WorldWideScience

Sample records for bacterial single-cell protein

  1. The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Larsen, L.C.; Frøkiær, Hanne

    2003-01-01

    The bacterial single-cell protein BioProtein (BP; Norferm Danmark, Odense, Denmark), produced by fermentation of natural gas with methanotrophic bacteria, is a potential protein source for man and animals. For human consumption, removal of the nucleic acid is necessary. Preliminary studies have...... shown that ingested BP induces a specific immune response. The objective of the present study was to characterize the type of response, its development over time and product-related causative factors. Mice were fed with diets containing 60 g nucleic acid-reduced BP/kg, 240 g nucleic acid-reduced BP...... and saliva. Ingested BP induced a steady specific mucosal and systemic immune response, characterized by a dose-dependent production of immunoglobulin and immunoglobulin A in blood and immunoglobulin A in saliva. Basic BP and nucleic acid-reduced BP induced identical responses. However, feeding mice BP...

  2. Immunotoxicity of nucleic acid reduced BioProtein - a bacterial derived single cell protein - in Wistar rats

    DEFF Research Database (Denmark)

    Mølck, Anne-marie; Poulsen, Morten; Christensen, Hanne Risager;

    2002-01-01

    BioProtein is a single cell protein produced by a mixed methanotrophic and heterotrophic bacteria culture using natural gas as energy source, which has been approved for animal feed. BioProtein contains a large amount of nucleic acids making the product less suitable for human consumption...... the same tendency, although, not statistically significant (P = 0.09). The subsets of cells identified as neutrophils and eosinophils were increased and lymphocytes decreased. The histopathological examination revealed histiocytosis and accumulation of foamy macrophages in the mesenteric lymph nodes...

  3. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    . Staphylococci adhere stronger on fresh glass than on hydrophilic glass, while the weaker adhesion by P. fluorescens was similar on both types of glass. These results confirmed the importance of surface hydrophobicity in bacterial adhesion. This study has demonstrated that single-cell force spectroscopy allows...... be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  4. Feed consumption, growth and growth efficiency of rainbow trout (Oncorhynchus mykiss (Walbaum)) fed on diets containing a bacterial single-cell protein.

    Science.gov (United States)

    Perera, W M; Carter, C G; Houlihan, D F

    1995-04-01

    The aim of the present study was to compare the nutritive value of bacterial single-cell protein (BSCP) with that of fishmeal in rainbow trout (Oncorhynchus mykiss (Walbaum)). Four diets were formulated to contain a total of 458 g crude protein/kg of which 0% was from BSCP in diet 1 (BSCP-0), 25% in diet 2 (BSCP-25), 62.5% in diet 3 (BSCP-62.5) and 100% in diet 4 (BSCP-100); the remainder of the protein was from fishmeal. There were two studies: in study 1, duplicate groups of twenty-five fish were fed on one of the four experimental diets at the rate of 20 g/kg body weight per d for 132 d. Feed consumption rates of individual fish were measured using radiography and the overall apparent absorption efficiency for N in each group was measured over a 2-week period. In study 2, N intake, consumption, absorption and accretion were measured for each fish under controlled environmental conditions (12 h: 12 h light-dark regime; 14 degrees). Higher dietary levels of BSCP resulted in significantly higher feed consumption rates but reduced N absorption efficiency and growth rates. However, a diet containing 25% BSCP (75% fishmeal) did not significantly influence growth rates, feed consumption and absorption efficiency compared with a 100% fishmeal diet. The N growth efficiencies were highest in fish fed on the diet containing the highest level of fishmeal and significantly decreased with increasing BSCP content. Construction of N budgets demonstrated that the reduction in growth in fish eating an increasingly larger proportion of BSCP was due to a decrease in N absorption and an increase in the excretion of urea.

  5. MICROORGANISMS: A MARVELOUS SOURCE OF SINGLE CELL PROTEINS

    Directory of Open Access Journals (Sweden)

    Agam Nangul

    2013-08-01

    Full Text Available The increasing global population living below the poverty line is driving the scientific community to search for non-conventional protein sources that can replace conventional expensive ones. Microbial proteins, or single-cell protein (SCP, represent a potential future nutrient source for human food and animal feed. These microbial proteins can be grown rapidly on substrates with minimum dependence on soil, water and climate conditions. They can be produced from algae, fungi and bacteria the chief sources of SCP. It is convenient to use microorganisms for production of SCP as they grow rapidly and have high protein content. Industrially, they can be produced from algal biomass, yeast, fungi. There are several other ways of getting SCP as well. Despite numerous advantages of SCP, they have disadvantages and toxic effects too, especially related to mycotoxins and bacterial toxins.

  6. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2016-01-01

    Full Text Available Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell’s phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.

  7. Influence of molecular noise on the growth of single cells and bacterial populations.

    Directory of Open Access Journals (Sweden)

    Mischa Schmidt

    Full Text Available During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i the precision of division site placement (at which molecular noise is highly suppressed and (ii the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i and allowance of noise in example (ii] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions.

  8. Digestion, absorption and utilization of single-cell protein by the preruminant calf. The true digestibility of milk and bacterial protein and the apparent digestibility and utilization of their constituent amino acids.

    Science.gov (United States)

    Sedgman, C A; Roy, J H; Thomas, J; Stobo, I J; Ganderton, P

    1985-07-01

    Two experiments of Latin square design were made, each with four Friesian bull calves fitted with re-entrant duodenal and ileal cannulas at 4-10 d of age. The calves were used to study the effect of giving milk-substitutes containing 0, 300, 500 and 700 g bacterial protein (Pruteen)/kg total protein on apparent digestibility of nitrogen fractions and amino acids and true digestibility of 3H-labelled milk protein and 35S-labelled bacterial protein in the small intestine. A third experiment of Latin square design with four intact Friesian calves was used to measure apparent digestibility of nutrients throughout the alimentary tract and retention of N, calcium and phosphorus. At the duodenum, volume of outflow, its pH, and outflow of total-N(TN), protein-N (PN) and non-protein-N (NPN) decreased with time after feeding. At the ileum, volume of outflow and TN outflow were unaffected by time after feeding but PN outflow decreased; NPN outflow at the ileum increased to a maximum 6 h after feeding and then declined. Increased inclusion of Pruteen did not affect the volume of outflow at the duodenum or ileum, but duodenal PN outflow increased. At the ileum, pH values were lower and TN, PN and NPN outflows were higher with increasing concentration of Pruteen in the diet. Apparent digestibility in the small intestine tended to decrease with greater amounts of Pruteen, but was only significant for NPN. Apparent digestibility from mouth to ileum significantly decreased for TN and PN as Pruteen inclusion increased. Amino acid concentration in duodenal outflow, with the exception of that of arginine, reflected intake. The total amount of each amino acid in ileal outflow increased and the apparent digestibility of most amino acids decreased with greater amounts of Pruteen in the diet. Apparent digestibility of nucleic acid-N from Pruteen was very high. True digestibility in the small intestine and between mouth and ileum of 3H-labelled milk protein was high and did not differ

  9. Photoconversion of organic materials into single-cell protein

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.F.

    1991-12-31

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  10. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    /Dead fluorescence staining at the end of each experiment. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time of contact. The single-cell probe offers control of the cell immobilization, thus holds advantages over the commonly used multi-cell probes where...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding...... density PLL-g-PEG coatings were about eight times as thick as the conventional PLL-g-PEG coatings. Adhesion forces toward high density PLL-g-PEG coatings were low (P. aeruginosa) or close to zero (S. aureus and S. epidermidis) compared to bare titanium surface. However, no decrease in adhesion force...

  11. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Science.gov (United States)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  12. COMPARATIVE PRODUCTION OF SINGLE CELL PROTEIN FROM FISH PROTEIN ISOLATE WASTAGE AND ULTRA FILTERED CHEESE WHEY

    Directory of Open Access Journals (Sweden)

    Soroush Haghighi-Manesh

    2013-02-01

    Full Text Available Fish protein isolate wastage and ultra filtered cheese whey were used as substrates for fermentation by Kluyveromyces marxianus to produce single cell protein, under batch and aerobic condition in which pH and temperature were adjusted to 4.5 and 35°C. The produced biomass was analyzed for protein content in different periods of time during fermentation. About 82% and 75% of total protein was produced in the first 18 h of 96 h fermentation of ultra filtered cheese whey and protein isolate wastage respectively, which can be an indication of the exponential phase of the yeast growth. The results of biomass yield measurements during 96 h process also confirm this finding. Moreover, since ultra filtered cheese whey was higher in single cell protein yield, solubility, water holding capacity, water absorption and power of biological and chemical oxygen demand reduction, and also was lower in foam overrun and stability than fish protein isolate wastage, it was selected as the suitable substrate for single cell protein production.

  13. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  14. Yeast single cell protein in the diet of Oreochromis niloticus (L ...

    African Journals Online (AJOL)

    use

    2Department of Animal Science and Fishery, University of Port Harcourt, Rivers State, Nigeria. Accepted 27 ... with yeast single cell protein (SCP) in the order 10, 20, 30, 40 and 50%, respectively. .... the culture of O. niloticus was determined.

  15. Actual prospects of single cell protein (SCP) in agriculture and industry.

    OpenAIRE

    2004-01-01

    Since the beginning of the XXthcentury, single cell protein production has represented abiotechnological option, which viability has been muchargued, for the handling and profitable disposal of largeamounts of agricultural and industrial waste materials. Due tothe nature of this process, lots of pollution sources can betransformed into useful materials with industrial, nutritionaland economical value. This paper overviews the historicalevolution of single cell protein, its importance andappli...

  16. Simultaneous determination of gene expression and bacterial identity in single cells in defined mixtures of pure cultures

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Dalton, Helen M.; Angels, Mark;

    1997-01-01

    A protocol was developed to achieve the simultaneous determination of gene expression and bacterial identity at the level of single cells: a chromogenic beta-galactosidase activity assay was combined with in situ hybridization of Fluorescently labelled oligonucleotide probes to rRNA. The method a...

  17. Mass Cytometry for Detection of Silver at the Bacterial Single Cell Level

    Directory of Open Access Journals (Sweden)

    Yuting Guo

    2017-07-01

    Full Text Available Background: Mass cytometry (Cytometry by Time of Flight, CyTOF allows single-cell characterization on the basis of specific metal-based cell markers. In addition, other metals in the mass range such as silver can be detected per cell. Bacteria are known to be sensible to silver and a protocol was developed to measure both the number of affected cells per population and the quantities of silver per cell.Methods: For mass cytometry ruthenium red was used as a marker for all cells of a population while parallel application of cisplatin discriminated live from dead cells. Silver quantities per cell and frequencies of silver containing cells in a population were measured by mass cytometry. In addition, live/dead subpopulations were analyzed by flow cytometry and distinguished by cell sorting based on ruthenium red and propidium iodide double staining. Verification of the cells’ silver load was performed on the bulk level by using ICP-MS in combination with cell sorting. The protocol was developed by conveying both, fast and non-growing Pseudomonas putida cells as test organisms.Results: A workflow for labeling bacteria in order to be analyzed by mass cytometry was developed. Three different parameters were tested: ruthenium red provided counts for all bacterial cells in a population while consecutively applied cisplatin marked the frequency of dead cells. Apparent population heterogeneity was detected by different frequencies of silver containing cells. Silver quantities per cell were also well measurable. Generally, AgNP-10 treatment caused higher frequencies of dead cells, higher frequencies of silver containing cells and higher per-cell silver quantities. Due to an assumed chemical equilibrium of free and bound silver ions live and dead cells were associated with silver in equal quantities and this preferably during exponential growth. With ICP-MS up to 1.5 fg silver per bacterial cell were detected.Conclusion: An effective mass cytometry

  18. Single-cell level based approach to investigate bacterial metabolism during batch industrial fermentation

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Eriksen, Niels T.

    Escherichia coli fermentations have been studied for decades, but most results are based on average measurements of the whole populations of cells, whilst averaged data can mask the distribution of activities at the sub-population or single-cell level. A population of genetically identical cells ...

  19. Single cell cytometry of protein function in RNAi treated cells and in native populations

    Directory of Open Access Journals (Sweden)

    Hill Andrew

    2008-08-01

    Full Text Available Abstract Background High Content Screening has been shown to improve results of RNAi and other perturbations, however significant intra-sample heterogeneity is common and can complicate some analyses. Single cell cytometry can extract important information from subpopulations within these samples. Such approaches are important for immune cells analyzed by flow cytometry, but have not been broadly available for adherent cells that are critical to the study of solid-tumor cancers and other disease models. Results We have directly quantitated the effect of resolving RNAi treatments at the single cell level in experimental systems for both exogenous and endogenous targets. Analyzing the effect of an siRNA that targets GFP at the single cell level permits a stronger measure of the absolute function of the siRNA by gating to eliminate background levels of GFP intensities. Extending these methods to endogenous proteins, we have shown that well-level results of the knockdown of PTEN results in an increase in phospho-S6 levels, but at the single cell level, the correlation reveals the role of other inputs into the pathway. In a third example, reduction of STAT3 levels by siRNA causes an accumulation of cells in the G1 phase of the cell cycle, but does not induce apoptosis or necrosis when compared to control cells that express the same levels of STAT3. In a final example, the effect of reduced p53 levels on increased adriamycin sensitivity for colon carcinoma cells was demonstrated at the whole-well level using siRNA knockdown and in control and untreated cells at the single cell level. Conclusion We find that single cell analysis methods are generally applicable to a wide range of experiments in adherent cells using technology that is becoming increasingly available to most laboratories. It is well-suited to emerging models of signaling dysfunction, such as oncogene addition and oncogenic shock. Single cell cytometry can demonstrate effects on cell

  20. The use of yeast as single-cell protein in aquacultural diets

    OpenAIRE

    Coutteau, P. (Peter); Lavens, P.

    1989-01-01

    Aquaculture is becoming more and more an industrial practice. However, feed cost, which may mount up to around 30% of the total operating costs still appears to be one of the major constraints for further expansion of aquaculture. Due to the relatively inexpensive mass-production of yeasts, serious efforts have been made to evaluate the incorporation of these Single-Cell Proteins in aquaculture diets. The aim of this communication is to review the most important results obtained with yeast di...

  1. Protein signaling networks from single cell fluctuations and information theory profiling.

    Science.gov (United States)

    Shin, Young Shik; Remacle, F; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R D; Heath, James R

    2011-05-18

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network.

  2. Protein Signaling Networks from Single Cell Fluctuations and Information Theory Profiling

    Science.gov (United States)

    Shin, Young Shik; Remacle, F.; Fan, Rong; Hwang, Kiwook; Wei, Wei; Ahmad, Habib; Levine, R.D.; Heath, James R.

    2011-01-01

    Protein signaling networks among cells play critical roles in a host of pathophysiological processes, from inflammation to tumorigenesis. We report on an approach that integrates microfluidic cell handling, in situ protein secretion profiling, and information theory to determine an extracellular protein-signaling network and the role of perturbations. We assayed 12 proteins secreted from human macrophages that were subjected to lipopolysaccharide challenge, which emulates the macrophage-based innate immune responses against Gram-negative bacteria. We characterize the fluctuations in protein secretion of single cells, and of small cell colonies (n = 2, 3,···), as a function of colony size. Measuring the fluctuations permits a validation of the conditions required for the application of a quantitative version of the Le Chatelier's principle, as derived using information theory. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein-protein interaction network. PMID:21575571

  3. Real-time quantification of protein expression at the single-cell level via dynamic protein synthesis translocation reporters.

    Science.gov (United States)

    Aymoz, Delphine; Wosika, Victoria; Durandau, Eric; Pelet, Serge

    2016-04-21

    Protein expression is a dynamic process, which can be rapidly induced by extracellular signals. It is widely appreciated that single cells can display large variations in the level of gene induction. However, the variability in the dynamics of this process in individual cells is difficult to quantify using standard fluorescent protein (FP) expression assays, due to the slow maturation of their fluorophore. Here we have developed expression reporters that accurately measure both the levels and dynamics of protein synthesis in live single cells with a temporal resolution under a minute. Our system relies on the quantification of the translocation of a constitutively expressed FP into the nucleus. As a proof of concept, we used these reporters to measure the transient protein synthesis arising from two promoters responding to the yeast hyper osmolarity glycerol mitogen-activated protein kinase pathway (pSTL1 and pGPD1). They display distinct expression dynamics giving rise to strikingly different instantaneous expression noise.

  4. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  5. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    Science.gov (United States)

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on three key performance parameters (absolute quantification, sensitivity, and throughput). PMID:26891303

  6. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    Directory of Open Access Journals (Sweden)

    Beiyuan Fan

    2016-02-01

    Full Text Available This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1 microfluidic fluorescent flow cytometry; (2 droplet based microfluidic flow cytometry; (3 large-array micro wells (microengraving; and (4 large-array micro chambers (barcode microchips. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on three key performance parameters (absolute quantification, sensitivity, and throughput.

  7. Single-cell protein dynamics reproduce universal fluctuations in cell populations

    CERN Document Server

    Brenner, Naama; Rotella, James S; Salman, Hanna

    2015-01-01

    Protein fluctuations in cell populations have recently been shown to exhibit a universal distribution shape under a broad range of biological realizations. Here, measuring protein content in individual bacteria continuously over ~70 generations, we show that single-cell trajectories fluctuate around their average with the same distribution shape as the population, i.e. their relative fluctuations are ergodic. Analysis of these temporal trajectories reveals that one effective random variable, sampled once each cell cycle, suffices to reconstruct the distribution from the trajectory. This in turn implies that cellular microscopic processes are strongly buffered and population-level protein distributions are insensitive to details of the intracellular dynamics. Probing them thus requires searching for novel universality-breaking experimental perturbations.

  8. Effect of Actinobacteria as a single cell protein on growth performance of Xiphophorus helleri

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2014-12-01

    Full Text Available The potential of Marine Actinobacteria particularly Streptomyces as a single cell protein (SCP feed for the growth of ornamental fish, Xiphophorus helleri has been investigated. The Streptomyces strains used as SCP were isolated from the marine sponges, namely Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Six SCP feeds were prepared and their effects were compared with those of control diet. After 30 days of feeding trials, the growth parameters including absolute growth rate, specific growth rate and feed conversion efficiency were found to be significantly (P<0.001 higher in groups that received SCP feed than those of control one, whereas feed conversion ratio was lower. Thus it was found that in addition to being effective antibiotic agents against harmful pathogens, Streptomyces could also promote the growth of fish effectively. Marine Actinobacteria, particularly Streptomyces, could play an important role as a single cell protein (SCP in aquaculture nutrition and is a promising microbe for the development of marine biotechnology.

  9. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae.

    Science.gov (United States)

    Gervasi, Teresa; Pellizzeri, Vito; Calabrese, Giorgio; Di Bella, Giuseppa; Cicero, Nicola; Dugo, Giacomo

    2017-05-25

    Food waste is the single-largest component of the waste stream, in order to protect and safeguard the public health, useful and innovative recycling methods are investigated. The conversion of food wastes in value-added products is becoming a more economically viable and interesting practice. Food waste, collected in the distribution sector and citrus industries, was characterised for its potential as a raw material to use in fermentation processes. In this study, the production of single-cell protein (SCP) using food waste as a substrate was investigated. The purpose of this study has been to produce SCP from mixtures of food waste using Saccharomyces cerevisiae. The main fermentation test was carried out using a 25 l bioreactor. The utilisation of food waste can allow us to not only to reduce environmental pollution, but also to obtain value-added products such as protein supply for animal feed.

  10. Measuring bacterial adaptation dynamics at the single-cell level using a microfluidic chemostat and time-lapse fluorescence microscopy.

    Science.gov (United States)

    Long, Zhicheng; Olliver, Anne; Brambilla, Elisa; Sclavi, Bianca; Lagomarsino, Marco Cosentino; Dorfman, Kevin D

    2014-10-21

    We monitored the dynamics of cell dimensions and reporter GFP expression in individual E. coli cells growing in a microfluidic chemostat using time-lapse fluorescence microscopy. This combination of techniques allows us to study the dynamical responses of single bacterial cells to nutritional shift-down or shift-up for longer times and with more precision over the chemical environment than similar experiments performed on conventional agar pads. We observed two E. coli strains containing different promoter-reporter gene constructs and measured how both their cell dimensions and the GFP expression change after nutritional upshift and downshift. As expected, both strains have similar adaptation dynamics for cell size rearrangement. However, the strain with a ribosomal RNA promoter dependent reporter has a faster GFP production rate than the strain with a constitutive promoter reporter. As a result, the mean GFP concentration in the former strain changes rapidly with the nutritional shift, while that in the latter strain remains relatively stable. These findings characterize the present microfluidic chemostat as a versatile platform for measuring single-cell bacterial dynamics and physiological transitions.

  11. Integration of plasma-assisted surface chemical modification, soft lithography, and protein surface activation for single-cell patterning

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2010-07-01

    Surface patterning for single-cell culture was accomplished by combining plasma-assisted surface chemical modification, soft lithography, and protein-induced surface activation. Hydrophilic patterns were produced on Parylene C films deposited on glass substrates by oxygen plasma treatment through the windows of polydimethylsiloxane shadow masks. After incubation first with Pluronic F108 solution and then serum medium overnight, surface seeding with mesenchymal stem cells in serum medium resulted in single-cell patterning. The present method provides a means of surface patterning with direct implications in single-cell culture.

  12. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    Science.gov (United States)

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process.

  13. Enhanced detection of single-cell-secreted proteins using a fluorescent immunoassay on the protein-G-terminated glass substrate

    Directory of Open Access Journals (Sweden)

    Jeong Y

    2015-11-01

    Full Text Available Yoon Jeong,1,2 Kwan Hong Lee,1,2 Hansoo Park,3 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, 3School of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: We present an evaluation of protein-G-terminated glass slides that may contain a suitable substrate for aligning the orientation of antibodies to obtain better binding moiety to the target antigen. The results of the protein-G-terminated slides were compared with those obtained with epoxy-based slides to evaluate signal enhancement for human immunoglobulin G (IgG targets, and an increase in the average fluorescence intensity was observed for the lowest measurable amount of IgG target in the assay using protein-G-terminated slides. Applying this strategy for signal amplification to single-cell assays improves the limits of detection for human IgG protein and cytokines (interleukin-2 and interferon-γ captured from hybridomas. Our data indicate that protein-G-terminated slides have a higher binding capacity for antigens and have better spot-to-spot consistency than that of traditional epoxy-based slides. These properties would be beneficial in the detection of fine amounts of single-cell-secreted proteins, which may provide key insights into cell–cell communication and immune responses. Keywords: microwell array, antibody’s orientation, single cell analysis, secreted cytokine, protein-G-terminated surface

  14. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv

    2014-01-01

    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  15. Evaluation of single cell protein from pulp mills: laboratory analyses and in vivo digestibility.

    Science.gov (United States)

    Kellems, R O; Aseltine, M S; Church, D C

    1981-12-01

    Single cell protein (SCP) derived from secondary clarifiers of pulp mills is a potential commercial protein supplement in many areas. Samples of SCP were collected from several pulp mills in the Pacific Northwest and evaluated by laboratory procedures. Six in vivo digestion trials were conducted to determine the relative nutritive value of SCP that was dewatered by centrifugation or by the addition of a polyacrylamide polymer before being put through a belt press and dried with a sonic dehydrator. Amino acid analyses showed that SCP was higher in methionine than was cottonseed meal (CSM) and had a similar level of lysine. True protein, based upon amino acids recovered in SCP samples, ranged from 51.6 to 65.9% of the crude protein (CP). Pepsin digestibility of the CP ranged from 16.2 to 36.8%. Pepsin digestibility increased by 6.3 to 11.3 percentage units when SCP were incubated in a buffered rumen fluid for 24 hours. Solubility of the nitrogenous components in 10% Burroughs' buffer solution ranged from 12.4 to 36.5%. The range in mineral composition was : P, .62 to 1.55%; Ca, .14 to .99%; K, .21 to 5.52%; Mg, .07 to .59%. The concentration of trace minerals and heavy metals varied considerably from sample to sample. Digestion trials were conducted with sheep to compare SCP with CSM; 20 to 50% of the total CP was provided by the SCP sources. The CP digestibilities of the centrifuged and the polymer-dewatered SCP were 70.5 to 70.8% and 66.3 to 69.9%, respectively, of that observed for CSM. In all digestion trials, sheep consumed the SCP diets readily, and no digestive disturbances were observed. On the basis of laboratory and in vivo results, pulp mill SCP has the potential to be a viable protein supplement for livestock.

  16. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates.

    Science.gov (United States)

    Shi, Handuo; Colavin, Alexandre; Lee, Timothy K; Huang, Kerwyn Casey

    2017-02-01

    Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.

  17. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine...

  18. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.; Fredrickson, Jim K.; Shi, Liang; Lu, H. Peter

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.

  19. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

    Directory of Open Access Journals (Sweden)

    Balakrishnan Kunasundari

    Full Text Available Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha was famous as a potential single cell protein (SCP in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.

  20. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously.

    Science.gov (United States)

    Kunasundari, Balakrishnan; Murugaiyah, Vikneswaran; Kaur, Gurjeet; Maurer, Frans H J; Sudesh, Kumar

    2013-01-01

    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.

  1. Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer.

    Science.gov (United States)

    Yang, Lingling; Zhou, Yingxing; Zhu, Shaobin; Huang, Tianxun; Wu, Lina; Yan, Xiaomei

    2012-02-07

    Cellular autofluorescence can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with or even precluding the detection of low-level specific fluorescence. Here we developed a method to detect and quantify bacterial autofluorescence in the green region of the spectrum at the single-cell level using a laboratory-built high-sensitivity flow cytometer (HSFCM). The detection of the very weak bacterial autofluorescence was confirmed by analyzing polystyrene beads of comparable and larger size than bacteria in parallel. Dithionite reduction and air re-exposure experiments verified that the green autofluorescence mainly originates from endogenous flavins. Bacterial autofluorescence was quantified by calibrating the fluorescence intensity of nanospheres with known FITC equivalents, and autofluorescence distribution was generated by analyzing thousands of bacterial cells in 1 min. Among the eight bacterial strains tested, it was found that bacterial autofluorescence can vary from 80 to 1400 FITC equivalents per cell, depending on the bacterial species, and a relatively large cell-to-cell variation in autofluorescence intensity was observed. Quantitative measurements of bacterial autofluorescence provide a reference for the background signals that can be expected with bacteria, which is important in guiding studies of low-level gene expression and for the detection of low-abundance biological molecules in individual bacterial cells. This paper presents the first quantification of bacterial autofluorescence in FITC equivalents.

  2. Conversion of waste plastics to single-cell protein by means of pyrolysis followed by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Karlhigesan, J.; Brown, B.S.

    Waste plastics (e.g. polyethylene, polystyrene and polypropylene) have been converted to single-cell protein using pyrolysis followed by fermentation. Conversion efficiencies of plastics to pyrolysate were 75-90% for polyethylene, 10-56% for polystyrene and 40-50% for polypropylene. Unpyrolyzed residues were formed with polystyrene (6-14%) and polypropylene (14-30%), but not with polyethylene. Polyvinyl chloride produced hydrogen chloride fumes, together with 33-39% unpyrolyzed residue, no fermentable pyrolysis products being formed. Polyethylene pyrolysate was fermented by the yeast, Candida tropicalis. Batch fermentation was carried out at 31 degrees Centigrade and pH 5.5 on polyethylene pyrolysate in shaken flasks (100 cubic centimetre culture) and in an aerated fermenter (500 cubic centimetre culture). Maximum growth rate was 0.168/hour, cell yield was 0.47 plus or minus 0.02 g g/1 pyrolysate used (n equals 3) and doubling time was 4-5 hours, after 72 hours growth on 1.0 g pyrolysate 100 centimetres-3 culture. Continuous culture (dilution rate 0.10/hour) gave a dry cell yield of 0.39 g/g pyrolysate utilized. Utilization of pyrolysate was 49.0% in batch culture and 33.0% in continuous culture. The efficiency of conversion to polyethylene to biomass was 34-42% in batch culture. Emulsification and pristane-solubilization were studied as a means of dispersing waxy pyrolysates in culture media. Pristane did not support growth whereas the emulsifier (lecithin, Tween 85 and sodium glycocholate (1:2:2 by weight)) could support up to 27% of the growth observed on polyethylene pyrolysate. Crude protein content of cells cultured on polyethylene pyrolysate was 46.7 plus or minus 2.4% (n equals 3) for batch culture cells, and 43.8 plus or minus 0.3% (n equals 4) for continuous culture cells. The true protein content of Candida cells was about 17%. The protein had a favourable nutritional quality as judged by in-vitro chemical tests.

  3. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    Science.gov (United States)

    2005-01-01

    sequencing or hybridization array capillary chromatography. After a 6-min-long preliminary technologies.30,31 separation, fractions from the first...characterize single cells. These tools include mass cating cells contain diploid, S-phase and tetraploid frac- spectrometry, electrochemistry and capillary...separation tions; and some advanced tumors contain tetraploid and methods. This review focuses on the use of capillary aneuploid cells [2

  4. Bacterial oligopeptide-binding proteins.

    Science.gov (United States)

    Monnet, V

    2003-10-01

    This review focuses on bacterial oligopeptide-binding proteins, which form part of the oligopeptide transport system belonging to the ATP-binding cassette family of transporters. Depending on the bacterial species, these binding proteins (OppA) capture peptides ranging in size from 2 to 18 amino acids from the environment and pass them on to the other components of the oligopeptide transport system for internalisation. Bacteria have developed several strategies to produce these binding proteins, which are periplasmic in Gram- bacteria and membrane-anchored in Gram+, with a higher stoichiometry (probably necessary for efficient transport) than the other components in the transport system. The expression of OppA-encoding genes is clearly modulated by external factors, especially nitrogen compounds, but the mechanisms of regulation are not always clear. The best-understood roles played by OppAs are internalisation of peptides for nutrition and recycling of muropeptides. It has, however, recently become clear that OppAs are also involved in sensing the external medium via specific or non-specific peptides.

  5. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  6. Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the Single Cell Level.

    Science.gov (United States)

    Wang, Yun; Song, Yizhi; Tao, Yifan; Muhamadali, Howbeer; Goodacre, Royston; Zhou, Ning-Yi; Preston, Gail M; Xu, Jian; Huang, Wei E

    2016-10-04

    The interactions between microorganisms driven by substrate metabolism and energy flow are important to shape diversity, abundance, and structure of a microbial community. Single cell technologies are useful tools for dissecting the functions of individual members and their interactions in microbial communities. Here, we developed a novel Raman stable isotope probing (Raman-SIP), which uses Raman microspectroscopy coupled with reverse and D2O colabeling to study metabolic interactions in a two-species community consisting of Acinetobacter baylyi ADP1 and Escherichia coli DH5α-GFP. This Raman-SIP approach is able to detect carbon assimilation and general metabolic activity simultaneously. Taking advantage of Raman shift of single cell Raman spectra (SCRS) mediated by incorporation of stable-isotopic substrates, Raman-SIP with reverse labeling has been applied to detect initially (13)C-labeled bands of ADP1 SCRS reverting back to (12)C positions in the presence of (12)C citrate. Raman-SIP with D2O labeling has been employed to probe metabolic activity of single cells without the need of cell replication. Our results show that E. coli alone in minimal medium with citrate as the sole carbon source had no metabolic activity, but became metabolically active in the presence of ADP1. Mass spectrometry-based metabolite footprint analysis suggests that putrescine and phenylalanine excreted by ADP1 cells may support the metabolic activity of E. coli. This study demonstrates that Raman-SIP with reverse labeling would be a useful tool to probe metabolism of any carbon substrate, overcoming limitations when stable isotopic substrates are not readily available. It is also found that Raman-SIP with D2O labeling is a sensitive and reliable approach to distinguish metabolically active cells but not quiescent cells. This novel approach extends the application of Raman-SIP and demonstrates its potential application as a valuable strategic approach for probing cellular metabolism

  7. In vivo bacterial morphogenetic protein interactions

    NARCIS (Netherlands)

    van der Ploeg, R.; den Blaauwen, T.; Meghea, A.

    2012-01-01

    This chapter will discuss none-invasive techniques that are widely used to study protein-protein interactions. As an example, their application in exploring interactions between proteins involved in bacterial cell division will be evaluated. First, bacterial morphology and cell division of the rod-s

  8. In vivo bacterial morphogenetic protein interactions

    OpenAIRE

    van der Ploeg, R.; den Blaauwen, T.; Meghea, A.

    2012-01-01

    This chapter will discuss none-invasive techniques that are widely used to study protein-protein interactions. As an example, their application in exploring interactions between proteins involved in bacterial cell division will be evaluated. First, bacterial morphology and cell division of the rod-shaped bacterium Escherichia coli will be introduced. Next, three bacterial two-hybrid methods and three Förster resonance energy transfer detection methods that are frequently applied to detect int...

  9. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics efforts face tradeoffs between number of perturbations examined and complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the mammalian unfolded protein response (UPR) using single and combinatorial CRISPR perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose repression perturbs ER homeostasis.

  10. The presence of INA proteins on the surface of single cells of Pseudomonas syringae R10.79 isolated from rain

    Science.gov (United States)

    Šantl-Temkiv, Tina; Ling, Meilee; Holm, Stine; Finster, Kai; Boesen, Thomas

    2016-04-01

    One of the important open questions in atmospheric ice nucleation is the impact of bioaerosols on the ice content of mix phase clouds (DeMott and Prenni 2010). Biogenic ice nuclei have a unique capacity of facilitating ice formation at temperatures between -1 and -10 °C. The model biogenic ice nuclei are produced by a few species of plant-surface bacteria, such as Pseudomonas syringae, that are commonly transported through the atmosphere. These bacterial species have highly specialized proteins, the so-called ice nucleation active (INA) proteins, which are exposed at the outer membrane surface of the cell where they promote ice particle formation. The mechanisms behind the onset of INA protein synthesis in single bacterial cells are not well understood. We performed a laboratory study in order to (i) investigate the presence of INA proteins on single bacterial cells and (ii) understand the conditions that induce INA protein production. We previously isolated an INA-positive strain of Pseudomonas syringae from rain samples collected in Denmark. Bacterial cells initiated ice nucleation activity at temperatures ≤-2°C and the cell fragments at temperatures ≤-8°C (Šantl-Temkiv et al 2015). We determined the amino-acid sequence of the INA protein and used the sequence to produce custom-made antibodies (GenScript, Germany). These antibodies were used to specifically stain and visualize the INA protein on the surfaces of single cells, which can then be quantified by a technique called flow cytometry. The synthesis of INA proteins by individual cells was followed during a batch growth experiment. An unusually high proportion of cells that were adapting to the new conditions prior to growth produced INA proteins (~4.4% of all cells). A smaller fraction of actively growing cells was carrying INA proteins (~1.2 % of all cells). The cells that stopped growing due to unfavorable conditions had the lowest fraction of cells carrying INA proteins (~0.5 % of all cells). To

  11. Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release and RNA-protein correlations at the level of single cells.

    Science.gov (United States)

    Kirschman, Jonathan L; Bhosle, Sushma; Vanover, Daryll; Blanchard, Emmeline L; Loomis, Kristin H; Zurla, Chiara; Murray, Kathryn; Lam, Blaine C; Santangelo, Philip J

    2017-07-07

    The use of synthetic messenger ribonucleic acid (mRNA) to express specific proteins is a highly promising therapeutic and vaccine approach that avoids many safety issues associated with viral or DNA-based systems. However, in order to optimize mRNA designs and delivery, technology advancements are required to study fundamental mechanisms of mRNA uptake and localization at the single-cell and tissue level. Here, we present a single RNA sensitive fluorescent labeling method which allows us to label and visualize synthetic mRNA without significantly affecting function. This approach enabled single cell characterization of mRNA uptake and release kinetics from endocytic compartments, the measurement of mRNA/protein correlations, and motivated the investigation of mRNA induced cellular stress, all important mechanisms influencing protein production. In addition, we demonstrated this approach can facilitate near-infrared imaging of mRNA localization in vivo and in ex-vivo tissue sections, which will facilitate mRNA trafficking studies in pre-clinical models. Overall, we demonstrate the ability to study fundamental mechanisms necessary to optimize delivery and therapeutic strategies, in order to design the next generation of novel mRNA therapeutics and vaccines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.

    Science.gov (United States)

    Westerwalbesloh, Christoph; Grünberger, Alexander; Stute, Birgit; Weber, Sophie; Wiechert, Wolfgang; Kohlheyer, Dietrich; von Lieres, Eric

    2015-11-01

    A microfluidic device for microbial single-cell cultivation of bacteria was modeled and simulated using COMSOL Multiphysics. The liquid velocity field and the mass transfer within the supply channels and cultivation chambers were calculated to gain insight in the distribution of supplied nutrients and metabolic products secreted by the cultivated bacteria. The goal was to identify potential substrate limitations or product accumulations within the cultivation device. The metabolic uptake and production rates, colony size, and growth medium composition were varied covering a wide range of operating conditions. Simulations with glucose as substrate did not show limitations within the typically used concentration range, but for alternative substrates limitations could not be ruled out. This lays the foundation for further studies and the optimization of existing picoliter bioreactor systems.

  13. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  14. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Science.gov (United States)

    Kamke, Janine; Rinke, Christian; Schwientek, Patrick; Mavromatis, Kostas; Ivanova, Natalia; Sczyrba, Alexander; Woyke, Tanja; Hentschel, Ute

    2014-01-01

    The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  15. The Candidate Phylum Poribacteria by Single-Cell Genomics: New Insights into Phylogeny, Cell-Compartmentation, Eukaryote-Like Repeat Proteins, and Other Genomic Features

    Science.gov (United States)

    Kamke, Janine; Rinke, Christian; Schwientek, Patrick; Mavromatis, Kostas; Ivanova, Natalia; Sczyrba, Alexander; Woyke, Tanja; Hentschel, Ute

    2014-01-01

    The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake. PMID:24498082

  16. Bacterial cell division proteins as antibiotic targets

    NARCIS (Netherlands)

    den Blaauwen, T.; Andreu, J.M.; Monasterio, O.

    2014-01-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of

  17. Rho-modifying bacterial protein toxins.

    Science.gov (United States)

    Aktories, Klaus

    2015-12-01

    Rho proteins are targets of numerous bacterial protein toxins, which manipulate the GTP-binding proteins by covalent modifications, including ADP ribosylation, glycosylation, adenylylation, proteolytic cleavage and deamidation. Bacterial toxins are important virulence factors but are also potent and efficient pharmacological tools to study the physiological functions of their eukaryotic targets. Recent studies indicate that amazing variations exist in the molecular mechanisms by which toxins attack Rho proteins, which are discussed here.

  18. Metabolic protein interactions in Bacillus subtilis studied at the single cell level

    NARCIS (Netherlands)

    Detert Oude Weme, Ruud Gerardus Johannes

    2015-01-01

    We have investigated protein-protein interactions in live Bacillus subtilis cells (a bacterium). B. subtilis’ natural habitat is the soil and the roots of plants, but also the human microbiota. B. subtilis is used worldwide as a model organism. Unlike eukaryotic cells, bacteria do not have organelle

  19. Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter.

    Science.gov (United States)

    Nikrad, Mrinalini P; Cottrell, M T; Kirchman, D L

    2012-04-01

    Environmental conditions in the western Arctic Ocean range from constant light and nutrient depletion in summer to complete darkness and sea ice cover in winter. This seasonal environmental variation is likely to have an effect on the use of dissolved organic matter (DOM) by heterotrophic bacteria in surface water. However, this effect is not well studied and we know little about the activity of specific bacterial clades in the surface oceans. The use of DOM by three bacterial subgroups in both winter and summer was examined by microautoradiography combined with fluorescence in situ hybridization. We found selective use of substrates by these groups, although the abundances of Ant4D3 (Antarctic Gammaproteobacteria), Polaribacter (Bacteroidetes), and SAR11 (Alphaproteobacteria) were not different between summer and winter in the Beaufort and Chukchi Seas. The number of cells taking up glucose within all three bacterial groups decreased significantly from summer to winter, while the percentage of cells using leucine did not show a clear pattern between seasons. The uptake of the amino acid mix increased substantially from summer to winter by the Ant4D3 group, although such a large increase in uptake was not seen for the other two groups. Use of glucose by bacteria, but not use of leucine or the amino acid mix, related strongly to inorganic nutrients, chlorophyll a, and other environmental factors. Our results suggest a switch in use of dissolved organic substrates from summer to winter and that the three phylogenetic subgroups examined fill different niches in DOM use in the two seasons.

  20. Optimization of single-cell-protein production from cassava starch using Schwanniomyces castellii.

    Science.gov (United States)

    Hongpattarakere, T; H-Kittikun, A

    1995-11-01

    Schwanniomyces castellii B5285 grew faster and produced greater biomass and higher protein yield than either S. alluvius ATCC 26074 or S. alluvius 81Y when these amylolytic yeasts were grown with 2% (w/v) cassava starch as sole C source. With 0.5% (w/v) glutamate as N source, S. castellii reached 7.12 g cell dry mass/l, with a protein yield of 6.4 g/100 g starch. The optimal agitation speed, aeration rate and pH for growth of this yeast in a fermenter were 400 rev/min, 1.67 vol./vol.min. and 5.0, respectively. Tween 80 at 0.1% increased cell dry mass to 8.90 g/l, cell yield to 44 g/100 g starch and protein yield to 7.4 g/100 g starch.

  1. PRODUCTION OF SINGLE CELL PROTEIN, ESSENTIAL AMINO ACIDS, AND XYLANASE BY PENICILLIUM JANTHINELLUM

    Directory of Open Access Journals (Sweden)

    Mala B. Rao

    2010-11-01

    Full Text Available Microbial biomass having 46% crude protein content and enriched with essential amino acids as well as extracellular xylanase activity (100-150 IU/ml was produced by an efficient fungal strain, Penicillium janthinellum (NCIM St-F-3b. Optimization studies for maximum xylanase and biomass production showed that the fungus required a simple medium containing bagasse hemicellulose as carbon source and ammonium sulphate as the nitrogen source. Therefore bagasse, which is a waste product of the sugar industry, can be efficiently used in microbioal biomass protein preparation for animal feed.

  2. Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2011-05-01

    Full Text Available Abstract Background The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (pppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (pppGpp - abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (pppGpp, and to a termination of cell division. The combination of single-cell timelapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.

  3. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  4. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production.

    Science.gov (United States)

    Aggelopoulos, Theodoros; Katsieris, Konstantinos; Bekatorou, Argyro; Pandey, Ashok; Banat, Ibrahim M; Koutinas, Athanasios A

    2014-02-15

    Growth of selected microorganisms of industrial interest (Saccharomyces cerevisiae, Kluyveromyces marxianus and kefir) by solid state fermentation (SSF) of various food industry waste mixtures was studied. The fermented products were analysed for protein, and nutrient minerals content, as well as for aroma volatile compounds by GC/MS. The substrate fermented by K. marxianus contained the highest sum of fat and protein concentration (59.2% w/w dm) and therefore it could be considered for utilisation of its fat content and for livestock feed enrichment. Regarding volatiles, the formation of high amounts of ε-pinene was observed only in the SSF product of kefir at a yield estimated to be 4 kg/tn of SSF product. A preliminary design of a biorefinery-type process flow sheet and its economic analysis, indicated potential production of products (enriched livestock feed, fat and ε-pinene) of significant added value.

  5. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess.

    Science.gov (United States)

    Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza

    2016-08-01

    Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.

  6. Recombinant protein production in bacterial hosts.

    Science.gov (United States)

    Overton, Tim W

    2014-05-01

    The production of recombinant proteins is crucial for both the development of new protein drugs and the structural determination of drug targets. As such, recombinant protein production has a major role in drug development. Bacterial hosts are commonly used for the production of recombinant proteins, accounting for approximately 30% of current biopharmaceuticals on the market. In this review, I introduce fundamental concepts in recombinant protein production in bacteria, from drug development to production scales. Recombinant protein production processes can often fail, but how can this failure be minimised to rapidly deliver maximum yields of high-quality protein and so accelerate drug discovery?

  7. Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff.

    Science.gov (United States)

    Saejung, Chewapat; Thammaratana, Thani

    2016-12-01

    Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux, respectively. The specific growth rate, biomass yield and biomass productivity were found to be 0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200% relative to the original condition. Under the optimal conditions, COD removal reached 85% and maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a relatively high protein content (60.1%) consisting of all essential amino acids. The contents of histidine, lysine, phenylalanine and leucine were superior to those of the previously described PSB. Results showed that COD removal was not improved in the presence of additional carbon sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the biomass accumulation by 279% relative to the original condition, whereas COD removal was declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.

  8. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    Science.gov (United States)

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  9. Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey.

    Science.gov (United States)

    Yadav, J S S; Bezawada, J; Ajila, C M; Yan, S; Tyagi, R D; Surampalli, R Y

    2014-07-01

    The study was conducted to evaluate the potential of mixed culture of Kluyveromyces marxianus and Candida krusei to enhance COD removal efficiency, minimize contamination at extreme conditions (high temperature 40°C and low pH 3.5) during batch and continuous aerobic fermentation and to obtain improved quality single-cell protein (SCP) using whey as substrate. The batch fermentation of mono-culture and mixed culture result showed that the mixed culture resulted in 8.8% higher COD removal efficacy with 19% higher biomass yield and 33% increased productivity. The maximum COD removal 80.2% (including residual protein) was obtained at 24h HRT with biomass productivity of 0.17 g/L/h; however, maximum biomass productivity of 0.38 g/L/h and 34% COD removal were obtained at 6h HRT. The results showed that the mixed culture of acid resistance and thermo-tolerant yeasts was a potential way to produce SCP (animal feed) and simultaneous COD removal under extreme operating conditions.

  10. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E;

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...

  11. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.

    Science.gov (United States)

    Sun, Liangliang; Dubiak, Kyle M; Peuchen, Elizabeth H; Zhang, Zhenbin; Zhu, Guijie; Huber, Paul W; Dovichi, Norman J

    2016-07-05

    Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 μg (16-cell embryo) to ∼0.2 μg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development.

  12. A transdisciplinary approach to the initial validation of a single cell protein as an alternative protein source for use in aquafeeds.

    Science.gov (United States)

    Tlusty, Michael; Rhyne, Andrew; Szczebak, Joseph T; Bourque, Bradford; Bowen, Jennifer L; Burr, Gary; Marx, Christopher J; Feinberg, Lawrence

    2017-01-01

    The human population is growing and, globally, we must meet the challenge of increased protein needs required to feed this population. Single cell proteins (SCP), when coupled to aquaculture production, offer a means to ensure future protein needs can be met without direct competition with food for people. To demonstrate a given type of SCP has potential as a protein source for use in aquaculture feed, a number of steps need to be validated including demonstrating that the SCP is accepted by the species in question, leads to equivalent survival and growth, does not result in illness or other maladies, is palatable to the consumer, is cost effective to produce and can easily be incorporated into diets using existing technology. Here we examine white shrimp (Litopenaeus vannamei) growth and consumer taste preference, smallmouth grunt (Haemulon chrysargyreum) growth, survival, health and gut microbiota, and Atlantic salmon (Salmo salar) digestibility when fed diets that substitute the bacterium Methylobacterium extorquens at a level of 30% (grunts), 100% (shrimp), or 55% (salmon) of the fishmeal in a compound feed. In each of these tests, animals performed equivalently when fed diets containing M. extorquens as when fed a standard aquaculture diet. This transdisciplinary approach is a first validation of this bacterium as a potential SCP protein substitute in aquafeeds. Given the ease to produce this SCP through an aerobic fermentation process, the broad applicability for use in aquaculture indicates the promise of M. extorquens in leading toward greater food security in the future.

  13. Fluorescent sensors based on bacterial fusion proteins

    Science.gov (United States)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  14. Bacterial protein toxins : tools to study mammalian molecular cell biology

    NARCIS (Netherlands)

    Wüthrich, I.W.

    2014-01-01

    Bacterial protein toxins are genetically encoded proteinaceous macromolecules that upon exposure causes perturbation of cellular metabolism in a susceptible host. A bacterial toxin can work at a distance from the site of infection, and has direct and quantifiable actions. Bacterial protein toxins

  15. Bacterial protein toxins : tools to study mammalian molecular cell biology

    NARCIS (Netherlands)

    Wüthrich, I.W.

    2014-01-01

    Bacterial protein toxins are genetically encoded proteinaceous macromolecules that upon exposure causes perturbation of cellular metabolism in a susceptible host. A bacterial toxin can work at a distance from the site of infection, and has direct and quantifiable actions. Bacterial protein toxins ca

  16. Novel receptors for bacterial protein toxins.

    Science.gov (United States)

    Schmidt, Gudula; Papatheodorou, Panagiotis; Aktories, Klaus

    2015-02-01

    While bacterial effectors are often directly introduced into eukaryotic target cells by various types of injection machines, toxins enter the cytosol of host cells from endosomal compartments or after retrograde transport via Golgi from the ER. A first crucial step of toxin-host interaction is receptor binding. Using optimized protocols and new methods novel toxin receptors have been identified, including metalloprotease ADAM 10 for Staphylococcus aureus α-toxin, laminin receptor Lu/BCAM for Escherichia coli cytotoxic necrotizing factor CNF1, lipolysis stimulated lipoprotein receptor (LSR) for Clostridium difficile transferase CDT and low-density lipoprotein receptor-related protein (LRP) 1 for Clostridium perfringens TpeL toxin.

  17. Studies on Single Cell Culture in vitro in Wheat--The variation of grain protein content and its fractions from regenerated plants

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cultivar NE 7742), the grain protein content and its fractions from regenerated plants with stable agronomic characteristics were studied from 1992 to 1995. The results showed that the variation of grain protein content and its fractions in somaclones from single cell culture in vitro were very significant and the range was very wide (11.53~17.70%). Several types of variation were found in the studies, especially the type with higher protein content than that of cultivar NE 7742 (non-culture parent). Among them, -20.69% of lines the grain protein content was significantly higher than that of NE 7742 and combined with high yielding potential. The tendency of variation of the four protein fractions showed that the variation of albumin was not obvious and maintained the same level as NE7742, the content of gliadin increased in some somaclones and decreased in others. However, the percentages both globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and albumm was mainly influenced by globulin under the condition of culture in vitro. The variation of total amount of storage protein and the ratio between gliadin and glutenin was mainly affected by glutenin. The results mentioned above demonstrated that the induction and screening of somaclonal variation could be an effective way in wheat improvement in combining high protein content with high yield.

  18. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  19. Bacterial proteins pinpoint a single eukaryotic root.

    Science.gov (United States)

    Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B Franz; Eliáš, Marek

    2015-02-17

    The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.

  20. Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins

    National Research Council Canada - National Science Library

    Egerer, Martina; Satchell, Karla J F

    2010-01-01

    Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen...

  1. Bacterial proteins and peptides in cancer therapy

    Science.gov (United States)

    Chakrabarty, Ananda M; Bernardes, Nuno; Fialho, Arsenio M

    2014-01-01

    Cancer is one of the most deadly diseases worldwide. In the last three decades many efforts have been made focused on understanding how cancer grows and responds to drugs. The dominant drug-development paradigm has been the “one drug, one target.” Based on that, the two main targeted therapies developed to combat cancer include the use of tyrosine kinase inhibitors and monoclonal antibodies. Development of drug resistance and side effects represent the major limiting factors for their use in cancer treatment. Nowadays, a new paradigm for cancer drug discovery is emerging wherein multi-targeted approaches gain ground in cancer therapy. Therefore, to overcome resistance to therapy, it is clear that a new generation of drugs is urgently needed. Here, regarding the concept of multi-targeted therapy, we discuss the challenges of using bacterial proteins and peptides as a new generation of effective anti-cancer drugs. PMID:24875003

  2. Single Cell Isolation and Analysis

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-10-01

    Full Text Available Increasing evidence shows that the heterogeneity of individual cells within a genetically identical population can be critical to their peculiar function and fate. Conventional cell based assays mainly analysis the average responses from a population cells, while the difference within individual cells may often be masked. The cell size, RNA transcripts and protein expression level are quite different within individual cells and these variations are key point to answer the problems in cancer, neurobiology, stem cell biology, immunology and developmental biology. To better understand the cell-to-cell variations, the single cell analysis can provide much more detailed information which may be helpful for therapeutic decisions in an increasingly personalized medicine. In this review, we will focus on the recent development in single cell analysis, including methods used in single cell isolation, analysis and some application examples. The review provides the historical background to single cell analysis, discusses limitations, and current and future possibilities in this exciting field of research.

  3. Quantitative co-expression of proteins at the single cell level - application to a multimeric FRET sensor

    NARCIS (Netherlands)

    Goedhart, J.; van Weeren, L.; Adjobo-Hermans, M.J.W.; Elzenaar, I.; Hink, M.A.; Gadella (jr.), T.W.J.

    2011-01-01

    Background Co-expression of proteins is generally achieved by introducing two (or more) independent plasmids into cells, each driving the expression of a different protein of interest. However, the relative expression levels may vary strongly between individual cells and cannot be controlled. Ideall

  4. Quantitative co-expression of proteins at the single cell level--application to a multimeric FRET sensor.

    NARCIS (Netherlands)

    Goedhart, J.; Weeren, L. van; Adjobo-Hermans, M.J.W.; Elzenaar, I.; Hink, M.A.; Gadella, T.W.

    2011-01-01

    BACKGROUND: Co-expression of proteins is generally achieved by introducing two (or more) independent plasmids into cells, each driving the expression of a different protein of interest. However, the relative expression levels may vary strongly between individual cells and cannot be controlled. Ideal

  5. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae.

    Science.gov (United States)

    Oey, Melanie; Ross, Ian L; Hankamer, Ben

    2014-01-01

    With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines.

  6. Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae.

    Directory of Open Access Journals (Sweden)

    Melanie Oey

    Full Text Available With a rising world population, demand will increase for food, energy and high value products. Renewable production systems, including photosynthetic microalgal biotechnologies, can produce biomass for foods, fuels and chemical feedstocks and in parallel allow the production of high value protein products, including recombinant proteins. Such high value recombinant proteins offer important economic benefits during startup of industrial scale algal biomass and biofuel production systems, but the limited markets for individual recombinant proteins will require a high throughput pipeline for cloning and expression in microalgae, which is currently lacking, since genetic engineering of microalgae is currently complex and laborious. We have introduced the recombination based Gateway® system into the construction process of chloroplast transformation vectors for microalgae. This simplifies the vector construction and allows easy, fast and flexible vector design for the high efficiency protein production in microalgae, a key step in developing such expression pipelines.

  7. Slide preparation for single-cell-resolution imaging of fluorescent proteins in their three-dimensional near-native environment

    NARCIS (Netherlands)

    Snippert, H.J.G.; Schepers, A.G.; Delconte, G.; Siersema, P.D.; Clevers, H.

    2011-01-01

    In recent years, many mouse models have been developed to mark and trace the fate of adult cell populations using fluorescent proteins. High-resolution visualization of such fluorescent markers in their physiological setting is thus an important aspect of adult stem cell research. Here we describe a

  8. Sulfite liquor components as a starting raw material in the production of single-cell protein. [Paecilomyces varioti

    Energy Technology Data Exchange (ETDEWEB)

    Smailagic, M.; Nadazdin, M.; Dzinic, M.; Pavlovic, D.

    1980-01-01

    Sulfite liquor from beech cellulose manufacture was steam- treated, adjusted to 8.5% solids, and fermented by Paecilomyces varioti. At a residence time of approximately 4 hours, 9.7 g protein feed/kg was obtained. The condensate after dehydration of the feed could be reused for fermentation because of a low BOD value and the absence of acetic and formic acids.

  9. Optimization of Single Cell Protein Production by Candida utilis Using Juice Extracted from Pineapple Waste through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2005-01-01

    Full Text Available Response surface methodology was applied to optimize protein content in Candida utilis grown in pineapple waste medium. A three-level full factorial design was used to develop a quantitative interpretation of mathematical models between the two variables studied, inoculum size 2.0-10.0% (v/v and total soluble solids in medium (1-5 Brix at 30 h fermentation time. Yeast cells were harvested, ruptured mechanically and the soluble extract was freeze-dried for determination of protein, vitamin-B, 5'-ribonucleotide and total sugar content. Maximum protein content in the yeast 66.61% (w/w was obtained from the predicted optimum inoculum size of 7.83% (v/v and Brix level of 3.02. Highest level of biomass, vitamin-B, 5'-ribonucleotide and total sugar content within the experimental region increased 216.8%, 17.5%, 38.0% and 60.8% respectively after optimization. A verification experiment, conducted at optimized protein content conditions produced values that were close to the predicted values, indicating the reliability of the model used.

  10. Bioimaging of geographically adjacent proteins in a single cell by quantum dot-based fluorescent resonance energy transfer.

    Science.gov (United States)

    Kang, Won Jun; Ko, Mee Hyang; Lee, Dong Soo; Kim, Soonhag

    2009-12-01

    Thousands of proteins are simultaneously involved in the maintenance of a single cancer cell. Fluorescent resonance energy transfer (FRET) is one of the most general techniques for imaging biologically interacting molecules in a cell. Here, we applied FRET to image the co-localization of two proteins that do not interact biologically (nucleolin and integrin α(v) β(3),) both of which are highly expressed in the plasma membrane of cancer cells. AS1411 aptamer, which targets nucleolin, was labeled by Cy3 (Cy3-AS1411) and arginine-glycine-aspartic acid (RGD) peptide, which targets integrin α(v) β(3) , was conjugated with quantum dot (525 nm, Qd) Qd arginine-glycine-aspartic acid (Qd-RGD). FRET activities between Cy3-AS1411 and Qd-RGD were measured in HeLa cells, a human cervical cancer cell line. FRET phenomena between Qd and Cy3 showed good compatibility according to proximity. The fluorescence signature using Qd-RGD and Cy3-AS1411 showed that nucleolin and integrin α(v) β(3) proteins were highly expressed in HeLa cells. Co-incubation of Qd-RGD and Cy3-AS1411 in a single HeLa cell demonstrated that the fluorescence overlay by FRET was quantitatively and geographically quite different from that of individual confocal images. These results suggest that Qd-based FRET analysis can provide information on geographical co-localization of proteins in naïve cells, which is very important for determining the molecular and cellular functions of genes involved in cancers and other clinical diseases.

  11. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  12. Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice.

    Directory of Open Access Journals (Sweden)

    Adil Bakayan

    Full Text Available Bioluminescence recording of Ca(2+ signals with the photoprotein aequorin does not require radiative energy input and can be measured with a low background and good temporal resolution. Shifting aequorin emission to longer wavelengths occurs naturally in the jellyfish Aequorea victoria by bioluminescence resonance energy transfer (BRET to the green fluorescent protein (GFP. This process has been reproduced in the molecular fusions GFP-aequorin and monomeric red fluorescent protein (mRFP-aequorin, but the latter showed limited transfer efficiency. Fusions with strong red emission would facilitate the simultaneous imaging of Ca(2+ in various cell compartments. In addition, they would also serve to monitor Ca(2+ in living organisms since red light is able to cross animal tissues with less scattering. In this study, aequorin was fused to orange and various red fluorescent proteins to identify the best acceptor in red emission bands. Tandem-dimer Tomato-aequorin (tdTA showed the highest BRET efficiency (largest energy transfer critical distance R(0 and percentage of counts in the red band of all the fusions studied. In addition, red fluorophore maturation of tdTA within cells was faster than that of other fusions. Light output was sufficient to image ATP-induced Ca(2+ oscillations in single HeLa cells expressing tdTA. Ca(2+ rises caused by depolarization of mouse neuronal cells in primary culture were also recorded, and changes in fine neuronal projections were spatially resolved. Finally, it was also possible to visualize the Ca(2+ activity of HeLa cells injected subcutaneously into mice, and Ca(2+ signals after depositing recombinant tdTA in muscle or the peritoneal cavity. Here we report that tdTA is the brightest red bioluminescent Ca(2+ sensor reported to date and is, therefore, a promising probe to study Ca(2+ dynamics in whole organisms or tissues expressing the transgene.

  13. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    Directory of Open Access Journals (Sweden)

    I. S. Pretorius

    1994-07-01

    Full Text Available The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  14. Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici

    Science.gov (United States)

    Wimmer, Diana; Bohnhorst, Philipp; Shekhar, Vinay; Hwang, Inhwan; Offermann, Sascha

    2017-01-01

    Bienertia sinuspersici is a terrestrial plant that performs C4 photosynthesis within individual cells through operating a carbon concentrating mechanism between different subcellular domains including two types of chloroplasts. It is currently unknown how differentiation of two highly specialized chloroplasts within the same cell occurs as no similar cases have been reported. Here we show that this differentiation in photosynthetic cells of B. sinuspersici is enabled by a transit peptide (TP) mediated selective protein targeting mechanism. Mutations in the TPs cause loss of selectivity but not general loss of chloroplast import, indicating the mechanism operates by specifically blocking protein accumulation in one chloroplast type. Hybrid studies indicate that this selectivity is transferable to transit peptides of plants which perform C4 by cooperative function of chloroplasts between two photosynthetic cells. Codon swap experiments as well as introducing an artificial bait mRNA show that RNA affects are not crucial for the sorting process. In summary, our analysis shows how the mechanism of subcellular targeting to form two types of chloroplast within the same cell can be achieved. This information is not only crucial for understanding single-cell C4 photosynthesis; it provides new insights in control of subcellular protein targeting in cell biology. PMID:28112241

  15. Replacement of Fishmeal by Single Cell Protein Derived from Yeast Grown on Date (Phoenix dactylifera) Industry Waste in the Diet of Nile Tilapia (Oreochromis niloticus) Fingerlings

    KAUST Repository

    Al-Hafedh, Yousef S.

    2013-10-02

    Isonitrogenous and isocaloric diets (32% protein, 4.3 Kcal/g) were formulated to replace fishmeal by single cell protein (SCP) from two yeasts, Saccharomyces cerevisiae and Candida utilis, grown on date (Phoenix dactylifera) processing waste in diets for two size groups (avg 15.39 g and 25.14 g) of juvenile Nile tilapia (Oreochromis niloticus). A control diet (T1) with fishmeal and six experimental diets (S1, S2, and S3 with S. cerevisiae, and C1, C2, and C3 with C. utilis) each containing 11.6%, 23.2%, and 34.2% yeast as SCP were prepared to replace 25%, 50%, and 75% of fishmeal, respectively. Tilapia fed on the control and experimental diets (S1, S2, C1, C2) with 25% and 50% replacement of fishmeal showed better growth and feed utilization. Fish fed on diets S3 and C3 (75% fishmeal replacement) had significantly (p < 0.05) poorer growth suggesting that yeast SCP can replace up to 50% of fishmeal in juvenile tilapia diets. © 2013 Copyright Taylor and Francis Group, LLC.

  16. A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging.

    Science.gov (United States)

    Mezzanotte, Laura; Blankevoort, Vicky; Löwik, Clemens W G M; Kaijzel, Eric L

    2014-09-01

    Fluorescence and bioluminescence imaging have different advantages and disadvantages depending on the application. Bioluminescence imaging is now the most sensitive optical technique for tracking cells, promoter activity studies, or for longitudinal in vivo preclinical studies. Far-red and near-infrared fluorescence imaging have the advantage of being suitable for both ex vivo and in vivo analysis and have translational potential, thanks to the availability of very sensitive imaging instrumentation. Here, we report the development and validation of a new luciferase fusion reporter generated by the fusion of the firefly luciferase Luc2 to the far-red fluorescent protein TurboFP635 by a 14-amino acid linker peptide. Expression of the fusion protein, named TurboLuc, was analyzed in human embryonic kidney cells, (HEK)-293 cells, via Western blot analysis, fluorescence microscopy, and in vivo optical imaging. The created fusion protein maintained the characteristics of the original bioluminescent and fluorescent protein and showed no toxicity when expressed in living cells. To assess the sensitivity of the reporter for in vivo imaging, transfected cells were subcutaneously injected in animals. Detection limits of cells were 5 × 10(3) and 5 × 10(4) cells for bioluminescent and fluorescent imaging, respectively. In addition, hydrodynamics-based in vivo gene delivery using a minicircle vector expressing TurboLuc allowed for the analysis of luminescent signals over time in deep tissue. Bioluminescence could be monitored for over 30 days in the liver of animals. In conclusion, TurboLuc combines the advantages of both bioluminescence and fluorescence and allows for highly sensitive optical imaging ranging from single-cell analysis to in vivo whole-body bioluminescence imaging.

  17. Exploring symbioses by single-cell genomics.

    Science.gov (United States)

    Kamke, Janine; Bayer, Kristina; Woyke, Tanja; Hentschel, Ute

    2012-08-01

    Single-cell genomics has advanced the field of microbiology from the analysis of microbial metagenomes where information is "drowning in a sea of sequences," to recognizing each microbial cell as a separate and unique entity. Single-cell genomics employs Phi29 polymerase-mediated whole-genome amplification to yield microgram-range genomic DNA from single microbial cells. This method has now been applied to a handful of symbiotic systems, including bacterial symbionts of marine sponges, insects (grasshoppers, termites), and vertebrates (mouse, human). In each case, novel insights were obtained into the functional genomic repertoire of the bacterial partner, which, in turn, led to an improved understanding of the corresponding host. Single-cell genomics is particularly valuable when dealing with uncultivated microorganisms, as is still the case for many bacterial symbionts. In this review, we explore the power of single-cell genomics for symbiosis research and highlight recent insights into the symbiotic systems that were obtained by this approach.

  18. Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

    Directory of Open Access Journals (Sweden)

    Mary E. Marquart

    2013-01-01

    Full Text Available Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.

  19. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  20. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    Science.gov (United States)

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  1. Bacterial protein toxins in human cancers.

    Science.gov (United States)

    Rosadi, Francesca; Fiorentini, Carla; Fabbri, Alessia

    2016-02-01

    Many bacteria causing persistent infections produce toxins whose mechanisms of action indicate that they could have a role in carcinogenesis. Some toxins, like CDT and colibactin, directly attack the genome by damaging DNA whereas others, as for example CNF1, CagA and BFT, impinge on key eukaryotic processes, such as cellular signalling and cell death. These bacterial toxins, together with other less known toxins, mimic carcinogens and tumour promoters. The aim of this review is to fulfil an up-to-date analysis of toxins with carcinogenic potential that have been already correlated to human cancers. Bacterial toxins-induced carcinogenesis represents an emerging aspect in bacteriology, and its significance is increasingly recognized.

  2. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  3. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  4. Bacterial spore germination and protein mobility.

    Science.gov (United States)

    Moir, Anne

    2003-10-01

    Fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) has been used to report on protein mobility in single spores. Proteins found in dormant Bacillus spores are not mobile; however, mobility is restored when germination occurs and the core rehydrates. Spores of a cwlD mutant, in which the cortex is resistant to hydrolysis, are able to complete the earliest stages of germination in response to a specific germinant stimulus; in these circumstances, the protein in the spore remains immobile. Therefore, the earliest stages of spore germination, including loss of resistance to extreme heat and the complete release of the spore component dipicolinic acid, are achieved without the restoration of protein mobility.

  5. The structure of bacterial S-layer proteins.

    Science.gov (United States)

    Pavkov-Keller, Tea; Howorka, Stefan; Keller, Walter

    2011-01-01

    S-layers are self-assembled paracrystalline protein lattices that cover many bacteria and almost all archaea. As an important component of the bacterial cell envelope, S-layers can fulfill various biological functions and are usually the most abundantly expressed protein species in a cell. Here we review the structures of the best characterized S-layer proteins from Gram-positive and Gram-negative bacteria, as well as methods to determine their molecular architecture.

  6. Insights into bacterial protein glycosylation in human microbiota.

    Science.gov (United States)

    Zhu, Fan; Wu, Hui

    2016-01-01

    The study of human microbiota is an emerging research topic. The past efforts have mainly centered on studying the composition and genomic landscape of bacterial species within the targeted communities. The interaction between bacteria and hosts is the pivotal event in the initiation and progression of infectious diseases. There is a great need to identify and characterize the molecules that mediate the bacteria-host interaction. Bacterial surface exposed proteins play an important role in the bacteria- host interaction. Numerous surface proteins are glycosylated, and the glycosylation is crucial for their function in mediating the bacterial interaction with hosts. Here we present an overview of surface glycoproteins from bacteria that inhabit three major mucosal environments across human body: oral, gut and skin. We describe the important enzymes involved in the process of protein glycosylation, and discuss how the process impacts the bacteria-host interaction. Emerging molecular details underlying glycosylation of bacterial surface proteins may lead to new opportunities for designing anti-infective small molecules, and developing novel vaccines in order to treat or prevent bacterial infection.

  7. General Aspects and Recent Advances on Bacterial Protein Toxins

    Science.gov (United States)

    Lemichez, Emmanuel; Barbieri, Joseph T.

    2013-01-01

    Bacterial pathogens produce protein toxins to influence host–pathogen interactions and tip the outcome of these encounters toward the benefit of the pathogen. Protein toxins modify host-specific targets through posttranslational modifications (PTMs) or noncovalent interactions that may inhibit or activate host cell physiology to benefit the pathogen. Recent advances have identified new PTMs and host targets for toxin action. Understanding the mechanisms of toxin action provides a basis to develop vaccines and therapies to combat bacterial pathogens and to develop new strategies to use toxin derivatives for the treatment of human disease. PMID:23378599

  8. Single Cell Physiology

    Science.gov (United States)

    Neveu, Pierre; Sinha, Deepak Kumar; Kettunen, Petronella; Vriz, Sophie; Jullien, Ludovic; Bensimon, David

    The possibility to control at specific times and specific places the activity of biomolecules (enzymes, transcription factors, RNA, hormones, etc.) is opening up new opportunities in the study of physiological processes at the single cell level in a live organism. Most existing gene expression systems allow for tissue specific induction upon feeding the organism with exogenous inducers (e.g., tetracycline). Local genetic control has earlier been achieved by micro-injection of the relevant inducer/repressor molecule, but this is an invasive and possibly traumatic technique. In this chapter, we present the requirements for a noninvasive optical control of the activity of biomolecules and review the recent advances in this new field of research.

  9. Monocyte chemotactic protein-1 gene polymorphism and spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Levent; Filik

    2010-01-01

    I read with great interest the article by Gbele et al published in issue 44 of World J Gastroenterol 2009.The results of their study indicate that-2518 Monocyte chemotactic protein-1(MCP-1)genotype AA is a risk factor for spontaneous bacterial peritonitis in patients with alcoholic cirrhosis.However,there are some items that need to be discussed.

  10. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  11. Osteocalcin and matrix GLA protein in developing teleost teeth: identification of sites of mRNA and protein accumulation at single cell resolution.

    Science.gov (United States)

    Ortiz-Delgado, J B; Simes, D C; Gavaia, P; Sarasquete, C; Cancela, M L

    2005-08-01

    In this study, the tissue distribution and accumulation of osteocalcin or bone Gla protein (BGP) and matrix Gla protein (MGP) were determined during tooth development in a teleost fish, Argyrosomus regius. In this species, the presence of BGP and MGP mRNA in teeth was revealed by in situ hybridization. mRNA for BGP was detected in the odontoblasts as well as in its cytoplasmic processes emerging through dentinal tubules, while mRNA for MGP was expressed in the enamel portion within the apical portion of the elongated cell bodies of enameloblasts, adjacent to the root of the teeth as well as in cells within the pulpal space. Immunolocalization of BGP and MGP demonstrated that these proteins accumulate mainly in the mineralized dentin or in enameloblastic processes, confirming in situ hybridization results. In this study, we examined for the first time the localization of both BGP and MGP gene expression and protein accumulation within the different regions of the vertebrate tooth. We clearly demonstrated that although the overall pattern of BGP and MGP gene expression and protein accumulation in A. regius teeth was in general agreement to what is known for other vertebrates such as rats or rodents, our study provided novel information and highlighted some species-differences between fish and higher vertebrates.

  12. Effects of Single Cell Protein Replacing Fish Meal in Diet on Growth Performance, Nutrient Digestibility and Intestinal Morphology in Weaned Pigs

    Directory of Open Access Journals (Sweden)

    H. Y. Zhang

    2013-09-01

    Full Text Available Three experiments were conducted to evaluate the ME value, standardized ileal digestibility (SID of amino acids (AA of fish meal, and the effects of single cell protein (Prosin and Protide replacing fish meal in diet on growth performance, nutrient digestibility and intestinal morphology in weaned piglets. In Exp. 1, twenty-four barrows with initial BW of 30.8±2.6 kg were allotted to one of four dietary treatments. Diet 1 contained corn as the only energy source. The other three diets replaced 20% of the corn in diet 1 with one of the three protein feeds (fish meal, Prosin and Protide, and the DE and ME contents were determined by difference. In Exp. 2, eight barrows (initial BW of 25.6±3.2 kg were fitted with ileal T-cannulas and allotted to a replicated 4×4 Latin square design. Three cornstarch-based diets were formulated using each of the protein feeds as the sole source of AA. A nitrogen-free diet was also formulated to measure endogenous losses of AA. In Exp. 3, one hundred and eighty piglets (initial BW of 7.95±1.59 kg weaned at 28±2 d were blocked by weight and assigned to one of five treatments for a 28-d growth performance study, each treatment was fed to six pens with six pigs (three barrows and three gilts per pen. The five treatments consisted of the control group (CON, which was a corn-soybean meal diet containing 5% fish meal, and the other four treatments, which replaced a set amount of fish meal with either Prosin (2.5% or 5% or Protide (2.5% or 5%. The diets were formulated to provide same nutrient levels. The results showed that on a DM basis, both of the DE and ME contents were lower in Prosin and Protide than that of fish meal (p<0.05. The SID of CP and all essential AA were greater in fish meal than in Prosin and Protide (p<0.05. The pigs fed CON diet had greater weight gain and lower feed conversion rate (FCR than pigs fed 5% Prosin and 5% Protide diets (p<0.05. The digestibility of CP was greater in pigs fed CON, 2

  13. Bacterial protein toxins: current and potential clinical use.

    Science.gov (United States)

    Fabbri, A; Travaglione, S; Falzano, L; Fiorentini, C

    2008-01-01

    Natural toxins are the product of a long-term evolution, and act on essential mechanisms in the most crucial and vital processes of living organisms. They can attack components of the protein synthesis machinery, actin polymerization, signal transduction pathways, intracellular trafficking of vesicles as well as immune and inflammatory responses. For this reason, toxins have increasingly being used as valuable tools for analysis of cellular physiology, and in the recent years, some of them are used medicinally for the treatment of human diseases. This review is devoted to protein toxins of bacterial origin, specifically those toxins that are currently used in therapy or those under study for their potential clinical applications. Bacterial protein toxins are all characterized by a specific mechanism of action that involves the central molecular pathways in the eukaryotic cell. Knowledge of their properties could be used for medical purposes.

  14. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  15. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinic...

  16. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...... containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein...... turnover rate was measured by means of the end-product method using [15N]glycine as tracer and urinary nitrogen as end-product. In minks, protein flux, synthesis, and breakdown increased significantly with increasing dietary BPM. In pigs, diet had no observed effect on protein turnover rate. The intake...

  17. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... that the phosphatidylethanolamine headgroups must reorient toward the surface normal to accommodate such changes. In terms of the protein structure (which is as yet unknown in three dimensions), the electron density profile reveals a thickness I(z) approximate to 90 Angstrom of the recrystallized S-layer and shows water......-filled cavities near its center. The protein volume fraction reaches maxima of >60% in two horizontal sections of the S-layer, close to the lipid monolayer and close to the free subphase. In between it drops to similar to 20%. Four S-layer protein monomers are located within the unit cell of a square lattice...

  18. Protein-lipid interactions in the purple bacterial reaction centre.

    Science.gov (United States)

    Jones, Michael R; Fyfe, Paul K; Roszak, Aleksander W; Isaacs, Neil W; Cogdell, Richard J

    2002-10-11

    The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.

  19. Interactions of bacterial proteins with host eukaryotic ubiquitin pathways

    Directory of Open Access Journals (Sweden)

    Charlotte Averil Perrett

    2011-07-01

    Full Text Available Ubiquitination is a post-translational modification in which one or more 76 amino acid polypeptide ubiquitin molecules are covalently linked to the lysine residues of target proteins. Ubiquitination is the main pathway for protein degradation that governs a variety of eukaryotic cellular processes, including the cell cycle, vesicle trafficking, antigen presentation and signal transduction. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of many diseases including inflammatory and neurodegenerative disorders. Recent studies have revealed that viruses and bacterial pathogens exploit the host ubiquitination pathways to gain entry and to aid their survival/replication inside host cells. This review will summarize recent developments in understanding the biochemical and structural mechanisms utilized by bacterial pathogens to interact with the host ubiquitination pathways.

  20. Repurposing bacterial toxins for intracellular delivery of therapeutic proteins.

    Science.gov (United States)

    Beilhartz, Greg L; Sugiman-Marangos, Seiji N; Melnyk, Roman A

    2017-10-15

    Despite enormous efforts, achieving efficacious levels of proteins inside mammalian cells remains one of the greatest challenges in biologics-based drug discovery and development. The inability of proteins to readily cross biological membranes precludes access to the wealth of intracellular targets and applications that lie within mammalian cells. Existing methods of delivery commonly suffer from an inability to target specific cells and tissues, poor endosomal escape, and limited in vivo efficacy. The aim of the present commentary is to highlight the potential of certain classes of bacterial toxins, which naturally deliver a large protein into the cytosolic compartment of target cells after binding a host cell-surface receptor with high affinity, as robust protein delivery platforms. We review the progress made in recent years toward demonstrating the utility of these systems at delivering a wide variety of protein cargo, with special attention paid to three distinct toxin-based platforms. We contend that with recent advances in protein deimmunization strategies, bacterial toxins are poised to introduce biologics into the inner sanctum of cells and treat a wealth of heretofore untreatable diseases with a new generation of therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.

    Science.gov (United States)

    Sau, S; Chattoraj, P; Ganguly, T; Chanda, P K; Mandal, N C

    2008-06-01

    Bacteriophages utilize host bacterial cellular machineries for their own reproduction and completion of life cycles. The early proteins that phage synthesize immediately after the entry of their genomes into bacterial cells participate in inhibiting host macromolecular biosynthesis, initiating phage-specific replication and synthesizing late proteins. Inhibition of synthesis of host macromolecules that eventually leads to cell death is generally performed by the physical and/or chemical modification of indispensable host proteins by early proteins. Interestingly, most modified bacterial proteins were shown to take part actively in phage-specific transcription and replication. Research on phages in last nine decades has demonstrated such lethal early proteins that interact with or chemically modify indispensable host proteins. Among the host proteins inhibited by lethal phage proteins, several are not inhibited by any chemical inhibitor available today. Under the context of widespread dissemination of antibiotic-resistant strains of pathogenic bacteria in recent years, the information of lethal phage proteins and cognate host proteins could be extremely invaluable as they may lead to the identification of novel antibacterial compounds. In this review, we summarize the current knowledge about some early phage proteins, their cognate host proteins and their mechanism of action and also describe how the above interacting proteins had been exploited in antibacterial drug discovery.

  2. Single cell-resolution western blotting.

    Science.gov (United States)

    Kang, Chi-Chih; Yamauchi, Kevin A; Vlassakis, Julea; Sinkala, Elly; Duncombe, Todd A; Herr, Amy E

    2016-08-01

    This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. Like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g., isoforms) and in cases in which background signal from intact cells is confounding. scWB is performed on a microdevice that comprises an array of microwells molded in a thin layer of a polyacrylamide gel (PAG). The gel layer functions as both a molecular sieving matrix during PAGE and a blotting scaffold during immunoprobing. scWB involves five main stages: (i) gravity settling of cells into microwells; (ii) chemical lysis of cells in each microwell; (iii) PAGE of each single-cell lysate; (iv) exposure of the gel to UV light to blot (immobilize) proteins to the gel matrix; and (v) in-gel immunoprobing of immobilized proteins. Multiplexing can be achieved by probing with antibody cocktails and using antibody stripping/reprobing techniques, enabling detection of 10+ proteins in each cell. We also describe microdevice fabrication for both uniform and pore-gradient microgels. To extend in-gel immunoprobing to gels of small pore size, we describe an optional gel de-cross-linking protocol for more effective introduction of antibodies into the gel layer. Once the microdevice has been fabricated, the assay can be completed in 4-6 h by microfluidic novices and it generates high-selectivity, multiplexed data from single cells. The technique is relevant when direct measurement of proteins in single cells is needed, with applications spanning the fundamental biosciences to applied biomedicine.

  3. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    Science.gov (United States)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  4. Survey of bacterial proteins released in cheese: a proteomic approach.

    Science.gov (United States)

    Gagnaire, Valérie; Piot, Michel; Camier, Bénédicte; Vissers, Johannes P C; Jan, Gwénaël; Léonil, Joëlle

    2004-07-15

    During the ripening of Emmental cheese, the bacterial ecosystem confers its organoleptic characteristics to the evolving curd both by the action of the living cells, and through the release of numerous proteins, including various types of enzymes into the cheese when the cells lyse. In Emmental cheese these proteins can be released from thermophilic lactic acid bacteria used as starters like Lactobacillus helveticus, Lb delbruecki subsp. lactis and Streptococcus salivarius subsp. thermophilus and ripening bacteria such as Propionibacterium freudenreichii. The aim of this study was to obtain a proteomic view of the different groups of proteins within the cheese using proteomic tools to create a reference map. A methodology was therefore developed to reduce the complexity of cheese matrix prior to 2D-PAGE analysis. The aqueous phase of cheese was prefractionated by size exclusion chromatography, bacterial and milk proteins were separated and subsequently characterised by mass spectrometry, prior to peptide mass fingerprint and sequence homology database search. Five functional groups of proteins were identified involved in: (i) proteolysis, (ii) glycolysis, (iii) stress response, (iv) DNA and RNA repair and (v) oxidoreduction. The results revealed stress responses triggered by thermophilic lactic acid bacteria and Propionibacterium strains at the end of ripening. Information was also obtained regarding the origin and nature of the peptidases released into the cheese, thus providing a greater understanding of casein degradation mechanisms during ripening. Different peptidases arose from St thermophilus and Lb helveticus, suggesting that streptococci are involved in peptide degradation in addition to the proteolytic activity of lactobacilli.

  5. A versatile nano display platform from bacterial spore coat proteins.

    Science.gov (United States)

    Wu, I-Lin; Narayan, Kedar; Castaing, Jean-Philippe; Tian, Fang; Subramaniam, Sriram; Ramamurthi, Kumaran S

    2015-04-09

    Dormant bacterial spores are encased in a thick protein shell, the 'coat', which contains ∼70 different proteins. The coat protects the spore from environmental insults, and is among the most durable static structures in biology. Owing to extensive cross-linking among coat proteins, this structure has been recalcitrant to detailed biochemical analysis, so molecular details of how it assembles are largely unknown. Here, we reconstitute the basement layer of the coat atop spherical membranes supported by silica beads to create artificial spore-like particles. We report that these synthetic spore husk-encased lipid bilayers (SSHELs) assemble and polymerize into a static structure, mimicking in vivo basement layer assembly during sporulation in Bacillus subtilis. In addition, we demonstrate that SSHELs may be easily covalently modified with small molecules and proteins. We propose that SSHELs may be versatile display platforms for drugs and vaccines in clinical settings, or for enzymes that neutralize pollutants for environmental remediation.

  6. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  7. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria Jeanne [California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geological and Planetary Sciences

    2014-11-26

    Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions between microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of

  8. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  9. Packaging protein drugs as bacterial inclusion bodies for therapeutic applications

    Directory of Open Access Journals (Sweden)

    Villaverde Antonio

    2012-06-01

    Full Text Available Abstract A growing number of insights on the biology of bacterial inclusion bodies (IBs have revealed intriguing utilities of these protein particles. Since they combine mechanical stability and protein functionality, IBs have been already exploited in biocatalysis and explored for bottom-up topographical modification in tissue engineering. Being fully biocompatible and with tuneable bio-physical properties, IBs are currently emerging as agents for protein delivery into mammalian cells in protein-replacement cell therapies. So far, IBs formed by chaperones (heat shock protein 70, Hsp70, enzymes (catalase and dihydrofolate reductase, grow factors (leukemia inhibitory factor, LIF and structural proteins (the cytoskeleton keratin 14 have been shown to rescue exposed cells from a spectrum of stresses and restore cell functions in absence of cytotoxicity. The natural penetrability of IBs into mammalian cells (reaching both cytoplasm and nucleus empowers them as an unexpected platform for the controlled delivery of essentially any therapeutic polypeptide. Production of protein drugs by biopharma has been traditionally challenged by IB formation. However, a time might have arrived in which recombinant bacteria are to be engineered for the controlled packaging of therapeutic proteins as nanoparticulate materials (nanopills, for their extra- or intra-cellular release in medicine and cosmetics.

  10. N-linked protein glycosylation in a bacterial system.

    Science.gov (United States)

    Nothaft, Harald; Liu, Xin; McNally, David J; Szymanski, Christine M

    2010-01-01

    N-Linked protein glycosylation is conserved throughout the three domains of life and influences protein function, stability, and protein complex formation. N-Linked glycosylation is an essential process in Eukaryotes; however, although N-glycosylation affects multiple cellular processes in Archaea and Bacteria, it is not needed for cell survival. Methods for the analyses of N-glycosylation in eukaryotes are well established, but comparable techniques for the analyses of the pathways in Bacteria and Archaea are needed. In this chapter we describe new methods for the detection and analyses of N-linked, and the recently discovered free oligosaccharides (fOS), from whole cell lysates of Campylobacter jejuni using non-specific pronase E digestion and permethylation followed by mass spectrometry. We also describe the expression and immunodetection of the model N-glycoprotein, AcrA, fused to a hexa-histidine tag to follow protein glycosylation in C. jejuni. This chapter concludes with the recent demonstration that high-resolution magic angle spinning NMR of intact bacterial cells provides a rapid, non-invasive method for analyzing fOS in C. jejuni in vivo. This combination of techniques provides a powerful tool for the exploration, quantification, and structural analyses of N-linked and free oligosaccharides in the bacterial system.

  11. Single Cell Electrical Characterization Techniques.

    Science.gov (United States)

    Mansor, Muhammad Asraf; Ahmad, Mohd Ridzuan

    2015-06-04

    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell's electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell's electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed.

  12. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*

    Science.gov (United States)

    Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.

    2011-01-01

    In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982

  13. Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts.

    Science.gov (United States)

    Arnold, Stefan A; Albiez, Stefan; Bieri, Andrej; Syntychaki, Anastasia; Adaixo, Ricardo; McLeod, Robert A; Goldie, Kenneth N; Stahlberg, Henning; Braun, Thomas

    2017-03-01

    We present a sample preparation method for cryo-electron microscopy (cryo-EM) that requires only 3-20nL of sample to prepare a cryo-EM grid, depending on the protocol used. The sample is applied and spread on the grid by a microcapillary. The procedure does not involve any blotting steps, and real-time monitoring allows the water film thickness to be assessed and decreased to an optimum value prior to vitrification. We demonstrate that the method is suitable for high-resolution cryo-EM and will enable alternative electron microscopy approaches, such as single-cell visual proteomics. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. 甜菜废蜜酒精废液制取单细胞蛋白质%Production of Single Cell Protein With Waste Liquid From Beet Molasses Alcohol Fermentation

    Institute of Scientific and Technical Information of China (English)

    乔世伟

    2001-01-01

    The intraspecific fusant Ct-3 coming from candida tropicalis hasbeen adopted to produce single cell protein with the waste liquid from beet molasses alcohol fermentation. The process of production are composed of culturing seed and fermenting, separating and concentrating, drying and smashing.%以甜菜糖厂废蜜酒精废液为原料,采用热带假丝酵母(landidatropicalis)种内融合株Ct-3为菌株,经过种子培养、发酵、分离浓缩、干燥粉碎工艺过程制取出单细胞蛋白质。

  15. Protein export through the bacterial flagellar type III export pathway.

    Science.gov (United States)

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. © 2013 Elsevier B.V. All rights reserved.

  16. Single cell microfluidics for systems oncology

    Science.gov (United States)

    Fan, Rong

    2012-02-01

    The singular term ``cancer'' is never one kind of disease, but deceivingly encompasses a large number of heterogeneous disease states, which makes it impossible to completely treat cancer using a generic approach. Rather systems approaches are urgently required to assess cancer heterogeneity, stratify patients and enable the most effective, individualized treatment. The heterogeneity of tumors at the single cell level is reflected by the hierarchical complexity of the tumor microenvironment. To identify all the cellular components, including both tumor and infiltrating immune cells, and to delineate the associated cell-to-cell signaling network that dictates tumor initiation, progression and metastasis, we developed a single cell microfluidics chip that can analyze a panel of proteins that are potentially associated inter-cellular signaling network in tumor microenvironment from hundreds of single cells in parallel. This platform integrates two advanced technologies -- microfluidic single cell handling and ultra-high density protein array. This device was first tested for highly multiplexed profiling of secreted proteins including tumor-immune signaling molecules from monocytic leukemia cells. We observed profound cellular heterogeneity with all functional phenotypes quantitatively identified. Correlation analysis further indicated the existence of an intercellular cytokine network in which TNFα-induced secondary signaling cascades further increased functional cellular diversity. It was also exploited to evaluate polyfunctionality of tumor antigen-specific T cells from melanoma patients being treated with adoptive T cell transfer immunotherapy. This platform could be further extended to analyze both solid tumor cells (e.g. human lung carcinoma cells) and infiltrating immune cells (e.g. macrophages) so as to enable systems analysis of the complex tumor microenvironment from small amounts of clinical specimens, e.g. skinny needle biopsies. Thus, it could potentially

  17. Fuel of the Bacterial Flagellar Type III Protein Export Apparatus.

    Science.gov (United States)

    Minamino, Tohru; Kinoshita, Miki; Namba, Keiichi

    2017-01-01

    The flagellar type III export apparatus utilizes ATP and proton motive force (PMF) across the cytoplasmic membrane as the energy sources and transports flagellar component proteins from the cytoplasm to the distal growing end of the growing structure to construct the bacterial flagellum beyond the cellular membranes. The flagellar type III export apparatus coordinates flagellar protein export with assembly by ordered export of substrates to parallel with their order of the assembly. The export apparatus is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. Since the ATPase complex is dispensable for flagellar protein export, PMF is the primary fuel for protein unfolding and translocation. Interestingly, the export gate complex can also use sodium motive force across the cytoplasmic membrane in addition to PMF when the ATPase complex does not work properly. Here, we describe experimental protocols, which have allowed us to identify the export substrate class and the primary fuel of the flagellar type III protein export apparatus in Salmonella enterica serovar Typhimurium.

  18. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing.

    Science.gov (United States)

    Green, Jessie N; Kettle, Anthony J; Winterbourn, Christine C

    2014-12-01

    Neutrophils ingest and kill bacteria within phagocytic vacuoles. We investigated where they produce hypochlorous acid (HOCl) following phagocytosis by measuring conversion of protein tyrosine residues to 3-chlorotyrosine. We also examined how varying chloride availability affects the relationship between HOCl formation in the phagosome and bacterial killing. Phagosomal proteins, isolated following ingestion of opsonized magnetic beads, contained 11.4 Cl-Tyr per thousand tyrosine residues. This was 12 times higher than the level in proteins from the rest of the neutrophil and ~6 times higher than previously recorded for protein from ingested bacteria. These results indicate that HOCl production is largely localized to the phagosomes and a substantial proportion reacts with phagosomal protein before reaching the microbe. This will in part detoxify the oxidant but should also form chloramines which could contribute to the killing mechanism. Neutrophils were either suspended in chloride-free gluconate buffer or pretreated with formyl-Met-Leu-Phe, a procedure that has been reported to deplete intracellular chloride. These treatments, alone or in combination, decreased both chlorination in phagosomes and killing of Staphylococcus aureus by up to 50%. There was a strong positive correlation between the two effects. Killing was predominantly oxidant and myeloperoxidase dependent (88% inhibition by diphenylene iodonium and 78% by azide). These results imply that lowering the chloride concentration limits HOCl production and oxidative killing. They support a role for HOCl generation, rather than an alternative myeloperoxidase activity, in the killing process.

  19. Bacterial delivery of TALEN proteins for human genome editing.

    Science.gov (United States)

    Jia, Jingyue; Jin, Yongxin; Bian, Ting; Wu, Donghai; Yang, Lijun; Terada, Naohiro; Wu, Weihui; Jin, Shouguang

    2014-01-01

    Transcription Activator-Like Effector Nucleases (TALENs) are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and homologous recombination. Current methods of TALEN delivery involves introduction of foreign genetic materials, such as plasmid DNA or mRNA, through transfection. Here, we show an alternative way of TALEN delivery, bacterial type III secretion system (T3SS) mediated direct injection of the TALEN proteins into human cells. Bacterially injected TALEN was shown to efficiently target host cell nucleus where it persists for almost 12 hours. Using a pair of TALENs targeting venus gene, such injected nuclear TALENs were shown functional in introducing DNA mutation in the target site. Interestingly, S-phase cells seem to show greater sensitivity to the TALEN mediated target gene modification. Accordingly, efficiency of such genome editing can easily be manipulated by the infection dose, number of repeated infections as well as enrichment of S phase cells. This work further extends the utility of T3SS in the delivery of functional proteins into mammalian cells to alter their characters for biomedical applications.

  20. Bacterial delivery of TALEN proteins for human genome editing.

    Directory of Open Access Journals (Sweden)

    Jingyue Jia

    Full Text Available Transcription Activator-Like Effector Nucleases (TALENs are a novel class of sequence-specific nucleases that have recently gained prominence for its ease of production and high efficiency in genome editing. A TALEN pair recognizes specific DNA sequences and introduce double-strand break in the target site, triggering non-homologous end joining and homologous recombination. Current methods of TALEN delivery involves introduction of foreign genetic materials, such as plasmid DNA or mRNA, through transfection. Here, we show an alternative way of TALEN delivery, bacterial type III secretion system (T3SS mediated direct injection of the TALEN proteins into human cells. Bacterially injected TALEN was shown to efficiently target host cell nucleus where it persists for almost 12 hours. Using a pair of TALENs targeting venus gene, such injected nuclear TALENs were shown functional in introducing DNA mutation in the target site. Interestingly, S-phase cells seem to show greater sensitivity to the TALEN mediated target gene modification. Accordingly, efficiency of such genome editing can easily be manipulated by the infection dose, number of repeated infections as well as enrichment of S phase cells. This work further extends the utility of T3SS in the delivery of functional proteins into mammalian cells to alter their characters for biomedical applications.

  1. Evaluation of different concentrations of rectified ethanol in the production of the “Bioaroma” ethyl acetate and single cell protein from Candida utilis var. major C.E.C.T. 1430

    Directory of Open Access Journals (Sweden)

    Carlos León Torres

    2010-12-01

    Full Text Available The present research was carried out with the purpose to evaluate the different concentrations of rectified ethanol in the production of “bioaroma” ethyl acetate and single cell protein from Candida utilis var.major for it a stirred – tank reactor of 16 cm of height with turbine Rushton was built. The preparation of the inoculum was carried out starting from Candida utilis var. major C.E.C.T. 1430. The broth of culture was formulated starting from rectified ethanol dilutions from 10 to 35 g/L each 5 units. The bioprocess was carried out at 25ºC to pH 4.5 – 5.5 and during a time of 60 hours. It was found that the biomass productivity increase progressively from 4.82 to 7.90 g/L and from 0.082 a 0.108 g/L-h respectively. Such as increase the rectified ethanol concentration (g/L the production and the yield was down. The yield acetate ethyl was top to concentrations of 15 g/L of rectified ethanol (5.7% and smallest to concentrations of 35 (g/L of rectified ethanol (1.97%. Finally, the increase of rectified ethanol concentrations does not influence increasing the production of acetate ethyl and the single cell protein Candida utilis var. major.

  2. Introduction: why analyze single cells?

    Science.gov (United States)

    Di Carlo, Dino; Tse, Henry Tat Kwong; Gossett, Daniel R

    2012-01-01

    Powerful methods in molecular biology are abundant; however, in many fields including hematology, stem cell biology, tissue engineering, and cancer biology, data from tools and assays that analyze the average signals from many cells may not yield the desired result because the cells of interest may be in the minority-their behavior masked by the majority-or because the dynamics of the populations of interest are offset in time. Accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. In this chapter, we discuss the rationale for performing analyses on individual cells in more depth, cover the fields of study in which single-cell behavior is yielding new insights into biological and clinical questions, and speculate on how single-cell analysis will be critical in the future.

  3. Single Cell Electrical Characterization Techniques

    Directory of Open Access Journals (Sweden)

    Muhammad Asraf Mansor

    2015-06-01

    Full Text Available Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell’s electrical states especially in single cell analysis (SCA. In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell’s electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed.

  4. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  5. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Ren, Xueliang; Wang, Juncong; Yu, Hui; Peng, Chunlan; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Liang, Yunxiang; Peng, Nan

    2016-10-01

    In this study, a Saccharomyces cerevisiae recombinant strain 14 was constructed through genome shuffling method by transferring the whole genomic DNA of Candida intermedia strain 23 into a thermo-tolerant S. cerevisiae strain. The recombinant strain 14 combined the good natures of both parent strains that efficiently produced ethanol from glucose and single cell protein from xylose with 54.6% crude protein and all essential amino acids except cysteine at 35°C. Importantly, the recombinant strain 14 produced 64.07g/L ethanol from 25%(w/v) NaOH-pretreated and washed corn stover with the ethanol yield of 0.26g/g total stover by fed-batch simultaneous saccharification and fermentation and produced 66.50g/L dry cell mass subsequently from the residual hydrolysate and ethanol. Therefore, this study represents a feasible method to comprehensively utilize hexose and pentose in lignocellulosic materials.

  6. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  7. Single cell electroporation on chip

    NARCIS (Netherlands)

    Valero, Ana

    2006-01-01

    In this thesis the results of the development of microfluidic cell trap devices for single cell electroporation are described, which are to be used for gene transfection. The performance of two types of Lab-on-a-Chip trapping devices was tested using beads and cells, whereas the functionality for si

  8. Analysis of mitochondria isolated from single cells.

    Science.gov (United States)

    Johnson, Ryan D; Navratil, Marian; Poe, Bobby G; Xiong, Guohua; Olson, Karen J; Ahmadzadeh, Hossein; Andreyev, Dmitry; Duffy, Ciarán F; Arriaga, Edgar A

    2007-01-01

    Bulk studies are not suitable to describe and study cell-to-cell variation, which is of high importance in biological processes such as embryogenesis, tissue differentiation, and disease. Previously, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) was used to measure the properties of organelles isolated from millions of cells. As such, these bulk measurements reported average properties for the organelles of cell populations. Similar measurements for organelles released from single cells would be highly relevant to describe the subcellular variations among cells. Toward this goal, here we introduce an approach to analyze the mitochondria released from single mammalian cells. Osteosarcoma 143B cells are labeled with either the fluorescent mitochondrion-specific 10-N-nonyl acridine orange (NAO) or via expression of the fluorescent protein DsRed2. Subsequently, a single cell is introduced into the CE-LIF capillary where the organelles are released by a combined treatment of digitonin and trypsin. After this treatment, an electric field is applied and the released organelles electromigrate toward the LIF detector. From an electropherogram, the number of detected events per cell, their individual electrophoretic mobilities, and their individual fluorescence intensities are calculated. The results obtained from DsRed2 labeling, which is retained in intact mitochondria, and NAO labeling, which labels all mitochondria, are the basis for discussion of the strengths and limitations of this single-cell approach.

  9. Emerging single-cell technologies in immunology.

    Science.gov (United States)

    Herderschee, Jacobus; Fenwick, Craig; Pantaleo, Giuseppe; Roger, Thierry; Calandra, Thierry

    2015-07-01

    During evolution, the immune system has diversified to protect the host from the extremely wide array of possible pathogens. Until recently, immune responses were dissected by use of global approaches and bulk tools, averaging responses across samples and potentially missing particular contributions of individual cells. This is a strongly limiting factor, considering that initial immune responses are likely to be triggered by a restricted number of cells at the vanguard of host defenses. The development of novel, single-cell technologies is a major innovation offering great promise for basic and translational immunology with the potential to overcome some of the limitations of traditional research tools, such as polychromatic flow cytometry or microscopy-based methods. At the transcriptional level, much progress has been made in the fields of microfluidics and single-cell RNA sequencing. At the protein level, mass cytometry already allows the analysis of twice as many parameters as flow cytometry. In this review, we explore the basis and outcome of immune-cell diversity, how genetically identical cells become functionally different, and the consequences for the exploration of host-immune defense responses. We will highlight the advantages, trade-offs, and potential pitfalls of emerging, single-cell-based technologies and how they provide unprecedented detail of immune responses.

  10. Targeting the Bacterial Division Protein FtsZ.

    Science.gov (United States)

    Hurley, Katherine A; Santos, Thiago M A; Nepomuceno, Gabriella M; Huynh, Valerie; Shaw, Jared T; Weibel, Douglas B

    2016-08-11

    Similar to its eukaryotic counterpart, the prokaryotic cytoskeleton is essential for the structural and mechanical properties of bacterial cells. The essential protein FtsZ is a central player in the cytoskeletal family, forms a cytokinetic ring at mid-cell, and recruits the division machinery to orchestrate cell division. Cells depleted of or lacking functional FtsZ do not divide and grow into long filaments that eventually lyse. FtsZ has been studied extensively as a target for antibacterial development. In this Perspective, we review the structural and biochemical properties of FtsZ, its role in cell biochemistry and physiology, the different mechanisms of inhibiting FtsZ, small molecule antagonists (including some misconceptions about mechanisms of action), and their discovery strategies. This collective information will inform chemists on different aspects of FtsZ that can be (and have been) used to develop successful strategies for devising new families of cell division inhibitors.

  11. Exploring the anticancer potential of the bacterial protein azurin

    Directory of Open Access Journals (Sweden)

    Ananda M Chakrabarty

    2016-08-01

    Full Text Available Bacterial proteins and their derivative peptides have emerged as promising anticancer agents. Nowadays they represent a valuable set of candidate drugs with different origins and modes of action. Among these, monomeric cupredoxins, which are metalloproteins involved in the electron transport chain of prokaryotes, have been shown to possess potent anticancer activities. In particular, much attention has been focused on azurin produced by the pathogenic bacterium Pseudomonas aeruginosa. More recently, several in vitro and in vivo studies have reported the multi-targeting anticancer properties of azurin. Moreover, p28, a peptide derived from azurin, has completed two phase I clinical trials in cancer patients with promising results. In this updated review, we examine the current knowledge regarding azurin’s modes of action as an anticancer therapeutic protein. We also review the clinical trial results of p28 emphasizing findings that make it suited (alone or in combination as a therapeutic agent for cancer treatment. Finally we discuss and address the challenges of using the human microbiome to discover novel and unique therapeutic cupredoxin-like proteins.

  12. Plant single-cell and single-cell-type metabolomics.

    Science.gov (United States)

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts.

    Science.gov (United States)

    Yong, Ann-Li; Ooh, Keng-Fei; Ong, Hean-Chooi; Chai, Tsun-Thai; Wong, Fai-Chu

    2015-11-01

    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  15. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Science.gov (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato

    2012-01-01

    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  16. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  17. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  18. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2......% (D2), 4% D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3-7, 10-14, 17-21, 23-27, and 30-34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with troups of 6 chickens...

  19. Waste Watermelon Peel for Single Cell Protein Production Through Solid State Fermentation%废弃西瓜皮固态发酵生产单细胞蛋白

    Institute of Scientific and Technical Information of China (English)

    潘百明; 李春惠

    2014-01-01

    To enhance the comprehensive utilization value of waste watermelon peel and reduce environmental pollution,taking waste watermelon peels as raw material,Anqi feeding yeasts were utilized for solid state fermentation in generating single-cell proteins.Crude proteins were utilized as indicators for the measurement of quality of product.The experiment studied influential factors included the addition volume of urea affecting single-cell protein production,original value of pH,volume of vaccinated strain, time consuming of fermentation and so on.Fermentation technology was further optimized by orthogonal test.As the results demonstrated,the optimum combination of the conditions was 2.0 g of urea,7.5 mL of vaccinated strain,48 hours of consumed fermentation and the original value of pH was 5.0.After the fermentation occurred,under the condition mentioned above,the product of crude protein was increased from 10.5% to 25.6%,crude fiber decreased from 1.7% to 0.5%,crude ash increased from 2.5% to 7.1%.%为了提高废弃西瓜皮的综合利用价值,减少环境污染,以废弃西瓜皮为原料,利用安琪饲料酵母固态发酵生成单细胞蛋白,以尿素添加量、初始 pH、菌种接种量、发酵时间为考察因素,以粗蛋白为指标,采用正交试验优化西瓜皮固态发酵工艺。结果表明:发酵的最佳组合条件为尿素2.0 g,菌种接种量7.5 mL,培养时间48 h,初始 pH5.0。在该条件下,单细胞蛋白由10.5%提高到25.6%,粗纤维由1.7%降低到0.5%,粗灰分由2.5%提高到7.1%。

  20. Magnetic levitation of single cells.

    Science.gov (United States)

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.

  1. Single-Cell Genomics for Virology.

    Science.gov (United States)

    Ciuffi, Angela; Rato, Sylvie; Telenti, Amalio

    2016-05-04

    Single-cell sequencing technologies, i.e., single cell analysis followed by deep sequencing investigate cellular heterogeneity in many biological settings. It was only in the past year that single-cell sequencing analyses has been applied in the field of virology, providing new ways to explore viral diversity and cell response to viral infection, which are summarized in the present review.

  2. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media.

  3. Single molecule and single cell epigenomics.

    Science.gov (United States)

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;

    2009-01-01

    predictors on bacterial systems. We used these large bacterial datasets and neural network algorithms to create the first bacteria-specific protein phosphorylation predictor: NetPhosBac. With respect to predicting bacterial phosphorylation sites, NetPhosBac significantly outperformed all benchmark predictors....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  5. High-throughput single-cell analysis of low copy number β-galactosidase by a laboratory-built high-sensitivity flow cytometer.

    Science.gov (United States)

    Yang, Lingling; Huang, Tianxun; Zhu, Shaobin; Zhou, Yingxing; Jiang, Yunbin; Wang, Shuo; Chen, Yuqing; Wu, Lina; Yan, Xiaomei

    2013-10-15

    Single-cell analysis is vital in providing insights into the heterogeneity in molecular content and phenotypic characteristics of complex or clonal cell populations. As many essential proteins and most transcription factors are produced at a low copy number, analytical tools with superior sensitivity to enable the analysis of low abundance proteins in single cells are in high demand. β-galactosidase (β-gal) has been the standard cellular reporter for gene expression in both prokaryotic and eukaryotic cells. Here we report the development of a high-throughput method for the single-cell analysis of low copy number β-gal proteins using a laboratory-built high-sensitivity flow cytometer (HSFCM). Upon fluorescence staining with a fluorogenic substrate, quantitative measurements of the basal and near-basal expression of β-gal in single Escherichia coli BL21(DE3) cells were demonstrated. Statistical distribution can be determined quickly by analyzing thousands of individual cells in 1-2min, which reveals the heterogeneous expression pattern that is otherwise masked by the ensemble analysis. Combined with the quantitative fluorometric assay and the rapid bacterial enumeration by HSFCM, the β-gal expression distribution profile could be converted from arbitrary fluorescence units to protein copy numbers per cell. The sensitivity and speed of the HSFCM offers great capability in quantitative analysis of low abundance proteins in single cells, which would help gaining a deeper insight into the heterogeneity and fundamental biological processes in microbial populations.

  6. 用苎麻生物脱胶废水生产热带假丝酵母单细胞蛋白%Production of Single Cell Protein from Ramie Bio-degumming Wastewater Using Candida tropicalis

    Institute of Scientific and Technical Information of China (English)

    王军; 郝新艳; 殷朝敏; 蔡荫; 曾庆福; 阮新潮

    2012-01-01

    采用热带假丝酵母处理苎麻生物脱胶废水.将COD为23 060 mg/L的苎麻生物脱胶废水稀释1倍后进行发酵处理,COD去除率最高,为60.85%.发酵条件的正交实验结果表明:在发酵温度为35℃、初始发酵pH为7.0、接种量为10%、发酵时间为48 h的条件下,苎麻生物脱胶废水COD去除率最高;发酵温度为30℃、初始发酵pH为7.0、接种量为10%、发酵时间为48 h的条件下,单细胞蛋白生成量最高.发酵时间为48 h时,灭菌的发酵培养基的COD去除率为75.75%,单细胞蛋白生成量为5.375 g/L;未灭菌的发酵培养基的COD去除率为72.25%,单细胞蛋白生成量为2.875 g/L.%Ramie bio-degumming wastewater was treated using Candida tropicalis. The wastewater with 23 060 mg/L of COD was diluted by 2 folds and treated by fermentation with the highest COD removal rate of 60.85%. The results of orthogonal experiments show that: Under the conditions of fermentation temperature 35℃, initial fermentation pH 7.0, inoculum dosage 10% and fermentation time 48 h, the COD removal rate is the highest; Under the conditions of fermentation temperature 30℃, initial fermentation pH 7.0, inoculum dosage 10% and fermentation time 48 h, the yield of single cell protein is the highest. When the fermentation time is 48 h, the COD removal rate and single cell protein yield with the sterilized fermentation medium are 75.75% and 5.375 g/L respectively, however, those with the un-sterilized fermentation medium are 72.25% and 2.875 g/L respectively.

  7. Single-cell force spectroscopy.

    Science.gov (United States)

    Helenius, Jonne; Heisenberg, Carl-Philipp; Gaub, Hermann E; Muller, Daniel J

    2008-06-01

    The controlled adhesion of cells to each other and to the extracellular matrix is crucial for tissue development and maintenance. Numerous assays have been developed to quantify cell adhesion. Among these, the use of atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) has recently been established. This assay permits the adhesion of living cells to be studied in near-physiological conditions. This implementation of AFM allows unrivaled spatial and temporal control of cells, as well as highly quantitative force actuation and force measurement that is sufficiently sensitive to characterize the interaction of single molecules. Therefore, not only overall cell adhesion but also the properties of single adhesion-receptor-ligand interactions can be studied. Here we describe current implementations and applications of SCFS, as well as potential pitfalls, and outline how developments will provide insight into the forces, energetics and kinetics of cell-adhesion processes.

  8. FliZ is a global regulatory protein affecting the expression of flagellar and virulence genes in individual Xenorhabdus nematophila bacterial cells.

    Directory of Open Access Journals (Sweden)

    Grégory Jubelin

    2013-10-01

    Full Text Available Heterogeneity in the expression of various bacterial genes has been shown to result in the presence of individuals with different phenotypes within clonal bacterial populations. The genes specifying motility and flagellar functions are coordinately regulated and form a complex regulon, the flagellar regulon. Complex interplay has recently been demonstrated in the regulation of flagellar and virulence gene expression in many bacterial pathogens. We show here that FliZ, a DNA-binding protein, plays a key role in the insect pathogen, Xenorhabdus nematophila, affecting not only hemolysin production and virulence in insects, but efficient swimming motility. RNA-Seq analysis identified FliZ as a global regulatory protein controlling the expression of 278 Xenorhabdus genes either directly or indirectly. FliZ is required for the efficient expression of all flagellar genes, probably through its positive feedback loop, which controls expression of the flhDC operon, the master regulator of the flagellar circuit. FliZ also up- or downregulates the expression of numerous genes encoding non-flagellar proteins potentially involved in key steps of the Xenorhabdus lifecycle. Single-cell analysis revealed the bimodal expression of six identified markers of the FliZ regulon during exponential growth of the bacterial population. In addition, a combination of fluorescence-activated cell sorting and RT-qPCR quantification showed that this bimodality generated a mixed population of cells either expressing ("ON state" or not expressing ("OFF state" FliZ-dependent genes. Moreover, studies of a bacterial population exposed to a graded series of FliZ concentrations showed that FliZ functioned as a rheostat, controlling the rate of transition between the "OFF" and "ON" states in individuals. FliZ thus plays a key role in cell fate decisions, by transiently creating individuals with different potentials for motility and host interactions.

  9. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins

    Directory of Open Access Journals (Sweden)

    Rinas Ursula

    2004-09-01

    Full Text Available Abstract Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures.

  10. Poly(3-hydroxybutyrate) anabolism in Cupriavidus necator cultivated at various carbon-to-nitrogen ratios: insights from single-cell Raman spectroscopy

    Science.gov (United States)

    Tao, Zhanhua; Zhang, Pengfei; Qin, Zhaojun; Li, Yong-Qing; Wang, Guiwen

    2016-09-01

    Cupriavidus necator accumulates large amounts of poly(3-hydroxybutyrate) (PHB), a biodegradable substitute for petroleum-based plastics, under certain nutrient conditions. Conventional solvent-extraction-based methods for PHB quantification only obtain average information from cell populations and, thus, mask the heterogeneity among individual cells. Laser tweezers Raman spectroscopy (LTRS) was used to monitor dynamic changes in the contents of PHB, nucleic acids, and proteins in C. necator at the population and single-cell levels when the microorganism cells were cultivated at various carbon-to-nitrogen ratios. The biosynthetic activities of nucleic acids and proteins were maintained at high levels, and only a small amount of PHB was produced when the bacterial cells were cultured under balanced growth conditions. By contrast, the syntheses of nucleic acids and proteins were blocked, and PHB was accumulated in massive amount inside the microbial cells under nitrogen-limiting growth circumstances. Single-cell analysis revealed a relatively high heterogeneity in PHB level at the early stage of the bacterial growth. Additionally, bacterial cells in populations at certain cultivation stages were composed of two or three subpopulations on the basis of their PHB abundance. Overall, LTRS is a reliable single-cell analysis tool that can provide insights into PHB fermentation.

  11. Laser tweezers Raman spectroscopy of single cells

    Science.gov (United States)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  12. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins

    NARCIS (Netherlands)

    van Gijtenbeek, Lieke A; Robinson, Andrew; van Oijen, Antoine; Poolman, Bert; Kok, Jan

    2016-01-01

    By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at

  13. Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy

    Science.gov (United States)

    Tao, Zhanhua; Peng, Lixin; Zhang, Pengfei; Li, Yong-Qing; Wang, Guiwen

    2016-01-01

    Poly-beta-hydroxybutyrate (PHB) can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS) was used to characterize dynamic changes in PHB content—as well as in the contents of other common biomolecule—in C. necator during batch growth at both the population and single-cell levels. PHB accumulation began in the early stages of bacterial growth, and the maximum PHB production rate occurred in the early and middle exponential phases. The active biosynthesis of DNA, RNA, and proteins occurred in the lag and early exponential phases, whereas the levels of these molecules decreased continuously during the remaining fermentation process until the minimum values were reached. The PHB content inside single cells was relatively homogenous in the middle stage of fermentation; during the late growth stage, the variation in PHB levels between cells increased. In addition, bacterial cells in various growth phases could be clearly discriminated when principle component analysis was performed on the spectral data. These results suggest that LTRS is a valuable single-cell analysis tool that can provide more comprehensive information about the physiological state of a growing microbial population. PMID:27509509

  14. Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhanhua Tao

    2016-08-01

    Full Text Available Poly-beta-hydroxybutyrate (PHB can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS was used to characterize dynamic changes in PHB content—as well as in the contents of other common biomolecule—in C. necator during batch growth at both the population and single-cell levels. PHB accumulation began in the early stages of bacterial growth, and the maximum PHB production rate occurred in the early and middle exponential phases. The active biosynthesis of DNA, RNA, and proteins occurred in the lag and early exponential phases, whereas the levels of these molecules decreased continuously during the remaining fermentation process until the minimum values were reached. The PHB content inside single cells was relatively homogenous in the middle stage of fermentation; during the late growth stage, the variation in PHB levels between cells increased. In addition, bacterial cells in various growth phases could be clearly discriminated when principle component analysis was performed on the spectral data. These results suggest that LTRS is a valuable single-cell analysis tool that can provide more comprehensive information about the physiological state of a growing microbial population.

  15. Bacterial origin of a mitochondrial outer membrane protein translocase: new perspectives from comparative single channel electrophysiology.

    Science.gov (United States)

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-09-07

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes.

  16. Functional characterisation and Mutational analysis of a bacterial dynamin-like protein, DynA

    OpenAIRE

    2015-01-01

    Membrane remodeling is a dynamic process that occurs in bacterial cells to facilitate substrate transport and to provide protection to bacteria during environmental stress. In eukaryotic cells, membrane remodeling is carried out by dynamin-like proteins (DLPs). These proteins are involved in diverse membrane-associated functions such as cargo transport via vesicles, cytokinesis, division of cell organelles and resistance to pathogens. DLPs are also conserved in bacterial species; howeve...

  17. Behind the lines–actions of bacterial type III effector proteins in plant cells

    OpenAIRE

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Ty...

  18. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection

    Science.gov (United States)

    Willmann, Roland; Lajunen, Heini M.; Erbs, Gitte; Newman, Mari-Anne; Kolb, Dagmar; Tsuda, Kenichi; Katagiri, Fumiaki; Fliegmann, Judith; Bono, Jean-Jacques; Cullimore, Julie V.; Jehle, Anna K.; Götz, Friedrich; Kulik, Andreas; Molinaro, Antonio; Lipka, Volker; Gust, Andrea A.; Nürnberger, Thorsten

    2011-01-01

    Recognition of microbial patterns by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Peptidoglycans (PGNs) are major components of bacterial cell walls that possess immunity-stimulating activities in metazoans and plants. Here we show that PGN sensing and immunity to bacterial infection in Arabidopsis thaliana requires three lysin-motif (LysM) domain proteins. LYM1 and LYM3 are plasma membrane proteins that physically interact with PGNs and mediate Arabidopsis sensitivity to structurally different PGNs from Gram-negative and Gram-positive bacteria. lym1 and lym3 mutants lack PGN-induced changes in transcriptome activity patterns, but respond to fungus-derived chitin, a pattern structurally related to PGNs, in a wild-type manner. Notably, lym1, lym3, and lym3 lym1 mutant genotypes exhibit supersusceptibility to infection with virulent Pseudomonas syringae pathovar tomato DC3000. Defects in basal immunity in lym3 lym1 double mutants resemble those observed in lym1 and lym3 single mutants, suggesting that both proteins are part of the same recognition system. We further show that deletion of CERK1, a LysM receptor kinase that had previously been implicated in chitin perception and immunity to fungal infection in Arabidopsis, phenocopies defects observed in lym1 and lym3 mutants, such as peptidoglycan insensitivity and enhanced susceptibility to bacterial infection. Altogether, our findings suggest that plants share with metazoans the ability to recognize bacterial PGNs. However, as Arabidopsis LysM domain proteins LYM1, LYM3, and CERK1 form a PGN recognition system that is unrelated to metazoan PGN receptors, we propose that lineage-specific PGN perception systems have arisen through convergent evolution. PMID:22106285

  19. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  20. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development...... of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...

  1. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.

    Science.gov (United States)

    Minamino, Tohru; Morimoto, Yusuke V; Kinoshita, Miki; Aldridge, Phillip D; Namba, Keiichi

    2014-12-22

    For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the α(3)β(3)γ complex of F(O)F(1)-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI(6)FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly.

  2. Functionalized nanopipettes: toward label-free, single cell biosensors.

    Science.gov (United States)

    Actis, Paolo; Mak, Andy C; Pourmand, Nader

    2010-08-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study single cell dynamics. This review is focused on creative applications of nanopipette technology for biosensing. We highlight the potential of this technology with a particular attention to integration of this biosensor with single cell manipulation platforms.

  3. The role of nanotechnology in single-cell detection: a review.

    Science.gov (United States)

    Wang, Changling; Zhang, Yuxiang; Xia, Mingdian; Zhu, Xingxi; Qi, Shitao; Shen, Huaqiang; Liu, Tiebing; Tang, Liming

    2014-10-01

    Biological processes in single cells, such as signal transduction, DNA duplication, and protein synthesis and trafficking, occur in subcellular compartments at nanoscale level. Achieving high spatial-temporal resolution, high sensitivity, and high specificity in single-cell detection poses a great challenge. Nanotechnology, which has been widely applied in the fields of medicine, electronics, biomaterials, and energy production, has the potential to provide solutions for single-cell detection. Here we present a review of the use of nanotechnology in single-cell detection over the past two decades. First, we review the main areas of scientific interest, including morphology, ion concentration, DNA, RNA, protein, intracellular temperature, elements, and mechanical properties. Second, four categories of application of nanotechnology to single-cell detection are described: nanomanipulation, nanodevices, nanomaterials as labels, and nano Secondary ion mass spectrometry. Finally, the prospects and future trends in single-cell detection and analysis are discussed.

  4. Single-cell force spectroscopy of the medically important Staphylococcus epidermidis-Candida albicans interaction

    Science.gov (United States)

    Beaussart, Audrey; Herman, Philippe; El-Kirat-Chatel, Sofiane; Lipke, Peter N.; Kucharíková, Soňa; van Dijck, Patrick; Dufrêne, Yves F.

    2013-10-01

    Despite the clinical importance of bacterial-fungal interactions, their molecular details are poorly understood. A hallmark of such medically important interspecies associations is the interaction between the two nosocomial pathogens Staphylococcus aureus and Candida albicans, which can lead to mixed biofilm-associated infections with enhanced antibiotic resistance. Here, we use single-cell force spectroscopy (SCFS) to quantify the forces engaged in bacterial-fungal co-adhesion, focusing on the poorly investigated S. epidermidis-C. albicans interaction. Force curves recorded between single bacterial and fungal germ tubes showed large adhesion forces (~5 nN) with extended rupture lengths (up to 500 nm). By contrast, bacteria poorly adhered to yeast cells, emphasizing the important role of the yeast-to-hyphae transition in mediating adhesion to bacterial cells. Analysis of mutant strains altered in cell wall composition allowed us to distinguish the main fungal components involved in adhesion, i.e. Als proteins and O-mannosylations. We suggest that the measured co-adhesion forces are involved in the formation of mixed biofilms, thus possibly as well in promoting polymicrobial infections. In the future, we anticipate that this SCFS platform will be used in nanomedicine to decipher the molecular mechanisms of a wide variety of pathogen-pathogen interactions and may help in designing novel anti-adhesion agents.

  5. Single cell electroporation using proton beam fabricated biochips

    Science.gov (United States)

    Homhuan, S.; Zhang, B.; Sheu, F.-S.; Bettiol, A. A.; Watt, F.

    2010-05-01

    We report the design and fabrication of a novel single cell electroporation biochip fabricated by the Proton Beam Writing technique (PBW), a new technique capable of direct-writing high-aspect-ratio nano and microstructures. The biochip features nickel micro-electrodes with straight-side walls between which individual cells are positioned. By applying electrical impulses across the electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells. When the stain binds with DNA inside the cell nucleus, green fluorescence is observed upon excitation from a halogen lamp. Three parameters; electric field strength, pulse duration, and the number of pulses have been considered and optimized for the single cell electroporation. The results show that our biochip gives successfully electroporated cells . This single cell electroporation system represents a promising method for investigating the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.

  6. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis.

    Science.gov (United States)

    Brandl, Maria T; Huynh, Steven

    2014-08-01

    Salmonella enterica has the ability to form biofilms and large aggregates on produce surfaces, including on cilantro leaves. Aggregates of S. enterica serovar Thompson that remained attached to cilantro leaves after rigorous washing and that were present free or bound to dislodged leaf tissue in the wash suspension were observed by confocal microscopy. Measurement of S. Thompson population sizes in the leaf washes by plate counts failed to show an effect of 0.05% Tween 80 on the removal of the pathogen from cilantro leaves 2 and 6 days after inoculation. On the contrary, digital image analysis of micrographs of single cells and aggregates of green fluorescent protein (GFP)-S. Thompson present in cilantro leaf washes revealed that single cells represented 13.7% of the cell assemblages in leaf washes containing Tween 80, versus 9.3% in those without the surfactant. Moreover, Tween 80 decreased the percentage of the total S. Thompson cell population located in aggregates equal to or larger than 64 cells from 9.8% to 4.4% (P Tween 80 showed that the surfactant promoted the dispersal of cells from large aggregates into smaller ones and into single cells (P < 0.05). Our study underlines the importance of investigating bacterial behavior at the scale of single cells in order to uncover trends undetectable at the population level by bacterial plate counts. Such an approach may provide valuable information to devise strategies aimed at enhancing the efficacy of produce sanitization treatments.

  7. Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica.

    Science.gov (United States)

    Brewer, Matthew T; Agbedanu, Prince N; Zamanian, Mostafa; Day, Tim A; Carlson, Steve A

    2013-11-01

    Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.

  8. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria.

    Science.gov (United States)

    Chakroun, Maissa; Banyuls, Núria; Bel, Yolanda; Escriche, Baltasar; Ferré, Juan

    2016-06-01

    Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.

  9. Bacterial 5S rRNA-binding proteins of the CTC family.

    Science.gov (United States)

    Gongadze, G M; Korepanov, A P; Korobeinikova, A V; Garber, M B

    2008-12-01

    The presence of CTC family proteins is a unique feature of bacterial cells. In the CTC family, there are true ribosomal proteins (found in ribosomes of exponentially growing cells), and at the same time there are also proteins temporarily associated with the ribosome (they are produced by the cells under stress only and incorporate into the ribosome). One feature is common for these proteins - they specifically bind to 5S rRNA. In this review, the history of investigations of the best known representatives of this family is described briefly. Structural organization of the CTC family proteins and their occurrence among known taxonomic bacterial groups are discussed. Structural features of 5S rRNA and CTC protein are described that predetermine their specific interaction. Taking into account the position of a CTC protein and its intermolecular contacts in the ribosome, a possible role of its complex with 5S rRNA in ribosome functioning is discussed.

  10. Producing Conditions of Single Cell Protein Feed by Fermenting Chufa Skin%马蹄皮生产单细胞蛋白饲料的发酵条件

    Institute of Scientific and Technical Information of China (English)

    潘百明; 苏丽香

    2014-01-01

    In order to improve the comprehensive utilization value of chufa skin and increase farmers’ income,taking crude protein,total sugar and reducing sugar as the indicators,the effects of initial pH, yeast-rhizopus ratio,culture time and liquid volume on single cell protein were studied,and the process conditions were optimized through an orthogonal experiment.Results:the optimum conditions included initial pH 5.0,yeast-rhizopus ratio 2 ∶ 1,culture time 2 d,liquid volume 70 mL/250 mL.Under these conditions the yields of crude protein,total sugar,reducing sugar,crude fiber and ash reached 64.25%, 19.8%,5.0%,0.0% and 8.04% respectively.%为提高马蹄皮的综合利用价值,增加农民的收入,以粗蛋白、总糖和还原糖含量为指标,研究了初始 pH、酵母与根霉菌种比例、培养时间、装液量对发酵产单细胞蛋白的影响,并通过正交试验优化了马蹄皮发酵生产单细胞蛋白的工艺条件。结果表明:马蹄皮液态发酵生产单细胞蛋白的最优条件为初始 pH 5.0,酵母与根霉的菌种比例为2∶1,发酵时间2 d,装液量为70 mL/250mL。在该条件下发酵的粗蛋白为64.25%,总糖为19.8%,还原糖为5.0%,粗纤维为0.0%,灰分为8.04%。

  11. Single-cell model of prokaryotic cell cycle.

    Science.gov (United States)

    Abner, Kristo; Aaviksaar, Tõnis; Adamberg, Kaarel; Vilu, Raivo

    2014-01-21

    One of the recognized prokaryotic cell cycle theories is Cooper-Helmstetter (CH) theory which relates start of DNA replication to particular (initiation) cell mass, cell growth and division. Different aspects of this theory have been extensively studied in the past. In the present study CH theory was applied at single cell level. Universal equations were derived for different cell parameters (cell mass and volume, surface area, DNA amount and content) depending on constructivist cell cycle parameters (unit mass, replication and division times, cell age, cell cycle duration) based on selected growth laws of cell mass (linear, exponential). The equations derived can be integrated into single-cell models for the analysis and design of bacterial cells. © 2013 Published by Elsevier Ltd.

  12. Single-cell analysis - Methods and protocols

    OpenAIRE

    Carlo Alberto Redi

    2013-01-01

    This is certainly a timely volume in the Methods in molecular biology series: we already entered the synthetic biology era and thus we need to be aware of the new methodological advances able to fulfill the new and necessary needs for biologists, biotechnologists and nano-biotechnologists. Notably, among these, the possibility to perform single cell analysis allow researchers to capture single cell responses....

  13. Discovery of an archetypal protein transport system in bacterial outer membranes.

    Science.gov (United States)

    Selkrig, Joel; Mosbahi, Khedidja; Webb, Chaille T; Belousoff, Matthew J; Perry, Andrew J; Wells, Timothy J; Morris, Faye; Leyton, Denisse L; Totsika, Makrina; Phan, Minh-Duy; Celik, Nermin; Kelly, Michelle; Oates, Clare; Hartland, Elizabeth L; Robins-Browne, Roy M; Ramarathinam, Sri Harsha; Purcell, Anthony W; Schembri, Mark A; Strugnell, Richard A; Henderson, Ian R; Walker, Daniel; Lithgow, Trevor

    2012-04-01

    Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.

  14. Immunoproteomic analysis of bacterial proteins of Actinobacillus pleuropneumoniae serotype 1

    Directory of Open Access Journals (Sweden)

    Wu Zongfu

    2011-06-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae (APP is one of the most important swine pathogens worldwide. Identification and characterization of novel antigenic APP vaccine candidates are underway. In the present study, we use an immunoproteomic approach to identify APP protein antigens that may elicit an immune response in serotype 1 naturally infected swine and serotype 1 virulent strain S259-immunized rabbits. Results Proteins from total cell lysates of serotype 1 APP were separated by two-dimensional electrophoresis (2DE. Western blot analysis revealed 21 immunoreactive protein spots separated in the pH 4-7 range and 4 spots in the pH 7-11 range with the convalescent sera from swine; we found 5 immunoreactive protein spots that separated in the pH 4-7 range and 2 in the pH 7-11 range with hyperimmune sera from S259-immunized rabbits. The proteins included the known antigens ApxIIA, protective surface antigen D15, outer membrane proteins P5, subunit NqrA. The remaining antigens are being reported as immunoreactive proteins in APP for the first time, to our knowledge. Conclusions We identified a total of 42 immunoreactive proteins of the APP serotype 1 virulent strain S259 which represented 32 different proteins, including some novel immunoreactive factors which could be researched as vaccine candidates.

  15. Rho-modifying bacterial protein toxins from Photorhabdus species.

    Science.gov (United States)

    Jank, Thomas; Lang, Alexander E; Aktories, Klaus

    2016-06-15

    Photorhabdus bacteria live in symbiosis with entomopathogenic nematodes. The nematodes invade insect larvae, where they release the bacteria, which then produce toxins to kill the insects. Recently, the molecular mechanisms of some toxins from Photorhabdus luminescens and asymbiotica have been elucidated, showing that GTP-binding proteins of the Rho family are targets. The tripartite Tc toxin PTC5 from P. luminescens activates Rho proteins by ADP-ribosylation of a glutamine residue, which is involved in GTP hydrolysis, while PaTox from Photorhabdus asymbiotica inhibits the activity of GTPases by N-acetyl-glucosaminylation at tyrosine residues and activates Rho proteins indirectly by deamidation of heterotrimeric G proteins.

  16. Discovering the bacterial circular proteins : bacteriocins, cyanobactins, and pilins

    NARCIS (Netherlands)

    Montalban-Lopez, Manuel; Sanchez-Hidalgo, Marina; Cebrian, Ruben; Maqueda, Mercedes

    2012-01-01

    Over recent years, several examples of natural ribosomally synthesized circular proteins and peptides from diverse organisms have been described. They are a group of proteins for which the precursors must be post-translationally modified to join the N and C termini with a peptide bond. This feature

  17. Effects of sample treatments on genome recovery via single-cell genomics

    Energy Technology Data Exchange (ETDEWEB)

    Clingenpeel, Scott [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Schwientek, Patrick [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hugenholtz, Philip [Univ. of Queensland, Brisbane (Australia); Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-13

    It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.

  18. Probing the cellular effects of bacterial effector proteins with the Yersinia toolbox.

    Science.gov (United States)

    Wölke, Stefan; Heesemann, Jürgen

    2012-04-01

    The type 3 secretion system (T3SS) is a powerful bacterial nanomachine that is able to modify the host cellular immune defense in favor of the pathogen by injection of effector proteins. In this regard, cellular Rho GTPases such as Rac1, RhoA or Cdc42 are targeted by a large group of T3SS effectors by mimicking cellular guanine exchange factors or GTPase-activating proteins. However, functional analysis of one type of T3SS effector that is translocated by bacterial pathogens is challenging because the T3SS effector repertoire can comprise a large number of proteins with redundant or interfering functions. Therefore, we developed the Yersinia toolbox to either analyze singular effector proteins of Yersinia spp. or different bacterial species in the context of bacterial T3SS injection into cells. Here, we focus on the WxxxE guanine exchange factor mimetic proteins IpgB1, IpgB2 and Map, which activate Rac1, RhoA or Cdc42, respectively, as well as the Rho GTPase inactivators YopE (a GTPase-activating mimetic protein) and YopT (cysteine protease), to generate a toolbox module for Rho GTPase manipulation.

  19. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  20. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  1. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  2. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence...... on the same plasmid and not the tRNAs per se. These phenomena seem to have been largely overlooked despite the huge popularity of the T7/pET-based systems for bacterial protein production....

  3. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  4. Reversals and collisions optimize protein exchange in bacterial swarms

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  5. Reversals and collisions optimize protein exchange in bacterial swarms

    Science.gov (United States)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as a mechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  6. Protein oxidation implicated as the primary determinant of bacterial radioresistance.

    Directory of Open Access Journals (Sweden)

    Michael J Daly

    2007-04-01

    Full Text Available In the hierarchy of cellular targets damaged by ionizing radiation (IR, classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

  7. Assembly of β-barrel proteins into bacterial outer membranes.

    Science.gov (United States)

    Selkrig, Joel; Leyton, Denisse L; Webb, Chaille T; Lithgow, Trevor

    2014-08-01

    Membrane proteins with a β-barrel topology are found in the outer membranes of Gram-negative bacteria and in the plastids and mitochondria of eukaryotic cells. The assembly of these membrane proteins depends on a protein folding reaction (to create the barrel) and an insertion reaction (to integrate the barrel within the outer membrane). Experimental approaches using biophysics and biochemistry are detailing the steps in the assembly pathway, while genetics and bioinformatics have revealed a sophisticated production line of cellular components that catalyze the assembly pathway in vivo. This includes the modular BAM complex, several molecular chaperones and the translocation and assembly module (the TAM). Recent screens also suggest that further components of the pathway might remain to be discovered. We review what is known about the process of β-barrel protein assembly into membranes, and the components of the β-barrel assembly machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  8. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins.

    Directory of Open Access Journals (Sweden)

    Eran Bosis

    Full Text Available Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.

  9. REVIEW ARTICLE: DNA protein interactions and bacterial chromosome architecture

    Science.gov (United States)

    Stavans, Joel; Oppenheim, Amos

    2006-12-01

    Bacteria, like eukaryotic organisms, must compact the DNA molecule comprising their genome and form a functional chromosome. Yet, bacteria do it differently. A number of factors contribute to genome compaction and organization in bacteria, including entropic effects, supercoiling and DNA-protein interactions. A gamut of new experimental techniques have allowed new advances in the investigation of these factors, and spurred much interest in the dynamic response of the chromosome to environmental cues, segregation, and architecture, during both exponential and stationary phases. We review these recent developments with emphasis on the multifaceted roles that DNA-protein interactions play.

  10. Identification of Dominant Immunogenic Bacteria and Bacterial Proteins in Periodontitis

    DEFF Research Database (Denmark)

    Agerbæk, Mette Rylev; Haubek, Dorte; Birkelund, Svend

    Marginal periodontitis is considered an infectious disease that triggers host inflammatory responses resulting in destruction of the periodontium. A complex biofilm of bacteria is associated with periodontitis. Some species have been identified as putative pathogens such as Porphyromonas gingivalis...... (P.g) and Actinobacillus actinomycetemcomitans (A.a), but the identity of dominate immunogens of these bacteria is poorly elucidated. The aim of the study was to identify dominant immunogenic proteins of P.g and A.a in patients suffering from chronic and aggressive periodontitis by proteomic analysis...... will be able to identify immunodominant proteins and potentially important virulence factors of putative periodontal pathogens....

  11. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul

    2013-01-01

    Conventional diagnosis based on ensemble measurements often overlooks the variation among cells. Here, we present a droplet-microfluidics based platform to investigate single cell activities. Adopting a previously developed isothermal rolling circle amplification-based assay, we demonstrate detec...

  13. Identification of Dominant Immunogenic Bacteria and Bacterial Proteins in Periodontitis

    DEFF Research Database (Denmark)

    Agerbæk, Mette Rylev; Haubek, Dorte; Birkelund, Svend

    . 2-dimensional gel electroforesis of outer membrane and secreted proteins from P.g strain W83, A.a strain HK1651, and Streptococcus gordonii strain SK7 was performed. The gels were blotted onto membranes and immunogens were detected by incubation with sera collected from patients, healthy controls...

  14. Site specific protein O-glucosylation with bacterial toxins.

    Science.gov (United States)

    Sun, Y; Willis, L M; Batchelder, H R; Nitz, M

    2016-10-27

    Using a MALDI-MS based assay, the kinetic parameters for peptide glucosylation using the C. difficile toxin B glycosyltransferase domain were determined. The minimum consensus sequence for glucosylation was YXXTXFXXY and the optimal peptide found was YAPTVFDAY. Using this sequence, homogenous glucosylated proteins could be readily produced.

  15. Bacterial protein meal in diets for growing pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Kjos, N.P.

    2007-01-01

    blocks according to age. One pig from each litter was fed one of the four experimental diets. Soya-bean meal was replaced with BPM on the basis of digestible protein, and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), corresponding to 0%, 17%, 35% and 52...

  16. Pseudotime estimation: deconfounding single cell time series

    OpenAIRE

    John E Reid; Wernisch, Lorenz

    2016-01-01

    Motivation: Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions o...

  17. Single-cell analysis - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-06-01

    Full Text Available This is certainly a timely volume in the Methods in molecular biology series: we already entered the synthetic biology era and thus we need to be aware of the new methodological advances able to fulfill the new and necessary needs for biologists, biotechnologists and nano-biotechnologists. Notably, among these, the possibility to perform single cell analysis allow researchers to capture single cell responses....

  18. Single-cell analysis in cancer genomics

    Science.gov (United States)

    Saadatpour, Assieh; Lai, Shujing; Guo, Guoji; Yuan, Guo-Cheng

    2017-01-01

    Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper, we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research. PMID:26450340

  19. Effect of Bacillus mucilaginosus on weathering of phosphorite and a preliminary analysis of bacterial proteins

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu; LIAN Bin; LIU Congqiang

    2008-01-01

    The authors investigated the effect of Bacillus mucilaginosus on weathering of phosphorite. Analysis of different proteins was of significance in exploring the molecular biological mechanism in the bacterial weathering process. The concrete methods are described as follows: Mineral powder was put into liquid culture medium and B. mucilaginosus was incubated in the medium. The control (group) had no mineral powder in the medium. The treatments and controls were cultured simultaneously under the same condition. In a few days, the supernatant was filtrated, the main cations (Ca2+, Mg2+, Na+, Mn2+, Al3+, Fe3+, K+) were measured by ICP-OES, and the contents of water soluble phosphorus (Pws) and silicon (Siws) were determined by colorimetry. The residual solid was weighed on the filter paper, followed by digestion with concentrated HNO3. The concentrations of the main cations and Pws, Siws in the digest liquid were measured by using the method mentioned above. After the supernatant was centrifuged, the precipitation was used to analyze the protein differences between the treatment groups and the control groups by 2-dimentional gel electrophoresis (2-DE). The experimental results showed that apatite and quartz were partially weathered, but kaolinite was dissolved completely. The population of bacteria increased when mineral powder was added in the liquid medium. Software analysis and comparison of the 2-DE pictures of bacterial proteins revealed 1134 visible protein spots in the treatment group, and 729 visible protein spots in the control group. To compare the bacterial protein expression contents of the treatment group with those of the control group, there were 496 different protein spots, including 214 protein spots which indicated that the protein contents increased, 75 protein spots were indicative of a decrease, and 207 proteins were newly synthesized. It is proposed that the increased bacterial contents may be related to some protein expression and activation

  20. Exploiting Bacterial Operons To Illuminate Human Iron-Sulfur Proteins.

    Science.gov (United States)

    Andreini, Claudia; Banci, Lucia; Rosato, Antonio

    2016-04-01

    Organisms from all kingdoms of life use iron-sulfur proteins (FeS-Ps) in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of FeS-Ps. Sixty-one percent of human FeS-Ps bind Fe4S4 clusters, whereas 39% bind Fe2S2 clusters. However, this relative ratio varies significantly depending on the specific cellular compartment. We compared the portfolio of human FeS-Ps to 12 other eukaryotes and to about 700 prokaryotes. The comparative analysis of the organization of the prokaryotic homologues of human FeS-Ps within operons allowed us to reconstruct the human functional networks involving the conserved FeS-Ps common to prokaryotes and eukaryotes. These functional networks have been maintained during evolution and thus presumably represent fundamental cellular processes. The respiratory chain and the ISC machinery for FeS-P biogenesis are the two conserved processes that involve the majority of human FeS-Ps. Purine metabolism is another process including several FeS-Ps, in which BOLA proteins possibly have a regulatory role. The analysis of the co-occurrence of human FeS-Ps with other proteins highlighted numerous links between the iron-sulfur cluster machinery and the response mechanisms to cell damage, from repair to apoptosis. This relationship probably relates to the production of reactive oxygen species within the biogenesis and degradation of FeS-Ps.

  1. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search...... for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (Sc......SSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically...

  2. C21orf57 is a human homologue of bacterial YbeY proteins.

    Science.gov (United States)

    Ghosal, Anubrata; Köhrer, Caroline; Babu, Vignesh M P; Yamanaka, Kinrin; Davies, Bryan W; Jacob, Asha I; Ferullo, Daniel J; Gruber, Charley C; Vercruysse, Maarten; Walker, Graham C

    2017-03-11

    The product of the human C21orf57 (huYBEY) gene is predicted to be a homologue of the highly conserved YbeY proteins found in nearly all bacteria. We show that, like its bacterial and chloroplast counterparts, the HuYbeY protein is an RNase and that it retains sufficient function in common with bacterial YbeY proteins to partially suppress numerous aspects of the complex phenotype of an Escherichia coli ΔybeY mutant. Expression of HuYbeY in Saccharomyces cerevisiae, which lacks a YbeY homologue, results in a severe growth phenotype. This observation suggests that the function of HuYbeY in human cells is likely regulated through specific interactions with partner proteins similarly to the way YbeY is regulated in bacteria.

  3. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    Full Text Available BACKGROUND: Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion. METHODOLOGY: In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity. SIGNIFICANCE: These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  4. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  5. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen...

  6. Membrane composition influences the topology bias of bacterial integral membrane proteins.

    Science.gov (United States)

    Bay, Denice C; Turner, Raymond J

    2013-02-01

    Small multidrug resistance (SMR) protein family members confer bacterial resistance to toxic antiseptics and are believed to function as dual topology oligomers. If dual topology is essential for SMR activity, then the topology bias should change as bacterial membrane lipid compositions alter to maintain a "neutral" topology bias. To test this hypothesis, a bioinformatic analysis of bacterial SMR protein sequences was performed to determine a membrane protein topology based on charged amino acid residues within loops, and termini regions according to the positive inside rule. Three bacterial lipid membrane parameters were examined, providing the proportion of polar lipid head group charges at the membrane surface (PLH), the relative hydrophobic fatty acid length (FAL), and the proportion of fatty acid unsaturation (FAU). Our analysis indicates that individual SMR pairs, and to a lesser extent SMR singleton topology biases, are significantly correlated to increasing PLH, FAL and FAU differences validating the hypothesis. Correlations between the topology biases of SMR proteins identified in Gram+ compared to Gram- species and each lipid parameter demonstrated a linear inverse relationship.

  7. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...

  8. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...... of this class have very little homology to other known genomes making functional annotation based on sequence similarity very difficult. Inspired in part by this analysis, an approach for comparative functional annotation was created based public sequenced genomes, CMGfunc. Functionally related groups...

  9. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    Science.gov (United States)

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  10. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs.

    Science.gov (United States)

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-10-24

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4(+) cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals' endocrine system.

  11. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  12. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...hilpott DJ, Girardin SE. Mol Immunol. 2004 Nov;41(11):1099-108. (.png) (.svg) (.html) (.csml) Show The role ...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-lik

  13. Bacterial collagen-like proteins that form triple-helical structures.

    Science.gov (United States)

    Yu, Zhuoxin; An, Bo; Ramshaw, John A M; Brodsky, Barbara

    2014-06-01

    A large number of collagen-like proteins have been identified in bacteria during the past 10years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in Escherichia coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35-39°C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions.

  14. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    Directory of Open Access Journals (Sweden)

    Sungback Cho

    2015-09-01

    Full Text Available This study was performed to investigate the effect of different levels of dietary crude protein (CP on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg fed diets containing three levels of dietary CP (20%, 17.5%, and 15% and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05 in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05 in CP 15% than in CP 20% group. There was a positive correlation (p<0.05 between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

  15. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins

    Science.gov (United States)

    Piatkov, Konstantin I.; Vu, Tri T. M.; Hwang, Cheol-Sang; Varshavsky, Alexander

    2015-01-01

    In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N terminally formylated (Nt formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt formylation in bacteria. We addressed this hypothesis about fMet based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N degrons, in contrast to the cotranslational design of analogous Ac/N degrons in eukaryotes. PMID:26866044

  16. Technologies for Single-Cell Isolation.

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  17. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  18. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment.

    Science.gov (United States)

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K

    2012-08-22

    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  19. Jun N-Terminal Protein Kinase Enhances Middle Ear Mucosal Proliferation during Bacterial Otitis Media▿

    Science.gov (United States)

    Furukawa, Masayuki; Ebmeyer, Jörg; Pak, Kwang; Austin, Darrell A.; Melhus, Åsa; Webster, Nicholas J. G.; Ryan, Allen F.

    2007-01-01

    Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but paralleled mucosal hyperplasia in this in vivo rat model. Nuclear JNK phosphorylation was observed in many cells of both the mucosal epithelium and stroma by immunohistochemistry. In an in vitro model of primary rat middle ear mucosal explants, bacterially induced mucosal growth was blocked by the Rac/Cdc42 inhibitor Clostridium difficile toxin B, the mixed-lineage kinase inhibitor CEP11004, and the JNK inhibitor SP600125. Finally, the JNK inhibitor SP600125 significantly inhibited mucosal hyperplasia during in vivo bacterial otitis media in guinea pigs. Inhibition of JNK in vivo resulted in a diminished proliferative response, as shown by a local decrease in proliferating cell nuclear antigen protein expression by immunohistochemistry. We conclude that activation of JNK is a critical pathway for bacterially induced mucosal hyperplasia during otitis media, influencing tissue proliferation. PMID:17325051

  20. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.

    Directory of Open Access Journals (Sweden)

    Andrea Procaccini

    Full Text Available Predictive understanding of the myriads of signal transduction pathways in a cell is an outstanding challenge of systems biology. Such pathways are primarily mediated by specific but transient protein-protein interactions, which are difficult to study experimentally. In this study, we dissect the specificity of protein-protein interactions governing two-component signaling (TCS systems ubiquitously used in bacteria. Exploiting the large number of sequenced bacterial genomes and an operon structure which packages many pairs of interacting TCS proteins together, we developed a computational approach to extract a molecular interaction code capturing the preferences of a small but critical number of directly interacting residue pairs. This code is found to reflect physical interaction mechanisms, with the strongest signal coming from charged amino acids. It is used to predict the specificity of TCS interaction: Our results compare favorably to most available experimental results, including the prediction of 7 (out of 8 known interaction partners of orphan signaling proteins in Caulobacter crescentus. Surveying among the available bacterial genomes, our results suggest 15∼25% of the TCS proteins could participate in out-of-operon "crosstalks". Additionally, we predict clusters of crosstalking candidates, expanding from the anecdotally known examples in model organisms. The tools and results presented here can be used to guide experimental studies towards a system-level understanding of two-component signaling.

  1. Excretion of purine base derivatives after intake of bacterial protein meal in pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, A.

    2007-01-01

    Bacterial protein meal has a high content ofprotein but also of RNA and DNA. Sixteen barrows were allocated to four diets containing increasing levels of bacterial protein meal (BPM), from weaning to 80 kg live weight, to evaluate whether the RNA and DNA contents of BPM influenced the retention...... of nitrogen. It was hypothesised that an increased intake of RNA and DNA would lead to an increased urinary excretion of purine base derivatives and increased plasma concentrations. Retention of nitrogen was unaffected by dietary content of BPM (P=0.08) and the urinary excretion of purine base derivatives...... increased with increasing dietary content of BPM. No differences in fasting plasma concentration of uric acid, xanthine and hypoxanthine were observed. It can therefore be concluded that increasing levels of dietary BPM maintained protein accretion and led to changes in excretion of purine detrivatices...

  2. Detection of bacterial protein toxins by solid phase magnetic immunocapture and mass spectrometry.

    Science.gov (United States)

    Pocsfalvi, Gabriella; Schlosser, Gitta

    2011-01-01

    Bacterial protein toxins are involved in a number of infectious and foodborne diseases and are considered as potential biological warfare agents as well. Their sensitive multiplex detection in complex environmental, food, and biological samples are an important although challenging task. Solid-phase immunoaffinity capture provides an efficient way to enrich and purify a wide range of proteins from complex mixtures. We have shown that staphylococcal enterotoxins, for example, can be efficiently enriched by means of magnetic immunocapture using antibody functionalized paramagnetic beads. The method was successfully interfaced by the on-beads and off-beads detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry at the protein level and by the off-beads nano-electrospray ionization-MS/MS detection at the enzyme digests level, enabling thus the unambiguous identification of the toxin. The method is applicable to any bacterial toxin to which an antibody is available.

  3. Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications

    Directory of Open Access Journals (Sweden)

    Amin Abbaszadeh Banaeiyan

    2013-12-01

    Full Text Available The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput single-cell experiments. The system employs pure hydrodynamic forces for easy cell trapping and is readily fabricated in polydimethylsiloxane (PDMS using soft lithography techniques. The cell-trapping array consists of V-shaped pockets designed to accommodate up to six Saccharomyces cerevisiae (yeast cells with the average diameter of 4 μm. We used this platform to monitor the impact of flow rate modulation on the arsenite (As(III uptake in yeast. Redistribution of a green fluorescent protein (GFP-tagged version of the heat shock protein Hsp104 was followed over time as read out. Results showed a clear reverse correlation between the arsenite uptake and three different adjusted low = 25 nL min−1, moderate = 50 nL min−1, and high = 100 nL min−1 flow rates. We consider the presented device as the first building block of a future integrated application-specific cell-trapping array that can be used to conduct complete single cell experiments on different cell types.

  4. Bioreporters: gfp versus lux revisited and single-cell response.

    Science.gov (United States)

    Kohlmeier, Stefanie; Mancuso, Matthew; Tecon, Robin; Harms, Hauke; van der Meer, Jan Roelof; Wells, Mona

    2007-03-15

    Genetically engineered organisms expressing spectroscopically active reporter molecules in response to chemical effectors display great potential as living transducers in sensing applications. Green fluorescent protein (gfp gene) bioreporters have distinct advantages over luminescent couterparts (lux gene), including applicability at the single-cell level, but are typically less sensitive. Here we describe a gfp-bearing bioreporter that is sensitive to naphthalene (a poorly water soluble pollutant behaving like a large class of hydrophobic compounds), is suitable for use in chemical assays and bioavailability studies, and has detection limits comparable to lux-bearing bioreporters for higher efficiency detection strategies. Simultaneously, we find that the exploitation of population response data from single-cell analysis is not an algorithmic conduit to enhanced signal detection and hence lower effector detection limits, as normally assumed. The assay reported functions to equal effect with or without biocide.

  5. Sampling techniques for single-cell electrophoresis.

    Science.gov (United States)

    Cecala, Christine; Sweedler, Jonathan V

    2012-07-07

    Cells are extraordinarily complex, containing thousands of different analytes with concentrations spanning at least nine orders of magnitude. Analyzing single cells instead of tissue homogenates provides unique insights into cell-to-cell heterogeneity and aids in distinguishing normal cells from pathological ones. The high sensitivity and low sample consumption of capillary and on-chip electrophoresis, when integrated with fluorescence, electrochemical, and mass spectrometric detection methods, offer an ideal toolset for examining single cells and even subcellular organelles; however, the isolation and loading of such small samples into these devices is challenging. Recent advances have addressed this issue by interfacing a variety of enhanced mechanical, microfluidic, and optical sampling techniques to capillary and on-chip electrophoresis instruments for single-cell analyses.

  6. Predicting gram-positive bacterial protein subcellular localization based on localization motifs.

    Science.gov (United States)

    Hu, Yinxia; Li, Tonghua; Sun, Jiangming; Tang, Shengnan; Xiong, Wenwei; Li, Dapeng; Chen, Guanyan; Cong, Peisheng

    2012-09-07

    The subcellular localization of proteins is closely related to their functions. In this work, we propose a novel approach based on localization motifs to improve the accuracy of predicting subcellular localization of Gram-positive bacterial proteins. Our approach performed well on a five-fold cross validation with an overall success rate of 89.5%. Besides, the overall success rate of an independent testing dataset was 97.7%. Moreover, our approach was tested using a new experimentally-determined set of Gram-positive bacteria proteins and achieved an overall success rate of 96.3%.

  7. Tuberculous Granuloma Induction via Interaction of a Bacterial Secreted Protein with Host Epithelium

    Science.gov (United States)

    Volkman, Hannah E.; Pozos, Tamara C.; Zheng, John; Davis, J. Muse; Rawls, John F.; Ramakrishnan, Lalita

    2011-01-01

    Granulomas, organized aggregates of immune cells, are a hallmark of tuberculosis, and have traditionally been thought to restrict mycobacterial growth. However, analysis of Mycobacterium marinum in zebrafish has shown that the early granuloma facilitates mycobacterial growth; uninfected macrophages are recruited to the granuloma where they are productively infected by M. marinum. Here, we identified the molecular mechanism by which mycobacteria induce granulomas: the bacterial secreted protein ESAT-6, which has long been implicated in virulence, induced matrix metalloproteinase-9 (MMP9) in epithelial cells neighboring infected macrophages. MMP9 enhanced recruitment of macrophages, which contributed to nascent granuloma maturation and bacterial growth. Disruption of MMP9 function attenuated granuloma formation and bacterial growth. Thus, interception of epithelial MMP9 production could hold promise as a host-targeting tuberculosis therapy. PMID:20007864

  8. Stochastic adaptation and fold-change detection: from single-cell to population behavior

    Directory of Open Access Journals (Sweden)

    Leier André

    2011-02-01

    Full Text Available Abstract Background In cell signaling terminology, adaptation refers to a system's capability of returning to its equilibrium upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the system settles at the exact same equilibrium, adaptation is said to be 'perfect'. Examples of adaptation mechanisms include temperature regulation, calcium regulation and bacterial chemotaxis. Results We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while single cells do not. Conclusions Single cell behavior cannot be inferred from population measurements and, sometimes, collective behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state. Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either. The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested. We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture of ergodicity prevails in scenarios where transitions between

  9. Low aspect ratio micropores for single-particle and single-cell analysis.

    Science.gov (United States)

    Goyal, Gaurav; Mulero, Rafael; Ali, Jamel; Darvish, Armin; Kim, Min Jun

    2015-05-01

    This paper describes microparticle and bacterial translocation studies using low aspect ratio solid-state micropores. Micropores, 5 μm in diameter, were fabricated in 200 nm thick free-standing silicon nitride membranes, resulting in pores with an extremely low aspect ratio, nominally 0.04. For microparticle translocation experiments, sulfonated polystyrene microparticles and magnetic microbeads in size range of 1-4 μm were used. Using the microparticle translocation characteristics, we find that particle translocations result in a change only in the pore's geometrical resistance while the access resistance remains constant. Furthermore, we demonstrate the ability of our micropore to probe high-resolution shape information of translocating analytes using concatenated magnetic microspheres. Distinct current drop peaks were observed for each microsphere of the multibead architecture. For bacterial translocation experiments, nonflagellated Escherichia coli (strain HCB 5) and wild type flagellated Salmonella typhimurium (strain SJW1103) were used. Distinct current signatures for the two bacteria were obtained and this difference in translocation behavior was attributed to different surface protein distributions on the bacteria. Our findings may help in developing low aspect ratio pores for high-resolution microparticle characterization and single-cell analysis.

  10. Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins.

    Science.gov (United States)

    Wilson, Brenda A; Ho, Mengfei

    2010-08-01

    Over the past few decades, our understanding of the bacterial protein toxins that modulate G proteins has advanced tremendously through extensive biochemical and structural analyses. This article provides an updated survey of the various toxins that target G proteins, ending with a focus on recent mechanistic insights in our understanding of the deamidating toxin family. The dermonecrotic toxin from Pasteurella multocida (PMT) was recently added to the list of toxins that disrupt G-protein signal transduction through selective deamidation of their targets. The C3 deamidase domain of PMT has no sequence similarity to the deamidase domains of the dermonecrotic toxins from Escherichia coli (cytotoxic necrotizing factor [CNF]1-3), Yersinia (CNFY) and Bordetella (dermonecrotic toxin). The structure of PMT-C3 belongs to a family of transglutaminase-like proteins, with active site Cys-His-Asp catalytic triads distinct from E. coli CNF1.

  11. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation

    Indian Academy of Sciences (India)

    Manish Sadarangani; J Claire Hoe; Katherine Makepeace; Peter Van Der Ley; Andrew J Pollard

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5′-CTCTT-3′ coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opagenes demonstrated variable rates of PV, between 6.4 ×10–4 and 6.9 ×10–3 per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r2=0.77, p=0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opagenes in UK disease isolates (315/463, 68.0%) were in the ‘on’ phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  13. Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling.

    Science.gov (United States)

    Bischofberger, Mirko; Iacovache, Ioan; Boss, Daniel; Naef, Felix; van der Goot, F Gisou; Molina, Nacho

    2016-04-12

    Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.

  14. [Technological advances in single-cell genomic analyses].

    Science.gov (United States)

    Pan, Xing-Hua; Zhu, Hai-Ying; Marjani, Sadie L

    2011-01-01

    The technological progress of the genomics has transformed life science research. The main objectives of genomics are sequencing of new genomes and genome-wide identification of the function and the interaction of genes and their products. The recently developed second generation or next generation sequencing platforms and DNA microarray technology are immensely important and powerful tools for functional genomic analyses. However, their application is limited by the requirement of sufficient amounts of high quality nucleic acid samples. Therefore, when only a single cell or a very small number of cells are available or are preferred, the whole genomic sequencing or functional genomic objectives cannot be achieved conventionally and require a robust amplification method. This review highlights DNA amplification technologies and summarizes the strategies currently utilized for whole genome sequencing of a single cell, with specific focus on studies investigating microorganisms; An outline for targeted re-sequencing enabling the analysis of larger genomes is also provided. Furthermore, the review presents the emerging functional genomic applications using next-generation sequencing or microarray analysis to examine genome-wide transcriptional profile, chromatin modification and other types of protein-DNA binding profile, and CpG methylation mapping in a single cell or a very low quantity of cells. The nature of these technologies and their prospects are also addressed.

  15. Single-cell analysis and isolation for microbiology and biotechnology: methods and applications.

    Science.gov (United States)

    Ishii, Satoshi; Tago, Kanako; Senoo, Keishi

    2010-05-01

    Various single-cell isolation techniques, including dilution, micromanipulation, flow cytometry, microfluidics, and compartmentalization, have been developed. These techniques can be used to cultivate previously uncultured microbes, to assess and monitor cell physiology and function, and to screen for novel microbiological products. Various other techniques, such as viable staining, in situ hybridization, and those using autofluorescence proteins, are frequently combined with these single-cell isolation techniques depending on the purpose of the study. In this review article, we summarize currently available single-cell isolation techniques and their applications, when used in combination with other techniques, in microbiological and biotechnological studies.

  16. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  17. Changes In Protein Abundance Are Observed In Bacterial Isolates from a Natural Host

    Directory of Open Access Journals (Sweden)

    Megan Anne Rees

    2015-10-01

    Full Text Available Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterisation of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.

  18. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges

    Science.gov (United States)

    Siegl, Alexander; Kamke, Janine; Hochmuth, Thomas; Piel, Jörn; Richter, Michael; Liang, Chunguang; Dandekar, Thomas; Hentschel, Ute

    2011-01-01

    In this study, we present a single-cell genomics approach for the functional characterization of the candidate phylum Poribacteria, members of which are nearly exclusively found in marine sponges. The microbial consortia of the Mediterranean sponge Aplysina aerophoba were singularized by fluorescence-activated cell sorting, and individual microbial cells were subjected to phi29 polymerase-mediated ‘whole-genome amplification'. Pyrosequencing of a single amplified genome (SAG) derived from a member of the Poribacteria resulted in nearly 1.6 Mb of genomic information distributed among 554 contigs analyzed in this study. Approximately two-third of the poribacterial genome was sequenced. Our findings shed light on the functional properties and lifestyle of a possibly ancient bacterial symbiont of marine sponges. The Poribacteria are mixotrophic bacteria with autotrophic CO2-fixation capacities through the Wood–Ljungdahl pathway. The cell wall is of Gram-negative origin. The Poribacteria produce at least two polyketide synthases (PKSs), one of which is the sponge-specific Sup-type PKS. Several putative symbiosis factors such as adhesins (bacterial Ig-like domains, lamininin G domain proteins), adhesin-related proteins (ankyrin, fibronectin type III) and tetratrico peptide repeat domain-encoding proteins were identified, which might be involved in mediating sponge–microbe interactions. The discovery of genes coding for 24-isopropyl steroids implies that certain fossil biomarkers used to date the origins of metazoan life on earth may possibly be of poribacterial origin. Single-cell genomic approaches, such as those shown herein, contribute to a better understanding of beneficial microbial consortia, of which most members are, because of the lack of cultivation, inaccessible by conventional techniques. PMID:20613790

  19. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges.

    Science.gov (United States)

    Siegl, Alexander; Kamke, Janine; Hochmuth, Thomas; Piel, Jörn; Richter, Michael; Liang, Chunguang; Dandekar, Thomas; Hentschel, Ute

    2011-01-01

    In this study, we present a single-cell genomics approach for the functional characterization of the candidate phylum Poribacteria, members of which are nearly exclusively found in marine sponges. The microbial consortia of the Mediterranean sponge Aplysina aerophoba were singularized by fluorescence-activated cell sorting, and individual microbial cells were subjected to phi29 polymerase-mediated 'whole-genome amplification'. Pyrosequencing of a single amplified genome (SAG) derived from a member of the Poribacteria resulted in nearly 1.6 Mb of genomic information distributed among 554 contigs analyzed in this study. Approximately two-third of the poribacterial genome was sequenced. Our findings shed light on the functional properties and lifestyle of a possibly ancient bacterial symbiont of marine sponges. The Poribacteria are mixotrophic bacteria with autotrophic CO(2)-fixation capacities through the Wood-Ljungdahl pathway. The cell wall is of Gram-negative origin. The Poribacteria produce at least two polyketide synthases (PKSs), one of which is the sponge-specific Sup-type PKS. Several putative symbiosis factors such as adhesins (bacterial Ig-like domains, lamininin G domain proteins), adhesin-related proteins (ankyrin, fibronectin type III) and tetratrico peptide repeat domain-encoding proteins were identified, which might be involved in mediating sponge-microbe interactions. The discovery of genes coding for 24-isopropyl steroids implies that certain fossil biomarkers used to date the origins of metazoan life on earth may possibly be of poribacterial origin. Single-cell genomic approaches, such as those shown herein, contribute to a better understanding of beneficial microbial consortia, of which most members are, because of the lack of cultivation, inaccessible by conventional techniques.

  20. Reliable measurement of E. coli single cell fluorescence distribution using a standard microscope set-up.

    Science.gov (United States)

    Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele

    2017-01-01

    Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).

  1. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes

    Science.gov (United States)

    Shen, Hsin-Hui; Belousoff, Matthew J.; Noinaj, Nicholas; Lu, Jingxiong; Holt, Stephen A.; Tan, Khershing; Selkrig, Joel; Webb, Chaille T.; Buchanan, Susan K.; Martin, Lisandra L.; Lithgow, Trevor

    2015-01-01

    In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation assembly module (the TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by Quartz Crystal Microbalance with Dissipation (QCM-D) and Magnetic Contrast Neutron Reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here, we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines. PMID:25341963

  2. Bacterial infection of osteoblasts induces interleukin-1beta and interleukin-18 transcription but not protein synthesis.

    Science.gov (United States)

    Marriott, Ian; Hughes, Francis M; Bost, Kenneth L

    2002-10-01

    A growing body of evidence has shown that bacterially challenged bone-forming osteoblasts are a significant source of an array of cytokines and chemokines that can support immune responses during bone disease. In the present study, Staphylococcus aureus and Salmonella, two common pathogens of bone, were investigated for their ability to induce production of two related inflammatory cytokines, interleukin-1beta (IL-1beta) and IL18, in osteoblasts. Cultured mouse osteoblasts were found to respond rapidly to either bacterial challenge by upregulation in the levels of mRNA encoding both IL-1beta and IL-18. Surprisingly, this mRNA expression did not translate into intracellular accumulation of IL-1beta or IL-18 precursor proteins or secretion of mature cytokines, despite the presence of detectable caspase-1 activity in these cells. These studies demonstrate that although osteoblasts can secrete a number of key proinflammatory mediators in response to bacterial pathogens, IL-1beta and IL-18 are not among this number. We suggest that osteoblasts are an unlikely source of these cytokines during the progression of bacterial infection of bone.

  3. Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding.

    Science.gov (United States)

    Torres, Alexis J; Hill, Abby S; Love, J Christopher

    2014-12-01

    Arrays of subnanoliter wells (nanowells) provide a useful system to isolate single cells and analyze their secreted proteins. Two general approaches have emerged: one that uses open arrays and local capture of secreted proteins, and a second (called microengraving) that relies on closed arrays to capture secreted proteins on a solid substrate, which is subsequently removed from the array. However, the design and operating parameters for efficient capture from these two approaches to analyze single-cell secretion have not been extensively considered. Using numerical simulations, we analyzed the operational envelope for both open and closed formats, as a function of the spatial distribution of capture ligands, their affinities for the protein, and the rates of single-cell secretion. Based on these analyses, we present a modified approach to capture secreted proteins in-well for highly active secreting cells. This simple method for in-well detection should facilitate rapid identification of cell lines with high specific productivities.

  4. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  5. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.

    Directory of Open Access Journals (Sweden)

    Ruud G J Detert Oude Weme

    Full Text Available Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET. Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM. For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.

  6. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer

    National Research Council Canada - National Science Library

    HATAKEYAMA, Masanori

    2017-01-01

    .... The cagA gene-encoded CagA protein is delivered into gastric epithelial cells via bacterial type IV secretion, where it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs...

  7. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  8. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.

    Science.gov (United States)

    Sawant, Prachi; Eissenberger, Kristina; Karier, Laurence; Mascher, Thorsten; Bramkamp, Marc

    2016-09-01

    In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane. Dynamin-like proteins (DLPs) play a major role in eukaryotic membrane re-modelling processes, including antiviral activities, but the function of the corresponding bacterial homologues was so far poorly understood. Here, we report on the protective function of a bacterial DLP, DynA from B. subtilis. We provide evidence that DynA plays an important role in a membrane surveillance system that counteracts membrane pore formation provoked by antibiotics and phages. In unstressed cells, DynA is a highly dynamic membrane-associated protein. Upon membrane damage, DynA localizes into large and static assemblies, where DynA acts locally to counteract stress-induced pores, presumably by inducing lipid bilayer fusion and sealing membrane gaps. Thus, lack of DynA increases the sensitivity to antibiotic exposure and phage infection. Taken together, our work suggests that DynA, and potentially other bacterial DLPs, contribute to the innate immunity of bacteria against membrane stress.

  9. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    Science.gov (United States)

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-01-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (pacid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  10. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents.

    Science.gov (United States)

    Smith, Roxanne P; Paxman, Jason J; Scanlon, Martin J; Heras, Begoña

    2016-07-16

    Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.

  11. Optimization of genetic analysis for single cell

    Directory of Open Access Journals (Sweden)

    hussein mouawia

    2012-12-01

    Full Text Available The molecular genetic analysis of microdissected cells by laser, a method for selecting a starting material of pure DNA or RNA uncontaminated. Our study focuses on technical pre-PCR (polymerase chain reaction for the amplification of DNA from a single cell (leukocyte isolated from human blood after laser microdissection and aims to optimize the yield of DNA extracted of this cell to be amplified without errors and provide reliable genetic analyzes. This study has allowed us to reduce the duration of cell lysis in order to perform the step of expanding genomic PEP (primer extension preamplification directly after lysis the same day and the quality of genomic amplification and eliminate purification step of the product PEP, step with a risk of contamination and risk of loss of genetic material related to manipulation. This approach has shown that the combination of at least 3 STR (short tandem repeat markers for genetic analysis of single cell improves the efficiency and accuracy of PCR and minimizes the loss of allele (allele drop out; ADO. This protocol can be applied to large scale and an effective means suitable for genetic testing for molecular diagnostic from isolated single cell (cancerous - fetal.

  12. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms.

    NARCIS (Netherlands)

    Sanchez, C.J.; Shivshankar, P.; Stol, K.; Trakhtenbroit, S.; Sullam, P.M.; Sauer, K.; Hermans, P.W.M.; Orihuela, C.J.

    2010-01-01

    The Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10) on the surf

  13. Biophysical analysis of the interaction of the serum protein human β2GPI with bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Anna Gries

    2014-01-01

    Full Text Available There are several human serum proteins for which no clear role is yet known. Among these is the abundant serum protein beta2-glycoprotein-I (β2GPI, which is known to bind to negatively charged phospholipids as well as to bacterial lipopolysaccharides (LPS, and was therefore proposed to play a role in the immune response. To understand the details of these interactions, a biophysical analysis of the binding of β2GPI to LPS and phosphatidylserine (PS was performed. The data indicate only a moderate tendency of the protein (1 to influence the LPS-induced cytokine production in vitro, (2 to react exothermally with LPS in a non-saturable way, and (3 to change its local microenvironment upon LPS association. Additionally, we found that the protein binds more strongly to phosphatidylserine (PS than to LPS. Furthermore, β2GPI converts the LPS bilayer aggregates into a stronger multilamellar form, and reduces the fluidity of the hydrocarbon moiety of LPS due to a rigidification of the acyl chains. From these data it can be concluded that β2GPI plays a role as an immune-modulating agent, but there is much less evidence for a role in immune defense against bacterial toxins such as LPS.

  14. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  15. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE

    OpenAIRE

    Buchwald, Gretel; Friebel, Andrea; Galán, Jorge E.; Hardt, Wolf-Dietrich; Wittinghofer, Alfred; Scheffzek, Klaus

    2002-01-01

    The bacterial enteropathogen Salmonella typhimurium employs a type III secretion system to inject bacterial toxins into the host cell cytosol. These toxins transiently activate Rho family GTP-binding protein-dependent signaling cascades to induce cytoskeletal rearrangements. One of these translocated Salmonella toxins, SopE, can activate Cdc42 in a Dbl-like fashion despite its lack of sequence similarity to Dbl-like proteins, the Rho-specific eukaryotic guanine nucleotide exchange factors. To...

  16. The r1162 mob proteins can promote conjugative transfer from cryptic origins in the bacterial chromosome.

    Science.gov (United States)

    Meyer, Richard

    2009-03-01

    The mobilization proteins of the broad-host-range plasmid R1162 can initiate conjugative transfer of a plasmid from a 19-bp locus that is partially degenerate in sequence. Such loci are likely to appear by chance in the bacterial chromosome and could act as cryptic sites for transfer of chromosomal DNA when R1162 is present. The R1162-dependent transfer of chromosomal DNA, initiated from one such potential site in Pectobacterium atrosepticum, is shown here. A second active site was identified in Escherichia coli, where it is also shown that large amounts of DNA are transferred. This transfer probably reflects the combined activity of the multiple cryptic origins in the chromosome. Transfer of chromosomal DNA due to the presence of a plasmid in the cytoplasm describes a previously unrecognized potential for the exchange of bacterial DNA.

  17. Dissecting the ATP hydrolysis pathway of bacterial enhancer-binding proteins.

    Science.gov (United States)

    Bose, Daniel; Joly, Nicolas; Pape, Tillmann; Rappas, Mathieu; Schumacher, Jorg; Buck, Martin; Zhang, Xiaodong

    2008-02-01

    bEBPs (bacterial enhancer-binding proteins) are AAA+ (ATPase associated with various cellular activities) transcription activators that activate gene transcription through a specific bacterial sigma factor, sigma(54). Sigma(54)-RNAP (RNA polymerase) binds to promoter DNA sites and forms a stable closed complex, unable to proceed to transcription. The closed complex must be remodelled using energy from ATP hydrolysis provided by bEBPs to melt DNA and initiate transcription. Recently, large amounts of structural and biochemical data have produced insights into how ATP hydrolysis within the active site of bEBPs is coupled to the re-modelling of the closed complex. In the present article, we review some of the key nucleotides, mutations and techniques used and how they have contributed towards our understanding of the function of bEBPs.

  18. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number...... of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild...... background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations...

  19. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    Science.gov (United States)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  20. Protein L. A bacterial Ig-binding protein that activates human basophils and mast cells.

    Science.gov (United States)

    Patella, V; Casolaro, V; Björck, L; Marone, G

    1990-11-01

    Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in

  1. Acute phase proteins in serum and cerebrospinal fluid in the course of bacterial meningitis.

    Science.gov (United States)

    Paradowski, M; Lobos, M; Kuydowicz, J; Krakowiak, M; Kubasiewicz-Ujma, B

    1995-08-01

    We carried out estimations of the following acute phase proteins: C-reactive protein (CRP), alpha-1-antitrypsin (AAT), alpha-1-acid glycoprotein (AAG), alpha-2-ceruloplasmin (CER), and alpha-2-haptoglobin (HPT) in serum and in cerebrospinal fluid (CSF) in patients with bacterial meningitis (BM, n = 30) and viral meningitis (VM, n = 30). We have shown that determinations of concentrations of AAG and CRP in serum and CER in CSF are useful in differentiation between BM and VM. The diagnostic power of these three tests (the areas under their ROC curves equal 0.942, 0.929, and 0.931, respectively) is bigger, though statistically not significantly, than that of traditional parameters of BM in CSF, i.e., total protein concentration and white blood cell count. Determination of AAG, CRP, and AAT in serum is a valuable monitoring marker in the course of BM treatment. Convenience of serum sampling constitutes an advantage over traditional BM parameters in CSF.

  2. Bacterial ortholog of mammalian translocator protein (TSPO with virulence regulating activity.

    Directory of Open Access Journals (Sweden)

    Annelise Chapalain

    Full Text Available The translocator protein (TSPO, previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5 M adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.

  3. Single cell analysis: the new frontier in 'Omics'

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Bodovitz, Steven

    2010-01-14

    Cellular heterogeneity arising from stochastic expression of genes, proteins, and metabolites is a fundamental principle of cell biology, but single cell analysis has been beyond the capabilities of 'Omics' technologies. This is rapidly changing with the recent examples of single cell genomics, transcriptomics, proteomics, and metabolomics. The rate of change is expected to accelerate owing to emerging technologies that range from micro/nanofluidics to microfabricated interfaces for mass spectrometry to third- and fourth-generation automated DNA sequencers. As described in this review, single cell analysis is the new frontier in Omics, and single cell Omics has the potential to transform systems biology through new discoveries derived from cellular heterogeneity.

  4. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    Science.gov (United States)

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.

  5. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  6. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  7. Bacterial resistance to complement killing mediated by the Ail protein of Yersinia enterocolitica.

    OpenAIRE

    Bliska, J B; Falkow, S

    1992-01-01

    Ail is a 17-kDa outer membrane Yersinia protein that mediates bacterial attachment to, and invasion of, cultured epithelial cells. We report here an alternative role for Ail in the pathogenesis of Yersinia infection. We found that Escherichia coli HB101 harboring the 4-kilobase recombinant ail clone pVM102 were highly resistant to killing in up to 50% normal human serum. A 674-base-pair fragment of DNA from pVM102, which encodes the ail gene, was inserted into pUC18 and shown to promote full ...

  8. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone

    2003-01-01

    The surface of AISI 316 grade stainless steel (SS) was modified with a layer of poly(ethylene glycol) (PEG) (molecular weight 5000) with the aim of preventing protein adsorption and bacterial adhesion. Model SS substrates were first modified to introduce a very high density of reactive amine groups...... by the adsorption of branched poly(ethylenimine) (PEI) from water. Methoxy-terminated aldehyde-poly(ethylene glycol) (M-PEG-CHO) was then grafted onto the PEI layers using reductive amination at the lower critical solution temperature (LCST) of the PEG in order to optimize the graft density of the linear PEG chains...

  9. When Phase Contrast Fails: ChainTracer and NucTracer, Two ImageJ Methods for Semi-Automated Single Cell Analysis Using Membrane or DNA Staining

    NARCIS (Netherlands)

    Syvertsson, S.; Vischer, N.O.E.; Gao, Y.; Hamoen, L.W.

    2016-01-01

    Within bacterial populations, genetically identical cells often behave differently. Single-cell measurement methods are required to observe this heterogeneity. Flow cytometry and fluorescence light microscopy are the primary methods to do this. However, flow cytometry requires reasonably strong fluo

  10. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  11. Structural and sequence analysis of imelysin-like proteins implicated in bacterial iron uptake.

    Directory of Open Access Journals (Sweden)

    Qingping Xu

    Full Text Available Imelysin-like proteins define a superfamily of bacterial proteins that are likely involved in iron uptake. Members of this superfamily were previously thought to be peptidases and were included in the MEROPS family M75. We determined the first crystal structures of two remotely related, imelysin-like proteins. The Psychrobacter arcticus structure was determined at 2.15 Å resolution and contains the canonical imelysin fold, while higher resolution structures from the gut bacteria Bacteroides ovatus, in two crystal forms (at 1.25 Å and 1.44 Å resolution, have a circularly permuted topology. Both structures are highly similar to each other despite low sequence similarity and circular permutation. The all-helical structure can be divided into two similar four-helix bundle domains. The overall structure and the GxHxxE motif region differ from known HxxE metallopeptidases, suggesting that imelysin-like proteins are not peptidases. A putative functional site is located at the domain interface. We have now organized the known homologous proteins into a superfamily, which can be separated into four families. These families share a similar functional site, but each has family-specific structural and sequence features. These results indicate that imelysin-like proteins have evolved from a common ancestor, and likely have a conserved function.

  12. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.

    Science.gov (United States)

    Slininger Lee, Marilyn F; Jakobson, Christopher M; Tullman-Ercek, Danielle

    2017-06-21

    Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.

  13. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis.

    Science.gov (United States)

    Kint, Cyrielle; Verstraeten, Natalie; Hofkens, Johan; Fauvart, Maarten; Michiels, Jan

    2014-08-01

    Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.

  14. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    Science.gov (United States)

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  15. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  16. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms.

    Directory of Open Access Journals (Sweden)

    Carlos J Sanchez

    Full Text Available The Pneumococcal serine-rich repeat protein (PsrP is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10 on the surface of lung cells through amino acids 273-341 located in the Basic Region (BR domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (rBR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122-166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.

  17. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets....... The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg......, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver funtion were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended...

  18. Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction.

    Science.gov (United States)

    Narasimhan, Diwahar; Woods, James H; Sunahara, Roger K

    2012-02-01

    Cocaine is highly addictive and there are no pharmacotherapeutic drugs available to treat acute cocaine toxicity or chronic abuse. Antagonizing an inhibitor such as cocaine using a small molecule has proven difficult. The alternative approach is to modify cocaine's pharmacokinetic properties by sequestering or hydrolyzing it in serum and limiting access to its sites of action. We took advantage of a bacterial esterase (CocE) that has evolved to hydrolyze cocaine and have developed it as a therapeutic that rapidly and specifically clears cocaine from the subject. Native enzyme was unstable at 37°C, thus limiting CocE's potential. Innovative computational methods based on the protein's structure helped elucidate its mechanism of destabilization. Novel protein engineering methodologies were applied to substantially improve its stability in vitro and in vivo. These improvements rendered CocE as a powerful and efficacious therapeutic to treat cocaine intoxication and lead the way towards developing a therapy for addiction.

  19. Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning

    Science.gov (United States)

    Walter, J.-C.; Dorignac, J.; Lorman, V.; Rech, J.; Bouet, J.-Y.; Nollmann, M.; Palmeri, J.; Parmeggiani, A.; Geniet, F.

    2017-07-01

    Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.

  20. Minimum inhibitory concentration of irradiated silk protein powder for bacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tuntivisoottikul, Kunya; Bunnak, Jintana [King Mongkut' s Institute of Technology Chaokhun Taharn Ladkrabang, Faculty of Industrial Education, Dept. of Agricultural Educaiton, Bangkok (Thailand); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    The objective of this research was to study a minimum concentration level of irradiated silk protein powder, which inhibited bacterial activity. The concentration of 100 kGy irradiated silk protein powder (ISP) solution was ranged from 5 to 15% in distilled water. The activities of three types of bacteria, Escherichia coli B/r, Bacillus subtilis M3-1 and Staphylococcus aureus K, were tested by using minimum inhibition concentration method (MIC). The results indicated that the minimum concentration level that inhibited growth of E. coli B/r and S. aureus K was 5% ISP and all concentration levels studied could not inhibit the Bacilus subtilis M3-1 activity. (author)

  1. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets......, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver funtion were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended...... to increase (P = 0.07) with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters....

  2. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU.

    Science.gov (United States)

    Berger, Michael; Farcas, Anca; Geertz, Marcel; Zhelyazkova, Petya; Brix, Klaudia; Travers, Andrew; Muskhelishvili, Georgi

    2010-01-01

    The histone-like protein HU is a highly abundant DNA architectural protein that is involved in compacting the DNA of the bacterial nucleoid and in regulating the main DNA transactions, including gene transcription. However, the coordination of the genomic structure and function by HU is poorly understood. Here, we address this question by comparing transcript patterns and spatial distributions of RNA polymerase in Escherichia coli wild-type and hupA/B mutant cells. We demonstrate that, in mutant cells, upregulated genes are preferentially clustered in a large chromosomal domain comprising the ribosomal RNA operons organized on both sides of OriC. Furthermore, we show that, in parallel to this transcription asymmetry, mutant cells are also impaired in forming the transcription foci-spatially confined aggregations of RNA polymerase molecules transcribing strong ribosomal RNA operons. Our data thus implicate HU in coordinating the global genomic structure and function by regulating the spatial distribution of RNA polymerase in the nucleoid.

  3. A bacterial protein enhances the release and efficacy of liposomal cancer drugs.

    Science.gov (United States)

    Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Diaz, Luis A; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert

    2006-11-24

    Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.

  4. Microfabricated devices for single cell analysis

    Science.gov (United States)

    Gao, Yuanfang

    BioMEMS or lab-on-a-chip technology is promising technology and enables the possibility of microchip devices with higher throughput or better performance for single cell analysis. We have designed and fabricated microdevices for single cell analysis, with impedance based device for fast cell screening and microchannel based flow systems for high throughput, high time resolution quantal exocytosis measurement with automatic cell positioning and reusability. The automatic cell positioning is realized by differential forces of fluidic dynamics. Microelectrodes are patterned at automatic trap positions for electrochemical detection quantal release of hormones like catecholamines secreted by cells. We also developed diamond-like carbon (DLC) microelectrodes onto chip device for low noise exocytosis measurement. The DLC microelectrodes were deposited by magnetron sputtering process with nitrogen doping and a bottom ITO conductive layer. Test results show the developed DLC can detect exocytosis with low noise and a stable background current which are comparable to that of carbon-fiber electrodes. They are batch producible at low cost and can realize high-throughput on-chip measurement of quantal exocytosis. The technology developed in this research can have wide ranging applications in fields such as electrophysiology, cell based sensors, high throughput screening of new drug development.

  5. Pseudotime estimation: deconfounding single cell time series.

    Science.gov (United States)

    Reid, John E; Wernisch, Lorenz

    2016-10-01

    Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confounding as the measurements are not averaged over populations of cells. When several genes are assayed in parallel these effects can be estimated and corrected for under certain smoothness assumptions on cell progression. We present a principled probabilistic model with a Bayesian inference scheme to analyse such data. We demonstrate our method's utility on public microarray, nCounter and RNA-seq datasets from three organisms. Our method almost perfectly recovers withheld capture times in an Arabidopsis dataset, it accurately estimates cell cycle peak times in a human prostate cancer cell line and it correctly identifies two precocious cells in a study of paracrine signalling in mouse dendritic cells. Furthermore, our method compares favourably with Monocle, a state-of-the-art technique. We also show using held-out data that uncertainty in the temporal dimension is a common confounder and should be accounted for in analyses of repeated cross-sectional time series. Our method is available on CRAN in the DeLorean package. john.reid@mrc-bsu.cam.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  6. Single-stranded DNA bound to bacterial cold-shock proteins: preliminary crystallographic and Raman analysis.

    Science.gov (United States)

    Bienert, Ralf; Zeeb, Markus; Dostál, Lubomir; Feske, Anette; Magg, Christine; Max, Klaas; Welfle, Heinz; Balbach, Jochen; Heinemann, Udo

    2004-04-01

    The cold-shock response has been described for several bacterial species. It is characterized by distinct changes in intracellular protein patterns whereby a set of cold-shock-inducible proteins become abundant. The major cold-shock proteins of Bacillus subtilis (Bs-CspB) and Bacillus caldolyticus (Bc-Csp) are small oligonucleotide/oligosaccharide-binding (OB) fold proteins that have been described as binding single-stranded nucleic acids. Bs-CspB (Mr = 7365) and Bc-Csp (Mr = 7333) were crystallized in the presence of the deoxyhexanucleotide (dT)6. Crystals of (dT)6 with Bs-CspB grew in the orthorhombic space group C222(1), with unit-cell parameters a = 49.0, b = 53.2, c = 77.0 A. Crystals with Bc-Csp grew in the primitive orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 74.3, b = 64.9, c = 31.2 A. These crystals diffract to maximal resolutions of 1.78 and 1.29 A, respectively. The presence of protein and DNA in the crystals was demonstrated by Raman spectroscopy.

  7. NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins

    Directory of Open Access Journals (Sweden)

    Pino Camilo

    2011-01-01

    Full Text Available Abstract Background Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins. Results Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM and Support Vector Machines (SVMs with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search. Conclusions The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/

  8. ATP-dependent transcriptional activation by bacterial PspF AAA+protein.

    Science.gov (United States)

    Schumacher, Jörg; Zhang, Xiaodong; Jones, Susan; Bordes, Patricia; Buck, Martin

    2004-05-14

    Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.

  9. Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder.

    Science.gov (United States)

    Abby, Sophie S; Rocha, Eduardo P C

    2017-01-01

    Protein secretion systems are complex molecular machineries that translocate proteins through the outer membrane, and sometimes through multiple other barriers. They have evolved by co-option of components from other envelope-associated cellular machineries, making them sometimes difficult to identify and discriminate. Here, we describe how to identify protein secretion systems in bacterial genomes using MacSyFinder. This flexible computational tool uses the knowledge stemming from experimental studies to identify homologous systems in genome data. It can be used with a set of predefined models-"TXSScan"-to identify all major secretion systems of diderm bacteria (i.e., with inner and with LPS-containing outer membranes). For this, it identifies and clusters colocalized components of secretion systems using sequence similarity searches with hidden Markov model protein profiles. Finally, it checks whether the genetic content and organization of clusters satisfy the constraints of the model. TXSScan models can be customized to search for variants of known systems. The models can also be built from scratch to identify novel systems. In this chapter, we describe a complete pipeline of analysis, including the identification of a reference set of experimentally studied systems, the identification of components and the construction of their protein profiles, the definition of the models, their optimization, and, finally, their use as tools to search genomic data.

  10. Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein.

    Science.gov (United States)

    Wong, Jaslyn E M M; Alsarraf, Husam M A B; Kaspersen, Jørn Døvling; Pedersen, Jan Skov; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2014-02-01

    Cellulose, chitin and peptidoglycan are major long-chain carbohydrates in living organisms, and constitute a substantial fraction of the biomass. Characterization of the biochemical basis of dynamic changes and degradation of these β,1-4-linked carbohydrates is therefore important for both functional studies of biological polymers and biotechnology. Here, we investigated the functional role of multiplicity of the carbohydrate-binding lysin motif (LysM) domain that is found in proteins involved in bacterial peptidoglycan synthesis and remodelling. The Bacillus subtilis peptidoglycan-hydrolysing NlpC/P60 D,L-endopeptidase, cell wall-lytic enzyme associated with cell separation, possesses four LysM domains. The contribution of each LysM domain was determined by direct carbohydrate-binding studies in aqueous solution with microscale thermophoresis. We found that bacterial LysM domains have affinity for N-acetylglucosamine (GlcNac) polymers in the lower-micromolar range. Moreover, we demonstrated that a single LysM domain is able to bind carbohydrate ligands, and that LysM domains act additively to increase the binding affinity. Our study reveals that affinity for GlcNAc polymers correlates with the chain length of the carbohydrate, and suggests that binding of long carbohydrates is mediated by LysM domain cooperativity. We also show that bacterial LysM domains, in contrast to plant LysM domains, do not discriminate between GlcNAc polymers, and recognize both peptidoglycan fragments and chitin polymers with similar affinity. Finally, an Ala replacement study suggested that the carbohydrate-binding site in LysM-containing proteins is conserved across phyla. © 2013 FEBS.

  11. Disordered patterns in clustered Protein Data Bank and in eukaryotic and bacterial proteomes.

    Directory of Open Access Journals (Sweden)

    Michail Yu Lobanov

    Full Text Available We have constructed the clustered Protein Data Bank and obtained clusters of chains of different identity inside each cluster, http://bioinfo.protres.ru/st_pdb/. We have compiled the largest database of disordered patterns (141 from the clustered PDB where identity between chains inside of a cluster is larger or equal to 75% (version of 28 June 2010 by using simple rules of selection. The results of these analyses would help to further our understanding of the physicochemical and structural determinants of intrinsically disordered regions that serve as molecular recognition elements. We have analyzed the occurrence of the selected patterns in 97 eukaryotic and in 26 bacterial proteomes. The disordered patterns appear more often in eukaryotic than in bacterial proteomes. The matrix of correlation coefficients between numbers of proteins where a disordered pattern from the library of 141 disordered patterns appears at least once in 9 kingdoms of eukaryota and 5 phyla of bacteria have been calculated. As a rule, the correlation coefficients are higher inside of the considered kingdom than between them. The patterns with the frequent occurrence in proteomes have low complexity (PPPPP, GGGGG, EEEED, HHHH, KKKKK, SSTSS, QQQQQP, and the type of patterns vary across different proteomes, http://bioinfo.protres.ru/fp/search_new_pattern.html.

  12. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver.

    Science.gov (United States)

    Kędziora, Anna; Krzyżewska, Eva; Dudek, Bartłomiej; Bugla-Płoskońska, Gabriela

    2016-01-01

    The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS) are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  13. Motion of single MreB bacterial actin proteins in Caulobacter show treadmilling in vivo

    Science.gov (United States)

    Moerner, W. E.; Kim, Soyeon; Gitai, Zemer; Kinkhabwala, Anika; McAdams, Harley; Shapiro, Lucy

    2006-03-01

    Ensemble imaging of a bacterial actin homologue, the MreB protein, suggests that the MreB proteins form a dynamic filamentous spiral along the long axis of the cell in Caulobacter crescentus. MreB contracts and expands along the cell axis and plays an important role in cell shape and polarity maintenance, as well as chromosome segregation and translocation of the origin of replication during cell division. In this study we investigated the real-time polymerization of MreB in Caulobacter crescentus using single-molecule fluorescence imaging. With time-lapse imaging, polymerized MreB could be distinguished from cytoplasmic MreB monomers, because single monomeric MreB showed fast motion characteristic of Brownian diffusion, while single polymerized MreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer implies that treadmilling is the predominant mechanism in MreB filament formation. These single-molecule imaging experiments provide the first available information on the velocity of bacterial actin polymerization in a living cell.

  14. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    Science.gov (United States)

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  15. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    Directory of Open Access Journals (Sweden)

    Liselot Dewachter

    2016-03-01

    Full Text Available The phenomenon of programmed cell death (PCD, in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli. Importantly, the PCD pathway mediated by mutant Obg (Obg* differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  16. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    Directory of Open Access Journals (Sweden)

    Chansavath Phetsouphanh

    2015-08-01

    Full Text Available A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  17. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  18. STUDIES ON THE BLOOD PROTEINS : I. THE SERUM GLOBULINS IN BACTERIAL INFECTION AND IMMUNITY.

    Science.gov (United States)

    Hurwitz, S H; Meyer, K F

    1916-11-01

    The progress of an infection is usually associated with marked changes in the serum proteins. There may be an increase in the percentage of the total protein during some stage of the infection, and there is usually a change in the albumin-globulin ratio with an increase in the total globulins. This rise may antedate the development of any resistance by a considerable period of time. The non-protein constituents of the blood show fluctuations with a tendency to rise as the infection progresses. The process of immunization is in almost all instances associated with a definite increase in the globulins of the blood, and in some cases with a complete inversion of the normal albumin-globulin ratio. This may be produced both by living and dead organisms and by bacterial endotoxins. Massive doses usually result in an upset which shows no tendency to right itself during the period of observation. A rise in the globulins has been shown to occur long before the animal develops immune bodies in any appreciable concentration; and where the globulin curve and antibody curve appear to parallel one another, it can be shown by a careful analysis of both curves that there is a definite lack of correspondence at various periods of the experiment. Animals possessing a basic immunity show a more rapid rise in the globulin curve following inoculation. There is no parallelism between the leukocytic reaction and the globulin reaction. During periods of leukopenia the globulins may be as high as during the period of a leukocytosis. Bacterial endotoxins produce as striking an increase in the serum globulins as do living and killed bacteria. This would seem to indicate that a bacterial invasion of the organism is not absolutely essential for the globulin changes, and that the toxogenic factor in infection and immunity must play a part in the production of the changes noted. Inflammatory irritants injected intraperitoneally also result in a globulin increase. In this case the changes

  19. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  20. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  1. The Staphylococcus aureus extracellular adherence protein promotes bacterial internalization by keratinocytes independent of fibronectin-binding proteins.

    Science.gov (United States)

    Bur, Stephanie; Preissner, Klaus T; Herrmann, Mathias; Bischoff, Markus

    2013-08-01

    Staphylococcus aureus, the leading causal pathogen of skin infections, is strongly associated with skin atopy, and a number of bacterial adhesins allow the microbe to adhere to and invade eukaryotic cells. One of these adhesive molecules is the multifunctional extracellular adherence protein (Eap), which is overexpressed in situ in authentic human wounds and was shown to delay wound healing in experimental models. Yet, its role during invasion of keratinocytes is not clearly defined. By using a gentamicin/lysostaphin protection assay we demonstrate here that preincubation of HaCaT cells or primary keratinocytes with Eap results in a concentration-dependent significant increase in staphylococcal adhesion, followed by an even more pronounced internalization of bacteria by eukaryotic cells. Flow cytometric analysis revealed that Eap increased both the number of infected eukaryotic cells and the bacterial load per infected cell. Moreover, treatment of keratinocytes with Eap strongly enhanced the internalization of coagulase-negative staphylococci, as well as of E. coli, and markedly promoted staphylococcal invasion into extended-culture keratinocytes, displaying expression of keratin 10 and involucrin as differentiation markers. Thus, wound-related staphylococcal Eap may provide a major cellular invasin function, thereby enhancing the pathogen's ability to hide from the host immune system during acute and chronic skin infection.

  2. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.

    Science.gov (United States)

    Robert, Francis; Brakier-Gingras, Léa

    2003-11-01

    In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.

  3. Fluorescence quenching as a tool to investigate quinolone antibiotic interactions with bacterial protein OmpF.

    Science.gov (United States)

    Neves, Patrícia; Sousa, Isabel; Winterhalter, Mathias; Gameiro, Paula

    2009-02-01

    The outer membrane porin OmpF is an important protein for the uptake of antibiotics through the outer membrane of gram-negative bacteria; however, the possible binding sites involved in this uptake are still not recognized. Determination, at the molecular level, of the possible sites of antibiotic interaction is very important, not only to understand their mechanism of action but also to unravel bacterial resistance. Due to the intrinsic OmpF fluorescence, attributed mainly to its tryptophans (Trp(214), Trp(61)), quenching experiments were used to assess the site(s) of interaction of some quinolone antibiotics. OmpF was reconstituted in different organized structures, and the fluorescence quenching results, in the presence of two quenching agents, acrylamide and iodide, certified that acrylamide quenches Trp(61) and iodide Trp(214). Similar data, obtained in presence of the quinolones, revealed distinct behaviors for these antibiotics, with nalidixic acid interacting near Trp(214) and moxifloxacin near Trp(61). These studies, based on straightforward and quick procedures, show the existence of conformational changes in the protein in order to adapt to the different organized structures and to interact with the quinolones. The extent of reorganization of the protein in the presence of the different quinolones allowed an estimate on the sites of protein/quinolone interaction.

  4. Structural and functional homology between periplasmic bacterial molecular chaperones and small heat shock proteins.

    Science.gov (United States)

    Zav'yalov, V P; Zav'yalova, G A; Denesyuk, A I; Gaestel, M; Korpela, T

    1995-07-01

    The periplasmic Yersinia pestis molecular chaperone Caf1M belongs to a superfamily of bacterial proteins for one of which (PapD protein of Escherichia coli) the immunoglobulin-like fold was solved by X-ray analysis. The N-terminal domain of Caf1M was found to share a 20% amino acid sequence identity with an inclusion body-associated protein IbpB of Escherichia coli. One of the regions that was compared, was 32 amino acids long, and displayed more than 40% identity, probability of random coincidence was 1.2 x 10(-4). IbpB is involved in a superfamily of small heat shock proteins which fulfil the function of molecular chaperone. On the basis of the revealed homology, an immunoglobulin-like one-domain model of IbpB three-dimensional structure was designed which could be a prototype conformation of sHsp's. The structure suggested is in good agreement with the known experimental data obtained for different members of sHsp's superfamily.

  5. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Science.gov (United States)

    An, Shi-qi; Caly, Delphine L; McCarthy, Yvonne; Murdoch, Sarah L; Ward, Joseph; Febrer, Melanie; Dow, J Maxwell; Ryan, Robert P

    2014-10-01

    Bis-(3',5') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d)∼2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  6. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Shi-qi An

    2014-10-01

    Full Text Available Bis-(3',5' cyclic di-guanylate (cyclic di-GMP is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc. This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d∼2 µM. Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  7. Molecular Characterization of Soybean Mosaic Virus NIa Protein and its Processing Event in Bacterial Expression

    Directory of Open Access Journals (Sweden)

    Bong K. Choi

    2006-01-01

    Full Text Available Soybean mosaic virus (SMV-CN18 is an Rsv resistance-breaking (RB isolate to overcome soybean resistance genes Rsv1, Rsv3 and Rsv4. The aim of this study was to characterize nuclear inclusion protein a (NIa protein of RB isolate at the molecular level and demonstrate its processing into genome-linked protein (VPg and NIa-Pro domains in Esherichia coli containing a bacterial expression pET vector inserted with NIa gene. The full-length of NIa gene was synthesized by reverse transcription-polymerase chain reaction (RT-PCR and its 1298 nucleotides (nt and 432 amino acids (aa were deduced. The nt and aa sequences of NIa gene of SMV-CN18 shared high identities with the corresponding sequences of the NIa gene of the known SMV isolates, suggesting that the NIa is a highly conserved protein. The NIa-Pro domain contains a highly conserved structural motif for proteolysis, while the VPg domain contains a nuclear localization signal (NLS, a putative NTP-binding site and cellular factor-binding sites. The phylogenetic tree revealed that less divergence of NIa protein exists among twelve SMV isolates, which can be supported by a low bootstrap value between clades. In addition, the full-length of NIa gene, amplified by RT-PCR, was ligated into pET-28b E. coli expression vector with an N-terminal His6-tag. Optimal conditions for expression were at 1mM treatment of IPTG at 25°C for 5 hr. The released protein from bacterial lysates remained soluble and proved the processing form of the NIa polyprotein. E. coli expression system shows the processed product of 29 kDa VPg in SDS-PAGE confirmed by western blot analysis in both crude extracts and purified elution products, using Ni2+-NTA resin. The present study indicates that the N-terminal region of NIa which is processed and expressed in bacteria.

  8. Polyelectrolyte Multilayers: Towards Single Cell Studies

    Directory of Open Access Journals (Sweden)

    Dmitry Volodkin

    2014-05-01

    Full Text Available Single cell analysis (SCA is nowadays recognized as one of the key tools for diagnostics and fundamental cell biology studies. The Layer-by-layer (LbL polyelectrolyte assembly is a rather new but powerful technique to produce multilayers. It allows to model the extracellular matrix in terms of its chemical and physical properties. Utilization of the multilayers for SCA may open new avenues in SCA because of the triple role of the multilayer film: (i high capacity for various biomolecules; (ii natural mimics of signal molecule diffusion to a cell and (iii cell patterning opportunities. Besides, light-triggered release from multilayer films offers a way to deliver biomolecules with high spatio-temporal resolution. Here we review recent works showing strong potential to use multilayers for SCA and address accordingly the following issues: biomolecule loading, cell patterning, and light-triggered release.

  9. Electrochemical nanoprobes for single-cell analysis.

    Science.gov (United States)

    Actis, Paolo; Tokar, Sergiy; Clausmeyer, Jan; Babakinejad, Babak; Mikhaleva, Sofya; Cornut, Renaud; Takahashi, Yasufumi; López Córdoba, Ainara; Novak, Pavel; Shevchuck, Andrew I; Dougan, Jennifer A; Kazarian, Sergei G; Gorelkin, Petr V; Erofeev, Alexander S; Yaminsky, Igor V; Unwin, Patrick R; Schuhmann, Wolfgang; Klenerman, David; Rusakov, Dmitri A; Sviderskaya, Elena V; Korchev, Yuri E

    2014-01-28

    The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5-200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells.

  10. Kinetics of virus production from single cells.

    Science.gov (United States)

    Timm, Andrea; Yin, John

    2012-03-01

    The production of virus by infected cells is an essential process for the spread and persistence of viral diseases, the effectiveness of live-viral vaccines, and the manufacture of viruses for diverse applications. Yet despite its importance, methods to precisely measure virus production from cells are lacking. Most methods test infected-cell populations, masking how individual cells behave. Here we measured the kinetics of virus production from single cells. We combined simple steps of liquid-phase infection, serial dilution, centrifugation, and harvesting, without specialized equipment, to track the production of virus particles from BHK cells infected with vesicular stomatitis virus. Remarkably, cell-to-cell differences in latent times to virus release were within a factor of two, while production rates and virus yields spanned over 300-fold, highlighting an extreme diversity in virus production for cells from the same population. These findings have fundamental and technological implications for health and disease.

  11. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis.

    Science.gov (United States)

    Mardirossian, Mario; Grzela, Renata; Giglione, Carmela; Meinnel, Thierry; Gennaro, Renato; Mergaert, Peter; Scocchi, Marco

    2014-12-18

    Antimicrobial peptides (AMPs) are molecules from innate immunity with high potential as novel anti-infective agents. Most of them inactivate bacteria through pore formation or membrane barrier disruption, but others cross the membrane without damages and act inside the cells, affecting vital processes. However, little is known about their intracellular bacterial targets. Here we report that Bac71-35, a proline-rich AMP belonging to the cathelicidin family, can reach high concentrations (up to 340 μM) inside the E. coli cytoplasm. The peptide specifically and completely inhibits in vitro translation in the micromolar concentration range. Experiments of incorporation of radioactive precursors in macromolecules with E. coli cells confirmed that Bac71-35 affects specifically protein synthesis. Ribosome coprecipitation and crosslinking assays showed that the peptide interacts with ribosomes, binding to a limited subset of ribosomal proteins. Overall, these results indicate that the killing mechanism of Bac71-35 is based on a specific block of protein synthesis.

  12. Digital Microfluidics for Manipulation and Analysis of a Single Cell

    Directory of Open Access Journals (Sweden)

    Jie-Long He

    2015-09-01

    Full Text Available The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF, the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.

  13. Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD

    OpenAIRE

    Mouratou, Barbara; Schaeffer, Francis; Guilvout, Ingrid; Tello-Manigne, Diana; Pugsley, Anthony P.; Alzari, Pedro M.; Pecorari, Frédéric

    2007-01-01

    We engineered a class of proteins that binds selected polypeptides with high specificity and affinity. Use of the protein scaffold of Sac7d, belonging to a protein family that binds various ligands, overcomes limitations inherent in the use of antibodies as intracellular inhibitors: it lacks disulfide bridges, is small and stable, and can be produced in large amounts. An in vitro combinatorial/selection approach generated specific, high-affinity (up to 140 pM) binders against bacterial outer ...

  14. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  15. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  16. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  17. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R.; Sleytr, U. B.; Toca-Herrera, José L.

    2013-09-01

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (Tg) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below Tg. The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm2), followed by PDLLA (0.034 μm2), and PLGA (0.039 μm2), and the largest size for PLCL (0.09 μm2). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (˜1800 ng cm-2) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest Tg). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  18. Effect of pH, salt and chemical rinses on bacterial attachment to extracellular matrix proteins.

    Science.gov (United States)

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark

    2013-06-01

    Microbial contamination of carcass surfaces occurs during slaughter and post-slaughter processing steps, therefore interventions are needed to enhance meat safety and quality. Although many studies have been done at the macro-level, little is known about specific processes that influence bacterial attachment to carcass surfaces, particularly the role of extracellular matrix (ECM) proteins. In the present study, the effect of pH and salt (NaCl, KCl and CaCl2) on attachment of Escherichia coli and Salmonella isolates to dominant ECM proteins: collagen I, fibronectin, collagen IV and laminin were assessed. Also, the effects of three chemical rinses commonly used in abattoirs (2% acetic acid, 2% lactic acid and 10% trisodium phosphate (TSP)) were tested. Within a pH range of 5-9, there was no significant effect on attachment to ECM proteins, whereas the effect of salt type and concentration varied depending on combination of strain and ECM protein. A concentration-dependant effect was observed with NaCl and KCl (0.1-0.85%) on attachment of E. coli M23Sr, but only to collagen I. One-tenth percent CaCl2 produced the highest level of attachment to ECM proteins for E. coli M23Sr and EC614. In contrast, higher concentrations of CaCl2 increased attachment of E. coli EC473 to collagen IV. Rinses containing TSP produced >95% reduction in attachment to all ECM proteins. These observations will assist in the design of targeted interventions to prevent or disrupt contamination of meat surfaces, thus improving meat safety and quality.

  19. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films.

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R; Sleytr, U B; Toca-Herrera, José L

    2013-09-28

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (T(g)) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below T(g). The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm(2)), followed by PDLLA (0.034 μm(2)), and PLGA (0.039 μm(2)), and the largest size for PLCL (0.09 μm(2)). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (~1800 ng cm(-2)) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest T(g)). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  20. A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction

    Science.gov (United States)

    Johnson, J.; Brackley, C. A.; Cook, P. R.; Marenduzzo, D.

    2015-02-01

    We present computer simulations of the phase behaviour of an ensemble of proteins interacting with a polymer, mimicking non-specific binding to a piece of bacterial DNA or eukaryotic chromatin. The proteins can simultaneously bind to the polymer in two or more places to create protein bridges. Despite the lack of any explicit interaction between the proteins or between DNA segments, our simulations confirm previous results showing that when the protein-polymer interaction is sufficiently strong, the proteins come together to form clusters. Furthermore, a sufficiently large concentration of bridging proteins leads to the compaction of the swollen polymer into a globular phase. Here we characterise both the formation of protein clusters and the polymer collapse as a function of protein concentration, protein-polymer affinity and fibre flexibility.

  1. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    current tools especially where the N-terminally anchored and the SPIase-cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%. LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial genomes. The results are stored in the database LocateP-DB http://www.cmbi.ru.nl/locatep-db1. Conclusion LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive bacteria currently available.

  2. Platform for identification of Salmonella serovar differentiating bacterial proteins by top-down mass spectrometry: S. Typhimurium vs S. Heidelberg.

    Science.gov (United States)

    McFarland, Melinda A; Andrzejewski, Denis; Musser, Steven M; Callahan, John H

    2014-07-15

    Intact protein expression profiling has proven to be a powerful tool for bacterial subspecies differentiation. To facilitate typing, epidemiology, and trace-back of Salmonella contamination in the food supply, a minimum of serovar level differentiation is required. Subsequent identification and validation of marker proteins is integral to rapid screening development and to determining which proteins are subject to environmental pressure. Bacterial sequencing efforts have expanded the number of sequenced genomes available for single-nucleotide polymorphism (SNP) analyses, but annotation is often missing, start site errors are not uncommon, and the likelihood of expression is not known. In this work we show that the combination of intact protein expression profiles and top-down liquid chromatography-mass spectrometry (LC-MS/MS) facilitates the identification of proteins that result from expressed serovar specific nonsynonymous SNPs. Combinations of these marker proteins can be used in assays for rapid differentiation of bacteria. LC-MS generated intact protein expression profiles establish which bacterial protein masses differ across samples and can be determined without prior knowledge of the sample. Subsequent top-down LC-MS/MS is used to identify expressed proteins and their post-translational modifications (PTM), identify serovar specific markers, and validate genomic predicted orthologues as expressed biomarkers.

  3. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    2016-06-01

    Full Text Available Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro-and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds.

  4. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie) Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins

    Science.gov (United States)

    Dempwolff, Felix; Schmidt, Felix K.; Hervás, Ana B.; Stroh, Alex; Rösch, Thomas C.; Riese, Cornelius N.; Dersch, Simon; Heimerl, Thomas; Lucena, Daniella; Hülsbusch, Nikola; Stuermer, Claudia A. O.; Takeshita, Norio; Fischer, Reinhard; Graumann, Peter L.

    2016-01-01

    Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro—and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds. PMID:27362352

  5. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie) Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins.

    Science.gov (United States)

    Dempwolff, Felix; Schmidt, Felix K; Hervás, Ana B; Stroh, Alex; Rösch, Thomas C; Riese, Cornelius N; Dersch, Simon; Heimerl, Thomas; Lucena, Daniella; Hülsbusch, Nikola; Stuermer, Claudia A O; Takeshita, Norio; Fischer, Reinhard; Eckhardt, Bruno; Graumann, Peter L

    2016-06-01

    Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro-and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds.

  6. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  7. IL-1R signaling enables bystander cells to overcome bacterial blockade of host protein synthesis

    Science.gov (United States)

    Copenhaver, Alan M.; Casson, Cierra N.; Nguyen, Hieu T.; Duda, Matthew M.; Shin, Sunny

    2015-01-01

    The innate immune system is critical for host defense against microbial pathogens, yet many pathogens express virulence factors that impair immune function. Here, we used the bacterial pathogen Legionella pneumophila to understand how the immune system successfully overcomes pathogen subversion mechanisms. L. pneumophila replicates within macrophages by using a type IV secretion system to translocate bacterial effectors into the host cell cytosol. As a consequence of effector delivery, host protein synthesis is blocked at several steps, including translation initiation and elongation. Despite this translation block, infected cells robustly produce proinflammatory cytokines, but the basis for this is poorly understood. By using a reporter system that specifically discriminates between infected and uninfected cells within a population, we demonstrate here that infected macrophages produced IL-1α and IL-1β, but were poor producers of IL-6, TNF, and IL-12, which are critical mediators of host protection. Uninfected bystander cells robustly produced IL-6, TNF, and IL-12, and this bystander response required IL-1 receptor (IL-1R) signaling during early pulmonary infection. Our data demonstrate functional heterogeneity in production of critical protective cytokines and suggest that collaboration between infected and uninfected cells enables the immune system to bypass pathogen-mediated translation inhibition to generate an effective immune response. PMID:26034289

  8. Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

    Directory of Open Access Journals (Sweden)

    Daniel Y. Bargieri

    2011-01-01

    Full Text Available In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.

  9. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus.

    Science.gov (United States)

    Matsui, Takashi; Yamane, Junji; Mogi, Nobuyuki; Yamaguchi, Hiroto; Takemoto, Hiroshi; Yao, Min; Tanaka, Isao

    2012-09-01

    FtsZ is a key molecule in bacterial cell division. In the presence of GTP, it polymerizes into tubulin-like protofilaments by head-to-tail association. Protofilaments of FtsZ seem to adopt a straight or a curved conformation in relation to the bound nucleotide. However, although several bacterial and archaeal FtsZ structures have been determined, all of the structures reported previously are considered to have a curved conformation. In this study, structures of FtsZ from Staphylococcus aureus (SaFtsZ) were determined in apo, GDP-bound and inhibitor-complex forms and it was found that SaFtsZ undergoes marked conformational changes. The accumulated evidence suggests that the GDP-bound structure has the features of the straight form. The structural change between the curved and straight forms shows intriguing similarity to the eukaryotic cytoskeletal protein tubulin. Furthermore, the structure of the apo form showed an unexpectedly large conformational change in the core region. FtsZ has also been recognized as a novel target for antibacterial drugs. The structure of the complex with the inhibitor PC190723, which has potent and selective antistaphylococcal activity, indicated that the inhibitor binds at the cleft between the two subdomains.

  10. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part II. The application of aerobic sequencing batch reactor (aerobic SBR) to produce high biomass of Dioszegia sp. TISTR 5792.

    Science.gov (United States)

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-07-03

    This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.

  11. Single cell genome analysis of an uncultured heterotrophic stramenopile

    Science.gov (United States)

    Roy, Rajat S.; Price, Dana C.; Schliep, Alexander; Cai, Guohong; Korobeynikov, Anton; Yoon, Hwan Su; Yang, Eun Chan; Bhattacharya, Debashish

    2014-04-01

    A broad swath of eukaryotic microbial biodiversity cannot be cultivated in the lab and is therefore inaccessible to conventional genome-wide comparative methods. One promising approach to study these lineages is single cell genomics (SCG), whereby an individual cell is captured from nature and genome data are produced from the amplified total DNA. Here we tested the efficacy of SCG to generate a draft genome assembly from a single sample, in this case a cell belonging to the broadly distributed MAST-4 uncultured marine stramenopiles. Using de novo gene prediction, we identified 6,996 protein-encoding genes in the MAST-4 genome. This genetic inventory was sufficient to place the cell within the ToL using multigene phylogenetics and provided preliminary insights into the complex evolutionary history of horizontal gene transfer (HGT) in the MAST-4 lineage.

  12. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  13. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  14. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...... and Methods: Coatings: Plasma polymerized poly(vinyl pyrrolidone) (PP-PVP), poly(2-methoxyethyl methacrylate) (PPPMEA) or an inorganic oxide (10) coating were applied onto medical grade silicon rubber sheets (Silopren LSR 2050, Momentive Performance Materials Inc.). Plasma polymerization chamber......-coated crystals were then treated with one of the plasma polymerized coatings. Adsorption of fibrinogen, human serum albumin or immunoglobulin G was measured using a QCM-D instrument [5] (model E4, Q-Sense AB, Vastra Frolunda, Sweden) using a solution of 50llg/1 protein in PBS buffer. Results and Discussion: Our...

  15. Expanding the Imine Reductase Toolbox by Exploring the Bacterial Protein-Sequence Space.

    Science.gov (United States)

    Wetzl, Dennis; Berrera, Marco; Sandon, Nicolas; Fishlock, Dan; Ebeling, Martin; Müller, Michael; Hanlon, Steven; Wirz, Beat; Iding, Hans

    2015-08-17

    Recent investigations on imine reductases (IREDs) have enriched the toolbox of potential catalysts for accessing chiral amines, which are important building blocks for the pharmaceutical industry. Herein, we describe the characterization of 20 new IREDs. A C-terminal domain clustering of the bacterial protein-sequence space was performed to identify the novel IRED candidates. Each of the identified enzymes was characterized against a set of nine cyclic imine model substrates. A refined clustering towards putative active-site residues was performed and was consistent both with our screening and previously reported results. Finally, preparative scale experiments on a 100 mg scale with two purified IREDs, IR_20 from Streptomyces tsukubaensis and IR_23 from Streptomyces vidiochromogenes, were carried out to provide (R)-2-methylpiperidine in 98% ee (71% yield) and (R)-1-methyl-1,2,3,4-tetrahydroisoquinoline in >98% ee (82% yield). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structure-to-function relationships of bacterial translocator protein (TSPO: a focus on Pseudomonas

    Directory of Open Access Journals (Sweden)

    Charlène eLeneveu-Jenvrin

    2014-11-01

    Full Text Available The translocator protein (TSPO, which was previously designated as the peripheral-type benzodiazepine receptor, is a 3.5 billion year-old evolutionarily conserved protein expressed by most Eukarya, Archae and Bacteria, but its organization and functions differ remarkably. By taking advantage of the genomic data available on TSPO, we focused on bacterial TSPO and attempted to define functions of TSPO in Pseudomonas via in silico approaches. A tspo ortholog has been identified in several fluorescent Pseudomonas. This protein presents putative binding motifs for cholesterol and PK 11195, which is a specific drug ligand of mitochondrial TSPO. While it is a common surface distribution, the sense of insertion and membrane localization differ between α- and γ-proteobacteria. Experimental published data and STRING analysis of common TSPO partners in fluorescent Pseudomonas indicate a potential role of TSPO in the oxidative stress response, iron homeostasis and virulence expression. In these bacteria, TSPO could also take part in signal transduction and in the preservation of membrane integrity.

  17. Efficient processing of abasic sites by bacterial nonhomologous end-joining Ku proteins.

    Science.gov (United States)

    de Ory, Ana; Zafra, Olga; de Vega, Miguel

    2014-12-01

    Intracellular reactive oxygen species as well as the exposure to harsh environmental conditions can cause, in the single chromosome of Bacillus subtilis spores, the formation of apurinic/apyrimidinic (AP) sites and strand breaks whose repair during outgrowth is crucial to guarantee cell viability. Whereas double-stranded breaks are mended by the nonhomologous end joining (NHEJ) system composed of an ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku, repair of AP sites would rely on an AP endonuclease or an AP-lyase, a polymerase and a ligase. Here we show that B. subtilis Ku (BsuKu), along with its pivotal role in allowing joining of two broken ends by B. subtilis LigD (BsuLigD), is endowed with an AP/deoxyribose 5'-phosphate (5'-dRP)-lyase activity that can act on ssDNA, nicked molecules and DNA molecules without ends, suggesting a potential role in BER during spore outgrowth. Coordination with BsuLigD makes possible the efficient joining of DNA ends with near terminal abasic sites. The role of this new enzymatic activity of Ku and its potential importance in the NHEJ pathway is discussed. The presence of an AP-lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa allows us to expand our results to other bacterial Ku proteins. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. EXPRESSION OF BACTERIAL PROTEIN-A IN TOBACCO LEADS TO ENHANCED RESISTANCE TO STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Chaitali Roy

    2014-08-01

    Full Text Available Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms because it can be easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. As bacterial enzymes can be synthesized in tobacco, here we explore the possibility of in planta expression of staphylococcal protein-A(PA which is an antibody, an important group among biopharmaceuticals. In our study we have shown that the tobacco plants harboring PA gene could combat the crown gall infection and also effective in resisting abiotic stress conditions. Transgenic plants when subjected to interact with wild variety of Agrobacterium shows its enhanced capability to resist the gall formation. And when transgenic tobacco plants were grown in presence of 200mM NaCl and/or MG(Methylglyoxal solution, shows their increased tolerance towards salinity stress and high MG stress. So far transgenic tobacco plants are concerned, improvements in the expression of recombinant proteins and their recovery from tobacco may also enhance production and commercial use of this protein.

  19. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity

    Science.gov (United States)

    Vita, Nicolas; Landolfi, Gianpiero; Baslé, Arnaud; Platsaki, Semeli; Lee, Jaeick; Waldron, Kevin J.; Dennison, Christopher

    2016-12-01

    Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1–2) × 1017 M‑1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.

  20. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    Science.gov (United States)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  1. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth.

    Science.gov (United States)

    Breton, Jonathan; Tennoune, Naouel; Lucas, Nicolas; Francois, Marie; Legrand, Romain; Jacquemot, Justine; Goichon, Alexis; Guérin, Charlène; Peltier, Johann; Pestel-Caron, Martine; Chan, Philippe; Vaudry, David; do Rego, Jean-Claude; Liénard, Fabienne; Pénicaud, Luc; Fioramonti, Xavier; Ebenezer, Ivor S; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2016-02-09

    The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern.

  2. MicroBioRobots for single cell manipulation

    Science.gov (United States)

    Sakar, Mahmut Selman

    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable microactuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a biointegrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 mum coated with a monolayer of the swarming Serratia marcescens . The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples

  3. PHASE I SINGLE CELL ELECTROLYZER TEST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J; Timothy Steeper, T

    2008-08-05

    This document reports the results of Phase I Single Cell testing of an SO{sub 2}-Depolarized Water Electrolyzer. Testing was performed primarily during the first quarter of FY 2008 at the Savannah River National Laboratory (SRNL) using an electrolyzer cell designed and built at SRNL. Other facility hardware were also designed and built at SRNL. This test further advances this technology for which work began at SRNL in 2005. This research is valuable in achieving the ultimate goal of an economical hydrogen production process based on the Hybrid Sulfur (HyS) Cycle. The focus of this work was to conduct single cell electrolyzer tests to further develop the technology of SO{sub 2}-depolarized electrolysis as part of the HyS Cycle. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by water-splitting. Like all other sulfur-based cycles, HyS utilizes the high temperature thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both thermodynamic efficiency and hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. The anode and cathode are formed by spraying platinum containing catalyst on both sides of a Proton Exchange Membrane (PEM). In most testing the material of the PEM was NafionR. The electrolyzer cell active area can be as large as 54.8 cm{sup 2}. Feed to the anode of the electrolyzer is a sulfuric acid solution containing sulfur dioxide. The partial pressure of sulfur dioxide could be varied in the

  4. Single-cell Raman spectroscopy of irradiated tumour cells

    Science.gov (United States)

    Matthews, Quinn

    This work describes the development and application of a novel combination of single-cell Raman spectroscopy (RS), automated data processing, and principal component analysis (PCA) for investigating radiation induced biochemical responses in human tumour cells. The developed techniques are first validated for the analysis of large data sets (˜200 spectra) obtained from single cells. The effectiveness and robustness of the automated data processing methods is demonstrated, and potential pitfalls that may arise during the implementation of such methods are identified. The techniques are first applied to investigate the inherent sources of spectral variability between single cells of a human prostate tumour cell line (DU145) cultured in vitro. PCA is used to identify spectral differences that correlate with cell cycle progression and the changing confluency of a cell culture during the first 3-4 days after sub-culturing. Spectral variability arising from cell cycle progression is (i) expressed as varying intensities of protein and nucleic acid features relative to lipid features, (ii) well correlated with known biochemical changes in cells as they progress through the cell cycle, and (iii) shown to be the most significant source of inherent spectral variability between cells. This characterization provides a foundation for interpreting spectral variability in subsequent studies. The techniques are then applied to study the effects of ionizing radiation on human tumour cells. DU145 cells are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons from a medical linear accelerator. Raman spectra are acquired from irradiated and unirradiated cells, up to 5 days post-irradiation. PCA is used to distinguish radiation induced spectral changes from inherent sources of spectral variability, such as those arising from cell cycle. Radiation induced spectral changes are found to correlate with both the irradiated dose and the

  5. The potential of single-cell profiling in plants.

    Science.gov (United States)

    Efroni, Idan; Birnbaum, Kenneth D

    2016-04-05

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized cellular responses to environmental inputs. Single-cell experimental outputs require different analytical approaches compared with pooled cell profiles and new tools tailored to single-cell assays are being developed. Here, we highlight promising new single-cell profiling approaches, their limitations as applied to plants, and their potential to address fundamental questions in plant biology.

  6. Preparation of single cells from aggregated Taxus suspension cultures for population analysis.

    Science.gov (United States)

    Naill, Michael C; Roberts, Susan C

    2004-06-30

    A method for the isolation of single plant cells from Taxus suspension cultures has been developed for the analysis of single cells via rapid throughput techniques such as flow cytometry. Several cell wall specific enzymes, such as pectinase, pectolyase Y-23, macerozyme, Driselase(R), and cellulase were tested for efficacy in producing single cell suspensions. The method was optimized for single cell yield, viability, time, and representivity of aggregated cell cultures. The best combination for single cell isolation was found to be 0.5% (w/v) pectolyase Y-23 and 0.04% (w/v) cellulase. High viability (>95%) and high yields of single cell aggregates (>90%) were obtained following 4 hours of digestion for four separate Taxus cell lines. In addition, methyl jasmonate elicitation (200 microM) was found to have no effect on three of the four tested Taxus lines. Isolated single cells were statistically similar to untreated cell cultures for peroxidase activity (model cell wall protein) and paclitaxel content (secondary metabolite produced in Taxus cell cultures). In comparison, protoplasts showed marked changes in both peroxidase activity and paclitaxel content as compared to untreated cultures. The use of flow cytometry was demonstrated with isolated cells that were found to have > 99% viability upon staining with fluorescein diacetate. The development of a method for the isolation of single plant cells will allow the study of population dynamics and culture variability on a single cell level for the development of population models of plant cell cultures and secondary metabolism. Copyright 2004 Wiley Periodicals, Inc.

  7. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    Science.gov (United States)

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  8. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  9. The structure of SAV1646 from Staphylococcus aureus belonging to a new `ribosome-associated' subfamily of bacterial proteins.

    Science.gov (United States)

    Chirgadze, Yuri N; Clarke, Teresa E; Romanov, Vladimir; Kisselman, Gera; Wu-Brown, Jean; Soloveychik, Maria; Chan, Tiffany S Y; Gordon, Roni D; Battaile, Kevin P; Pai, Emil F; Chirgadze, Nickolay Y

    2015-02-01

    The crystal structure of the SAV1646 protein from the pathogenic microorganism Staphylococcus aureus has been determined at 1.7 Å resolution. The 106-amino-acid protein forms a two-layer sandwich with α/β topology. The protein molecules associate as dimers in the crystal and in solution, with the monomers related by a pseudo-twofold rotation axis. A sequence-homology search identified the protein as a member of a new subfamily of yet uncharacterized bacterial `ribosome-associated' proteins with at least 13 members to date. A detailed analysis of the crystal protein structure along with the genomic structure of the operon containing the sav1646 gene allowed a tentative functional model of this protein to be proposed. The SAV1646 dimer is assumed to form a complex with ribosomal proteins L21 and L27 which could help to complete the assembly of the large subunit of the ribosome.

  10. Effect of uncoupler on assembly pathway for pigment-binding protein of bacterial photosynthetic membranes. [Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Dierstein, R.; Drews, G.

    1986-10-01

    The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) was used to investigate membrane protein assembly in the phototrophic bacterium Rhodobacter capsulatus. As found for Escherichia coli and mitochondrial proteins, assembly across the bacterial photosynthetic membranes was sensitive to CCCP. At uncoupler concentrations which were sufficient to block the export of the periplasmic cytochrome c/sub 2/ and an outer membrane protein, the integration of pigment-binding protein into the photosynthetic apparatus was abolished. The unassembled protein was detected on the inner surface of the intracytoplasmic membrane. After inactivation of CCCP, accumulated protein continued insertion into the membrane. The data suggest that after binding to the cytoplasmic face of the membrane (i), translocation of protein into a transmembrane orientation takes place (ii), which is a prerequisite for the formation of a functional pigment-protein complex (iii).

  11. A man-made ATP-binding protein evolved independent of nature causes abnormal growth in bacterial cells.

    Directory of Open Access Journals (Sweden)

    Joshua M Stomel

    Full Text Available Recent advances in de novo protein evolution have made it possible to create synthetic proteins from unbiased libraries that fold into stable tertiary structures with predefined functions. However, it is not known whether such proteins will be functional when expressed inside living cells or how a host organism would respond to an encounter with a non-biological protein. Here, we examine the physiology and morphology of Escherichia coli cells engineered to express a synthetic ATP-binding protein evolved entirely from non-biological origins. We show that this man-made protein disrupts the normal energetic balance of the cell by altering the levels of intracellular ATP. This disruption cascades into a series of events that ultimately limit reproductive competency by inhibiting cell division. We now describe a detailed investigation into the synthetic biology of this man-made protein in a living bacterial organism, and the effect that this protein has on normal cell physiology.

  12. Single-cell transcriptome analysis of endometrial tissue

    OpenAIRE

    Krjutškov, K.; Katayama, S .; Saare, M; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; Kere, J.

    2016-01-01

    STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols fo...

  13. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Science.gov (United States)

    Błażej, Paweł; Miasojedow, Błażej; Grabińska, Małgorzata; Mackiewicz, Paweł

    2015-01-01

    Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  14. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Directory of Open Access Journals (Sweden)

    Tauson Anne-Helene

    2007-11-01

    Full Text Available Abstract The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07 with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.

  15. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Directory of Open Access Journals (Sweden)

    Paweł Błażej

    Full Text Available Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  16. Third order nonlinear optical properties of stacked bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.X.; Laible, P.D. [Argonne National Lab., IL (United States). Chemistry Div.; Spano, F.C.; Manas, E.S. [Temple Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1997-09-01

    Enhancement of the nonresonant second order molecular hyperpolarizabilities {gamma} were observed in stacked macrocyclic molecular systems, previously in a {micro}-oxo silicon phthalocyanine (SiPcO) monomer, dimer and trimer series, and now in bacteriochlorophyll a (BChla) arrays of light harvesting (LH) proteins. Compared to monomeric BChla in a tetrahydrofuran (THF) solution, the <{gamma}> for each macrocycle was enhanced in naturally occurring stacked macrocyclic molecular systems in the bacterial photosynthetic LH proteins where BChla`s are arranged in tilted face-to-face arrays. In addition, the {gamma} enhancement is more significant in B875 of LH1 than in B850 in LH2. Theoretical modeling of the nonresonant {gamma} enhancement using simplified molecular orbitals for model SiPcO indicated that the energy level of the two photon state is crucial to the {gamma} enhancement when a two photon process is involved, whereas the charge transfer between the monomers is largely responsible when one photon near resonant process is involved. The calculated results can be extended to {gamma} enhancement in B875 and B850 arrays, suggesting that BChla in B875 are more strongly coupled than in B850. In addition, a 50--160 fold increase in <{gamma}> for the S{sub 1} excited state of relative to S{sub 0} of bacteriochlorophyll in vivo was observed which provides an alternative method for probing excited state dynamics and a potential application for molecular switching.

  17. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana.

    Science.gov (United States)

    Piisilä, Maria; Keceli, Mehmet A; Brader, Günter; Jakobson, Liina; Jõesaar, Indrek; Sipari, Nina; Kollist, Hannes; Palva, E Tapio; Kariola, Tarja

    2015-02-13

    The Arabidopsis thaliana F-box protein MORE AXILLARY GROWTH2 (MAX2) has previously been characterized for its role in plant development. MAX2 appears essential for the perception of the newly characterized phytohormone strigolactone, a negative regulator of polar auxin transport in Arabidopsis. A reverse genetic screen for F-box protein mutants altered in their stress responses identified MAX2 as a component of plant defense. Here we show that MAX2 contributes to plant resistance against pathogenic bacteria. Interestingly, max2 mutant plants showed increased susceptibility to the bacterial necrotroph Pectobacterium carotovorum as well as to the hemi-biotroph Pseudomonas syringae but not to the fungal necrotroph Botrytis cinerea. max2 mutant phenotype was associated with constitutively increased stomatal conductance and decreased tolerance to apoplastic ROS but also with alterations in hormonal balance. Our results suggest that MAX2 previously characterized for its role in regulation of polar auxin transport in Arabidopsis, and thus plant development also significantly influences plant disease resistance. We conclude that the increased susceptibility to P. syringae and P. carotovorum is due to increased stomatal conductance in max2 mutants promoting pathogen entry into the plant apoplast. Additional factors contributing to pathogen susceptibility in max2 plants include decreased tolerance to pathogen-triggered apoplastic ROS and alterations in hormonal signaling.

  18. Single-cell analysis: Advances and future perspectives

    Directory of Open Access Journals (Sweden)

    Emir Hodzic

    2016-11-01

    Full Text Available The last several years have seen rapid development of technologies and methods that permit a detailed analysis of the genome and transcriptome of a single cell. Recent evidence from studies of single cells reveals that each cell type has a distinct lineage and function. The lineage and stage of development of each cell determine how they respond to each other and the environment. Experimental approaches that utilize single-cell analysis are effective means to understand how cell networks work in concert to coordinate a response at the population level; recent progress in single-cell analysis is offering a glimpse at the future.

  19. Development of Phage-Based Antibody Fragment Reagents for Affinity Enrichment of Bacterial Immunoglobulin G Binding Proteins.

    Science.gov (United States)

    Säll, Anna; Sjöholm, Kristoffer; Waldemarson, Sofia; Happonen, Lotta; Karlsson, Christofer; Persson, Helena; Malmström, Johan

    2015-11-06

    Disease and death caused by bacterial infections are global health problems. Effective bacterial strategies are required to promote survival and proliferation within a human host, and it is important to explore how this adaption occurs. However, the detection and quantification of bacterial virulence factors in complex biological samples are technically demanding challenges. These can be addressed by combining targeted affinity enrichment of antibodies with the sensitivity of liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS). However, many virulence factors have evolved properties that make specific detection by conventional antibodies difficult. We here present an antibody format that is particularly well suited for detection and analysis of immunoglobulin G (IgG)-binding virulence factors. As proof of concept, we have generated single chain fragment variable (scFv) antibodies that specifically target the IgG-binding surface proteins M1 and H of Streptococcus pyogenes. The binding ability of the developed scFv is demonstrated against both recombinant soluble protein M1 and H as well as the intact surface proteins on a wild-type S. pyogenes strain. Additionally, the capacity of the developed scFv antibodies to enrich their target proteins from both simple and complex backgrounds, thereby allowing for detection and quantification with LC-SRM MS, was demonstrated. We have established a workflow that allows for affinity enrichment of bacterial virulence factors.

  20. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating: Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P.F.; Currie, E.P.K.; Thies, J.C.; Mei, van der H.C.; Busscher, H.J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  1. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  2. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  3. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  4. Using measures of single-cell physiology and physiological state to understand organismic aging.

    Science.gov (United States)

    Mendenhall, Alexander; Driscoll, Monica; Brent, Roger

    2016-02-01

    Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age.

  5. Single Cell Mass Measurement Using Drag Force Inside Lab-on-Chip Microfluidics System.

    Science.gov (United States)

    Rahman, Md Habibur; Ahmad, Mohd Ridzuan; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa; Fukuda, Toshio

    2015-12-01

    Single cell mass (SCM) is an intrinsic property of single cell, it arouses a great interest among scientists as cell mass depends on the synthesis of proteins, DNA replication, cell wall stiffness, cell cytoplasm density, cell growth, ribosome, and other analogous of organisms. To date, several great strides have been taken to the advancements of SCM measurement techniques. Nevertheless, more works are required to enable the technology to push frontier in deep analysis of SCM measurement, hence to elucidate intracellular properties. In this paper, we present a lab-on-chip microfluidics system for SCM measurement, related with the force required to drag a single cell and Newton's law of motion inside microfluidics channel. Drag force on the cell was generated by a pressure driven syringe micropump and the motion of the cell was measured using optical observation under an inverted microscope. This approach of measuring SCM was calibrated using known mass (77.3 pg) of a polystyrene particle of 5.2 μm diameter. Furthermore, we used Saccharomyces cerevisiae baker's yeast cells of different sizes ([Formula: see text] diameter) for SCM measurement. Mass of 4.4 μm diameter of single yeast cell was measured as 2.12 pg which is in the range of previously reported single yeast cell mass (2-3 pg). In addition, we also studied the relation between SCM and single cell size. Results showed that single yeast cell mass increases exponentially with the increasing of single cell size.

  6. Single-cell detection of mRNA expression using nanofountain-probe electroporated molecular beacons.

    Science.gov (United States)

    Giraldo-Vela, Juan P; Kang, Wonmo; McNaughton, Rebecca L; Zhang, Xuemei; Wile, Brian M; Tsourkas, Andrew; Bao, Gang; Espinosa, Horacio D

    2015-05-01

    New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.

  7. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum.

  8. Arabidopsis FNRL protein is an NADPH-dependent chloroplast oxidoreductase resembling bacterial ferredoxin-NADP(+) reductases.

    Science.gov (United States)

    Koskela, Minna M; Dahlström, Käthe M; Goñi, Guillermina; Lehtimäki, Nina; Nurmi, Markus; Velazquez-Campoy, Adrian; Hanke, Guy; Bölter, Bettina; Salminen, Tiina A; Medina, Milagros; Mulo, Paula

    2017-08-18

    Plastidic ferredoxin-NADP(+) oxidoreductases (FNRs; EC:1.18.1.2) together with bacterial type FNRs (FPRs) form the plant-type FNR family. Members of this group contain a two-domain scaffold that forms the basis of an extended superfamily of FAD dependent oxidoreductases. In the present study, we show that the Arabidopsis thaliana At1g15140 (FERREDOXIN-NADP(+) OXIDOREDUCTASE -LIKE, FNRL) is an FAD-containing NADPH dependent oxidoreductase present in the chloroplast stroma. Determination of the kinetic parameters using the DCPIP NADPH-dependent diaphorase assay revealed that the reaction catalysed by a recombinant FNRL protein followed a saturation Michaelis-Menten profile on the NADPH concentration with kcat = 3.24 ± 0.17 s(-1) , Km(NADPH) = 1.6 ± 0.3 μM and kcat / Km(NADPH) = 2.0 ± 0.4 μM(-1) s(-1) . Biochemical assays suggested that FNRL is not likely to interact with Arabidopsis ferredoxin 1 (AtFd1), which is supported by the sequence analysis implying that the known Fd-binding residues in plastidic FNRs differ from those of FNRL. Additionally, based on structural modelling FNRL has an FAD-binding N-terminal domain built from a six-stranded β-sheet and one α-helix, and a C-terminal NADP(+) -binding α/β domain with a five-stranded β-sheet with a pair of α-helices on each side. The FAD-binding site is highly hydrophobic and predicted to bind FAD in a bent conformation typically seen in bacterial FPRs. This article is protected by copyright. All rights reserved.

  9. Receptor interacting protein kinase-2 inhibition by CYLD impairs anti-bacterial immune responses in macrophages

    Directory of Open Access Journals (Sweden)

    Katharina eWex

    2016-01-01

    Full Text Available Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 (NOD2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2. RIPK2 mediates the activation of immune responses via the nuclear factor-κB (NF-κB and extracellular-signal regulated kinase (ERK pathways. Previously, it has been shown that RIPK2 activation dependens on its K63-ubiquitination by the E3 ligases pellino-3 and ITCH, whereas the deubiquitinating enzyme A20 counter-regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new interacting partner and inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm infected bone-marrow-derived macrophages (BMDM. CYLD-mediated K63-deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines (IL-6, IL-12, anti-listerial ROS and NO, and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD-deficiency with respect to the production of IL-6, NO, ROS and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2 dependent manner.The protective function of CYLD-deficiency was dependent on IFN-γ pre-stimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent STAT1 activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent anti-bacterial immune responses in macrophages.

  10. Single cell genomics of subsurface microorganisms

    Science.gov (United States)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  11. Single cell mechanics of keratinocyte cells.

    Science.gov (United States)

    Lulevich, Valentin; Yang, Hsin-ya; Isseroff, R Rivkah; Liu, Gang-yu

    2010-11-01

    Keratinocytes represent the major cell type of the uppermost layer of human skin, the epidermis. Using AFM-based single cell compression, the ability of individual keratinocytes to resist external pressure and global rupturing forces is investigated and compared with various cell types. Keratinocytes are found to be 6-70 times stiffer than other cell types, such as white blood, breast epithelial, fibroblast, or neuronal cells, and in contrast to other cell types they retain high mechanic strength even after the cell's death. The absence of membrane rupturing peaks in the force-deformation profiles of keratinocytes and their high stiffness during a second load cycle suggests that their unique mechanical resistance is dictated by the cytoskeleton. A simple analytical model enables the quantification of Young's modulus of keratinocyte cytoskeleton, as high as 120-340 Pa. Selective disruption of the two major cytoskeletal networks, actin filaments and microtubules, does not significantly affect keratinocyte mechanics. F-actin is found to impact cell deformation under pressure. During keratinocyte compression, the plasma membrane stretches to form peripheral blebs. Instead of blebbing, cells with depolymerized F-actin respond to pressure by detaching the plasma membrane from the cytoskeleton underneath. On the other hand, the compression force of keratinocytes expressing a mutated keratin (cell line, KEB-7) is 1.6-2.2 times less than that for the control cell line that has normal keratin networks. Therefore, we infer that the keratin intermediate filament network is responsible for the extremely high keratinocyte stiffness and resilience. This could manifest into the rugged protective nature of the human epidermis.

  12. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  13. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  14. The use of C-reactive protein in predicting bacterial co-Infection in children with bronchiolitis

    Directory of Open Access Journals (Sweden)

    Mohamad Fares

    2011-03-01

    Full Text Available Background: Bronchiolitis is a potentially life-threatening respiratory illness commonly affecting children who are less than two years of age. Patients with viral lower respiratory tract infection are at risk for co-bacterial infection. Aim: The aim of our study was to evaluate the use of C-reactive protein (CRP in predicting bacterial co-infection in patients hospitalized for bronchiolitis and to correlate the results with the use of antibiotics. Patients and Methods: This is a prospective study that included patients diagnosed with bronchiolitis admitted to Makassed General Hospital in Beirut from October 2008 to April 2009. A tracheal aspirate culture was taken from all patients with bronchiolitis on admission to the hospital. Blood was drawn to test C-reactive protein level, white cell count, transaminases level, and blood sugar level. Results: Forty-nine patients were enrolled in the study and were divided into two groups. Group 1 included patients with positive tracheal aspirate culture and Group 2 included those with negative culture. All patients with a CRP level ≥2 mg/dL have had bacterial co-infection. White cell count, transaminases and blood sugar levels were not predictive for bacterial co-infection. The presence of bacterial co-infection increased the length of hospital stay in the first group by 2 days compared to those in the second group. Conclusion: Bacterial co-infection is frequent in infants with moderate to severe bronchiolitis and requires admission. Our data showed that a CRP level greater than 1.1 mg/dL raised suspicion for bacterial co-infection. Thus, a tracheal aspirate should be investigated microbiologically in all hospitalized patients in order to avoid unnecessary antimicrobial therapy and to shorten the duration of the hospital stay.

  15. Single-cell level based approach to investigate acetate metabolism during batch industrial fermentation

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Eriksen, Niels T.

    accumulation causes the decrease of productivity as it represents a waste of carbon source that would otherwise be converted to biomass and product. As the acetate accumulation problem is of the utmost importance in batch fermentation processes, various strategies have been developed to explain, understand...... on the sub-population level. We hypothesized that during the fermentation process, bacterial subpopulation exist, which exhibit different metabolic strategies towards the acetate. In this study, pure culture of Escherichia coli MG1655 was used to investigate in situ acetate metabolism at single-cell level...... during glucose fermentation. Batch fermentations were performed in order to examine consecutive stages of acetate metabolism during the fermentation process (production, co-consumption with glucose, consumption as single substrate). Uptake of glucose and acetate at single-cell level was observed...

  16. Validation of noise models for single-cell transcriptomics

    NARCIS (Netherlands)

    Grün, Dominic; Kester, Lennart; van Oudenaarden, Alexander

    2014-01-01

    Single-cell transcriptomics has recently emerged as a powerful technology to explore gene expression heterogeneity among single cells. Here we identify two major sources of technical variability: sampling noise and global cell-to-cell variation in sequencing efficiency. We propose noise models to co

  17. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  18. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  19. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N-U

    2000-01-01

    homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously......We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...

  20. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  1. Structural insights into alginate binding by bacterial cell-surface protein.

    Science.gov (United States)

    Temtrirath, Kanate; Murata, Kousaku; Hashimoto, Wataru

    2015-03-02

    A gram-negative Sphingomonas sp. strain A1 inducibly forms a mouth-like pit on the cell surface in the presence of alginate and directly incorporates polymers into the cytoplasm via the pit and ABC transporter. Among the bacterial proteins involved in import of alginate, a cell-surface EfeO-like Algp7 shows an ability to bind alginate, suggesting its contribution to accumulate alginate in the pit. Here, we show identification of its positively charged cluster involved in alginate binding using X-ray crystallography, docking simulation, and site-directed mutagenesis. The tertiary structure of Algp7 was determined at a high resolution (1.99Å) by molecular replacement, although no alginates were included in the structure. Thus, an in silico model of Algp7/oligoalginate was constructed by docking simulation using atomic coordinates of Algp7 and alginate oligosaccharides, where some charged residues were found to be potential candidates for alginate binding. Site-directed mutagenesis was conducted and five purified mutants K68A, K69A, E194A, N221A, and K68A/K69A were subjected to a binding assay. UV absorption difference spectroscopy along with differential scanning fluorimetry analysis indicated that K68A/K69A exhibited a significant reduction in binding affinity with alginate than wild-type Algp7. Based on these data, Lys68/Lys69 residues of Algp7 probably play an important role in binding alginate.

  2. Regulation and action of the bacterial enhancer-binding protein AAA+ domains

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Nixon, B. Tracy (Penn)

    2008-08-04

    Bacterial EBPs (enhancer-binding proteins) play crucial roles in regulating cellular responses to environmental changes, in part by providing efficient control over {sigma}{sup 54}-dependent gene transcription. The AAA+ (ATPase associated with various cellular activites) domain of the EBPs, when assembled into a ring, uses energy from ATP binding, hydrolysis and product release to remodel the {sigma}{sup 54}-RNAP (RNA polymerase) holoenzyme so that it can transition from closed to open form at promoter DNA. The assembly, and hence activity, of these ATPases are regulated by many different signal transduction mechanisms. Recent advances in solution scattering techniques, when combined with high-resolution structures and biochemical data, have enabled us to obtain mechanistic insights into the regulation and action of a subset of these {sigma}{sup 54} activators: those whose assembly into ring form is controlled by two-component signal transduction. We review (i) experimental considerations of applying the SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) technique, (ii) distinct regulation mechanisms of the AAA+ domains of three EBPs by similar two-component signal transduction receiver domains, and (iii) major conformational changes and correlated {sigma}{sup 54}-binding activity of an isolated EBP AAA+ domain in the ATP hydrolysis cycle.

  3. Estimating the bending modulus of a FtsZ bacterial-division protein filament

    Science.gov (United States)

    Cytrynbaum, Eric N.; Li, Yongnan Devin; Allard, Jun F.; Mehrabian, Hadi

    2012-01-01

    FtsZ, a cytoskeletal protein homologous to tubulin, is the principle constituent of the division ring in bacterial cells. It is known to have force-generating capacity in vitro and has been conjectured to be the source of the constriction force in vivo. Several models have been proposed to explain the generation of force by the Z ring. Here we re-examine data from in vitro experiments in which Z rings formed and constricted inside tubular liposomes, and we carry out image analysis on previously published data with which to better estimate important model parameters that have proven difficult to measure by direct means. We introduce a membrane-energy-based model for the dynamics of multiple Z rings moving and colliding inside a tubular liposome and a fluid model for the drag of a Z ring as it moves through the tube. Using this model, we estimate an effective membrane bending modulus of 500-700 pNnm. If we assume that FtsZ force generation is driven by hydrolysis into a highly curved conformation, we estimate the FtsZ filament bending modulus to be 310-390 pNnm2. If we assume instead that force is generated by the non-hydrolysis-dependent intermediate curvature conformation, we find that Bf>1400pNnm2. The former value sits at the lower end of the range of previously estimated values and, if correct, may raise challenges for models that rely on filament bending to generate force.

  4. A Streptococcus suis LysM domain surface protein contributes to bacterial virulence.

    Science.gov (United States)

    Wu, Zongfu; Shao, Jing; Ren, Haiyan; Tang, Huanyu; Zhou, Mingyao; Dai, Jiao; Lai, Liying; Yao, Huochun; Fan, Hongjie; Chen, Dai; Zong, Jie; Lu, Chengping

    2016-05-01

    Streptococcus suis (SS) is a major swine pathogen, as well as a zoonotic agent for humans. Numerous factors contribute to SS virulence, but the pathogenesis of SS infection is poorly understood. Here, we show that a novel SS surface protein containing a LysM at the N-terminus (SS9-LysM) contributes to SS virulence. Homology analysis revealed that the amino acid sequence of SS9-LysM from the SS strain GZ0565 shares 99.8-68.7% identity with homologous proteins from other SS strains and 41.2% identity with Group B Streptococcal protective antigen Sip. Immunization experiments showed that 7 out of 30 mice immunized with recombinant SS9-LysM were protected against challenge with the virulent GZ0565 strain, while all of the control mice died within 48h following bacterial challenge. In mouse infection model, the virulence of the SS9-LysM deletion mutant (ΔSS9-LysM) was reduced compared with the wild-type (WT) strain GZ0565 and SS9-LysM complemented strain. In addition, ΔSS9-LysM was significantly more sensitive to killing by pig blood ex vivo and mouse blood in vivo compared with the WT strain and SS9-LysM complemented strain. In vivo transcriptome analysis in mouse blood showed that the WT strain reduced the expression of host genes related to iron-binding by SS9-LysM. Moreover, the total free iron concentration in blood from infected mice was significantly lower for the ΔSS9-LysM strain compared with the WT strain. Together, our data reveal that SS9-LysM facilitates SS survival within blood by releasing more free iron from the host. This represents a new mechanism of SS pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    Science.gov (United States)

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-08-31

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.

  6. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine.

    Directory of Open Access Journals (Sweden)

    Jaroslaw M Boberek

    Full Text Available BACKGROUND: Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s of action in growing bacteria using genetics tools. METHODOLOGY/PRINCIPAL FINDINGS: First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC. Furthermore, Fractional Inhibitory Concentration Indices (FICIs showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively. Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells. CONCLUSIONS: The results argue against DNA binding as the primary mechanism of action of berberine and support the hypothesis that its antibacterial properties are due to inhibition of the cell division protein FtsZ. In addition, the genetic approach used here provides a means to rapidly test the activity of other putative FtsZ inhibitors.

  7. Bacterial Surface-Displayed GII.4 Human Norovirus Capsid Proteins Bound to HBGA-Like Molecules in Romaine Lettuce.

    Science.gov (United States)

    Wang, Ming; Rong, Shaofeng; Tian, Peng; Zhou, Yue; Guan, Shimin; Li, Qianqian; Wang, Dapeng

    2017-01-01

    Human Noroviruses (HuNoVs) are the main cause of non-bacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein on bacterial surface and used it as a new strategy to explore interaction between HuNoV protein and receptor candidates from romaine lettuce. The surface-displayed HuNoV proteins were confirmed on the surface of the transformed bacteria by an immunofluorescence assay. The distribution patterns of the surface-displayed HuNoV proteins in romaine lettuce were identified through a confocal immunofluorescence assay. The surface-displayed HuNoV proteins could be found in the stomata, and the surfaces of vein and leaf of romaine lettuce. The surface-displayed HuNoV proteins could be captured by an ELISA assay utilizing extract from leaf (LE) or vein (VE). The binding of the surface-displayed HuNoV proteins to LE or VE could be competitively blocked by histo-blood group antigens from human saliva. In addition, the binding of the surface-displayed HuNoV proteins to LE or VE could also be attenuated by heat denaturation of lettuce proteins, and abolished by oxidation of lettuce carbohydrates. The results indicated that histo-blood group antigen-like molecules in LE or VE were involved in the binding of the surface-displayed HuNoV proteins to romaine lettuce. All data demonstrated that the surface-displayed HuNoV proteins could be utilized in a new and simple system for investigation of the interaction between the HuNoVs and their candidate ligands.

  8. Single-cell census of mechanosensitive channels in living bacteria.

    Directory of Open Access Journals (Sweden)

    Maja Bialecka-Fornal

    Full Text Available Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i the mean number of channels per cell is much higher than previously estimated, ii measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering.

  9. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.

    Science.gov (United States)

    Guo, Qing; Jureller, Justin E; Warren, Julia T; Solomaha, Elena; Florián, Jan; Tang, Wei-Jen

    2008-08-29

    Calmodulin (CaM), a eukaryotic calcium sensor that regulates diverse biological activities, consists of N- and C-terminal globular domains (N-CaM and C-CaM, respectively). CaM serves as the activator of CyaA, a 188-kDa adenylyl cyclase toxin secreted by Bordetella pertussis, which is the etiologic agent for whooping cough. Upon insertion of the N-terminal adenylyl cyclase domain (ACD) of CyaA to its targeted eukaryotic cells, CaM binds to this domain tightly ( approximately 200 pm affinity). This interaction activates the adenylyl cyclase activity of CyaA, leading to a rise in intracellular cAMP levels to disrupt normal cellular signaling. We recently solved the structure of CyaA-ACD in complex with C-CaM to elucidate the mechanism of catalytic activation. However, the structure of the interface between N-CaM and CyaA, the formation of which contributes a 400-fold increase of binding affinity between CyaA and CaM, remains elusive. Here, we used site-directed mutations and molecular dynamic simulations to generate several working models of CaM-bound CyaA-ACD. The validity of these models was evaluated by disulfide bond cross-linking, point mutations, and fluorescence resonance energy transfer experiments. Our study reveals that a beta-hairpin region (amino acids 259-273) of CyaA-ACD likely makes contacts with the second calcium binding motif of the extended CaM. This mode of interaction differs from the interaction of N-CaM with anthrax edema factor, which binds N-CaM via its helical domain. Thus, two structurally conserved, bacterial adenylyl cyclase toxins have evolved to utilize distinct binding surfaces and modes of activation in their interaction with CaM, a highly conserved eukaryotic signaling protein.

  10. Interferon-alpha in viral and bacterial gastroenteritis: a comparison with C-reactive protein and interleukin-6.

    Science.gov (United States)

    Mangiarotti, P; Moulin, F; Palmer, P; Ravilly, S; Raymond, J; Gendrel, D

    1999-06-01

    The aim of the study was to identify serum markers able to differentiate bacterial and viral origin in acute diarrhoea. Interferon-alpha (INF-alpha), C-reactive protein (CRP) and interleukin-6 were determined on admission in the sera of 119 children aged between 1 mo and 14 y who were hospitalized for rotavirus (n = 60) or bacterial diarrhoea (Salmonella spp. 39 cases, Shigella spp. 15 cases, Campylobacter jejuni 5 cases). CRP concentration was >10 mg/l in 48.3% of children with viral gastroenteritis and 86.4% of children with bacterial gastroenteritis. IL6 concentration was >100 pg/ml in 11.7% and 26.3% of cases, respectively. INF-alpha was detected in 79.1% of children with rotavirus (sens 79%) and in 3.5% (spec 93%) with bacterial gastroenteritis. However the INF-alpha assay takes 48 h and pathogens are often identified from stools before interferon results are available. We found that serum markers are not discriminating enough to differentiate between viral and bacterial gastroenteritis in emergency cases.

  11. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    African Journals Online (AJOL)

    BSN

    t;nited States for feed illld pharmaceutical have been recovered by brewers m1d distillers after the ... Fermentation: One thousand milliliters of the media was prepared and poured into a bench scale ... The pH of the broth was kept at 4.6. by the.

  12. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  13. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    Directory of Open Access Journals (Sweden)

    David S Milner

    2014-04-01

    Full Text Available Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd GTP-binding are conserved. Deletion of mglA(Bd abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd interacted with a previously uncharacterised tetratricopeptide repeat (TPR domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.

  14. An Evolutionary Strategy for All-Atom Folding of the 60-Amino-Acid Bacterial Ribosomal Protein L20

    Science.gov (United States)

    Schug, A.; Wenzel, W.

    2006-01-01

    We have investigated an evolutionary algorithm for de novo all-atom folding of the bacterial ribosomal protein L20. We report results of two simulations that converge to near-native conformations of this 60-amino-acid, four-helix protein. We observe a steady increase of “native content” in both simulated ensembles and a large number of near-native conformations in their final populations. We argue that these structures represent a significant fraction of the low-energy metastable conformations, which characterize the folding funnel of this protein. These data validate our all-atom free-energy force field PFF01 for tertiary structure prediction of a previously inaccessible structural family of proteins. We also compare folding simulations of the evolutionary algorithm with the basin-hopping technique for the Trp-cage protein. We find that the evolutionary algorithm generates a dynamic memory in the simulated population, which leads to faster overall convergence. PMID:16565067

  15. Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo

    Directory of Open Access Journals (Sweden)

    Laura A. Novotny

    2016-08-01

    Full Text Available The vast majority of chronic and recurrent bacterial diseases are attributed to the presence of a recalcitrant biofilm that contributes significantly to pathogenesis. As such, these diseases will require an innovative therapeutic approach. We targeted DNABII proteins, an integral component of extracellular DNA (eDNA which is universally found as part of the pathogenic biofilm matrix to develop a biofilm disrupting therapeutic. We show that a cocktail of monoclonal antibodies directed against specific epitopes of a DNABII protein is highly effective to disrupt diverse biofilms in vitro as well as resolve experimental infection in vivo, in both a chinchilla and murine model. Combining this monoclonal antibody cocktail with a traditional antibiotic to kill bacteria newly released from the biofilm due to the action of the antibody cocktail was highly effective. Our results strongly support these monoclonal antibodies as attractive candidates for lead optimization as a therapeutic for resolution of bacterial biofilm diseases.

  16. N-terminal fusion tags for effective production of g-protein-coupled receptors in bacterial cell-free systems.

    Science.gov (United States)

    Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kulbatskiy, D S; Shulepko, M A; Petrovskaya, L E; Arseniev, A S; Dolgikh, D A; Kirpichnikov, M P

    2012-10-01

    G-protein-coupled receptors (GPCR) constitute one of the biggest families of membrane proteins. In spite of the fact that they are highly relevant to pharmacy, they have remained poorly explored. One of the main bottlenecks encountered in structural-functional studies of GPCRs is the difficulty to produce sufficient amounts of the proteins. Cell-free systems based on bacterial extracts fromE. colicells attract much attention as an effective tool for recombinant production of membrane proteins. GPCR production in bacterial cell-free expression systems is often inefficient because of the problems associated with the low efficiency of the translation initiation process. This problem could be resolved if GPCRs were expressed in the form of hybrid proteins with N-terminal polypeptide fusion tags. In the present work, three new N-terminal fusion tags are proposed for cell-free production of the human β2-adrenergic receptor, human M1 muscarinic acetylcholine receptor, and human somatostatin receptor type 5. It is demonstrated that the application of an N-terminal fragment (6 a.a.) of bacteriorhodopsin fromExiguobacterium sibiricum(ESR-tag), N-terminal fragment (16 а.о.) of RNAse A (S-tag), and Mistic protein fromB. subtilisallows to increase the CF synthesis of the target GPCRs by 5-38 times, resulting in yields of 0.6-3.8 mg from 1 ml of the reaction mixture, which is sufficient for structural-functional studies.

  17. Single-cell Transcriptome Study as Big Data

    Institute of Scientific and Technical Information of China (English)

    Pingjian Yu; Wei Lin

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteris-tics of scRNA-seq data and primary objectives of single-cell studies.

  18. The potential of single-cell profiling in plants

    OpenAIRE

    Efroni, Idan; Birnbaum, Kenneth D

    2016-01-01

    Single-cell transcriptomics has been employed in a growing number of animal studies, but the technique has yet to be widely used in plants. Nonetheless, early studies indicate that single-cell RNA-seq protocols developed for animal cells produce informative datasets in plants. We argue that single-cell transcriptomics has the potential to provide a new perspective on plant problems, such as the nature of the stem cells or initials, the plasticity of plant cells, and the extent of localized ce...

  19. Single-cell Transcriptome Study as Big Data

    Science.gov (United States)

    Yu, Pingjian; Lin, Wei

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  20. Native Contact Density and Nonnative Hydrophobic Effects in the Folding of Bacterial Immunity Proteins

    Science.gov (United States)

    Chen, Tao; Chan, Hue Sun

    2015-01-01

    The bacterial colicin-immunity proteins Im7 and Im9 fold by different mechanisms. Experimentally, at pH 7.0 and 10°C, Im7 folds in a three-state manner via an intermediate but Im9 folding is two-state-like. Accordingly, Im7 exhibits a chevron rollover, whereas the chevron arm for Im9 folding is linear. Here we address the biophysical basis of their different behaviors by using native-centric models with and without additional transferrable, sequence-dependent energies. The Im7 chevron rollover is not captured by either a pure native-centric model or a model augmented by nonnative hydrophobic interactions with a uniform strength irrespective of residue type. By contrast, a more realistic nonnative interaction scheme that accounts for the difference in hydrophobicity among residues leads simultaneously to a chevron rollover for Im7 and an essentially linear folding chevron arm for Im9. Hydrophobic residues identified by published experiments to be involved in nonnative interactions during Im7 folding are found to participate in the strongest nonnative contacts in this model. Thus our observations support the experimental perspective that the Im7 folding intermediate is largely underpinned by nonnative interactions involving large hydrophobics. Our simulation suggests further that nonnative effects in Im7 are facilitated by a lower local native contact density relative to that of Im9. In a one-dimensional diffusion picture of Im7 folding with a coordinate- and stability-dependent diffusion coefficient, a significant chevron rollover is consistent with a diffusion coefficient that depends strongly on native stability at the conformational position of the folding intermediate. PMID:26016652

  1. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Preston, D.A.; Wu, C.Y.; Blaszczak, L.C.; Seitz, D.E.; Halligan, N.G. (Eli Lilly and Co., Indianapolis, IN (USA))

    1990-05-01

    Radiolabeled penicillin G is widely used as the imaging agent in penicillin-binding protein (PBP) assays. The disadvantages of most forms of labeled penicillin G are instability on storage and the long exposure times usually required for autoradiography or fluorography of electrophoretic gels. We investigated the utility of radioiodinated penicillin V as an alternative reagent. Radioiodination of p-(trimethylstannyl)penicillin V with ({sup 125}I)Na, using a modification of the chloramine-T method, is simple, high yielding, and site specific. We demonstrated the general equivalence of commercially obtained ({sup 3}H)penicillin G and locally synthesized ({sup 125}I)penicillin V (IPV) in their recognition of bacterial PBPs. Profiles of PBPs in membranes from Bacteroides fragilis, Escherichia coli, Providencia rettgeri, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, and Enterococcus faecium labeled with IPV or (3H)penicillin G were virtually identical. Use of IPV as the imaging agent in competition experiments for determination of the affinities of various beta-lactam antibiotics for the PBPs of E. coli yielded results similar to those obtained in experiments with ({sup 3}H)penicillin G. Dried electrophoretic gels from typical PBP experiments, using IPV at 37.3 Ci/mmol and 30 micrograms/ml, exposed X-ray film in 8 to 24 h. The stability of IPV on storage at 4{degrees}C was inversely proportional to specific activity. At 37.3 Ci/mmol and 60 micrograms/ml, IPV retained useful activity for at least 60 days at 4{degrees}C. IPV represents a practical and stable reagent for rapid PBP assays.

  2. Native contact density and nonnative hydrophobic effects in the folding of bacterial immunity proteins.

    Science.gov (United States)

    Chen, Tao; Chan, Hue Sun

    2015-05-01

    The bacterial colicin-immunity proteins Im7 and Im9 fold by different mechanisms. Experimentally, at pH 7.0 and 10°C, Im7 folds in a three-state manner via an intermediate but Im9 folding is two-state-like. Accordingly, Im7 exhibits a chevron rollover, whereas the chevron arm for Im9 folding is linear. Here we address the biophysical basis of their different behaviors by using native-centric models with and without additional transferrable, sequence-dependent energies. The Im7 chevron rollover is not captured by either a pure native-centric model or a model augmented by nonnative hydrophobic interactions with a uniform strength irrespective of residue type. By contrast, a more realistic nonnative interaction scheme that accounts for the difference in hydrophobicity among residues leads simultaneously to a chevron rollover for Im7 and an essentially linear folding chevron arm for Im9. Hydrophobic residues identified by published experiments to be involved in nonnative interactions during Im7 folding are found to participate in the strongest nonnative contacts in this model. Thus our observations support the experimental perspective that the Im7 folding intermediate is largely underpinned by nonnative interactions involving large hydrophobics. Our simulation suggests further that nonnative effects in Im7 are facilitated by a lower local native contact density relative to that of Im9. In a one-dimensional diffusion picture of Im7 folding with a coordinate- and stability-dependent diffusion coefficient, a significant chevron rollover is consistent with a diffusion coefficient that depends strongly on native stability at the conformational position of the folding intermediate.

  3. Estimating the bending modulus of a FtsZ bacterial-division protein filament.

    Science.gov (United States)

    Cytrynbaum, Eric N; Li, Yongnan Devin; Allard, Jun F; Mehrabian, Hadi

    2012-01-01

    FtsZ, a cytoskeletal protein homologous to tubulin, is the principle constituent of the division ring in bacterial cells. It is known to have force-generating capacity in vitro and has been conjectured to be the source of the constriction force in vivo. Several models have been proposed to explain the generation of force by the Z ring. Here we re-examine data from in vitro experiments in which Z rings formed and constricted inside tubular liposomes, and we carry out image analysis on previously published data with which to better estimate important model parameters that have proven difficult to measure by direct means. We introduce a membrane-energy-based model for the dynamics of multiple Z rings moving and colliding inside a tubular liposome and a fluid model for the drag of a Z ring as it moves through the tube. Using this model, we estimate an effective membrane bending modulus of 500-700 pN nm. If we assume that FtsZ force generation is driven by hydrolysis into a highly curved conformation, we estimate the FtsZ filament bending modulus to be 310-390 pN nm(2). If we assume instead that force is generated by the non-hydrolysis-dependent intermediate curvature conformation, we find that B(f)>1400 pN nm(2). The former value sits at the lower end of the range of previously estimated values and, if correct, may raise challenges for models that rely on filament bending to generate force. © 2012 American Physical Society

  4. Feature extraction by statistical contact potentials and wavelet transform for predicting subcellular localizations in gram negative bacterial proteins.

    Science.gov (United States)

    Arango-Argoty, G A; Jaramillo-Garzón, J A; Castellanos-Domínguez, G

    2015-01-07

    Predicting the localization of a protein has become a useful practice for inferring its function. Most of the reported methods to predict subcellular localizations in Gram-negative bacterial proteins make use of standard protein representations that generally do not take into account the distribution of the amino acids and the structural information of the proteins. Here, we propose a protein representation based on the structural information contained in the pairwise statistical contact potentials. The wavelet transform decodes the information contained in the primary structure of the proteins, allowing the identification of patterns along the proteins, which are used to characterize the subcellular localizations. Then, a support vector machine classifier is trained to categorize them. Cellular compartments like periplasm and extracellular medium are difficult to predict, having a high false negative rate. The wavelet-based method achieves an overall high performance while maintaining a low false negative rate, particularly, on "periplasm" and "extracellular medium". Our results suggest the proposed protein characterization is a useful alternative to representing and predicting protein sequences over the classical and cutting edge protein depictions.

  5. Tumour Heterogeneity: The Key Advantages of Single-Cell Analysis

    Science.gov (United States)

    Tellez-Gabriel, Marta; Ory, Benjamin; Lamoureux, Francois; Heymann, Marie-Francoise; Heymann, Dominique

    2016-01-01

    Tumour heterogeneity refers to the fact that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, motility, proliferation and metastatic potential. This phenomenon occurs both between tumours (inter-tumour heterogeneity) and within tumours (intra-tumour heterogeneity), and it is caused by genetic and non-genetic factors. The heterogeneity of cancer cells introduces significant challenges in using molecular prognostic markers as well as for classifying patients that might benefit from specific therapies. Thus, research efforts for characterizing heterogeneity would be useful for a better understanding of the causes and progression of disease. It has been suggested that the study of heterogeneity within Circulating Tumour Cells (CTCs) could also reflect the full spectrum of mutations of the disease more accurately than a single biopsy of a primary or metastatic tumour. In previous years, many high throughput methodologies have raised for the study of heterogeneity at different levels (i.e., RNA, DNA, protein and epigenetic events). The aim of the current review is to stress clinical implications of tumour heterogeneity, as well as current available methodologies for their study, paying specific attention to those able to assess heterogeneity at the single cell level. PMID:27999407

  6. Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche.

    Directory of Open Access Journals (Sweden)

    Domenico Simone

    Full Text Available BACKGROUND: The twin-arginine translocation (Tat protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. CONCLUSIONS/SIGNIFICANCE: TatC proteins appear to be diversifying within

  7. pH6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor.

    Science.gov (United States)

    Zav'yalov, V P; Abramov, V M; Cherepanov, P G; Spirina, G V; Chernovskaya, T V; Vasiliev, A M; Zav'yalova, G A

    1996-05-01

    It was found that recombinant pH6 antigen (rPsaA protein) forming virulence-associated fimbriae on the surface of Yersinia pestis at pH 6.7 in host macrophage phagolysosomes or extracellularly in abscesses such as buboes, is a novel bacterial Fc-receptor. rPsaA protein displays reactivity with human IgG1, IgG2 and IgG3 subclasses but does not react with rabbit, mouse and sheep IgG.

  8. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Heydorn, Arne; Hentzer, Morten

    2001-01-01

    In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P-luxI have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent...... detection at the single-cell level and allowed for real-time measurements of fluctuations in AHL concentrations. This green fluorescent AHL sensor provides a state-of-the art tool for studies of communication between the individuals present in mixed bacterial communities....... proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL...

  9. Single-cell transcriptomics enters the age of mass production

    NARCIS (Netherlands)

    Junker, Jan Philipp; van Oudenaarden, Alexander

    2015-01-01

    Two publications in the current issue of Cell introduce novel methods for high-throughput single-cell transcriptomics by using droplet microfluidics and sophisticated barcoding schemes for transcriptional profiling of thousands of individual cells.

  10. Atomic force microscopy for the examination of single cell rheology.

    Science.gov (United States)

    Okajima, Takaharu

    2012-11-01

    Rheological properties of living cells play important roles in regulating their various biological functions. Therefore, measuring cell rheology is crucial for not only elucidating the relationship between the cell mechanics and functions, but also mechanical diagnosis of single cells. Atomic force microscopy (AFM) is becoming a useful technique for single cell diagnosis because it allows us to measure the rheological properties of adherent cells at any region on the surface without any modifications. In this review, we summarize AFM techniques for examining single cell rheology in frequency and time domains. Recent applications of AFM for investigating the statistical analysis of single cell rheology in comparison to other micro-rheological techniques are reviewed, and we discuss what specificity and universality of cell rheology are extracted using AFM.

  11. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  12. Droplet microfluidics--a tool for single-cell analysis.

    Science.gov (United States)

    Joensson, Haakan N; Andersson Svahn, Helene

    2012-12-03

    Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding.

  13. Bacterial beta-lactamase fragmentation complementation strategy can be used as a method for identifying interacting protein pairs.

    Science.gov (United States)

    Park, Jong-Hwa; Back, Jung Ho; Hahm, Soo Hyun; Shim, Hye-Young; Park, Min Ju; Ko, Sung Il; Han, Ye Sun

    2007-10-01

    We investigated the applicability of the TEM-1 beta- lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

  14. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Harris, Jason B; Baresch-Bernal, Andrea; Rollins, Sean M; Alam, Ashfaqul; LaRocque, Regina C; Bikowski, Margaret; Peppercorn, Amanda F; Handfield, Martin; Hillman, Jeffery D; Qadri, Firdausi; Calderwood, Stephen B; Hohmann, Elizabeth; Breiman, Robert F; Brooks, W Abdullah; Ryan, Edward T

    2006-09-01

    We applied an immunoscreening technique, in vivo-induced antigen technology (IVIAT), to identify immunogenic bacterial proteins expressed during human infection with Salmonella enterica serovar Typhi, the cause of typhoid fever. We were able to assign a functional classification to 25 of 35 proteins identified by IVIAT. Of these 25, the majority represent proteins with known or potential roles in the pathogenesis of S. enterica. These include proteins implicated in fimbrial structure and biogenesis, antimicrobial resistance, heavy metal transport, bacterial adhesion, and extracytoplasmic substrate trafficking as well as secreted hydrolases. The 10 remaining antigens represent proteins with unknown functions. Of the 35 identified antigens, four had no immunoreactivity when probed with control sera from individuals never exposed to serovar Typhi organisms; these four included PagC, TcfB, and two antigens of unknown function encoded by STY0860 and STY3683. PagC is a virulence factor known to be upregulated in vivo in S. enterica serovar Typhimurium infection of mice. TcfB is the major structural subunit of a fimbrial operon found in serovar Typhi with no homolog in serovar Typhimurium organisms. By examining differential immunoreactivities in acute- versus convalescent-phase human serum samples, we found specific anti-PagC and anti-TcfB immunoglobulin G responses in patients with serovar Typhi bacteremia. Serovar Typhi antigens identified by IVIAT warrant further evaluation for their contributions to pathogenesis, and they may have diagnostic, therapeutic, or preventive uses.

  15. Fluorescence-based tools for single-cell approaches in food microbiology.

    Science.gov (United States)

    Bridier, A; Hammes, F; Canette, A; Bouchez, T; Briandet, R

    2015-11-20

    The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.

  16. Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins

    National Research Council Canada - National Science Library

    Kudryashova, Elena; Quintyn, Royston; Seveau, Stephanie; Lu, Wuyuan; Wysocki, Vicki H; Kudryashov, Dmitri S

    2014-01-01

    .... In this study, we showed that binding of neutrophil ?-defensin HNP1 to affected bacterial toxins caused their local unfolding, potentiated their thermal melting and precipitation, exposed new regions for proteolysis, and increased susceptibility...

  17. Recent Trends on Micro/Nanofluidic Single Cell Electroporation

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Santra

    2013-09-01

    Full Text Available The behaviors of cell to cell or cell to environment with their organelles and their intracellular physical or biochemical effects are still not fully understood. Analyzing millions of cells together cannot provide detailed information, such as cell proliferation, differentiation or different responses to external stimuli and intracellular reaction. Thus, single cell level research is becoming a pioneering research area that unveils the interaction details in high temporal and spatial resolution among cells. To analyze the cellular function, single cell electroporation can be conducted by employing a miniaturized device, whose dimension should be similar to that of a single cell. Micro/nanofluidic devices can fulfill this requirement for single cell electroporation. This device is not only useful for cell lysis, cell to cell fusion or separation, insertion of drug, DNA and antibodies inside single cell, but also it can control biochemical, electrical and mechanical parameters using electroporation technique. This device provides better performance such as high transfection efficiency, high cell viability, lower Joule heating effect, less sample contamination, lower toxicity during electroporation experiment when compared to bulk electroporation process. In addition, single organelles within a cell can be analyzed selectively by reducing the electrode size and gap at nanoscale level. This advanced technique can deliver (in/out biomolecules precisely through a small membrane area (micro to nanoscale area of the single cell, known as localized single cell membrane electroporation (LSCMEP. These articles emphasize the recent progress in micro/nanofluidic single cell electroporation, which is potentially beneficial for high-efficient therapeutic and delivery applications or understanding cell to cell interaction.

  18. Methods, Challenges and Potentials of Single Cell RNA-seq

    OpenAIRE

    Daniel Hebenstreit

    2012-01-01

    RNA-sequencing (RNA-seq) has become the tool of choice for transcriptomics. Several recent studies demonstrate its successful adaption to single cell analysis. This allows new biological insights into cell differentiation, cell-to-cell variation and gene regulation, and how these aspects depend on each other. Here, I review the current single cell RNA-seq (scRNA-seq) efforts and discuss experimental protocols, challenges and potentials.

  19. Single cell transcriptome analysis using next generation sequencing.

    OpenAIRE

    Blattner, M.

    2010-01-01

    The heterogeneity of tissues, especially in cancer research, is a central issue in transcriptome analysis. In recent years, research has primarily focused on the development of methods for single cell analysis. Single cell analysis aims at gaining (novel) insights into biological processes of healthy and diseased cells. Some of the challenges in transcriptome analysis concern low abundance of sample starting material, necessary sample amplification steps and subsequent analysis. In this study...

  20. Methods, challenges and potentials of single cell RNA-seq

    OpenAIRE

    Hebenstreit, Daniel

    2012-01-01

    RNA-sequencing (RNA-seq) has become the tool of choice for transcriptomics. Several recent studies demonstrate its successful adaption to single cell analysis. This allows new biological insights into cell differentiation, cell-to-cell variation and gene regulation, and how these aspects depend on each other. Here, I review the current single cell RNA-seq (scRNA-seq) efforts and discuss experimental protocols, challenges and potentials.

  1. Single Cell Analysis: From Technology to Biology and Medicine.

    Science.gov (United States)

    Pan, Xinghua

    2014-01-01

    Single-cell analysis heralds a new era that allows "omics" analysis, notably genomics, transcriptomics, epigenomics and proteomics at the single-cell level. It enables the identification of the minor subpopulations that may play a critical role in a biological process of a population of cells, which conventionally are regarded as homogeneous. It provides an ultra-sensitive tool to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. It also facilitates the clinical investigation of patients when a very low quantity or a single cell is available for analysis, such as noninvasive prenatal diagnosis and cancer screening, and genetic evaluation for in vitro fertilization. Within a few short years, single-cell analysis, especially whole genomic sequencing and transcriptomic sequencing, is becoming robust and broadly accessible, although not yet a routine practice. Here, with single cell RNA-seq emphasized, an overview of the discipline, progresses, and prospects of single-cell analysis and its applications in biology and medicine are given with a series of logic and theoretical considerations.

  2. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2017-09-07

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  3. Investigating Microbial Activity in Diazotrophic Methane Seep Sediment via Transcript Analysis and Single-Cell FISH-NanoSIMS

    Science.gov (United States)

    Dekas, A. E.; Connon, S. A.; Chadwick, G.; Orphan, V. J.

    2012-12-01

    Methane seep microbial ecosystems are phylogenetically diverse and physiologically complex, and require culture-independent techniques to accurately investigate metabolic activity. In the present study we combine an RNA analysis of four key microbial genes with FISH-NanoSIMS analysis of single cells to determine the diversity of nitrogen fixing microorganisms (diazotrophs) present at a deep-sea methane-seeping site, as well as investigate the methane-dependency of a variety of community members. Recently, methane-dependent nitrogen fixation was observed in Mound 12 Costa Rica sediments, and was spatially correlated with the abundance of aggregates of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacterial symbionts (SRB). Combined with the detection of 15N uptake from 15N2 in these aggregates, this suggested that the ANME-SRB aggregates are the primary diazotrophs in seep sediment. However, the diversity of dinitrogenase reductase (nifH) sequences recovered from several deep-sea locales, including Mound 12, suggests a greater diversity of diazotrophs in marine sediment. To investigate the activity of these potential diazotrophs in Mound 12 sediment, we investigated a suite of RNA transcripts in 15N2 incubations in both the presence and absence of methane: nifH, bacterial 16S rRNA, methyl coenzyme M reductase A (mcrA), and adenosine-5'-phosposulfate reductase alpha subunit (aprA). No nifH transcripts were recovered in incubations without methane, consistent with previous measurements lacking 15N2 uptake in the same sediments. The activity of the bacterial community in general, assessed by variable transcription, was also greatly affected by the presence or absence of methane. Single-cell fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) was employed to confirm diazotrophic activity (15N2 uptake) and protein synthesis (15NH4+ uptake) of particular species implicated as ecologically important by the

  4. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  5. Conversion of celluloses to proteins. [Use of Cellulomonas and Alcaligenes faecalis

    Energy Technology Data Exchange (ETDEWEB)

    De Leon, C.A.; Joson, L.M.

    1980-01-01

    Cellulosic wastes in the form of sugar cane bagasse was converted to single-cell protein by the action of Cellulomonas species subsequent to hydrolysis by NaOH and(or) autoclaving. As an aid to the process, in order to decompose the inhibitory cellobiose, Alcaligenes faecalis was introduced along with the Cellulomonas. Fungal enzyme production was greatest at the onset of fermentation, while the bacterial cellulases were produced over a more prolonged period, after an initial lag period. Biomass yield showed no correlation with enzyme production. The single-cell protein obtained comprised mainly lysine, methionine, cysteine, glycine, and valine.

  6. ASSESSMENT OF C-REACTIVE PROTEIN AND OXIDATIVE/ANTIOXIDATIVE STATUS IN CHILDREN WITH ACUTE BACTERIAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    IMAD A.J. THANOON

    2009-01-01

    Full Text Available The objectives of this study were to compare the serum levels of C-reactive protein (CRP, serum malondialdehyde (MDA, antioxidant parameters [represented by serum ferritin, uric acid and totalantioxidant status (TAS] in children with bacterial meningitis with a control group. Twenty-seven children with bacterial meningitis were included in this study. Thirty apparently healthy childrenwere also included as the control group. Assays of serum CRP, uric acid, ferritin and TAS were performed on samples from controls and from patients prior to antibiotic therapy. After two weeksof antibiotic therapy, assays of the same parameters were repeated in the patients. A significant rise in the serum levels of MDA and CRP, and a significant reduction in serum uric acid levels andTAS were noted in children with acute bacterial meningitis (before therapy compared to controls. Serum ferritin levels showed no significant differences. When measured parameters of children withbacterial meningitis after therapy were compared with those of the controls, highly significant differences in the mean serum levels of uric acid, CRP and TAS were noted. There were no significant differences in the mean serum ferritin levels. Serum oxidative/antioxidative balance shifted to the oxidative side in meningitis patients before therapy, and improved after therapy.Elevation of CRP in cases with bacterial meningitis may reflect its importance as an aid in the diagnosis of such cases.

  7. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    Science.gov (United States)

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2015-12-04

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.

  8. Phylogeography, salinity adaptations and metabolic potential of the Candidate Division KB1 Bacteria based on a partial single cell genome.

    Directory of Open Access Journals (Sweden)

    Lisa M Nigro

    2016-08-01

    Full Text Available Deep-sea hypersaline anoxic basins (DHABs and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that has been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome (SAG of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis – previously developed based on 14C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source.

  9. In vitro antibacterial activity of venom protein isolated from sea snake Enhydrina schistosa against drugresistant human pathogenic bacterial strains

    Directory of Open Access Journals (Sweden)

    Palani Damotharan

    2015-06-01

    Full Text Available Objective: To evaluate the antibacterial activity of sea snake (Enhydrina schistosa venom protein against drug-resistant human pathogenic bacterial strains. Methods: The venom was collected by milking process from the live specimens of sea snake are using capillary tubes or glass plates. Venom was purified by ion exchange chromatography and it was tested for in-vitro antibacterial activity against 10 drug-resistant human pathogenic bacterial strains using the standard disc diffusion method. Results: The notable antibacterial activity was observed at 150 µg/mL concentration of purified venom and gave its minimum inhibitory concentrations values exhibited between 200-100 µg/mL against all the tested bacterial strains. The maximum zone of inhibition was observed at 16.4 mm against Salmonella boydii and the minimum activity was observed at 7.5 mm against Pseudomonas aeruginosa. After the sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis there were a clear single band was detected in the gel that corresponding to purified venom protein molecular weight of 44 kDa. Conclusions: These results suggested that the sea snake venom might be a feasible source for searching potential antibiotics agents against human pathogenic diseases.

  10. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  11. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins

    Directory of Open Access Journals (Sweden)

    Reddy Boojala

    2009-01-01

    Full Text Available Abstract Background Cold adapted or psychrophilic organisms grow at low temperatures, where most of other organisms cannot grow. This adaptation requires a vast array of sequence, structural and physiological adjustments. To understand the molecular basis of cold adaptation of proteins, we analyzed proteomes of psychrophilic and mesophilic bacterial species and compared the differences in amino acid composition and substitution patterns to investigate their likely association with growth temperatures. Results In psychrophilic bacteria, serine, aspartic acid, threonine and alanine are overrepresented in the coil regions of secondary structures, whilst glutamic acid and leucine are underrepresented in the helical regions. Compared to mesophiles, psychrophiles comprise a significantly higher proportion of amino acids that contribute to higher protein flexibility in the coil regions of proteins, such as those with tiny/small or neutral side chains. Amino acids with aliphatic, basic, aromatic and hydrophilic side chains are underrepresented in the helical regions of proteins of psychrophiles. The patterns of amino acid substitutions between the orthologous proteins of psychrophiles versus mesophiles are significantly different for several amino acids when compared to their substitutions in orthologous proteins of within the mesophiles or psychrophiles. Conclusion Current results provide quantitative substitution preferences (or avoidance of amino acids that lead to the adaptation of proteins to cold temperatures. These finding would help future efforts in selecting mutations for rational design of proteins with enhanced psychrophilic properties.

  12. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    Science.gov (United States)

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells.

  13. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins.

    Science.gov (United States)

    Riley, Sean P; Bykowski, Tomasz; Cooley, Anne E; Burns, Logan H; Babb, Kelly; Brissette, Catherine A; Bowman, Amy; Rotondi, Matthew; Miller, M Clarke; DeMoll, Edward; Lim, Kap; Fried, Michael G; Stevenson, Brian

    2009-04-01

    The Lyme disease spirochete, Borrelia burgdorferi, encodes a novel type of DNA-binding protein named EbfC. Orthologs of EbfC are encoded by a wide range of bacterial species, so characterization of the borrelial protein has implications that span the eubacterial kingdom. The present work defines the DNA sequence required for high-affinity binding by EbfC to be the 4 bp broken palindrome GTnAC, where 'n' can be any nucleotide. Two high-affinity EbfC-binding sites are located immediately 5' of B. burgdorferi erp transcriptional promoters, and binding of EbfC was found to alter the conformation of erp promoter DNA. Consensus EbfC-binding sites are abundantly distributed throughout the B. burgdorferi genome, occurring approximately once every 1 kb. These and other features of EbfC suggest that this small protein and its orthologs may represent a distinctive type of bacterial nucleoid-associated protein. EbfC was shown to bind DNA as a homodimer, and site-directed mutagenesis studies indicated that EbfC and its orthologs appear to bind DNA via a novel alpha-helical 'tweezer'-like structure.

  14. Microfluidic single-cell whole-transcriptome sequencing.

    Science.gov (United States)

    Streets, Aaron M; Zhang, Xiannian; Cao, Chen; Pang, Yuhong; Wu, Xinglong; Xiong, Liang; Yang, Lu; Fu, Yusi; Zhao, Liang; Tang, Fuchou; Huang, Yanyi

    2014-05-13

    Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.

  15. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  16. Variations in the binding pocket of an inhibitor of the bacterial division protein FtsZ across genotypes and species.

    Directory of Open Access Journals (Sweden)

    Amanda Miguel

    2015-03-01

    Full Text Available The recent increase in antibiotic resistance in pathogenic bacteria calls for new approaches to drug-target selection and drug development. Targeting the mechanisms of action of proteins involved in bacterial cell division bypasses problems associated with increasingly ineffective variants of older antibiotics; to this end, the essential bacterial cytoskeletal protein FtsZ is a promising target. Recent work on its allosteric inhibitor, PC190723, revealed in vitro activity on Staphylococcus aureus FtsZ and in vivo antimicrobial activities. However, the mechanism of drug action and its effect on FtsZ in other bacterial species are unclear. Here, we examine the structural environment of the PC190723 binding pocket using PocketFEATURE, a statistical method that scores the similarity between pairs of small-molecule binding sites based on 3D structure information about the local microenvironment, and molecular dynamics (MD simulations. We observed that species and nucleotide-binding state have significant impacts on the structural properties of the binding site, with substantially disparate microenvironments for bacterial species not from the Staphylococcus genus. Based on PocketFEATURE analysis of MD simulations of S. aureus FtsZ bound to GTP or with mutations that are known to confer PC190723 resistance, we predict that PC190723 strongly prefers to bind Staphylococcus FtsZ in the nucleotide-bound state. Furthermore, MD simulations of an FtsZ dimer indicated that polymerization may enhance PC190723 binding. Taken together, our results demonstrate that a drug-binding pocket can vary significantly across species, genetic perturbations, and in different polymerization states, yielding important information for the further development of FtsZ inhibitors.

  17. Orally administered P22 phage tailspike protein reduces salmonella colonization in chickens: prospects of a novel therapy against bacterial infections.

    Directory of Open Access Journals (Sweden)

    Shakeeba Waseh

    Full Text Available One of the major causes of morbidity and mortality in man and economically important animals is bacterial infections of the gastrointestinal (GI tract. The emergence of difficult-to-treat infections, primarily caused by antibiotic resistant bacteria, demands for alternatives to antibiotic therapy. Currently, one of the emerging therapeutic alternatives is the use of lytic bacteriophages. In an effort to exploit the target specificity and therapeutic potential of bacteriophages, we examined the utility of bacteriophage tailspike proteins (Tsps. Among the best-characterized Tsps is that from the Podoviridae P22 bacteriophage, which recognizes the lipopolysaccharides of Salmonella enterica serovar Typhimurium. In this study, we utilized a truncated, functionally equivalent version of the P22 tailspike protein, P22sTsp, as a prototype to demonstrate the therapeutic potential of Tsps in the GI tract of chickens. Bacterial agglutination assays showed that P22sTsp was capable of agglutinating S. Typhimurium at levels similar to antibodies and incubating the Tsp with chicken GI fluids showed no proteolytic activity against the Tsp. Testing P22sTsp against the three major GI proteases showed that P22sTsp was resistant to trypsin and partially to chymotrypsin, but sensitive to pepsin. However, in formulated form for oral administration, P22sTsp was resistant to all three proteases. When administered orally to chickens, P22sTsp significantly reduced Salmonella colonization in the gut and its further penetration into internal organs. In in vitro assays, P22sTsp effectively retarded Salmonella motility, a factor implicated in bacterial colonization and invasion, suggesting that the in vivo decolonization ability of P22sTsp may, at least in part, be due to its ability to interfere with motility… Our findings show promise in terms of opening novel Tsp-based oral therapeutic approaches against bacterial infections in production animals and potentially in

  18. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U;

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  19. Bio-Nanofabrication: Structuring Polymer Thin Films via Bacterial S-layer Proteins for Subsequent Use with Subtractive Nanofabrication Techniques

    Science.gov (United States)

    Esch, Mandy B.; Amponsah, Ebenezer K.; Bergkvist, Magnus

    2007-03-01

    Bio-molecule assisted lithography is a novel approach to create ordered patterns on the micro and nanometer size scale on thin films. The technique bears the potential to utilize self assembling properties of bio-molecules and to be integrated with conventional nanofabrication techniques. In the past, bacterial cell wall proteins (S-layers proteins) have been utilized to create ordered nanoparticle arrays. The work presented here employs S-layer proteins to shape UV-curable resist via an S-layer imprinted parylene template. Using this technique we can replicate S-layer patterns in resist thereby rendering the shape more resistant to subtractive nanofabrication techniques. The technique also demonstrates the adequacy of Nano Imprint Lithography to produce complex patterns not achievable with conventional lithography.

  20. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  1. Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening.

    Science.gov (United States)

    Nienberg, Christian; Garmann, Claudia; Gratz, Andreas; Bollacke, Andre; Götz, Claudia; Jose, Joachim

    2017-01-05

    Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 10⁵ variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH) was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM). Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST) the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM).

  2. Identification of a Potent Allosteric Inhibitor of Human Protein Kinase CK2 by Bacterial Surface Display Library Screening

    Directory of Open Access Journals (Sweden)

    Christian Nienberg

    2017-01-01

    Full Text Available Human protein kinase CK2 has emerged as promising target for the treatment of neoplastic diseases. The vast majority of kinase inhibitors known today target the ATP binding site, which is highly conserved among kinases and hence leads to limited selectivity. In order to identify non-ATP competitive inhibitors, a 12-mer peptide library of 6 × 105 variants was displayed on the surface of E. coli by autodisplay. Screening of this peptide library on variants with affinity to CK2 was performed by fluorophore-conjugated CK2 and subsequent flow cytometry. Single cell sorting of CK2-bound E. coli yielded new peptide variants, which were tested on inhibition of CK2 by a CE-based assay. Peptide B2 (DCRGLIVMIKLH was the most potent inhibitor of both, CK2 holoenzyme and the catalytic CK2α subunit (IC50 = 0.8 µM. Using different ATP concentrations and different substrate concentrations for IC50 determination, B2 was shown to be neither ATP- nor substrate competitive. By microscale thermophoresis (MST the KD value of B2 with CK2α was determined to be 2.16 µM, whereas no binding of B2 to CK2β-subunit was detectable. To our surprise, besides inhibition of enzymatic activity, B2 also disturbed the interaction of CK2α with CK2β at higher concentrations (≥25 µM.

  3. Studies of Antibiotic Resistance of Beta-Lactamase Bacteria under Different Nutrition Limitations at the Single-Cell Level.

    Science.gov (United States)

    Wang, Ying; Ran, Min; Wang, Jun; Ouyang, Qi; Luo, Chunxiong

    2015-01-01

    Drug resistance involves many biological processes, including cell growth, cell communication, and cell cooperation. In the last few decades, bacterial drug resistance studies have made substantial progress. However, a major limitation of the traditional resistance study still exists: most of the studies have concentrated on the average behavior of enormous amounts of cells rather than surveying single cells with different phenotypes or genotypes. Here, we report our study of beta-lactamase bacterial drug resistance in a well-designed microfluidic device, which allows us to conduct more controllable experiments, such as controlling the nutrient concentration, switching the culture media, performing parallel experiments, observing single cells, and acquiring time-lapse images. By using GFP as a beta-lactamase indicator and acquiring time-lapse images at the single-cell level, we observed correlations between the bacterial heterogeneous phenotypes and their behavior in different culture media. The feedback loop between the growth rate and the beta-lactamase production suggests that the beta-lactamase bacteria are more resistant in a rich medium than in a relatively poor medium. In the poorest medium, the proportion of dormant cells may increase, which causes a lower death rate in the same generation. Our work may contribute to assaying the antibiotic resistance of pathogenic bacteria in heterogeneous complex media.

  4. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins.

    Science.gov (United States)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-12-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted proteins, they are frequently N-glycosylated. This hampers production in microbes as these hosts glycosylate proteins differently. The resulting products may therefore be immunogenic, unstable and show reduced efficacy. Recently, successful glycoengineering of microbes has demonstrated that it is possible to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae.

  5. Single-cell regulome data analysis by SCRAT.

    Science.gov (United States)

    Ji, Zhicheng; Zhou, Weiqiang; Ji, Hongkai

    2017-09-15

    Emerging single-cell technologies (e.g. single-cell ATAC-seq, DNase-seq or ChIP-seq) have made it possible to assay regulome of individual cells. Single-cell regulome data are highly sparse and discrete. Analyzing such data is challenging. User-friendly software tools are still lacking. We present SCRAT, a Single-Cell Regulome Analysis Toolbox with a graphical user interface, for studying cell heterogeneity using single-cell regulome data. SCRAT can be used to conveniently summarize regulatory activities according to different features (e.g. gene sets, transcription factor binding motif sites, etc.). Using these features, users can identify cell subpopulations in a heterogeneous biological sample, infer cell identities of each subpopulation, and discover distinguishing features such as gene sets and transcription factors that show different activities among subpopulations. SCRAT is freely available at https://zhiji.shinyapps.io/scrat as an online web service and at https://github.com/zji90/SCRAT as an R package. hji@jhu.edu. Supplementary data are available at Bioinformatics online.

  6. Electrical impedance tomographic imaging of a single cell electroporation.

    Science.gov (United States)

    Meir, Arie; Rubinsky, Boris

    2014-06-01

    A living cell placed in a high strength electric field, can undergo a process known as electroporation. It is believed that during electroporation nano-scale defects (pores) occur in the membrane of the cell, causing dramatic changes to the permeability of its membrane. Electroporation is an important technique in biotechnology and medicine and numerous methods are being developed to improve the understanding and use of the technology. We propose to extend the toolbox available for studying electroporation by generating impedance distribution images of the cell as it undergoes electroporation using Electrical Impedance Tomography (EIT). To investigate the feasibility of this concept, we develop a mathematical model of the process of electroporation in a single cell and of EIT of the process and show simulation results of a computer-based finite element model (FEM). Our work is an attempt to develop a new imaging tool for visualizing electroporation in a single cell, offering a different temporal and spatial resolution compared to the state of the art, which includes bulk measurements of electrical properties during single cell electroporation, patch clamp and voltage clamp measurement in single cells and optical imaging with colorimetric dyes during single cell electroporation. This paper is a preliminary theoretic feasibility study.

  7. The topology of the bacterial co-conserved protein network and its implications for predicting protein function

    Directory of Open Access Journals (Sweden)

    Leach Sonia M

    2008-06-01

    Full Text Available Abstract Background Protein-protein interactions networks are most often generated from physical protein-protein interaction data. Co-conservation, also known as phylogenetic profiles, is an alternative source of information for generating protein interaction networks. Co-conservation methods generate interaction networks among proteins that are gained or lost together through evolution. Co-conservation is a particularly useful technique in the compact bacteria genomes. Prior studies in yeast suggest that the topology of protein-protein interaction networks generated from physical interaction assays can offer important insight into protein function. Here, we hypothesize that in bacteria, the topology of protein interaction networks derived via co-conservation information could similarly improve methods for predicting protein function. Since the topology of bacteria co-conservation protein-protein interaction networks has not previously been studied in depth, we first perform such an analysis for co-conservation networks in E. coli K12. Next, we demonstrate one way in which network connectivity measures and global and local function distribution can be exploited to predict protein function for previously uncharacterized proteins. Results Our results showed, like most biological networks, our bacteria co-conserved protein-protein interaction networks had scale-free topologies. Our results indicated that some properties of the physical yeast interaction network hold in our bacteria co-conservation networks, such as high connectivity for essential proteins. However, the high connectivity among protein complexes in the yeast physical network was not seen in the co-conservation network which uses all bacteria as the reference set. We found that the distribution of node connectivity varied by functional category and could be informative for function prediction. By integrating of functional information from different annotation sources and using the

  8. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions

    Institute of Scientific and Technical Information of China (English)

    Carol L Fischer; Katherine S Walters; David R Drake; Deborah V Dawson; Derek R Blanchette; Kim A Brogden; Philip W Wertz

    2013-01-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria;however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  9. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions.

    Science.gov (United States)

    Fischer, Carol L; Walters, Katherine S; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2013-09-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria; however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  10. Antimicrobial proteins from snake venoms: direct bacterial damage and activation of innate immunity against Staphylococcus aureus skin infection.

    Science.gov (United States)

    Samy, R P; Stiles, B G; Gopalakrishnakone, P; Chow, V T K

    2011-01-01

    The innate immune system is the first line of defense against microbial diseases. Antimicrobial proteins produced by snake venoms have recently attracted significant attention due to their relevance to bacterial infection and potential development into new therapeutic agents. Staphylococcus aureus is one of the major human pathogens causing a variety of infections involving pneumonia, toxic shock syndrome, and skin lesions. With the recent emergence of methicillin (MRSA) and vancomycin (VRSA) resistance, S. aureus infection is a serious clinical problem that will have a grave socio-economic impact in the near future. Although S. aureus susceptibility to innate antimicrobial peptides has been reported recently, the protective effect of snake venom phospholipase A₂ (svPLA₂) proteins on the skin from S. aureus infection has been understudied. This review details the protective function of svPLA₂s derived from venoms against skin infections caused by S. aureus. We have demonstrated in vivo that local application of svPLA₂ provides complete clearance of S. aureus within 2 weeks after treatment compared to fusidic acid ointment (FAO). In vitro experiments also demonstrate that svPLA₂ proteins have inhibitory (bacteriostatic) and killing (bactericidal) effects on S. aureus in a dose-dependant manner. The mechanism of bacterial membrane damage and perturbation was clearly evidenced by electron microscopic studies. In summary, svPLA₂s from Viperidae and Elapidae snakes are novel molecules that can activate important mechanisms of innate immunity in animals to endow them with protection against skin infection caused by S. aureus.

  11. The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane

    Directory of Open Access Journals (Sweden)

    Cacciotto Carla

    2010-08-01

    Full Text Available Abstract Background Mycoplasmas are the simplest bacteria capable of autonomous replication. Their evolution proceeded from gram-positive bacteria, with the loss of many biosynthetic pathways and of the cell wall. In this work, the liposoluble protein complement of Mycoplasma agalactiae, a minimal bacterial pathogen causing mastitis, polyarthritis, keratoconjunctivitis, and abortion in small ruminants, was subjected to systematic characterization in order to gain insights into its membrane proteome composition. Results The selective enrichment for M. agalactiae PG2T liposoluble proteins was accomplished by means of Triton X-114 fractionation. Liposoluble proteins were subjected to 2-D PAGE-MS, leading to the identification of 40 unique proteins and to the generation of a reference 2D map of the M. agalactiae liposoluble proteome. Liposoluble proteins from the type strain PG2 and two field isolates were then compared by means of 2D DIGE, revealing reproducible differences in protein expression among isolates. An in-depth analysis was then performed by GeLC-MS/MS in order to achieve a higher coverage of the liposoluble proteome. Using this approach, a total of 194 unique proteins were identified, corresponding to 26% of all M. agalactiae PG2T genes. A gene ontology analysis and classification for localization and function was also carried out on all protein identifications. Interestingly, the 11.5% of expressed membrane proteins derived from putative horizontal gene transfer events. Conclusions This study led to the in-depth systematic characterization of the M. agalactiae liposoluble protein component, providing useful insights into its membrane organization.

  12. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    Directory of Open Access Journals (Sweden)

    Isabella R Prokhorenko

    2009-03-01

    Full Text Available Isabella R Prokhorenko1, Svetlana V Zubova1, Alexandr Yu Ivanov2, Sergey V Grachev31Laboratory of Molecular Biomedicine, Institute of Basic Biological Problems; 2Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia; 3I.M. Sechenov’s Moscow Medical Academy, Moscow, Russia Abstract: Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Signifi cant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall.Keywords: lipopolysaccharide, Escherichia coli, chemotype, lysozyme, lactoferrin, colony-forming units

  13. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo.

    Directory of Open Access Journals (Sweden)

    Larry J Bischof

    2008-10-01

    Full Text Available Pore-forming toxins (PFTs constitute the single largest class of proteinaceous bacterial virulence factors and are made by many of the most important bacterial pathogens. Host responses to these toxins are complex and poorly understood. We find that the endoplasmic reticulum unfolded protein response (UPR is activated upon exposure to PFTs both in Caenorhabditis elegans and in mammalian cells. Activation of the UPR is protective in vivo against PFTs since animals that lack either the ire-1-xbp-1 or the atf-6 arms of the UPR are more sensitive to PFT than wild-type animals. The UPR acts directly in the cells targeted by the PFT. Loss of the UPR leads to a normal response against unrelated toxins or a pathogenic bacterium, indicating its PFT-protective role is specific. The p38 mitogen-activated protein (MAPK kinase pathway has been previously shown to be important for cellular defenses against PFTs. We find here that the UPR is one of the key downstream targets of the p38 MAPK pathway in response to PFT since loss of a functional p38 MAPK pathway leads to a failure of PFT to properly activate the ire-1-xbp-1 arm of the UPR. The UPR-mediated activation and response to PFTs is distinct from the canonical UPR-mediated response to unfolded proteins both in terms of its activation and functional sensitivities. These data demonstrate that the UPR, a fundamental intracellular pathway, can operate in intrinsic cellular defenses against bacterial attack.

  14. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo.

    Directory of Open Access Journals (Sweden)

    Larry J Bischof

    2008-10-01

    Full Text Available Pore-forming toxins (PFTs constitute the single largest class of proteinaceous bacterial virulence factors and are made by many of the most important bacterial pathogens. Host responses to these toxins are complex and poorly understood. We find that the endoplasmic reticulum unfolded protein response (UPR is activated upon exposure to PFTs both in Caenorhabditis elegans and in mammalian cells. Activation of the UPR is protective in vivo against PFTs since animals that lack either the ire-1-xbp-1 or the atf-6 arms of the UPR are more sensitive to PFT than wild-type animals. The UPR acts directly in the cells targeted by the PFT. Loss of the UPR leads to a normal response against unrelated toxins or a pathogenic bacterium, indicating its PFT-protective role is specific. The p38 mitogen-activated protein (MAPK kinase pathway has been previously shown to be important for cellular defenses against PFTs. We find here that the UPR is one of the key downstream targets of the p38 MAPK pathway in response to PFT since loss of a functional p38 MAPK pathway leads to a failure of PFT to properly activate the ire-1-xbp-1 arm of the UPR. The UPR-mediated activation and response to PFTs is distinct from the canonical UPR-mediated response to unfolded proteins both in terms of its activation and functional sensitivities. These data demonstrate that the UPR, a fundamental intracellular pathway, can operate in intrinsic cellular defenses against bacterial attack.

  15. Stochastic particle barcoding for single-cell tracking and multiparametric analysis.

    Science.gov (United States)

    Castellarnau, M; Szeto, G L; Su, H-W; Tokatlian, T; Love, J C; Irvine, D J; Voldman, J

    2015-01-27

    This study presents stochastic particle barcoding (SPB), a method for tracking cell identity across bioanalytical platforms. In this approach, single cells or small collections of cells are co-encapsulated within an enzymatically-degradable hydrogel block along with a random collection of fluorescent beads, whose number, color, and position encode the identity of the cell, enabling samples to be transferred in bulk between single-cell assay platforms without losing the identity of individual cells. The application of SPB is demonstrated for transferring cells from a subnanoliter protein secretion/phenotyping array platform into a microtiter plate, with re-identification accuracies in the plate assay of 96±2%. Encapsulated cells are recovered by digesting the hydrogel, allowing subsequent genotyping and phenotyping of cell lysates. Finally, a model scaling is developed to illustrate how different parameters affect the accuracy of SPB and to motivate scaling of the method to thousands of unique blocks.

  16. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  17. The Use of Evolutionary Approaches to Understand Single Cell Genomes

    Directory of Open Access Journals (Sweden)

    Haiwei eLuo

    2015-03-01

    Full Text Available The vast majority of environmental bacteria and archaea remain uncultivated, yet their genome sequences are rapidly becoming available through single cell sequencing technologies. Reconstructing metabolism is one common way to make use of genome sequences of ecologically important bacteria, but molecular evolutionary analysis is another approach that, while currently underused, can reveal important insights into the function of these uncultivated microbes in nature. Because genome sequences from single cells are often incomplete, metabolic reconstruction based on genome content can be compromised. However, this problem does not necessarily impede the use of phylogenomic and population genomic approaches that are based on patterns of polymorphisms and substitutions at nucleotide and amino acid sites. These approaches explore how various evolutionary forces act to assemble genetic diversity within and between lineages. In this mini-review, I present examples illustrating the benefits of analyzing single cell genomes using evolutionary approaches.

  18. Wishbone identifies bifurcating developmental trajectories from single-cell data.

    Science.gov (United States)

    Setty, Manu; Tadmor, Michelle D; Reich-Zeliger, Shlomit; Angel, Omer; Salame, Tomer Meir; Kathail, Pooja; Choi, Kristy; Bendall, Sean; Friedman, Nir; Pe'er, Dana

    2016-06-01

    Recent single-cell analysis technologies offer an unprecedented opportunity to elucidate developmental pathways. Here we present Wishbone, an algorithm for positioning single cells along bifurcating developmental trajectories with high resolution. Wishbone uses multi-dimensional single-cell data, such as mass cytometry or RNA-Seq data, as input and orders cells according to their developmental progression, and it pinpoints bifurcation points by labeling each cell as pre-bifurcation or as one of two post-bifurcation cell fates. Using 30-channel mass cytometry data, we show that Wishbone accurately recovers the known stages of T-cell development in the mouse thymus, including the bifurcation point. We also apply the algorithm to mouse myeloid differentiation and demonstrate its generalization to additional lineages. A comparison of Wishbone to diffusion maps, SCUBA and Monocle shows that it outperforms these methods both in the accuracy of ordering cells and in the correct identification of branch points.

  19. Raman activated cell ejection for isolation of single cells.

    Science.gov (United States)

    Wang, Yun; Ji, Yuetong; Wharfe, Emma S; Meadows, Roger S; March, Peter; Goodacre, Royston; Xu, Jian; Huang, Wei E

    2013-11-19

    We have optimized a Raman microscope to obtain a single cell Raman spectrum (SCRS) with 0.1 s acquisition time. SCRS with such short acquisition time has sufficient discriminatory ability and spectral reproducibility to differentiate cells incorporated with (13)C and (15)N and to classify five different types of bacteria isolated from the oral cavity. We also developed Raman activated cell ejection (RACE) that is assisted by laser induced forward transfer (LIFT). We have shown, for the first time, that the single cells of interest can be identified and then accurately isolated from complex microbial communities based on their SCRS. This approach can be used to sort single cells of target traits from complex samples (e.g., biofilms, soils, sludge, tissues).

  20. Massively parallel digital transcriptional profiling of single cells

    Science.gov (United States)

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  1. Tunable Single-Cell Extraction for Molecular Analyses.

    Science.gov (United States)

    Guillaume-Gentil, Orane; Grindberg, Rashel V; Kooger, Romain; Dorwling-Carter, Livie; Martinez, Vincent; Ossola, Dario; Pilhofer, Martin; Zambelli, Tomaso; Vorholt, Julia A

    2016-07-14

    Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level.

  2. Effect of bacterial protein meal grown on natural gas on growth performance and carcass traits of pigs

    Directory of Open Access Journals (Sweden)

    Anders Skrede

    2010-01-01

    Full Text Available Bacterial protein meal (BPM, a new protein feedstuff produced by bacteria (Methylococcus capsulatus, Alcaligenes acidovorans,Bacillus brevis and Bacillus firmus grown on natural gas, was evaluated as a protein source for pigs. Twogrowth trials were conducted, one with growing-finishing pigs and one with pigs from weaning until slaughter. In Exp. 1,18 pigs fed restrictively (26.0 and 109.4 kg initial and final weight were used to determine the effect of dietary inclusionof BPM (0, 60, or 120 g kg-1, replacing protein from soybean meal on growth performance and carcass traits. Adding60 and 120 g kg-1 BPM to diets reduced (P on growth performance during the finishing or overall periods. Both levels of BPM improved amino acid and lysine utilization(P contrast, both levels of BPM tended to increase carcass meatiness. In Exp. 2, 48 pigs (11.4 and 107.2 kg initial andfinal weight were used to evaluate increasing levels of BPM (0, 50, 100, or 150 g kg –1 on growth performance and carcasstraits from weaning at 34.5 days of age until slaughter. Bacterial protein meal reduced ADG (linear P the period from weaning until five weeks post weaning and during the period from weaning until slaughter. Increasinglevels of BPM tended to increase overall feed/gain. Also, BPM increased backfat firmness (linear P percent carcass lean (linear P fat area in cutlet (linear P with the control. In conclusion, up to 120 g kg –1 BPM in diets for pigs from 26 kg live weight until slaughter hadno adverse effect on overall growth performance or carcass lean or fat content. Up to 150 g kg –1 BPM to diets for pigsfrom weaning until slaughter reduced growth rates during the piglet period and increased carcass fat content due tomarginal dietary lysine levels. Bacterial protein meal gave a dose dependent improvement in the utilization of total aminoacids and lysine and the quality of back fat determined as fat firmness and fat color.

  3. Response of Listeria monocytogenes to disinfection stress at the single-cell and population levels as monitored by intracellular pH measurements and viable-cell counts

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Dennis S.; Arneborg, Nils;

    2009-01-01

    of the bacterium. In situ analyses of Listeria monocytogenes single cells were performed during exposure to different concentrations of the disinfectant Incimaxx DES to study a possible population subdivision. Bacterial survival was quantified with plate counting and disinfection stress at the single-cell level...... by measuring intracellular pH (pHi) over time by fluorescence ratio imaging microscopy. pHi values were initially 7 to 7.5 and decreased in both attached and planktonic L. monocytogenes cells during exposure to sublethal and lethal concentrations of Incimaxx DES. The response of the bacterial population...... that a population of L. monocytogenes cells, whether planktonic or attached, is homogenous with respect to sensitivity to an acidic disinfectant studied on the single-cell level. Hence a major subpopulation more tolerant to disinfectants, and hence more persistent, does not appear to be present....

  4. Imaging of anticancer drug action in single cells.

    Science.gov (United States)

    Miller, Miles A; Weissleder, Ralph

    2017-06-23

    Imaging is widely used in anticancer drug development, typically for whole-body tracking of labelled drugs to different organs or to assess drug efficacy through volumetric measurements. However, increasing attention has been drawn to pharmacology at the single-cell level. Diverse cell types, including cancer-associated immune cells, physicochemical features of the tumour microenvironment and heterogeneous cell behaviour all affect drug delivery, response and resistance. This Review summarizes developments in the imaging of in vivo anticancer drug action, with a focus on microscopy approaches at the single-cell level and translational lessons for the clinic.

  5. Single-cell analysis tools for drug discovery and development.

    Science.gov (United States)

    Heath, James R; Ribas, Antoni; Mischel, Paul S

    2016-03-01

    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed.

  6. Single cell transcriptomic analysis of prostate cancer cells.

    Science.gov (United States)

    Welty, Christopher J; Coleman, Ilsa; Coleman, Roger; Lakely, Bryce; Xia, Jing; Chen, Shu; Gulati, Roman; Larson, Sandy R; Lange, Paul H; Montgomery, Bruce; Nelson, Peter S; Vessella, Robert L; Morrissey, Colm

    2013-02-16

    The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR). Using this approach, 22,410, 20,423, and 17,009 probes were positive on the arrays from 10-cell pools, 5-cell pools, and single-cells, respectively. The sensitivity and specificity of gene detection on the single-cell analyses were 0.739 and 0.972 respectively when compared to 10-cell pools, and 0.814 and 0.979 respectively when compared to 5-cell pools, demonstrating a low false positive rate. Among 10,000 randomly selected pairs of genes, the Pearson correlation coefficient was 0.875 between the single-cell and 5-cell pools and 0.783 between the single-cell and 10-cell pools. As expected, abundant transcripts in the 5- and 10-cell samples were detected by RT-qPCR in the single-cell isolates, while lower abundance messages were not. Using the same stringency, 16,039 probes were positive on the patient single-cell arrays. Cluster analysis showed that all 10 DTC grouped together within each patient. A transcriptomic profile can be reliably obtained from a single cell using

  7. Single-cell epigenomics: techniques and emerging applications.

    Science.gov (United States)

    Schwartzman, Omer; Tanay, Amos

    2015-12-01

    Epigenomics is the study of the physical modifications, associations and conformations of genomic DNA sequences, with the aim of linking these with epigenetic memory, cellular identity and tissue-specific functions. While current techniques in the field are characterizing the average epigenomic features across large cell ensembles, the increasing interest in the epigenetics within complex and heterogeneous tissues is driving the development of single-cell epigenomics. We review emerging single-cell methods for capturing DNA methylation, chromatin accessibility, histone modifications, chromosome conformation and replication dynamics. Together, these techniques are rapidly becoming a powerful tool in studies of cellular plasticity and diversity, as seen in stem cells and cancer.

  8. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  9. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. Thes