other combinations maintained their synergistic effect in the presence of an organic load but only for one or two bacterial strains. Synergistic combinations of disinfectants were revealed, among them the promising hydrogen peroxide/formic acid combination. A rapid screening method was proposed and used to reveal the synergistic potential of disinfectant and/or sanitizer combinations. © 2012 ANSES Fougères Laboratory Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  10. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method

    Science.gov (United States)

    Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo

    2017-08-01

    Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.

  11. Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation

    Science.gov (United States)

    Panigati, Monica; Furini, Antonella

    2011-01-01

    The effects of plant–microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis- and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and β-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content. PMID:21357773

  12. Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments.

    Science.gov (United States)

    Senechkin, Ilya V; Speksnijder, Adrianus G C L; Semenov, Alexander M; van Bruggen, Ariena H C; van Overbeek, Leonard S

    2010-11-01

    A total of 720 bacterial strains were isolated from soils with four different organic amendment regimes on a low organic carbon (low-C) agar medium (10 µg C ml(-1)) traditionally used for isolation of oligotrophs. Organic amendments in combination with field history resulted in differences in dissolved organic carbon contents in these soils. There were negative correlations between total and dissolved organic carbon content and the number of isolates on low-C agar medium, whereas these correlations were absent for bacterial strains isolated from the same soil on high-C agar medium (1,000 µg C ml(-1)). Repeated transfers (up to ten times) of the isolates from low-C agar medium to fresh low- and high-C agar media were done to test for exclusive growth under oligotrophic conditions. The number of isolates exclusively growing under oligotrophic conditions dropped after each subsequent transfer from 241 after the first to 98 after the third transfer step. Identification on the basis of partial 16S rRNA gene sequences revealed that most of the 241 isolates (as well as the subset of 98 isolates) belong to widespread genera such as Streptomyces, Rhizobium, Bradyrhizobium, and Mesorhizobium, and the taxonomic composition of dominant genera changed from the first transfer step to the third. A selected subset of 17 isolates were further identified and characterized for exclusive growth on low-C agar medium. Two isolates continued to grow only on low-C agar medium up to the tenth transfer step and matched most closely with Rhizobium sullae and an uncultured bacterium on the basis of the almost full-length 16S rRNA gene. It was concluded that the vast majority of strains which are isolated on low-C agar media belong to the trophic group of microorganisms adapted to a "broad range" of carbon concentrations, including well-known and widespread bacterial genera. Oligotrophy is a physiological, not a taxonomic property, and can only be identified by cultural means so far. We

  13. Evaluation of strain-specific primers for identification of Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Endo, Akihito; Aakko, Juhani; Salminen, Seppo

    2012-12-01

    Lactobacillus rhamnosus strain GG (ATCC 53103) is one of the most widely studied and commercialized probiotic strains, and thus strain-specific identification for the strain is highly valuable. In this study, two published PCR-based identification methods for strain GG, a transposase gene-targeting system and a phage-related gene-targeting system, were evaluated. The former produced amplicons from eight of the 41 strains tested and the phage-related system from five of the tested strains, including the strain GG. Fingerprinting analysis indicated that the strains LMG 18025, LMG 18030, and LMG 18038, which had an amplicon by the former system but none by the latter, were genetically distinguishable from L. rhamnosus GG at strain level. Strains LMG 23320, LMG 23325, LMG 23534, and LMG 25859 showed profiles very similar to that of the strain GG, suggesting that these strains might be identical to GG or derivative strains of it. The results here indicated that the phage-related gene-targeting system is a good tool for accurate identification of L. rhamnosus GG. This system would be able to detect both the original L. rhamnosus GG and its derivative strains. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Antibacterial activity of fumaria indica (hausskn.) pugsley against selected bacterial strains

    International Nuclear Information System (INIS)

    Toor, Y.; Nawaz, K.; Hussain, K.

    2015-01-01

    Antibacterial properties of methanolic extracts of F. indica prepared in different doses against seven Gram-positive and Gram-negative bacterial strains i.e. Streptococcus pyogenes, Staphylococcus aureus (1), Staphylococcus aureus (2), Shigella sonnei, Escherichia coli (1), Escherichia coli (2) and Neisseria gonorrhoeae using agar well diffusion method (inhibition zone measurements) compared to gentamicin as standard antibiotic. Results showed significant activities against the test organisms with overall satisfactory statistics. Streptococcus pyogenes, Staphylococcus aureus strains as well as Neisseria gonorrhoeae showed more inhibition to methanolic extracts of F. indica. Minimum inhibitory as well as minimum bactericidal concentrations against all strains except Shigella sonnei were also recorded. Studies showed promising horizons for the use of F. indica as an active antibacterial component in modern drug formulations. (author)

  15. Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Soares Márcia M.C.N.

    1999-01-01

    Full Text Available One hundred sixty eight bacterial strains, isolated from soil and samples of vegetable in decomposition, were screened for the use of citrus pectin as the sole carbon source. 102 were positive for pectinase depolymerization in assay plates as evidenced by clear hydrolization halos. Among them, 30% presented considerable pectinolytic activity. The cultivation of these strains by submerged and semi-solid fermentation for polygalacturonase production indicated that five strains of Bacillus sp produced high quantities of the enzyme. The physico-chemical characteristics, such as optimum pH of 6.0 - 7.0, optimum temperatures between 45oC and 55oC, stability at temperatures above 40oC and in neutral and alkaline pH, were determined.

  16. Identification of an emergent bacterial blight of garlic in Brazil

    Science.gov (United States)

    Outbreaks of a bacterial blight disease occurred on garlic (Allium sativum) cultivars Roxo Caxiense, Quiteria and Cacador in Southern Brazil, and threatened the main production regions of Rio Grande do Sul State. Symptoms were characterized by watersoaked reddish streaks along the leaf midrib, follo...

  17. Identification of Bacterial Plant Pathogens Using Multilocus Polymerase Chain Reaction/Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    2008-01-01

    1156 PHYTOPATHOLOGY Techniques Identification of Bacterial Plant Pathogens Using Multilocus Polymerase Chain Reaction/Electrospray Ionization... Phytopathology 98:1156-1164. Polymerase chain reaction/electrospray ionization-mass spectrometry (PCR/ESI-MS, previously known as “TIGER”) utilizes PCR with...based assays have been developed for bacterial plant pathogens (6,12,13,16,18, reviewed in 19). PCR-based diagnos- tics can be highly specific and are

  18. Modulation of Lactobacillus plantarum gastrointestinal robustness by fermentation conditions enables identification of bacterial robustness markers.

    Directory of Open Access Journals (Sweden)

    Hermien van Bokhorst-van de Veen

    Full Text Available BACKGROUND: Lactic acid bacteria (LAB are applied worldwide in the production of a variety of fermented food products. Additionally, specific Lactobacillus species are nowadays recognized for their health-promoting effects on the consumer. To optimally exert such beneficial effects, it is considered of great importance that these probiotic bacteria reach their target sites in the gut alive. METHODOLOGY/PRINCIPAL FINDINGS: In the accompanying manuscript by Bron et al. the probiotic model organism Lactobacillus plantarum WCFS1 was cultured under different fermentation conditions, which was complemented by the determination of the corresponding molecular responses by full-genome transcriptome analyses. Here, the gastrointestinal (GI survival of the cultures produced was assessed in an in vitro assay. Variations in fermentation conditions led to dramatic differences in GI-tract survival (up to 7-log and high robustness could be associated with low salt and low pH during the fermentations. Moreover, random forest correlation analyses allowed the identification of specific transcripts associated with robustness. Subsequently, the corresponding genes were targeted by genetic engineering, aiming to enhance robustness, which could be achieved for 3 of the genes that negatively correlated with robustness and where deletion derivatives displayed enhanced survival compared to the parental strain. Specifically, a role in GI-tract survival could be confirmed for the lp_1669-encoded AraC-family transcription regulator, involved in capsular polysaccharide remodeling, the penicillin-binding protein Pbp2A involved in peptidoglycan biosynthesis, and the Na(+/H(+ antiporter NapA3. Moreover, additional physiological analysis established a role for Pbp2A and NapA3 in bile salt and salt tolerance, respectively. CONCLUSION: Transcriptome trait matching enabled the identification of biomarkers for bacterial (gut-robustness, which is important for our molecular

  19. Identification of bacteriology and risk factor analysis of asymptomatic bacterial colonization in pacemaker replacement patients.

    Directory of Open Access Journals (Sweden)

    Xian-Ming Chu

    Full Text Available Recent researches revealed that asymptomatic bacterial colonization on PMs might be ubiquitous and increase the risk of clinical PM infection. Early diagnosis of patients with asymptomatic bacterial colonization could provide opportunity for targeted preventive measures.The present study explores the incidence of bacterial colonization of generator pockets in pacemaker replacement patients without signs of infection, and to analyze risk factors for asymptomatic bacterial colonization.From June 2011 to December 2013, 118 patients underwent pacemaker replacement or upgrade. Identification of bacteria was carried out by bacterial culture and 16S rRNA sequencing. Clinical risk characteristics were analyzed.The total bacterial positive rate was 37.3% (44 cases, and the coagulase-negative Staphylococcus aureus detection rate was the highest. Twenty two (18.6% patients had positive bacterial culture results, of which 50% had coagulase-negative staphylococcus. The bacterial DNA detection rate was 36.4 % (43 cases. Positive bacterial DNA results from pocket tissues and the surface of the devices were 22.0% and 29.7%, respectively. During follow-up (median, 27.0 months, three patients (6.8%, 3/44 became symptomatic with the same genus of microorganism, S. aureus (n=2 and S. epidermidis (n=1. Multivariable logistic regression analysis showed that history of bacterial infection, use of antibiotics, application of antiplatelet drugs, replacement frequency were independent risk factors for asymptomatic bacterial colonization.There was a high incidence of asymptomatic bacterial colonization in pacemaker patients with independent risk factors. Bacterial culture combined genetic testing could improve the detection rate.

  20. Isolation and Purification of Bacterial Strains from Treatment Plants for Effective and Efficient Bioconversion of Domestic Wastewater Sludge

    OpenAIRE

    K. C.A. Jalal; Md. Z.   Alam; Suleyman A.   Muyibi; P. Jamal

    2006-01-01

    Forty six bacterial strains were isolated from nine different sources in four treatment plants namely Indah Water Konsortium (IWK) sewage treatment plant, International Islamic University Malaysia (IIUM) treatment plant-1,-2 and 3 to evaluate the bioconversion process in terms of efficient biodegradation and bioseparation. The bacterial strains isolated were found to be 52.2% (24 isolates) and 47.8% (22 isolates) in the IWK and IIUM treatment plants respectively. The results showed that the h...

  1. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    Directory of Open Access Journals (Sweden)

    Wei Guan

    Full Text Available Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.

  2. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    Science.gov (United States)

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.

  3. MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates

    Directory of Open Access Journals (Sweden)

    Ashutosh Panda

    2014-01-01

    Full Text Available Background & objectives: Pathogenic bacteria often cause life threatening infections especially in immunocompromised individuals. Therefore, rapid and reliable species identification is essential for a successful treatment and disease management. We evaluated a rapid, proteomic based technique for identification of clinical bacterial isolates by protein profiling using matrix-assisted laser desorption-ionization time - of - flight mass spectrometry (MALDI-TOF MS. Methods: Freshly grown bacterial isolates were selected from culture plates. Ethanol/formic acid extraction procedure was carried out, followed by charging of MALDI target plate with the extract and overlaying with α-cyano-4 hydroxy-cinnamic acid matrix solution. Identification was performed using the MALDI BioTyper 1.1, software for microbial identification (Bruker Daltonik GmbH, Bremen, Germany. Results: A comparative analysis of 82 clinical bacterial isolates using MALDI -TOF MS and conventional techniques was carried out. Amongst the clinical isolates, the accuracy at the species level for clinical isolates was 98.78%. One out of 82 isolates was not in accordance with the conventional assays because MALDI-TOF MS established it as Streptococcus pneumoniae and conventional methods as Streptococcus viridans. Interpretation & conclusions: MALDI - TOF MS was found to be an accurate, rapid, cost-effective and robust system for identification of clinical bacterial isolates. This innovative approach holds promise for earlier therapeutic intervention leading to better patient care.

  4. Cockroaches as a Source of High Bacterial Pathogens with Multidrug Resistant Strains in Gondar Town, Ethiopia.

    Science.gov (United States)

    Moges, Feleke; Eshetie, Setegn; Endris, Mengistu; Huruy, Kahsay; Muluye, Dagnachew; Feleke, Tigist; G/Silassie, Fisha; Ayalew, Getenet; Nagappan, Raja

    2016-01-01

    Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia. Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20; P values cockroaches, respectively. Klebsiella pneumoniae 32 (17.7%), Escherichia coli 29 (16%), and Citrobacter spp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains; Salmonella spp. were the leading MDR isolates (100%) followed by Enterobacter (90.5%) and Shigella spp. (76.9%). Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections.

  5. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells.

    Science.gov (United States)

    Vida, Carmen; Cazorla, Francisco M; de Vicente, Antonio

    The improvement in soil quality of avocado crops through organic amendments with composted almond shells has a positive effect on crop yield and plant health, and enhances soil suppressiveness against the phytopathogenic fungus Rosellinia necatrix. In previous studies, induced soil suppressiveness against this pathogen was related to stimulation of Gammaproteobacteria, especially some members of Pseudomonas spp. with biocontrol-related activities. In this work, we isolated bacteria from this suppressiveness-induced amended soil using a selective medium for Pseudomonas-like microorganisms. We characterized the obtained bacterial collection to aid in identification, including metabolic profiles, antagonistic responses, hybridization to biosynthetic genes of antifungal compounds, production of lytic exoenzymatic activities and plant growth-promotion-related traits, and sequenced and compared amplified 16S rDNA genes from representative bacteria. The final selection of representative strains mainly belonged to the genus Pseudomonas, but also included the genera Serratia and Stenotrophomonas. Their biocontrol-related activities were assayed using the experimental avocado model, and results showed that all selected strains protected the avocado roots against R. necatrix. This work confirmed the biocontrol activity of these Gammaproteobacteria-related members against R. necatrix following specific stimulation in a suppressiveness-induced soil after a composted almond shell application. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Pigments Characterization and Molecular Identification of Bacterial Symbionts of Brown Algae Padinasp. Collected from Karimunjawa Island

    Directory of Open Access Journals (Sweden)

    Damar Bayu Murti

    2016-06-01

    Full Text Available The search for carotenoids in nature has been extensively studied because of their applications in foods. One treasure of the biopigment source is symbiotic-microorganisms with marine biota. The advantages of symbiont bacteria are easy to culture and sensitize pigments. The use of symbiont bacteria helps to conserve fish, coral reefs, seagrass, and seaweed. Therefore, the bacteria keeps their existence in their ecosystems. In this study, bacterial symbionts were successfully isolated from brown algae Padina sp. The bacterial symbionts had yellow pigment associated with carotenoids. The pigments were characterized using High Performance Liquid Chromatography (HPLC with a Photo Diode Array (PDA detector. The carotenoid pigments in the bacterial symbionts were identified as dinoxanthin, lutein and neoxanthin. Molecular identification by using a 16S rRNA gene sequence method, reveals that the bacterial symbionts were closely related to Bacillus marisflavi with a homology of 99%. Keywords :carotenoid pigments, brown algae, Padina, bacterial symbionts, 16S rRNA

  7. IDENTIFICATION OF BACTERIAL WILT AND LEAF BLIGHT DISEASE ON MAIZE (Zea mays FOUND IN KEDIRI, INDONESIA

    Directory of Open Access Journals (Sweden)

    Luqman Qurata Aini

    2013-02-01

    Full Text Available Recently, a new bacterial disease of maize (Zea mays was observed in Kediri, East Java, Indonesia. Infected plants showed wilt symptoms occasionally accompanied by leaf blight. This study aims to characterize the causal agent of bacterial wilt and leaf blight of maize observed in Kediri. Gram-negative, facultative anaerobic bacteria were isolated from the diseased tissues. All bacterial strains (KD1A, KB2A, KD1, KD4, KB1 gave positive result both in the hypersensitive response and pathogen-nicity assays. However, only KD1 and KB1 strains could be re-isolated from the diseased tissues. Based on several physiological and biochemical assays, the bacteria resembled Pantoea agglomerans. Moreover, the strains showed negative result on PCR amplification using HRP1d and HRP3r, a primer pair specific for detection of P. stewartii subsp. stewartii. Analysis of 16S rRNA gene sequence of KD1 and KB1 showed highest homology at 88% and 90%, respectively to P. agglomerans strain DSM 3493 (NR 0419781. The homology values were too low to conclude that the bacteria were similar to P. agglomerans. These results suggest that bacterial pathogens isolated from maize in Kediri were strains of Pantoea sp.

  8. Identification of bacterial taxa in archaeological waterlogged wood

    Directory of Open Access Journals (Sweden)

    Franco Palla

    2014-12-01

    Full Text Available The microscopic and molecular techniques described in this study are aimed at understanding the degradation processes of the anatomical structure of submerged archaeological wood, correlating it to the degradation induced by bacteria. The SEM micrographs showed alterations of the wooden structure due to bacterial colonization, as well as the presence of pyrite framboids. The difficulty of extracting bacterial DNA from wooden fragments belonging to submerged finds is well-known, due to the presence of many inhibitors; this study describes some extraction and in vitro amplification protocols for wooden submerged finds. The results of the molecular investigations, based on the analysis of specific sequences of microbial genomic DNA enabled us to detect the presence of cellulolytic and ligninolytic bacteria, in addition to iron-oxidizing or sulfatereducing bacteria, otherwise undetectable by traditional in vitro culture methods.

  9. Identification and characterization of a bacterial glutamic peptidase.

    Science.gov (United States)

    Jensen, Kenneth; Østergaard, Peter R; Wilting, Reinhard; Lassen, Søren F

    2010-12-01

    Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. We report the first characterization of a bacterial glutamic peptidase (pepG1), derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases. Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.

  10. Identification and characterization of a bacterial glutamic peptidase

    Directory of Open Access Journals (Sweden)

    Jensen Kenneth

    2010-12-01

    Full Text Available Abstract Background Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results We report the first characterization of a bacterial glutamic peptidase (pepG1, derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases. Conclusions Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.

  11. IDENTIFICATION AND ANALYSIS OF BACTERIAL GENOMIC METABOLIC SIGNATURES.

    Science.gov (United States)

    Bowerman, Nathaniel; Tintle, Nathan; Dejongh, Matthew; Best, Aaron A

    2017-01-01

    With continued rapid growth in the number and quality of fully sequenced and accurately annotated bacterial genomes, we have unprecedented opportunities to understand metabolic diversity. We selected 101 diverse and representative completely sequenced bacteria and implemented a manual curation effort to identify 846 unique metabolic variants present in these bacteria. The presence or absence of these variants act as a metabolic signature for each of the bacteria, which can then be used to understand similarities and differences between and across bacterial groups. We propose a novel and robust method of summarizing metabolic diversity using metabolic signatures and use this method to generate a metabolic tree, clustering metabolically similar organisms. Resulting analysis of the metabolic tree confirms strong associations with well-established biological results along with direct insight into particular metabolic variants which are most predictive of metabolic diversity. The positive results of this manual curation effort and novel method development suggest that future work is needed to further expand the set of bacteria to which this approach is applied and use the resulting tree to test broad questions about metabolic diversity and complexity across the bacterial tree of life.

  12. [Effects of co-substrates on biodegradation of pyrene by ten bacterial strains].

    Science.gov (United States)

    Su, Dan; Li, Pei-Jun; Wang, Xin

    2007-03-01

    A total of 10 bacterial strains represented as from SB01 to SB10 were isolated from a petrolium-contaminated sludge, and their potential of degrading pyrene (PYR) was investigated on the substrates pyrene (MS1) , pyrene plus glucose (MS2), and pyrene plus phenanthrene (MS3). The results showed that on MS1, the degradation rate of PYR by SB01 was the highest, with 30.4% of PYR degraded after 5 days. On MS2, the degradation rate of PYR by SB09 was the highest, being 37.7% after 5 days, while on MS3, 50.2% of PYR was removed by SB01. The degradation of PYR by SB01 and SB03 was inhibited by glucose, which was more obvious for SB01, but no significant difference was observed among SB02, SB07, SB08 and SB10. The biodegradation rate of PYR by all the ten bacterial strains was enhanced on MS3, and that by SB10 was increased by 29.8%. For SB04 and SB09, the biodegradation rate of PYR had no significant difference between MS1 and MS2, but for other strains, the stimulation effect of phenanthrene on PYR degradation was higher than that of glucose.

  13. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  14. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rehse, Steven J.; Jeyasingham, Narmatha; Diedrich, Jonathan; Palchaudhuri, Sunil

    2009-05-01

    Nanosecond single-pulse laser-induced breakdown spectroscopy (LIBS) has been used to discriminate between two different genera of Gram-negative bacteria and between several strains of the Escherichia coli bacterium based on the relative concentration of trace inorganic elements in the bacteria. Of particular importance in all such studies to date has been the role of divalent cations, specifically Ca2+ and Mg2+, which are present in the membranes of Gram-negative bacteria and act to aggregate the highly polar lipopolysaccharide molecules. We have demonstrated that the source of emission from Ca and Mg atoms observed in LIBS plasmas from bacteria is at least partially located at the outer membrane by intentionally altering membrane biochemistry and correlating these changes with the observed changes in the LIBS spectra. The definitive assignment of some fraction of the LIBS emission to the outer membrane composition establishes a potential serological, or surface-antigen, basis for the laser-based identification. E. coli and Pseudomonas aeruginosa were cultured in three nutrient media: trypticase soy agar as a control, a MacConkey agar with a 0.01% concentration of bile salts including sodium deoxycholate, and a trypticase soy agar with a 0.4% deoxycholate concentration. The higher concentration of deoxycholate is known to disrupt bacterial outer membrane integrity and was expected to induce changes in the observed LIBS spectra. Altered LIBS emission was observed for bacteria cultured in this 0.4% medium and laser ablated in an all-argon environment. These spectra evidenced a reduced calcium emission and in the case of one species, a reduced magnesium emission. Culturing on the lower (0.01%) concentration of bile salts altered the LIBS spectra for both the P. aeruginosa and two strains of E. coli in a highly reproducible way, although not nearly as significantly as culturing in the higher concentration of deoxycholate did. This was possibly due to the accumulation

  15. Automated species and strain identification of bacteria in complex matrices using FTIR spectroscopy

    Science.gov (United States)

    Puzey, K. A.; Gardner, P. J.; Petrova, V. K.; Donnelly, C. W.; Petrucci, G. A.

    2008-04-01

    Fourier Transform Infrared (FTIR) spectroscopy provides a highly selective and reproducible means for the chemically-based discrimination of intact microbial cells which make the method valuable for large-scale screening of foods. The goals of the present study were to assess the effect of chemical interferents, such as food matrices, different sanitizing compounds and growth media, on the ability of the method to accurately identify and classify L. innocua, L. welshimeri, E. coli, S. cholerasuis, S. subterranea, E. sakazakii, and E. aerogenes. Moreover, the potential of FTIR spectroscopy for discrimination of L. innocua and L. welshimeri of different genotypes and the effect of growth phase on identification accuracy of L. innocua and L. welshimeri were tested. FTIR spectra were collected using two different sample presentation techniques - transmission and attenuated total reflection (ATR), and then analyzed using multivariate discriminant analysis based on the first derivative of the FTIR spectra with the unknown spectra assigned to the species group with the shortest Mahalanobis distance. The results of the study demonstrated 100% correct identification and differentiation of all bacterial strains used in this study in the presence of chemical interferents or food matrices, better than 99% identification rate in presence of media matrices, and 100% correct detection for specific bacteria in mixed flora species. Additionally, FTIR spectroscopy proved to be 100% accurate when differentiating between genotypes of L. innocua and L. welshimeri, with the classification accuracy unaffected by the growth stage. These results suggest that FTIR spectroscopy can be used as a valuable tool for identifying pathogenic bacteria in food and environmental samples.

  16. Molecular Methods Used for the Identification of Potentially Probiotic Lactobacillus reuteri Strains

    Directory of Open Access Journals (Sweden)

    Agnes Weiss

    2005-01-01

    Full Text Available Forty potentially probiotic Lactobacillus strains as well as reference strains of different genera were grown under standardised conditions. Cell masses were harvested and DNA was isolated. For identification, all strains were subjected to genus-specific polymerase chain reaction (PCR, and the affiliation with the genus Lactobacillus was confirmed for all isolates. Using two species-specific primer-pairs for Lactobacillus reuteri, specific amplicons were observed for eight of the forty investigated strains. For differentiation, these eight strains as well as the reference strains of the species L. reuteri and closely related species were subjected to randomly amplified polymorphic DNA (RAPD-PCR using fourteen arbitrary primers. Two selected strains as well as probiotic and common reference strains were further investigated applying pulsed field gel electrophoresis (PFGE. With the latter two methods, individual profiles were found for most strains, but no difference between probiotic and common strains could be made out.

  17. Recovery and identification of bacterial DNA from illicit drugs.

    Science.gov (United States)

    Cho, Kaymann T; Richardson, Michelle M; Kirkbride, K Paul; McNevin, Dennis; Nelson, Michelle; Pianca, Dennis; Roffey, Paul; Gahan, Michelle E

    2014-02-01

    Bacterial infections, including Bacillus anthracis (anthrax), are a common risk associated with illicit drug use, particularly among injecting drug users. There is, therefore, an urgent need to survey illicit drugs used for injection for the presence of bacteria and provide valuable information to health and forensic authorities. The objectives of this study were to develop a method for the extraction of bacterial DNA from illicit drugs and conduct a metagenomic survey of heroin and methamphetamine seized in the Australian Capital Territory during 2002-2011 for the presence of pathogens. Trends or patterns in drug contamination and their health implications for injecting drug users were also investigated. Methods based on the ChargeSwitch(®)gDNA mini kit (Invitrogen), QIAamp DNA extraction mini kit (QIAGEN) with and without bead-beating, and an organic phenol/chloroform extraction with ethanol precipitation were assessed for the recovery efficiency of both free and cellular bacterial DNA. Bacteria were identified using polymerase chain reaction and electrospray ionization-mass spectrometry (PCR/ESI-MS). An isopropanol pre-wash to remove traces of the drug and diluents, followed by a modified ChargeSwitch(®) method, was found to efficiently lyse cells and extract free and cellular DNA from Gram-positive and Gram-negative bacteria in heroin and methamphetamine which could then be identified by PCR/ESI-MS. Analysis of 12 heroin samples revealed the presence of DNA from species of Comamonas, Weissella, Bacillus, Streptococcus and Arthrobacter. No organisms were detected in the nine methamphetamine samples analysed. This study develops a method to extract and identify Gram-positive and Gram-negative bacteria from illicit drugs and demonstrates the presence of a range of bacterial pathogens in seized drug samples. These results will prove valuable for future work investigating trends or patterns in drug contamination and their health implications for injecting drug

  18. Identification of Bacterial Small RNAs by RNA Sequencing

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Molin, Søren

    2014-01-01

    Small regulatory RNAs (sRNAs) in bacteria are known to modulate gene expression and control a variety of processes including metabolic reactions, stress responses, and pathogenesis in response to environmental signals. A method to identify bacterial sRNAs on a genome-wide scale based on RNA...... sequencing (RNA-seq) is described that involves the preparation and analysis of three different sequencing libraries. As a signifi cant number of unique sRNAs are identifi ed in each library, the libraries can be used either alone or in combination to increase the number of sRNAs identifi ed. The approach...

  19. Identification of pH tolerant Bradyrhizobium japonicum strains and ...

    African Journals Online (AJOL)

    Eight strains of Bradyrhizobium japonicum were isolated from the root nodules of soybean cultivar PK 472 collected from Adaptive Trial Centre, Bundi, India. All the isolates were authenticated through plant assay test in germination pouches. Growth of the isolated strains on different pH levels was observed and three strains ...

  20. Impact of in Situ Isolated Bacterial Strains on Nitrogen Fixation in Alfalfa

    Directory of Open Access Journals (Sweden)

    Carmen Dragomir

    2013-05-01

    Full Text Available Symbiosis relationships among legumes and nitrogen fixing bacteria play a crucial role in agriculture since they provide the opportunity of converting atmospheric molecular nitrogen into an ammonia form of nitrogen that the plants can use in protein formation. To enhance this process we have selected nitrogen fixing bacterial strains commercialised under different forms depending on the cultivation technologies in legume species. In our research, we have pointed out the efficacy of in situ isolated nitrogen fixing bacteria in alfalfa in two ways: rhizobia taken directly from the nodosities on the alfalfa roots and rhizobia taken from the alfalfa root system.

  1. Seaweed as source of energy. 1: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasa R.P.; Tarwade, S.J.; Sarma, K.S.R.

    1980-09-01

    Only certain marine bacteria capable of digesting the special type of polysaccharide - agar and alginic acid can bring about the biodegradation of these substances and utilise them as carbon source to produce the organics which will be utilised by the methane bacteria to produce methane. When bacterial strain was used in conjunction with cowdung as a source of methane bacteria in seaweed digester, production of biogas from seaweed was accelerated. Adding of small amount of Ulva to seaweed digester increased the output of gas. (Refs. 4).

  2. Biodegradation of malathion, α- and β-endosulfan by bacterial strains isolated from agricultural soil in Veracruz, Mexico.

    Science.gov (United States)

    Jimenez-Torres, Catya; Ortiz, Irmene; San-Martin, Pablo; Hernandez-Herrera, R Idalia

    2016-12-01

    The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO 2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.

  3. Ribosome signatures aid bacterial translation initiation site identification.

    Science.gov (United States)

    Giess, Adam; Jonckheere, Veronique; Ndah, Elvis; Chyżyńska, Katarzyna; Van Damme, Petra; Valen, Eivind

    2017-08-30

    While methods for annotation of genes are increasingly reliable, the exact identification of translation initiation sites remains a challenging problem. Since the N-termini of proteins often contain regulatory and targeting information, developing a robust method for start site identification is crucial. Ribosome profiling reads show distinct patterns of read length distributions around translation initiation sites. These patterns are typically lost in standard ribosome profiling analysis pipelines, when reads from footprints are adjusted to determine the specific codon being translated. Utilising these signatures in combination with nucleotide sequence information, we build a model capable of predicting translation initiation sites and demonstrate its high accuracy using N-terminal proteomics. Applying this to prokaryotic translatomes, we re-annotate translation initiation sites and provide evidence of N-terminal truncations and extensions of previously annotated coding sequences. These re-annotations are supported by the presence of structural and sequence-based features next to N-terminal peptide evidence. Finally, our model identifies 61 novel genes previously undiscovered in the Salmonella enterica genome. Signatures within ribosome profiling read length distributions can be used in combination with nucleotide sequence information to provide accurate genome-wide identification of translation initiation sites.

  4. Genome-wide identification of bacterial plant colonization genes

    Science.gov (United States)

    Waters, Robert J.; Wetmore, Kelly M.; Mucyn, Tatiana S.; Ryan, Elizabeth M.; Wang, Gaoyan; Ul-Hasan, Sabah; McDonald, Meredith; Yoshikuni, Yasuo; Malmstrom, Rex R.; Deutschbauer, Adam M.; Dangl, Jeffery L.; Visel, Axel

    2017-01-01

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44 other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes. PMID:28938018

  5. Identification of a novel bacterial sequence associated with Crohn's disease.

    Science.gov (United States)

    Sutton, C L; Kim, J; Yamane, A; Dalwadi, H; Wei, B; Landers, C; Targan, S R; Braun, J

    2000-07-01

    Enteric microorganisms are implicated in the pathogenesis of Crohn's disease (CD), but no clear bacterial or viral species has been identified. In this study, representational difference analysis (RDA) was used to isolate DNA segments preferentially abundant in lamina propria mononuclear cells of lesional mucosa vs. adjacent uninvolved mucosa. Two RDA-derived microbial sequences were isolated (I1 and I2) and identified as novel homologues of the ptxR and tetR bacterial transcription-factor families. Quantitative competitive polymerase chain reaction of paraffin-embedded intestinal specimens from 212 patients showed that I2 DNA was present in many CD colonic lesions (43%), but was infrequent in other colonic specimens (9% of ulcerative colitis lesions and 5% of non-inflammatory bowel disease diseases; Pfusion protein showed frequent immunoglobulin A seroreactivity in CD (54% of patients), but infrequent seroreactivity in patients with ulcerative colitis, other inflammatory enteric diseases, or normals (10%, 19%, and 4%, respectively; Pmicroorganism expressing the I2 gene product may be related to CD pathogenesis.

  6. Strain ŽP - the first bacterial conjugation-based "kill"-"anti-kill" antimicrobial system.

    Science.gov (United States)

    Starčič Erjavec, Marjanca; Petkovšek, Živa; Kuznetsova, Marina V; Maslennikova, Irina L; Žgur-Bertok, Darja

    2015-11-01

    As multidrug resistant bacteria pose one of the greatest risks to human health new alternative antibacterial agents are urgently needed. One possible mechanism that can be used as an alternative to traditional antibiotic therapy is transfer of killing agents via conjugation. Our work was aimed at providing a proof of principle that conjugation-based antimicrobial systems are possible. We constructed a bacterial conjugation-based "kill"-"anti-kill" antimicrobial system employing the well known Escherichia coli probiotic strain Nissle 1917 genetically modified to harbor a conjugative plasmid carrying the "kill" gene (colicin ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). The constructed strain acts as a donor in conjugal transfer and its efficiency was tested in several types of conjugal assays. Our results clearly demonstrate that conjugation-based antimicrobial systems can be highly efficient. Copyright © 2015. Published by Elsevier Inc.

  7. Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers.

    Science.gov (United States)

    Steen Redeker, Erik; Eersels, Kasper; Akkermans, Onno; Royakkers, Jeroen; Dyson, Simba; Nurekeyeva, Kunya; Ferrando, Beniamino; Cornelis, Peter; Peeters, Marloes; Wagner, Patrick; Diliën, Hanne; van Grinsven, Bart; Cleij, Thomas Jan

    2017-05-12

    This paper introduces a novel bacterial identification assay based on thermal wave analysis through surface-imprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose-response curve was constructed to determine a limit of detection of 1 × 10 4 CFU mL -1 , indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 10 4 CFU mL -1 in spiked urine samples.

  8. Isolation, Characterization and Identification of Environmental Bacterial Isolates with Screening for Antagonism Against Three Bacterial Targets

    Science.gov (United States)

    2017-04-01

    making the broad-spectrum antimicrobial ineffective. When this occurs, the current strategy is to replace an ineffective antimicrobial agent with...Shlae. “Fix the Antibiotic Pipeline ”. Nature 472:32. (2011) Cotter, P.A., C. Hin, and R.P. Ross. “Bacteriocin Developing Innate Immunity for Food...and resistance. Clin. Microbiol. Rev. 12:147—179. (1999) Silver, S. “Bacterial silver resistance: molecular biology and uses and misuses of silver

  9. Reagent-free bacterial identification using multivariate analysis of transmission spectra

    Science.gov (United States)

    Smith, Jennifer M.; Huffman, Debra E.; Acosta, Dayanis; Serebrennikova, Yulia; García-Rubio, Luis; Leparc, German F.

    2012-10-01

    The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identification today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost, and the need for specialized reagents. We present an innovative, reagent-free method for the identification of pathogens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach. Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set of these target organisms were used to create identification models representing the spectral variability of each species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful and exciting technique for identification of pathogens. The menu of models is being expanded to include other bacterial genera and species of clinical significance.

  10. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes

    International Nuclear Information System (INIS)

    Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguez, M.S.

    2006-01-01

    In this laboratory-scale study, we examined the potential of chitin and chitosan flakes obtained from shrimp wastes as carrier material for a hydrocarbon-degrading bacterial strain. Flakes decontamination, immobilization conditions and the survival of the immobilized bacterial strain under different storage temperatures were evaluated. The potential of immobilized hydrocarbon-degrading bacterial strain for crude oil polluted seawater bioremediation was tested in seawater microcosms. In terms of removal percentage of crude oil after 15 days, the microcosms treated with the immobilized inoculants proved to be the most successful. The inoculants formulated with chitin and chitosan as carrier materials improved the survival and the activity of the immobilized strain. It is important to emphasize that the inoculants formulated with chitin showed the best performance during storage and seawater bioremediation. (author)

  11. [Rapid identification of meningitis due to bacterial pathogens].

    Science.gov (United States)

    Ubukata, Kimiko

    2013-01-01

    We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.

  12. Isolation and molecular identification of yeast strains from “Rabilé” a ...

    African Journals Online (AJOL)

    Isolation and molecular identification of yeast strains from “Rabilé” a starter of local fermented drink. Ibrahim Keita, Marius K Somda, Aly Savadogo, Iliassou Mogmenga, Ousmane Koita, Alfred S Traore ...

  13. Pi30 DNA probe may be useful for the identification of Prevotella intermedia at the species or strain level.

    Science.gov (United States)

    Shin, Yong Kook; Jeong, Seung-U; Yoo, So Young; Kim, Mi-Kwang; Kim, Hwa-Sook; Kim, Byung-Ock; Kim, Do Kyung; Hwang, Ho-Keel; Kook, Joong-Ki

    2004-01-01

    Recently, we introduced a new method for the rapid screening of bacterial species-or subspecies-specific DNA probes, named the "inverted dot blot hybridization screening method." This method has subsequently been then applied to develop species-or strain-specific DNA probes for Prevotella intermedia and Prevotella nigrescens. In a previous study, the inverted dot blot hybridization data showed that a probe, Pi30, was specific for P. intermedia. In this study, the DNA probe Pi30 was evaluated by Southern blot analysis to determine if it could distinguish P. intermedia from P. nigrescens. The data showed that the probe Pi30 reacted with the genomic DNAs from the reference strains and clinical isolates of both P. intermedia and P. nigrescens, but the size of the signal bands was different. In addition, the probe Pi30 reacted with a 1.4 kbp fragment from the genomic DNAs digested with Pst I of the P. intermedia strains but not with any fragments of P. nigrescens strains. The result indicates that the probe Pi30 could be useful for the identification of P. intermedia by restriction fragment length polymorphism (RFLP) at the species or strain level.

  14. Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry.

    Science.gov (United States)

    Prasad, Satendra; Schmidt, Hartwig; Lampen, Peter; Wang, Mei; Güth, Robert; Rao, Jaya V; Smith, Geoffrey B; Eiceman, Gary A

    2006-11-01

    Eight vegetative bacterial strains and two spores were characterized by pyrolysis-gas chromatography with differential mobility spectrometry (py-GC/DMS) yielding topographic plots of ion intensity, retention time, and compensation voltage simultaneously for ions in positive and negative polarity. Biomarkers were found in the pyrolysate at characteristic retention times and compensation voltages and were confirmed by standard addition with GC/MS analyses providing discrimination between Gram negative and Gram positive bacterial types, but no recognition of individual strains within the Gram negative bacteria. Principal component analysis was applied using two dimensional data sets of ion intensity versus retention time at five compensation voltages including the reactant ion peaks all in positive and negative ion polarity. Clustering was observed with compensation voltage (CV) chromatograms associated with ion separation in the DMS detector and little or no clustering was observed with the reactant ion peaks or CV chromatograms where ion separation is poor. Consistent clustering of Gram positive B. odysseyi and Gram negative E. coli in both positive and negative polarities with the reactant ion peak chromatograms and key CV chromatograms suggests common but unknown common chemical compositions in the pyrolysate.

  15. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    Science.gov (United States)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  16. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  17. Isolation and identification of a novel radio-resistant strain

    International Nuclear Information System (INIS)

    Zhang Zhidong; Mao Jun; Wang Wei; Tang Qiyong; Shi Yuhu

    2008-01-01

    A novel radio-resistant strain named RL2 was studied polyphasically, which was isolated from the soils in the Gurban-Tunggut Desert, Xinjiang. The strain is Gam-positive, sphere-shaped and pink pigmented; The DNA (G+C) contents of RL2 is 71.62mo1%; The 16S rDNA genes of RL2 and D. radiodurans type strain DSM20539 shows a high level of similarity (97.2%). According to phenotypic characteristics and phylogenetic analysis, it can be suggested that the strain RL2 has been identified as Deinococcus. sp and it may be a novel species. (authors)

  18. Exploration, Isolation, and Identification of Carotenoid from Bacterial Symbiont of Sponge Callyspongia vaginalis

    Directory of Open Access Journals (Sweden)

    Iqna Kamila Abfa

    2017-06-01

    Full Text Available During the past two decades research on marine bacteria has highlighted the tremendous potential of symbiotic-microorganisms as a source of bioactive secondary. One of the potential of the bacterial symbionts is producing a natural pigment, and these organisms can be used as a sustainable source of natural pigments. Carotenoid is one of the most important pigments that has important roles in physiological and molecular processes of microorganisms, as well as for human health. The objective of this study is to analyze carotenoid pigments from marine bacterial symbionts from sponge and to identify bacterial symbionts that produce carotenoid pigments. Pigment analysis was performed by a UV-VIS spectrophotometer and High Performance Liquid Chromatography (HPLC. Molecular bacterial identification was performed based on 16S rDNA sequence. The isolation of bacterial symbionts from C. vaginalison Zobell 2216E medium resulted in one bacterium, CB-SP5, positively synthesized carotenoids. By reverse phase HPLC analysis, the carotenoid pigments in the bacterial symbionts were identified as diadinoxanthin, fucoxanthin, neoxanthin, dinoxanthin, anddiadinochrome. CB-SP5 shared the highest level of 16S rDNA gene sequence similarity with Psychrobacter celer (99%.   Keywords : carotenoid, sponge, bacterial symbiont, 16S rDNA.

  19. Screening of strains of soil micromycetes – antagonists of fungal and bacterial plant pathogens

    Directory of Open Access Journals (Sweden)

    O. A. Drehval

    2017-05-01

    Full Text Available The antagonistic activity of 23 strains of micromycetes belonging to different taxonomic groups, against phythopathogenic bacteria and fungi was studied. The antagonistic activity of the micromycetes was tested by agar diffusion (the method of blocks. For the determination of the influence of the micromycetes on plants, spring barley seeds were treated by cultural liquid of fungi (dilution 1 : 10 for 24 hours and germinated in Petri dishes on moist filter paper. Two strains Trichoderma longibrachiatum 17 and T. lignorum 14 showed the highest antagonistic activity against the phytopathogenic bacteria and fungi. T. longibrachiatum 17 actively suppressed the growth of fungi Fusarium oxysporum 54201, F. culmorum 50716, F. oxysporum 12, F. moniliforme 23, Cladosporium herbarum 16878, Alternaria alternata 16, Aspergillus niger 25 and bacteria Agrobacterium tumefaciens 8628, Xanthomonas campestris 8003b, Pectobacterium carotovorum 8982, Pseudomonas syringae pv. atrofaciens 8254, P. syringae pv. lachrymans 7595, zones inhibition of growth were 20.7–38.3 and 14.7–24.7 mm, respectively. The strain of T. lignorum 14 inhibited the growth of fungi F. culmorum 50716, C. herbarum 16878, F. moniliforme 23, A. alternata 16, A. niger 25 and bacteria A. tumefaciens 8628, P. carotovorum 8982, P. syringae pv. atrofaciens 8254, P. syringae pv. lachrymans 7595, zones of inhibition of growth were 14.0–38.7 and 12.3–23.3 mm, respectively. Treatment of spring barley seeds by T. longibrachiatum 17 cultural liquid showed a positive effect on seed germination, both strains T. longibrachiatum 17 and T. lignorum 14 increased the dry weight of the roots (by 17.5% and 22.0%, respectively and the stems (by 8.0% of spring barley plants compared with the water-treated controls. The results presented in this article indicate that the strains T. longibrachiatum 17 and T. lignorum 14 can be recommended as promising microbial agents to protect plants from fungal and

  20. Molecular Methods Used for the Identification of Potentially Probiotic Lactobacillus reuteri Strains

    OpenAIRE

    Weiss, Agnes; Lettner, Hans Peter; Kramer, Walter; Mayer, Helmut Karl; Kneifel, Wolfgang

    2005-01-01

    Forty potentially probiotic Lactobacillus strains as well as reference strains of different genera were grown under standardised conditions. Cell masses were harvested and DNA was isolated. For identification, all strains were subjected to genus-specific polymerase chain reaction (PCR), and the affiliation with the genus Lactobacillus was confirmed for all isolates. Using two species-specific primer-pairs for Lactobacillus reuteri, specific amplicons were observed for eight of the forty inves...

  1. Evaluation of indigenous bacterial strains for biocontrol of the frogeye leaf spot of soya bean caused by Cercospora sojina.

    Science.gov (United States)

    Simonetti, E; Carmona, M A; Scandiani, M M; García, A F; Luque, A G; Correa, O S; Balestrasse, K B

    2012-08-01

    Assessment of biological control of Cercospora sojina, causal agent of frogeye leaf spot (FLS) of soya bean, using three indigenous bacterial strains, BNM297 (Pseudomonas fluorescens), BNM340 and BNM122 (Bacillus amyloliquefaciens). From cultures of each bacterial strain, cell suspensions and cell-free supernatants were obtained and assayed to determine their antifungal activity against C. sojina. Both mycelial growth and spore germination in vitro were more strongly inhibited by bacterial cell suspensions than by cell-free supernatants. The Bacillus strains BNM122 and BNM340 inhibited the fungal growth to a similar degree (I ≈ 52-53%), while cells from P. fluorescens BNM297 caused a lesser reduction (I ≈ 32-34%) in the fungus colony diameter. The foliar application of the two Bacillus strains on soya bean seedlings, under greenhouse conditions, significantly reduced the disease severity with respect to control soya bean seedlings and those sprayed with BNM297. This last bacterial strain was not effective in controlling FLS in vivo. Our data demonstrate that the application of antagonistic bacteria may be a promising and environmentally friendly alternative to control the FLS of soya bean.   To our knowledge, this is the first report of biological control of C. sojina by using native Bacillus strains. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Epidemiological analysis of bacterial strains involved in hospital infection in a University Hospital from Brazil

    Directory of Open Access Journals (Sweden)

    MORAES Bianca Aguiar de

    2000-01-01

    Full Text Available Hospital infections cause an increase in morbidity and mortality of hospitalized patients with significant rise in hospital costs. The aim of this work was an epidemiological analysis of hospital infection cases occurred in a public University Hospital in Rio de Janeiro. Hence, 238 strains were isolated from 14 different clinical materials of 166 patients hospitalized in the period between August 1995 and July 1997. The average age of the patients was 33.4 years, 72.9% used antimicrobials before having a positive culture. The most common risk conditions were surgery (19.3%, positive HIV or AIDS (18.1% and lung disease (16.9%. 24 different bacterial species were identified, S. aureus (21% and P. aeruginosa (18.5% were predominant. Among 50 S. aureus isolated strains 36% were classified as MRSA (Methicillin Resistant S. aureus. The Gram negative bacteria presented high resistance to aminoglycosides and cephalosporins. A diarrhea outbreak, detected in high-risk neonatology ward, was caused by Salmonella serovar Infantis strain, with high antimicrobial resistance and a plasmid of high molecular weight (98Mda containing virulence genes and positive for R factor.

  3. Characterization of Klebsiella sp. strain S1: a bacterial producer of secoisolariciresinol through biotransformation.

    Science.gov (United States)

    Zhou, Yu-Jie; Zhu, Songling; Yang, Dong-Hui; Zhao, Dan-Dan; Li, Jia-Jing; Liu, Shu-Lin

    2017-01-01

    Secoisolariciresinol (SECO) is a lignan of potential therapeutic value for diseases such as cancer, but its use has been limited by the lack of ideal production methods, even though its precursors are abundant in plants, such as flaxseeds. Here, we report the characterization of a bacterial strain, S1, isolated from the human intestinal flora, which could produce secoisolariciresinol by biotransformation of precursors in defatted flaxseeds. This bacterium was a Gram-negative and facultatively anaerobic straight rod without capsules. Biochemical assays showed that it was negative for production of oxidase, lysine decarboxylase, ornithine decarboxylase, arginine dihydrolase, and β-glucolase. The G + C content of genomic DNA was 57.37 mol%. Phylogenetic analysis by 16S rRNA and rpoB gene sequences demonstrated S1's close relatedness to Klebsiella. No homologues were found for wzb or wzc (capsular genes), which may explain why Klebsiella sp. strain S1 does not have the capsule and was isolated from a healthy human individual. Based on the percentages of homologous genes with identical nucleotide sequences between the bacteria in comparison, we found that clear-cut genetic boundaries had been formed between S1 and any other Klebsiella strains compared, dividing them into distinct phylogenetic lineages. This work demonstrates that the intestinal Klebsiella, well known as important opportunistic pathogens prevalent in potentially fatal nosocomial infections, may contain lineages that are particularly beneficial to the human health.

  4. Pathogenicity of a Very Virulent Strain of Marek's Disease Herpesvirus Cloned as Infectious Bacterial Artificial Chromosomes

    Directory of Open Access Journals (Sweden)

    Lorraine P. Smith

    2011-01-01

    Full Text Available Bacterial artificial chromosome (BAC vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130 of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.

  5. Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing.

    Science.gov (United States)

    Delétoile, Alexis; Decré, Dominique; Courant, Stéphanie; Passet, Virginie; Audo, Jennifer; Grimont, Patrick; Arlet, Guillaume; Brisse, Sylvain

    2009-02-01

    Pantoea agglomerans and other Pantoea species cause infections in humans and are also pathogenic to plants, but the diversity of Pantoea strains and their possible association with hosts and disease remain poorly known, and identification of Pantoea species is difficult. We characterized 36 Pantoea strains, including 28 strains of diverse origins initially identified as P. agglomerans, by multilocus gene sequencing based on six protein-coding genes, by biochemical tests, and by antimicrobial susceptibility testing. Phylogenetic analysis and comparison with other species of Enterobacteriaceae revealed that the genus Pantoea is highly diverse. Most strains initially identified as P. agglomerans by use of API 20E strips belonged to a compact sequence cluster together with the type strain, but other strains belonged to diverse phylogenetic branches corresponding to other species of Pantoea or Enterobacteriaceae and to probable novel species. Biochemical characteristics such as fosfomycin resistance and utilization of d-tartrate could differentiate P. agglomerans from other Pantoea species. All 20 strains of P. agglomerans could be distinguished by multilocus sequence typing, revealing the very high discrimination power of this method for strain typing and population structure in this species, which is subdivided into two phylogenetic groups. PCR detection of the repA gene, associated with pathogenicity in plants, was positive in all clinical strains of P. agglomerans, suggesting that clinical and plant-associated strains do not form distinct populations. We provide a multilocus gene sequencing method that is a powerful tool for Pantoea species delineation and identification and for strain tracking.

  6. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing.

    Science.gov (United States)

    Ivask, Angela; Rõlova, Taisia; Kahru, Anne

    2009-05-08

    Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (microg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights-off" construct (control) for every

  7. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    Directory of Open Access Journals (Sweden)

    Kahru Anne

    2009-05-01

    Full Text Available Abstract Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis and Gram-negative (Escherichia coli, Pseudomonas fluorescens bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains or in a constitutive manner ("lights-off" constructs, 6 strains. Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1: 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO32, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i metal sensor strains with similar metal-response elements in different host bacteria; ii metal sensor strains with metal-response elements in different copies and iii

  8. Seaweed as source of energy. I: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.S.; Tarwade, S.J.; Sarma, K.S.R.

    1980-01-01

    Biogas was produced from seaweed by making use of alginate-digesting marine bacteria that were isolated from decomposing seaweed and can digest seaweed carbohydrates (agar and alginic acid). Laboratory digesters containing 100 g seaweed were inoculated with 50 mL broth cultures of different seaweed-derived bacterial strains, and the maximum amount of degradation obtained was 28% (compared with 13% for a bacteria-free digestion). Cow dung was added as a source of methanogenic bacteria, and the amount of biogas produced was more than double the amount obtained when seaweed and cow dung were digested in the absence of the seaweed-derived bacteria. Adding a small amount of Ulva to the seaweed digester increased the production of biogas.

  9. Identification of Genes Induced in Lolium multiflorum by Bacterial Wilt Infection

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franco

    2010-01-01

    expressed upon infection will serve as the basis for the identification of key genes involved in bacterial wilt resistance and to develop molecular markers for marker assisted breeding. Fluorescently labelled cDNA prepared from plant leaves collected at four different time points after infection......Xanthomonas translucens pv. graminis(Xtg) causes bacterial wilt in many forage grasses including Italian ryegrass (Lolium multiflorum Lam), seriously reducing yield and quality. Breeding for resistance is currently the only practicable means of disease control. Molecular markers closely linked...... to resistance genes or QTL could complement and support phenotypic selection. We used comparative gene expression analysis of a partially resistant L. multiflorum genotype infected and not infected with Xtg to identify genes involved in the control of resistance to bacterial wilt. The genes differentially...

  10. Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73

    DEFF Research Database (Denmark)

    Pedersen, Annette; Nybroe, Ole; Winding, Anne

    2009-01-01

    50090 or one of two biocontrol strains P. fluorescens CHA0 or Pseudomonas sp. DSS73) or combinations of two bacterial strains. DSM50090 is a suitable food bacterium, DSS73 is of intermediate food quality, and CHA0 is inedible to the bacterial feeders. Bacterial and protozoan cell numbers were measured......How bacterial feeding fauna affects colonization and survival of bacteria in soil is not well understood, which constrains the applicability of bacterial inoculants in agriculture. This study aimed to unravel how food quality of bacteria and bacterial feeders with different feeding habits (the...

  11. Biodegradation of alpha and beta endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9.

    Science.gov (United States)

    Goswami, Supriya; Singh, Dileep K

    2009-04-01

    Bacterial strains were isolated from endosulfan treated soil to study the microbial degradation of this pesticide in broth medium and soil microcosm. The isolates were grown in minimal medium and screened for endosulfan degradation. The strain, which utilized endosulfan and showed maximum growth, was selected for detail studies. Maximum degrading capability in shake flask culture was shown by Bordetella sp. B9 which degraded 80% of alpha endosulfan and 86% of beta endosulfan in 18 days. Soil microcosm study was also carried out using this strain in six different treatments. Endosulfan ether and endosulfan lactone were the main metabolites in broth culture, while in soil microcosm endosulfan sulfate was also found along with endosulfan ether and endosulfan lactone. This bacterial strain has a potential to be used for bioremediation of the contaminated sites.

  12. Isolation and molecular identification chitinase-producing Streptomyces strains and examination of their in-vitro antagonistic effects

    Directory of Open Access Journals (Sweden)

    Alireza Dehnad

    2015-12-01

    Full Text Available Introduction: The chemical fungicides are used widely in the world. To reduce the application of synthetic fungicides in treating plant diseases, biological methods are considered as an alternative way to control plant diseases. Many actinomycetes, particularly Streptomyces species are biological agents against a broad spectrum of fungal plant pathogens. The purpose of this study was using the kitinolitik actinomycetes isolated from soil of Eastern Azerbaijan province In order to produce biological pesticides. Materials and methods: Soil samples were taken from different areas of Eastern Azerbaijan province. According to Streptomyces morphological features, single colonies were isolated. To identify the bacteria by molecular characteristic, the genomic DNA was extracted and then the sequences of 16S rDNA were replicated. By using specific primers the bacterial isolates containing chitinase gene were screened. The isolates consisted Chitinase enzyme and were antagonistically cultured with Alternaria genus which is a fungal plant pathogen. Results: Out of 60 soil collected samples, 31 Streptomyces bacterial isolates were separated. Four isolates showed positive results to selectivity action of the chitinase enzyme. Treatment of 3 bacterial isolates with 2 pathogenic fungi showed that AE09 is the most effective anti-fungal isolates. Discussion and conclusion: Soils in Eastern Azerbaijan province are rich of Streptomyces bacteria which generate antifungal compounds. Obtaining the Streptomyces bacteria which have chitinase gene, can lead to identification of very effective strains as anti-fungal.

  13. Evaluation of antibacterial activity of three selected fruit juices on clinical endodontic bacterial strains

    Directory of Open Access Journals (Sweden)

    Subasish Behera

    2017-01-01

    Full Text Available Introduction: The increasing problem of antibiotic drug resistance by pathogenic microorganisms in the past few decades has recently led to the continuous exploration of natural plant products for new antibiotic agents. Many consumable food materials have good as well as their bad effects, good effect includes their antibacterial effects on different microorganisms present in the oral cavity. Recently, natural products have been evaluated as source of antimicrobial agent with efficacies against a variety of microorganisms. Methodology: The present study describes the antibacterial activity of three selected fruit juices (Apple, Pomegranate and Grape on endodontic bacterial strains. Antimicrobial activity of fruit juices were tested by wel l diffusion assay by an inhibition zone surrounding the well. The aim of the study was to evaluate the antibacterial activity of three fruit juises on different endodontic strains. Result: Agar well diffusion method was adopted for determining antibacterial potency. Antibacterial activity present on the plates was indicated by an inhibition zone surrounding the well containing the fruit juice. The zone of inhibition was measured by measuring scale in millimeter. Comparision between antibacterial efficacy of all three fruit juices against Enterococcus feacalis and Streptococcus mutans was observed with significant value of P ≤ 0.05. Conclusion: The results obtained in this study clearly demonstrated a significant antimicrobial effect of apple fruit juice against Enterococcus fecalis and Streptococcus mutans. However, preclinical and clinical trials are needed to evaluate biocompatibility & safety before apple can conclusively be recommended in endodontic therapy, but in vitro observation of apple effectiveness appears promising.

  14. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    Science.gov (United States)

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  15. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  16. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1.

    Science.gov (United States)

    Leng, Yifei; Bao, Jianguo; Chang, Gaofeng; Zheng, Han; Li, Xingxing; Du, Jiangkun; Snow, Daniel; Li, Xu

    2016-11-15

    Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.

    Science.gov (United States)

    Vasileva-Tonkova, Evgenia; Sotirova, Anna; Galabova, Danka

    2011-02-01

    In this study, the effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on bacterial strains, laboratory strains, and isolates from industrial wastewater was investigated. It was shown that biosurfactant, depending on the concentration, has a neutral or detrimental effect on the growth and protein release of model Gram (+) strain Bacillus subtilis 168. The growth and protein release of model Gram (-) strain Pseudomonas aeruginosa 1390 was not influenced by the presence of biosurfactant in the medium. Rhamnolipid biosurfactant at the used concentrations supported the growth of some slow growing on hexadecane bacterial isolates, members of the microbial community. Changes in cell surface hydrophobicity and permeability of some Gram (+) and Gram (-) isolates in the presence of rhamnolipid biosurfactant were followed in experiments in vitro. It was found that bacterial cells treated with biosurfactant became more or less hydrophobic than untreated cells depending on individual characteristics and abilities of the strains. For all treated strains, an increase in the amount of released protein was observed with increasing the amount of biosurfactant, probably due to increased cell permeability as a result of changes in the organization of cell surface structures. The results obtained could contribute to clarify the relationships between members of the microbial community as well as suggest the efficiency of surface properties of rhamnolipid biosurfactant from Pseudomonas fluorescens making it potentially applicable in bioremediation of hydrocarbon-polluted environments.

  18. Occurrence of Antibiotic resistance in some bacterial strains due to gamma radiation, heavy metals or food preservatives

    International Nuclear Information System (INIS)

    Mattar, Z.A.; Bashandy, A.S.

    2006-01-01

    The susceptibility of bacterial strains (B. cereus, Staph. aureus, Escherichia coli and Salmonella) against 10 different antibiotics that are commonly used against food borne pathogens was studied. All the tested strains were observed to tolerate up to 100 mg/l copper sulphate or lead acetate, and there was a positive correlations between the tolerance to high levels of Cu or Pb and multiple antibiotic resistance was investigated. When the food preservatives (potassium sorbate or sodium benzoate) were added to the growth medium at different concentrations, the bacterial strains were able to tolerate up to 1000 ppm potassium sorbate or sodium benzoate (MIC). The antibiotic resistance of these strains was increased when grown on media supplemented with the MIC of sodium sorbate or potassium benzoate. When these bacterial strains were irradiated at dose levels of 1 or 3 or 5 KGy and examined for antibiotic sensitivity, a correlation was observed between the increases of radiation dose up to 5 KGy and the antibiotic resistance in all the studied strains

  19. Identification of Bifidobacterium strains from faeces of lambs

    Czech Academy of Sciences Publication Activity Database

    Bunešová, V.; Vlková, E.; Killer, Jiří; Rada, V.; Ročková, Š.

    2012-01-01

    Roč. 105, 1-3 (2012), 355-360 ISSN 0921-4488 R&D Projects: GA ČR GA523/08/1091; GA ČR GD525/08/H060 Institutional support: RVO:67985904 Keywords : bifidobacterium * identification * lambs Subject RIV: GH - Livestock Nutrition Impact factor: 1.124, year: 2012

  20. Identification of Candida strains isolated from Tanzanian pregnant ...

    African Journals Online (AJOL)

    Objective: To identify Candida strains isolated from Tanzanian women (13 to 45 years) with vaginal candidiasis. Design: A cross-sectional study. Setting: Antenatal clinic in llala district hospital in Dar es Salaam, Tanzania from March 1998 to December 2000. Results: The identities of the 272 isolates tested with API Candida ...

  1. molecular identification of rotavirus strains associated with diarrhea

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The study was carried out to determine the molecular characteristics of the rotavirus strains associated with diarrhea among children in Kwara state, Nigeria. A total of 150 stool samples were collected from diarrheic children. The stool samples were screened for rotavirus,using Enzyme linked Immunosorbent ...

  2. Molecular identification of rotavirus strains associated with diarrhea ...

    African Journals Online (AJOL)

    The study was carried out to determine the molecular characteristics of the rotavirus strains associated with diarrhea among children in Kwara state, Nigeria. A total of 150 stool samples were collected from diarrheic children. The stool samples were screened for rotavirus,using Enzyme linked Immunosorbent assay (ELISA).

  3. Identification of the forest strain of Onchocerca volvulus using the ...

    African Journals Online (AJOL)

    This study, which forms part of a larger study on transmission of onchocerciasis identifies the Onchocerca volvulus strain in Ondo state using the Polymerase Chain Reaction (PCR) technique. Deoxyribonucleic acid (DNA) was extracted from the adult worm of Onchocerca parasite using the glass bead method of extraction.

  4. DNA-based identification of Lentinula edodes strains with species ...

    African Journals Online (AJOL)

    phe

    2016-02-17

    Feb 17, 2016 ... Received 7 November, 2015; Accepted 25 January, 2016. Lentinula edodes is among the five globally cultivated ... through polymerase chain reaction (PCR). As a prelude to additional nutritional and .... Eleven (11) strains of shiitake, namely LE005 (ATTC #28759),. LE006 (ATTC# 28760), LE 008 (ATTC# ...

  5. Identification of Trichoderma strains by image analysis of HPLC chromatograms

    DEFF Research Database (Denmark)

    Thrane, Ulf; Poulsen, S.B.; Nirenberg, H.I.

    2001-01-01

    Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphol...

  6. ‘Olegusella massiliensis’ strain KHD7, a new bacterial genus isolated from the female genital tract

    Directory of Open Access Journals (Sweden)

    K. Diop

    2016-07-01

    Full Text Available We report the main characteristics of ‘Olegusella massiliensis’ gen. nov., sp. nov., strain KHD7 (= CSUR P2268=DSM 101849, a new member of the Coriobacteriaceae family isolated from the vaginal flora of a patient with bacterial vaginosis.

  7. Identification of two genetic markers that distinguish pathogenic and nonpathogenic strains of Acanthamoeba spp.

    Science.gov (United States)

    Howe, D K; Vodkin, M H; Novak, R J; Visvesvara, G; McLaughlin, G L

    1997-01-01

    Species-level identification of Acanthamoeba isolates is difficult and gives little or no indication of the isolate's pathogenicity. We identified two amplification-based genetic markers that were highly correlated with pathogenicity in Acanthamoeba spp. One marker, designed to amplify a 485-bp fragment of the small-subunit ribosomal RNA gene (ssrDNA), was preferentially amplified from the nonpathogenic strains; amplifications from the pathogenic strains yielded anomalous fragments of 650 and 900 bp. A second marker was developed on the basis of the anomalous 650-bp fragment. Primers to this sequence preferentially amplified a noncoding locus (called Ac6) only from the pathogenic strains. These two genetic markers may be useful for identification of pathogenic Acanthamoeba spp. strains.

  8. Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis.

    Science.gov (United States)

    Guo, Liang Dong; Huang, Guo R; Wang, Yu; He, Wen H; Zheng, Wei H; Hyde, Kevin D

    2003-06-01

    Sterile mycelia isolated from Pinus tabulaeformis were grouped into white morphotype strains based on cultural characteristics. Eighteen of the isolates were randomly selected and identified to various taxonomic levels based on nuclear ribosomal DNA (nrDNA) sequence analysis. The 5.8S gene and flanking internal transcribed spacer (ITS1 and ITS2) regions of nrDNA were amplified and sequenced. Phylogenetic analysis of the 5.8S gene sequences indicated that the white morphotype strains were Ascomycota. Further identification was achieved by means of sequence similarity comparison and phylogenetic analysis of the ITS regions. Results showed that strains WMS9 and WMS10 were Lophodermium species (Rhytismataceae), while strains WMS11, WMS13 and WMS18 were species of Rhytismataceae. Strains WMS2, WMS3, WMS4, WMS5 and WMS6 were identified to Rosellinia, strain WMS1 to Entoleuca, and strain WMS14 to Nemania (Xylariaceae). Strains WMS7, WMS8, WMS12, WMS15, WMS16 and WMS17 were xylariaceous species. The potential of using DNA sequence analysis in the identification of endophytic fungi is discussed.

  9. Identification of Bifidobacterium Strains Isolated from Kashk-e Zard: A Traditional Iranian Fermented Cereal-Dairy Based Food

    Directory of Open Access Journals (Sweden)

    Mashak

    2016-09-01

    Full Text Available Objectives The genus Bifidobactrium enjoys considerable significance among the probiotic bacteria for having appropriately adapted to the human gastrointestinal tract. As the properties of Bifidobacteria are strain-oriented and niche-dependent, there is growing interest in studying the different sources of these probiotics. Kashk-e Zard, a traditional fermented food produced from wheat and yogurt through a two-week, two-step fermentation process, is rich in probiotics and is worthy of study in this regard. The present study aimed to identify Bifidobacterium spp. in Kashk-e Zard. Methods Twenty-three samples of Kashk-e Zard were collected and subjected to Bifidobacterium identification experiments. Polymerase chain reaction (PCR and sequencing methods were applied for bacterial identification. Results Twelve of the isolates obtained were G +, rod-shaped, and catalase-, whereas only three of them identified positive for fructose 6-phosphate phosphoketolase (F6PPK a Bifidobacterium specific test and mupirocin resistance. These three isolates were then considered for further identification using the 16SrDNA sequencing technique. Conclusions Although carbohydrate fermentation patterns specified these three isolates as B. infantis, B. bifidum, and B. longum, the molecular results did not confirm B. longum, which is still also controversial in the literature. Overall, our results demonstrated that Kashk-e Zard is a rich potential source of probiotic bacteria and further investigations should be undertaken.

  10. Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles.

    Science.gov (United States)

    Matsuo, Junji; Oguri, Satoshi; Nakamura, Shinji; Hanawa, Tomoko; Fukumoto, Tatsuya; Hayashi, Yasuhiro; Kawaguchi, Kouhei; Mizutani, Yoshihiko; Yao, Takashi; Akizawa, Kouzi; Suzuki, Haruki; Simizu, Chikara; Matsuno, Kazuhiko; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2010-10-01

    The mechanism underlying bacterial conjugation through protozoa was investigated. Kanamycin-resistant Escherichia coli SM10λ+ carrying pRT733 with TnphoA was used as donor bacteria and introduced by conjugation into ciprofloxacin-resistant E. coli clinical isolate recipient bacteria. Equal amounts of donor and recipient bacteria were mixed together in the presence or absence of protozoa (ciliates, free-living amoebae, myxamoebae) in Page's amoeba saline for 24 h. Transconjugants were selected with Luria broth agar containing kanamycin and ciprofloxacin. The frequency of conjugation was estimated as the number of transconjugants for each recipient. Conjugation frequency in the presence of ciliates was estimated to be approximately 10⁻⁶, but in the absence of ciliates, or in the presence of other protozoa, it was approximately 10⁻⁸. Conjugation also occurred in culture of ciliates at least 2 h after incubation. Successful conjugation was confirmed by the polymerase chain reaction. Addition of cycloheximide or latrunculin B resulted in suppression of conjugation. Heat killing the ciliates or bacteria had no effect on conjugation frequency. Co-localization of green fluorescent protein-expressing E. coli and PKH-67-vital-stained E. coli was observed in the same ciliate vesicles, suggesting that both donor and recipient bacteria had accumulated in the same vesicle. In this study, the conjugation frequency of bacteria was found to be significantly higher in vesicles purified from ciliates than those in culture suspension. We conclude that ciliates rapidly enhance the conjugation of E. coli strains through bacterial accumulation in vesicles. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  11. Bioremediation of PCB-contaminated shallow river sediments: The efficacy of biodegradation using individual bacterial strains and their consortia.

    Science.gov (United States)

    Horváthová, Hana; Lászlová, Katarína; Dercová, Katarína

    2018-02-01

    Elimination of dangerous toxic and hydrophobic chlorinated aromatic compounds, mainly PCBs from the environment, is one of the most important aims of the environmental biotechnologies. In this work, biodegradation of an industrial mixture of PCBs (Delor 103, equivalent to Aroclor 1242) was performed using bacterial consortia composed of four bacterial strains isolated from the historically PCB-contaminated sediments and characterized as Achromobacter xylosoxidans, Stenotrophomonas maltophilia, Ochrobactrum anthropi and Rhodococcus ruber. The objective of this research was to determine the biodegradation ability of the individual strains and artificially prepared consortia composed of two or three bacterial strains mentioned above. Based on the growth parameters, six consortia were constructed and inoculated into the historically contaminated sediment samples collected in the efflux canal of Chemko Strážske plant - the former producer of the industrial mixtures of PCBs. The efficacy of the biotreatment, namely bioaugmentation, was evaluated by determination of ecotoxicity of treated and non-treated sediments. The most effective consortia were those containing the strain R. ruber. In the combination with A. xylosoxidans, the biodegradation of the sum of the indicator congeners was 85% and in the combination with S. maltophilia nearly 80%, with inocula applied in the ratio 1:1 in both cases. Consortium containing the strain R. ruber and S. maltophilia showed pronounced degradation of the highly chlorinated PCB congeners. Among the consortia composed of three bacterial strains, only that consisting of O. anthropi, R. ruber and A. xylosoxidans showed higher biodegradation (73%). All created consortia significally reduced the toxicity of the contaminated sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor

    NARCIS (Netherlands)

    M.G. Bruins (Marcel); A.N.R. Bos (Albert); P.L. Petit (Pieter); K. Eadie (Kimberley); A. Rog; R. Bos (Rens); G.H. van Ramshorst (Gabrielle); A.F. van Belkum (Alex)

    2009-01-01

    textabstractA novel olfactory method for bacterial species identification using an electronic nose device called the MonoNose was developed. Differential speciation of micro-organisms present in primary cultures of clinical samples could be performed by real-time identification of volatile organic

  13. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases

    Directory of Open Access Journals (Sweden)

    Ashraf A. Mostafa

    2018-02-01

    Full Text Available Prevention of food spoilage and food poisoning pathogens is usually achieved by use of chemical preservatives which have negative impacts including: human health hazards of the chemical applications, chemical residues in food & feed chains and acquisition of microbial resistance to the used chemicals. Because of such concerns, the necessity to find a potentially effective, healthy safer and natural alternative preservatives is increased. Within these texts, Plant extracts have been used to control food poisoning diseases and preserve foodstuff. Antimicrobial activity of five plant extracts were investigated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi using agar disc diffusion technique. Ethanolic extracts of Punica granatum, Syzygium aromaticum, Zingiber officinales and Thymus vulgaris were potentially effective with variable efficiency against the tested bacterial strains at concentration of 10 mg/ml while extract of Cuminum cyminum was only effective against S. aureus respectively. P. granatum and S. aromaticum ethanolic extracts were the most effective plant extracts and showed bacteriostatic and bactericidal activities against the highly susceptible strains of food borne pathogenic bacteria (S. aureus and P. aeruginosa with MIC's ranged from 2.5 to 5.0 mg/ml and MBC of 5.0 and 10 mg/ml except P. aeruginosa which was less sensitive and its MBC reached to 12.5 mg/ml of S. aromaticum respectively. These plant extracts which proved to be potentially effective can be used as natural alternative preventives to control food poisoning diseases and preserve food stuff avoiding healthy hazards of chemically antimicrobial agent applications.

  14. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases.

    Science.gov (United States)

    Mostafa, Ashraf A; Al-Askar, Abdulaziz A; Almaary, Khalid S; Dawoud, Turki M; Sholkamy, Essam N; Bakri, Marwah M

    2018-02-01

    Prevention of food spoilage and food poisoning pathogens is usually achieved by use of chemical preservatives which have negative impacts including: human health hazards of the chemical applications, chemical residues in food & feed chains and acquisition of microbial resistance to the used chemicals. Because of such concerns, the necessity to find a potentially effective, healthy safer and natural alternative preservatives is increased. Within these texts, Plant extracts have been used to control food poisoning diseases and preserve foodstuff. Antimicrobial activity of five plant extracts were investigated against Bacillus cereus , Staphylococcus aureus , Escherichia coli , Pseudomonas aeruginosa and Salmonella typhi using agar disc diffusion technique. Ethanolic extracts of Punica granatum, Syzygium aromaticum , Zingiber officinales and Thymus vulgaris were potentially effective with variable efficiency against the tested bacterial strains at concentration of 10 mg/ml while extract of Cuminum cyminum was only effective against S. aureus respectively. P. granatum and S. aromaticum ethanolic extracts were the most effective plant extracts and showed bacteriostatic and bactericidal activities against the highly susceptible strains of food borne pathogenic bacteria ( S. aureus and P. aeruginosa ) with MIC's ranged from 2.5 to 5.0 mg/ml and MBC of 5.0 and 10 mg/ml except P . aeruginosa which was less sensitive and its MBC reached to 12.5 mg/ml of S. aromaticum respectively. These plant extracts which proved to be potentially effective can be used as natural alternative preventives to control food poisoning diseases and preserve food stuff avoiding healthy hazards of chemically antimicrobial agent applications.

  15. System automation for a bacterial colony detection and identification instrument via forward scattering

    International Nuclear Information System (INIS)

    Bae, Euiwon; Hirleman, E Daniel; Aroonnual, Amornrat; Bhunia, Arun K; Robinson, J Paul

    2009-01-01

    A system design and automation of a microbiological instrument that locates bacterial colonies and captures the forward-scattering signatures are presented. The proposed instrument integrates three major components: a colony locator, a forward scatterometer and a motion controller. The colony locator utilizes an off-axis light source to illuminate a Petri dish and an IEEE1394 camera to capture the diffusively scattered light to provide the number of bacterial colonies and two-dimensional coordinate information of the bacterial colonies with the help of a segmentation algorithm with region-growing. Then the Petri dish is automatically aligned with the respective centroid coordinate with a trajectory optimization method, such as the Traveling Salesman Algorithm. The forward scatterometer automatically computes the scattered laser beam from a monochromatic image sensor via quadrant intensity balancing and quantitatively determines the centeredness of the forward-scattering pattern. The final scattering signatures are stored to be analyzed to provide rapid identification and classification of the bacterial samples

  16. Live bacterial vaccines – a review and identification of potential hazards

    Directory of Open Access Journals (Sweden)

    Detmer Ann

    2006-06-01

    Full Text Available Abstract The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.

  17. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C J; Nassif, Xavier; Armengaud, Jean

    2013-09-01

    Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640-12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. © 2013 Elsevier B.V. All rights reserved.

  18. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    Science.gov (United States)

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Rapid identification of bacterial pathogens using a PCR- and microarray-based assay

    Directory of Open Access Journals (Sweden)

    Aittakorpi Anne

    2009-08-01

    Full Text Available Abstract Background During the course of a bacterial infection, the rapid identification of the causative agent(s is necessary for the determination of effective treatment options. We have developed a method based on a modified broad-range PCR and an oligonucleotide microarray for the simultaneous detection and identification of 12 bacterial pathogens at the species level. The broad-range PCR primer mixture was designed using conserved regions of the bacterial topoisomerase genes gyrB and parE. The primer design allowed the use of a novel DNA amplification method, which produced labeled, single-stranded DNA suitable for microarray hybridization. The probes on the microarray were designed from the alignments of species- or genus-specific variable regions of the gyrB and parE genes flanked by the primers. We included mecA-specific primers and probes in the same assay to indicate the presence of methicillin resistance in the bacterial species. The feasibility of this assay in routine diagnostic testing was evaluated using 146 blood culture positive and 40 blood culture negative samples. Results Comparison of our results with those of a conventional culture-based method revealed a sensitivity of 96% (initial sensitivity of 82% and specificity of 98%. Furthermore, only one cross-reaction was observed upon investigating 102 culture isolates from 70 untargeted bacteria. The total assay time was only three hours, including the time required for the DNA extraction, PCR and microarray steps in sequence. Conclusion The assay rapidly provides reliable data, which can guide optimal antimicrobial treatment decisions in a timely manner.

  20. Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation.

    Science.gov (United States)

    Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth

    2014-08-01

    The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.

  1. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Department of Chemical Engineering, American University of Sharjah (United Arab Emirates)

    2013-07-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time. Also, the degree of substrate conversion was studied by the varying the dilution rate as an independent parameter. The dilution rate (ratio of feed flow rate to the culture volume) was varied by varying the feed volumetric rate from 110-170 mL/h for inlet hexavalent chromium concentrations of 70 mg/dm3. The results show that a chemostat with recycle gives a better performance in terms of substrate conversion than a chemostat without a recycle. Moreover, the degree of substrate conversion decreases as the dilution rate is increased. Also, Bacillus sp. was found to give higher conversions compared to pseudomonas sp.

  2. Phenotypic and molecular identification of Fonsecaea pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela.

    Science.gov (United States)

    Carolina Rojas, O; León-Cachón, Rafael B R; Pérez-Maya, Antonio Alí; Aguirre-Garza, Marcelino; Moreno-Treviño, María G; González, Gloria M

    2015-05-01

    Chromoblastomycosis is a chronic granulomatous disease caused frequently by fungi of the Fonsecaea genus. The objective of this study was the phenotypic and molecular identification of F. pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela. Ten strains were included in this study. For phenotypic identification, we used macroscopic and microscopic morphologies, carbohydrate assimilation test, urea hydrolysis, cixcloheximide tolerance, proteolitic activity and the thermotolerance test. The antifungal activity of five drugs was evaluated against the isolates. Molecular identification was performed by sequencing the internal transcribed spacer (ITS) ribosomal DNA regions of the isolated strains. The physiological analysis and morphological features were variable and the precise identification was not possible. All isolates were susceptible to itraconazole, terbinafine, voriconazole and posaconazole. Amphotericin B was the least effective drug. The alignment of the 559-nucleotide ITS sequences from our strains compared with sequences of GenBank revealed high homology with F. pedrosoi (EU285266.1). In this study, all patients were from rural areas, six from Mexico and four from Venezuela. Ten isolates were identified by phenotypic and molecular analysis, using ITS sequence and demonstrated that nine isolates from Mexico and Venezuela were 100% homologous and one isolate showed a small genetic distance. © 2015 Blackwell Verlag GmbH.

  3. Identification of Bacillus strains by MALDI TOF MS using geometric approach

    Science.gov (United States)

    Starostin, Konstantin V.; Demidov, Evgeny A.; Bryanskaya, Alla V.; Efimov, Vadim M.; Rozanov, Alexey S.; Peltek, Sergey E.

    2015-11-01

    Microorganism identification by MALDI TOF mass-spectrometry is based on the comparison of the mass spectrum of the studied organism with those of reference strains. It is a rapid and reliable method. However, commercial databases and programs are mostly designed for identification of clinically important strains and can be used only for particular mass spectrometer models. The need for open platforms and reference databases is obvious. In this study we describe a geometric approach for microorganism identification by mass spectra and demonstrate its capabilities by analyzing 24 strains belonging to the Bacillus pumilus group. This method is based on representing mass spectra as points on a multidimensional space, which allows us to use geometric distances to compare the spectra. Delimitation of microorganisms performed by geometric approach correlates well with the results of molecular phylogenetic analysis and clustering using Biotyper 3.1. All three methods used allowed us to reliably divide the strains into two groups corresponding to closely related species, Bacillus pumilus and Bacillus altitudinis. The method developed by us will be implemented in a Web interface designed for using open reference databases for microorganism identification. The data is available at http://www.bionet.nsc.ru/mbl/database/database.html.

  4. Identification and typing of the yeast strains isolated from bili bili, a ...

    African Journals Online (AJOL)

    Seventy six yeast strains isolated form bili bili and others sample were identified and typed in purpose of selecting appropriate starter culture. Identification techniques included conventional phenetic method, PCR/RFLP of NTS2 rDNA region, partial sequencing of the D1/D2 region of 26S rDNA and karyotyping using ...

  5. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis

    Directory of Open Access Journals (Sweden)

    Carlos Molina-Ramírez

    2017-06-01

    Full Text Available Bacterial cellulose (BC is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v. The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields.

  6. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data

    DEFF Research Database (Denmark)

    Clausen, Philip T. L. C.; Zankari, Ea; Aarestrup, Frank Møller

    2016-01-01

    with two previously described methods; ResFinder and SRST2, which use an assembly/BLAST method and BWA, respectively, using two datasets with a total of 339 isolates, covering five species, originating from the Oxford University Hospitals NHS Trust and Danish pig farms. The predicted resistance...... to two different methods in current use for identification of antibiotic resistance genes in bacterial WGS data. A novel method, KmerResistance, which examines the co-occurrence of k-mers between the WGS data and a database of resistance genes, was developed. The performance of this method was compared...... was compared with the observed phenotypes for all isolates. To challenge further the sensitivity of the in silico methods, the datasets were also down-sampled to 1% of the reads and reanalysed. The best results were obtained by identification of resistance genes by mapping directly against the raw reads...

  7. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains.

    Science.gov (United States)

    Whitman, William B; Woyke, Tanja; Klenk, Hans-Peter; Zhou, Yuguang; Lilburn, Timothy G; Beck, Brian J; De Vos, Paul; Vandamme, Peter; Eisen, Jonathan A; Garrity, George; Hugenholtz, Philip; Kyrpides, Nikos C

    2015-01-01

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity.

  8. Development of novel microsatellite markers for strain-specific identification of Chlorella vulgaris.

    Science.gov (United States)

    Jo, Beom-Ho; Lee, Chang Soo; Song, Hae-Ryong; Lee, Hyung-Gwan; Oh, Hee-Mock

    2014-09-01

    A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

  9. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Science.gov (United States)

    Sela, Uri; Euler, Chad W; Correa da Rosa, Joel; Fischetti, Vincent A

    2018-01-01

    A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th) response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  10. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  11. Superiority of SDS lysis over saponin lysis for direct bacterial identification from positive blood culture bottle by MALDI-TOF MS.

    Science.gov (United States)

    Caspar, Yvan; Garnaud, Cécile; Raykova, Mariya; Bailly, Sébastien; Bidart, Marie; Maubon, Danièle

    2017-05-01

    Fast species diagnosis has an important health care impact, as rapid and specific antibacterial therapy is of clear benefit for patient's outcome. Here, a new protocol for species identification directly from positive blood cultures is proposed. Four in-house protocols for bacterial identification by MS directly from clinical positive blood cultures evaluating two lytic agents, SDS and saponin, and two protein extraction schemes, fast (FP) and long (LP) are compared. One hundred and sixty-eight identification tests are carried out on 42 strains. Overall, there are correct identifications to the species level in 90% samples for the SDS-LP, 60% for the SDS-FP, 48% for the saponin LP, and 43% for the saponin FP. Adapted scores allowed 92, 86, 72, and 53% identification for SDS-LP, SDS-FP, saponin LP, and saponin FP, respectively. Saponin lysis is associated with a significantly lower score compared to SDS (0.87 [0.83-0.92], p-value SDS lysis instead of saponin lysis and the application of this rapid and cost-effective protocol in daily routine for microbiological agents implicated in septicemia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response

    Science.gov (United States)

    Han, Xiao; Gao, Xiguang; Song, Yingdong

    2017-10-01

    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  13. Identification of pathogens and virulence profile of Rhodococcus equi and Escherichia coli strains obtained from sand of parks

    Directory of Open Access Journals (Sweden)

    M.C. Fernandes

    2013-01-01

    Full Text Available The identification of pathogens of viral (Rotavirus, Coronavirus, parasitic (Toxocara spp. and bacterial (Escherichia coli, Salmonella spp., Rhodococcus equi origin shed in feces, and the virulence profile of R. equi and E. coli isolates were investigated in 200 samples of sand obtained from 40 parks, located in central region of state of Sao Paulo, Brazil, using different diagnostic methods. From 200 samples analyzed, 23 (11.5% strains of R. equi were isolated. None of the R. equi isolates showed a virulent (vapA gene or intermediately virulent (vapB gene profiles. Sixty-three (31.5% strains of E. coli were identified. The following genes encoding virulence factors were identified in E. coli: eae, bfp, saa, iucD, papGI, sfa and hly. Phylogenetic classification showed that 63 E. coli isolates belonged to groups B1 (52.4%, A (25.4% and B2 (22.2%. No E. coli serotype O157:H7 was identified. Eggs of Toxocara sp. were found in three parks and genetic material of bovine Coronavirus was identified in one sample of one park. No Salmonella spp. and Rotavirus isolates were identified in the samples of sand. The presence of R. equi, Toxocara sp, bovine Coronavirus and virulent E. coli isolates in the environment of parks indicates that the sanitary conditions of the sand should be improved in order to reduce the risks of fecal transmission of pathogens of zoonotic potential to humans in these places.

  14. Design, synthesis and biological evaluation of novel aryldiketo acids with enhanced antibacterial activity against multidrug resistant bacterial strains.

    Science.gov (United States)

    Cvijetić, Ilija N; Verbić, Tatjana Ž; Ernesto de Resende, Pedro; Stapleton, Paul; Gibbons, Simon; Juranić, Ivan O; Drakulić, Branko J; Zloh, Mire

    2018-01-01

    Antimicrobial resistance (AMR) is a major health problem worldwide, because of ability of bacteria, fungi and viruses to evade known therapeutic agents used in treatment of infections. Aryldiketo acids (ADK) have shown antimicrobial activity against several resistant strains including Gram-positive Staphylococcus aureus bacteria. Our previous studies revealed that ADK analogues having bulky alkyl group in ortho position on a phenyl ring have up to ten times better activity than norfloxacin against the same strains. Rational modifications of analogues by introduction of hydrophobic substituents on the aromatic ring has led to more than tenfold increase in antibacterial activity against multidrug resistant Gram positive strains. To elucidate a potential mechanism of action for this potentially novel class of antimicrobials, several bacterial enzymes were identified as putative targets according to literature data and pharmacophoric similarity searches for potent ADK analogues. Among the seven bacterial targets chosen, the strongest favorable binding interactions were observed between most active analogue and S. aureus dehydrosqualene synthase and DNA gyrase. Furthermore, the docking results in combination with literature data suggest that these novel molecules could also target several other bacterial enzymes, including prenyl-transferases and methionine aminopeptidase. These results and our statistically significant 3D QSAR model could be used to guide the further design of more potent derivatives as well as in virtual screening for novel antibacterial agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. In vitro antibacterial activity of venom protein isolated from sea snake Enhydrina schistosa against drugresistant human pathogenic bacterial strains

    Directory of Open Access Journals (Sweden)

    Palani Damotharan

    2015-06-01

    Full Text Available Objective: To evaluate the antibacterial activity of sea snake (Enhydrina schistosa venom protein against drug-resistant human pathogenic bacterial strains. Methods: The venom was collected by milking process from the live specimens of sea snake are using capillary tubes or glass plates. Venom was purified by ion exchange chromatography and it was tested for in-vitro antibacterial activity against 10 drug-resistant human pathogenic bacterial strains using the standard disc diffusion method. Results: The notable antibacterial activity was observed at 150 µg/mL concentration of purified venom and gave its minimum inhibitory concentrations values exhibited between 200-100 µg/mL against all the tested bacterial strains. The maximum zone of inhibition was observed at 16.4 mm against Salmonella boydii and the minimum activity was observed at 7.5 mm against Pseudomonas aeruginosa. After the sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis there were a clear single band was detected in the gel that corresponding to purified venom protein molecular weight of 44 kDa. Conclusions: These results suggested that the sea snake venom might be a feasible source for searching potential antibiotics agents against human pathogenic diseases.

  16. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-03-01

    Plant growth promoting (PGP) bacterial strains possess different mechanisms to improve plant development under common environmental stresses, and are therefore often used as inoculants in soil phytoremediation processes. The aims of the present work were to study the effects of a collection of plant growth promoting bacterial strains on plant development, antioxidant enzyme activities and nutritional status of Cytisus striatus and/or Lupinus luteus plants a) growing in perlite under non-stress conditions and b) growing in diesel-contaminated soil. For this, two greenhouse experiments were designed. Firstly, C. striatus and L. luteus plants were grown from seeds in perlite, and periodically inoculated with 6 PGP strains, either individually or in pairs. Secondly, L. luteus seedlings were grown in soil samples of the A and B horizons of a Cambisol contaminated with 1.25% (w/w) of diesel and inoculated with best PGP inoculant selected from the first experiment. The results indicated that the PGP strains tested in perlite significantly improved plant growth. Combination treatments provoked better growth of L. luteus than the respective individual strains, while individual inoculation treatments were more effective for C. striatus. L. luteus growth in diesel-contaminated soil was significantly improved in the presence of PGP strains, presenting a 2-fold or higher increase in plant biomass. Inoculants did not provoke significant changes in plant nutritional status, with the exception of a subset of siderophore-producing and P-solubilising bacterial strains that resulted in significantly modification of Fe or P concentrations in leaf tissues. Inoculants did not cause significant changes in enzyme activities in perlite experiments, however they significantly reduced oxidative stress in contaminated soils suggesting an improvement in plant tolerance to diesel. Some strains were applied to non-host plants, indicating a non-specific performance of their plant growth promotion

  17. The strains recommended for use in the bacterial reverse mutation test (OECD guideline 471) can be certified as non-genetically modified organisms.

    Science.gov (United States)

    Sugiyama, Kei-Ichi; Yamada, Masami; Awogi, Takumi; Hakura, Atsushi

    2016-01-01

    The bacterial reverse mutation test, commonly called Ames test, is used worldwide. In Japan, the genetically modified organisms (GMOs) are regulated under the Cartagena Domestic Law, and organisms obtained by self-cloning and/or natural occurrence would be exempted from the law case by case. The strains of Salmonella typhimurium and Escherichia coli recommended for use in the bacterial reverse mutation test (OECD guideline 471), have been considered as non-GMOs because they can be constructed by self-cloning or naturally occurring bacterial strains, or do not disturb the biological diversity. The present article explains the reasons why these tester strains should be classified as non-GMOs.

  18. Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer.

    Science.gov (United States)

    Kilianski, Andy; Haas, Jamie L; Corriveau, Elizabeth J; Liem, Alvin T; Willis, Kristen L; Kadavy, Dana R; Rosenzweig, C Nicole; Minot, Samuel S

    2015-01-01

    The MinION™ nanopore sequencer was recently released to a community of alpha-testers for evaluation using a variety of sequencing applications. Recent reports have tested the ability of the MinION™ to act as a whole genome sequencer and have demonstrated that nanopore sequencing has tremendous potential utility. However, the current nanopore technology still has limitations with respect to error-rate, and this is problematic when attempting to assemble whole genomes without secondary rounds of sequencing to correct errors. In this study, we tested the ability of the MinION™ nanopore sequencer to accurately identify and differentiate bacterial and viral samples via directed sequencing of characteristic genes shared broadly across a target clade. Using a 6 hour sequencing run time, sufficient data were generated to identify an E. coli sample down to the species level from 16S rDNA amplicons. Three poxviruses (cowpox, vaccinia-MVA, and vaccinia-Lister) were identified and differentiated down to the strain level, despite over 98% identity between the vaccinia strains. The ability to differentiate strains by amplicon sequencing on the MinION™ was accomplished despite an observed per-base error rate of approximately 30%. While nanopore sequencing, using the MinION™ platform from Oxford Nanopore in particular, continues to mature into a commercially available technology, practical uses are sought for the current versions of the technology. This study offers evidence of the utility of amplicon sequencing by demonstrating that the current versions of MinION™ technology can accurately identify and differentiate both viral and bacterial species present within biological samples via amplicon sequencing.

  19. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Liu, J.; Estiu, G.

    2010-01-01

    The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use...... in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking......, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus...

  20. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    Science.gov (United States)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  1. Identification and in vitro characterisation of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses.

    Science.gov (United States)

    Georgieva, Ralitsa N; Iliev, Ilia N; Chipeva, Valentina A; Dimitonova, Silvia P; Samelis, John; Danova, Svetla T

    2008-08-01

    Lactobacillus plantarum strains were isolated from fully ripened, white brined Bulgarian home-made cheeses. Strains were derived from phenotypically homogenous Lactobacillus group and were identified as L. plantarum based on both phenotypic and molecular identification (species-specific and multiplex PCR) methods. Heterogeneity of L. plantarum isolates was evaluated by Rep-PCR analysis. Further antimicrobial activity, antibiotic susceptibility and transit tolerance of the strains were evaluated. Most of them showed broad spectrum of activity against Gram-negative bacteria (including human pathogens) independent on the presence of organic acids or hydrogen peroxide. All strains were sensitive to amoxicillin and sulfamethoxazole/trimethoprim, resistant to clinically relevant beta -lactame antibiotics (penicillin and ampicillin) and to nalidixic acid, ciprofloxacin, streptomycin, and vancomycin. Significant variability in the sensitivity to tetracycline was noted. The tolerance to low pH, bile salts, pepsin and pancreatin at concentrations similar to those in the gastrointestinal tract was strain-dependent. The exposure to bile salts was less destructive than exposure to pH 2.0 for all tested strains. Based on their combined responses to the above selection criteria, four L. plantarum strains, RL29, RL34, RL36 and RL37, were selected as potential probiotics for in vivo studies. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease.

    Science.gov (United States)

    Delcaru, Cristina; Podgoreanu, Paulina; Alexandru, Ionela; Popescu, Nela; Măruţescu, Luminiţa; Bleotu, Coralia; Mogoşanu, George Dan; Chifiriuc, Mariana Carmen; Gluck, Marinela; Lazăr, Veronica

    2017-05-31

    Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI). From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa , and Serratia marcescens . Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins-such as hemolysins, lecithinases, and lipases-proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and recurrence rates of UTI.

  3. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease

    Directory of Open Access Journals (Sweden)

    Cristina Delcaru

    2017-05-01

    Full Text Available Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI. From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa, and Serratia marcescens. Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins—such as hemolysins, lecithinases, and lipases—proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and

  4. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Science.gov (United States)

    Haušild, Petr; Materna, Aleš; Kytka, Miloš

    2015-04-01

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  5. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Energy Technology Data Exchange (ETDEWEB)

    Haušild, Petr, E-mail: petr.hausild@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Materna, Aleš [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Kytka, Miloš [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Nuclear Research Institut, ÚJV Řež, a.s., Hlavní 130, Řež, 250 68 Husinec (Czech Republic)

    2015-04-15

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  6. Identification and DNA fingerprinting of Legionella strains by randomly amplified polymorphic DNA analysis.

    OpenAIRE

    Bansal, N S; McDonell, F

    1997-01-01

    The randomly amplified polymorphic DNA (RAPD) technique was used in the development of a fingerprinting (typing) and identification protocol for Legionella strains. Twenty decamer random oligonucleotide primers were screened for their discriminatory abilities. Two candidate primers were selected. By using a combination of these primers, RAPD analysis allowed for the differentiation between all different species, between the serogroups, and further differentiation between subtypes of the same ...

  7. Electron microscopic identification of Zinga virus as a strain of Rift Valley fever virus.

    Science.gov (United States)

    Olaleye, O D; Baigent, C L; Mueller, G; Tomori, O; Schmitz, H

    1992-01-01

    Electron microscopic examination of a negatively stained suspension of Zinga virus showed particles 90-100 nm in diameter, enveloped with spikes 12-20 nm in length and 5 nm in diameter. Further identification of the virus by immune electron microscopy showed the reactivity of human Rift Valley fever virus-positive serum with Zinga virus. Results of this study are in agreement with earlier reports that Zinga virus is a strain of Rift Valley fever virus.

  8. Molecular Identification Of Trichoderma Strains Collected To Develop Plant Growth-Promoting And Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    Oskiera Michał

    2015-06-01

    Full Text Available Trichoderma strains that are beneficial to both the growth and health of plants can be used as plant growth-promoting fungi (PGPF or biological control agents (BCA in agricultural and horticultural practices. In order to select PGPF or BCA strains, their biological properties and taxonomy must be carefully studied. In this study, 104 strains of Trichoderma collected at geographically different locations in Poland for selection as PGPF or BCA were identified by DNA barcoding, based on the sequences of internal transcribed spacers 1 and 2 (ITS1 and 2 of the ribosomal RNA gene cluster and on the sequences of translation elongation factor 1 alpha (tef1, chitinase 18-5 (chi18-5, and RNA polymerase II subunit (rpb2 gene fragments. Most of the strains were classified as: T. atroviride (38%, T. harzianum (21%, T. lentiforme (9%, T. virens (9%, and T. simmonsii (6%. Single strains belonging to T. atrobrunneum, T. citrinoviride, T. crassum, T. gamsii, T. hamatum, T. spirale, T. tomentosum, and T. viridescens were identified. Three strains that are potentially pathogenic to cultivated mushrooms belonging to T. pleuroticola and T. aggressivum f. europaeum were also identified. Four strains: TRS4, TRS29, TRS33, and TRS73 were classified to Trichoderma spp. and molecular identification was inconclusive at the species level. Phylogeny analysis showed that three of these strains TRS4, TRS29, and TRS33 belong to Trichoderma species that is not yet taxonomically established and strain TRS73 belongs to the T. harzianum complex, however, the species could not be identified with certainty.

  9. Identification of DNA sequence variation in Campylobacter jejuni strains associated with the Guillain-Barré syndrome by high-throughput AFLP analysis

    Directory of Open Access Journals (Sweden)

    Endtz Hubert P

    2006-04-01

    Full Text Available Abstract Background Campylobacter jejuni is the predominant cause of antecedent infection in post-infectious neuropathies such as the Guillain-Barré (GBS and Miller Fisher syndromes (MFS. GBS and MFS are probably induced by molecular mimicry between human gangliosides and bacterial lipo-oligosaccharides (LOS. This study describes a new C. jejuni-specific high-throughput AFLP (htAFLP approach for detection and identification of DNA polymorphism, in general, and of putative GBS/MFS-markers, in particular. Results We compared 6 different isolates of the "genome strain" NCTC 11168 obtained from different laboratories. HtAFLP analysis generated approximately 3000 markers per stain, 19 of which were polymorphic. The DNA polymorphisms could not be confirmed by PCR-RFLP analysis, suggesting a baseline level of 0.6% AFLP artefacts. Comparison of NCTC 11168 with 4 GBS-associated strains revealed 23 potentially GBS-specific markers, 17 of which were identified by DNA sequencing. A collection of 27 GBS/MFS-associated and 17 enteritis control strains was analyzed with PCR-RFLP tests based on 11 of these markers. We identified 3 markers, located in the LOS biosynthesis genes cj1136, cj1138 and cj1139c, that were significantly associated with GBS (P = 0.024, P = 0.047 and P Conclusion This study shows that bacterial GBS markers are limited in number and located in the LOS biosynthesis genes, which corroborates the current consensus that LOS mimicry may be the prime etiologic determinant of GBS. Furthermore, our results demonstrate that htAFLP, with its high reproducibility and resolution, is an effective technique for the detection and subsequent identification of putative bacterial disease markers.

  10. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    Directory of Open Access Journals (Sweden)

    Alex Galanis

    2015-10-01

    Full Text Available Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD Sequenced Characterized Amplified Region (SCAR analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  11. Identification and dynamic modeling of biomarkers for bacterial uptake and effect of sulfonamide antimicrobials

    International Nuclear Information System (INIS)

    Richter, Merle K.; Focks, Andreas; Siegfried, Barbara; Rentsch, Daniel; Krauss, Martin; Schwarzenbach, René P.; Hollender, Juliane

    2013-01-01

    The effects of sulfathiazole (STA) on Escherichia coli with glucose as a growth substrate was investigated to elucidate the effect-based reaction of sulfonamides in bacteria and to identify biomarkers for bacterial uptake and effect. The predominant metabolite was identified as pterine-sulfathiazole by LC-high resolution mass spectrometry. The formation of pterine-sulfathiazole per cell was constant and independent of the extracellular STA concentrations, as they exceeded the modeled half-saturation concentration K M S of 0.011 μmol L −1 . The concentration of the dihydrofolic acid precursor para-aminobenzoic acid (pABA) increased with growth and with concentrations of the competitor STA. This increase was counteracted for higher STA concentrations by growth inhibition as verified by model simulation of pABA dynamics. The EC value for the inhibition of pABA increase was 6.9 ± 0.7 μmol L −1 STA, which is similar to that calculated from optical density dynamics indicating that pABA is a direct biomarker for the SA effect. - Highlights: ► Elucidation of the effect-based reaction of sulfonamides in bacteria. ► Identification of a biomarker for uptake and effect-based reaction of sulfonamides. ► Investigation of a biomarker for the bacterial growth inhibition by sulfonamides. ► Quantitative mechanistic modeling of biomarker dynamics using enzyme kinetics. ► Mechanistic quantitative linking of sulfonamide concentrations and effects. - Identification of specific biomarkers for the uptake and effect-based reaction of sulfonamides in bacteria and resulting growth inhibition.

  12. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells

    Directory of Open Access Journals (Sweden)

    Davide Campoccia

    2018-04-01

    Full Text Available Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI, and internalised bacteria. The investigation included nine Staphylococcus aureus, seven Staphylococcus epidermidis, five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  13. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Ravaioli, Stefano; Cangini, Ilaria; Testoni, Francesca; Visai, Livia; Arciola, Carla Renata

    2018-04-03

    Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI), and internalised bacteria. The investigation included nine Staphylococcus aureus , seven Staphylococcus epidermidis , five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  14. Identification of Antipathogenic Bacterial Coral Symbionts Against Porites Ulcerative White Spots Disease

    Science.gov (United States)

    Sa’adah, Nor; Sabdono, Agus; Diah Permata Wijayanti, dan

    2018-02-01

    Coral reef ecosystems are ecosystems that are vulnerable and susceptible to damage due to the exploitation of ocean resources. One of the factors that cause coral damage is the disease that attacks the coral. Porites Ulcerative White Spots (PUWS) is a coral disease found in Indonesia and attacks the coral genera Porites allegedly caused by pathogenic microbial attacks. The purpose of this study was to identify the symbiotic bacteria on healthy coral that have antipatogenic potency against PUWS. The method used in this research was descriptive explorative. Sampling was done in Kemujan Island, Karimunjawa. Bacteria were isolated from healthy coral and coral affected by PUWS disease. Streak method was used to purify coral bacteria, while overlay and agar diffusion were used to test antipathogenic activity. Bacterial identification was carried out based on polyphasic approach. The results of this study showed that coral bacterial symbionts have antipathogenic activity against PUWS disease. The selected bacteria NM 1.2, NM 1.3 and KPSH 5. NM1.2 were closely related to Pseudoalteromonas piscicida, Pseudoalteromonas flavipulchra and Bacillus flexus, respectively.

  15. Occurrence of liver abscesses and identification of bacterial etiology in cattle carcasses of Tabriz abattoir

    Directory of Open Access Journals (Sweden)

    M Khakpour

    2011-11-01

    Full Text Available The aim of this survey was to determine the occurrence of liver abscesses and identification of associated bacterial etiology in cattle carcasses of Tabriz industrial abattoir. A total of 355 cattle carcasses were inspected for the presence of liver abscesses. In the case of liver abscess presence, some characteristics of the carcasses were recorded; such as cattle’s age, gender, pregnancy and also abscesses’ characteristics (i.e., number, size and location of abscesses on liver. Abscesses as whole, were sampled and kept cold until microbiological examinations. Microbial analysis was performed on samples and cultures were incubated at aerobic, anaerobic and microaerophilic atmospheres. From 355 cattle carcasses, liver abscess was found in 28 (7.8%. Among positive results, 22 (78.57% of livers had only 1, while 6 (21.42% had 2 or more abscesses. Fusobacterium necrophorum was isolated from 15 (53.57% and Arcanobacterium pyogenes from 10 (35.71% of abscesses. According to the results of this study, Fusobacterium necrophorum was found as the most frequent bacterial causative agent of cattle liver abscess in Tabriz industrial abattoir, while Arcanobacterium pyogenes was considered as the second most frequent agent.

  16. Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants

    Directory of Open Access Journals (Sweden)

    Huygens Flavia

    2007-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs and genes that exhibit presence/absence variation have provided informative marker sets for bacterial and viral genotyping. Identification of marker sets optimised for these purposes has been based on maximal generalized discriminatory power as measured by Simpson's Index of Diversity, or on the ability to identify specific variants. Here we describe the Not-N algorithm, which is designed to identify small sets of genetic markers diagnostic for user-specified subsets of known genetic variants. The algorithm does not treat the user-specified subset and the remaining genetic variants equally. Rather Not-N analysis is designed to underpin assays that provide 0% false negatives, which is very important for e.g. diagnostic procedures for clinically significant subgroups within microbial species. Results The Not-N algorithm has been incorporated into the "Minimum SNPs" computer program and used to derive genetic markers diagnostic for multilocus sequence typing-defined clonal complexes, hepatitis C virus (HCV subtypes, and phylogenetic clades defined by comparative genome hybridization (CGH data for Campylobacter jejuni, Yersinia enterocolitica and Clostridium difficile. Conclusion Not-N analysis is effective for identifying small sets of genetic markers diagnostic for microbial sub-groups. The best results to date have been obtained with CGH data from several bacterial species, and HCV sequence data.

  17. Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation.

    Science.gov (United States)

    Ouattara, Honoré G; Reverchon, Sylvie; Niamke, Sébastien L; Nasser, William

    2011-02-01

    We have previously reported the implication of Bacillus in the production of pectinolytic enzymes during cocoa fermentation. The objective of this work was to identify the Bacillus strains isolated from cocoa fermentation and study their ability to produce pectate lyase (PL) in various growth conditions. Ninety-eight strains were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Four different banding patterns were obtained leading to the clustering of the bacterial isolates into 4 distinct ARDRA groups. A subset of representative isolates for each group was identified by 16S rRNA gene partial sequencing. Six species were identified: Bacillus subtilis, Bacillus pumilus, Bacillus sphaericus, Bacillus cereus, Bacillus thuringiensis, together with Bacillus fusiformis which was isolated for the first time from cocoa fermentation. The best PL producers, yielding at least 9 U/mg of bacterial dry weight, belonged to B. fusiformis, B. subtilis, and B. pumilus species while those belonging to B. sphaericus, B. cereus and B. thuringiensis generally showed a low level of activity. Two kinds of PL were produced, as revealed by isoelectrofocusing: one with a pI of 9.8 produced by B. subtilis and B. fusiformis, the other with a pI of 10.5 was produced by B. pumilus. Strains yielded about 2 fold more PL in a pectic compound medium than in glucose medium and maximum enzyme production occurred in the late stationary bacterial growth phase. Together all these results indicate that PL production in the bacilli studied is modulated by the growth phase and by the carbon source present in the medium. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Hemolysin, Protease, and EPS Producing Pathogenic Aeromonas hydrophila Strain An4 Shows Antibacterial Activity against Marine Bacterial Fish Pathogens

    Directory of Open Access Journals (Sweden)

    Anju Pandey

    2010-01-01

    Full Text Available A pathogenic Aeromonas hydrophila strain An4 was isolated from marine catfish and characterized with reference to its proteolytic and hemolytic activity along with SDS-PAGE profile (sodium dodecyl sulphate-Polyacrylamide gel electrophoresis of ECPs (extracellular proteins showing hemolysin (approximately 50 kDa. Agar well diffusion assay using crude cell extract of the bacterial isolate clearly demonstrated antibacterial activity against indicator pathogenic bacteria, Staphylococcus arlettae strain An1, Acinetobacter sp. strain An2, Vibrio parahaemolyticus strain An3, and Alteromonas aurentia SE3 showing inhibitory zone >10 mm well comparable to common antibiotics. Further GC-MS analysis of crude cell extract revealed several metabolites, namely, phenolics, pyrrolo-pyrazines, pyrrolo-pyridine, and butylated hydroxytoluene (well-known antimicrobials. Characterization of EPS using FTIR indicated presence of several protein-related amine and amide groups along with peaks corresponding to carboxylic and phenyl rings which may be attributed to its virulent and antibacterial properties, respectively. Besides hemolysin, EPS, and protease, Aeromonas hydrophila strain An4 also produced several antibacterial metabolites.

  19. Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes

    NARCIS (Netherlands)

    Slawiak, M.; Doorn, van R.; Szemes, M.; Speksnijder, A.G.C.L.; Waleron, M.; Wolf, van der J.M.; Lojkowska, E.; Schoen, C.D.

    2013-01-01

    The objective of this study was to develop a multiplex detection and identification protocol for bacterial soft rot coliforms, namely Pectobacterium wasabiae (Pw), Pectobacterium atrosepticum (Pba) and Dickeya spp., responsible for potato blackleg and tuber soft rot. The procedures were derived from

  20. Promising Biological Indicator of Heavy Metal Pollution: Bioluminescent Bacterial Strains Isolated and Characterized from Marine Niches of Goa, India.

    Science.gov (United States)

    Thakre, Neha A; Shanware, Arti S

    2015-09-01

    In present study, several marine water samples collected from the North Goa Beaches, India for isolation of luminescent bacterial species. Isolates obtained labelled as DP1-5 and AB1-6. Molecular characterization including identification of a microbial culture using 16S rRNA gene based molecular technique and phylogenetic analysis confirmed that DP3 & AB1 isolates were Vibrio harveyi. All of the isolates demonstrated multiple metal resistances in terms of growth, with altered luminescence with variable metal concentration. Present investigations were an attempt towards exploring and reporting an updated diversity of bioluminescent bacterial species from various sites around the Goa, India which would be explored in future for constructing luminescence based biosensor for efficiently monitoring the level of hazardous metals in the environment.

  1. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  2. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  3. Screening and Molecular Identification of New Microbial Strains for Production of Enzymes of Biotechnological Interest

    Directory of Open Access Journals (Sweden)

    Imen Ghazala

    Full Text Available ABSTRACT: This research focused on isolation, identification and characterization of new strains of fungi and bacteria, which were able to produce extracellular xylanase, mannanase, pectinase and α-amylase. Fungi isolates were identified on the basis of analyses of 18S gene sequencing and internal transcribed spacer region. The closest phylogenetic neighbors according to 18S gene sequence and ITS region data for the two isolates M1 and SE were Aspergillus fumigatus and Aspergillus sydowii, respectively. I4 was identified as Bacillus mojavensis on the basis of the 16S rRNA gene sequencing and biochemical properties. The enzyme production was evaluated by cultivating the isolated microorganisms in liquid-state bioprocess using wheat bran as carbon source. Two fungi (M1, and SE and one bacterium (I4 strains were found to be xylanase producer, and several were proven to be outstanding producers of microbial xylanase. The strains producing xylanase secreted variable amounts of starch-debranching enzymes and produced low level β-mannan-degrading enzyme systems. The bacterium strain was found to be capable of producing pectinolytic enzymes on wheat bran at high level. Some of the strains have good potential for use as sources of important industrial enzymes.

  4. Identification of Trichoderma Strain M2 and Related Growth Promoting Effects on Brassica chinensis L.

    Directory of Open Access Journals (Sweden)

    XING Fang-fang

    2017-01-01

    Full Text Available The research took Trichoderma strain as tested strains which isolated from the rhizosphere of healthy and high yield pepper, M2 was classified and identified by combining morphological classification with molecular identification means(rDNA-ITS sequence analysis, whose effect on growth of Brassica chinensis L. was explored, in order to provide superior strains for bio-fertilizer development. After solid fermentation of Trichoderma M2, under the condition of the greenhouse, took some research on the growth promoting effect on Brassica chi nensis L. of Trichoderma M2. The results showed that the strain M2 was identified as Trichoderma harzianum strain. M2 had obvious effects on promoting growth, the SPAD and edible leaf number of Brassica chinensis L. Adding of 5.0×109 cfu M2 had the best effect on increasing the biological yield. Compared with CK, fresh weight and dry weight was increased by 30.26%and 20.08%respectively. Followed by inocula tion of 5.0×108 cfu M2, fresh weight and dry weight was increased by 18.33% and 12.46% respectively. Therefore, M2 showed evident promoting effect on Brassica chinensis L., and had potential application value.

  5. Genome Sequence of the Banana Pathogen Dickeya zeae Strain MS1, Which Causes Bacterial Soft Rot.

    Science.gov (United States)

    Zhang, Jing-Xin; Lin, Bi-Run; Shen, Hui-Fang; Pu, Xiao-Ming

    2013-06-13

    We report a draft genome sequence of Dickeya zeae strain MS1, which is the causative agent of banana soft rot in China, and we show several of its specific properties compared with those of other D. zeae strains. Genome sequencing provides a tool for understanding the genomic determination of the pathogenicity and phylogeny placement of this pathogen.

  6. Genome Sequence of the Banana Pathogen Dickeya zeae Strain MS1, Which Causes Bacterial Soft Rot

    OpenAIRE

    Zhang, Jing-Xin; Lin, Bi-Run; Shen, Hui-Fang; Pu, Xiao-Ming

    2013-01-01

    We report a draft genome sequence of Dickeya zeae strain MS1, which is the causative agent of banana soft rot in China, and we show several of its specific properties compared with those of other D.?zeae strains. Genome sequencing provides a tool for understanding the genomic determination of the pathogenicity and phylogeny placement of this pathogen.

  7. Isolation and Characterization of Rhamnolipid-Producing Bacterial Strains from a Biodiesel Facility

    Science.gov (United States)

    Novel strains of rhamnolipid-producing bacteria were isolated from soils at a biodiesel facility on the basis of their ability to grow on glycerol as a sole carbon source. Strains were identified as Acinetobacter calcoaceticus, Enterobacter asburiae, E. hormaecheii, Pantoea stewartii and Pseudomona...

  8. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    Science.gov (United States)

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  9. Identification of Bacterial Surface Antigens by Screening Peptide Phage Libraries Using Whole Bacteria Cell-Purified Antisera

    Science.gov (United States)

    Hu, Yun-Fei; Zhao, Dun; Yu, Xing-Long; Hu, Yu-Li; Li, Run-Cheng; Ge, Meng; Xu, Tian-Qi; Liu, Xiao-Bo; Liao, Hua-Yuan

    2017-01-01

    Bacterial surface proteins can be good vaccine candidates. In the present study, we used polyclonal antibodies purified with intact Erysipelothrix rhusiopthiae to screen phage-displayed random dodecapeptide and loop-constrained heptapeptide libraries, which led to the identification of mimotopes. Homology search of the mimotope sequences against E. rhusiopthiae-encoded ORF sequences revealed 14 new antigens that may localize on the surface of E. rhusiopthiae. When these putative surface proteins were used to immunize mice, 9/11 antigens induced protective immunity. Thus, we have demonstrated that a combination of using the whole bacterial cells to purify antibodies and using the phage-displayed peptide libraries to determine the antigen specificities of the antibodies can lead to the discovery of novel bacterial surface antigens. This can be a general approach for identifying surface antigens for other bacterial species. PMID:28184219

  10. Exposure of bovine cornea to different strains of Moraxella bovis and to other bacterial species in vitro.

    Science.gov (United States)

    Chandler, R L; Smith, K; Turfrey, B A

    1985-07-01

    A collection of strains of Moraxella bovis, some pathogenic and some non-pathogenic in cattle, together with other M. bovis preparations, Neisseria ovis, Staphylococcus aureus and Moraxella non-liquefaciens were studied by scanning electron microscopy for their affinity to bovine corneal preparations in vitro. The in vitro procedure provides a convenient method for studies on host-pathogen interactions at the early stage of pathogenesis. The results corresponded well with the pathogenicity of the respective strains and species in cattle. It is considered that the pathogenicity of M. bovis is associated with at least two factors, piliation and the ability to produce pit-like depressions in corneal epithelial cells. The other bacterial species, which are not thought to play an important role in infectious bovine keratoconjunctivitis, had the ability to adhere to the bovine cornea but did not produce pits. The pitting factor of M. bovis is of interest in relation to studies on vaccination against infectious bovine keratoconjunctivitis.

  11. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    Science.gov (United States)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  12. Screening and identification of efficient strain in selenium oxyanions sorption in order to biological wastewater treatment

    Directory of Open Access Journals (Sweden)

    fatemeh yaghoobizadeh

    2016-06-01

    Full Text Available Introduction: Selenium is an element with antioxidant activities that plays roles in thyroid hormone homeostasis, immunity and also fertility. Nevertheless, selenium toxicity (selenosis causes problems for humans such as abnormalities of the nervous system, gastrointestinal problems and hair loss. Thus, this study was performed with the aim of bacterial biosorbent isolation in order to remove selenium contaminant from wastewater. Materials and methods: In this research, at first using modified Luria- Bertani agar (mLBA medium with certain concentration of sodium selenate salt, isolation of bacterial isolates was done from three collected wastewater and sludge samples from Khouzestan industrial factories. After determination of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC, the sorption capacity and the percentage of metal removal efficiency (%RE were investigated by atomic absorption spectrophotometer using metabolically active and inactive samples belonging to an efficient isolate. Identification was performed by morphological, biochemical and molecular methods. Results: Among 73 attained bacterial isolates at the first stage, 8 selenate oxyanion resistant isolates were gathered. Among these, AMS1-S8 isolate with MIC= 600­mM and MBC= 1200­mM were selected for more studies. Attained results in sorption mechanism determination stage showed that the sorption capacity in metabolically active sample is more than the inactive samples. Based on the identification results, it is revealed that this isolate belongs to the Enterobacter genus. This isolate is deposited as accession JQ965667 in the GeneBank database. Discussion and conclusion: The results showed that active biomass of selected isolate, have most sorption capacity and %RE and among the other isolates, have high partial resistance against selenate. Therefore, it can be a relatively ideal option for the bioremediation of polluted environments.

  13. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  14. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  15. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Directory of Open Access Journals (Sweden)

    Tim van Opijnen

    2016-09-01

    Full Text Available The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.

  16. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    Science.gov (United States)

    van Opijnen, Tim; Dedrick, Sandra; Bento, José

    2016-09-01

    The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable.

  17. Phylogeny and Identification of Pantoea Species and Typing of Pantoea agglomerans Strains by Multilocus Gene Sequencing ▿ †

    OpenAIRE

    Delétoile, Alexis; Decré, Dominique; Courant, Stéphanie; Passet, Virginie; Audo, Jennifer; Grimont, Patrick; Arlet, Guillaume; Brisse, Sylvain

    2008-01-01

    Pantoea agglomerans and other Pantoea species cause infections in humans and are also pathogenic to plants, but the diversity of Pantoea strains and their possible association with hosts and disease remain poorly known, and identification of Pantoea species is difficult. We characterized 36 Pantoea strains, including 28 strains of diverse origins initially identified as P. agglomerans, by multilocus gene sequencing based on six protein-coding genes, by biochemical tests, and by antimicrobial ...

  18. Comparison of some indigenous bacterial strains of pseudomonas ssp. for production of biosurfactants

    International Nuclear Information System (INIS)

    Sahafeeq, M.; Kokub, D.; Khalid, Z.M.; Malik, K.A.

    1991-01-01

    Some indigenous pseudomonas spp. were found to have the ability of emulsification, lowering the surface and interfacial tensions, and formation of high reciprocal CMCs. Six strains of Pseudomonas spp were compared for biosurfactant production grown on hexadecane. Supernatant from whole culture broth of these strains could lower surface tension from 65 mN/m to 28-32 nM/m, interfacial tension from 40 nM/m to 1-3 mN/m and had high reciprocal CMCs. When compared for emulsification ability by the culture broth of these strains, the emulsification index (E24) was found to range between 60-65. Biosurfactant containing culture broth of some strains could retain the property up to 80 C, pH of 13 and sodium chloride concentration for 17% which indicates their possible role in some depleted oil well. (author)

  19. Molecular characterization of Xanthomonas strains responsible for bacterial leaf spot of tomato in Ethiopia

    Science.gov (United States)

    Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis, a diverse group of Xanthomonas...

  20. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    Science.gov (United States)

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  1. Induction, separation and identification of haploid strains from industrial brewer's yeast.

    Science.gov (United States)

    Xu, Weina; Wang, Jinjing; Li, Qi

    2015-01-04

    Lager brewing yeasts (Saccharomyces pastorianus), the natural hybrids of S. cerevisiae and S. eubayanus, are usually heterothallic polyploidy or aneuploidy. Their intricate ploidy is a great challenge to genetic studies and strain improvement. Haploid breeding is an effective method to overcome these difficulties. Also, haploid strains play an important role in scientific research and breeding. However, lager brewing yeasts only divide asexually and hardly bear spores under normal conditions, so it is very difficult to get haploid strains from them. In this study, we established comprehensive methods to induce, separate and identify haploid strains of industrial brewer's yeast. First, we selected efficient sporulation medium to induce the sporulation of an industrial brewer's yeast strain G-03, and ther isolated spores from vegetative cells and formed colonies on YPD plates. After that, flow cytometry was used to determine the ploidy types of the pre-judged haploid candidates. Ultimately, we analyzed the genotypes of the segregants by PCR reaction and mating test in order to get precise results. Using this protocol, we obtained 26 yeast segregants by spore isolation, and 4 of them pre-judged as haploid candidates were finally confirmed as haploid by flow cytometric analysis. Two of them were MATa and others were MATα. By scanning electron microscope (SEM), the cells of 4 haploid segregants showed similar morphology to each other but had obvious differences compared with the parent strain. Pseudohyphal growth occurred in parent cells after long-period cultivation but none was found in haploid segregants. Sporulation of industrial brewer's yeast and germination of their spores was difficult but not impossible. Nevertheless, the screening and identification of haploid segregants were more challenging.

  2. Phylogeny and Identification of Pantoea Species and Typing of Pantoea agglomerans Strains by Multilocus Gene Sequencing ▿ †

    Science.gov (United States)

    Delétoile, Alexis; Decré, Dominique; Courant, Stéphanie; Passet, Virginie; Audo, Jennifer; Grimont, Patrick; Arlet, Guillaume; Brisse, Sylvain

    2009-01-01

    Pantoea agglomerans and other Pantoea species cause infections in humans and are also pathogenic to plants, but the diversity of Pantoea strains and their possible association with hosts and disease remain poorly known, and identification of Pantoea species is difficult. We characterized 36 Pantoea strains, including 28 strains of diverse origins initially identified as P. agglomerans, by multilocus gene sequencing based on six protein-coding genes, by biochemical tests, and by antimicrobial susceptibility testing. Phylogenetic analysis and comparison with other species of Enterobacteriaceae revealed that the genus Pantoea is highly diverse. Most strains initially identified as P. agglomerans by use of API 20E strips belonged to a compact sequence cluster together with the type strain, but other strains belonged to diverse phylogenetic branches corresponding to other species of Pantoea or Enterobacteriaceae and to probable novel species. Biochemical characteristics such as fosfomycin resistance and utilization of d-tartrate could differentiate P. agglomerans from other Pantoea species. All 20 strains of P. agglomerans could be distinguished by multilocus sequence typing, revealing the very high discrimination power of this method for strain typing and population structure in this species, which is subdivided into two phylogenetic groups. PCR detection of the repA gene, associated with pathogenicity in plants, was positive in all clinical strains of P. agglomerans, suggesting that clinical and plant-associated strains do not form distinct populations. We provide a multilocus gene sequencing method that is a powerful tool for Pantoea species delineation and identification and for strain tracking. PMID:19052179

  3. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain.

    Science.gov (United States)

    Cruz, Andrea Paola Zuluaga; Ferreira, Virginia; Pianzzola, María Julia; Siri, María Inés; Coll, Núria S; Valls, Marc

    2014-03-01

    Several breeding programs are under way to introduce resistance to bacterial wilt caused by Ralstonia solanacearum in solanaceous crops. The lack of screening methods allowing easy measurement of pathogen colonization and the inability to detect latent (i.e., symptomless) infections are major limitations when evaluating resistance to this disease in plant germplasm. We describe a new method to study the interaction between R. solanacearum and potato germplasm that overcomes these restrictions. The R. solanacearum UY031 was genetically modified to constitutively generate light from a synthetic luxCDABE operon stably inserted in its chromosome. Colonization of this reporter strain on different potato accessions was followed using life imaging. Bacterial detection in planta by this nondisruptive system correlated with the development of wilting symptoms. In addition, we demonstrated that quantitative detection of the recombinant strain using a luminometer can identify latent infections on symptomless potato plants. We have developed a novel, unsophisticated, and accurate method for high-throughput evaluation of pathogen colonization in plant populations. We applied this method to compare the behavior of potato accessions with contrasting resistance to R. solanacearum. This new system will be especially useful to detect latency in symptomless parental lines before their inclusion in long-term breeding programs for disease resistance.

  4. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG{sub 5} of Alcaligenes faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Santal, Anita Rani, E-mail: anita.gangotra@gmail.com [Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Singh, N.P. [Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Saharan, Baljeet Singh [Department of Microbiology, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2011-10-15

    Highlights: {yields} The Alcaligenes faecalis strain SAG{sub 5} decolorizes 72.6 {+-} 0.56% of melanoidins. {yields} The decolorization was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day. {yields} The distillery effluent after biological treatment is environmentally safe. - Abstract: Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 {+-} 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG{sub 5}.

  5. Identification of Stenotrophomonas maltophilia strains isolated from environmental and clinical samples: a rapid and efficient procedure.

    Science.gov (United States)

    Pinot, C; Deredjian, A; Nazaret, S; Brothier, E; Cournoyer, B; Segonds, C; Favre-Bonté, S

    2011-11-01

    Aim of the study is to identify accurately Stenotrophomonas maltophilia isolates recovered from environmental and clinical samples. Recovery of Sten. maltophilia-like isolates from soil samples using the vancomycin, imipenem, amphotericin B (VIA) selective agar medium enabled distinction of various morphotype colonies. A set of soil and clinical isolates was tested for species identification using different methods. 16S rDNA analyses showed the dark green with a blue halo morphotype to be typical Sten. maltophilia strains. The API-20NE, Vitek-2 and Biolog phenotypic analyses typically used for the identification of clinical isolates did not perform well on these soil isolates. The species-specific PCR screening targeting Sten. maltophilia 23S rDNA and the multiplex smeD/ggpS PCR, differentiating Sten. maltophilia from Stenotrophomonas rhizophila, were tested for improvement of these identification schemes. The latter multiplex PCR identified all isolates tested in this study, whatever be their origin. Isolation on VIA medium and confirmation of Sten. maltophilia species membership by smeD PCR is proposed to identify environmental and clinical isolates of Sten. maltophilia. The proposed approach enables isolation and identification of Sten. maltophilia from different environments in an easy and rapid way. This approach will be useful to accurately manage studies on the abundance and distribution of Sten. maltophilia in hospital and nonhospital environments. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Strain field reconstruction on composite spars based on the identification of equivalent load conditions

    Science.gov (United States)

    Airoldi, A.; Marelli, L.; Bettini, P.; Sala, G.; Apicella, A.

    2017-04-01

    Technologies based on optical fibers provide the possibility of installing relatively dense networks of sensors that can perform effective strain sensing functions during the operational life of structures. A contemporary trend is the increasing adoption of composite materials in aerospace constructions, which leads to structural architectures made of large monolithic elements. The paper is aimed at showing the feasibility of a detailed reconstruction of the strain field in a composite spar, which is based on the development of reference finite element models and the identification of load modes, consisting of a parameterized set of forces. The procedure is described and assessed in ideal conditions. Thereafter, a surrogate model is used to obtain realistic representation of the data acquired by the strain sensing system, so that the developed procedure is evaluated considering local effects due to the introduction of loads, significant modelling discrepancy in the development of the reference model and the presence of measurement noise. Results show that the method can obtain a robust and quite detailed reconstruction of strain fields, even at the level of local distributions, of the internal forces in the spars and of the displacements, by identifying an equivalent set of load parameters. Finally, the trade-off between the number of sensor and the accuracy, and the optimal position of the sensors for a given maximum number of sensors is evaluated by performing a multi-objective optimization, thus showing that even a relative dense network of externally applied sensors can be used to achieve good quality results.

  7. Isolation, identification and antibiotic resistance of Campylobacter strains isolated from domestic and free-living pigeons.

    Science.gov (United States)

    Dudzic, A; Urban-Chmiel, R; Stępień-Pyśniak, D; Dec, M; Puchalski, A; Wernicki, A

    2016-04-01

    1. The aim of this study was to evaluate the occurrence of Campylobacter spp. in domestic and free-living pigeons and to evaluate the antibiotic resistance profiles. 2. The material consisted of cloacal swabs obtained from 108 homing pigeons and fresh faeces from 72 wild birds from Lublin and its vicinity. The identification of strains isolated on differential/selective media for Campylobacter spp. was carried out by MALDI-TOF and PCR. The susceptibility to antibiotics was evaluated by minimum inhibitory concentration (MIC) in Mueller-Hinton broth. 3. A total of 35 strains of Campylobacter spp. were isolated; 27 were identified as Campylobacter jejuni and 8 as Campylobacter coli. Over half of the isolates were resistant to erythromycin and streptomycin, 40% of strains were resistant to tetracycline and ampicillin and 37% isolates were resistant to amoxicillin. Resistance to two or more antibiotics was observed in all strains tested. 4. The results indicate that both domestic and free-living pigeons are reservoirs for bacteria of the genus Campylobacter, which are characterised by varied and growing resistance to commonly used antibiotics.

  8. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing

    Directory of Open Access Journals (Sweden)

    Mohamed Awad

    2015-01-01

    Full Text Available Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available.

  9. FN-Identify: Novel Restriction Enzymes-Based Method for Bacterial Identification in Absence of Genome Sequencing.

    Science.gov (United States)

    Awad, Mohamed; Ouda, Osama; El-Refy, Ali; El-Feky, Fawzy A; Mosa, Kareem A; Helmy, Mohamed

    2015-01-01

    Sequencing and restriction analysis of genes like 16S rRNA and HSP60 are intensively used for molecular identification in the microbial communities. With aid of the rapid progress in bioinformatics, genome sequencing became the method of choice for bacterial identification. However, the genome sequencing technology is still out of reach in the developing countries. In this paper, we propose FN-Identify, a sequencing-free method for bacterial identification. FN-Identify exploits the gene sequences data available in GenBank and other databases and the two algorithms that we developed, CreateScheme and GeneIdentify, to create a restriction enzyme-based identification scheme. FN-Identify was tested using three different and diverse bacterial populations (members of Lactobacillus, Pseudomonas, and Mycobacterium groups) in an in silico analysis using restriction enzymes and sequences of 16S rRNA gene. The analysis of the restriction maps of the members of three groups using the fragment numbers information only or along with fragments sizes successfully identified all of the members of the three groups using a minimum of four and maximum of eight restriction enzymes. Our results demonstrate the utility and accuracy of FN-Identify method and its two algorithms as an alternative method that uses the standard microbiology laboratories techniques when the genome sequencing is not available.

  10. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    Science.gov (United States)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  11. Isolation and identification of Acanthamoeba strains from soil and tap water in Yanji, China.

    Science.gov (United States)

    Xuan, Yinghua; Shen, Yanqin; Ge, Yuxi; Yan, Gen; Zheng, Shanzi

    2017-06-30

    Members of the genus Acanthamoeba are widely distributed throughout the world, and some of them are considered pathogenic, as they are capable of causing corneal and central nervous system diseases. In this study, we isolated Acanthamoeba strains from soil and tap water in Yanji, China. We identified four strains of Acanthamoeba (CJY/S1, CJY/S2, CJY/S3, and CJY/W1) using mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis. Nuclear 18S rDNA sequences were used for phylogenetic analysis and species identification. Genotypic characterization of the isolates showed that they belonged to genotypes T4 (CJY/S1 and CJY/S2), T5 (CJY/S3), and T16 (CJY/W1). Sequence differences between CJY/S1 and Acanthamoeba castellanii Neff, CJY/S2 and Acanthamoeba KA/E7, and CJY/S3 and Acanthamoeba lenticulata 68-2 were 0.31, 0.2, and 0.26%, respectively. 18S ribosomal deoxyribonucleic acid (rDNA) of CJY/W1 had 99% sequence identity to that of Acanthamoeba sp. U/H-C1. Strains CJY/S1 and CJY/S2, isolated from soil, had similar mtDNA RFLP patterns, whereas strain CJY/W1, isolated from tap water, displayed a different pattern. To the best of our knowledge, this is the first report on the identification of genotypes T4, T5, and T16 from environmental sources in Yanji, China.

  12. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data.

    Science.gov (United States)

    Clausen, Philip T L C; Zankari, Ea; Aarestrup, Frank M; Lund, Ole

    2016-09-01

    Next generation sequencing (NGS) may be an alternative to phenotypic susceptibility testing for surveillance and clinical diagnosis. However, current bioinformatics methods may be associated with false positives and negatives. In this study, a novel mapping method was developed and benchmarked to two different methods in current use for identification of antibiotic resistance genes in bacterial WGS data. A novel method, KmerResistance, which examines the co-occurrence of k-mers between the WGS data and a database of resistance genes, was developed. The performance of this method was compared with two previously described methods; ResFinder and SRST2, which use an assembly/BLAST method and BWA, respectively, using two datasets with a total of 339 isolates, covering five species, originating from the Oxford University Hospitals NHS Trust and Danish pig farms. The predicted resistance was compared with the observed phenotypes for all isolates. To challenge further the sensitivity of the in silico methods, the datasets were also down-sampled to 1% of the reads and reanalysed. The best results were obtained by identification of resistance genes by mapping directly against the raw reads. This indicates that information might be lost during assembly. KmerResistance performed significantly better than the other methods, when data were contaminated or only contained few sequence reads. Read mapping is superior to assembly-based methods and the new KmerResistance seemingly outperforms currently available methods particularly when including datasets with few reads. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. [Phenotypic and genotypic characterization of probiotic bacterial strains used in medicinal products].

    Science.gov (United States)

    Wiatrzyk, Aldona; Polak, Maciej; Czajka, Urszula; Krysztopa-Grzybowska, Katarzyna; Lutyńska, Anna

    2013-01-01

    The optimization of quality testing strategy of products containing probiotics might allow to general improvement of its safer use in humans. The goal of the study was the evaluation of quality expressed by identity, colony forming unit (CFU) and antibiotic sensitivity ofprobiotics used in medicinal products available in Poland using the appropriate and validated procedures. The medicinal products containing L. rhamnosus, L. acidophilus, L. delbrueckii subsp. bulgaricus and B. animalis subsp. lactis, L. helveticus, and L. gasseri were tested for species identity performed with validated rep-PCR (BOXA 1R) method. The antimicrobial susceptibility of working seeds and strains isolated to 26 antibiotics were tested by disk diffusion and E-test methods using relevant references as recommended by EUCAST. The numbers of probiotic strains, expressed as cfu count per package, was done using plating plunge method. All strains tested, except B. lactis, were found to be resistant to trimethoprim-sulphamethoxazole, nalidixic acid, metronidazole, and colistin. B. lactis was resistant to aminoglycosides. L. rhamnosus strains were found to be resistant to vancomycin, (MIC > 256 microg/ml) similarly to ATCC strains (L. rhamnosus GG 53103 and 244). The sensitivity to other antibiotics was strain specific. The rep-PCR method was found species and strain specific. All products tested fulfilled declared countent as measured by cfu count/package. Quality of medicinal products containing probiotics was found undoubted and confirmed. The optimized strategy of quality monitoring of probiotics used in medicinal products can be used in dietary supplements and foodstuffs intended for particular nutritional uses.

  14. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  15. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium.

    Science.gov (United States)

    Zhang, Sicai; Lebreton, Francois; Mansfield, Michael J; Miyashita, Shin-Ichiro; Zhang, Jie; Schwartzman, Julia A; Tao, Liang; Masuyer, Geoffrey; Martínez-Carranza, Markel; Stenmark, Pål; Gilmore, Michael S; Doxey, Andrew C; Dong, Min

    2018-02-14

    Botulinum neurotoxins (BoNTs), produced by various Clostridium strains, are a family of potent bacterial toxins and potential bioterrorism agents. Here we report that an Enterococcus faecium strain isolated from cow feces carries a BoNT-like toxin, designated BoNT/En. It cleaves both VAMP2 and SNAP-25, proteins that mediate synaptic vesicle exocytosis in neurons, at sites distinct from known BoNT cleavage sites on these two proteins. Comparative genomic analysis determines that the E. faecium strain carrying BoNT/En is a commensal type and that the BoNT/En gene is located within a typical BoNT gene cluster on a 206 kb putatively conjugative plasmid. Although the host species targeted by BoNT/En remains to be determined, these findings establish an extended member of BoNTs and demonstrate the capability of E. faecium, a commensal organism ubiquitous in humans and animals and a leading cause of hospital-acquired multi-drug-resistant (MDR) infections, to horizontally acquire, and possibly disseminate, a unique BoNT gene cluster. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Genomic characterization, phylogenetic analysis, and identification of virulence factors in Aerococcus sanguinicola and Aerococcus urinae strains isolated from infection episodes

    DEFF Research Database (Denmark)

    Carkaci, Derya; Højholt, Katrine; Nielsen, Xiaohui Chen

    2017-01-01

    Aerococcus sanguinicola and Aerococcus urinae are emerging pathogens in clinical settings mostly being causative agents of urinary tract infections (UTIs), urogenic sepsis and more seldomly complicated infective endocarditis (IE). Limited knowledge exists concerning the pathogenicity of these two...... species. Eight clinical A. sanguinicola (isolated from 2009 to 2015) and 40 clinical A. urinae (isolated from 1984 to 2015) strains from episodes of UTIs, bacteremia, and IE were whole-genome sequenced (WGS) to analyze genomic diversity and characterization of virulence genes involved in the bacterial....... Phylogenetic analyses showed the 40 A. urinae strains formed two clusters according to two time periods: 1984–2004 strains and 2010–2015 strains. Genes that were homologs to virulence genes associated with bacterial adhesion and antiphagocytosis were identified by aligning A. sanguinicola and A. urinae pan...

  17. Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network.

    Science.gov (United States)

    Tani, Hirofumi; Maehana, Koji; Kamidate, Tamio

    2004-11-15

    A whole-cell bioassay has been performed using Escherichia coli sensor strains immobilized in a chip assembly, in which a silicon substrate is placed between two poly(dimethylsiloxane) (PDMS) substrates. Microchannels fabricated on the two separate PDMS layers are connected via perforated microwells on the silicon chip, and thus, a three-dimensional microfluidic network is constructed in the assembly. Bioluminescent sensor strains mixed with agarose are injected into the channels on one of the two PDMS layers and are immobilized in the microwells by gelation. Induction of the firefly luciferase gene expression in the sensor strains can be easily carried out by filling the channels on the other layer with sample solutions containing mutagen. Bioluminescence emissions from each well are detected after injection of luciferin/ATP mixtures into the channels. In this assay format using two multichannel layers and one microwell array chip, the interactions between various types of samples and strains can be monitored at each well on one assembly in a combinatorial fashion. Using several genotypes of the sensor strains or concentrations of mitomycin C in this format, the dependence of bioluminescence on these factors was obtained simultaneously in the single screening procedure. The present method could be a promising on-chip format for high-throughput whole-cell bioassays.

  18. Impact on bacterial community in midguts of the Asian corn borer larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain.

    Directory of Open Access Journals (Sweden)

    Yingying Li

    Full Text Available This paper is the first report of the impact on the bacterial community in the midgut of the Asian corn borer (Ostrinia furnacalis by the chitinase from the transgenic Trichoderma strain. In this study, we detected a change of the bacterial community in the midgut of the fourth instar larvae by using a culture-independent method. Results suggested that Proteobacteria and Firmicutes were the most highly represented phyla, being present in all the midgut bacterial communities. The observed species richness was simple, ranging from four to five of all the 16S rRNA clone libraries. When using Trichoderma fermentation liquids as additives, the percentages of the dominant flora in the total bacterial community in larval midgut changed significantly. The community of the genus Ochrobactrum in the midgut decreased significantly when the larvae were fed with the fermentation liquids of the transgenic Trichoderma strain Mc4. However, the Enterococcus community increased and then occupied the vacated niche of the Ochrobactrum members. Furthermore, the Shannon-Wiener (H and the Simpson (1-D indexes of the larval midgut bacterial library treated by feeding fermentation liquids of the transgenic Trichoderma strain Mc4 was the lowest compared with the culture medium, fermentation liquids of the wild type strain T30, and the sterile artificial diet. The Enterococcus sp. strain was isolated and characterized from the healthy larvae midgut of the Asian corn borer. An infection study of the Asian corn borer larvae using Enterococcus sp. ACB-1 revealed that a correlation existed between the increased Enterococcus community in the larval midgut and larval mortality. These results demonstrated that the transgenic Trichoderma strain could affect the composition of the midgut bacterial community. The change of the midgut bacterial community might be viewed as one of the factors resulting in the increased mortality of the Asian corn borer larvae.

  19. Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains.

    Science.gov (United States)

    Singh, Bina; Bhattacharya, Amit; Channashettar, Veeranna A; Jeyaseelan, C Paul; Gupta, Sachin; Sarma, Priyangshu M; Mandal, Ajoy K; Lal, Banwari

    2012-08-01

    Feasibility study carried out at the site prior to the full scale study showed that the introduced bacterial consortium effectively adapted to the local environment of the soil at bioremediation site. The soil samples were collected from the contaminated fields after treatment with bacterial consortium at different time intervals and analyzed by gas chromatography after extraction with hexane and toluene. At time zero (just before initiation of bioremediation), the concentration of total petroleum hydrocarbons in the soil (25-cm horizon) of plot A, B, C and D was 30.90 %, 18.80 %, 25.90 % and 29.90 % respectively, after 360 days of treatment with microbial consortia was reduced to 0.97 %, 1.0 %, 1.0 %, and 1.1 % respectively. Whereas, only 5 % degradation was observed in the control plot after 365 days (microbial consortium not applied).

  20. Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles

    OpenAIRE

    Matsuo, Junji; Oguri, Satoshi; Nakamura, Shinji; Hanawa, Tomoko; Fukumoto, Tatsuya; Hayashi, Yasuhiro; Kawaguchi, Kouhei; Mizutani, Yoshihiko; Yao, Takashi; Akizawa, Kouzi; Suzuki, Haruki; Simizu, Chikara; Matsuno, Kazuhiko; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2010-01-01

    The mechanism underlying bacterial conjugation through protozoa was investigated. Kanamycin-resistant Escherichia coli SM10λ+ carrying pRT733 with TnphoA was used as donor bacteria and introduced by conjugation into ciprofloxacin-resistant E. coli clinical isolate recipient bacteria. Equal amounts of donor and recipient bacteria were mixed together in the presence or absence of protozoa (ciliates, free-living amoebae, myxamoebae) in Page's amoeba saline for 24 h. Transconjugants were selected...

  1. Bacterial succession during curing process of a skate (Dipturus batis) and isolation of novel strains.

    Science.gov (United States)

    Reynisson, E; Thornór Marteinsson, V; Jónsdóttir, R; Magnússon, S H; Hreggvidsson, G O

    2012-08-01

    To study the succession of cultivated and uncultivated microbes during the traditional curing process of skate. The microbial diversity was evaluated by sequencing 16Sr RNA clone libraries and cultivation in variety of media from skate samples taken periodically during a 9-day curing process. A pH shift was observed (pH 6·64-9·27) with increasing trimethylamine (2·6 up to 75·6 mg N per 100 g) and total volatile nitrogen (TVN) (from 58·5 to 705·8 mg N per 100 g) but with relatively slow bacterial growth. Uncured skate was dominated by Oceanisphaera and Pseudoalteromonas genera but was substituted after curing by Photobacterium and Aliivibrio in the flesh and Pseudomonas on the skin. Almost 50% of the clone library is derived from putative undiscovered species. Cultivation and enrichment strategies resulted in isolation of putatively new species belonging to the genera Idiomarina, Rheinheimera, Oceanisphaera, Providencia and Pseudomonas. The most abundant genera able to hydrolyse urea to ammonia were Oceanisphaera, Psychrobacter, Pseudoalteromonas and isolates within the Pseudomonas genus. The curing process of skate is controlled and achieved by a dynamic bacterial community where the key players belong to Oceanisphaera, Pseudoalteromonas, Photobacterium, Aliivibrio and Pseudomonas. For the first time, the bacterial population developments in the curing process of skate are presented and demonstrate a reservoir of many yet undiscovered bacterial species. No Claim to Norwegian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  2. Viral and bacterial pathogens identification in children hospitalised for severe pneumonia and parapneumonic empyema

    Directory of Open Access Journals (Sweden)

    Jean-Noël Telles

    2012-12-01

    Full Text Available Pneumonia is caused by respiratory bacteria and/or viruses. Little is known if co-infections are an aggravating factor in hospitalised children with severe pneumonia. We studied the impact of respiratory pathogens on the severity of pneumonia. Between 2007 and 2009, 52 children hospitalised with a well-documented diagnosis of communityacquired pneumonia (CAP, with or without parapneumonic empyema (PPE, were enrolled in the study. The patients were classified into 2 groups: CAP + PPE (n = 28 and CAP (n = 24. The identification of respiratory viruses and bacteria in nasopharyngeal aspirates and pleural effusion samples were performed using conventional bacterial techniques and molecular assays. Using real-time multiplex PCR and antigen detection, Streptococcus pneumoniae was the main agent identified in 76% of the cases by molecular tests and BinaxNOW® in pleural fluid. A total of 8% of pleural fluid samples remained undiagnosed. In nasopharyngeal aspirates, rhinovirus, parainfluenza viruses, human metapneumovirus, and respiratory syncytial virus were detected in both CAP and CAP + PPE populations; however, the percentage of viral co-detection was significantly higher in nasopharyngeal aspirates from CAP + PPE patients (35% compared with CAP patients (5%. In conclusion, viral co-detection was observed mainly in patients with more severe pneumonia. Molecular biology assays improved the pathogens detection in pneumonia and confirmed the S. pneumoniae detection by BinaxNOW® in pleural effusion samples. Interestingly, the main S. pneumoniae serotypes found in PPE are not the ones targeted by the heptavalent pneumococcal conjugate vaccine.

  3. Viral and bacterial pathogens identification in children hospitalised for severe pneumonia and parapneumonic empyema

    Directory of Open Access Journals (Sweden)

    Jean-Noël Telles

    2012-05-01

    Full Text Available Pneumonia is caused by respiratory bacteria and/or viruses. Little is known if co-infections are an aggravating factor in hospitalised children with severe pneumonia. We studied the impact of respiratory pathogens on the severity of pneumonia. Between 2007 and 2009, 52 children hospitalised with a well-documented diagnosis of communityacquired pneumonia (CAP, with or without parapneumonic empyema (PPE, were enrolled in the study. The patients were classified into 2 groups: CAP + PPE (n = 28 and CAP (n = 24. The identification of respiratory viruses and bacteria in nasopharyngeal aspirates and pleural effusion samples were performed using conventional bacterial techniques and molecular assays. Using real-time multiplex PCR and antigen detection, Streptococcus pneumoniae was the main agent identified in 76% of the cases by molecular tests and BinaxNOW® in pleural fluid. A total of 8% of pleural fluid samples remained undiagnosed. In nasopharyngeal aspirates, rhinovirus, parainfluenza viruses, human metapneumovirus, and respiratory syncytial virus were detected in both CAP and CAP + PPE populations; however, the percentage of viral co-detection was significantly higher in nasopharyngeal aspirates from CAP + PPE patients (35% compared with CAP patients (5%. In conclusion, viral co-detection was observed mainly in patients with more severe pneumonia. Molecular biology assays improved the pathogens detection in pneumonia and confirmed the S. pneumoniae detection by BinaxNOW® in pleural effusion samples. Interestingly, the main S. pneumoniae serotypes found in PPE are not the ones targeted by the heptavalent pneumococcal conjugate vaccine.

  4. Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

    Science.gov (United States)

    Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET

    2018-01-01

    Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

  5. Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels

    Directory of Open Access Journals (Sweden)

    Xuefang Guan

    Full Text Available ABSTRACT Objective To screen for and characterize lactic acid bacteria strains with the ability to produce fermented milk and reduce cholesterol levels. Methods The strains were isolated from traditional fermented milk in China. In vitro and in vivo evaluation of cholesterol-reduction were used to identify and verify strains of interest. Characteristics were analyzed using spectrophotometry and plate counting assays. Results The isolate HLX37 consistently produced fermented milk with strong cholesterol-reducing properties was identified as Lactobacillus plantarum (accession number: KR105940 and was thus selected for further study. The cholesterol reduction by strain HLX37 was 45.84%. The isolates were acid-tolerant at pH 2.5 and bile-tolerant at 0.5% (w/v in simulated gastric juice (pH 2.5 for 2 h and in simulated intestinal fluid (pH 8.0 for 3 h. The auto-aggregation rate increased to 87.74% after 24 h, while the co-aggregation with Escherichia coli DH5 was 27.76%. Strain HLX37 was intrinsically resistant to antibiotics such as penicillin, tobramycin, kanamycin, streptomycin, vancomycin and amikacin. Compared with rats in the model hyperlipidemia group, the total cholesterol content in the serum and the liver as well as the atherogenic index of rats in the viable fermented milk group significantly decreased by 23.33%, 32.37% and 40.23%, respectively. Fewer fat vacuoles and other lesions in liver tissue were present in both the inactivated and viable fermented milk groups compared to the model group. Conclusion These studies indicate that strain HLX37 of L. plantarum demonstrates probiotic potential, potential for use as a candidate for commercial use for promoting health.

  6. Identification of molecular markers linked to rice bacterial blight resistance genes from Oryza meyeriana

    Directory of Open Access Journals (Sweden)

    Jing WANG,Chen CHENG,Yanru ZHOU,Yong YANG,Qiong MEI,Junmin LI,Ye CHENG,Chengqi YAN,Jianping CHEN

    2015-09-01

    Full Text Available Y73 is a progeny of asymmetric somatic hybridization between Oryza sativa cv. Dalixiang and the wild rice species Oryza meyeriana. Inoculation with a range of strains of Xanthomonas oryzae pv. oryzae showed that Y73 had inherited a high level of resistance to rice bacterial blight (BB from its wild parent. An F2 population of 7125 individuals was constructed from the cross between Y73 and a BB-susceptible cultivar IR24. After testing 615 SSR and STS markers covering the 12 rice chromosomes, 186 markers were selected that showed polymorphism between Y73 and IR24. Molecular markers linked to the BB resistance genes in Y73 were scanned using the F2 population and the polymorphic markers. The SSR marker RM128 on chromosome 1, the STS marker R03D159 on chromosome 3 and the STS marker R05D104 on chromosome 5 were found to be linked to the rice BB resistance genes in Y73.

  7. The Genomic Sequence of the Oral Pathobiont Strain NI1060 Reveals Unique Strategies for Bacterial Competition and Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Youssef Darzi

    Full Text Available Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease.

  8. Control Efficacy of an Endophytic Bacillus amyloliquefaciens Strain BZ6-1 against Peanut Bacterial Wilt, Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Xiaobing Wang

    2014-01-01

    Full Text Available We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (108 cfu mL−1 culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW.

  9. New lactic acid bacterial strains from traditional Mongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source.

    Science.gov (United States)

    Kimoto-Nira, Hiromi; Yamasaki, Seishi; Sasaki, Keisuke; Moriya, Naoko; Takenaka, Akio; Suzuki, Chise

    2015-03-01

    Attachment of lactic acid bacteria to the mucosal surface of the gastrointestinal tract is a major property of probiotics. Here, we examined the ability of 21 lactic acid bacterial strains isolated from traditional fermented milk products in Mongolia to adhere to porcine gastric mucin in vitro. Higher attachment was observed with Lactobacillus delbrueckii subsp. bulgaricus strains 6-8 and 8-1 than with Lactobacillus rhamnosus GG (positive control). Lactococcus lactis subsp. cremoris strain 7-1 adhered to mucin as effectively as did strain GG. Heat inactivation decreased the adhesive ability of strains 6-8 and 8-1 but did not affect strain 7-1. The adhesion of strains 6-8, 7-1 and 8-1 was significantly inhibited when the cells were pretreated with periodate and trypsin, indicating that proteinaceous and carbohydrate-like cell surface compounds are involved in the adhesion of these strains. The adhesion of strain 7-1 was affected by the type of carbohydrate present in the growth medium, being higher with fructose than with lactose, galactose or xylose as the carbon source. The sugar content of 7-1 cells grown on various carbohydrates was negatively correlated with its adhesive ability. We provide new probiotic candidate strains and new information regarding carbohydrate preference that influences lactic acid bacterial adhesion to mucin. © 2014 Japanese Society of Animal Science.

  10. Development of aptamers for use as radiopharmaceuticals in the bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes

    2013-01-01

    The difficulty in early detection of specific foci caused by bacteria in the bacterial infection has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy had the advantage that a whole body image could be obtained, since specific tracers were available. This study aims to obtain aptamers specific for bacteria identification for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99 mTc, 18 F and 32 P. In this study, aptamers anti-peptidoglycan, the main component of the bacterial outer cell wall, were obtained through SELEX. Whole cells of Staphylococcus aureus were also used to perform the SELEX to cells (cell-SELEX). The selection of aptamers was performed by two different procedures (A and B). The A process has been accomplished by 15 SELEX rounds in which the separation of the oligonucleotides bound to the peptidoglycan of unbound ones was performed by filtration. In the B process 15 SELEX rounds were performed using the centrifugation for this separation, followed by 5 rounds cell-SELEX. The SELEX started with a pool of ssDNA (single stranded DNA). For A process, initially a library of ssDNA was incubated with peptidoglycan and the amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reation). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 selection rounds the selected oligonucleotides were cloned

  11. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with {sup 99m}Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with {sup 99m}Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the {sup 99m}Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. {sup 99m}Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the {sup 99m}Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than

  12. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  13. Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste.

    Science.gov (United States)

    Chandra, Ram; Singh, Shail; Krishna Reddy, M M; Patel, D K; Purohit, Hemant J; Kapley, Atya

    2008-12-01

    Eight aerobic bacterial strains were isolated from pulp paper mill waste and screened for tolerance of kraft lignin (KL) using the nutrient enrichment technique in mineral salt media (MSM) agar plate (15 g/L) amended with different concentrations of KL (100, 200, 300, 400, 500, 600 ppm) along with 1% glucose and 0.5% peptone (w/v) as additional carbon and nitrogen sources. The strains ITRC S6 and ITRC S8 were found to have the most potential for tolerance of the highest concentration of KL. These organisms were characterized by biochemical tests and further 16S rRNA gene (rDNA) sequencing, which showed 96.5% and 95% sequence similarity of ITRC S(6) and ITRC S(8) and confirmed them as Paenibacillus sp. and Bacillus sp., respectively. KL decolorization was routinely monitored with a spectrophotometer and further confirmed by HPLC analysis. Among eight strains, ITRC S(6) and ITRC S(8) were found to degrade 500 mg/L of KL up to 47.97% and 65.58%, respectively, within 144 h of incubation in the presence of 1% glucose and 0.5% (w/v) peptone as a supplementary source of carbon and nitrogen. In the absence of glucose and peptone, these bacteria were unable to utilize KL. The analysis of lignin degradation products by GC-MS analysis revealed the formation of various acids as lignin monomers which resulted in a decrease in pH and a major change in the chromatographic profile of the bacterial degraded sample as compared to the control clear indications of biochemical modification of KL due to the bacterial ligninolytic system by ITRC S(6), namely, acetic acid, propanoic acid, butanoic acid, guaiacol, hexanoic acid, and ITRC S(8), namely acetic acid, propanoic acid, ethanedioic acid, furan carboxylic acid, 2-propanoic acid, butanoic acid, 3-acetoxybutyric acid, propanedioic acid, acetoguiacone, 1,2,3-thiadiazole, 5-carboxaldixime, 4-hydroxy-3,5-dimethoxyphenol, and dibutyl phthalate, indicating the bacterium characteristic to degrade G and S units of lignin polymer.

  14. Mutagenic and antimutagenic activities of Artemisia absinthium volatile oil by the bacterial reverse mutation assay in Salmonella typhimurium strains TA98 and TA100

    Directory of Open Access Journals (Sweden)

    Mahboubeh Taherkhani

    2014-09-01

    Full Text Available Objective: To investigate the mutagenic and antimutagenic activities of Artemisia absinthium L. (A. absinthium essential oil by the bacterial reverse mutation assay in Salmonella typhimurium (S. typhimurium strains. Methods: Water-distilled essential oil of A. absinthium collected from Ardabil, NorthWestern Iran, was investigated for mutagenic and antimutagenic activities. In present study, the mutagenic and antimutagenic activities of A. absinthium oil were investigated by the bacterial revere mutation assay in S. typhimurium TA98 and TA100 strains with and without S9 (microsomal mutagenesis assay. Results: The comparative mutagenicity effect was seen in 1.5 mg/plate by the bacterial reverse mutation assay in S. typhimurium TA98 strains, without S9 and the excellent antimutagenicity effect was seen in 1.5 mg/plate against S. typhimurium TA100, without S9. Conclusions: The mutagenicity and antimutagenicity effects of the volatile oil of A. absinthium were seen without the presence of metabolic activation.

  15. A new assay for the simultaneous identification and differentiation of Klebsiella oxytoca strains.

    Science.gov (United States)

    Stojowska-Swędrzyńska, Karolina; Krawczyk, Beata

    2016-12-01

    Klebsiella oxytoca is the second most frequently identified species of Klebsiella isolated from hospitalized patients. Klebsiella spp. is difficult to identify using conventional methods and is often misclassified in clinical microbiology laboratories. K. oxytoca is responsible for an increasing number of multi-resistant infections in hospitals because of insufficient detection and identification. In this study, we propose a new simple method called pehX-LM PCR/XbaI, which simultaneously indicates K. oxytoca species and genotype by the fingerprint pattern. The pehX-LM PCR/XbaI is a combination of the following two methods: species-specific amplification of pehX gene and non-specific amplification of short restriction fragments by the LM PCR method. The specificity and the discrimination power of the pehX-LM PCR/XbaI method were determined by typing 209 K. oxytoca strains (included 9 reference strains), 28 K. pneumoniae, and other 25 strains belonging to the Enterobacteriaceae. The typing results were confirmed by the PCR melting profile method. Unlike the known fingerprinting methods, the pehX-LM PCR/XbaI leads to a clear pattern (approx. 3-5 bands) with a sufficient, relatively high discriminatory power. As a result, the time and cost of a single analysis are lower. The method can be used both in clinical and environmental research.

  16. Identification of putative plant pathogenic determinants from a draft genome sequence of an opportunistic klebsiella pneumoniae strain

    Science.gov (United States)

    Klebsiella pneumoniae has been known historically as a causal agent of bacterial pneumonia. More recently, K. pneumoniaerepresentatives have been shown to have a broad ecological distribution and are recognized nitrogen-fixers. Previously, we demonstrated the capacity of K. pneumoniae strain Kp 5-1R...

  17. Isolation, antimicrobial activity of myxobacterial crude extracts and identification of the most potent strains

    Directory of Open Access Journals (Sweden)

    Charousová Ivana

    2017-01-01

    Full Text Available Broad spectrum antimicrobial agents are urgently needed to fight frequently occurring multidrug-resistant pathogens. Myxobacteria have been regarded as “microbe factories” for active secondary metabolites, and therefore, this study was performed to isolate two bacteriolytic genera of myxobacteria, Myxococcus sp. and Corallococcus sp., from 10 soil/sand samples using two conventional methods followed by purification with the aim of determining the antimicrobial activity of methanol extracts against 11 test microorganisms (four Gram-positive, four Gram-negative, two yeasts and one fungus. Out of thirty-nine directly observed strains, 23 were purified and analyzed for antimicrobial activities. Based on the broth microdilution method, a total of 19 crude extracts showed antimicrobial activity. The range of inhibited wells was more important in the case of anti-Gram-positive-bacterial activity in comparison with the anti-Gram-negative-bacterial and antifungal activity. In light of the established degree and range of antimicrobial activity, two of the most active isolates (BNEM1 and SFEC2 were selected for further characterization. Morphological parameters and a sequence similarity search by BLAST revealed that they showed 99% sequence similarity to Myxococcus xanthus − BNEM1 (accession no. KX669224 and Corallococcus coralloides - SFEC2 (accession no. KX669225. As these isolates had antimicrobial activity, they could be considered for use in the development of antibiotics for pharmaceutical use.

  18. Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method

    Directory of Open Access Journals (Sweden)

    Myung-Hee Lee

    2017-07-01

    Results and Conclusion: The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

  19. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.

    Science.gov (United States)

    Yassour, Moran; Vatanen, Tommi; Siljander, Heli; Hämäläinen, Anu-Maaria; Härkönen, Taina; Ryhänen, Samppa J; Franzosa, Eric A; Vlamakis, Hera; Huttenhower, Curtis; Gevers, Dirk; Lander, Eric S; Knip, Mikael; Xavier, Ramnik J

    2016-06-15

    The gut microbial community is dynamic during the first 3 years of life, before stabilizing to an adult-like state. However, little is known about the impact of environmental factors on the developing human gut microbiome. We report a longitudinal study of the gut microbiome based on DNA sequence analysis of monthly stool samples and clinical information from 39 children, about half of whom received multiple courses of antibiotics during the first 3 years of life. Whereas the gut microbiome of most children born by vaginal delivery was dominated by Bacteroides species, the four children born by cesarean section and about 20% of vaginally born children lacked Bacteroides in the first 6 to 18 months of life. Longitudinal sampling, coupled with whole-genome shotgun sequencing, allowed detection of strain-level variation as well as the abundance of antibiotic resistance genes. The microbiota of antibiotic-treated children was less diverse in terms of both bacterial species and strains, with some species often dominated by single strains. In addition, we observed short-term composition changes between consecutive samples from children treated with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a peak in abundance after antibiotic treatment followed by a sharp decline, whereas some genes carried on mobile elements persisted longer after antibiotic therapy ended. Our results highlight the value of high-density longitudinal sampling studies with high-resolution strain profiling for studying the establishment and response to perturbation of the infant gut microbiome. Copyright © 2016, American Association for the Advancement of Science.

  20. Characterization of bacterial strains capable of desulphurisation in soil and sediment samples from Antarctica.

    Science.gov (United States)

    Boniek, Douglas; Figueiredo, Débora; Pylro, Victor Satler; Duarte, Gabriela Frois

    2010-09-01

    The presence of sulphur in fossil fuels and the natural environment justifies the study of sulphur-utilising bacterial species and genes involved in the biodesulphurisation process. Technology has been developed based on the natural ability of microorganisms to remove sulphur from polycyclic aromatic hydrocarbon chains. This biotechnology aims to minimise the emission of sulphur oxides into the atmosphere during combustion and prevent the formation of acid rain. In this study, the isolation and characterization of desulphurising microorganisms in rhizosphere and bulk soil samples from Antarctica that were either contaminated with oil or uncontaminated was described. The growth of selected isolates and their capacity to utilise sulphur based on the formation of the terminal product of desulphurisation via the 4S pathway, 2-hydroxybiphenyl, was analysed. DNA was extracted from the isolates and BOX-PCR and DNA sequencing were performed to obtain a genomic diversity profile of cultivable desulphurising bacterial species. Fifty isolates were obtained showing the ability of utilising dibenzothiophene as a substrate and sulphur source for maintenance and growth when plated on selective media. However, only seven genetically diverse isolates tested positive for sulphur removal using the Gibbs assay. DNA sequencing revealed that these isolates were related to the genera Acinetobacter and Pseudomonas.

  1. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains

    Directory of Open Access Journals (Sweden)

    Sara eScandorieiro

    2016-05-01

    Full Text Available Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare essential oil (OEO and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP, produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all seventeen strains tested, with minimal inhibitory concentrations (MIC ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 µM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min, while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA cells exposed to three different treatments (OEO, bio-AgNP and combination of the two, which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds

  2. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain

    Science.gov (United States)

    2013-01-01

    Background Duck enteritis virus (DEV) is the causative agent of duck viral enteritis, which causes an acute, contagious and lethal disease of many species of waterfowl within the order Anseriformes. In recent years, two laboratories have reported on the successful construction of DEV infectious clones in viral vectors to express exogenous genes. The clones obtained were either created with deletion of viral genes and based on highly virulent strains or were constructed using a traditional overlapping fosmid DNA system. Here, we report the construction of a full-length infectious clone of DEV vaccine strain that was cloned into a bacterial artificial chromosome (BAC). Methods A mini-F vector as a BAC that allows the maintenance of large circular DNA in E. coli was introduced into the intergenic region between UL15B and UL18 of a DEV vaccine strain by homologous recombination in chicken embryoblasts (CEFs). Then, the full-length DEV clone pDEV-vac was obtained by electroporating circular viral replication intermediates containing the mini-F sequence into E. coli DH10B and identified by enzyme digestion and sequencing. The infectivity of the pDEV-vac was validated by DEV reconstitution from CEFs transfected with pDEV-vac. The reconstructed virus without mini-F vector sequence was also rescued by co-transfecting the Cre recombinase expression plasmid pCAGGS-NLS/Cre and pDEV-vac into CEF cultures. Finally, the in vitro growth properties and immunoprotection capacity in ducks of the reconstructed viruses were also determined and compared with the parental virus. Results The full genome of the DEV vaccine strain was successfully cloned into the BAC, and this BAC clone was infectious. The in vitro growth properties of these reconstructions were very similar to parental DEV, and ducks immunized with these viruses acquired protection against virulent DEV challenge. Conclusions DEV vaccine virus was cloned as an infectious bacterial artificial chromosome maintaining full

  3. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    Expression of CSPs was observed only in bacterial strains isolated from temperate region and negligible or no expression was observed in bacterial strains isolated from arid zones. Therefore this anti-CRPF8 can be used as immunological tool for the identification of CSP from diversified microorganisms.

  4. Identification and characterization of pathogen to bacterial septicaemia in cultured turbot, Scophthalmus maximus

    Science.gov (United States)

    Qin, Guomin; Zhang, Xiaojun; Chen, Cuizhen; Fang, Hai; Zhan, Wenbin

    2007-10-01

    Bacteria-infected turbots Scophthalmus maximus with septicaemia were examined between 2001 and 2004 in aspects of the conditions of disease occurrence, clinical syndromes and pathological changes. The phenotypic information of pathogenic bacteria was studied, including morphology, physiological and biochemical characteristics, and the mol% G+C of the DNA. In addition, representative strains (S010623-1, LH031120-1) were selected for molecular identification by partial 16S rRNA gene sequencing. The results show that the isolates (LH031120-1 to LH031120-6, HT040308-1 to HT040308-6, HT040620-1 to HT040620-6) from three farms were identified as Edwardsiella tarda. The isolates (S010610-1 to S010610-10, S010623-1 to S010623-20) from one farm were identified as Listonella anguillarum. We conducted studies on the pathogenicity of isolates by artificial infection, and revealed all infected groups in morbidity and mortality. The septicaemia infected turbot showed a syndrome similar to that of the naturally infected fish. Antibiotic sensitivity showed that of 37 antimicrobial agents, E. tarda was sensitive to 27 agents, and L. anguillarum was sensitive to 21 agents.

  5. Degradation of nicosulfuron by a novel isolated bacterial strain Klebsiella sp. Y1: condition optimization, kinetics and degradation pathway.

    Science.gov (United States)

    Wang, Lin; Zhang, Xiaolin; Li, Yongmei

    2016-01-01

    A novel bacterial strain Klebsiella sp. Y1 was isolated from the soil of a constructed wetland, and it was identified based on the 16S rDNA sequence analysis. The co-metabolic degradation of nicosulfuron with glucose by Klebsiella sp. Y1 was investigated. The response surface methodology analysis indicated that the optimal pH and temperature were 7.0 and 35 °C, respectively, for the degradation of nicosulfuron. Under the optimal conditions, the degradation of nicosulfuron fitted Haldane kinetics model well. The removal of nicosulfuron was triggered by the acidification of glucose, which accelerated the hydrolysis of nicosulfuron. Then, the C-N bond of the sulfonylurea bridge was attacked and cleaved. Finally, the detected intermediate 2-amino-4,6-dimethoxypyrimidine was further biodegraded.

  6. Isolation and identification of bacterial strain I33M producing milk ...

    African Journals Online (AJOL)

    Igbigbi

    Murado and Siso (1993). One millilitre of the enzymatic extracts was added to 1 ml of 2% (w/v) alkali soluble casein in 0.02 M sodium-citrate buffer (pH 5.2). The reaction mixture was incubated at 35°C in a water bath for 10, 30, 60, 90 and 180 min, and the reaction was terminated by adding 5 ml of 12% (w/v) trichloroacetic.

  7. Multi-view multi-class classification for identification of pathogenic bacterial strains

    NARCIS (Netherlands)

    Tsivtsivadze, E.; Heskes, T.; Paauw, A.

    2013-01-01

    In various learning problems data can be available in different representations, often referred to as views. We propose multi-class classification method that is particularly suitable for multi-view learning setting. The algorithm uses co-regularization and error-correcting techniques to leverage

  8. Broad-spectrum bactericidal activity of a new bioactive grafting material (F18) against clinically important bacterial strains.

    Science.gov (United States)

    Souza, M T; Campanini, L A; Chinaglia, C R; Peitl, O; Zanotto, E D; Souza, C W O

    2017-12-01

    Infection is the most relevant surgical complication in implant or grafting procedures. Osteomyelitis and other chronic conditions pose a constant challenge in current medical practice. In this context, a grafting biomaterial that possesses antibacterial properties combined with bioactivity could have great clinical impact. Researchers at the Vitreous Materials Laboratory (LaMaV-UFSCar) recently developed a glass composition, named F18, that presents an improved workability range combined with high bioactivity. With F18, one can easily manufacture complex shapes, such as scaffolds, continuous fibres and coat implants. This biomaterial has proven to be a viable alternative for bone and skin regeneration in in vivo tests, however its antimicrobial properties have not been explored. Hence, the purpose of this study was to systematically investigate the antibacterial activity of F18 in powder and fibre forms according to the JIS Z 2801:2010 standard. Whether incorporation of silver into F18 glass could impact its antimicrobial activity was also evaluated. Four clinically relevant Gram-positive and Gram-negative pathogenic bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) were used in this study. In both powder and fibre forms, F18 presented extremely efficient bactericidal activity against all strains tested, eliminating virtually 100% of the bacterial cells after 24 h. Kinetic tests showed that silver doping further increased the bactericidal activity, leading to S. aureus eradication in only 30 min after incubation. Both doped and non-doped glasses demonstrated very high bactericidal activity, making F18 a promising infection-preventing alternative for bone and wound regeneration in clinical practice. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Effective identification of bacterial type III secretion signals using joint element features.

    Directory of Open Access Journals (Sweden)

    Yejun Wang

    Full Text Available Type III secretion system (T3SS plays important roles in bacteria and host cell interactions by specifically translocating type III effectors into the cytoplasm of the host cells. The N-terminal amino acid sequences of the bacterial type III effectors determine their specific secretion via type III secretion conduits. It is still unclear as to how the N-terminal sequences guide this specificity. In this work, the amino acid composition, secondary structure, and solvent accessibility in the N-termini of type III and non-type III secreted proteins were compared and contrasted. A high-efficacy mathematical model based on these joint features was developed to distinguish the type III proteins from the non-type III ones. The results indicate that secondary structure and solvent accessibility may make important contribution to the specific recognition of type III secretion signals. Analysis also showed that the joint feature of the N-terminal 6(th-10(th amino acids are especially important for guiding specific type III secretion. Furthermore, a genome-wide screening was performed to predict Salmonella type III secreted proteins, and 8 new candidates were experimentally validated. Interestingly, type III secretion signals were also predicted in gram-positive bacteria and yeasts. Experimental validation showed that two candidates from yeast can indeed be secreted through Salmonella type III secretion conduit. This research provides the first line of direct evidence that secondary structure and solvent accessibility contain important features for guiding specific type III secretion. The new software based on these joint features ensures a high accuracy (general cross-validation sensitivity of ∼96% at a specificity of ∼98% in silico identification of new type III secreted proteins, which may facilitate our understanding about the specificity of type III secretion and the evolution of type III secreted proteins.

  10. The efficacy of cough plates in the identification of bacterial pathogens in children with cystic fibrosis.

    Science.gov (United States)

    Byrne, N M; O'Brien, C; Spencer, D A

    2013-10-01

    Identification of bacterial pathogens is paramount for prompt and effective treatment of respiratory exacerbations in children with cystic fibrosis (CF). This can be a challenge in non-expectorating patients as reliability of cough swabs (CS) is poor. More recently, cough plates (CP) have been reported to give high yields in some series. The aim of the study was to ascertain their effectiveness compared to CS and to assess the impact of cough strength on efficacy of CP. Non-expectorating children with CF aged 3-16 years were recruited. Baseline data was recorded and peak cough flow measured. Specimens were obtained with CP and a cough swab in a randomised order and repeated at up to four clinic visits to obtain multiple measurements. Subjects completed a short questionnaire. Number of subjects was 95, mean age 8.8±4.1 years, 45 males. Mean baseline % predicted FEV1 was 90.8±18. In total, 324 sets of specimens were collected. Pathogens were isolated in 18.2% of CS and 8% of CP. Agreement between the two specimens occurred in only 5.5% of cases. CP isolated pathogens on six occasions when the CS was negative while 40 CS were positive with a corresponding negative CP. Cough strength increased with age, and there was a trend towards older children isolating more pathogens on CP. However, this was not statistically significant. The majority of subjects preferred the CP. CP are less effective than CS in identifying respiratory pathogens in children with CF.

  11. Antibacterial activity of the essential oil of Origanum vulgare L. (Lamiaceae against bacterial multiresistant strains isolated from nosocomial patients

    Directory of Open Access Journals (Sweden)

    Adalberto Coelho da Costa

    Full Text Available Antibiotics are considered the main therapeutic option to treat bacterial infections; however, there is the disadvantage of increasing bacterial resistance. Thus, the research of antimicrobials of plant origin has been an important alternative. This work aimed at determining the in vitro antibacterial activity of the essential oil of Origanum vulgare L. (Lamiaceae on multiresistant bacteria isolated from biological materials. 24 strains of nosocomial bacteria were used and divided into six different species that were inhibited by the essential oil in the preliminary "screening" which was accomplished by the diffusion technique in agar. MIC was determined by the microdilution method, beginning with solutions with the final concentrations: 8 up to 0.125% with the following results: The four samples (100% of Escherichia coli, Enterococcus faecalis and MRSA were inhibited by the essential oil at the concentration of 0.125%. Three samples (75% of Acinetobacter baumannii at 0.125% and a sample (25% at 0.5%; Klebsiella pneumoniae (75% at 0.125% and 25% at 0.25%; Pseudomonas aeruginosa (75% at 0.5% and 25% at 0.25%. MIC varied from 78 to 83%. It was concluded through the obtained data that there was not difference in the minimum bactericidal concentration (0.5% of the referred oil for Gram positive as well for Gram negative microorganisms.

  12. Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR.

    Science.gov (United States)

    Montazeri, Effat Abbasi; Khosravi, Azar Dokht; Jolodar, Abbas; Ghaderpanah, Mozhgan; Azarpira, Samireh

    2015-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) as important human pathogens are causes of nosocomial infections worldwide. Burn patients are at a higher risk of local and systemic infections with these microorganisms. A screening method for MRSA by using a multiplex polymerase chain reaction (PCR) targeting the 16S ribosomal RNA (rRNA), mecA, and nuc genes was developed. The aim of the present study was to investigate the potential of this PCR assay for the detection of MRSA strains in samples from burn patients. During an 11-month period, 230 isolates (53.11%) of Staphylococcus spp. were collected from burn patients. The isolates were identified as S. aureus by using standard culture and biochemical tests. DNA was extracted from bacterial colonies and multiplex PCR was used to detect MRSA and MRCoNS strains. Of the staphylococci isolates, 149 (64.9%) were identified as S. aureus and 81 (35.21%) were described as CoNS. Among the latter, 51 (62.97%) were reported to be MRCoNS. From the total S. aureus isolates, 132 (88.6%) were detected as MRSA and 17 (11.4%) were methicillin-susceptible S. aureus (MSSA). The presence of the mecA gene in all isolates was confirmed by using multiplex PCR as a gold standard method. This study presented a high MRSA rate in the region under investigation. The 16S rRNA-mecA-nuc multiplex PCR is a good tool for the rapid characterization of MRSA strains. This paper emphasizes the need for preventive measures and choosing effective antimicrobials against MRSA and MRCoNS infections in the burn units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  13. Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase.

    Science.gov (United States)

    Talà, Adelfia; Wang, Guojun; Zemanova, Martina; Okamoto, Susumu; Ochi, Kozo; Alifano, Pietro

    2009-02-01

    There is accumulating evidence that the ability of actinomycetes to produce antibiotics and other bioactive secondary metabolites has been underestimated due to the presence of cryptic gene clusters. The activation of dormant genes is therefore one of the most important areas of experimental research for the discovery of drugs in these organisms. The recent observation that several actinomycetes possess two RNA polymerase beta-chain genes (rpoB) has opened up the possibility, explored in this study, of developing a new strategy to activate dormant gene expression in bacteria. Two rpoB paralogs, rpoB(S) and rpoB(R), provide Nonomuraea sp. strain ATCC 39727 with two functionally distinct and developmentally regulated RNA polymerases. The product of rpoB(R), the expression of which increases after transition to stationary phase, is characterized by five amino acid substitutions located within or close to the so-called rifampin resistance clusters that play a key role in fundamental activities of RNA polymerase. Here, we report that rpoB(R) markedly activated antibiotic biosynthesis in the wild-type Streptomyces lividans strain 1326 and also in strain KO-421, a relaxed (rel) mutant unable to produce ppGpp. Site-directed mutagenesis demonstrated that the rpoB(R)-specific missense H426N mutation was essential for the activation of secondary metabolism. Our observations also indicated that mutant-type or duplicated, rpoB often exists in nature among rare actinomycetes and will thus provide a basis for further basic and applied research.

  14. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Science.gov (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  15. Detecção da resistência a antibióticos de bactérias isoladas de casos clínicos ocorridos em animais de companhia Detection of antibiotic resistance in clinical bacterial strains from pets

    Directory of Open Access Journals (Sweden)

    P. Poeta

    2008-04-01

    Full Text Available The identification of different bacterial strains and the occurrence of antibiotic resistance were investigated in several infection processes of pets as skin abscess with purulent discharge, bronco alveolar fluid, earwax, urine, mammary, and eye fluid. Streptococcus spp. and Staphylococcus spp. were the most detected in the different samples. A high frequency of antimicrobial resistance has been observed and this could reflect the wide use of antimicrobials in pets, making the effectiveness of antibiotic treatment to become more complicated.

  16. Identification of the 1B vaccine strain of Chlamydia abortus in aborted placentas during the investigation of toxaemic and systemic disease in sheep.

    Science.gov (United States)

    Sargison, N D; Truyers, I G R; Howie, F E; Thomson, J R; Cox, A L; Livingstone, M; Longbottom, D

    2015-09-01

    One hundred and forty Cheviot and 100 Suffolk cross Mule primiparous 1-2-year-old ewes, from a flock of about 700 ewes, were vaccinated with an attenuated live 1B strain Chlamydia abortus vaccine about 4 weeks before ram introduction (September 2011). Between 08 March and 01 April 2012, 50 2-year-old ewes aborted and 29 of these died, despite antimicrobial and anti-inflammatory treatment and supportive care. Seven fetuses and three placentae from five 2-year-old ewes were submitted for pathological investigation. The aborted fetuses showed stages of autolysis ranging from being moderately fresh to putrefaction. Unusual, large multifocal regions of thickened membranes, with a dull red granular surface and moderate amounts of grey-white surface exudate were seen on each of the placentae. Intracellular, magenta-staining, acid fast inclusions were identified in Ziehl Neelsen-stained placental smears. Immunohistochemistry for Chlamydia-specific lipopolysaccharide showed extensive positive labelling of the placental epithelia. Molecular analyses of the aborted placentae demonstrated the presence of the 1B vaccine-type strain of C. abortus and absence of any wild-type field strain. The vaccine strain bacterial load of the placental tissue samples was consistent with there being an association between vaccination and abortion. Initial laboratory investigations resulted in a diagnosis of chlamydial abortion. Further investigations led to the identification of the 1B vaccine strain of C. abortus in material from all three of the submitted aborted placentae. Timely knowledge and understanding of any potential problems caused by vaccination against C. abortus are prerequisites for sustainable control of chlamydial abortion. This report describes the investigation of an atypical abortion storm in sheep, and describes the identification of the 1B vaccine strain of C. abortus in products of abortion. The significance of this novel putative association between the vaccine strain

  17. Identification and molecular characterization of a Bacillus subtilis IS13 strain involved in the biodegradation of 4,5,6-trichloroguaiacol.

    Science.gov (United States)

    Andretta, C W S; Rosa, R M; Tondo, E C; Gaylarde, C C; Henriques, J A P

    2004-04-01

    4,5,6-Trichloroguaiacol (4,5,6-TCG) is a recalcitrant organochlorine compound produced during pulp bleaching and a potential environmental hazard in paper mill effluents. We report here the identification by biochemical tests and molecular biological analysis, using 16S ribotyping, of a 4,5,6-TCG-degrading bacterium, identified as a strain of Bacillus subtilis that is most closely related according to the phylogenetic analysis to B. subtilis strain Lactipan (alignment score 99%). Biodegradation of 4,5,6-TCG by this organism in a mineral salts medium was shown to occur only when the inoculum was composed of cells in the stationary phase of growth and to be accelerated by an additional carbon source, such as glucose, sucrose, glycerol or molasses. An additional nitrogen source (as ammonium sulfate) did not affect the rate of 4,5,6-TGC removal. No plasmids were detected in the bacterial cells. This is the first strain of B. subtilis which degrades chlorophenols and shows that 4,5,6-TCG is not degraded by cometabolism and that the gene encoding this characteristic is probably located on the chromosome. The lack of requirement for additional nitrogen source, the ability to enhance biodegradation by adding cheap carbon sources such as molasses, and the fact the trait is likely to be stable since it is encoded on the cell chromosome, are all characteristics that make the organism an attractive possibility for treatment of wastes and environments polluted with organochlorine compounds.

  18. Antibacterial action of doped CoFe{sub 2}O{sub 4} nanocrystals on multidrug resistant bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Velho-Pereira, S.; Noronha, A.; Mathias, A.; Zakane, R.; Naik, V.; Naik, P. [Department of Biotechnology, St. Xavier' s College, Goa (India); Salker, A.V. [Department of Chemistry, Goa University, Goa (India); Naik, S.R., E-mail: srnaik19@gmail.com [Department of Chemistry, St. Xavier' s College, Goa (India)

    2015-07-01

    The bactericidal effect of pristine and doped cobalt ferrite nanoparticles has been evaluated against multiple drug resistant clinical strains by assessing the number of colony-forming units (CFU). Monophasic polycrystalline ferrites have been prepared by the malate–glycolate sol–gel autocombustion method as confirmed by the X-ray diffraction study. Various changes occurring during the preparative stages have been demonstrated using TG–DTA analysis which is well complemented by the FTIR spectroscopy. The antibacterial studies carried out demonstrate a bactericidal effect of the nanoparticles wherein the number of CFU has been found to decrease with doping. Cellular distortions have been revealed through SEM. Variation in the number of CFU with dopant type has also been reported herein. - Graphical abstract: Antibacterial action of doped cobalt ferrites resulting in the lyses of multi-drug resistant bacterial strains. - Highlights: • The paper reports an antibacterial study of rare earth doped cobalt ferrite nanoparticles. • Monophasic compounds have been prepared by the sol–gel autocombustion method. • Bactericidal property has been evaluated based on the number of colony forming units. • Variation in bactericidal action with respect to the dopant type has been observed. • Cellular distortions resulting in cell lysis are confirmed from the SEM images.

  19. Antimicrobial and Anti-Swarming Effects of Bacteriocins and Biosurfactants from Probiotic Bacterial Strains against Proteus spp.

    Directory of Open Access Journals (Sweden)

    Laila Goudarzi

    2017-02-01

    Full Text Available Background:   Proteus spp. belongs to the family of Enterobacteriaceae. These bacteria are Gram-negative and motile microorganisms and known as the third most common causes of urinary tract infections. The aim of the current study was to investigate the effects of some secondary metabolites from probiotic strains of Lactobacillus spp. on swarming and growth of Proteus mirabilis and P. vulgaris. Methods:   After determination of optimal conditions for the growth and production of antimicrobials, bacteriocins and biosurfactants were partially purified from Lactobacillus culture supernatants. Then, effects of the purified compounds on growth and swarming migration of Proteus spp. were examined in the presence of various concentrations of semi-purified compounds. Results:  Results showed that the partially purified bacteriocins inhibited Proteus spp. swarming distance and had a significant reduction on the bacterial growth curves. Biosurfactants in a solvent form did not have any considerable effects on factors produced by Proteus spp. Conclusion:  According to the results, the secondary metabolites, especially bacteriocins or bacteriocin-like substances derived from Lactobacillus strains, can inhibit or reduce growth and swarming migration of Proteus spp. which are considered as the bacteria major virulence factors.

  20. Bioconversion of styrene to poly(hydroxyalkanoate) (PHA) by the new bacterial strain Pseudomonas putida NBUS12.

    Science.gov (United States)

    Tan, Giin-Yu Amy; Chen, Chia-Lung; Ge, Liya; Li, Ling; Tan, Swee Ngin; Wang, Jing-Yuan

    2015-01-01

    Styrene is a toxic pollutant commonly found in waste effluents from plastic processing industries. We herein identified and characterized microorganisms for bioconversion of the organic eco-pollutant styrene into a valuable biopolymer medium-chain-length poly(hydroxyalkanoate) (mcl-PHA). Twelve newly-isolated styrene-degrading Pseudomonads were obtained and partial phaC genes were detected by PCR in these isolates. These isolates assimilated styrene to produce mcl-PHA, forming PHA contents between 0.05±0.00 and 23.10±3.25% cell dry mass (% CDM). The best-performing isolate was identified as Pseudomonas putida NBUS12. A genetic analysis of 16S rDNA and phaZ genes revealed P. putida NBUS12 as a genetically-distinct strain from existing phenotypically-similar bacterial strains. This bacterium achieved a final biomass of 1.28±0.10 g L(-1) and PHA content of 32.49±2.40% CDM. The extracted polymer was mainly comprised of 3-hydroxyhexanoate (C6 ), 3-hydroxyoctanoate (C8 ), 3-hydroxydecanoate (C10 ), 3-hydroxydodecanoate (C12 ), and 3-hydroxytetradecanoate (C14 ) monomers at a ratio of 2:42:1257:17:1. These results collectively suggested that P. putida NBUS12 is a promising candidate for the biotechnological conversion of styrene into mcl-PHA.

  1. Identification of Probiotic Strains from Human Milk in Breastfed Infants with Respiratory Infections

    Directory of Open Access Journals (Sweden)

    Neamtu Bogdan

    2014-12-01

    Full Text Available Isolation and industrial exploitation of probiotics from human milk is a goal for worldwide milk biotechnology centres because of their modulation effect on the immune system in infants and adults. In the proposed study we have analysed fermentation patterns of Lactobacilli isolated from human milk, the reliability of API 50 CH carbohydrate fermentation system and a possible link between lactose concentrations and fermentation profiles on carbohydrates. We had succesfully identified three species of Lactobacillus (paracasei ssp paracasei, fermentum, acidophilus and one unsatisfactory identification of Lactoccocus lactis ssp lactis. These strains had different carbohydrate fermentation patterns but with common characteristics and showed no statistically significant correlations between their carbohydrate metabolic trends and lactose concentrations in the milk samples.

  2. Isolation and identification of Mycoplasma mycoides cluster strains from goats in Chongqing, China

    Directory of Open Access Journals (Sweden)

    Wang Haoju

    2014-03-01

    Full Text Available In order to evaluate the prevalence of the Mycoplasma mycoides cluster in goats in Chongqing, China, an epidemiological survey in this area was carried out. A total of 68 samples were subjected to bacteria isolation on Hartley’s medium. Four isolates (three from lung tissue and one from nasal discharges were recovered from the samples and identified as the Mycoplasma species by their morphological and biochemical characteristics. They were further confirmed by PCR using 16S rRNA specific primer pairs and by restriction enzyme analysis. In vitro antimicrobial susceptibility of the isolates indicated that some strains had developed resistance to the antibiotics tested. This is the first report on the isolation, identification, and molecular characterisation of Mycoplasma species isolated from goats in Chongqing. This study also revealed a prevalence of Mycoplasma species infection in goats in this area.

  3. Finite strain transient creep of D16T alloy: identification and validation employing heterogeneous tests

    Science.gov (United States)

    Shutov, A. V.; Larichkin, A. Yu

    2017-10-01

    A cyclic creep damage model, previously proposed by the authors, is modified for a better description of the transient creep of D16T alloy observed in the finite strain range under rapidly changing stresses. The new model encompasses the concept of kinematic hardening, which allows us to account for the creep-induced anisotropy. The model kinematics is based on the nested multiplicative split of the deformation gradient, proposed by Lion. The damage evolution is accounted for by the classical Kachanov-Rabotnov approach. The material parameters are identified using experimental data on cyclic torsion of thick-walled samples with different holding times between load reversals. For the validation of the proposed material model, an additional experiment is analyzed. Although this additional test is not involved in the identification procedure, the proposed cyclic creep damage model describes it accurately.

  4. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh,

    Directory of Open Access Journals (Sweden)

    Suaad S. AlWakeel

    2017-09-01

    Full Text Available This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis, alpha-hemolytic streptococci, Staphylococcus hominis, coagulase-negative staphylococci, Leuconostoc mesenteroides, Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  5. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    Science.gov (United States)

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  6. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard

    Directory of Open Access Journals (Sweden)

    Tomasz ePłociniczak

    2016-02-01

    Full Text Available Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants.The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%, Zn (86% and Cu (39% in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  7. Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain

    Directory of Open Access Journals (Sweden)

    Debajit Borah

    2017-03-01

    Full Text Available Petroleum based hydrocarbon degrading and biosurfactant producing bacterial strain was isolated from an automobile engine. The strain was identified as Bacillus cereus DRDU1 on the basis of 16S rDNA sequencing analysis. The strain was found to be efficiently degrading 96% of kerosene making it a potential tool for bioremediation of petroleum based contaminants. Production and optimization of the biosurfactant produced by the isolate were also carried out. Surface hydrophobicity trait of isolate was found to be 60.67 ± 1.53% and foaming percentage of the crude biosurfactant was found to be 31.33 ± 0.58%. The presence of amino acids and sugar moieties in the biosurfactant was confirmed by biochemical tests and were further validated by FTIR (the Fourier transform infrared spectrometric analysis revealing the presence of υOH, υCOO, υCOOH, υCH (stretching, υNH, υCH2, υCH3, and υCH (bending, and υCO (ester in the surfactant. The decrease in contact angle of hydrocarbon oil from (30.67 ± 1.15° to (21.3 ± 1.53° respectively after 3 and 6 days of incubation reveals its potential to emulsify petroleum oil. Further, emulsification index (E24 of biosurfactant against kerosene, crude oil, and used engine oil were determined to be 55.33 ± 1.53%, 29.67 ± 1.53%, and 20 ± 1% respectively which attracts its future application in MEOR (microbial enhanced oil recovery process.

  8. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.

    2017-01-17

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  9. Identification of capsule, biofilm, lateral flagellum, and type IV pili in Vibrio mimicus strains.

    Science.gov (United States)

    Tercero-Alburo, J J; González-Márquez, H; Bonilla-González, E; Quiñones-Ramírez, E I; Vázquez-Salinas, C

    2014-11-01

    Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Voice Prosthetic Biofilm Formation and Candida Morphogenic Conversions in Absence and Presence of Different Bacterial Strains and Species on Silicone-Rubber

    NARCIS (Netherlands)

    van der Mei, Henny C.; Buijssen, Kevin J. D. A.; van der Laan, Bernard F. A. M.; Ovchinnikova, Ekatarina; Geertsema-Doornbusch, Gesinda I.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.

    2014-01-01

    Morphogenic conversion of Candida from a yeast to hyphal morphology plays a pivotal role in the pathogenicity of Candida species. Both Candida albicans and Candida tropicalis, in combination with a variety of different bacterial strains and species, appear in biofilms on silicone-rubber voice

  11. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    . jejuni strains are capable of invading the CEICs and stimulate these cells in a pro-inflammatory manner and during this interaction the expression of the bacterial virulence-associated genes ciaB, dnaJ and racR is increased. Furthermore, incubation of bacteria with conditioned cell- and bacteria...

  12. In vitro antibacterial activity of methanol and water extracts of adiantum capillus veneris and tagetes patula against multidrug resistant bacterial strains

    International Nuclear Information System (INIS)

    Hussain, M.M.; Ahmad, B.; Bashid, E.; Hashim, S.

    2014-01-01

    The aim of present study was to screen the antimicrobial activities of extracts of leaves and stems of Adiantum capillus veneris and Tagetes patula against multidrug-resistant (MDR) bacterial strains. Extracts from the leaves and stems of these plants were extracted with methanol and water and tested for their antibacterial activity by disc diffusion method against ten MDR bacterial strains i.e., Citrobacter freundii, Escherichia coli, Providencia, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella and Vibrio cholerae. Leaves methanol extract (LME) of Adiantum showed maximum Zone of Inhibition (ZI) against Providencia, Klebsiella pneumoniae, Shigella, Vibrio cholerae, Staphylococcus aureus, Proteus vulgaris and Salmonella typhi, whereas its stem methanol extract (SME) was very active against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi. Similarly LME of Tagetes showed highest ZI against Escherichia coli and Vibrio cholerae while SME showed highest ZI to Escherichia coli, Vibrio cholerae, Providencia, Shigella and Klebsiella pneumoniae. Leaves water extract (LWE) of Adiantum was very active against all ten bacterial strains while its stem water extract (SWE) showed maximum ZI against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi, Shigella, Proteus vulgaris and Providencia. LWE of Tagetes was only active against Vibrio cholerae whereas SWE was very active against Salmonella typhi and active against P. vulgaris, Citrobacter freundii and Vibrio cholerae. It was concluded from this study that extracts of both Adiantum and Tagetes have prominent activities against most of the MDR bacterial strains and needs further studies for utmost benefits. (author)

  13. Bacterial Polymertropism, the Response to Strain-Induced Alignment of Polymers

    Science.gov (United States)

    Lemon, David J.

    In nature, bacteria often live in surface-associated communities known as biofilms. Biofilm-forming bacteria deposit a layer of polysaccharide on the surfaces they inhabit; hence, polysaccharide is their immediate environment on any surface. In this study, we examined how the physical characteristics of polysaccharide substrates influence the behavior of the biofilm-forming bacterium Myxococcus xanthus. M. xanthus colonies, and indeed those of the majority of biofilm-forming species tested, respond to the compression-induced deformation of polysaccharide substrates by preferentially spreading across the surface perpendicular to the axis of compression. This response is conserved across multiple distantly related phyla and is found in species with an array of distinct motility apparatuses.The birefringence and small angle X-ray scattering patterns of compressed polysaccharide substrates indicate that the directed surface movements of these bacteria consistently match the orientation of the long axes of aligned and tightly packed polysaccharide fibers in compressed substrates. Therefore, we refer to this behavior as polymertropism to denote that the directed movements are a response to the physical arrangement of the change in packing and alignment of the polymers in the substrate. In addition to altering the colony morphology we find the behavior of groups of cells, called flares, is also affected in several species resulting in increased flare speed, duration, and displacement on compressed gel substrates.We suggest that polymertropism, which requires a downward-facing motility apparatus in M. xanthus, may be responsible for the observed tendency of bacterial cells to follow trails of extruded and presumably aligned polysaccharides, which their neighbors secrete and deposit on the substrate as they move across it. Polymertropism may also play a role in the organization of bacteria in a biofilm, as the iterative process of polysaccharide trail deposition and

  14. Identification of self-consistent modulons from bacterial microarray expression data with the help of structured regulon gene sets

    KAUST Repository

    Permina, Elizaveta A.

    2013-01-01

    Identification of bacterial modulons from series of gene expression measurements on microarrays is a principal problem, especially relevant for inadequately studied but practically important species. Usage of a priori information on regulatory interactions helps to evaluate parameters for regulatory subnetwork inference. We suggest a procedure for modulon construction where a seed regulon is iteratively updated with genes having expression patterns similar to those for regulon member genes. A set of genes essential for a regulon is used to control modulon updating. Essential genes for a regulon were selected as a subset of regulon genes highly related by different measures to each other. Using Escherichia coli as a model, we studied how modulon identification depends on the data, including the microarray experiments set, the adopted relevance measure and the regulon itself. We have found that results of modulon identification are highly dependent on all parameters studied and thus the resulting modulon varies substantially depending on the identification procedure. Yet, modulons that were identified correctly displayed higher stability during iterations, which allows developing a procedure for reliable modulon identification in the case of less studied species where the known regulatory interactions are sparse. Copyright © 2013 Taylor & Francis.

  15. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline-alkaline soils and their effect on wheat growth.

    Science.gov (United States)

    Liu, Xiaolin; Li, Xiangyue; Li, Yan; Li, Runzhi; Xie, Zhihong

    2017-03-01

    The Jerusalem artichoke (JA; Helianthus tuberosus), known to be tolerant to saline-alkaline soil conditions, has been cultivated for many years in the Yellow River delta, Shandong Province coastal zone, in China. The aim of our study was to isolate nitrogen-fixing bacteria colonizing the rhizosphere of JA and to characterize other plant growth promotion properties. The ultimate goal was to identify isolates that could be used as inoculants benefiting an economic crop, in particular for improving wheat growth production in the Yellow River delta. Bacterial strains were isolated from the rhizosphere soil of JA on the basis of growth on nitrogen-free Ashby medium. Identification and phylogenetic analysis was performed after nucleotide sequencing of 16S rRNA gene. Plant-growth-promoting traits, such as nitrogen fixation activity, phosphate solubilization activity, indole-3-acetic acid production, were determined using conventional methods. Eleven strains were isolated and 6 of them were further examined for their level of salt tolerance and their effect on plant growth promotion. Inoculation of Enterobacter sp. strain N10 on JA and wheat led to significant increases in both root and shoot dry mass and shoot height. Enterobacter sp. strain N10 appeared to be the best plant-growth-promoting rhizobacteria to increase wheat productivity in future field applications.

  16. Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1.

    Science.gov (United States)

    Sharma, Priyanka; Chopra, Adity; Cameotra, Swaranjit Singh; Suri, C Raman

    2010-11-01

    A Gram-positive, Micrococcus sp. strain PS-1 capable of utilizing phenylurea herbicide diuron as a sole carbon source at a high concentration (up to 250 ppm) was isolated from diuron storage site by selective enrichment study. The taxonomic characterization with 16S rRNA gene sequencing (1,477 bp) identified PS-1 as a member of Micrococcus sp. It was studied for the degradation of diuron and a range of its analogues (monuron, linuron, monolinuron, chlortoluron and fenuron). The shake flasks experiments demonstrated fast degradation of diuron (up to 96% at 250 ppm within 30 h incubation) with the addition of small quantity (0.01%) of non-ionic detergent. The relative degradation profile by the isolate was in the order of fenuron > monuron > diuron > linuron > monolinuron > chlortoluron. Further, the biochemical characterization of catabolic pathway by spectroscopic and chromatographic techniques demonstrated that the degradation proceeded via formation of dealkylated metabolites to form 3,4-dichloroaniline (3,4-DCA). It was the major metabolite formed, associated with profound increase in degradation kinetics in presence of appropriate additive.

  17. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    Science.gov (United States)

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments.

  18. Strain identification and quorum sensing inhibition characterization of marine-derived Rhizobium sp. NAO1

    Science.gov (United States)

    Chang, Hong; Zhou, Jin; Zhu, Xiaoshan; Yu, Shenchen; Chen, Lu; Jin, Hui; Cai, Zhonghua

    2017-03-01

    A novel strategy for combating pathogens is through the ongoing development and use of anti-quorum sensing (QS) treatments such as therapeutic bacteria or their anti-QS substances. Relatively little is known about the bacteria that inhabit the open ocean and of their potential anti-pathogenic attributes; thus, in an initiative to identify these types of therapeutic bacteria, planktonic microbes from the North Atlantic Ocean were collected, isolated, cultured and screened for anti-QS activity. Screening analysis identified one such strain, Rhizobium sp. NAO1. Extracts of Rhizobium sp. NAO1 were identified via ultra-performance liquid chromatography (UPLC) analysis. They were shown to contain N-acyl homoserine lactone (AHL)-based QS analogues (in particular, the N-butyryl homoserine lactone (C4-AHL) analogue) and could disrupt biofilm formation by Pseudomonas aeruginosa PAO1. QS inhibition was confirmed using confocal scanning laser microscopy and growth curves, and it was shown to occur in a dose-dependent manner without affecting bacterial growth. Secondary metabolites of Rhizobium sp. NAO1 inhibited PAO1 pathogenicity by downregulating AHL-mediated virulence factors such as elastase activity and siderophore production. Furthermore, as a result of biofilm structure damage, the secondary metabolite products of Rhizobium sp. NAO1 significantly increased the sensitivity of PAO1 to aminoglycoside antibiotics. Our results demonstrated that Rhizobium sp. strain NAO1 has the ability to disrupt P. aeruginosa PAO1 biofilm architecture, in addition to attenuating P. aeruginosa PAO1 virulence factor production and pathogenicity. Therefore, the newly identified ocean-derived Rhizobium sp. NAO1 has the potential to serve as a QS inhibitor and may be a new microbial resource for drug development.

  19. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars.

    Science.gov (United States)

    Huang, Chu-Ning; Lin, Chan-Pin; Hsieh, Feng-Chia; Lee, Sook-Kuan; Cheng, Kuan-Chen; Liu, Chi-Te

    2016-11-01

    Bacillus amyloliquefaciens strain WF02, isolated from soil collected at Wufeng Mountain, Taiwan, has siderophore-producing ability and in vitro antagonistic activity against bacterial wilt pathogen. To determine the impact of plant genotype on biocontrol effectiveness, we treated soil with this strain before infecting susceptible (L390) and moderately resistant (Micro-Tom) tomato cultivars with Ralstonia solanacearum strain Pss4. We also compared the efficacy of this strain with that of commercial Bacillus subtilis strain Y1336. Strain WF02 provided longer lasting protection against R. solanacearum than did strain Y1336 and controlled the development of wilt in both cultivars. To elucidate the genetic responses in these plants under WF02 treatment, we analyzed the temporal expression of defense-related genes in leaves. The salicylic acid pathway-related genes phenylalanine ammonia-lyase and pathogenesis-related protein 1a were up-regulated in both cultivars, whereas expression of the jasmonic acid pathway-related gene lipoxygenase was only elevated in the susceptible tomato cultivar (L390). These results suggest that WF02 can provide protection against bacterial wilt in tomato cultivars with different levels of disease resistance via direct and indirect modes of action.

  20. Screening local Lactobacilli from Iran in terms of production of lactic acid and identification of superior strains

    Directory of Open Access Journals (Sweden)

    Fatemeh Soleimanifard

    2015-12-01

    Full Text Available Introduction: Lactobacilli are a group of lactic acid bacteria that their final product of fermentation is lactic acid. The objective of this research is selection of local Lactobacilli producing L (+ lactic acid. Materials and methods: In this research the local strains were screened based on the ability to produce lactic acid. The screening was performed in two stages. The first stage was the titration method and the second stage was the enzymatic method. The superior strains obtained from titration method were selected to do enzymatic test. Finally, the superior strains in the second stage (enzymatic which had the ability to produce L(+ lactic acid were identified by biochemical tests. Then, molecular identification of strains was performed by using 16S rRNA sequencing. Results: In this study, the ability of 79 strains of local Lactobacilli in terms of production of lactic acid was studied. The highest and lowest rates of lactic acid production was 34.8 and 12.4 mg/g. Superior Lactobacilli in terms of production of lactic acid ability of producing had an optical isomer L(+, the highest levels of L(+ lactic acid were with 3.99 and the lowest amount equal to 1.03 mg/g. The biochemical and molecular identification of superior strains showed that strains are Lactobacillus paracasei. Then the sequences of 16S rRNA of superior strains were reported in NCBI with accession numbers KF735654، KF735655، KJ508201and KJ508202. Discussion and conclusion: The amounts of lactic acid production by local Lactobacilli were very different and producing some of these strains on available reports showed more products. The results of this research suggest the use of superior strains of Lactobacilli for production of pure L(+ lactic acid.

  1. Identification and characterization of Lactococcus starter strains in milk-based traditional fermented products in the region of Iran

    Directory of Open Access Journals (Sweden)

    Farzad Rahmati

    2018-02-01

    Full Text Available The aim of the present research was identification and investigation of technological attributes of Lactococcus starter strains from traditional dairy products collected from the countryside of Boroujerd in Iran. 33 samples were cultured on selective media M17 and typical colonies surveyed for morphological properties. Totally, 37 strains were isolated based on the diversity in cell morphology and identified using API galleries and carbohydrate fermentation includes 17 strains of Lactococcus lactis (45.96%, 12 strains of Lactococcus garvieae (32.43% and 8 strains of Lactococcusplantarum (21.62%. Strains were appraised for hydrolysis of L-arginine, casein and starch. Furthermore, strains were evaluated for the ability to grow at temperature 10 °C, 45 °C and presence of 4% and 6.5% NaCl, antibiotic sensitivity, acidification ability, proteolytic and lipolytic activities. Generally, 3 strains of Lc.garvieae (GYLC1, BWLC1, DCLC1 and 7 strains of Lc. lactis (GCLC4, GWLC2, GWLC3, SWLC1, SWLC3, BCLC5, DYLC1 exposed the highest levels of technological properties in order to use as starter cultures.

  2. Identification of Lactic Acid Bacteria in Fruit Pulp Processing Byproducts and Potential Probiotic Properties of Selected Lactobacillus Strains.

    Science.gov (United States)

    Garcia, Estefânia F; Luciano, Winnie A; Xavier, Danilo E; da Costa, Whyara C A; de Sousa Oliveira, Kleber; Franco, Octávio L; de Morais Júnior, Marcos A; Lucena, Brígida T L; Picão, Renata C; Magnani, Marciane; Saarela, Maria; de Souza, Evandro L

    2016-01-01

    This study aimed to identify lactic acid bacteria (LAB) in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L., and Fragaria vesca L.) pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence (16S rRNA) analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86 and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49, and L. fermentum 111) were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30, and 1.00%) did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains.

  3. Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains

    Directory of Open Access Journals (Sweden)

    Estefânia Garcia

    2016-08-01

    Full Text Available This study aimed to identify lactic acid bacteria (LAB in byproducts of fruit (Malpighia glabra L., Mangifera indica L., Annona muricata L. and Fragaria vesca L. pulp processing. Fifty strains of LAB were identified using matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS and 16S rRNA gene sequence (16S rRNA analysis. Species belonging to Lactobacillus genus were the predominant LAB in all fruit pulp processing byproducts. The average congruency between the MALDI-TOF MS and 16S rRNA in LAB species identification reached 86%. Isolates of L. plantarum, L. brevis, L. pentosus, L. lactis and L. mesenteroides were identified with 100% congruency. MALDI-TOF MS and 16S rRNA analysis presented 86% and 100% efficiency of LAB species identification, respectively. Further, five selected Lactobacillus strains (L. brevis 59, L. pentosus 129, L. paracasei 108, L. plantarum 49 and L. fermentum 111 were evaluated for desirable probiotic-related properties and growth behavior on two different cultivation media. The exposure to pH 2.0 sharply decreased the counts of the different Lactobacillus strains after a 1 or 2 h incubation, while varied decreases were noted after 3 h of exposure to pH 3.0. Overall, the exposure to pH 5.0 and to bile salts (0.15, 0.30 and 1.00% did not decrease the counts of the Lactobacillus strains. All tested Lactobacillus strains presented inhibitory activity against Staphylococcus aureus, Salmonella Typhimurium, Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli, and presented variable susceptibility to different antibiotics. The selected Lactobacillus strains presented satisfactory and reproducible growth behavior. In conclusion, MALDI-TOF MS and 16S rRNA analysis revealed high efficiency and congruency for LAB species identification, and the selected Lactobacillus strains may be candidates for further investigation of novel probiotic strains.

  4. Gram-positive bacterial resistant strains of interest in animal and public health

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Pilegi Sfaciotte

    2015-08-01

    Full Text Available Among multiresistant Gram-positive microorganisms, stands out methicillin-resistant Staphylococcus (MRS, an opportunistic pathogen associated with hospital acquired and community infections reported in medicine and large increase in reports of veterinary medicine. In veterinary medicine, numerous reports regarding several species of animals have been described. MRS is intrinsically resistant to all ?-lactam drugs. In veterinary medicine, numerous reports regarding several species of animals have been described, but Staphylococcus aureus with intermediate resistance and resistant to vancomycin (VISA/VRSA has not yet been reported in veterinary medicine, still need further study. Staphylococcus spp. are also related to antimicrobial resistance of macrolides, lincosamides, and streptogramin B (MLSB group, that has the same mechanism of action, although the drugs belong to different classes. In veterinary medicine, clindamycin (lincosamide class is widely used for skin infections, wounds, bone infections, pneumonia, infections of the oral cavity, and infections caused by anaerobic bacteria, besides being used for treatments of MRS infections. Enterococcus is another resistant Gram-positive microorganism, from which vancomycin-resistant enterococci (VREs are the most important strains. There are several reports of VREs in veterinary medicine due the use of a similar antimicrobial (avoparcin in livestock; therefore this group of microorganisms has now acquired great prominence since vancomycin is considered as the last resort for the treatment of MRS and Enterococcus associated with nosocomial infections in humans. The biggest problem these microorganisms and their resistance mechanisms cause is related to its huge impact on public health due to the increasing close contact between animals and humans. The objective of this review was to identify the main Gram-positive microorganisms associated with animals, describing their mechanisms of action that

  5. Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS technique

    Directory of Open Access Journals (Sweden)

    Daniel Belstrøm

    2016-01-01

    Full Text Available Background and objective: The composition of the salivary microbiota, as determined using various molecular methods, has been reported to differentiate oral health from diseases. Thus, the purpose of this study was to utilize the newly developed molecular technique HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing for comparison of the salivary microbiota in patients with periodontitis, patients with dental caries, and orally healthy individuals. The hypothesis was that this method could add on to the existing knowledge on salivary bacterial profiles in oral health and disease. Design: Stimulated saliva samples (n=30 were collected from 10 patients with untreated periodontitis, 10 patients with untreated dental caries, and 10 orally healthy individuals. Salivary microbiota was analyzed using HOMINGS and statistical analysis was performed using Kruskal–Wallis test with Benjamini–Hochberg's correction. Results: From a total of 30 saliva samples, a mean number of probe targets of 205 (range 120–353 were identified, and a statistically significant higher mean number of targets was registered in samples from patients with periodontitis (mean 220, range 143–306 and dental caries (mean 221, range 165–353 as compared to orally healthy individuals (mean 174, range 120–260 (p=0.04 and p=0.04. Nine probe targets were identified with a different relative abundance between groups (p<0.05. Conclusions: Cross-sectional comparison of salivary bacterial profiles by means of HOMINGS analysis showed that different salivary bacterial profiles were associated with oral health and disease. Future large-scale prospective studies are needed to evaluate if saliva-based screening for disease-associated oral bacterial profiles may be used for identification of patients at risk of acquiring periodontitis and dental caries.

  6. Growth promotion and colonization of switchgrass (Panicum virgatum cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN

    Directory of Open Access Journals (Sweden)

    Kim Seonhwa

    2012-05-01

    Full Text Available Abstract Background Switchgrass is one of the most promising bioenergy crop candidates for the US. It gives relatively high biomass yield and can grow on marginal lands. However, its yields vary from year to year and from location to location. Thus it is imperative to develop a low input and sustainable switchgrass feedstock production system. One of the most feasible ways to increase biomass yields is to harness benefits of microbial endophytes. Results We demonstrate that one of the most studied plant growth promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, and greenhouse conditions. In several in vitro experiments, the average fresh weight of PsJN-inoculated plants was approximately 50% higher than non-inoculated plants. When one-month-old seedlings were grown in a growth chamber for 30 days, the PsJN-inoculated Alamo plants had significantly higher shoot and root biomass compared to controls. Biomass yield (dry weight averaged from five experiments was 54.1% higher in the inoculated treatment compared to non-inoculated control. Similar results were obtained in greenhouse experiments with transplants grown in 4-gallon pots for two months. The inoculated plants exhibited more early tillers and persistent growth vigor with 48.6% higher biomass than controls. We also found that PsJN could significantly promote growth of switchgrass cv. Alamo under sub-optimal conditions. However, PsJN-mediated growth promotion in switchgrass is genotype specific. Conclusions Our results show B. phytofirmans strain PsJN significantly promotes growth of switchgrass cv. Alamo under different conditions, especially in the early growth stages leading to enhanced production of tillers. This phenomenon may benefit switchgrass establishment in the first year. Moreover, PsJN significantly stimulated growth of switchgrass cv. Alamo under sub

  7. Identification of bacterial antigens and super antigens in synovial fluid of patients with arthritis: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Samileh Noorbakhsh

    2013-02-01

    Full Text Available  Abstract Background: An accurate and prompt diagnosis of bacterial arthritis is essential for earlier treatment and a good outcome. Superantigens produced by Staph. Aureus are among the most lethal toxins. The paper objective was Identification of common bacterial antigens and S.aureus superantigens in synovial fluid (SF of children with negative culture and direct smear for other bacteria except for S.aureus. Methods: In this cross-sectional study a total of 62 patients with a mean age of 11 ± 3.8 years (range: 5 months- 16 years with acute arthritis in pediatric and orthopedic wards of Rasoul hospital (2008-2010 were studied. Three common bacterial antigens (e.g. S.Pneumonia, H.influenza, N. meningitis using LPA (latex particle antigen and Staphylococcal superantigens (TSST1; Enterotoxin A; B; C using ELISA method (ABcam; USA were identified in 60 adequate SF samples with negative culture and negative direct smears (for other bacteria except for S.aureus. Staphylococcal superantigens were compared with S.aureus infection (positive culture or direct smear. Results: Positive bacterial antigens (LPA test were found in 4 cases including two S. Pneumonia, one N.meningitis, and one H.influenza. S.aureus was diagnosed in 7 cases including 4 positive cultures and 3 positive smears. Staphylococcal superantigens (toxins were found in 73% of SF samples. Some cases had 2 or 3 types of toxins. S.aureus toxins were reported in 47% of culture negative SF samples. Positive TSST1, Enterotoxin B, Enterotoxin A, and Enterotoxin C were found in 47% (n= 28, 18% (n= 10, 39% (n= 22, and 39% (n=21 of cases respectively. The most common type of superantigens was TSST1; and Enterotoxin A was the less common type. Except for Enterotoxin A, no relation between positive S.aureus culture and positive tests for superantigens in SF was found. Conclusion: S.aureus has a prominent role in septic arthritis. S.aureus toxins might have a prominent role in arthritis with

  8. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge.

    Science.gov (United States)

    Liu, Wuxing; Wang, Xiaobing; Wu, Longhua; Chen, Mengfang; Tu, Chen; Luo, Yongming; Christie, Peter

    2012-06-01

    Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues. Copyright © 2012. Published by Elsevier Ltd.

  9. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  10. Optimization and evaluation of Flexicult® Vet for detection, identification and antimicrobial susceptibility testing of bacterial uropathogens in small animal veterinary practice.

    Science.gov (United States)

    Guardabassi, Luca; Hedberg, Sandra; Jessen, Lisbeth Rem; Damborg, Peter

    2015-10-26

    Urinary tract infection (UTI) is a common reason for antimicrobial prescription in dogs and cats. The objective of this study was to optimize and evaluate a culture-based point-of-care test for detection, identification and antimicrobial susceptibility testing of bacterial uro-pathogens in veterinary practice. Seventy-two urine samples from dogs and cats with suspected UTI presenting to seven veterinary facilities were used by clinical staff and an investigator to estimate sensitivity and specificity of Flexicult Vet A compared to laboratory reference standards for culture and susceptibility testing. Subsequently, the test was modified by inclusion of an oxacillin-containing compartment for detection of methicillin-resistant staphylococci. The performance of the modified product (Flexicult Vet B) for susceptibility testing was evaluated in vitro using a collection of 110 clinical isolates. Bacteriuria was reported by the laboratory in 25 (35 %) samples from the field study. The sensitivity and specificity of Flexicult Vet A for detection of bacteriuria were 83 and 100 %, respectively. Bacterial species were correctly identified in 53 and 100 % of the positive samples by clinical staff and the investigator, respectively. The susceptibility results were interpreted correctly by clinical staff for 70 % of the 94 drug-strain combinations. Higher percentages of correct interpretation were observed when the results were interpreted by the investigator in both the field (76 %) and the in vitro study (94 %). The most frequent errors were false resistance to β-lactams (ampicillin, amoxicillin-clavulanate and cephalotin) in Escherichia coli for Flexicult Vet A, and false amoxicillin-clavulanate resistance in E. coli and false ampicillin susceptibility in Staphylococcus pseudintermedius for Flexicult Vet B. The latter error can be prevented by categorizing staphylococcal strains growing in the oxacillin compartment as resistant to all β-lactams. Despite the

  11. Identification, Characterization and Antibiotic Resistance of Bacterial Isolates Obtained from Waterpipe Device Hoses

    Directory of Open Access Journals (Sweden)

    Majed M. Masadeh

    2015-05-01

    Full Text Available The general lack of knowledge about the health effects of waterpipe smoking is among the reasons for its global spread. In this study, bacterial contamination of waterpipe hoses was investigated. Twenty hoses were collected from waterpipe cafés and screened for bacterial pathogens using standard culture and isolation techniques. Additionally, resistance of isolated bacteria to common antibiotics was determined by identifying the minimum inhibitory concentration (MIC of each isolate. Forty eight bacterial isolates were detected. Isolates included both Gram-positive and Gram-negative pathogens from species that included Micrococcus (12, Corynebacterium (13 and Bacillus (9. In addition, some of the detected pathogens were found to be resistant to aztreonam (79%, cefixime (79%, norfloxacin, amoxicillin (47%, clarithromycin (46% and enrofloxacin (38%. In conclusion, the hose of the waterpipe device is a good environment for the growth of bacterial pathogens, which can then be transmitted to users.

  12. Identification, characterization and antibiotic resistance of bacterial isolates obtained from waterpipe device hoses.

    Science.gov (United States)

    Masadeh, Majed M; Hussein, Emad I; Alzoubi, Karem H; Khabour, Omar; Shakhatreh, Muhamad Ali K; Gharaibeh, Mahmoud

    2015-05-13

    The general lack of knowledge about the health effects of waterpipe smoking is among the reasons for its global spread. In this study, bacterial contamination of waterpipe hoses was investigated. Twenty hoses were collected from waterpipe cafés and screened for bacterial pathogens using standard culture and isolation techniques. Additionally, resistance of isolated bacteria to common antibiotics was determined by identifying the minimum inhibitory concentration (MIC) of each isolate. Forty eight bacterial isolates were detected. Isolates included both Gram-positive and Gram-negative pathogens from species that included Micrococcus (12), Corynebacterium (13) and Bacillus (9). In addition, some of the detected pathogens were found to be resistant to aztreonam (79%), cefixime (79%), norfloxacin, amoxicillin (47%), clarithromycin (46%) and enrofloxacin (38%). In conclusion, the hose of the waterpipe device is a good environment for the growth of bacterial pathogens, which can then be transmitted to users.

  13. The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid bacterial identification in patients with smear-positive bacterial meningitis.

    Science.gov (United States)

    Bishop, B; Geffen, Y; Plaut, A; Kassis, O; Bitterman, R; Paul, M; Neuberger, A

    2018-02-01

    To assess the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in rapid identification of bacteria from smear-positive cerebrospinal fluid (CSF) in a cohort of patients with meningitis. Single-centre observational study, including adults and children with community-acquired or postneurosurgical bacterial meningitis. Meningitis was defined using established criteria. Samples of CSF that had a positive CSF Gram stain were directly examined by MALDI-TOF-MS. Identification was considered accurate when identical to the CSF culture or PCR results (species and genus level). Laboratory workers performing the MALDI-TOF-MS and interpreting its results were blinded to the direct smear results, except for the fact that it was positive. MALDI-TOF-MS results were not conveyed to clinicians. MALDI-TOF-MS was tested on 44 CSF samples; ten samples were obtained from patients with community-acquired meningitis, and 34 samples were from patients with postneurosurgical meningitis. The assay identified bacteria correctly in 17/21 of the samples with Gram-negative rods observed on the direct smear, all obtained from patients who had undergone neurosurgery, (sensitivity 81%, 95% CI 64.2%-97.7%). In the postneurosurgical group, Gram-positive cocci were identified correctly in only 1/11 (9.1%) of the samples, and Candida species were not identified in two samples. Among patients with community-acquired meningitis, the assay did not identify Streptococcus pneumoniae in eight of eight samples, Neisseria meningitidis in one sample (1/1), and Streptococcus agalactiae in one sample (1/1). We found MALDI-TOF-MS to be useful in the rapid identification of Gram-negative rods directly from smear-positive CSF samples, but not of Gram-positive bacteria. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Preliminary identification of secreted proteins by Leptospira interrogans serovar Kennewicki strain Pomona Fromm

    Energy Technology Data Exchange (ETDEWEB)

    Ricardi, L.M.P.; Portaro, F.C.; Abreu, P.A.E.; Barbosa, A.S. [Instituto Butantan, Sao Paulo, SP (Brazil); Morais, Z.M.; Vasconcellos, S.A. [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: This project aimed to identify secreted proteins by pathogenic Leptospira interrogans serovar Kennewicki strain Pomona Fromm (LPF) by proteomic analyses. The strain LPF, whose virulence was maintained by passages in hamsters, were cultured in EMJH medium. The supernatants were centrifuged, dialyzed and subjected to lyophilization. Protein samples were resolved first by IEF at pH 3 to 10, immobilized pH gradient 13-cm strips. Strips were then processed for the second-dimension separation on SDS-polyacrylamide gels. Proteins from gel spots were subjected to reduction, cysteine-alkylation, and in-gel tryptic digestion, and analyzed by LC/MS/MS spectrometry. Liquid chromatography-based separation followed by automated tandem mass spectrometry was also used to identify secreted proteins. In silico analyses were performed using the PSORTbV.3.0 program and SignalP server. One major obstacle to secretome studies is the difficulty to obtain extracts of secreted proteins without citoplasmatic contamination. In addition, the extraction of low concentration proteins from large volumes of culture media, which are rich in salts, BSA and other compounds, frequently interfere with most proteomics techniques. For these reasons, several experimental approaches were used to optimize the protocol applied. In spite of this fact, our analysis resulted in the identification of 200 proteins with high confidence. Only 5 of 63 secreted proteins predicted by in silico analysis were found. Other classes identified included proteins that possess signal peptide but whose cellular localization prediction is unknown or may have multiple localization sites, and proteins that lack signal peptide and are thus thought to be secreted via non conventional mechanisms or resulting from cytoplasmic contamination by cell lysis. Many of these are hypothetical proteins with no putative conserved domains detected. To our knowledge, this is the first study to identify secreted proteins by

  15. Preliminary identification of secreted proteins by Leptospira interrogans serovar Kennewicki strain Pomona Fromm

    International Nuclear Information System (INIS)

    Ricardi, L.M.P.; Portaro, F.C.; Abreu, P.A.E.; Barbosa, A.S.; Morais, Z.M.; Vasconcellos, S.A.

    2012-01-01

    Full text: This project aimed to identify secreted proteins by pathogenic Leptospira interrogans serovar Kennewicki strain Pomona Fromm (LPF) by proteomic analyses. The strain LPF, whose virulence was maintained by passages in hamsters, were cultured in EMJH medium. The supernatants were centrifuged, dialyzed and subjected to lyophilization. Protein samples were resolved first by IEF at pH 3 to 10, immobilized pH gradient 13-cm strips. Strips were then processed for the second-dimension separation on SDS-polyacrylamide gels. Proteins from gel spots were subjected to reduction, cysteine-alkylation, and in-gel tryptic digestion, and analyzed by LC/MS/MS spectrometry. Liquid chromatography-based separation followed by automated tandem mass spectrometry was also used to identify secreted proteins. In silico analyses were performed using the PSORTbV.3.0 program and SignalP server. One major obstacle to secretome studies is the difficulty to obtain extracts of secreted proteins without citoplasmatic contamination. In addition, the extraction of low concentration proteins from large volumes of culture media, which are rich in salts, BSA and other compounds, frequently interfere with most proteomics techniques. For these reasons, several experimental approaches were used to optimize the protocol applied. In spite of this fact, our analysis resulted in the identification of 200 proteins with high confidence. Only 5 of 63 secreted proteins predicted by in silico analysis were found. Other classes identified included proteins that possess signal peptide but whose cellular localization prediction is unknown or may have multiple localization sites, and proteins that lack signal peptide and are thus thought to be secreted via non conventional mechanisms or resulting from cytoplasmic contamination by cell lysis. Many of these are hypothetical proteins with no putative conserved domains detected. To our knowledge, this is the first study to identify secreted proteins by

  16. Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors

    Science.gov (United States)

    Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren C.; Bhattacharya, Sharmila

    2017-01-01

    NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch System's first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation. The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clones - a crucial feature for a successful biosensor - we exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.

  17. Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors

    Science.gov (United States)

    Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch Systems first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation.The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clonesa crucial feature for a successful biosensorwe exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.

  18. Evaluation of different extraction methods on antimicrobial potency of Adenium obesum stem against food borne pathogenic bacterial strains in Oman

    Directory of Open Access Journals (Sweden)

    Mohammad Amzad Hossain

    2014-09-01

    Full Text Available Objective: To determine and compare the effect on antimicrobial potency of crude stems extract of Adenium obesum (A. obesum by Soxhlet and maceration extraction methods. Methods: The crude extracts were prepared from the coarse samples of stems with methanol by using Soxhlet and maceration extraction methods. Both the crude extracts from two extraction methods were dissolved in water and successively extracted by different polarities solvents with increasing polarities. In vitro antimicrobial potency of different polarities crude extracts obtained from Soxhlet and maceration methods was determined by agar gel diffusion method against different food borne pathogenic bacterial strains. Results: The results for antimicrobial potency of different crude extracts were almost similar by Soxhlet and maceration and methods. The average range of inhibition potency of different polarities crude extracts was 0%-17% by Soxhlet method and inhibition potency 0%-24% by maceration method. Conclusions: These results obtained from in vitro approach give promising basic information about this plant as well as some potential crude extracts can be used for the treatment of infectious diseases.

  19. Anti-bacterial Efficacy of Bacteriocin Produced by Marine Bacillus subtilis Against Clinically Important Extended Spectrum Beta-Lactamase Strains and Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Suresh Mickymaray

    2018-02-01

    Full Text Available Objective: To investigate the anti-bacterial efficacy of bacteriocin produced by Bacillus subtilis SM01 (GenBank accession no: KY612347, a Gram-positive marine bacterium, against Extended Spectrum Beta-Lactamase (ESBL producing Gram-negative pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive pathogen Methicillin-Resistant Staphylococcus aureus (MRSA. Methods: A marine bacterium was isolated from mangrove sediment from the Red Sea coast of Jeddah, Kingdom of Saudi Arabia, and identified based on its morphological, biochemical, and molecular characteristics. The bacteriocin production using this isolate was carried out in brain heart infusion broth (BHIB medium. The Anti-bacterial activity of bacteriocin was evaluated against selected ESBL strains and MRSA by the well agar method. The effects of incubation time, pH, and temperature on the Anti-bacterial activity were studied. Results: The bacteriocin Bac-SM01 produced by B. subtilis SM01 demonstrated broad-spectrum Anti-bacterial activity against both Gram-negative and -positive bacteria. The present study is the first report that the bacteriocin Bac-SM01 inhibits the growth of ESBL producing Gram-negative strains A. baumannii, P. aeruginosa, and E. coli, and a Gram-positive MRSA strain. The optimum incubation time, pH, and temperature for the Anti-bacterial activity of Bac-SM01 was 24 h, 7, and 37°C respectively. Conclusion: The overall investigation can conclude that the bacteriocin Bac-SM01 from the marine isolate Bacillus subtilis SM01 could be used as an alternative Anti-bacterial agent in pharmaceutical products.

  20. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    Science.gov (United States)

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.

  1. The application of molecular methods in the identification of isolated strains of parainfluenza 3 virus of cattle

    Directory of Open Access Journals (Sweden)

    Veljović Lj.

    2014-01-01

    Full Text Available Bovine parainfluenza 3 virus (PI3 causes respiratory infections in cattle and sheep with great economic losses in livestock. The aim of this investigation was to determine the significance of molecular methods in the identification of isolated strains of PI3 virus. Twenty cattle nasal swabs were analyzed for the presence of PI3 using the standard virology method of virus isolation in MBDK cell line and virus neutralization test. The identification of isolated strains was confirmed by RT-PCR and method of direct sequencing with primers for PI3 fusion (F protein gene. PI3 virus was isolated and identified in four nasal swabs using the standard virology method and RT-PCR. The analysis of nucleotide sequences of isolated PI3 strains showed high similarity with sequences isolated from cattle in Asia. Our results showed that molecular methods are very useful in the diagnosis of PI3 infections as well as for the identification and characterization of PI3 strains in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. 31008 i br. 175073

  2. A New Diagnostic Resource for Ceratitis capitata Strain Identification Based on QTL Mapping

    Directory of Open Access Journals (Sweden)

    Sheina B. Sim

    2017-11-01

    Full Text Available The Mediterranean fruit fly Ceratitis capitata (Wiedemann is a destructive agricultural pest and the subject of exclusion efforts in many countries. Suppression and eradication of invasive populations to prevent its establishment is facilitated by the release of sterile males using the sterile insect technique (SIT. In SIT release areas, it is critical to accurately discriminate between released sterile males and wild individuals to detect extremely rare invasive individuals in areas inundated with millions of sterile male flies. Current methods for discrimination exist but are not always definitive, and a more reliable method is necessary. To address this, we developed a genotyping assay that can be used to discriminate between sterile males from the SIT strain and wild individuals. This was achieved by identifying single nucleotide polymorphisms (SNPs linked to the maintained traits that facilitate male-only releases, white pupae (wp and temperature-sensitive lethal (tsl, via QTL mapping. This resulted in the identification of one SNP that was in near-perfect linkage disequilibrium between genotype at this locus and the pupal color phenotype. Medfly from many SIT colonies and wild individuals from across its geographic range were genotyped for this locus, and results show its consistency in identifying SIT flies. In addition, linkage and QTL mapping of wp and tsl have larger impacts as they can serve as foundational tools to identify the genetic basis of traits that facilitate the separation of males from female flies, which can be used to develop SIT programs in related species.

  3. Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains.

    Science.gov (United States)

    Liu, Jing; Yu, Huili; Li, Shu-Ming

    2018-03-24

    Cyclodipeptide synthases (CDPSs) comprise normally 200-300 amino acid residues and are mainly found in bacteria. They hijack aminoacyl-tRNAs from the ribosomal machinery for cyclodipeptide formation. In this study, nine new CDPS genes from eight Streptomyces strains were cloned into pET28a vector and expressed in Escherichia coli. Structural elucidation of the isolated products led to the identification of one cyclo-L-Trp-L-Leu, two cyclo-L-Trp-L-Pro, and three cyclo-L-Trp-L-Trp synthases. Other three CDPSs produce cyclo-L-Trp-L-Ala or cyclo-L-Trp-L-Tyr as the major cyclodipeptide. Total product yields of 46 to 211 mg/L E. coli culture were obtained. Our findings represent rare examples of CDPS family derived from actinobacteria that form various tryptophan-containing cyclodipeptides. Furthermore, this study highlights the potential of the microbial machinery for tryptophan-containing cyclodipeptide biosynthesis and provides valid experimental basis for further combination of these CDPS genes with other modification genes in synthetic biology.

  4. Identification and epidemiology of a rare HoBi-like pestivirus strain in Bangladesh.

    Science.gov (United States)

    Haider, N; Rahman, M S; Khan, S U; Mikolon, A; Gurley, E S; Osmani, M G; Shanta, I S; Paul, S K; Macfarlane-Berry, L; Islam, A; Desmond, J; Epstein, J H; Daszak, P; Azim, T; Luby, S P; Zeidner, N; Rahman, M Z

    2014-06-01

    The genus pestivirus of the family flaviviridae consists of four recognized species: bovine viral diarrhoea virus 1 (BVDV-1), bovine viral diarrhoea virus 2 (BVDV-2), classical swine fever virus and border disease virus. A new putative pestivirus species tentatively named as either 'HoBi-like pestivirus' or BVDV-3 has recently been identified in Brazil, Italy and Thailand. Despite reports of serological evidence of BVDV in Bangladesh, the types of the virus circulating in cattle have not been identified. We conducted surveillance in cattle from May 2009 to August 2010 in three government veterinary hospitals to characterize BVDV in cattle of Bangladesh. We tested serum for BVDV using an antigen-capture ELISA. Of 638 cattle samples, 3% (16/638) tested positive for BVDV antigen. The ELISA-positive samples were selected for further molecular detection and characterization of BVDV. Molecular analysis of the partial 5' untranslated region (UTR) nucleotide sequences of BVDV-positive samples identified the rare HoBi-like pestivirus or BVDV-3 virus circulating in cattle of Bangladesh. The identification of this rare HoBi-like pestivirus or BVDV-3 strain in Bangladesh warrants further surveillance to evaluate its impact on livestock production. © 2014 Blackwell Verlag GmbH.

  5. Identification of nicotinamide mononucleotide deamidase of the bacterial pyridine nucleotide cycle reveals a novel broadly conserved amidohydrolase family.

    Science.gov (United States)

    Galeazzi, Luca; Bocci, Paola; Amici, Adolfo; Brunetti, Lucia; Ruggieri, Silverio; Romine, Margaret; Reed, Samantha; Osterman, Andrei L; Rodionov, Dmitry A; Sorci, Leonardo; Raffaelli, Nadia

    2011-11-18

    The pyridine nucleotide cycle is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial pyridine nucleotide cycle, was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds of bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of the respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in Escherichia coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three-dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and nonfunctional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in the bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.

  6. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    Science.gov (United States)

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  7. Experimental infection with different bacterial strains in larvae and juvenile Litopenaeus vannamei reared in Santa Catarina State, Brazil - doi: 10.4025/actascibiolsci.v32i3.5471 Experimental infection with different bacterial strains in larvae and juvenile Litopenaeus vannamei reared in Santa Catarina State, Brazil - doi: 10.4025/actascibiolsci.v32i3.5471

    Directory of Open Access Journals (Sweden)

    Adolfo Jatoba

    2010-09-01

    Full Text Available This study evaluated the pathogenic characteristics of bacteria isolated from Litopenaeus vannamei during an outbreak at the Laboratory of Marine Shrimp, UFSC, Santa Catarina State, Brazil. Their virulence potential in larvae and juvenile shrimp and the effects on the total haemocyte count, phenoloxidase activity and serum agglutinate titre were examined after experimental infection. Bacterial strains were isolated from larvae and adult shrimps, identified by the AP120E biochemical system as: two strains of Vibrio alginolyticus, three of Aeromonas salmonicida and one of Pasteurella multocida sp. and Pasteurella sp. All the bacterial strains isolated in this study caused mortality in shrimp. One strain of V. alginolyticus was responsible for 97.3 and 88.7% mortality in larvae and juvenil shrimps, respectively. The shrimp immunological system was influenced by experimental infection with V. alginolyticus. Decrease in the total haemocyte count and increase in the phenoloxidase activity and the serum agglutinate titre (p V. alginolyticus isolated from larvae and juvenile reared marine shrimp.This study evaluated the pathogenic characteristics of bacteria isolated from Litopenaeus vannamei during an outbreak at the Laboratory of Marine Shrimp, UFSC, Santa Catarina State, Brazil. Their virulence potential in larvae and juvenile shrimp and the effects on the total haemocyte count, phenoloxidase activity and serum agglutinate titre were examined after experimental infection. Bacterial strains were isolated from larvae and adult shrimps, identified by the AP120E biochemical system as: two strains of Vibrio alginolyticus, three of Aeromonas salmonicida and one of Pasteurella multocida sp. and Pasteurella sp. All the bacterial strains isolated in this study caused mortality in shrimp. One strain of V. alginolyticus was responsible for 97.3 and 88.7% mortality in larvae and juvenil shrimps, respectively. The shrimp immunological system was influenced by

  8. Microarray-based identification of clinically relevant vaginal bacteria in relation to bacterial vaginosis

    NARCIS (Netherlands)

    Dols, Joke A M; Smit, Pieter W; Kort, Remco; Reid, Gregor; Schuren, Frank H J; Tempelman, Hugo; Bontekoe, Tj Romke; Korporaal, Hans; Boon, Mathilde E

    OBJECTIVE: The objective was to examine the use of a tailor-made DNA microarray containing probes representing the vaginal microbiota to examine bacterial vaginosis. STUDY DESIGN: One hundred one women attending a health center for HIV testing in South Africa were enrolled. Stained, liquid-based

  9. Isolation and identification of bacterial glum blotch and leaf blight on ...

    African Journals Online (AJOL)

    . atrofaciens and P. syringae pv. syringae respectively are the bacterial diseases of wheat in Iran. The disease causes damage on wheat which leads to lots of yield and crop losses in the host plants. During the spring and summer of ...

  10. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    2014-06-11

    wound infections. Methods: A total of sixteen bacterial isolates including: six Acinetobacter baumannii , four Staphylococcus aureus, three... Acinetobacter baumannii -calcoaceticus complex, which remains a critical cause of infection. Additionally, there has been a dramatic increase of...manufacturer’s instructions. Lysozyme treatment was used for Acinetobacter baumannii prior to cell lysis, while lysostaphin and lysozyme were used for

  11. Effect Of GAMMA-Irradiation On Production And Characteristics Of Chitosan Produced From Crustacean Waste By Using Some Bacterial Strains

    International Nuclear Information System (INIS)

    INAS ISMAIL MAHMOUD RAAFAT

    2015-01-01

    The main study focused on separation of chitin from crustacean waste (shrimp shell) using some proteolytic bacterial isolates. After that, chitosan was obtained by deactylation and its characteristics were studied using some characterizing tools. The produced chitosan was degraded to different molecular weights and evaluated as an antibacterial agent. Seventy bacterial isolates were obtained from different sources (soil, plant roots and shrimp shell waste) and tested for their ability to produce proteolytic enzymes. One isolate was selected, due its high proteolytic activity and ability to grow using shrimp as carbon and nitrogen source on shrimp shell agar medium and identified as Bacillus subtilis NA12 by 16S-rRNA gene sequences with a high degree of similarity (99 %) as a gene bank database. Factors affecting deproteinization (DP) and demineralization (DM) efficiency of shrimp shell waste (SSW) (carbon source and its optimal concentration, shrimp shell waste concentration, inoculum size and fermentation time) were studied. The most efficient DP (92.40 %) and DM (81.37 %) of SSW by B. subtilis NA12 were sucrose 10 % (w/v) and inoculum size 15 % (v/v 35 x 108 CFU/ml ) to ferment shrimp shell waste 5 % (w/v) for 6 days of fermentation time. The effect of γ-irradiation on the performance of selected bacterial strain was studied to maximize chitin yield. Box-Behnken design using response surface methodology was employed to establish the relationship between the previous variables, implied that the model was highly significant. It was found that a sucrose concentration of 5 % (w/v), SSW of 12.5 % (w/v), inoculum size of 10 % (v/v) and fermentation time of 7 days; had a predicted value of DP of 97.65 % whereas the actual experiment gave 96.37 %. The predicted value of DM was 82.94 % whereas the actual experiment gave 82.19 %. Chitosan polymer was successfully prepared by the deacetylation reaction from fermented shrimp shell waste (SSW) by Bacillus subtilis NA12

  12. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    Science.gov (United States)

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  13. The efficacy of Carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method

    Directory of Open Access Journals (Sweden)

    C. Baskaran

    2012-10-01

    Full Text Available Objective: To investigate the antimicrobial activity and phytochemical screening Ethanol, methanol, Ethyl acetate, acetone, chloroform, Petroleum ether, hexane, hot water, and extracts of Carica papaya. Methods: The aim of the present study was to evaluate the qualitative analysis of phytochemicals and antimicrobial activity of various solvent extracts of Carica papaya. The antimicrobial activities of different solvent extracts of Carica papaya were tested against the Gram-positive and Gram-negative bacterial strains and fungus by observing the zone of inhibition. The Gram-positive bacteria used in the test were Staphylococcus aureus, Bacillus cereus and Micrococcus luteus, and the Gram-negative bacteria were Escherichia coli, and Klebsiella pneumoniae, fungus like Aspergillus niger, Aspergillus flavus, Candida albicans, Candida tropicalis, Cryptococcus neoformans, and Candida kefyr. Results: It was observed that ethanol, methanol, ethyl acetate, aceton, chloroform, petroleum ether, hexane and aquas extracts showed activity against bacteria and fungus. The chloroform extract of Carica papaya showed more activity against Micrococcus luteus, zone of diameter 15.17暲0.29mm and acetone extract of Carica papaya showed more activity against Candida albicans, zone of diameter 11.23暲0.25mm compared to other solvent extracts. Conclusions: In this study chloroform extract in bacteria and acetone extract in fungus showed a varying degree of inhibition to the growth of tested organism, than Ethanol, methanol, Ethyl acetate, Petroleum ether, hexane and hot water extracts. The results confirmed the presence of antibacterial and antifungal activity of Carica papaya extract against various human pathogenic bacteria. Presences of phytochemical and antimicrobial activity are confirmed.

  14. In vitro activity of tigecycline, a new glycylcycline, tested against 1,326 clinical bacterial strains isolated from Latin America

    Directory of Open Access Journals (Sweden)

    Ana C. Gales

    Full Text Available The in vitro activity of tigecycline (former GAR-936, a new semisynthetic tetracycline, was evaluated in comparison with tetracycline and other antimicrobial agents. MATERIAL AND METHODS: A total of 1,326 contemporary clinical isolates collected from the Latin American region were collected in 2000-2002 period and tested with microdilution broth according to the CLSI guidelines. The bacterial pathogens evaluated included Staphylococcus aureus (505, Streptococcus pneumoniae (269, coagulase-negative staphylococci (CoNS; 227, Haemophilus influenzae (129, Enterococcus spp. (80, Moraxella catarrhalis (54, beta-haemolytic streptococci (28, viridans group streptococci (26, and Neisseria meningitidis (8 RESULTS:Tigecycline demonstrated excellent activity against all Gram-positive cocci, with 90% of penicillin-resistant S. pneumoniae strains being inhibited at 0.12 µg/mL, while the same isolates had an MIC90 of > 16 µg/mL for tetracycline. All Enterococcus spp. were inhibited at 0.25 µg/mL of tigecycline. Tigecycline (MIC50, 0.25 µg/mL was eight-fold more potent than minocycline (MIC50, 2 µg/mL against oxacillin-resistant S. aureus (ORSA; all ORSA were inhibited at < 2 µg/mL of tigecycline. Tigecycline demonstrated excellent activity (MIC50, 0.5 µg/mL against CoNS with reduced susceptibility to teicoplanin (MIC, 16 µg/mL. Tigecycline also showed high potency against respiratory pathogens such as M. catarrhalis (MIC50, 0.12 µg/mL and H. influenzae (MIC50, 0.5 µg/mL. No tigecycline resistant isolates were detected when the proposed susceptible breakpoints (< 4 µg/mL was applied. CONCLUSIONS: This results indicate that tigecycline has potent in vitro activity against clinically important pathogenic bacteria, including Gram-positive isolates resistant to both tetracycline and minocycline.

  15. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure.

    Science.gov (United States)

    Kang, Yijun; Shen, Min; Wang, Huanli; Zhao, Qingxin

    2013-01-01

    According to the traditional view, establishment and maintenance of critical population densities in the rhizosphere was the premise of PGPR to exert growth-promoting effects. In light of the facts that soil bacterial community structures can be changed by some PGPR strains including Bacillus pumilus WP8, we hypothesize that regulation of soil bacterial community structure is one of the plant growth-promoting mechanisms of B. pumilus WP8, rather than depending on high-density cells in soil. In this study, denaturing gradient gel electrophoresis (PCR-DGGE) was performed to evaluate the relationship between changes in soil bacterial community structure and growth-promoting effect on the seedling growth of fava beans (Vicia faba L.) during three successive cultivations. We found that B. pumilus WP8 lacks capacity to reproduce in large enough numbers to survive in bulk soil more than 40 days, yet the bacterial community structures were gradually influenced by inoculation of WP8, especially on dominant populations. Despite WP8 being short-lived, it confers the ability of steadily promoting fava bean seedling growth on soil during the whole growing period for at least 90 days. Pseudomonas chlororaphis RA6, another tested PGPR strain, exists in large numbers for at least 60 days but less than 90 days, whilst giving rise to slight influence on bacterial community structure. In addition, along with the extinction of RA6 cells in bulk soils, the effect of growth promotion disappeared simultaneously. Furthermore, the increment of soil catalase activity from WP8 treatment implied the ability to stimulate soil microbial activity, which may be the reason why the dominant population changed and increased as time passed. Our study suggests that regulation of treated soil bacterial community structure may be another possible action mechanism.

  16. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    Science.gov (United States)

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  17. Identification of the novel Kawasaki 2014 GII.17 human norovirus strain in Italy, 2015.

    Science.gov (United States)

    Medici, Maria Cristina; Tummolo, Fabio; Calderaro, Adriana; Chironna, Maria; Giammanco, Giovanni Maurizio; De Grazia, Simona; Arcangeletti, Maria Cristina; De Conto, Flora; Chezzi, Carlo; Martella, Vito

    2015-01-01

    Surveillance of noroviruses in Italy identified the novel GII.17 human norovirus strain, Kawasaki 2014, in February 2015. This novel strain emerged as a major cause of gastroenteritis in Asia during 2014/15, replacing the pandemic GII.4 norovirus strain Sydney 2012, but being reported only sporadically elsewhere. This novel strain is undergoing fast diversification and continuous monitoring is important to understand the evolution of noroviruses and to implement the future strategies on norovirus vaccines.

  18. Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Metsoviti, Maria; Paramithiotis, Spiros; Drosinos, Eleftherios H.; Galiotou-Panayotou, Maria; Nychas, George-John E.; Papanikolaou, Seraphim [Department of Food Science and Technology, Agricultural University of Athens, Athens (Greece); Zeng, An-Ping [Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology (TUHH), Hamburg (Germany)

    2012-02-15

    The ability of bacterial strains to assimilate glycerol derived from biodiesel facilities to produce metabolic compounds of importance for the food, textile and chemical industry, such as 1,3-propanediol (PD), 2,3-butanediol (BD) and ethanol (EtOH), was assessed. The screening of 84 bacterial strains was performed using glycerol as carbon source. After initial trials, 12 strains were identified capable of consuming raw glycerol under anaerobic conditions, whereas 5 strains consumed glycerol under aerobiosis. A plethora of metabolic compounds was synthesized; in anaerobic batch-bioreactor cultures PD in quantities up to 11.3 g/L was produced by Clostridium butyricum NRRL B-23495, while the respective value was 10.1 g/L for a newly isolated Citrobacter freundii. Adaptation of Cl. butyricum at higher initial glycerol concentration resulted in a PD{sub max} concentration of {proportional_to}32 g/L. BD was produced by a new Enterobacter aerogenes isolate in shake-flask experiments, under fully aerobic conditions, with a maximum concentration of {proportional_to}22 g/L which was achieved at an initial glycerol quantity of 55 g/L. A new Klebsiella oxytoca isolate converted waste glycerol into mixtures of PD, BD and EtOH at various ratios. Finally, another new C. freundii isolate converted waste glycerol into EtOH in anaerobic batch-bioreactor cultures with constant pH, achieving a final EtOH concentration of 14.5 g/L, a conversion yield of 0.45 g/g and a volumetric productivity of {proportional_to}0.7 g/L/h. As a conclusion, the current study confirmed the utilization of biodiesel-derived raw glycerol as an appropriate substrate for the production of PD, BD and EtOH by several newly isolated bacterial strains under different experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Identification of Phylogenetic Position in the Chlamydiaceae Family for Chlamydia Strains Released from Monkeys and Humans with Chlamydial Pathology

    Directory of Open Access Journals (Sweden)

    Alexander Karaulov

    2010-01-01

    Full Text Available Based on the results of the comparative analysis concerning relatedness and evolutional difference of the 16S–23S nucleotide sequences of the middle ribosomal cluster and 23S rRNA I domain, and based on identification of phylogenetic position for Chlamydophila pneumoniae and Chlamydia trichomatis strains released from monkeys, relatedness of the above stated isolates with similar strains released from humans and with strains having nucleotide sequences presented in the GenBank electronic database has been detected for the first time ever. Position of these isolates in the Chlamydiaceae family phylogenetic tree has been identified. The evolutional position of the investigated original Chlamydia and Chlamydophila strains close to analogous strains from the Gen-Bank electronic database has been demonstrated. Differences in the 16S–23S nucleotide sequence of the middle ribosomal cluster and 23S rRNA I domain of plasmid and nonplasmid Chlamydia trachomatis strains released from humans and monkeys relative to different genotype groups (group B-B, Ba, D, Da, E, L1, L2, L2a; intermediate group-F, G, Ga have been revealed for the first time ever. Abnormality in incA chromosomal gene expression resulting in Chlamydia life development cycle disorder, and decrease of Chlamydia virulence can be related to probable changes in the nucleotide sequence of the gene under consideration

  20. Isolation and identification of bacterial causes of clinical mastitis in cattle in Sulaimania region

    Directory of Open Access Journals (Sweden)

    S. A. Hussein

    2008-01-01

    Full Text Available A total of 51 cases of bovine clinical mastitis in Sulaimani district were investigated for their bacteriological causative agents; 76 milk samples were cultured on primary and selective media and the isolated bacteria were tested for their susceptibility to antimicrobial agents used in commercial intramammary infusion products. Eighty two bacterial isolates were obtained and further identified using biochemical tests. Escherichia coli was the most common bacteria followed by Staphylococcus aureus, Streptococcus agalactia and coagulase–negative staphylococci. Two other bacterial species (Pseudomonas aeruginosa and Streptococcucs uberis were also isolated but in a lower proportion. Antibacterial susceptibility testing showed that the use of florfenicol, cephalexin and gentamicin may be useful for the treatment of clinical mastitis cases in cows.

  1. Rapid identification of Mycobacterium avium ssp paratuberculosis laboratory strains by IS900-Nested polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammad Taheri

    2016-01-01

    Conclution: However, no amplification was observed with other strains. Two main achievements of this work are the development of an efficient means of differentiation between the six Razi laboratory mycobacterial strains and characterization of the genomic profile of these strains, a capability that is vital when cross contamination is potentially an important concern.

  2. Identification of constraints influencing the bacterial genomes evolution in the PVC super-phylum.

    Science.gov (United States)

    Pinos, Sandrine; Pontarotti, Pierre; Raoult, Didier; Merhej, Vicky

    2017-03-09

    Horizontal transfer plays an important role in the evolution of bacterial genomes, yet it obeys several constraints, including the ecological opportunity to meet other organisms, the presence of transfer systems, and the fitness of the transferred genes. Bacteria from the Planctomyctetes, Verrumicrobia, Chlamydiae (PVC) super-phylum have a compartmentalized cell plan delimited by an intracytoplasmic membrane that might constitute an additional constraint with particular impact on bacterial evolution. In this investigation, we studied the evolution of 33 genomes from PVC species and focused on the rate and the nature of horizontally transferred sequences in relation to their habitat and their cell plan. Using a comparative phylogenomic approach, we showed that habitat influences the evolution of the bacterial genome's content and the flux of horizontal transfer of DNA (HT). Thus bacteria from soil, from insects and ubiquitous bacteria presented the highest average of horizontal transfer compared to bacteria living in water, extracellular bacteria in vertebrates, bacteria from amoeba and intracellular bacteria in vertebrates (with a mean of 379 versus 110 events per species, respectively and 7.6% of each genomes due to HT against 4.8%). The partners of these transfers were mainly bacterial organisms (94.9%); they allowed us to differentiate environmental bacteria, which exchanged more with Proteobacteria, and bacteria from vertebrates, which exchanged more with Firmicutes. The functional analysis of the horizontal transfers revealed a convergent evolution, with an over-representation of genes encoding for membrane biogenesis and lipid metabolism, among compartmentalized bacteria in the different habitats. The presence of an intracytoplasmic membrane in PVC species seems to affect the genome's evolution through the selection of transferred DNA, according to their encoded functions.

  3. Identification of modal strains using sub-microstrain FBG data and a novel wavelength-shift detection algorithm

    Science.gov (United States)

    Anastasopoulos, Dimitrios; Moretti, Patrizia; Geernaert, Thomas; De Pauw, Ben; Nawrot, Urszula; De Roeck, Guido; Berghmans, Francis; Reynders, Edwin

    2017-03-01

    The presence of damage in a civil structure alters its stiffness and consequently its modal characteristics. The identification of these changes can provide engineers with useful information about the condition of a structure and constitutes the basic principle of the vibration-based structural health monitoring. While eigenfrequencies and mode shapes are the most commonly monitored modal characteristics, their sensitivity to structural damage may be low relative to their sensitivity to environmental influences. Modal strains or curvatures could offer an attractive alternative but current measurement techniques encounter difficulties in capturing the very small strain (sub-microstrain) levels occurring during ambient, or operational excitation, with sufficient accuracy. This paper investigates the ability to obtain sub-microstrain accuracy with standard fiber-optic Bragg gratings using a novel optical signal processing algorithm that identifies the wavelength shift with high accuracy and precision. The novel technique is validated in an extensive experimental modal analysis test on a steel I-beam which is instrumented with FBG sensors at its top and bottom flange. The raw wavelength FBG data are processed into strain values using both a novel correlation-based processing technique and a conventional peak tracking technique. Subsequently, the strain time series are used for identifying the beam's modal characteristics. Finally, the accuracy of both algorithms in identification of modal characteristics is extensively investigated.

  4. Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections

    Science.gov (United States)

    2015-06-15

    are shown in Table 1. The domain structure of A3404 is the archetypal carrier protein consisting of four !-helices. The conserved serine that is the...and catalogued as essential in DEG need to be interpreted within the context of their method of identification. Our review of the literature revealed

  5. ANTIBIOTIC RESISTANCE IN ENTEROBACTERIACEAE STRAINS ISOLATED FROM CHICKEN AND MILK SAMPLES

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2015-02-01

    Full Text Available Antibiotic resistance and identification of strains in Enterobacteriaceae genera isolated from milk, milk products and rectal swabs of chicken was examined in this experiment. After samples collection cultivation and identification of bacterial strain was done. MALDI TOF MS Biotyper for identification of Enterobacteriaceae strains was used. For susceptibility testing disc diffusion methodology was used according by EUCAST. Results showed high level of ampicillin resistance in isolates from milk and milk samples. The highest streptomycin resistance was detected in isolates from rectal swabs of chicken. After identification, we determined that S. enterica ser. Typhimurium, which was isolated from rectal swabs of chicken showed the most multi-resistance from all identificated strains of Enterobacteriaceae. The most isolates bacterial strain was E. coli, which showed resistance against four antibiotics from rectal swabs of chicken. Also our results showed that the higher resistance level is in rectal swabs of chicken like in milk samples.

  6. Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens.

    Science.gov (United States)

    Sammer, Ulrike F; Reiher, Katharina; Spiteller, Dieter; Wensing, Annette; Völksch, Beate

    2012-12-01

    The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range. © 2012 The Authors. Published by Blackwell Publishing Ltd.

  7. Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants.

    Science.gov (United States)

    Blanco-Moreno, Rafael; Sáez, Lara P; Luque-Almagro, Víctor M; Roldán, M Dolores; Moreno-Vivián, Conrado

    2017-03-25

    Thermo-solar plants use eutectic mixtures of diphenyl ether (DE) and biphenyl (BP) as heat transfer fluid (HTF). Potential losses of HTF may contaminate soils and bioremediation is an attractive tool for its treatment. DE- or BP-degrading bacteria are known, but up to now bacteria able to degrade HTF mixture have not been described. Here, five bacterial strains which are able to grow with HTF or its separate components DE and BP as sole carbon sources have been isolated, either from soils exposed to HTF or from rhizospheric soils of plants growing near a thermo-solar plant. The organisms were identified by 16S rRNA gene sequencing as Achromobacter piechaudii strain BioC1, Pseudomonas plecoglossicida strain 6.1, Pseudomonas aeruginosa strains HBD1 and HBD3, and Pseudomonas oleovorans strain HBD2. Activity of 2,3-dihydroxybiphenyl dioxygenase (BphC), a key enzyme of the biphenyl upper degradation pathway, was detected in all isolates. Pseudomonas strains almost completely degraded 2000ppm HTF after 5-day culture, and even tolerated and grew in the presence of 150,000ppm HTF, being suitable candidates for in situ soil bioremediation. Degradation of both components of HTF is of particular interest since in the DE-degrader Sphingomonas sp. SS3, growth on DE or benzoate was strongly inhibited by addition of BP. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded soil microcosms planted with rice seedlings

    NARCIS (Netherlands)

    Lin, M.; Smalla, K.; Heuer, H.; Elsas, van J.D.

    2000-01-01

    The fate and impact of Alcaligenes faecalis strain A1501R, a rifampicin-resistant derivative of a rice inoculant strain, were studied in flooded silt loam microcosms planted with rice seedlings. Selective plating revealed that strain A1501R survived at high, initially stable and later slowly

  9. Evaluation by biodistribution of two anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Iêda M.; Lacerda, Camila M.S.; Santos, Sara R.; Andrade, Antero S.R. de; Fernandes, Simone O.; Barros, André B. de; Cardoso, Valbert N.

    2017-01-01

    Nuclear medicine clinics are still awaiting optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In the present study, two aptamers for peptidoglycan (termed Antibac1 and Antibac2) were labeled with 99m Tc and evaluated for bacterial infection identification by biodistribution. The direct labeling method with 99m Tc allowed radiolabel yields higher than 90% and the complexes were stable in saline, plasma and cysteine excess. The 99m Tc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio (T/NT) of 2.81 ± 0.67, significantly higher than verified for the 99m Tc-library (control): 1.52 ± 0.07. A radiolabeled library of oligonucleotides with random sequences was used as a control for monitoring nonspecific uptake at the site of infection. In the model with C. albicans infection the T/NT ratio for 99m Tc-Antibac1 was 1.46 ± 0.11, similar that obtained for the 99m Tc-library in the same model: 1.52 ± 0.05. The 99m Tc-Antibac2 in the group infected with S. aureus showed a T/NT ratio of 2.61 ± 0.66, statistically higher than achieved for the 99m Tc-library: 1.52 ± 0.07. In the group infected with C. albicans this ratio for 99m Tc-Antibac2 was 1.75 ± 0.19, also statistically higher in relation to the 99m Tc-library: 1.52 ± 0.05. Both aptamers were effective in identifying bacterial infection foci, but only 99m Tc-Antibac1 showed no cross reactivity for fungal cells. (author)

  10. Identification by PCR of Fusarium culmorum Strains Producing Large and Small Amounts of Deoxynivalenol

    Science.gov (United States)

    Bakan, B.; Giraud-Delville, C.; Pinson, L.; Richard-Molard, D.; Fournier, E.; Brygoo, Y.

    2002-01-01

    Thirty deoxynivalenol-producing F. culmorum strains, isolated from wheat grains, were incubated in vitro and analyzed for trichothecene production. Seventeen strains produced more than 1 ppm of deoxynivalenol and acetyldeoxynivalenol and were considered high-deoxynivalenol-producing strains, whereas 13 F. culmorum strains produced less than 0.07 ppm of trichothecenes and were considered low-deoxynivalenol-producing strains. For all strains, a 550-base portion of the trichodiene synthase gene (tri5) was amplified and sequenced. According to the tri5 data, the F. culmorum strains tested clustered into two groups that correlated with in vitro deoxynivalenol production. For three high-producing and three low-producing F. culmorum strains, the tri5-tri6 intergenic region was then sequenced, which confirmed the two separate clusters within the F. culmorum strains. According to the tri5-tri6 sequence data, specific PCR primers were designed to allow differentiation of high-producing from low-producing F. culmorum strains. PMID:12406740

  11. Genome-wide identification of Streptococcus pneumoniae genes essential for bacterial replication during experimental meningitis

    DEFF Research Database (Denmark)

    Molzen, T E; Burghout, P; Bootsma, H J

    2010-01-01

    Meningitis is the most serious of invasive infections caused by the Gram-positive bacterium Streptococcus pneumoniae. Vaccines protect only against a limited number of serotypes, and evolving bacterial resistance to antimicrobials impedes treatment. Further insight into the molecular pathogenesis...... of invasive pneumococcal disease is required in order to enable the development of new or adjunctive treatments and/or pneumococcal vaccines that are efficient across serotypes. We applied genomic array footprinting (GAF) in the search for S. pneumoniae genes that are essential during experimental meningitis...

  12. Identification of bacterial cultures from archaeological wood using molecular biological techniques

    DEFF Research Database (Denmark)

    Helms, A.C.; Martiny, Adam Camillo; Hofman-Bang, H. Jacob Peider

    2004-01-01

    Anaerobic bacteria were isolated from a 1700-year-old wooden spear shaft, excavated from an archaeological site that dates from the iron age, in the southern part of Jutland, Denmark. The bacteria were cultivated in glucose- and xylose-supplemented media at 14degreesC and 20degreesC. A gene library...... affiliated to the beta-Proteobacteria. Four clones were clustered among the Geobacteriaceae, in the delta-Proteobacteria. A single clone was clustered with gram-positives. All the identified bacterial families are commonly found in soil or bog environments and many are able to utilize cellulose...

  13. [Numerical help to bacterial identification: definition of a first kind error risk].

    Science.gov (United States)

    Van Oystaeyen, B

    2006-01-01

    The numerical method commonly used as an help to the bacterian identification appears quite efficient in its first role, i.e. to propose the name of the plausible bacteria, but it fails to define a confidence level to be assiociated to the final decision. To correct this, this paper propose to calculate the response probability distribution for each possible bacteria. The calculation uses the so-called "Monte-Carlo" method and has to be performed once for all on a given set of biochemical tests. For each calculated ditribution, it is easy to find a first kind error risk, or alpha-error risk. The proposed theoretical approach moreover avoid the comparison of "identification scores", which is always questionable so far the various bacteria present very different sensitivities to the biochemical tests.

  14. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik

    2011-01-01

    acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time......BACKGROUND: Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells...... and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS: All six AMP analogues...

  15. Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification - increased discrimination of closely related species

    NARCIS (Netherlands)

    Sabat, Artur J.; van Zanten, Evert; Akkerboom, Viktoria; Wisselink, Guido J; van Slochteren, Kees; de Boer, Richard F; Hendrix, Ron; Friedrich, Alexander W.; Rossen, John W. A.; Kooistra-Smid, Anna M.D. (Mirjam)

    2017-01-01

    The aim of this study was to develop an easy-to-use culture-free diagnostic method based on next generation sequencing (NGS) of PCR amplification products encompassing whole 16S-23S rRNA region to improve the resolution of bacterial species identification. To determine the resolution of the new

  16. Bacterial Suspensions Deposited on Microbiological Filter Material for Rapid Laser-Induced Breakdown Spectroscopy Identification.

    Science.gov (United States)

    Malenfant, Dylan J; Gillies, Derek J; Rehse, Steven J

    2016-03-01

    Four species of bacteria, E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa, were harvested from agar nutrient medium growth plates and suspended in water to create liquid specimens for the testing of a new mounting protocol. Aliquots of 30 µL were deposited on standard nitrocellulose filter paper with a mean 0.45 µm pore size to create highly flat and uniform bacterial pads. The introduction of a laser-based lens-to-sample distance measuring device and a pair of matched off-axis parabolic reflectors for light collection improved both spectral reproducibility and the signal-to-noise ratio of optical emission spectra acquired from the bacterial pads by laser-induced breakdown spectroscopy. A discriminant function analysis and a partial least squares-discriminant analysis both showed improved sensitivity and specificity compared to previous mounting techniques. The behavior of the spectra as a function of suspension concentration and filter coverage was investigated, as was the effect on chemometric cell classification of sterilization via autoclaving. © The Author(s) 2016.

  17. Identification of a human neonatal immune-metabolic network associated with bacterial infection.

    Science.gov (United States)

    Smith, Claire L; Dickinson, Paul; Forster, Thorsten; Craigon, Marie; Ross, Alan; Khondoker, Mizanur R; France, Rebecca; Ivens, Alasdair; Lynn, David J; Orme, Judith; Jackson, Allan; Lacaze, Paul; Flanagan, Katie L; Stenson, Benjamin J; Ghazal, Peter

    2014-08-14

    Understanding how human neonates respond to infection remains incomplete. Here, a system-level investigation of neonatal systemic responses to infection shows a surprisingly strong but unbalanced homeostatic immune response; developing an elevated set-point of myeloid regulatory signalling and sugar-lipid metabolism with concomitant inhibition of lymphoid responses. Innate immune-negative feedback opposes innate immune activation while suppression of T-cell co-stimulation is coincident with selective upregulation of CD85 co-inhibitory pathways. By deriving modules of co-expressed RNAs, we identify a limited set of networks associated with bacterial infection that exhibit high levels of inter-patient variability. Whereas, by integrating immune and metabolic pathways, we infer a patient-invariant 52-gene-classifier that predicts bacterial infection with high accuracy using a new independent patient population. This is further shown to have predictive value in identifying infection in suspected cases with blood culture-negative tests. Our results lay the foundation for future translation of host pathways in advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis.

  18. OpWise: Operons aid the identification of differentially expressed genes in bacterial microarray experiments

    Directory of Open Access Journals (Sweden)

    Arkin Adam P

    2006-01-01

    Full Text Available Abstract Background Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known. Results OpWise estimates the amount of systematic error in bacterial microarray data by assuming that genes in the same operon have matching expression patterns. OpWise then performs a Bayesian analysis of a linear model to estimate significance. In simulations, OpWise corrects for systematic error and is robust to deviations from its assumptions. In several bacterial data sets, significant amounts of systematic error are present, and replicate-based approaches overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise can identify additional changers by assigning genes higher confidence if they are consistent with other genes in the same operon. Conclusion Although microarray data can contain large amounts of systematic error, operons provide an external standard and allow for reasonable estimates of significance. OpWise is available at http://microbesonline.org/OpWise.

  19. Myocardial strain estimation from CT: towards computer-aided diagnosis on infarction identification

    Science.gov (United States)

    Wong, Ken C. L.; Tee, Michael; Chen, Marcus; Bluemke, David A.; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Regional myocardial strains have the potential for early quantification and detection of cardiac dysfunctions. Although image modalities such as tagged and strain-encoded MRI can provide motion information of the myocardium, they are uncommon in clinical routine. In contrary, cardiac CT images are usually available, but they only provide motion information at salient features such as the cardiac boundaries. To estimate myocardial strains from a CT image sequence, we adopted a cardiac biomechanical model with hyperelastic material properties to relate the motion on the cardiac boundaries to the myocardial deformation. The frame-to-frame displacements of the cardiac boundaries are obtained using B-spline deformable image registration based on mutual information, which are enforced as boundary conditions to the biomechanical model. The system equation is solved by the finite element method to provide the dense displacement field of the myocardium, and the regional values of the three principal strains and the six strains in cylindrical coordinates are computed in terms of the American Heart Association nomenclature. To study the potential of the estimated regional strains on identifying myocardial infarction, experiments were performed on cardiac CT image sequences of ten canines with artificially induced myocardial infarctions. The leave-one-subject-out cross validations show that, by using the optimal strain magnitude thresholds computed from ROC curves, the radial strain and the first principal strain have the best performance.

  20. Identification and Characterization of a Serious Multidrug Resistant Stenotrophomonas maltophilia Strain in China

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available An S. maltophilia strain named WJ66 was isolated from a patient; WJ66 showed resistance to more antibiotics than the other S. maltophilia strains. This bacteraemia is resistant to sulphonamides, or fluoroquinolones, while the representative strain of S. maltophilia, K279a, is sensitive to both. To explore drug resistance determinants of this strain, the draft genome sequence of WJ66 was determined and compared to other S. maltophilia sequences. Genome sequencing and genome-wide evolutionary analysis revealed that WJ66 was highly homologous with the strain K279a, but strain WJ66 contained additional antibiotic resistance genes. Further analysis confirmed that strain WJ66 contained an amino acid substitution (Q83L in fluoroquinolone target GyrA and carried a class 1 integron, with an aadA2 gene in the resistance gene cassette. Homology analysis from the pathogen-host interaction database showed that strain WJ66 lacks raxST and raxA, which is consistent with K279a. Comparative genomic analyses revealed that subtle nucleotide differences contribute to various significant phenotypes in close genetic relationship strains.

  1. Life beyond the laboratory: Selection, cultivation and molecular identification of new robust algal strains for use in extreme environments

    Science.gov (United States)

    Kloeck, Gerd; Franziska Bleeke, M. Sc.; Corinna Kontradowitz, M. Sc.; Noke, Anja

    Microalgae are some of the world's oldest organisms, phylogenetically. Microalgae can be found virtually everywhere, adapted to almost any habitat, from oceans and fresh-water lakes to deserts, arctic regions and the interior of rocks.Because microalgae can, in principle, adapt to a wide range of environmental conditions, these organisms are of special interest in life support and space exploration. However, most current studies on microalgae are perfomend with labo-ratory strains or so calles "model organisms", which are usually do not grow well under extreme conditions. We report here the results of a screening programme for new algae strains, which grow fast at elevated temperatures, extreme pH values, high irradiance and variing osmolari-ties. About 130 samples from sites in Germany, Spain (Mainland, Balearic and Canary Islands), Italy, Portugal and New Zealand were collected. The algae were isolated and maintained in liq-uid media. From a total of 30 pure cultures growth curves were created and doubling times and growth rates were determined. most strains grew very fast, the isolate T306A hat a generation time of =0.05h-1 and a doubling time of td= 14.3h-1. Temperature sensitivity tests revealed that most algae (also most laboratory strains) did not tolerate temperatures above 40C. We identifiesd about 30 strains whose thermo tolerance was above 40C. Isolate R7 grew even at 47C. Within the framework of the molecular identification by means of 18S rDNA sequencing, 22 iso-lates could be determined phylogenetically. Chlorophytes deriving from four different families (Scenedesmaceae, Chlorellaceae, Chlorococcaceae and Chlamydomonadaceae) were identified. Beside the already molecular identified strains, more than 20 strains are available for further experiments.

  2. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects.

    Science.gov (United States)

    Bisch, Gaëlle; Pagès, Sylvie; McMullen, John G; Stock, S Patricia; Duvic, Bernard; Givaudan, Alain; Gaudriault, Sophie

    2015-01-01

    Xenorhabdus bacteria (γ-proteobacteria: Enterobacteriaceae) have dual lifestyles. They have a mutualistic relationship with Steinernema nematodes (Nematoda: Steinernematidae) and are pathogenic to a wide range of insects. Each Steinernema nematode associates with a specific Xenorhabdus species. However, a Xenorhabdus species can have multiple nematode hosts. For example, Xenorhabdus bovienii (Xb) colonizes at least nine Steinernema species from two different phylogenetic clades. The Steinernema-Xb partnership has been found in association with different insect hosts. Biological and molecular data on the Steinernema jollieti-Xb strain SS-2004 pair have recently been described. In particular, the Xb SS-2004 bacteria are virulent alone after direct injection into insect, making this strain a model for studying Xb virulence. In this study, we searched for Xb strains attenuated in virulence. For this purpose, we underwent infection assays with five Steinernema spp.-Xb pairs with two insects, Galleria mellonella (Lepidoptera: Pyralidae) and Spodoptera littoralis (Lepidoptera: Noctuidae). The S. weiseri-Xb CS03 pair showed attenuated virulence and lower fitness in S. littoralis in comparison to the other nematode-bacteria pairs. Furthermore, when injected alone into the hemolymph of G. mellonella or S. littoralis, the Xb CS03 bacterial strain was the only non-virulent strain. By comparison with the virulent Xb SS-2004 strain, Xb CS03 showed an increased sensitivity to the insect antimicrobial peptides, suggesting an attenuated response to the insect humoral immunity. To our current knowledge, Xb CS03 is the first non-virulent Xb strain identified. We propose this strain as a new model for studying the Xenorhabdus virulence. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Core Genome Multilocus Sequence Typing for Identification of Globally Distributed Clonal Groups and Differentiation of Outbreak Strains of Listeria monocytogenes.

    Science.gov (United States)

    Chen, Yi; Gonzalez-Escalona, Narjol; Hammack, Thomas S; Allard, Marc W; Strain, Errol A; Brown, Eric W

    2016-10-15

    Many listeriosis outbreaks are caused by a few globally distributed clonal groups, designated clonal complexes or epidemic clones, of Listeria monocytogenes, several of which have been defined by classic multilocus sequence typing (MLST) schemes targeting 6 to 8 housekeeping or virulence genes. We have developed and evaluated core genome MLST (cgMLST) schemes and applied them to isolates from multiple clonal groups, including those associated with 39 listeriosis outbreaks. The cgMLST clusters were congruent with MLST-defined clonal groups, which had various degrees of diversity at the whole-genome level. Notably, cgMLST could distinguish among outbreak strains and epidemiologically unrelated strains of the same clonal group, which could not be achieved using classic MLST schemes. The precise selection of cgMLST gene targets may not be critical for the general identification of clonal groups and outbreak strains. cgMLST analyses further identified outbreak strains, including those associated with recent outbreaks linked to contaminated French-style cheese, Hispanic-style cheese, stone fruit, caramel apple, ice cream, and packaged leafy green salad, as belonging to major clonal groups. We further developed lineage-specific cgMLST schemes, which can include accessory genes when core genomes do not possess sufficient diversity, and this provided additional resolution over species-specific cgMLST. Analyses of isolates from different common-source listeriosis outbreaks revealed various degrees of diversity, indicating that the numbers of allelic differences should always be combined with cgMLST clustering and epidemiological evidence to define a listeriosis outbreak. Classic multilocus sequence typing (MLST) schemes targeting internal fragments of 6 to 8 genes that define clonal complexes or epidemic clones have been widely employed to study L. monocytogenes biodiversity and its relation to pathogenicity potential and epidemiology. We demonstrated that core genome MLST

  4. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... was observed only in bacterial strains isolated from temperate region and negligible or no expression was observed in bacterial ... immunological tool for the identification of CSP from diversified microorganisms. Key words: Cold shock ..... the Cyanobacterium Anabaena variables M3.Nucleic acid Res., 23:.

  5. Bacterial identification of the vaginal microbiota in Ecuadorian pregnant teenagers: an exploratory analysis.

    Science.gov (United States)

    Salinas, Ana María; Osorio, Verónica Gabriela; Endara, Pablo Francisco; Salazar, Eduardo Ramiro; Vasco, Gabriela Piedad; Vivero, Sandra Guadalupe; Machado, Antonio

    2018-01-01

    Bacterial vaginosis (BV) is a microbial imbalance (i.e., dysbiosis) that can produce serious medical effects in women at childbearing age. Little is known, however, about the incidence of BV or vaginal microbiota dysbiosis in pregnant teenagers in low and middle-income countries such as Ecuador. The scope of this exploratory analysis was to study the relationship between epidemiologic and microbial risk factors. Among the microbiology risk factors this study investigated five Lactobacillus species, two of them know in preview studies as microbiology risk factors for BV development ( Lactobacillus acidophilus and Lactobacillus iners ), and the last three known for being associated with a healthy vaginal tract ( Lactobacillus crispatus , Lactobacillus gasseri and Lactobacillus jensenii ). In addition, fastidious anaerobes known to be microbial risk factors for BV development in pregnant teenagers were searched as well, more exactly, Gardnerella vaginalis , Atopobium vaginae and Mobiluncus mulieris . Ninety-five healthy adolescent pregnant women, visiting a secondary level hospital in Quito, Ecuador, were enrolled into the study in 2015. The enrolled patients were between 10 to 13 weeks of pregnancy. Four epidemiological risk factors were collected in a survey: age, civil status, sexual partners and condom use. Also, vaginal pH was measured as a health risk factor. DNA was extracted from endocervical and exocervical epithelia from all the patients' samples. PCR analysis was performed in order to characterize the presence of the eight bacterial species known as risk factors for BV development, targeting three anaerobes and five Lactobacillus species. Univariate and multivariate analysis were performed to identify associated factors for the presence of anaerobic species using logistic regression. The 95 vaginal microflora samples of these teenagers were analyzed. Two of the bacterial species known to cause BV: A. vaginae (100%) and G. vaginalis (93.7%) were found in

  6. Identification of pesticide-degrading Pseudomonas strains as poly-β ...

    African Journals Online (AJOL)

    hydroxybutyrate producers. ... These strains were cultivated in a shaker at 28°C and the polymer was characterized by Fourier transform infrared (FTIR) spectroscopy. Strain CMM43 had the best accumulation after 48 h. The biopolymer was identified as ...

  7. [Isolation, identification and characterization of a microcystin-degrading bacterium Paucibacter sp. strain CH].

    Science.gov (United States)

    You, Di-Jie; Chen, Xiao-Guo; Xiang, Hui-Yi; Ouyang, Liao; Yang, Bing

    2014-01-01

    A bacterium capable of degrading microcystin (MC), strain CH, was isolated from the sediment of Lake Chaohu, China. Strain CH was tentatively identified as Paucibacter sp. based on the analysis of 16S rRNA gene sequences. Paucibacter sp. strain CH can use microcystin LR (MCLR) as the sole carbon and energy sources, and 11.6 microg x mL(-1) of MCLR was degraded to below the detection limit within 10 hours with the first-order reaction rate constant of 0.242 h(-1). The optimum temperature and initial pH for MC degradation were 25-30 degrees C and pH 6-9, respectively. A novel intermediate product containing the Adda residue was detected during the degradation of MCLR, which is different from those produced by strain ACM-3962, and Adda was recognized as the final product of the degradation process. Furthermore, no homologue to any of the four genes, mlrA, mlrB, mlrC and mlrD previously associated with the degradation of MCLR by strain ACM-3962 was found in strain CH. These findings suggest that Paucibacter sp. strain CH mighe degrade MC through a different pathway from that of strain ACM-3962.

  8. Six cases of Aerococcus sanguinicola infection: Clinical relevance and bacterial identification

    DEFF Research Database (Denmark)

    Ibler, K.; Jensen, K.T.; Ostergaard, C.

    2008-01-01

    were associated with infective endocarditis. Most patients were elderly (median age 70 y) and had underlying neurological disorders including dementia, cerebral degeneration, and myelomeningocele. The primary focus of infection was the urinary tract in 3 cases and the gallbladder in 1; no focus...... was detected in 2 cases. Long-term prognosis was poor reflecting the frailty of the patients. All strains were susceptible to penicillin, ampicillin, cefuroxime, vancomycin, erythromycin, and rifampicin. The optimal treatment of infection with A. sanguinicola has yet to be determined Udgivelsesdato: 2008...

  9. Biodegradation of anthracene by a newly isolated bacterial strain, Bacillus thuringiensis AT.ISM.1, isolated from a fly ash deposition site.

    Science.gov (United States)

    Tarafdar, A; Sinha, A; Masto, R E

    2017-10-01

    The current study is aimed to evaluate the mechanism of anthracene degradation by a bacterial strain isolated from fly ash deposition site near Jamadoba Coal Preparation Plant, Jharkhand, India. The Bushnell-Haas media cultured (containing anthracene as sole carbon source) bacterial isolate was identified by 16S rRNA gene sequence coding as the Bacillus thuringiensis strain, which showed the efficiency to degrade anthracene. The degradation efficiency of the strain has been estimated to be around 91% (for 40 mg l -1 of anthracene concentration) after 2 weeks of incubation at 33-36°C and initial pH of 6·8-7. The growth kinetics of the isolated strain has been described well by the Haldane-Andrews model of microbial growth pattern for inhibitory substrate, with a correlation factor (R 2 value) of 0·9790. The maximum specific growth rate (μ max ) was 0·01053 h -1 and the value of inhibition coefficient for Haldane model was specified as 18·2448 mg l -1 . In the present study, some diphenol metabolites were identified besides the known possible biodegradation products. Polycyclic aromatic hydrocarbons (PAHs) are recognized as significant health risks and consequently listed as priority pollutants by environmental protection agencies across the globe. The aim of the present study was to degrade one of the important PAHs, anthracene, by a newly isolated Bacillus thuringiensis strain. This is the first report of anthracene degradation by B. thuringiensis. This is also the very first growth kinetic study of a bacteria in an anthracene-containing medium. Some diphenol metabolites were found for the first time as anthracene biodegradation by-products, which can be an indication towards a new pathway. © 2017 The Society for Applied Microbiology.

  10. Identification of strain-rate and thermal sensitive material model with an inverse method

    CERN Document Server

    Peroni, L; Peroni, M

    2010-01-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, an...

  11. The probiotic bacterial strain Lactobacillus fermentum D3 increases in vitro the bioavailability of Ca, P, and Zn in fermented goat milk.

    Science.gov (United States)

    Bergillos-Meca, Triana; Navarro-Alarcón, Miguel; Cabrera-Vique, Carmen; Artacho, Reyes; Olalla, Manuel; Giménez, Rafael; Moreno-Montoro, Miriam; Ruiz-Bravo, Alfonso; Lasserrot, Agustín; Ruiz-López, Ma Dolores

    2013-02-01

    We determined calcium, magnesium, phosphorus and zinc levels in a total of 27 samples of commercial goat- and cow-milk fermented products and 9 samples of a goat-milk fermented product with addition of a probiotic bacterial strain, Lactobacillus fermentum D3, manufactured experimentally by our research group. Atomic absorption spectroscopy with flame atomization and UV/VIS spectrophotometry were used as analytic techniques. The results of an in vitro digestion process showed that the bioavailability of calcium, phosphorus, and zinc was significantly higher in our fermented milk containing the probiotic bacterial strain than it was in commercial goat-milk fermented products. Furthermore, our product showed a significantly higher bioavailability of calcium and zinc compared to goat- and cow-milk fermented products made with other microorganisms. We conclude that, in in vitro assays, strain D3 seems to increase the bioavailability of these minerals and that this new product may constitute a better source of bioavailable minerals compared to other products already on the market.

  12. Proteomics and Genetics for Identification of a Bacterial Antimonite Oxidase in Agrobacterium tumefaciens.

    Science.gov (United States)

    Li, Jingxin; Wang, Qian; Li, Mingshun; Yang, Birong; Shi, Manman; Guo, Wei; McDermott, Timothy R; Rensing, Christopher; Wang, Gejiao

    2015-05-19

    Antimony (Sb) and its compounds are listed by the United States Environmental Protection Agency (USEPA, 1979) and the European Union (CEC, 1976) as a priority pollutant. Microbial redox transformations are presumed to be an important part of antimony cycling in nature; however, regulation of these processes and the enzymology involved are unknown. In this study, comparative proteomics and reverse transcriptase-PCR analysis of Sb(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 revealed an oxidoreductase (anoA) is widely distributed in microorganisms, including at least some documented to be able to oxidize Sb(III). Deletion of the anoA gene reduced Sb(III) resistance and decreased Sb(III) oxidation by ∼27%, whereas the anoA complemented strain was similar to the wild type GW4 and a GW4 anoA overexpressing strain increased Sb(III) oxidation by ∼34%. Addition of Sb(III) up-regulated anoA expression and cloning anoA to Escherichia coli demonstrated direct transferability of this activity. A His-tag purified AnoA was found to require NADP(+) as cofactor, and exhibited a K(m) for Sb(III) of 64 ± 10 μM and a V(max) of 150 ± 7 nmol min(-1) mg(-1). This study contributes important initial steps toward a mechanistic understanding of microbe-antimony interactions and enhances our understanding of how microorganisms participate in antimony biogeochemical cycling in nature.

  13. Three-dimensional maximum principal strain using cardiac computed tomography for identification of myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Sawada, Shun; Suekuni, Hiroshi; Kido, Tomoyuki; Yokoi, Takahiro; Miyagawa, Masao; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon City, Ehime (Japan); Uetani, Teruyoshi; Inoue, Katsuji [Ehime University Graduate School of Medicine, Department of Cardiology, Pulmonology, Hypertension and Nephrology, Toon City, Ehime (Japan)

    2017-04-15

    To evaluate the feasibility of three-dimensional (3D) maximum principal strain (MP-strain) derived from cardiac computed tomography (CT) for detecting myocardial infarction (MI). Forty-three patients who underwent cardiac CT and magnetic resonance imaging (MRI) were retrospectively selected. Using the voxel tracking of motion coherence algorithm, the peak CT MP-strain was measured using the 16-segment model. With the trans-mural extent of late gadolinium enhancement (LGE) and the distance from MI, all segments were classified into four groups (infarcted, border, adjacent, and remote segments); infarcted and border segments were defined as MI with LGE positive. Diagnostic performance of MP-strain for detecting MI was compared with per cent systolic wall thickening (%SWT) assessed by MRI using receiver-operating characteristic curve analysis at a segment level. Of 672 segments excluding16 segments influenced by artefacts, 193 were diagnosed as MI. Sensitivity and specificity of peak MP-strain to identify MI were 81 % [95 % confidence interval (95 % CI): 74-88 %] and 86 % (81-92 %) compared with %SWT: 76 % (60-95 %) and 68 % (48-84 %), respectively. The area under the curve of peak MP-strain was superior to %SWT [0.90 (0.87-0.93) vs. 0.80 (0.76-0.83), p < 0.05]. CT MP-strain has a potential to provide incremental value to coronary CT angiography for detecting MI. (orig.)

  14. Isolation and identification of an esterase from a Mexican strain of Boophilus microplus (Acari: Ixodidae).

    Science.gov (United States)

    Pruett, J H; Guerrero, F D; Hernandez, R

    2002-10-01

    A strain of Mexican Boophilus microplus (Cz) collected near Coatzacoalcos, Veracruz, Mexico, exhibits a moderate, but significant, level of permethrin resistance. Unlike other highly permethrin resistant strains, the Cz strain does not have a mutation within the sodium channel gene that results in target-site insensitivity. However, the Cz strain possesses a substantial increase in general and permethrin esterase activity relative to highly permethrin resistant and control strains suggesting the involvement of a metabolic esterase(s) in the expression of permethrin resistance. We report the isolation of a 62.8 kDa protein from Cz strain larvae that we think is the esterase previously reported as Cz EST9. In addition, internal amino acid sequence data obtained from the 62.8 kDa protein suggest that it is the gene product of a previously reported B. microplus carboxylesterase cDNA. We propose that the 62.8 kDa protein (Cz EST9) has permethrin hydrolytic activity and as a result plays an important role in Cz strain resistance to permethrin.

  15. Identification and biochemical characterization of Leishmania strains isolated in Peru, Mexico, and Spain.

    Science.gov (United States)

    Rodríguez-González, Isabel; Marín, Clotilde; Vargas, Franklin; Córdova, Ofelia; Barrera, Mario; Gutiérrez-Sánchez, Ramón; Alunda, Jose María; Sánchez-Moreno, Manuel

    2006-01-01

    Eight Leishmania promastigotes were isolated from different geographical areas: three (LP1, LP2, and LP3) from the provincial department La Libertad and the fourth (LP4) from the department of Cajamarca (northern Peru); another three (LM1, LM2, and LM3) in the province of Campeche (Mexico); and the last (LS1) from a clinical case of a dog in Madrid (Spain). The isolates were characterized by carbohydrate cell-surface residues using agglutinations with four purified lectins, by isoenzyme analysis using different isoenzymes, by analysis of kinetoplast DNA (kDNA) restriction fragment length polymorphism using four different restriction endonucleases and by the final metabolite patterns after in vitro culture. These isolates were compared with four reference strains and typified as: Leishmania (Leishmania) donovani, two strains of L. (L.) infantum, and one species of L. (Viania) peruviana. According to our results and the statistical study, the Peruvian isolates represent three different strains: one would be L. (V.) peruviana, another the strain isolated in Cajamarca (LP4) and the third would include the three strains from the department of La Libertad (LP1, LP2, and LP3), these latter three isolates being phylogenetically closer to the reference strain L. (L.) donovani. Meanwhile, the three isolates from Mexico form a group with close phylogenetic relationships to each other. The isolate from Spain belongs to the species L. (L.) infantum. Thus, a close correlation was drawn between the identity of each strain and its geographical origin.

  16. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea

    Directory of Open Access Journals (Sweden)

    Ali N. Khan

    2017-07-01

    Full Text Available Macrophomina phaseolina is the most devastating pathogen which causes charcoal rot and root rot diseases in various economically important crops. Three strains M. phaseolina 1156, M. phaseolina 1160, and M. phaseolina PCMC/F1 were tested for their virulence on sunflower (Helianthus annuus L. and chickpea (Cicer arietinum L.. The strains showed high virulence on both hosts with a disease score of 2 on chickpea and sunflower. The strains also increased the hydrogen per oxide (H2O2 content by 1.4- to 1.6-fold in root as well as shoot of chickpea and sunflower. A significant increase in antioxidant enzymes was observed in fungal infected plants which indicated prevalence of oxidative stress during pathogen propagation. The M. phaseolina strains also produced hydrolytic enzymes such as lipase, amylase, and protease with solubilization zone of 5–43 mm, 5–45 mm, and 12–35 mm, respectively. The M. phaseolina strains were identified by 18S rRNA and analyzed for genetic diversity by using random amplified polymorphic DNA (RAPD markers. The findings based on RAPD markers and 18S rRNA sequence analysis clearly indicate genetic variation among the strains collected from different hosts. The genetically diverse strains were found to be pathogenic to sunflower and chickpea.

  17. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Durand, Marie-Jose; Jouanneau, Sulivan; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Dion, Michel [UMR CNRS 6204, Nantes University, PRES UNAM, Biotechnologie, Biocatalyse, Bioregulation, 2, Rue de la Houssiniere, BP 92208, Nantes cedex 3 (France); Pernetti, Mimma; Poncelet, Denis [ONIRIS-ENITIAA, UMR CNRS GEPEA, Rue de la Geraudiere, BP 82225, Nantes cedex 3 (France)

    2011-05-15

    This study describes the construction of inducible bioluminescent strains via genetic engineering along with their characterization and optimization in the detection of heavy metals. Firstly, a preliminary comparative study enabled us to select a suitable carbon substrate from pyruvate, glucose, citrate, diluted Luria-Bertani, and acetate. The latter carbon source provided the best induction ratios for comparison. Results showed that the three constructed inducible strains, Escherichia coli DH1 pBzntlux, pBarslux, and pBcoplux, were usable when conducting a bioassay after a 14-h overnight culture at 30 C. Utilizing these sensors gave a range of 12 detected heavy metals including several cross-detections. Detection limits for each metal were often close to and sometimes lower than the European standards for water pollution. Finally, in order to maintain sensitive bacteria within the future biosensor-measuring cell, the agarose immobilization matrix was compared to polyvinyl alcohol (PVA). Agarose was selected because the detection limits of the bioluminescent strains were not affected, in contrast to PVA. Specific detection and cross-detection ranges determined in this study will form the basis of a multiple metals detection system by the new multi-channel Lumisens3 biosensor. (orig.)

  18. Absence of phosphatidylcholine in bacterial membranes facilitates translocation of Sec-dependent β-lactamase AmpC from cytoplasm to periplasm in two Pseudomonas strains.

    Science.gov (United States)

    Liu, Xin; Sun, Yufang; Cao, Fang; Xiong, Min; Yang, Sheng; Li, Yang; Yu, Xuejing; Li, Yadong; Wang, Xingguo

    2017-05-01

    Phosphatidylcholine (PC) is a rare membrane lipid in bacteria but crucial for virulence of various plant and animal pathogens. The pcs- mutant lacking PC in bacterial membranes of Pseudomonas syringae pv. syringae van Hall 1336 displayed more ampicillin resistance. Ampicillin susceptibility tests gave an IC50 (half maximal inhibitory concentration) of 52 mg/ml for Pseudomonas syringae pv. syringae van Hall 1336, 53 mg/ml for the complemented strain 1336 RM (pcs-/+) and 90 mg/ml for the 1336 pcs- mutant. Activity assay of β-lactamase in periplasmic extracts gave 0.050 U/mg for the 1336 wild type, 0.052 U/mg for the 1336RM (pcs-/+), 0.086 U/mg for the 1336 pcs- mutant. Analysis by western blotting showed that the content of AmpC enzyme was markedly different in periplasmic extracts between the wild-type and pcs- mutant strains. Reverse transcriptase PCR also showed that the presence or absence of PC in bacterial membranes did not affect the transcription of ampC gene. The phenotype of the pcs- mutant was able to be recovered to the wild type by introducing a wild-type pcs gene into the pcs- mutant. Similar results were also obtained from the soil-dwelling bacterium Pseudomonas sp. 593. Our results demonstrate that the absence of PC in bacterial membranes facilitates the translocation of Sec-dependent β-lactamase AmpC from cytoplasm to periplasm, and the enhanced ampicillin-resistance in the pcs- strains mainly comes from effective translocation of AmpC via Sec-pathway. Copyright © 2016. Published by Elsevier Ltd.

  19. Multiplex real-time PCR probe-based for identification of strains producing: OXA48, VIM, KPC and NDM.

    Science.gov (United States)

    Favaro, Marco; Sarti, Mario; Fontana, Carla

    2014-11-01

    The spread of multi-resistant enterobacteria, particularly carbapenem-resistant Enterobacteriaceae (CRE), in both community and hospital settings is a global problem. The phenotypic identification of CRE is complex, occasionally inconclusive and time consuming. However, commercially available molecular assays are very expensive, and many do not allow the simultaneous identification of all genetic markers of resistance that have been recognised in CRE (bla KPC, bla OXA-48, bla VIM and bla NDM). The aim of the present study is to describe a new test: a multiplex real time PCR probe-based assay designed for the simultaneous detection of KPC, OXA-48, VIM and NDM in a short time (no longer than 90 min from the extraction of DNA to detection). Our assay correctly identified 63 CRE isolates and all standard reference strains tested, in agreement with and extending the results of phenotypic identification tests; additionally, a KPC-VIM co-expressing Enterobacter aerogenes isolate was identified using the new assay, whereas traditional methods failed to detect it. The assay was also able to correctly detect 28 CRE-producers from 50 positive blood cultures, again detecting, in four specimens, the presence of CRE co-expressing KPC and VIM, which were only partially identified by traditional methods. Finally, when used directly on rectal swabs, the assay enabled the identification of CRE-carrier patients, for whom isolation is mandatory in a hospital setting.

  20. Complete Genome Sequence of Neisseria meningitidis Serogroup A Strain NMA510612, Isolated from a Patient with Bacterial Meningitis in China

    OpenAIRE

    Zhang, Yan; Yang, Jian; Xu, Li; Zhu, Yafang; Liu, Bo; Shao, Zhujun; Zhang, Xiaobing; Jin, Qi

    2014-01-01

    Serogroup A meningococcal strains have been involved in several pandemics and a series of epidemics worldwide in the past. Determination of the genome sequence of the prevalent genotype strain will help us understand the genetic background of the evolutionary and epidemiological properties of these bacteria. We sequenced the complete genome of Neisseria meningitidis NMA510612, a clinical isolate from a patient with meningococcal meningitis.

  1. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    International Nuclear Information System (INIS)

    Sagitova, A; Yaminsky, I; Meshkov, G

    2016-01-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope. (paper)

  2. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  3. Target Detection, Identification, and Marksmanship Under Various Types of Physiological Strain

    National Research Council Canada - National Science Library

    Tikuisis, Peter

    2006-01-01

    .... Using a small arms trainer (SAT), target detection, identification, and engagement were tested under a variety of conditions including heat and cold exposure, fatiguing exercise, and sleep deprivation, with caffeine intervention...

  4. Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Robert J Clifford

    Full Text Available Within the paradigm of clinical infectious disease research, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa represent the four most clinically relevant, and hence most extensively studied bacteria. Current culture-based methods for identifying these organisms are slow and cumbersome, and there is increasing need for more rapid and accurate molecular detection methods. Using bioinformatic tools, 962,279 bacterial 16S rRNA gene sequences were aligned, and regions of homology were selected to generate a set of real-time PCR primers that target 93.6% of all bacterial 16S rRNA sequences published to date. A set of four species-specific real-time PCR primer pairs were also designed, capable of detecting less than 100 genome copies of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa. All primers were tested for specificity in vitro against 50 species of Gram-positive and -negative bacteria. Additionally, the species-specific primers were tested against a panel of 200 clinical isolates of each species, randomly selected from a large repository of clinical isolates from diverse areas and sources. A comparison of culture and real-time PCR demonstrated 100% concordance. The primers were incorporated into a rapid assay capable of positive identification from plate or broth cultures in less than 90 minutes. Furthermore, our data demonstrate that current targets, such as the uidA gene in E.coli, are not suitable as species-specific genes due to sequence variation. The assay described herein is rapid, cost-effective and accurate, and can be easily incorporated into any research laboratory capable of real-time PCR.

  5. BACTERIAL PLASMIDS

    Directory of Open Access Journals (Sweden)

    Marina Dinic

    2007-12-01

    Full Text Available Plasmids, extrachromosomal DNA, were identified in bacteria pertaining to family of Enterobacteriacae for the very first time. After that, they were discovered in almost every single observed strain. The structure of plasmids is made of circular double chain DNA molecules which are replicated autonomously in a host cell. Their length may vary from few up to several hundred kilobase (kb. Among the bacteria, plasmids are mostly transferred horizontally by conjugation process. Plasmid replication process can be divided into three stages: initiation, elongation, and termination. The process involves DNA helicase I, DNA gyrase, DNA polymerase III, endonuclease, and ligase.Plasmids contain genes essential for plasmid function and their preservation in a host cell (the beginning and the control of replication. Some of them possess genes whichcontrol plasmid stability. There is a common opinion that plasmids are unnecessary fora growth of bacterial population and their vital functions; thus, in many cases they can be taken up or kicked out with no lethal effects to a plasmid host cell. However,there are numerous biological functions of bacteria related to plasmids. Plasmids identification and classification are based upon their genetic features which are presented permanently in all of them, and these are: abilities to preserve themselves in a host cell and to control a replication process. In this way, plasmids classification among incompatibility groups is performed. The method of replicon typing, which is based on genotype and not on phenotype characteristics, has the same results as in compatibility grouping.

  6. Phenotypical characterization and adhesin identification in Escherichia coli strains isolated from dogs with urinary tract infections

    Science.gov (United States)

    Maluta, Renato Pariz; Stella, Ariel Eurides; Riccardi, Kátia; Rigobelo, Everlon Cid; Marin, José Moacir; Carvalho, Marileda Bonafim; de Ávila, Fernando Antonio

    2012-01-01

    Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%), followed by cephalotin (69.2%), sulfamethoxazole + trimethoprim (61.5%), tetracycline (61.5%), streptomycin (53.8%), ciprofloxacin (53.8%), ampicillin (46.2%), gentamicin (30.8%) and chloramphenicol (23.1%). No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A) had only one strain, which belonged to a serotype with zoonotic potential (O6:H31) and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D), whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E. PMID:24031842

  7. Phenotypical characterization and adhesin identification in Escherichia coli strains isolated from dogs with urinary tract infections

    Directory of Open Access Journals (Sweden)

    Renato Pariz Maluta

    2012-03-01

    Full Text Available Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR. The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%, followed by cephalotin (69.2%, sulfamethoxazole + trimethoprim (61.5%, tetracycline (61.5%, streptomycin (53.8%, ciprofloxacin (53.8%, ampicillin (46.2%, gentamicin (30.8% and chloramphenicol (23.1%. No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A had only one strain, which belonged to a serotype with zoonotic potential (O6:H31 and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D, whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E.

  8. Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam.

    Science.gov (United States)

    Van-Thuoc, Doan; Huu-Phong, Tran; Thi-Binh, Nguyen; Thi-Tho, Nguyen; Minh-Lam, Duong; Quillaguamán, Jorge

    2012-12-01

    This research article reports halophilic and halotolerant bacteria isolated from mangrove forests located in Northern Vietnam. Several of these bacteria were able to synthesize polyhydroxyalkanoates (PHAs). PHAs are polyesters stored by microorganisms under the presence of considerable amounts of a carbon source and deficiency of other essential nutrient such as nitrogen or phosphorous. Mangrove forests in Northern Vietnam are saline coastal habitats that have not been microbiologically studied. Mangrove ecosystems are, in general, rich in organic matter, but deficient in nutrients such as nitrogen and phosphorus. We have found about 100 microorganisms that have adapted to mangrove forests by accumulating PHAs. The production of polyesters might therefore be an integral part of the carbon cycle in mangrove forests. Three of the strains (ND153, ND97, and QN194) isolated from the Vietnamese forests were identified as Bacillus species, while other five strains (QN187, ND199, ND218, ND240, and QN271) were phylogenetically close related to the α-proteobacterium Yangia pacifica. These strains were found to accumulate PHAs in noticeable amounts. Polymer inclusions and chemical structure were studied by transmission electron microscopy and proton nuclear magnetic resonance (NMR) spectroscopy analyses, respectively. Strains ND153, ND97, QN194, QN187, ND240, and QN271 synthesized poly(3-hydroxybutyrate) (PHB) from glucose, whereas strains ND199 and ND218 synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from this carbohydrate. With the exception of strain QN194, the strains accumulated PHBV when a combination of glucose and propionate was included in the culture medium. The polymer yields and cell growth reached by one Bacillus isolate, strain ND153, and one Gram-negative bacterium, strain QN271, were high and worth to be researched further. For experiments performed in shake flasks, strain ND153 reached a maximum PHBV yield of 71 wt% and a cell dry weight

  9. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2

    Directory of Open Access Journals (Sweden)

    Md. Mahidul Islam Masum

    2017-09-01

    Full Text Available The Type VI secretion system (T6SS is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2 and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  10. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2.

    Science.gov (United States)

    Masum, Md Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang

    2017-09-21

    The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations Δ pppA , Δ clpB , Δ hcp , Δ dotU , Δ icmF , Δ impJ , and Δ impM caused similar virulence characteristics as RS-2. Moreover, the mutant Δ pppA , Δ clpB , Δ icmF , Δ impJ and Δ impM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants Δ pppA , Δ clpB , Δ icmF and Δ hcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  11. Genetic diversity and dynamics of bacterial and yeast strains associated to Spanish-style green table-olive fermentations in large manufacturing companies.

    Science.gov (United States)

    Lucena-Padrós, Helena; Caballero-Guerrero, Belén; Maldonado-Barragán, Antonio; Ruiz-Barba, José Luis

    2014-11-03

    We have genotyped a total of 1045 microbial isolates obtained along the fermentation time of Spanish-style green table olives from the fermentation yards (patios) of two large manufacturing companies in the Province of Sevilla, south of Spain. Genotyping was carried out using RAPD-PCR fingerprinting. In general, isolates clustered well into the relevant phylogenetic dendrograms, forming separate groups in accordance to their species adscription. We could identify which bacterial and yeast genotypes (strains) persisted throughout the fermentation at each patio. Also, which of them were more adapted to any of the three stages, i.e. initial, middle and final, described for this food fermentation. A number of genotypes were found to be shared by both patios. Fifty seven of these belonged to five different bacterial species, i.e. Lactobacillus pentosus, Lactobacillus paracollinoides/collinoides, Lactobacillus rapi, Pediococcus ethanolidurans and Staphylococcus sp., although most of them (51) belonged to L. pentosus. Four yeast genotypes were also shared, belonging to the species Candida thaimueangensis, Saccharomyces cerevisiae and Hanseniaspora sp. Two genotypes of L. pentosus were found to be grouped with those of two strains used in commercially available starter cultures, one of them bacteriocinogenic, which were used up to three years before this study in these patios, demonstrating the persistence of selected strains in this environment. Biodiversity was assessed though different indexes, including richness, diversity and dominance. A statistically significant decrease in biodiversity between the initial and final stages of the fermentation was found in both patios. However, values of biodiversity indexes in the fermenters were very similar, and no significant differences were found in the total biodiversity between both patios. This study allowed us to identify a range of well adapted strains (genotypes), especially those belonging to the lactic acid bacteria

  12. Rapid label-free identification of mixed bacterial infections by surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Fu Weiling

    2011-06-01

    Full Text Available Abstract Background Early detection of mixed aerobic-anaerobic infection has been a challenge in clinical practice due to the phenotypic changes in complex environments. Surface plasmon resonance (SPR biosensor is widely used to detect DNA-DNA interaction and offers a sensitive and label-free approach in DNA research. Methods In this study, we developed a single-stranded DNA (ssDNA amplification technique and modified the traditional SPR detection system for rapid and simultaneous detection of mixed infections of four pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium tetani and Clostridium perfringens. Results We constructed the circulation detection well to increase the sensitivity and the tandem probe arrays to reduce the non-specific hybridization. The use of 16S rDNA universal primers ensured the amplification of four target nucleic acid sequences simultaneously, and further electrophoresis and sequencing confirmed the high efficiency of this amplification method. No significant signals were detected during the single-base mismatch or non-specific probe hybridization (P 2 values of >0.99. The lowest detection limits were 0.03 nM for P. aeruginosa, 0.02 nM for S. aureus, 0.01 nM for C. tetani and 0.02 nM for C. perfringens. The SPR biosensor had the same detection rate as the traditional culture method (P Conclusions Our method can rapidly and accurately identify the mixed aerobic-anaerobic infection, providing a reliable alternative to bacterial culture for rapid bacteria detection.

  13. Isolation, identification, and pathological effects of beach sand bacterial extract on human skin keratinocytesin vitro.

    Science.gov (United States)

    Subhan, Fazli; Shahzad, Raheem; Tauseef, Isfahan; Haleem, Kashif Syed; Rehman, Atta-Ur; Mahmood, Sajid; Lee, In-Jung

    2018-01-01

    Beaches are recreational spots for people. However, beach sand contains harmful microbes that affect human health, and there are no established methods for either sampling and identifying beach-borne pathogens or managing the quality of beach sand. This study was conducted with the aim of improving human safety at beaches and augmenting the quality of the beach experience. Beach sand was used as a resource to isolate bacteria due to its distinctive features and the biodiversity of the beach sand biota. A selected bacterial isolate termed FSRS was identified as Pseudomonas stutzeri using 16S rRNA sequencing and phylogenetic analysis, and the sequence was deposited in the NCBI GenBank database under the accession number MF599548. The isolated P. stutzeri bacterium was cultured in Luria-Bertani growth medium, and a crude extract was prepared using ethyl acetate to examine the potential pathogenic effect of P. stutzeri on human skin. A human skin keratinocyte cell line (HaCaT) was used to assess cell adhesion, cell viability, and cell proliferation using a morphological analysis and a WST-1 assay. The crude P. stutzeri extract inhibited cell adhesion and decreased cell viability in HaCaT cells. We concluded that the crude extract of P. stutzeri FSRS had a strong pathological effect on human skin cells. Beach visitors frequently get skin infections, but the exact cause of the infections is yet to be determined. The beach sand bacterium P. stutzeri may, therefore, be responsible for some of the dermatological problems experienced by people visiting the beach.

  14. Isolation, identification, and pathological effects of beach sand bacterial extract on human skin keratinocytes in vitro

    Directory of Open Access Journals (Sweden)

    Fazli Subhan

    2018-01-01

    Full Text Available Background Beaches are recreational spots for people. However, beach sand contains harmful microbes that affect human health, and there are no established methods for either sampling and identifying beach-borne pathogens or managing the quality of beach sand. Method This study was conducted with the aim of improving human safety at beaches and augmenting the quality of the beach experience. Beach sand was used as a resource to isolate bacteria due to its distinctive features and the biodiversity of the beach sand biota. A selected bacterial isolate termed FSRS was identified as Pseudomonas stutzeri using 16S rRNA sequencing and phylogenetic analysis, and the sequence was deposited in the NCBI GenBank database under the accession number MF599548. The isolated P. stutzeri bacterium was cultured in Luria–Bertani growth medium, and a crude extract was prepared using ethyl acetate to examine the potential pathogenic effect of P. stutzeri on human skin. A human skin keratinocyte cell line (HaCaT was used to assess cell adhesion, cell viability, and cell proliferation using a morphological analysis and a WST-1 assay. Result The crude P. stutzeri extract inhibited cell adhesion and decreased cell viability in HaCaT cells. We concluded that the crude extract of P. stutzeri FSRS had a strong pathological effect on human skin cells. Discussion Beach visitors frequently get skin infections, but the exact cause of the infections is yet to be determined. The beach sand bacterium P. stutzeri may, therefore, be responsible for some of the dermatological problems experienced by people visiting the beach.

  15. Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing Streptomyces cavourensis strain NEAE-42

    OpenAIRE

    El-Naggar, Noura El-Ahmady; El-Shweihy, Nancy M.; El-Ewasy, Sara M.

    2016-01-01

    Background Due to broad range of clinical and industrial applications of cholesterol oxidase, isolation and screening of bacterial strains producing extracellular form of cholesterol oxidase is of great importance. Results One hundred and thirty actinomycete isolates were screened for their cholesterol oxidase activity. Among them, a potential culture, strain NEAE-42 is displayed the highest extracellular cholesterol oxidase activity. It was selected and identified as Streptomyces cavourensis...

  16. Rep-PCR typing of Staphylococcus spp. strains in meat paste production line and identification of their origin

    Directory of Open Access Journals (Sweden)

    Ivan Manga

    2015-05-01

    .3%. As shown by our experimental results, rep-PCR with the (GTG5 primer is an applicable tool for typing of bacterial strains and may be used for identifying the source of contamination. Normal 0 21 false false false SK X-NONE X-NONE

  17. Identification and development of novel indazole derivatives as potent bacterial peptidoglycan synthesis inhibitors

    Directory of Open Access Journals (Sweden)

    Prasanthi Malapati

    2018-01-01

    Full Text Available Background: Tuberculosis is well-known airborne disease caused by Mycobacterium tuberculosis. Available treatment regimen was unsuccessful in eradicating the deaths caused by the disease worldwide. Owing to the drawbacks such as prolonged treatment period, side effects, and drug tolerance, there resulted in patient noncompliance. In the current study, we attempted to develop inhibitors against unexplored key target glutamate racemase. Methods: Lead identification was done using thermal shift assay from in-house library; inhibitors were developed by lead derivatization technique and evaluated using various biological assays. Results: In indazole series, compounds 11 (6.32 ± 0.35 μM and 22 (6.11 ± 0.51 μM were found to be most promising potent inhibitors among all. These compounds also showed their inhibition on replicating and nonreplicating bacteria. Conclusion: We have developed the novel inhibitors against M. tuberculosis capable of inhibiting active and dormant bacteria, further optimization of inhibitor derivatives can results in better compounds for eradicating tuberculosis.

  18. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype

    Science.gov (United States)

    Zhang, Haifang; Zheng, Yi; Gao, Huasheng; Xu, Ping; Wang, Min; Li, Aiqing; Miao, Minhui; Xie, Xiaofang; Deng, Yimai; Zhou, Huiqin; Du, Hong

    2016-01-01

    Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC, and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC, and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus. We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital. PMID:27917374

  19. Identification and Characterization ofStaphylococcus aureusStrains with an Incomplete Hemolytic Phenotype.

    Science.gov (United States)

    Zhang, Haifang; Zheng, Yi; Gao, Huasheng; Xu, Ping; Wang, Min; Li, Aiqing; Miao, Minhui; Xie, Xiaofang; Deng, Yimai; Zhou, Huiqin; Du, Hong

    2016-01-01

    Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC , and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC , and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus . We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.

  20. Hyperspectral imaging for presumptive identification of bacterial colonies on solid chromogenic culture media

    Science.gov (United States)

    Guillemot, Mathilde; Midahuen, Rony; Archeny, Delpine; Fulchiron, Corine; Montvernay, Regis; Perrin, Guillaume; Leroux, Denis F.

    2016-04-01

    BioMérieux is automating the microbiology laboratory in order to reduce cost (less manpower and consumables), to improve performance (increased sensitivity, machine algorithms) and to gain traceability through optimization of the clinical laboratory workflow. In this study, we evaluate the potential of Hyperspectral imaging (HSI) as a substitute to human visual observation when performing the task of microbiological culture interpretation. Microbial colonies from 19 strains subcategorized in 6 chromogenic classes were analyzed after a 24h-growth on a chromogenic culture medium (chromID® CPS Elite, bioMérieux, France). The HSI analysis was performed in the VNIR region (400-900 nm) using a linescan configuration. Using algorithms relying on Linear Spectral Unmixing, and using exclusively Diffuse Reflectance Spectra (DRS) as input data, we report interclass classification accuracies of 100% using a fully automatable approach and no use of morphological information. In order to eventually simplify the instrument, the performance of degraded DRS was also evaluated using only the most discriminant 14 spectral channels (a model for a multispectral approach) or 3 channels (model of a RGB image). The overall classification performance remains unchanged for our multispectral model but is degraded for the predicted RGB model, hints that a multispectral solution might bring the answer for an improved colony recognition.

  1. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype

    Directory of Open Access Journals (Sweden)

    Haifang Zhang

    2016-11-01

    Full Text Available Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, Staphylococcus aureus with an incomplete hemolytic phenotype (SIHP was isolated from clinical samples. To study the microbiologic characteristics of SIHP, SIHP was inoculated on the sheep blood agar plates supplied by different manufacturers to compare their hemolytic phenotype. Expression of hemolysin genes hla, hlb, hlgC and hld of SIHP was detected by qRT-PCR. In addition, the alpha-hemolysin encoded by gene hla was analyzed by western blot. At the same time, the antimicrobial susceptibility of SIHP was tested using the broth dilution method. The main antibiotic resistance gene mecA and virulence genes tst were detected by PCR in SIHP strains. Furthermore, the virulence of SIHP strains was detected through comparing their intracellular survival in macrophage. The cytokines and chemokines secreted by macrophage were measured by flow cytometry. Finally, the genotyping of SIHP was performed by multilocus sequence typing (MLST analysis. The results showed that the incomplete hemolytic phenotype of SIHP could be observed on the sheep blood agar plates from different suppliers. The relative mRNA expression of hlb in SIHP was obviously increased compared to the control Staphylococcus aureus strains, while the expression of hla, hlgC and hld in SIHP was significantly decreased. In addition, it was shown that the alpha-hemolysin of SIHP was less than that of control strains as well. All sixty SIHP strains were identified to be the methicillin resistant Staphylococcus aureus (MRSA, and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative

  2. Evaluation of the Capacity of PCR and High-Resolution Melt Curve Analysis for Identification of Mixed Infection with Mycoplasma gallisepticum Strains.

    Directory of Open Access Journals (Sweden)

    Seyed A Ghorashi

    Full Text Available Pathogenicity and presentation of Mycoplasma gallisepticum (MG infection may differ from one strain to another and this may have implications on control measures. Infection of individual birds with more than one MG strain has been reported. A PCR followed by high resolution melt (HRM curve analysis has been developed in our laboratory and routinely used for detection and differentiation of MG strains. However the potential of this test for identification of MG strains in a mixed specimen has not been evaluated. In the present study, the capability of PCR-HRM curve analysis technique, targeting vlhA and pvpA genes was assessed for identification of individual MG strains in a mixed population. Different DNA ratios of two MG strains from 1 to 10(-4 ng were tested with some generated conventional and normalized curves distinct from those of individual strains alone. Using genotype confidence percentages (GCP generated from HRM curve analysis, it was found that vlhA PCR-HRM was more consistent than pvpA PCR-HRM for the detection of MG ts-11 vaccine strain mixed with any of the MG strains 6/85, F, S6 or a field isolate. The potential of vlhA PCR-HRM to detect mixed MG strains in a specimen was found to be primarily dependent on quantity and proportion of the target DNAs in the mixture. This is the first study examining the capacity of PCR-HRM technique for identification of individual MG strains in a mixed strain population.

  3. Genetic affinities within a large global collection of pathogenic Leptospira: implications for strain identification and molecular epidemiology.

    Directory of Open Access Journals (Sweden)

    Kishore Nalam

    Full Text Available Leptospirosis is an important zoonosis with widespread human health implications. The non-availability of accurate identification methods for the individualization of different Leptospira for outbreak investigations poses bountiful problems in the disease control arena. We harnessed fluorescent amplified fragment length polymorphism analysis (FAFLP for Leptospira and investigated its utility in establishing genetic relationships among 271 isolates in the context of species level assignments of our global collection of isolates and strains obtained from a diverse array of hosts. In addition, this method was compared to an in-house multilocus sequence typing (MLST method based on polymorphisms in three housekeeping genes, the rrs locus and two envelope proteins. Phylogenetic relationships were deduced based on bifurcating Neighbor-joining trees as well as median joining network analyses integrating both the FAFLP data and MLST based haplotypes. The phylogenetic relationships were also reproduced through Bayesian analysis of the multilocus sequence polymorphisms. We found FAFLP to be an important method for outbreak investigation and for clustering of isolates based on their geographical descent rather than by genome species types. The FAFLP method was, however, not able to convey much taxonomical utility sufficient to replace the highly tedious serotyping procedures in vogue. MLST, on the other hand, was found to be highly robust and efficient in identifying ancestral relationships and segregating the outbreak associated strains or otherwise according to their genome species status and, therefore, could unambiguously be applied for investigating phylogenetics of Leptospira in the context of taxonomy as well as gene flow. For instance, MLST was more efficient, as compared to FAFLP method, in clustering strains from the Andaman island of India, with their counterparts from mainland India and Sri Lanka, implying that such strains share genetic

  4. Identification and genetic characterization of Clostridium botulinum serotype A strains from commercially pasteurized carrot juice.

    Science.gov (United States)

    Marshall, Kristin M; Nowaczyk, Louis; Raphael, Brian H; Skinner, Guy E; Rukma Reddy, N

    2014-12-01

    Clostridium botulinum is an important foodborne pathogen capable of forming heat resistant endospores and producing deadly botulinum neurotoxins (BoNTs). In 2006, C. botulinum was responsible for an international outbreak of botulism attributed to the consumption of commercially pasteurized carrot juice. The purpose of this study was to isolate and characterize strains of C. botulinum from the adulterated product. Carrot juice bottles retrieved from the manufacturing facility were analyzed for the presence of BoNT and BoNT-producing isolates using DIG-ELISA. Toxigenic isolates from the carrot juice were analyzed using pulsed-field gel electrophoresis (PFGE) and DNA microarray analysis to determine their genetic relatedness to the original outbreak strains CDC51348 and CDC51303. PFGE revealed that isolates CJ4-1 and CJ10-1 shared an identical pulsotype with strain CDC51303, whereas isolate CJ5-1 displayed a unique restriction banding pattern. DNA microarray analysis identified several phage related genes unique to strain CJ5-1, and Southern hybridization analysis of XhoI digested and nondigested DNA showed their chromosomal location, while a homolog to pCLI_A009 of plasmid pCLI of C. botulinum serotype Langeland F, was located on a small plasmid. The acquisition or loss of bacteriophages and other mobile genetic elements among C. botulinum strains has epidemiological and evolutionary implications. Published by Elsevier Ltd.

  5. Identification of strain-rate and thermal sensitive material model with an inverse method

    Directory of Open Access Journals (Sweden)

    Peroni M.

    2010-06-01

    Full Text Available This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena. Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  6. Identification of strain-rate and thermal sensitive material model with an inverse method

    Science.gov (United States)

    Peroni, L.; Scapin, M.; Peroni, M.

    2010-06-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  7. Complementary degradation mechanisms of inulin-type fructans and arabinoxylan-oligosaccharides among bifidobacterial strains suggest bacterial cooperation.

    Science.gov (United States)

    Rivière, Audrey; Selak, Marija; Geirnaert, Annelies; Van den Abbeele, Pieter; De Vuyst, Luc

    2018-03-02

    Inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) are broken down to different extents by various bifidobacterial strains present in the human colon. To date, phenotypic heterogeneity in the consumption of these complex oligosaccharides at strain level remains poorly studied. To examine mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the simulator of the human intestinal microbial ecosystem (SHIME®), inoculated with feces from one healthy individual, was investigated.Among the 18 strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found. Bifidobacterium bifidum B46 showed limited growth on all substrates, whereas B. longum B24 and B. longum B18 could grow better on short chain length fractions of FOS than on fructose. B. longum B24 could cleave arabinose substituents of AXOS extracellularly, without using the AXOS-derived xylose backbones, whereas B. longum B18 was able to consume oligosaccharides (up to xylotetraose) preferentially, and consume AXOS to a limited extent. B. adolescentis B72 degraded all chain length fractions of FOS simultaneously, partially degraded inulin, and could use xylose backbones longer than xylotetraose extracellularly. The strain-specific degradation mechanisms suggested to be complementary and indicated resource partitioning. Specialization in degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS aiming at bifidogenic and/or butyrogenic effects. Finally, this work shows the importance of taking microbial strain-level differences into account in gut microbiota research. Importance of the study It is well known that bifidobacteria degrade undigestible complex polysaccharides, such as inulin-type fructans (ITF) and

  8. Evidence for growth of strains of the plant epiphytic bacterium Erwinia herbicola and transconjugation among the bacterial strains in guts of the silkworm Bombyx mori.

    Science.gov (United States)

    Watanabe, K; Hara, W; Sato, M

    1998-09-01

    Growth of plant epiphytic bacteria Erwinia herbicola and Pseudomonas syringae in guts of the silkworm, Bombyx mori, was studied. Fifth instar silkworm larvae were fed artificial diets supplemented with these bacteria for 6 to 12 h followed by uncontaminated diets. At 1, 3, and 6 days after feeding, bacteria were isolated from insect guts and feces. A much larger population of E. herbicola was detected in the samples collected 3 and 6 days after the inoculation than in samples collected after 1 day, indicating that these bacteria grew in the insect gut, while P. syringae was unable to survive. Transconjugation between E. herbicola strains in the insect gut was also examined. First, either a donor or a recipient strain was fed to the insects in artificial diets containing the bacteria during 12 h, and then pairing strains were fed during 12 h after starvation for 12 h. The conjugative plasmid pBPW1::Tn7 was transferred into recipient cells at very high frequencies (10(-1)/recipient after 3 days and 10(-3) after 6 days) in insect guts. Indigenous plasmids of E. herbicola mobilized RSF1010 plasmid into recipient cells at frequencies of 10(-4) in insect guts. These transconjugants were detected in the feces of the insects. Thus, plasmid-mediated gene transfer among the epiphytic bacteria in insect guts was demonstrated. The results obtained suggest that in insecta gene transfer may play an important role in the evolution of plant epiphytic bacteria. Copyright 1998 Academic Press.

  9. Identification of "Bacillus cellulasensis" strain NIO-1130(T) as a member of Bacillus altitudinis and emendation of the latter.

    Science.gov (United States)

    Liu, Yang; Lai, Qiliang; Shao, Zongze

    2016-10-01

    In the study by Mawlankar et al. in Arch Microbiol 198:83-89 (2016), the phylogenetic position of strain "Bacillus cellulasensis" NIO-1130(T) based on 16S rRNA and gyrB genes was inconsistent. Therefore, the aim of this study is to re-determine its taxonomic status using diverse genotypic approaches including single gene analysis, multilocus sequence analysis, and genomic analyses. The reconstructed phylogenetic trees based on 16S rRNA gene and six concatenated genes showed that "B. cellulasensis" NIO-1130(T) (=NCIM 5461(T) = CCTCC AB 2011126(T)) revealed the closest genetic relationship with type strain Bacillus altitudinis 41KF2b(T), with 98.6-100 % similarities of 16S rRNA gene, gyrB, pycA, pyrE, mutL, aroE, trpB, and six concatenated housekeeping genes. The high similarities for gene(s) sequences between "B. cellulasensis" NIO-1130(T) and B. altitudinis 41KF2b(T) indicated that they should be conspecific. The DNA G+C content for strain NIO-1130(T) was determined to be 41.3 mol% and identical to that of B. altitudinis 41KF2b(T). Moreover, 88.4 % of digital DNA-DNA hybridization and 98.7 % of average nucleotide identity values between two strains were much higher than the standard criteria for delineation of bacterial species, suggesting that they belonged to the same species. Therefore, the data from the combined genotypic analyses suggest that "Bacillus cellulasensis" should be classified as a member of Bacillus altitudinis.

  10. [Isolation, identification and lead adsorption study of lead-resistant Lactobacillus casei strains from feces of healthy newborns].

    Science.gov (United States)

    Shen, Wei; Yu, Qin-Fei; Wang, Yu-Hao; Zhang, Yi-Duo; Meng, Xiao-Jing; Fan, Hong-Ying

    2016-12-20

    To isolate and identify lead-resistant Lactobacillus casei strains with lead adsorption ability from the stool of healthy newborns as a new source of bacteria for developing lead-eliminating food products. MRS was used to isolate lead-resistant bacteria from the feces of 30 healthy and full-term neonates. A phylogenetic tree was constructed based on the morphological characteristics and 16S rRNA sequences of the isolated bacteria. Physiological and biochemical characterizations of the bacteria were performed according to the Berger's Systematic Bacteriology Handbook, followed by antimicrobial susceptibility test and acid-tolerant bile salt test. The adsorption capacity of Pb 2+ of the bacteria was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Three strains of Lactobacillus casei were isolated, which were resistant to penicillin and ceftriaxone and could tolerate the exposure to 500 mg/L Pb 2+ . Acid-tolerant bile salt test showed that the bacteria were resistant to culture in the presence of artificial gastric juice (pH 2.0) for 3 h, and their survival rate reached 62.5% following exposure to 0.3% bile salt for 8 h. The bacteria showed a Pb 2+ adsorption rate of 90.4% at a low Pb 2+ concentration (1 mg/L) and of 86.27% at a high Pb 2+ concentration (50 mg/L). Three Lactobacillus casei strains lead adsorption ability were isolated from the feces of newborns. These bacterial strains provide a new solution to alleviate lead poisoning by probiotic dietary.

  11. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites

    DEFF Research Database (Denmark)

    Li, Qiuchun; Xie, Xiaolei; Yin, Kequan

    2016-01-01

    Staphylococcus epidermidis is considered as a major cause of nosocomial infections, bringing an immense burden to healthcare systems. Virulent phages have been confirmed to be efficient in combating the pathogen, but the prensence of CRISPR-Cas system, which is a bacterial immune system eliminating...

  12. Evaluation of assembling methods on determination of whole genome sequence of Xylella fastidiosa blueberry bacterial leaf scorch strain

    Science.gov (United States)

    Blueberry bacterial leaf scorch (BBLS) disease, a threat to blueberry production in the Southern USA and potentially elsewhere, is caused by Xylella fastidiosa. Efficient control of BBLS requires knowledge of the pathogen. However, this is challenging because Xylella fastidiosa is difficult to cultu...

  13. Unambiguous identification and discovery of bacterial siderophores by direct injection 21 Tesla Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lawrence R.; Tfaily, Malak M.; Shaw, Jared B.; Hess, Nancy J.; Pasa Tolic, Ljiljana; Koppenaal, David W.

    2017-01-01

    Under iron-limiting conditions, bacteria produce low molecular mass Fe(III) binding molecules known as siderophores to sequester the Fe(III), along with other elements, increasing their bioavailibility. Siderophores are thought to influence iron cycling and biogeochemistry in both marine and terrestrial ecosystems and hence the need for rapid, confident characterization of these compounds has increased. In this study, the type of siderophores produced by two marine bacterial species, Synechococcus sp. PCC 7002 and Vibrio cyclitrophicus 1F53, were characterized using a newly developed 21T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR MS) with direct injection electrospray ionization. This technique allowed for the rapid detection of synechobactins from Synechococcus sp. PCC 7002 as well as amphibactins from Vibrio cyclitrophicus 1F53 based on high mass accuracy and resolution allowing for observation of specific Fe isotopic peaks and fine isotopic structure enables highly confident identification of these sideropohores. When combined with molecular network analysis two new amphibactins were discovered and verified by tandem MS. These results show that high-field FTICR MS is a powerful technique that will greatly improve the ability to rapidly identify and discover metal binding species in the environment.

  14. Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) technique

    Science.gov (United States)

    Belstrøm, Daniel; Paster, Bruce J.; Fiehn, Nils-Erik; Bardow, Allan; Holmstrup, Palle

    2016-01-01

    Background and objective The composition of the salivary microbiota, as determined using various molecular methods, has been reported to differentiate oral health from diseases. Thus, the purpose of this study was to utilize the newly developed molecular technique HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing) for comparison of the salivary microbiota in patients with periodontitis, patients with dental caries, and orally healthy individuals. The hypothesis was that this method could add on to the existing knowledge on salivary bacterial profiles in oral health and disease. Design Stimulated saliva samples (n=30) were collected from 10 patients with untreated periodontitis, 10 patients with untreated dental caries, and 10 orally healthy individuals. Salivary microbiota was analyzed using HOMINGS and statistical analysis was performed using Kruskal–Wallis test with Benjamini–Hochberg's correction. Results From a total of 30 saliva samples, a mean number of probe targets of 205 (range 120–353) were identified, and a statistically significant higher mean number of targets was registered in samples from patients with periodontitis (mean 220, range 143–306) and dental caries (mean 221, range 165–353) as compared to orally healthy individuals (mean 174, range 120–260) (p=0.04 and p=0.04). Nine probe targets were identified with a different relative abundance between groups (pdental caries. PMID:26782357

  15. Isolation and identification of some Bacillus thuringiensis strains with insecticidal activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Majdoub, Nihed

    2010-01-01

    The aims of the present work is to study the effect of toxins (delta-endotoxins), extracted from different strains of Bacillus thuringiensis on Ceratitis capitata, a devastating of citrus and fruit trees. Strains of B. thuringiensis were isolated from the mud of Sebket Sejoumi. Among 70 isolates tested, 15 showed a significant identicalness activity in which 5 isolates led to mortality rates ≥ 90 pour cent . These mortality rates are caused by endotoxins of B. thuringiensis. Analysis of proteins profiles of different isolates of B. thuringiensis revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by B. thuringiensis strains for large scale application.

  16. Evaluation of Anti-adherent Activity of Excretions of Irradiated Lucilia sericata Maggot and Certain Essential Oils against Some Pathogenic Bacterial Strains

    International Nuclear Information System (INIS)

    Eltablawy, S.Y.; Amin, M.M.

    2011-01-01

    Essential Oils are widely used for their medicinal properties. They block adhesion and colonization of pathogenic microbes to epithelial cells which associated with bacterial resistance to antibiotics. So, this study investigates the effect of Lu cilia sacarato (flesh fly-an ectoparasitic) excretions of non-irradiated and irradiated maggot and some essential oils on biofilm formation by tube method, antimicrobial susceptibility by agar disc diffusion method as well as on their anti-adherent activity by spectrophotometric method. The results showed that excretions and secretions (E/S) of non-irradiated and irradiated maggots (at 20 Gy), as well as (clove and cinnamon oils) did not have antibacterial activity against the tested bacterial strains Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (St. aureus) and Staphylococcus epidermidis (St. epidermidis) except marjoram oil which has low antimicrobial activity against all the tested strains. The results also showed that the most potent oil was clove which decrease biofilm of P. aeruginosa by 83%, followed by marjoram (69%), then E/S of non-irradiated maggots (66%). Whiles, biofilm was less affected by cinnamon oil and E/S of irradiated maggots by 50 % and 36%, respectively. In addition, clove oil and E/S of non-irradiated maggots affect the pre-adhered biofilm of P. aeruginosa by 57 and 45 %, respectively. Conclusion: Clove oil flowed by marjoram had anti-adherent effect on P. aeruginosa. Greater inhibition of adhesion was observed by excretions of non-irradiated lucilia sericata.

  17. The effect of new probiotic strain Lactobacillus plantarum on counts of coliforms, lactobacilli and bacterial enzyme activities in rats exposed to N,N-dimethylhydrazine (chemical carcinogen

    Directory of Open Access Journals (Sweden)

    Denisa Čokášová

    2012-01-01

    Full Text Available The aim of the present study was to evaluate the effect of the new probiotic strain Lactobacillus plantarum on chemically induced carcinogenesis in rats. Sprague dowley rats (n = 33 were divided into control and experimental groups and were fed a conventional laboratory diet. In the experimental group, rats were treated with the probiotic at the dose of 1 × 109 CFU (colony-forming units/ml. Two weeks after the beginning of the trial, N,N-dimethylhydrazine (chemical carcinogen injections were applied s.c. at the dose of 21 mg/kg b.w., 5 × weekly. At the end of the 8-month experimental period, faeces samples were taken from the rats and used for laboratory analysis. The counts of lactobacilli and coliforms and bacterial enzyme activity were determined. The probiotic strain L. plantarum as single species or in combination with oil (Lini oleum virginale decreased the count of total coliforms and increased lactobacilli in faeces of rats. Application of probiotic microorganisms significantly (P < 0.05 decreased the activities of bacterial enzymes (β-galactosidase and β-glucuronidase compared to the control group rats. The results of this study indicate that probiotic microorganisms could exert a preventive effect on colon carcinogenesis induced by N,N-dimethylhydrazine.

  18. Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains.

    Science.gov (United States)

    Liang, Xudong; Zhang, Huijuan; Zhang, Enmin; Wei, Jianchun; Li, Wei; Wang, Bingxiang; Dong, Shulin; Zhu, Jin

    2016-07-03

    Anthrax toxins and capsule are the major virulence factors of Bacillus anthracis. They are encoded by genes located on the plasmids pXO1 and pXO2, respectively. The vaccine strain Pasteur II was produced from high temperature subcultures of B. anthracis, which resulted in virulence attenuation through the loss of the plasmid pXO1. However, it is unclear whether the high temperature culture completely abolishes the plasmid DNA or affects the replication of the plasmid pXO1. In this study, we tested 3 B. anthracis vaccine strains, including Pasteur II from France, Qiankefusiji II from Russia, and Rentian II from Japan, which were all generated from subcultures at high temperatures. Surprisingly, we detected the presence of pXO1 plasmid DNA using overlap PCR in all these vaccine strains. DNA sequencing analysis of overlap PCR products further confirmed the presence of pXO1. Moreover, the expression of the protective antigen (PA) encoded on pXO1 was determined by using SDS-PAGE and western blotting. In addition, we mimicked Pasteur's method and exposed the A16R vaccine strain, which lacks the pXO2 plasmid, to high temperature, and identified the pXO1 plasmid in the subcultures at high temperatures. This indicated that the high temperature treatment at 42.5°C was unable to eliminate pXO1 plasmid DNA from B. anthracis. Our results suggest that the attenuation of the Pasteur II vaccine strain is likely due to the impact of high temperature stress on plasmid replication, which in turn limits the copy number of pXO1. Our data provide new insights into the mechanisms of the remaining immunogenicity and toxicity of the vaccine strains.

  19. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  20. Multiple antimicrobial resistance in bacterial isolates from clinical ...

    African Journals Online (AJOL)

    A total of 545 clinical specimens (pus, blood, urine, and stool) and environmental specimens (air sample, saline solution, nasal swabs etc) were cultured for isolation and identification of aerobic bacteria and antimicrobial susceptibility testing. Out of these, 356(65%) specimens yielded one or more bacterial strains. Frequent ...

  1. Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards.

    Science.gov (United States)

    Xia, Ming-Chen; Bao, Peng; Liu, A-Juan; Zhang, Shi-Shi; Peng, Tang-Jian; Shen, Li; Yu, Run-Lan; Wu, Xue-Ling; Li, Jiao-Kun; Liu, Yuan-Dong; Chen, Miao; Qiu, Guan-Zhou; Zeng, Wei-Min

    2018-03-21

    Biohydrometallurgy is generally considered as a green technology for the recycling of industrial solid waste. In this study, an indigenous fungal strain named Y5 with the ability of high-yielding organic acids was isolated and applied in bioleaching of waste printed circuit boards (PCBs). The strain Y5 was identified as Penicillium chrysogenum by morphological and molecular identification. Meanwhile, we investigated that an optimal set of culturing conditions for the fungal growth and acids secretion was 15 g/L glucose with initial pH 5.0, temperature 25°C and shaking speed 120 rpm in shaken flasks culture. Moreover, three bioleaching processes such as one-step, two-step and spent medium processes were conducted to extract copper from waste PCBs. Spent medium bioleaching showed higher copper extraction percentage and it was 47% under 5%(w/v) pulp density. Transmission electron microscope (TEM) observation combining with energy dispersive analysis of X-rays (EDAX) showed that the leached metal ions did not obviously damage the hypha cells. All above results indicated that P.chrysogenum strain Y5 has the tolerance to metal ions, suggesting its potential in recycling of metals from waste PCBs in industry. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Identification ofListeriaSpp. Strains Isolated from Meat Products and Meat Production Plants by Multiplex Polymerase Chain Reaction.

    Science.gov (United States)

    Mazza, Roberta; Piras, Francesca; Ladu, Daniela; Putzolu, Miriam; Consolati, Simonetta Gianna; Mazzette, Rina

    2015-11-02

    Listeriosis is a foodborne disease caused by Listeria monocytogenes and is considered as a serious health problem, due to the severity of symptoms and the high mortality rate. Recently, other Listeria species have been associated with disease in human and animals. The aim of this study was to develop a multiplex polymerase chain reaction (PCR) in order to simultaneously detect six Listeria species (L. grayi , L. welshimeri , L. ivanovii , L. monocytogenes , L. seeligeri , L. innocua) in a single reaction. One hundred eighteen Listeria spp . strains, isolated from meat products (sausages) and processing plants (surfaces in contact and not in contact with meat), were included in the study. All the strains were submitted to biochemical identification using the API Listeria system. A multiplex PCR was developed with the aim to identify the six species of Listeria . PCR allowed to uniquely identify strains that had expressed a doubtful profile with API Listeria The results suggest that the multiplex PCR could represent a rapid and sensitive screening test, a reliable method for the detection of all Listeria species, both in contaminated food and in clinical samples, and also a tool that could be used for epidemiological purposes in food-borne outbreaks. A further application could be the development of a PCR that can be directly applied to the pre-enrichment broth.

  3. Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.)

    NARCIS (Netherlands)

    Tahir, M.; Mirza, M.S.; Zaheer, A.; Rocha Dimitrov, M.; Smidt, H.; Hameed, S.

    2013-01-01

    The aim of the present study was to isolate phosphate solubilizing bacteria from wheat rhizosphere and investigate their potential for plant growth promotion. Three phosphate solubilizing bacterial strains were isolated by serial dilution method from the rhizosphere of wheat grown under wheat-cotton

  4. Isolation and identification of a cold-adapted lipase producing strain ...

    African Journals Online (AJOL)

    A cold-adapted lipase producing strain of mesophilic bacterium, named SYBC LIP-Y, was isolated from the decayed seeds of Ginkgo biloba L. by screening with plates containing Victoria Blue B and with the flask-shaking fermentation. It was identified as a novel Burkholderia species. The properties of its lipase after ...

  5. Identification of Salt-Tolerant Sinorhizobium sp Strain BL3 Membrane Proteins Based on Proteomics

    DEFF Research Database (Denmark)

    Tanthanuch, Waraporn; Mohammed, Shabaz; Matthiesen, Rune

    2010-01-01

    Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective...

  6. Functional Identification of Conserved Residues Involved in Lactobacillus rhamnosus Strain GG Sortase Specificity and Pilus Biogenesis

    NARCIS (Netherlands)

    Douillard, F.P.; Rasinkangas, P.; Ossowski, von I.; Reunanen, J.; Palva, A.; Vos, de W.M.

    2014-01-01

    In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface

  7. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    Science.gov (United States)

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.

  8. Identification Of Some Strains Of Dinoflagellates Based On Morphology And Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Hikmah Thoha

    2008-11-01

    Full Text Available Dinoflagellates are the important primary producers in aquatic environments. In oceans, they play interesting role in ecological functions such as red tide forming organisms, symbiont of coral reef or sea anemone and DSP (Diarrhetic Shellfish Poisoning or PSP (Paralytic Shellfish Poisoning producing organisms. Morphology and molecular analysis of dinoflagellates were conducted on November 2002 to March 2003. The phylogenetic studies based on 18S rDNA analyses, sequence have begun to appear more frequently in the literature, as attention has turned to relationships within the major eukaryotic lineages, particular importance for the taxonomy of the armored and unarmored genera of dinoflagellates (Gyrodinium sp., Cachonina sp., Gymnodinium sp., Amphidinium sp., because many of the genera cause extensive plankton blooms, fish kills and other harmful events, were studied used to amplify 18S rDNA, present in the total DNA extracted from algal pellet. The amplify approximately 1400 bp of the nuclear-encoded LSU rDNA gene using terminal primeirs DIR, products were cheked by 1.0 % agarose gel electrophoresis, then cloning with TA cloning KIT. Sequencing were analyzed by the GENETIX Mac Software, Homology search by Blast and Phylogenetic analysis. Results of hylogenetic analysis of 18S rDNA are: Strain no. 10893 (un identified from the genera, it is belonging Gymnodinium or Polarella. Strain no. 10795 is closely related other species Cachonina hallii. We tentatively named strain no 11151 and 11160 similar to Gyrodinium or Gymnodinium based on morphology, but these strain indepently position in this tree and is not a real of Gymnodinium sensu stricto. It is possible, we can establish the new genera for strain no. 11151; 11160 because this not cluster any other unarmored species.

  9. Isolation and Identification of L-asparaginase producing Erwinia strains which isolated from Potato Farms

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2016-09-01

    Full Text Available Introduction: L-Asparaginase can be effectively used for the treatment of lymphoblastic leukemia. The rapid growth of cancer cells are needed for L-asparagine abundant storage. L-asparaginase catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. The purpose of this study was to isolate and identify the L-asparaginase producing Erwinia strains from the potato farms of Jiroft. Materials and methods: Pectolytic Erwinia species isolated from crumbling potato in M9 medium. The desired L-asparaginase producing bacteria were isolated based on the color changes. Biochemical-microbial and the plant pathogenicity tests of these strains were also investigated with potato and geranium. The L-asparaginase production and molecular detection of these Erwinia strains were also investigated. Results: In this study, L-asparaginase producing Erwinia was isolated on the CVP and M9 mediums. The inoculation of Erwinia strains on the potato and geranium plants showed that Er8 and Er11 species have the ability to cause plant pathogenicity. Results showed that the maximum pathogenicity of Er8 and Er11 was observed after 48 and 15 h of inoculation in potato and geranium plants, respectively. 16S rDNA sequencing and phylogenetic analyses exhibited that Er8 and Er11 strains were similar to Erwinia chrysanthemi with 98% homology. Discussion and conclusion: Because of several applications of the Erwinia L-asparaginase in various fields, isolated Erwinia and their L-asparaginase can be suitable for applied utilization.

  10. Custom database development and biomarker discovery methods for MALDI-TOF mass spectrometry-based identification of high-consequence bacterial pathogens.

    Science.gov (United States)

    Tracz, Dobryan M; Tyler, Andrea D; Cunningham, Ian; Antonation, Kym S; Corbett, Cindi R

    2017-03-01

    A high-quality custom database of MALDI-TOF mass spectral profiles was developed with the goal of improving clinical diagnostic identification of high-consequence bacterial pathogens. A biomarker discovery method is presented for identifying and evaluating MALDI-TOF MS spectra to potentially differentiate biothreat bacteria from less-pathogenic near-neighbour species. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Selection of potent bacterial strain for over-production of PHB by using low cost carbon source for eco-friendly bioplastics

    Directory of Open Access Journals (Sweden)

    Rahat Abdul Rehman

    2015-11-01

    Full Text Available Background: The microbial PHB production is a promising tool for the plastic industry for the synthesis of environmental friendly, biodegradable plastic in contrast to the conventional petro-chemical based non-degradable plastics. The selection of potent bacterial strains, inexpensive carbon source, efficient fermentation and recovery processes are important aspects that were taken into account during this study. Methods: Different bacterial strains i.e. Bacillus Spp, P. putida and P. fluorescens were screened for maximum PHB production. Under media optimization, various carbon and nitrogen sources (alone or in combination were used to achieve the maximum PHB production. Finally the degradation tests of the PHB sheet were also performed to test its biodegradability potential. Results: Shake flask studies have shown the PHB concentrations upto 7.02, 4.50 and 34.4 mg/g of dry cell mass of P. putida, P. fluorescens and Bacillus Spp. respectively. Almost same results were observed at laboratory scale production of PHB in 10 L fermenter i.e. 6.28, 6.23 and 39.5 mg/g of dry cell mass by P. putida, P. fluorescens and Bacillus Spp. respectively. On the basis of these observations, Bacillus Spp. was chosen for laboratory scale PHB production. Corn steep liquor (4% was chosen as the best medium to achieve the highest PHB contents. Isolated PHB has shown biodegradation in soil up to 86.7% at 37oC. Conclusion: The Bacillus Spp. Proved to be the best strain for PHB production on only 4% CSL which is cheapest and easily available.

  12. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay.

    Science.gov (United States)

    Dwivedi, Sourabh; Alkhedhairy, Abdulaziz A; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental selenium (Se(0)) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3(2-) to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3(2-) to elemental red Se(0), a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3(2-) bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point.

  13. Characterization of a salt resistant bacterial strain Proteus sp. NA6 capable of decolorizing reactive dyes in presence of multi-metal stress.

    Science.gov (United States)

    Abbas, Naila; Hussain, Sabir; Azeem, Farrukh; Shahzad, Tanvir; Bhatti, Sajjad Haider; Imran, Muhammad; Ahmad, Zulfiqar; Maqbool, Zahid; Abid, Muhammad

    2016-11-01

    Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L(-1) NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L(-1) NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L(-1) NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co(+2), Cr(+6), Zn(+2), Pb(+2), Cu(+2), Cd(+2)) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L(-1) NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.

  14. High-resolution bacterial growth inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antibacterial constituents in Chinese plants used to treat snakebites.

    Science.gov (United States)

    Liu, Yueqiu; Nielsen, Mia; Staerk, Dan; Jäger, Anna K

    2014-09-11

    Bacterial infection is one of the main secondary infections caused by snakebite. The 88 plant species investigated in this study have been used as folk remedies for treatment of snakebite, and it is therefore the aim of this study to investigate whether the plants contain compounds with bacterial growth inhibition. The water and ethanol extracts of 88 plant species were screened at 200 μg/mL against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa for their antibacterial activity by micro-broth dilution assay. The most active extracts were fractionated into microplates using analytical-scale RP-HPLC, and subsequently growth inhibition was assessed for each well. The biochromatograms constructed from these assays were used to identify compounds responsible for antibacterial activity. The structures of five compounds were elucidated by HPLC-HRMS-SPE-NMR. Crude extracts of Boehmeria nivea, Colocasia esculenta, Fagopyrum cymosum, Glochidion puberum, Melastoma dodecandrum, Polygonum bistorta, Polygonum cuspidatum and Sanguisorba officinalis showed MIC values below 200 μg/mL against either Bacillus subtilis, Staphylococcus aureus, Escherichia coli or Pseudomonas aeruginosa. The biochromatograms demonstrated that tannins play a main role for the bacterial growth inhibition observed for all above-mentioned plants except for Polygonum cuspidatum. Furthermore, the high-resolution bacterial growth inhibition profiling combined with HPLC-HRMS-SPE-NMR allowed fast identification of three non-tannin activ