WorldWideScience

Sample records for bacterial secondary production

  1. Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea

    Science.gov (United States)

    Bengtsson, Mia M; Sjøtun, Kjersti; Lanzén, Anders; Øvreås, Lise

    2012-01-01

    Kelp forests worldwide are known as hotspots for macroscopic biodiversity and primary production, yet very little is known about the biodiversity and roles of microorganisms in these ecosystems. Secondary production by heterotrophic bacteria associated to kelp is important in the food web as a link between kelp primary production and kelp forest consumers. The aim of this study was to investigate the relationship between bacterial diversity and two important processes in this ecosystem; bacterial secondary production and primary succession on kelp surfaces. To address this, kelp, Laminaria hyperborea, from southwestern Norway was sampled at different geographical locations and during an annual cycle. Pyrosequencing (454-sequencing) of amplicons of the 16S rRNA gene of bacteria was used to study bacterial diversity. Incorporation of tritiated thymidine was used as a measure of bacterial production. Our data show that bacterial diversity (richness and evenness) increases with the age of the kelp surface, which corresponds to the primary succession of its bacterial communities. Higher evenness of bacterial operational taxonomical units (OTUs) is linked to higher bacterial production. Owing to the dominance of a few abundant OTUs, kelp surface biofilm communities may be characterized as low-diversity habitats. This is the first detailed study of kelp-associated bacterial communities using high-throughput sequencing and it extends current knowledge on microbial community assembly and dynamics on living surfaces. PMID:22763650

  2. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Directory of Open Access Journals (Sweden)

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  3. Stress significantly increases mortality following a secondary bacterial respiratory infection

    Science.gov (United States)

    2012-01-01

    A variety of mechanisms contribute to the viral-bacterial synergy which results in fatal secondary bacterial respiratory infections. Epidemiological investigations have implicated physical and psychological stressors as factors contributing to the incidence and severity of respiratory infections and psychological stress alters host responses to experimental viral respiratory infections. The effect of stress on secondary bacterial respiratory infections has not, however, been investigated. A natural model of secondary bacterial respiratory infection in naive calves was used to determine if weaning and maternal separation (WMS) significantly altered mortality when compared to calves pre-adapted (PA) to this psychological stressor. Following weaning, calves were challenged with Mannheimia haemolytica four days after a primary bovine herpesvirus-1 (BHV-1) respiratory infection. Mortality doubled in WMS calves when compared to calves pre-adapted to weaning for two weeks prior to the viral respiratory infection. Similar results were observed in two independent experiments and fatal viral-bacterial synergy did not extend beyond the time of viral shedding. Virus shedding did not differ significantly between treatment groups but innate immune responses during viral infection, including IFN-γ secretion, the acute-phase inflammatory response, CD14 expression, and LPS-induced TNFα production, were significantly greater in WMS versus PA calves. These observations demonstrate that weaning and maternal separation at the time of a primary BHV-1 respiratory infection increased innate immune responses that correlated significantly with mortality following a secondary bacterial respiratory infection. PMID:22435642

  4. Secondary Bacterial Infections Associated with Influenza Pandemics

    Directory of Open Access Journals (Sweden)

    Denise E. Morris

    2017-06-01

    Full Text Available Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012. Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.

  5. Aerobic Bacterial Causes of Secondary Peritonitis and Their ...

    African Journals Online (AJOL)

    Aerobic Bacterial Causes of Secondary Peritonitis and Their Antibiotic Sensitivity Patterns among HIV Negative Patients with Non-traumatic Small Bowel Perforations in Mbarara Regional Referral Hospital.

  6. Bacterial contamination of blood products.

    Science.gov (United States)

    Palavecino, Elizabeth; Jacobs, Michael; Yomtovian, Roslyn

    2004-11-01

    The occurrence of a septic reaction resulting from bacterial contamination of blood products, particularly with room-temperature stored platelets, is the most common transfusion-associated infectious risk in the United States. Bacterial contamination of blood products was first identified more than 60 years ago; yet, strategies to resolve this problem have proved daunting despite ongoing awareness and increasing concern especially in the last few years. With the recent US Food and Drug Administration (FDA) approval of culture methods for quality control testing of platelet units and the promulgation of accreditation standards by the College of American Pathologists and American Association of Blood Banks to detect bacterially contaminated platelet units and to prevent transfusion of these units, blood banks and transfusion services have finally started to address this problem, in a more standardized manner. Furthermore, as new methods of interdicting, inactivating and detecting bacterially contaminated blood products emerge, it is hoped that the problem of bacterial contamination of blood products will be overcome.

  7. High level bacterial contamination of secondary school students' mobile phones.

    Science.gov (United States)

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  8. Bacterial pathogens associated with secondary peritonitis in Lagos ...

    African Journals Online (AJOL)

    Secondary peritonitis is a common and serious form of intra-abdominal infection, often associated with high morbidity and mortality. The overall patient outcome has not markedly improved in spite of advances in patient management. There is therefore need to study the pattern of bacterial pathogens associated with ...

  9. Bacterial cholangitis causing secondary sclerosing cholangitis: A case report

    NARCIS (Netherlands)

    P.C.J. ter Borg (Pieter); H.R. van Buuren (Henk); A.C.T.M. Depla (Annekatrien)

    2002-01-01

    textabstractBackground: Although bacterial cholangitis is frequently mentioned as a cause of secondary sclerosing cholangitis, it appears to be extremely rare, with only one documented case ever reported. Case presentation: A 48-year-old woman presented with an episode of acute biliary pancreatitis

  10. Bacterial cholangitis causing secondary sclerosing cholangitis: a case report

    NARCIS (Netherlands)

    H.R. van Buuren (Henk); A.C.T.M. Depla (Annekatrien); P.C.J. ter Borg (Pieter)

    2002-01-01

    textabstractBACKGROUND: Although bacterial cholangitis is frequently mentioned as a cause of secondary sclerosing cholangitis, it appears to be extremely rare, with only one documented case ever reported. CASE PRESENTATION: A 48-year-old woman presented with an episode of acute

  11. Secondary lead production in Malaysia

    Science.gov (United States)

    Phillips, M. J.; Lim, S. S.

    The increase in the number of vehicles and, subsequently, the volume of batteries made by manufacturers in Malaysia have seen a dramatic rise in lead demand over the last five years. Without any lead mines, the only source of lead in Malaysia has been from the recycling of lead/acid batteries. Metal Reclamation (Industries) has commenced the design of a new and advanced secondary lead plant at West Port, Malaysia to meet the increasing demand for lead and the increasingly stringent environmental regulations. The plant is designed to produce up to 75 000 t of lead and lead alloys per year. The plant will also produce, as by-products: polypropylene chips, wallboard-grade gypsum, non-leachable slag for use in construction. A discussion of the process and the products from the new secondary smelter is outlined.

  12. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  13. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    International Nuclear Information System (INIS)

    Liu Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model’s predictions agreed with the experimental results.

  14. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Vipulanandan, Cumaraswamy, E-mail: cvipulanandan@uh.edu [University of Houston, Department of Civil and Environmental Engineering (United States); Cooper, Tim F. [University of Houston, Department of Biology and Biochemistry (United States); Vipulanandan, Geethanjali [University of Houston, Department of Biomedical Engineering (United States)

    2013-01-15

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  15. Bacterial cholangitis causing secondary sclerosing cholangitis: A case report

    Directory of Open Access Journals (Sweden)

    Depla Annekatrien CTM

    2002-06-01

    Full Text Available Abstract Background Although bacterial cholangitis is frequently mentioned as a cause of secondary sclerosing cholangitis, it appears to be extremely rare, with only one documented case ever reported. Case presentation A 48-year-old woman presented with an episode of acute biliary pancreatitis that was complicated by pancreatic abcess formation. After 3 months she had an episode of severe pyogenic (E. Coli cholangitis that recurred over the subsequent 7 months on a further two occasions. Initially, cholangiography suggested the presence of extra-biliary intrahepatic abcesses while repeated investigations demonstrated development of multiple segmental biliary duct strictures. After maintenance antibiotic treatment was started, no episodes of cholangitis occurred over a 14-month period. Conclusions Sclerosing cholangitis can rapidly develop after an episode of bacterial cholangitis. Extra-biliary involvement of the hepatic parenchyma with abcess formation may be a risk factor for developing this rare but particularly severe complication.

  16. Fibrinous pericarditis secondary to bacterial infection in a cat.

    Science.gov (United States)

    Tagawa, Michihito; Kurashima, Chihiro; Shimbo, Genya; Omura, Hiroshi; Koyama, Kenji; Horiuchi, Noriyuki; Kobayashi, Yoshiyasu; Kawamoto, Keiko; Miyahara, Kazuro

    2017-06-10

    A three-year-old spayed domestic short-haired cat presented for evaluation of weight loss, cardiomegaly and pleural effusion. Echocardiographic examination demonstrated a thickened pericardium with mild pericardial effusion and a large volume of pleural effusion characterized by exudate. Although the cat was treated with antibiotics, the clinical symptoms did not improve. The cat developed dyspnea and died on day 7. Necropsy revealed a large amount of modified transudates ascites, pleural effusion and markedly dilated pericardium. Histopathological examination revealed severe exudation of fibrin and granulation tissue in a thick layer of the epicardium. The cat was diagnosed with fibrinous pericarditis secondary to bacterial infection.

  17. Secondary production in shallow marine environments

    International Nuclear Information System (INIS)

    Pomeroy, L.R.

    1976-01-01

    Recommendations are discussed with regard to population ecology, microbial food webs, marine ecosystems, improved instrumentation, and effects of land and sea on shallow marine systems. The control of secondary production is discussed with regard to present status of knowledge; research needs for studies on dominant secondary producers, food webs that lead to commercial species, and significant features of the trophic structure of shallow water marine communities. Secondary production at the land-water interface is discussed with regard to present status of knowledge; importance of macrophytes to secondary production; export to secondary consumers; utilization of macrophyte primary production; and correlations between secondary production and river discharge. The role of microorganisms in secondary production is also discussed

  18. Secondary production in shallow marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, L.R. (ed.)

    1976-01-01

    Recommendations are discussed with regard to population ecology, microbial food webs, marine ecosystems, improved instrumentation, and effects of land and sea on shallow marine systems. The control of secondary production is discussed with regard to present status of knowledge; research needs for studies on dominant secondary producers, food webs that lead to commercial species, and significant features of the trophic structure of shallow water marine communities. Secondary production at the land-water interface is discussed with regard to present status of knowledge; importance of macrophytes to secondary production; export to secondary consumers; utilization of macrophyte primary production; and correlations between secondary production and river discharge. The role of microorganisms in secondary production is also discussed. (HLW)

  19. Bacterial production of methyl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been

    2017-01-31

    The present invention relates to methods and compositions for increasing production of methyl ketones in a genetically modified host cell that overproduces .beta.-ketoacyl-CoAs through a re-engineered .beta.-oxidation pathway and overexpresses FadM.

  20. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  1. Secondary Products (Markets, Competition, and Technological Improvements)

    Science.gov (United States)

    Philip A. Araman

    1988-01-01

    Competitiveness, imports, exports, and technological improvements--these are issues facing secondary wood-product manufacturers. The major problems focus on increasing foreign imports and the inability of U.S. industries to repell the imports. How and where should we, as researchers, allocate our efforts to enhance the competitiveness of secondary forest industries in...

  2. Bacterial systems for production of heterologous proteins.

    Science.gov (United States)

    Zerbs, Sarah; Frank, Ashley M; Collart, Frank R

    2009-01-01

    Proteins are the working molecules of all biological systems and participate in a majority of cellular chemical reactions and biological processes. Knowledge of the properties and function of these molecules is central to an understanding of chemical and biological processes. In this context, purified proteins are a starting point for biophysical and biochemical characterization methods that can assist in the elucidation of function. The challenge for production of proteins at the scale and quality required for experimental, therapeutic and commercial applications has led to the development of a diverse set of methods for heterologous protein production. Bacterial expression systems are commonly used for protein production as these systems provide an economical route for protein production and require minimal technical expertise to establish a laboratory protein production system.

  3. The Membrane Gradostat Reactor: Secondary metabolite production ...

    African Journals Online (AJOL)

    SERVER

    2007-05-16

    May 16, 2007 ... immobilise microbial cells or enzymes, depending on the bioreactor's application. Operational ... perspective. Key words: Membrane bioreactor, gradostat reactor, secondary metabolite production, biofilm, wastewater treatment. INTRODUCTION ... suitable to immobilize P. chrysosporium biofilms in MGR.

  4. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring.

    Science.gov (United States)

    Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille; Nielsen, Alex Toftgaard; Emnéus, Jenny; Zór, Kinga; Boisen, Anja

    2017-11-20

    During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min -1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.

  5. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    Science.gov (United States)

    Narsing Rao, Manik Prabhu; Xiao, Min; Li, Wen-Jun

    2017-01-01

    The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications. PMID:28690593

  6. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    Directory of Open Access Journals (Sweden)

    Manik Prabhu Narsing Rao

    2017-06-01

    Full Text Available The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications.

  7. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    Science.gov (United States)

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  8. Initiation of secondary ice production in clouds

    Science.gov (United States)

    Sullivan, Sylvia C.; Hoose, Corinna; Kiselev, Alexei; Leisner, Thomas; Nenes, Athanasios

    2018-02-01

    Disparities between the measured concentrations of ice-nucleating particles (INPs) and in-cloud ice crystal number concentrations (ICNCs) have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms - rime splintering, frozen droplet shattering, and ice-ice collisional breakup - with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice), thermodynamic limitations, and the impact of parametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim)) as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the phasedness of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice-ice collisional breakup is the only process for which a meaningful NINP(lim) exists (0.002 up to 0.15 L-1). For droplet shattering and rime splintering, a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of NINP(lim) here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.

  9. Secondary production of a zoobenthic community under metal stress.

    Science.gov (United States)

    Faupel, Michael; Traunspurger, Walter

    2012-06-15

    Little is known about the influence of toxicants on the function of freshwater sediments. To better understand these effects, a long-term microcosm experiment was carried out with cadmium (Cd) as the model pollutant (50 and 400 mg Cd kg(-1) dw). In a seven-month study the effect of Cd was examined on secondary production of the zoobenthos (higher taxonomic level) and specifically of the nematode community (species level). Production of almost all taxa decreased under low Cd stress, with rotifers as the only taxon that was able to thrive under this condition. High Cd stress resulted in a decrease in secondary production of all groups with strong differences between taxa. Nematode production likewise decreased, with strongest effects in the higher Cd concentration. Interestingly, at the end of the study, several bacteria-feeding species had benefited from the low Cd stress, probably due to their rapid development in relation to other species and/or the high bacterial density under this condition. Taken together, the results of this study provide insight into secondary production of sediment communities and the important effects of a toxicant thereon. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Initiation of secondary ice production in clouds

    Directory of Open Access Journals (Sweden)

    S. C. Sullivan

    2018-02-01

    Full Text Available Disparities between the measured concentrations of ice-nucleating particles (INPs and in-cloud ice crystal number concentrations (ICNCs have led to the hypothesis that mechanisms other than primary nucleation form ice in the atmosphere. Here, we model three of these secondary production mechanisms – rime splintering, frozen droplet shattering, and ice–ice collisional breakup – with a six-hydrometeor-class parcel model. We perform three sets of simulations to understand temporal evolution of ice hydrometeor number (Nice, thermodynamic limitations, and the impact of parametric uncertainty when secondary production is active. Output is assessed in terms of the number of primarily nucleated ice crystals that must exist before secondary production initiates (NINP(lim as well as the ICNC enhancement from secondary production and the timing of a 100-fold enhancement. Nice evolution can be understood in terms of collision-based nonlinearity and the phasedness of the process, i.e., whether it involves ice hydrometeors, liquid ones, or both. Ice–ice collisional breakup is the only process for which a meaningful NINP(lim exists (0.002 up to 0.15 L−1. For droplet shattering and rime splintering, a warm enough cloud base temperature and modest updraft are the more important criteria for initiation. The low values of NINP(lim here suggest that, under appropriate thermodynamic conditions for secondary ice production, perturbations in cloud concentration nuclei concentrations are more influential in mixed-phase partitioning than those in INP concentrations.

  11. Ecological role of a seaweed secondary metabolite for a colonizing bacterial community.

    Science.gov (United States)

    Persson, Frank; Svensson, Robin; Nylund, Goran M; Fredriksson, N Johan; Pavia, Henrik; Hermansson, Malte

    2011-07-01

    Bacteria associated with seaweeds can both harm and benefit their hosts. Many seaweed species are known to produce compounds that inhibit growth of bacterial isolates, but the ecological role of seaweed metabolites for the associated bacterial community structure is not well understood. In this study the response of a colonizing bacterial community to the secondary metabolite (1,1,3,3-tetrabromo-2-heptanone) from the red alga Bonnemaisonia hamifera was investigated by using field panels coated with the metabolite at a range of concentrations covering those measured at the algal surface. The seaweed metabolite has previously been shown to have antibacterial effects. The metabolite significantly affected the natural fouling community by (i) altering the composition, (ii) altering the diversity by increasing the evenness and (iii) decreasing the density, as measured by terminal restriction fragment length polymorphism in conjunction with clone libraries of the 16S rRNA genes and by bacterial enumeration. No single major bacterial taxon (phylum, class) was particularly affected by the metabolite. Instead changes in community composition were observed at a more detailed phylogenetic level. This indicates a broad specificity of the seaweed metabolite against bacterial colonization, which is supported by the observation that the bacterial density was significantly affected at a lower concentration (0.02 μg cm⁻²) than the composition (1-2.5 μg cm⁻²) and the evenness (5 μg cm⁻²) of the bacterial communities. Altogether, the results emphasize the role of secondary metabolites for control of the density and structure of seaweed-associated bacterial communities.

  12. Bacterial Volatiles Attract Gravid Secondary Screwworms (Diptera: Calliphoridae).

    Science.gov (United States)

    Chaudhury, M F; Zhu, J J; Skoda, S R

    2016-04-01

    Bovine blood inoculated and incubated with bacteria was tested to determine if secondary screwworm, Cochliomyia macellaria (F.), would be attracted to the incubated substrate for oviposition. Five species of bacteria, Klebsiella oxytoca (Flugge), Proteus mirabilis Hauser, Proteus vulgaris Hauser, Providencia rettgeri Hadley, Elkins and Caldwell, and Providencia stuartii Ewing, previously isolated from animal wounds infested by primary screwworms, Cochliomyia hominivorax (Coquerel), were used. Incubated substrates were tested in a two-choice cage bioassay to study landing response and oviposition by gravid C. macellaria. Significantly more flies landed on substrates containing P. mirabilis than on substrates with other species of bacteria. Klebsiella oxytoca-treated substrates attracted the least flies. Substrates containing bacteria incubated for 72 h attracted significantly more flies than those incubated for 24-, 48-, or 96-h period. In 3-h duration oviposition tests, substrates with P. rettgeri attracted significantly more flies to oviposit than the other four species. The most eggs were recorded when substrates treated with all five species of bacteria were offered for oviposition. It is likely that multiple active chemicals present in the volatiles from substrates treated with all five species result in greater response than those in a single species. At least 72-h incubation seems to be necessary to obtain the most active volatile chemicals. Results suggest that C. macellaria uses similar chemical cues as C. hominivorax from bacteria volatiles as oviposition attractant/stimulant.

  13. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  14. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil

    Czech Academy of Sciences Publication Activity Database

    Uhlík, O.; Musilová, L.; Rídl, Jakub; Hroudová, Miluše; Vlček, Čestmír; Koubek, J.; Holečková, M.; Mackova, M.; Macek, T.

    2013-01-01

    Roč. 97, č. 20 (2013), s. 9245-9256 ISSN 0175-7598 Grant - others:EK(XE) 265946; GA MŠk(CZ) ME10041 Institutional support: RVO:68378050 Keywords : plant secondary metabolites (PSM) * bacterial community * metabolic activity * bioremediation * pyrosequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.811, year: 2013

  15. Quantification of a bacterial secondary metabolite by SERS combined with SLM extraction for bioprocess monitoring

    DEFF Research Database (Denmark)

    Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille

    2017-01-01

    and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient....... The obtained data showed good correlation with HPLC analysis....

  16. Secondary bacterial peritonitis in cirrhosis: a retrospective study of clinical and analytical characteristics, diagnosis and management.

    Science.gov (United States)

    Soriano, Germán; Castellote, José; Alvarez, Cristina; Girbau, Anna; Gordillo, Jordi; Baliellas, Carme; Casas, Meritxell; Pons, Carles; Román, Eva María; Maisterra, Sandra; Xiol, Xavier; Guarner, Carlos

    2010-01-01

    Secondary bacterial peritonitis in cirrhotic patients is an uncommon entity that has been little reported. Our aim is to analyse the frequency, clinical characteristics, treatment and prognosis of patients with secondary peritonitis in comparison to those of patients with spontaneous bacterial peritonitis (SBP). Retrospective analysis of 24 cirrhotic patients with secondary peritonitis compared with 106 SBP episodes. Secondary peritonitis represented 4.5% of all peritonitis in cirrhotic patients. Patients with secondary peritonitis showed a significantly more severe local inflammatory response than patients with SBP. Considering diagnosis of secondary peritonitis, the sensitivity of Runyon's criteria was 66.6% and specificity 89.7%, Runyon's criteria and/or polymicrobial ascitic fluid culture were present in 95.6%, and abdominal computed tomography was diagnostic in 85% of patients in whom diagnosis was confirmed by surgery or autopsy. Mortality during hospitalization was higher in patients with secondary peritonitis than in those with SBP (16/24, 66.6% vs. 28/106, 26.4%) (p<0.001). There was a trend to lower mortality in secondary peritonitis patients who underwent surgery (7/13, 53.8%) than in those who received medical treatment only (9/11, 81.8%) (p=0.21). Considering surgically treated patients, the time between diagnostic paracentesis and surgery was shorter in survivors than in non-survivors (3.2+/-2.4 vs. 7.2+/-6.1 days, p=0.31). Secondary peritonitis is an infrequent complication in cirrhotic patients but mortality is high. A low threshold of suspicion on the basis of Runyon's criteria and microbiological data, together with an aggressive approach that includes prompt abdominal computed tomography and early surgical evaluation, could improve prognosis in these patients.

  17. Bacterial polyhydroxybutyrate for electrospun fiber production.

    Science.gov (United States)

    Acevedo, Francisca; Villegas, Pamela; Urtuvia, Viviana; Hermosilla, Jeyson; Navia, Rodrigo; Seeger, Michael

    2018-01-01

    Nano- and microfibers obtained by electrospinning have attracted great attention due to its versatility and potential for applications in diverse technological fields. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms such as the bacterium Burkholderia xenovorans LB400. In particular, LB400 cells are capable to synthesize poly(3-hydroxybutyrate) (PHB) from glucose. The aim of this study was to produce and characterize electrospun fibers obtained from bacterial PHBs. Bacterial strain LB400 was grown in M9 minimal medium using xylose and mannitol (10gL -1 ) as the sole carbon sources and NH 4 Cl (1gL -1 ) as the sole nitrogen source. Biopolymer-based films obtained were used to produce fibers by electrospinning. Diameter and morphology of the microfibers were analyzed by scanning electron microscopy (SEM) and their thermogravimetric properties were investigated. Bead-free fibers using both PHBs were obtained with diameters of less than 3μm. The surface morphology of the microfibers based on PHBs obtained from both carbon sources was different, even though their thermogravimetric properties are similar. The results indicate that the carbon source may determine the fiber structure and properties. Further studies should be performed to analyze the physicochemical and mechanical properties of these PHB-based microfibers, which may open up novel applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  19. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  20. Investigating the adaptive immune response in influenza and secondary bacterial pneumonia and nanoparticle based therapeutic delivery

    Science.gov (United States)

    Chakravarthy, Krishnan V.

    In early 2000, influenza and its associated complications were the 7 th leading cause of death in the United States[1-4]. As of today, this major health problem has become even more of a concern, with the possibility of a potentially devastating avian flu (H5N1) or swine flu pandemic (H1N1). According to the Centers for Disease Control (CDC), over 10 countries have reported transmission of influenza A (H5N1) virus to humans as of June 2006 [5]. In response to this growing concern, the United States pledged over $334 million dollars in international aid for battling influenza[1-4]. The major flu pandemic of the early 1900's provided the first evidence that secondary bacterial pneumonia (not primary viral pneumonia) was the major cause of death in both community and hospital-based settings. Secondary bacterial infections currently account for 35-40% mortality following a primary influenza viral infection [1, 6]. The first component of this work addresses the immunological mechanisms that predispose patients to secondary bacterial infections following a primary influenza viral infection. By assessing host immune responses through various immune-modulatory tools, such as use of volatile anesthetics (i.e. halothane) and Apilimod/STA-5326 (an IL-12/Il-23 transcription blocker), we provide experimental evidence that demonstrates that the overactive adaptive Th1 immune response is critical in mediating increased susceptibility to secondary bacterial infections. We also present data that shows that suppressing the adaptive Th1 immune response enhances innate immunity, specifically in alveolar macrophages, by favoring a pro anti-bacterial phenotype. The second component of this work addresses the use of nanotechnology to deliver therapeutic modalities that affect the primary viral and associated secondary bacterial infections post influenza. First, we used surface functionalized quantum dots for selective targeting of lung alveolar macrophages both in vitro and in vivo

  1. Bacterial spoilage of meat and cured meat products

    NARCIS (Netherlands)

    Borch, E.; Kant-Muermans, M.L.T.; Blixt, Y.

    1996-01-01

    The influence of environmental factors (product composition and storage conditions) on the selection, growth rate and metabolic activity of the bacterial flora is presented for meat (pork and beef) and cooked, cured meat products. The predominant bacteria associated with spoilage of refrigerated

  2. Production of Polyhydroxyalkanoates, a bacterial biodegradable ...

    African Journals Online (AJOL)

    Administrator

    There has been considerable interest in the development and production of biodegradable polymer to solve the current problem of pollution caused ... horticultural agricultural waste, corn, cassava etc would be of economic interest considering the .... for efficient production of PHAs. (Yu, 2001, Du et al.,. 2001b; Du and Yu, ...

  3. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  4. Production of Polyhydroxyalkanoates, a bacterial biodegradable ...

    African Journals Online (AJOL)

    ... production has restricted its applications. The possibility of producing this polymer commercially and at comparable cost has been the main focus in this area. Key Words: Polyhydroxyalkanoates, biodegradable polymer, bioplastic, poly(3-hydroxybutyrate), biosynthesis. African Journal of Biotechnology Vol.3(1) 2004: 18- ...

  5. Space-based bacterial production of hydrogen

    Science.gov (United States)

    Tennakoon, C. L.; Bhardwaj, R. C.; Bockris, J. O.; Henninger, D. L. (Principal Investigator)

    1994-01-01

    This paper deals with the electrochemical production of hydrogen by depolarizing the oxygen evolution reaction using human feces and urine, which contains 30-40% bacteria and yeast. The electroactivity of graphite, tungsten carbide, perovskite and RuO2-coated Ebonex (Ti4O7) as anode materials are compared. The scale-up of the process in a laboratory-scale three-dimensional packed bed cell is discussed.

  6. The Tripod for Bacterial Natural Product Discovery: Genome Mining, Silent Pathway Induction, and Mass Spectrometry-Based Molecular Networking.

    Science.gov (United States)

    Trivella, Daniela B B; de Felicio, Rafael

    2018-01-01

    Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches-genome mining, silent pathway induction, and MS-based molecular networking-compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.

  7. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  8. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    Science.gov (United States)

    Schmidt, Ruth; Köberl, Martina; Mostafa, Amr; Ramadan, Elshahat M.; Monschein, Marlene; Jensen, Kenneth B.; Bauer, Rudolf; Berg, Gabriele

    2014-01-01

    Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome. PMID:24600444

  9. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants.

    Science.gov (United States)

    Schmidt, Ruth; Köberl, Martina; Mostafa, Amr; Ramadan, Elshahat M; Monschein, Marlene; Jensen, Kenneth B; Bauer, Rudolf; Berg, Gabriele

    2014-01-01

    Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome.

  10. Ceftaroline Fosamil for the Treatment of Staphylococcus aureus Bacteremia Secondary to Acute Bacterial Skin and Skin Structure Infections or Community-Acquired Bacterial Pneumonia

    OpenAIRE

    Vazquez, Jose A.; Maggiore, Christy R.; Cole, Phillip; Smith, Alexander; Jandourek, Alena; Friedland, H. David

    2014-01-01

    Background The Clinical Assessment Program and Teflaro? Utilization Registry is designed to collect information on the clinical use of ceftaroline fosamil in the Unites States. This report presents data on the treatment of patients with Staphylococcus aureus bacteremia (SAB) secondary to acute bacterial skin and skin structure infections (ABSSSIs) or community-acquired bacterial pneumonia (CABP). Methods Patients diagnosed with ABSSSI or CABP were identified through sequential review of rando...

  11. Factors limiting heterotrophic bacterial production in the southern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    F. Van Wambeke

    2008-05-01

    Full Text Available The role of potential factors limiting bacterial growth was investigated along vertical and longitudinal gradients across the South Eastern Pacific Gyre. The effects of glucose, nitrate, ammonium and phosphate additions on heterotrophic bacterial production (using leucine technique were studied in parallel in unfiltered seawater samples incubated under natural daily irradiance. The enrichments realized on the subsurface showed three types of responses. From 141° W (Marquesas plateau to approx 125° W, bacteria were not bottom-up controlled, as confirmed by the huge potential of growth in non-enriched seawater (median of enhancement factor×39 in 24 h. Within the Gyre (125° W–95° W, nitrogen alone stimulated leucine incorporation rates (median×4.2, but rapidly labile carbon (glucose became a second limiting factor (median×37 when the two elements were added. Finally from the border of the gyre to the Chilean upwelling (95° W–73° W, labile carbon was the only factor stimulating heterotrophic bacterial production. Interaction between phytoplankton and heterotrophic bacterial communities and the direct versus indirect effect of iron and macronutrients on bacterial production were also investigated in four selected sites: two sites on the vicinity of the Marquesas plateau, the centre of the gyre and the Eastern border of the gyre. Both phytoplankton and heterotrophic bacteria were limited by availability of nitrogen within the gyre, but not by iron. Iron limited phytoplankton at Marquesas plateau and at the eastern border of the gyre. However 48 h enrichment experiments were not sufficient to show any clear limitation of heterotrophic bacteria within Marquesas plateau and showed a limitation of these organisms by labile carbon in the eastern border of the Gyre.

  12. Towards systems metabolic engineering of streptomycetes for secondary metabolites production

    DEFF Research Database (Denmark)

    Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk

    2017-01-01

    Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical...... of streptomycetes for uncovering their hidden potential to produce novel compounds and for the improved production of secondary metabolites....

  13. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  14. BILATERAL ENDOGENOUS BACTERIAL ENDOPHTHALMITIS SECONDARY TO PNEUMONIA IN AN AIDS PATIENT : A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Rajendra Ku.

    2015-08-01

    Full Text Available INTRODUCTI ON: Endogenous or metastatic endophthalmitis is a very rare sever form of ocular disease which is uncommon now - a - days. Prevalence of endogenous bacterial endophthalmitis is 2 - 8% of all cases of endophthalmitis 1 . Mostly it is associated with chronic disease like diabetes mellitus, renal failure, liver abscesses, prolong placement of catheter, IV line or central venous line, drug abusers and immunocompromise d patients. Gram +bacteria are the most common causative organism of the endogenous bacterial endophthalmitis . 1 A few cases of endogenous bacterial endophthalmitis due to klebsiella pneumonias, a gram - ve organism have been documented and majority of them were in Taiwan . 2, 3,4,5,6, 7 K. pneumonia endophthalmitis is associated with diabetes mellitus and hepatic abscesses can be bilateral and resulted into poor visual outcome . 2,3,4,5,6, 7 K. pneumonia pneumonia has been reported most frequently from patients with alcoholic liver diseases and one of the common cause of acute osteomyelitis and septic arthritis . 8,9 In this scenario we report the case of a Malawian in African Continent who developed bilateral endogenous bacterial endophthalmitis after suffering from pneumonia in immunocompromise state. PURPOSE : to report a case bilateral endogenous endophthalmitis secondary to pneumonia in an AIDS patient . DESIGN : Observational case report . METHODS : A patient with bilateral pain full red eye with diminution of vision was seen in c onsultation by ophthalmology. RESULT : with clinical characteristic and laboratory diagnosis of sputum and blood conf i rmed the causative agent for pneumonia and endophthalmitis is K.pneumonia. CONCLUSION : it is unusual disease, required early detection and prompt treatment.

  15. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    Directory of Open Access Journals (Sweden)

    Ruth eSchmidt

    2014-02-01

    Full Text Available Plant-associated bacteria fulfil important functions for plant growth and health of their host. However, our knowledge about the impact of bacterial treatments on the host’s microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L. Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14 from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18 already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as with the plant metabolome.

  16. Perinatal Exposure to Environmental Tobacco Smoke (ETS Enhances Susceptibility to Viral and Secondary Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Jocelyn A. Claude

    2012-10-01

    Full Text Available Studies suggest childhood exposure to environmental tobacco smoke (ETS leads to increased incidence of infections of the lower respiratory tract. The objective of this study was to determine whether perinatal exposure to ETS increases the incidence, morbidity and severity of respiratory influenza infection and whether a secondary bacterial challenge at the peak of a pre-existing viral infection creates an enhanced host-pathogen susceptibility to an opportunistic infection. Timed-pregnant female Balb/c mice were exposed to either ETS for 6 h/day, 7 d/week beginning on gestation day 14 and continuing with the neonates to 6 weeks of age. Control animals were exposed to filtered air (FA. At the end of exposure, mice were intranasally inoculated with a murine-adapted influenza A. One week later, an intranasal inoculation of S. aureus bacteria was administered. The respective treatment groups were: bacteria only, virus only or virus+bacteria for both FA and ETS-exposed animals for a total of six treatment groups. Animal behavior and body weights were documented daily following infection. Mice were necropsied 1-day post-bacterial infection. Bronchoalveolar lavage fluid (BALF cell analysis demonstrated perinatal exposure to ETS, compared to FA, leads to delayed but enhanced clinical symptoms and enhanced total cell influx into the lungs associated with viral infection followed by bacterial challenge. Viral infection significantly increases the number of neutrophils entering the lungs following bacterial challenge with either FA or ETS exposure, while the influx of lymphocytes and monocytes is significantly enhanced only by perinatal ETS exposure. There is a significant increase in peribronchiolar inflammation following viral infection in pups exposed to ETS compared with pups exposed to FA, but no change is noted in the degree of lung injury between FA and ETS-exposed animals following bacterial challenge. The data suggests perinatal exposure to ETS

  17. Production and Status of Bacterial Cellulose in Biomedical Engineering

    Science.gov (United States)

    Moniri, Mona; Boroumand Moghaddam, Amin; Abdul Rahim, Raha; Bin Ariff, Arbakariya; Zuhainis Saad, Wan; Navaderi, Mohammad; Mohamad, Rosfarizan

    2017-01-01

    Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.

  18. Influence of natural substrates and co-occurring marine bacteria on the production of secondary metabolites by Photobacterium halotolerans

    DEFF Research Database (Denmark)

    Månsson, Maria; Giobergia, Sonia; Møller, Kirsten A.

    Genome sequences reveal that our current standard laboratory conditions only support a fraction of the potential secondary metabolism in bacteria. Thus, we must rethink cultivation, detection, and isolation strategies for bacterial secondary metabolites in order to explore the huge, so far unchar...... uncharacterized chemical potential of these organisms. We are currently investigating the use of natural substrates and co-cultures with commensal bacteria to elicit or alter production of antibacterial compounds in marine bacteria....

  19. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments

    Science.gov (United States)

    Zhang, Chang-Rong; Shan, Hong-Wei; Xiao, Na; Zhang, Fan-Di; Wang, Xiao-Wei; Liu, Yin-Quan; Liu, Shu-Sheng

    2015-01-01

    Where multiple symbionts coexist in the same host, the selective elimination of a specific symbiont may enable the roles of a given symbiont to be investigated. We treated the Mediterranean species of the whitefly Bemisia tabaci complex by oral delivery of the antibiotic rifampicin, and then examined the temporal changes of its primary symbiont “Candidatus Portiera aleyrodidarum” and secondary symbiont “Ca. Hamiltonella defensa” as well as host fitness for three generations. In adults treated with rifampicin (F0), the secondary symbiont was rapidly reduced, approaching complete disappearance as adults aged. In contrast, the primary symbiont was little affected until later in the adult life. In the offspring of these adults (F1), both symbionts were significantly reduced and barely detectable when the hosts reached the adult stage. The F1 adults laid few eggs (F2), all of which failed to hatch. Mating experiments illustrated that the negative effects of rifampicin on host fitness were exerted via female hosts but not males. This study provides the first evidence of differential temporal reductions of primary and secondary symbionts in whiteflies following an antibiotic treatment. Studies that disrupt functions of bacterial symbionts must consider their temporal changes. PMID:26510682

  20. Engineering of secondary metabolite production in streptomycetes

    DEFF Research Database (Denmark)

    Robertsen, Helene Lunde; Gram, Lone

    as evident from so-called “silent” biosynthetic gene clusters, whose products remain undetectable under standard laboratory conditions. These clusters harbour all information necessary for production of potentially novel bioactive compounds, and hence provide high priority candidates for engineering...... to activate their production. With this knowledge, the need for better molecular tools to harness the potential of the gifted microorganisms is now greater than ever. One such molecular tool, which has truly revolutionised the field of genome engineering, is the CRISPR-Cas9 genome engineering system....... In this thesis, the CRISPR-Cas9 system for genome engineering of actinomycetes was expanded for future applications in a high-throughput semi-automatic setting. First, a toolbox and workflow for construction of CRISPR plasmids, for a range of different engineering purposes was developed, including...

  1. Makin' It Great! Secondary Production Ideas.

    Science.gov (United States)

    Beasley, Augie E.; Palmer, Carolyn G.

    Intended for use by media specialists, this guide offers ideas for teaching media production skills in the curriculum areas. Projects are suggested in science, history, economics/distributive education/marketing, mathematics, English, foreign languages, and child care. The purpose, objectives/concepts, resources, and preparation are outlined for a…

  2. Disseminated candidiasis secondary to fungal and bacterial peritonitis in a young dog.

    Science.gov (United States)

    Rogers, Catherine L; Gibson, Christopher; Mitchell, Susan L; Keating, John H; Rozanski, Elizabeth A

    2009-04-01

    To describe a severe case of bacterial sepsis and disseminated candidiasis in a previously healthy dog. Fungal sepsis was identified in a 2-year-old dog following intestinal dehiscence 4 days after abdominal surgery. Septic peritonitis was identified at admission and evidence of dehiscence at the previous enterotomy site was found during an exploratory laparotomy. Both gram-positive cocci and Candida albicans were cultured from the abdominal cavity. Candida sp. was also subsequently cultured from a central venous catheter. Euthanasia was performed due to failure to respond to therapy. Fungal organisms, morphologically consistent with Candida spp., were found in the lungs and kidney on postmortem histopathologic examination indicating disseminated candidiasis. Candida peritonitis is a well-recognized entity in humans and contributes to morbidity and mortality in critically ill patients. Abdominal surgery, intestinal perforation, presence of central venous catheters, and administration of broad-spectrum antibiotics are all considered to be suspected risk factors. This report describes the first known case of systemic candidiasis occurring secondary to Candida peritonitis and bacterial sepsis in a critically ill dog.

  3. Alcohol Fuel Production for Vocational Students: Secondary, Postsecondary.

    Science.gov (United States)

    Green, C. Paul; Burkhalter, Wayne

    In order to help bring about the potential for alcohol production by the farming community, Navarro College (Texas) has developed this curriculum for secondary and postsecondary levels in alcohol fuel production. The alcohol fuel curriculum consists of five modules for use in practical hands-on vocational programs. The curriculum is designed to…

  4. 77 FR 8575 - National Emissions Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Science.gov (United States)

    2012-02-14

    ... National Emissions Standards for Hazardous Air Pollutants: Secondary Aluminum Production; Proposed Rule #0... National Emissions Standards for Hazardous Air Pollutants: Secondary Aluminum Production AGENCY... national emissions standards for hazardous air pollutants for Secondary Aluminum Production to address the...

  5. Smokeless tobacco products harbor diverse bacterial microbiota that differ across products and brands.

    Science.gov (United States)

    Smyth, Eoghan M; Kulkarni, Prachi; Claye, Emma; Stanfill, Stephen; Tyx, Robert; Maddox, Cynthia; Mongodin, Emmanuel F; Sapkota, Amy R

    2017-07-01

    Smokeless tobacco products contain numerous chemical compounds, including known human carcinogens. Other smokeless tobacco constituents, including bacteria, may also contribute to adverse health effects among smokeless tobacco users. However, there is a lack of data regarding the microbial constituents of smokeless tobacco. Our goal was to characterize the bacterial microbiota of different smokeless tobacco products and evaluate differences across product types and brands. DNA was extracted from 15 brands of smokeless tobacco products (including dry snuff, moist snuff, snus, and Swedish snus) and 6 handmade products (e.g., toombak) using an enzymatic and mechanical lysis approach. Bacterial community profiling was performed using PCR amplification of the V1-V2 hypervariable region of the 16S rRNA gene, followed by 454 pyrosequencing of the resulting amplicons and sequence analysis using the QIIME package. Total viable counts were also determined to estimate the number of viable bacteria present in each product. Average total viable counts ranged from 0 to 9.35 × 10 7  CFU g -1 . Analysis of the 16S rRNA gene sequences revealed high bacterial diversity across the majority of products tested: dry snuff products where characterized by the highest diversity indices compared to other products. The most dominant bacterial phyla across all products were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Significant differences in both bacterial community composition and in silico predicted gene content were observed between smokeless tobacco product types and between brands of specific smokeless tobacco products. These data are useful in order to comprehensively address potential health risks associated with the use of smokeless tobacco products.

  6. The Bacterial Ghost platform system: production and applications.

    Science.gov (United States)

    Langemann, Timo; Koller, Verena Juliana; Muhammad, Abbas; Kudela, Pavol; Mayr, Ulrike Beate; Lubitz, Werner

    2010-01-01

    The Bacterial Ghost (BG) platform technology is an innovative system for vaccine, drug or active substance delivery and for technical applications in white biotechnology. BGs are cell envelopes derived from Gram-negative bacteria. BGs are devoid of all cytoplasmic content but have a preserved cellular morphology including all cell surface structures. Using BGs as delivery vehicles for subunit or DNA-vaccines the particle structure and surface properties of BGs are targeting the carrier itself to primary antigen-presenting cells. Furthermore, BGs exhibit intrinsic adjuvant properties and trigger an enhanced humoral and cellular immune response to the target antigen. Multiple antigens of the native BG envelope and recombinant protein or DNA antigens can be combined in a single type of BG. Antigens can be presented on the inner or outer membrane of the BG as well as in the periplasm that is sealed during BG formation. Drugs or supplements can also be loaded to the internal lumen or periplasmic space of the carrier. BGs are produced by batch fermentation with subsequent product recovery and purification via tangential flow filtration. For safety reasons all residual bacterial DNA is inactivated during the BG production process by the use of staphylococcal nuclease A and/or the treatment with β-propiolactone. After purification BGs can be stored long-term at ambient room temperature as lyophilized product. The production cycle from the inoculation of the pre-culture to the purified BG concentrate ready for lyophilization does not take longer than a day and thus meets modern criteria of rapid vaccine production rather than keeping large stocks of vaccines. The broad spectrum of possible applications in combination with the comparably low production costs make the BG platform technology a safe and sophisticated product for the targeted delivery of vaccines and active agents as well as carrier of immobilized enzymes for applications in white biotechnology. © 2010 Landes

  7. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  8. X-rays control bacterial contamination in food products

    International Nuclear Information System (INIS)

    Zani, M.L.

    2000-01-01

    In order to control the lack of bacterial contamination of liquid food products, 'Nestle clinical nutrition' firm uses a new system based on the X-ray image of the content of sealed tins when these tins undergo a quick move on the conveyor belt. This moves induces a wave of product inside the tin and the amplitude of that wave is directly linked to the viscosity of the product which is linked to the presence or not of bacteria. The X-ray image is processed and the wave is characterized by 5 parameters. Any tin for which one at least of the 5 parameters does not match the calibration values is discarded. This system can process 10 tins per second. (A.C.)

  9. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues

    2017-09-01

    Submerged and solid-state bioprocesses have been extensively explored worldwide and employed in a number of important studies dealing with microbial cultivation for the production of enzymes. The development of these production technologies has facilitated the generation of new enzyme-based products with applications in pharmaceuticals, food, bioactive peptides, and basic research studies, among others. The applicability of microorganisms in biotechnology is potentiated because of their various advantages, including large-scale production, short time of cultivation, and ease of handling. Currently, several studies are being conducted to search for new microbial peptidases with peculiar biochemical properties for industrial applications. Bioprospecting, being an important prerequisite for research and biotechnological development, is based on exploring the microbial diversity for enzyme production. Limited information is available on the production of specific proteolytic enzymes from bacterial and fungal species, especially on the subgroups threonine and glutamic peptidases, and the seventh catalytic type, nonhydrolytic asparagine peptide lyase. This gap in information motivated the present study about these unique biocatalysts. In this study, the biochemical and biotechnological aspects of the seven catalytic types of proteolytic enzymes, namely aspartyl, cysteine, serine, metallo, glutamic, and threonine peptidase, and asparagine peptide lyase, are summarized, with an emphasis on new studies, production, catalysis, and application of these enzymes.

  10. antiSMASH : rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    NARCIS (Netherlands)

    Medema, Marnix H.; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A.; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide

  11. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    NARCIS (Netherlands)

    Medema, M.H.; Blin, K.; Cimermancic, P.; Jager, de V.C.L.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R.

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide

  12. Bacterial abundance and production in the central and eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Raghukumar, S.; Gauns, M.

    Seasonal and spatial variations in bacterial and picoplankton abundances and bacterial production (thymidine incorporation rates) were determined in the water column up to 150 m in several stations in the central and eastern Arabian Sea. Higher...

  13. Marketing Agricultural Products. Curriculum Guide Developed for Secondary and Post Secondary Agriculture Programs.

    Science.gov (United States)

    Miller, W. Wade; And Others

    This curriculum guide can be used by secondary and postsecondary agriculture instructors for a semester course in marketing agricultural products or individual units can be incorporated in other courses. The curriculum guide consists of six units of study made up of two to eight lessons each. The units cover the following topics: (1) marketing…

  14. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  15. Simple Method for Enhanced Production of Secondary Metabolites ...

    African Journals Online (AJOL)

    iict

    2013-04-10

    Apr 10, 2013 ... Callus cultures of Charybdis congesta were initiated in vitro and the effect of growth regulators was tested on callus growth and secondary metabolite production. Among several standard media formulated for use in the present study, MS and B5 were found to be potentially active and facilitated.

  16. Research Note Testing for a decline in secondary productivity under ...

    African Journals Online (AJOL)

    We suggest that this counterintuitive result reflects the combing out, and therefore loss, of hair in the densely vegetated site. This study failed to demonstrate a decline in secondary productivity in desertified thicket and highlights the importance of replicating such studies in space and time. African Journal of Range & Forage ...

  17. seasonal variation of biomass and secondary production of ...

    African Journals Online (AJOL)

    Preferred Customer

    Key words/phrases: Biomass, Brachionus calyciflorus, Lake Kuriftu, secondary production, .... glass rod to enhance extraction of pigments and ..... by Cyanobacteria. Moreover, the seasonal peak in cyclopoid biomass in Lake Hawassa was during the rainy months and in Lake Kuriftu, during the post-rainy months, mainly ...

  18. The Effect of Various Oral Hygiene Products on Bacterial Growth

    Science.gov (United States)

    Viswanath, S.; Aggrawal, A.; Vazirani, S.

    2017-12-01

    In this experiment, we tested the antimicrobial effectiveness of six different oral hygiene products. We used three natural cleansing products (coconut oil, sea salt, and baking soda), as well as three synthetic products, which were the Colgate toothpaste varieties of sensitivity, cavity protection, and whitening. We mixed water with each of the products to create a paste that could be uniformly applied to the surface of a disc. We then dipped the discs into the solutions and placed them in petri dishes that were pre-treated with bacterial cells. After 72 hours, we measured the area around the disc that was bacteria-free, which is known as the zone of inhibition. This experiment was repeated twice, with one petri dish per product for each trial, and two different types of agar. We were surprised to discover that almost all the products had no zone of inhibition, with bacteria growing throughout the petri dish, and to the disc. The only cleaning product that showed a significant antibacterial result was the Colgate sensitivity toothpaste. During the two trials, the sensitivity toothpaste had a zone of inhibition of 14.8 cm2 and 8.7 cm2, respectively. Coconut oil was the only other product to have a measurable zone of inhibition with an area of 0.3 cm2. We concluded that only the sensitivity toothpaste was effective in killing bacteria, perhaps due to its different hygienic goal of protecting the tooth's nerves. This toothpaste contains ingredients called potassium nitrate and strontium chloride, which blocks tubules in the dentin, the hard, bony tissue beneath the enamel. Sensitivity toothpaste strengthens the tooth, by blocking decaying substances such as oral bacteria (Knights, 2014).

  19. Secondary bacterial infections of buruli ulcer lesions before and after chemotherapy with streptomycin and rifampicin.

    Science.gov (United States)

    Yeboah-Manu, Dorothy; Kpeli, Grace S; Ruf, Marie-Thérèse; Asan-Ampah, Kobina; Quenin-Fosu, Kwabena; Owusu-Mireku, Evelyn; Paintsil, Albert; Lamptey, Isaac; Anku, Benjamin; Kwakye-Maclean, Cynthia; Newman, Mercy; Pluschke, Gerd

    2013-01-01

    Buruli ulcer (BU), caused by Mycobacterium ulcerans is a chronic necrotizing skin disease. It usually starts with a subcutaneous nodule or plaque containing large clusters of extracellular acid-fast bacilli. Surrounding tissue is destroyed by the cytotoxic macrolide toxin mycolactone produced by microcolonies of M. ulcerans. Skin covering the destroyed subcutaneous fat and soft tissue may eventually break down leading to the formation of large ulcers that progress, if untreated, over months and years. Here we have analyzed the bacterial flora of BU lesions of three different groups of patients before, during and after daily treatment with streptomycin and rifampicin for eight weeks (SR8) and determined drug resistance of the bacteria isolated from the lesions. Before SR8 treatment, more than 60% of the examined BU lesions were infected with other bacteria, with Staphylococcus aureus and Pseudomonas aeruginosa being the most prominent ones. During treatment, 65% of all lesions were still infected, mainly with P. aeruginosa. After completion of SR8 treatment, still more than 75% of lesions clinically suspected to be infected were microbiologically confirmed as infected, mainly with P. aeruginosa or Proteus miriabilis. Drug susceptibility tests revealed especially for S. aureus a high frequency of resistance to the first line drugs used in Ghana. Our results show that secondary infection of BU lesions is common. This could lead to delayed healing and should therefore be further investigated.

  20. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice C.; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.; Ruby, Edward G.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  1. Contribution of Vaccine-Induced Immunity toward either the HA or the NA Component of Influenza Viruses Limits Secondary Bacterial Complications▿

    OpenAIRE

    Huber, Victor C.; Peltola, Ville; Iverson, Amy R.; McCullers, Jonathan A.

    2010-01-01

    Secondary bacterial infections contribute to morbidity and mortality from influenza. Vaccine effectiveness is typically assessed using prevention of influenza, not secondary infections, as an endpoint. We vaccinated mice with formalin-inactivated influenza virus vaccine preparations containing disparate HA and NA proteins and demonstrated an ability to induce the appropriate anti-HA and anti-NA immune profiles. Protection from both primary viral and secondary bacterial infection was demonstra...

  2. Ceftaroline Fosamil for the Treatment of Staphylococcus aureus Bacteremia Secondary to Acute Bacterial Skin and Skin Structure Infections or Community-Acquired Bacterial Pneumonia.

    Science.gov (United States)

    Vazquez, Jose A; Maggiore, Christy R; Cole, Phillip; Smith, Alexander; Jandourek, Alena; Friedland, H David

    2015-01-01

    The Clinical Assessment Program and Teflaro® Utilization Registry is designed to collect information on the clinical use of ceftaroline fosamil in the Unites States. This report presents data on the treatment of patients with Staphylococcus aureus bacteremia (SAB) secondary to acute bacterial skin and skin structure infections (ABSSSIs) or community-acquired bacterial pneumonia (CABP). Patients diagnosed with ABSSSI or CABP were identified through sequential review of randomly ordered charts generated from pharmacy listings from August 2011 to February 2013. Data were collected by chart review 30 days or more after completion of ceftaroline fosamil therapy. Secondary SAB was reported in a total of 48 of 1428 evaluable patients (27 with ABSSSI, 21 with CABP). The mean (SD) patient age was 61 (15) years. At least 1 comorbidity was recorded for 74% of patients with ABSSSI and 81% with CABP. Methicillin-resistant S. aureus was isolated from 59% of patients with ABSSSI and 76% with CABP. The mean (SD) duration of ceftaroline fosamil therapy was 5.8 (4.8) days for ABSSSI and 7.0 (3.8) days for CABP. Clinical success among all patients with SAB treated with ceftaroline fosamil was 58% (52% for SAB secondary to ABSSSI, 67% for SAB secondary to CABP). Clinical success rates of methicillin-resistant S. aureus SAB were 50% (8/16) for ABSSSI and 63% (10/16) for CABP. This study supports the use of ceftaroline fosamil as a viable treatment option in hospitalized patients with SAB secondary to ABSSSI or CABP. Further studies evaluating the use of ceftaroline fosamil for the treatment of SAB are warranted.

  3. Plant products and secondary metabolites with acaricide activity against ticks.

    Science.gov (United States)

    Rosado-Aguilar, J A; Arjona-Cambranes, K; Torres-Acosta, J F J; Rodríguez-Vivas, R I; Bolio-González, M E; Ortega-Pacheco, A; Alzina-López, A; Gutiérrez-Ruiz, E J; Gutiérrez-Blanco, E; Aguilar-Caballero, A J

    2017-04-30

    The present review documents the results of studies evaluating the acaricidal activity of different plant products and secondary metabolites against ticks that are resistant and susceptible to conventional acaricides. Studies published from 1998 to 2016 were included. The acaricidal activity of plant extracts, essential oils and secondary compounds from plants have been evaluated using bioassays with ticks in the larval and adult stages. There is variable effectiveness according to the species of plant and the concentrations used, with observed mortalities ranging from 5 to 100% against the Rhipicephalus (Boophilus), Amblyomma, Dermacentor, Hyalomma, and Argas genera. A number of plants have been reported to cause high mortalities and/or affect the reproductive capacity of ticks in the adult phase. In the majority of these trials, the main species of plants evaluated correspond to the families Lamiaceae, Fabaceae, Asteraceae, Piperaceae, Verbenaceae, and Poaceae. Different secondary metabolites such as thymol, carvacrol, 1,8-cineol and n-hexanal, have been found to be primarily responsible for the acaricidal activity of different essential oils against different species of ticks, while nicotine, dibenzyldisulfide and dibenzyltrisulfide have been evaluated for plant extracts. Only thymol, carvacrol and 1,8-cineol have been evaluated for acaricidal activity under in vivo conditions. The information in the present review allows the conclusion that the secondary metabolites contained in plant products could be used as an alternative for the control of ticks that are susceptible or resistant to commercial acaricides. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Plants and endophytes: equal partners in secondary metabolite production?

    Science.gov (United States)

    Ludwig-Müller, Jutta

    2015-07-01

    Well known plant production systems should be re-evaluated due to findings that the interesting metabolite might actually be produced by microbes intimately associated with the plant, so-called endophytes. Endophytes can be bacteria or fungi and they are characterized usually by the feature that they do not cause any harm to the host. Indeed, in some cases, such as mycorrhizal fungi or other growth promoting endophytes, they can be beneficial for the plant. Here some examples are reviewed where the host plant and/or endophyte metabolism can be induced by the other partner. Also, partial or complete biosynthesis pathways for plant secondary metabolites can be attributed to such endophytes. In other cases the host plant is able to metabolize substances from fungal origin. The question of the natural role of such metabolic changes for the endophyte will be briefly touched. Finally, the consequences for the use of plant cultures for secondary metabolite production is discussed.

  5. Using Natural Products to Treat Resistant and Persistent Bacterial Infections

    Science.gov (United States)

    Deering, Robert W.

    Antimicrobial resistance is a growing threat to human health both worldwide and in the United States. Most concerning is the emergence of multi-drug resistant (MDR) bacterial pathogens, especially the 'ESKAPE' pathogens for which treatment options are dwindling. To complicate the problem, approvals of antibiotic drugs are extremely low and many research and development efforts in the pharmaceutical industry have ceased, leaving little certainty that critical new antibiotics are nearing the clinic. New antibiotics are needed to continue treating these evolving infections. In addition to antibiotics, approaches that aim to inhibit or prevent antimicrobial resistance could be useful. Also, studies that improve our understanding of bacterial pathophysiology could lead to new therapies for infectious disease. Natural products, especially those from the microbial world, have been invaluable as resources for new antibacterial compounds and as insights into bacterial physiology. The goal of this dissertation is to find new ways to treat resistant bacterial infections and learn more about the pathophysiology of these bacteria. Investigations of natural products to find molecules able to be used as new antibiotics or to modulate resistance and other parts of bacterial physiology are crucial aspects of the included studies. The first included study, which is reported in chapter two, details a chemical investigation of a marine Pseudoalteromonas sp. Purification efforts of the microbial metabolites were guided by testing against a resistance nodulation of cell division model of efflux pumps expressed in E. coli. These pumps play an important role in the resistance of MDR Gram negative pathogens such as Pseudomonas aeruginosa and Enterobacteriaceae. Through this process, 3,4-dibromopyrrole-2,5-dione was identified as a potent inhibitor of the RND efflux pumps and showed synergistic effects against the E. coli strain with common antibiotics including fluoroquinolones, beta

  6. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    International Nuclear Information System (INIS)

    Deason, Wesley Ray

    2015-01-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today's electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by -dumping steam', or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon

  7. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  8. Secondary resources processing in production of nuclear grade yellow cake

    International Nuclear Information System (INIS)

    Sivasubramanian, S.

    2009-01-01

    Full text: Recovering uranium in a cost competitive manner from sources other than the uranium ore is considered necessary from the point of view of meeting the strategic as well as the nuclear power programme need of the country. Globally, uranium is produced from ores which have more than 10 times uranium content compared to those available in India. Secondary sources of uranium are mostly defined by recycled uranium, from spent fuel of nuclear reactors, re-enriched depleted uranium tails, ex-military weapons grade uranium and stock piles for civilian use. Uranium production from secondary sources in India is largely dependent on processing of monazite, and to a smaller extent it is recovered from waste metallurgical slags generated by BARC and other private industries engaged in extracting niobium tantalum from the ores. The paper gives over view of the commercially successful processes of producing uranium from monazite and other secondary sources along with the details of setting up demonstration units for recovering uranium from wet phosphoric acid. The research and development work carried out to improve the cost economics of uranium production from monazite is also discussed as the total reported quantity of uranium associated with the monazite resources of the country is estimated at 30,000 tons of uranium metal (at the end of X Plan) compared to 75,000 ton of uranium in its primary ores

  9. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production.

    Science.gov (United States)

    Robertsen, Helene Lunde; Weber, Tilmann; Kim, Hyun Uk; Lee, Sang Yup

    2018-01-01

    Streptomycetes are known for their inherent ability to produce pharmaceutically relevant secondary metabolites. Discovery of medically useful, yet novel compounds has become a great challenge due to frequent rediscovery of known compounds and a consequent decline in the number of relevant clinical trials in the last decades. A paradigm shift took place when the first whole genome sequences of streptomycetes became available, from which silent or "cryptic" biosynthetic gene clusters (BGCs) were discovered. Cryptic BGCs reveal a so far untapped potential of the microorganisms for the production of novel compounds, which has spurred new efforts in understanding the complex regulation between primary and secondary metabolism. This new trend has been accompanied with development of new computational resources (genome and compound mining tools), generation of various high-quality omics data, establishment of molecular tools, and other strain engineering strategies. They all come together to enable systems metabolic engineering of streptomycetes, allowing more systematic and efficient strain development. In this review, the authors present recent progresses within systems metabolic engineering of streptomycetes for uncovering their hidden potential to produce novel compounds and for the improved production of secondary metabolites. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Method for construction of bacterial strains with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  11. Production of Bioactive Secondary Metabolites by Marine Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2011-08-01

    Full Text Available Bacteria belonging to the Vibrionaceae family are widespread in the marine environment. Today, 128 species of vibrios are known. Several of them are infamous for their pathogenicity or symbiotic relationships. Despite their ability to interact with eukaryotes, the vibrios are greatly underexplored for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS. Though covering a limited chemical space, vibrios produce compounds with attractive biological activities, including antibacterial, anticancer, and antivirulence activities. This review highlights some of the most interesting structures from this group of bacteria. Many compounds found in vibrios have also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential for exploring new bacterial sources of bioactive compounds and the challenges related to their investigation.

  12. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    Directory of Open Access Journals (Sweden)

    Nachiket P Marathe

    Full Text Available Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20% to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial

  13. Limited Bacterial Diversity within a Treatment Plant Receiving Antibiotic-Containing Waste from Bulk Drug Production.

    Science.gov (United States)

    Marathe, Nachiket P; Shetty, Sudarshan A; Shouche, Yogesh S; Larsson, D G Joakim

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted by the use of activated sludge (AS) technology, where microbes that are able to thrive on the chemicals within the wastewater are reintroduced at an earlier stage of the process to further enhance degradation of incoming chemicals. The microbial community structure within such a treatment plant is, however, largely unclear. In this study, Illumina-based 16S rRNA amplicon sequencing was applied to investigate the bacterial communities of different stages from an Indian treatment plant operated by Patancheru Environment Technology Limited (PETL) in Hyderabad, India. The plant receives waste water with high levels of fluoroquinolones and applies AS technology. A total of 1,019,400 sequences from samples of different stages of the treatment process were analyzed. In total 202, 303, 732, 652, 947 and 864 operational taxonomic units (OTUs) were obtained at 3% distance cutoff in the equilibrator, aeration tanks 1 and 2, settling tank, secondary sludge and old sludge samples from PETL, respectively. Proteobacteria was the most dominant phyla in all samples with Gammaproteobacteria and Betaproteobacteria being the dominant classes. Alcaligenaceae and Pseudomonadaceae, bacterial families from PETL previously reported to be highly multidrug resistant, were the dominant families in aeration tank samples. Despite regular addition of human sewage (approximately 20%) to uphold microbial activity, the bacterial diversity within aeration tanks from PETL was considerably lower than corresponding samples from seven, regular municipal waste water treatment plants. The strong selection pressure from antibiotics present may be one important factor in structuring the microbial community in PETL

  14. A windowless gas target for secondary beam production

    CERN Document Server

    Kishida, T; Shibata, M; Watanabe, H; Tsutsumi, T; Motomura, S; Ideguchi, E; Zhou, X H; Morikawa, T; Kubo, T; Ishihara, M

    1999-01-01

    A windowless gas target was developed for the production of secondary high-spin isomer beams (HSIB). An sup 1 sup 6 O target in the compound form of CO sub 2 gas was used to produce a sup 1 sup 4 sup 5 sup m Sm beam by using an sup 1 sup 6 O( sup 1 sup 3 sup 6 Xe, 7n) sup 1 sup 4 sup 5 sup m Sm reaction. The target gas pressure was kept constant at 50 Torr. A target thickness of about 1 mg/cm sup 2 was achieved with a 10 cm target length. Gas was recirculated and the consumption was very little.

  15. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    OpenAIRE

    Schmidt, Ruth; Köberl, Martina; Mostafa, Amr; Ramadan, Elshahat M.; Monschein, Marlene; Jensen, Kenneth B.; Bauer, Rudolf; Berg, Gabriele

    2014-01-01

    Plant-associated bacteria fulfil important functions for plant growth and health of their host. However, our knowledge about the impact of bacterial treatments on the host’s microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (St...

  16. Torulaspora delbrueckii for secondary fermentation in sparkling wine production.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Ciani, Maurizio

    2018-09-01

    In the search for the desired oenological features and flavour complexity of wines, there is growing interest in the potential use of non-Saccharomyces yeast that are naturally present in the winemaking environment. Torulaspora delbrueckii is one such yeast that has seen profitable use in mixed fermentations with Saccharomyces cerevisiae and with different grape varieties. T. delbrueckii can have positive and distinctive impacts on the overall aroma of wines, and has also been used at an industrial level. Here, T. delbrueckii was successfully used in pure and mixed secondary fermentations for sparkling wine. The two selected T. delbrueckii strains used completed the secondary fermentation 'prise de mousse' in these pure and mixed fermentations. The sparkling wines obtained with T. delbrueckii showed different aromatic compositions and sensory profiles to those of S. cerevisiae. T. delbrueckii strain DiSVA 130 showed high esters production and significantly high scores for some of the aromatic descriptors that positively influence the sensory profile of sparkling wine. Thus, the use of T. delbrueckii in pure and mixed fermentations is a suitable strategy to further develop the flavour complexity during secondary fermentation of sparkling wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Secondary Metabolites Production by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barrios-González, J.

    2005-01-01

    Full Text Available Microbial secondary metabolites are useful high value products with an enormous range of biological activities. Moreover, the past two decades have been a phase of rapid discovery of new activities and development of major compounds for use in different industrial fields, mainly pharmaceuticals, cosmetics, food, agriculture and farming. Many of these metabolites could be produced advantageously in industry by solid–state fermentation (SSF. Two types of SSF can be distinguished, depending on the nature of the solid phase used: 1 Solid cultures of one support-substrate phase in which solid phase is constituted by a material that assumes, simultaneously, the functions of support and of nutrients source; and 2 Solid cultures of two substrate-support phases: solid phase is constituted by an inert support impregnated with a liquid medium. Besides good production performance, two phases systems have provided a convenient model for basic studies. Studies in our laboratory, as well as in others, have shown that physiology of idiophase (production phase in SSF share several similarities with the physiology in liquid medium, so similar strategies must be adapted for efficient production processes. However, our studies indicate the need to develop special strains for SSF since overproducing strains, generated for liquid fermentation, cannot be relied upon to perform well in SSF. On the other hand, there are important parameters, specific for SSF, that have to be optimized (pretreatment, initial moisture content, medium concentration and aeration. Respiration studies of secondary metabolites SSF, performed in our laboratory, have shown more subtle aspects of efficient production in SSF. This indicates that there are certain particularities of physiology in SSF that represent the point that needs a better understanding, and that promise to generate knowledge that will be the basis for efficient processes development and control strategies, as well as for

  18. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3

    Science.gov (United States)

    Yasmin, Sumera; Hafeez, Fauzia Y.; Mirza, Muhammad S.; Rasul, Maria; Arshad, Hafiz M. I.; Zubair, Muhammad; Iqbal, Mazhar

    2017-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide

  19. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3

    Directory of Open Access Journals (Sweden)

    Sumera Yasmin

    2017-09-01

    Full Text Available Xanthomonas oryzae pv. oryzae (Xoo is widely prevalent and causes Bacterial Leaf Blight (BLB in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693. This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin, rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The

  20. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production

    Directory of Open Access Journals (Sweden)

    Tilmann Weber

    2016-06-01

    Full Text Available Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work. In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http://www.secondarymetabolites.org is introduced to provide a one-stop catalog and links to these bioinformatics resources. In addition, an outlook is presented how the existing tools and those to be developed will influence synthetic biology approaches in the natural products field.

  1. Secondary organic aerosol production from modern diesel engine emissions

    Directory of Open Access Journals (Sweden)

    S. Samy

    2010-01-01

    Full Text Available Secondary organic aerosol (SOA production was observed at significant levels in a series of modern diesel exhaust (DE aging experiments conducted at the European Outdoor Photoreactor/Simulation Chamber (EUPHORE. The greatest production occurred in DE with toluene addition experiments (>40%, followed by DE with HCHO (for OH radical generation experiments. A small amount of SOA (3% was observed for DE in dark with N2O5 (for NO3 radical production experiments. The analysis for a limited number (54 of polar organic compounds (POC was conducted to assess the composition of modern DE and the formation of photochemical transformation products. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA %yield (in relation to toluene of 5.3±1.6%, which is compared to past chamber studies that evaluated the impact of [tol]o/[NOx]o on SOA production in more simplified mixtures.

  2. Resistance of Aerosolized Bacterial Viruses to Four Germicidal Products.

    Directory of Open Access Journals (Sweden)

    Nathalie Turgeon

    Full Text Available Viral diseases can spread through a variety of routes including aerosols. Yet, limited data are available on the efficacy of aerosolized chemicals to reduce viral loads in the air. Bacteriophages (phages are often used as surrogates for hazardous viruses in aerosol studies because they are inexpensive, easy to handle, and safe for laboratory workers. Moreover, several of these bacterial viruses display physical characteristics similar to pathogenic human and animal viruses, like morphological size, type of nucleic acids, capsid morphology, and the presence of an envelope. In this study, the efficacy of four chemicals was evaluated on four airborne phages at two different relative humidity levels. Non-tailed bacteriophages MS2 (single-stranded RNA, ϕ6 (double-stranded RNA, enveloped, PR772 (double-stranded DNA, and ϕX174 (single-stranded DNA were first aerosolized in a 55L rotative environmental chamber at 19°C with 25% and 50% relative humidity. Then, hydrogen peroxide, Eugenol (phenylpropene used in commercial perfumes and flavorings, Mist® (automobile disinfectant containing Triethylene glycol, and Pledge® (multisurface disinfectant containing Isopropanol, n-Alkyl Dimethyl Benzyl Amonium Chlorides, and n-Alkyl Dimethyl Ethylbenzyl Ammonium Chloride were nebulized with the phages using a separate nebulizer. Aerosols were maintained in suspension during 10 minutes, 1 hour, and 2 hours. Viral aerosols were sampled using an SKC BioSampler and samples were analyzed using qPCR and plaque assays. The resistance levels of the four phages varied depending on the relative humidity (RH and germicidal products tested. Phage MS2 was the most stable airborne virus under the environmental conditions tested while phage PR772 was the least stable. Pledge® and Eugenol reduced the infectivity of all airborne phages tested. At 25% RH, Pledge® and Eugenol were more effective at reducing infectivity of RNA phages ϕ6 and MS2. At 50% RH, Pledge® was the most

  3. Evaluation of culture media for the production of secondary metabolites in a natural products screening program.

    Science.gov (United States)

    Vandermolen, Karen M; Raja, Huzefa A; El-Elimat, Tamam; Oberlies, Nicholas H

    2013-12-17

    Variation in the growing environment can have significant impacts on the quantity and diversity of fungal secondary metabolites. In the industrial setting, optimization of growing conditions can lead to significantly increased production of a compound of interest. Such optimization becomes challenging in a drug-discovery screening situation, as the ideal conditions for one organism may induce poor metabolic diversity for a different organism. Here, the impact of different media types, including six liquid media and five solid media, on the secondary metabolite production of three fungal strains was examined in the context of the drug-discovery screening process. The relative production of marker compounds was used to evaluate the usefulness and reliability of each medium for the purpose of producing secondary metabolites.

  4. Seasonal and spatial variation of bacterial production and abundance in the northern Levantine Sea

    Directory of Open Access Journals (Sweden)

    N. YUCEL

    2017-03-01

    Full Text Available Spatial and temporal heterogeneity in bacterial production and abundance in relation to ambient bio-physicochemical parameters has been investigated in the Levantine Sea. Five stations with different trophic states in an area extending from highly eutrophic Mersin bay to the mesotrophic Rhodes gyre area including the oligotrophic offshore waters were sampled four times. Integrated bacterial production varied between 6.1 and 90.3 µg C m-2 d-1 with higher rates occurring during September 2012 in offshore waters. Bacterial abundance ranged between 0.18 and 7.3 x 105 cells ml-1 within the euphotic zone and was generally higher up to 100 meters throughout the study period. In offshore waters, bacterial production (0.401 to 0.050 µg C m-3 d-1, abundance (4.5 to 1.6 x 105 cells ml-1 and depth of the productive layer decreased from 150 to 75 meters westward along the transect. Although the highest abundance was observed in July 2012 in offshore waters, the highest activity was measured in September 2012. These results indicated that the temperature played a key role in regulating bacterial abundance and production in the area. High chlorophyll concentrations in March did not correspond to high bacterial abundance and production at the same time. Increase in dissolved organic carbon content following spring phytoplankton bloom and the increase in temperature in the mean time might have enhanced the bacterial activity towards summer.

  5. Heterotrophic bacterial production: Relationships to biological and abiological factors in estuarine environments

    International Nuclear Information System (INIS)

    Koepfler, E.T.

    1989-01-01

    Ecotoxicological effects of creosote contamination on benthic bacterial communities in the Elizabeth River, Virginia were investigated using both structural an functional microbial parameters. Results indicated that cell specific and total heterotrophic bacterial production parameters were depressed in a dose-dependent manner with increasing sediment PAH concentrations. Toxicity effects upon production were modified by temporal trends associated with temperature as well as spatial sediment characteristics. Of the parameters employed, the tritiated thymidine production assay was found to be the most sensitive for detection of ecotoxicological effects. Bacterial abundance and production were examined during a destratification event in the lower James River, Virginia. Bacterial abundance, although significantly different between stations, did not change over the study. Bacterial production ( 3 H-Tdr incorporation) in surface waters was significantly less during the mixed period 187 μg C·1-1· d -1 compared to the most stratified state (324μg C·1-1· d -1 ). Correlations between bacteria and chlorophyll were diminished during the mixed period. Total and flagellate specific grazing rates upon bacteria were reduced during the onset of destratification. Relationships between bacterial and nutrient parameters also indicated a strong influence of destratification. These results indicate that destratification changes trophic interactions within the microbial loop, which are not necessarily reflected in temporal patterns of bacterial abundance. Bacterioplankton production, and ammonium assimilation and remineralization were examined between April and August 1988 in the lower York River, Va

  6. Bacterial diversity in dried colostrum and whey sold as nutraceutical products.

    Science.gov (United States)

    Hayes, M Melissa; Hughes, Thomas A; Greene, Annel K

    2012-07-01

    The microbial communities were analyzed from commercially available dried dairy nutraceutical products, including 4 brands of dried colostrum, 2 brands of dried whey, and 1 brand of nonfat dry milk. A culture-dependent 16S rRNA sequencing approach was utilized to elucidate the identity of individual isolates recovered from each dried dairy product. Approximately 69% of all bacterial isolates were members the genus of Bacillus, while approximately 14% of all bacterial isolates were identified as members of the genus Pseudomonas. Members of the Kocuria, Microbacterium, and Enterococcus genera were identified as well. This project investigated the microbial populations inherent in dried commercially available nutraceutical products. Bovine colostrum has been reported to have protective activity against certain viral and bacterial pathogens. This project was designed to identify the bacterial populations within dried dairy nutraceutical products to determine if any species were common to all products and which may impact the reported nutraceutical properties. © 2012 Institute of Food Technologists®

  7. THE EFFECT OF PROBIOTIC BACTERIAL CONCENTRATE "IMMUNOLAKT" ON BAKERY PRODUCTS QUALITY

    Directory of Open Access Journals (Sweden)

    E. V. Belokurova

    2015-01-01

    Full Text Available Nowadays the development of new food products is paid much attention in the food industry. These include also bakery products with lactic starter cultures which contain live microorganisms, vitamins of group B: B1, B2, B6, B12, B9, vitamins A, C, E, folic acid. In this article the technological aspects of the probiotic bacterial concentrate "Immunolakt" in the manufacture of bakery products were studied. The experimental product was developed on the basis of traditional technology taking into account the properties of the introduced additives to correct some technological parameters. The research resulted in the development of technology of bakery products with the introduction of probiotic bacterial concentrate "Immunolakt.". To develop the recipes of dough products probiotic bacterial concentrates "Immunolakt" at 20, 40, 60, 80 and 100% was used instead of a part of yeast in the recipe. Comparative studies of the microstructure of bakery products crumb with the addition of probiotic bacterial concentrate "Immunolakt" and the reference sample were carried out. The content of the probiotic bacterial concentrate of 40% and 60% promoted the formation of a more uniform pore structure and reduction in the number ruptures along their perimeter. Safety indicators of reference and test samples were determined. The number of bacteria of reference and experimental samples of bakery products are in the normal range. The number of mesophilic aerobic and facultative anaerobic bacteria in the test samples is less than in the reference one. Qualimetric evaluation of the quality of finished products was carried out. The developed products are of high organoleptic quality indexes, they are physically and chemically stable, with enhanced nutritional value. Products with the introduction of probiotic bacterial concentrate allow to expand the range of functional orientation bakery products. The use of probiotic bacterial concentrates allows to adjust the course of

  8. Comparison of transgenic plant production for bacterial blight ...

    African Journals Online (AJOL)

    The study was carried out to improve bacterial leaf blight resistance in three rice cultivars (Basmati - 370, DR - 82 and IR - 6) by Agrobacterium mediated transformation system. Three week-old scutellum derived calli were infected with Agrobacterium strain EHA101, containing binary vector pTCL5 which has Xa 21 gene.

  9. Bacterial Cellulose Production from Beet Molasses | Keshk | African ...

    African Journals Online (AJOL)

    The yield of the bacterial cellulose (BC) produced from beet molasses was higher than that using glucose as a sole carbon source. The structure of BC produced in presence of beet molasses was studied using IR spectroscopy and X-ray diffractometry. IR spectra show the relative absorbance of CO- C ether linkage (at 1120 ...

  10. Production and characterization of heavy-metal removing bacterial ...

    African Journals Online (AJOL)

    DINESH

    2012-05-17

    May 17, 2012 ... capacity of bioflocculant could be further stimulated by an increase in temperature. The pH requirement for maximum ... have previously demonstrated the ability of bacterial bioflocculants simultaneously in ..... molecules and weaken the static repulsive force, and promote floc formation (Li et al., 2008; He et ...

  11. Comparison of transgenic plant production for bacterial blight ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... and observed a positive effect on control of bacterial contamination in indica rice as well enhancement in calli growth. Khan et al. (2007) used 500 mg/l cefotoxime in combination with 500 mg/l carbencillin in Basmati - 370 for selection; however, Arencibia et al. (1998) used. 500mg/l cefotoxime in ...

  12. Comparison of protease production from newly isolated bacterial ...

    African Journals Online (AJOL)

    Fermentation medium (by using sub-merged fermentation technique) was incubated for 48 h at 37°C temperature and agitation speed of 200 rpm. The protease was partially purified with 70% ammonium sulphate. Four different supports were used for the immobilization of the bacterial protease by physical adsorption ...

  13. Comparison of transgenic plant production for bacterial blight ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... The study was carried out to improve bacterial leaf blight resistance in three rice cultivars (Basmati -. 370, DR - 82 and IR - 6) by Agrobacterium mediated transformation system. Three week-old scutellum derived calli were infected with Agrobacterium strain EHA101, containing binary vector pTCL5 which.

  14. Oxygenated products of sesquiterpenes in secondary organic aerosol

    Science.gov (United States)

    van Eijck, A.; Kampf, C.; Hoffmann, T.

    2012-04-01

    Secondary organic aerosol (SOA) has a huge impact on air quality and climate change. It influences the Earth radiative budget through absorbing, scattering and reflecting radiation as well as the formation of clouds because the particulates can act as cloud condensation nuclei (CCN). Furthermore, it plays an important role for human health. SOA is formed from gaseous precursors which get oxidized by ozone, OH- and NO3-radicals in the atmosphere. Due to their low vapor pressure these degradation products can nucleate to form new particles or they can condense on existing aerosol particles. Despite the major progress in research during the last few years the actual chemical composition as well as the contribution of various volatile organic compounds (VOCs) to the formation of secondary organic aerosol is still partially unknown. Recent studies indicate that sesquiterpenes play an important role in the formation of SOA because of the low volatility of their oxygenated products (Lee et al., 2006). Their emission is estimated to be about 14,8 Tg per year (Henze et al., 2008), however, these emission rates remain highly uncertain due to the lack of quantitative emission rate measurements. In addition, the knowledge about the actual atmospheric degradation mechanism and the main oxidation products of sesquiterpenes is quite limited. β-Caryophyllene, α-humulene, α-farnesene and β-farnesene are the most abundant sequiterpenes in many sesquiterpene emission profiles. But also aromadendren, α-bergamotene and δ-cadinene and germacrene-D can contribute significantly to some emission profiles (Duhl et al., 2008). To determine the major oxygenated products of sesquiterpenes in SOA, reaction chamber experiments with different sesquiterpenes and ozone were performed in a 100 L reaction chamber. To measure the time dependent formation of initial oxidation products, an APCI-IT-MS was directly connected to the reaction chamber. After 2 hours the APCI-IT-MS was replaced by a

  15. Diurnal variations in bacterial and viral production in Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Jasna, V.; Haridevi, C.K.; Jina, S.; Greeshma, M.; Breezy, J.; Nair, M.

    of bacterial production (BP) and viral production (VP) with respect to primary production over a diurnal period in Cochin estuary. Time series measurements were made every 2 h for 12 h (6 a.m.–6 p.m.) during periods of low and high salinities. The light...

  16. A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice

    Directory of Open Access Journals (Sweden)

    Erik A. Karlsson

    2017-09-01

    Full Text Available Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.

  17. Infected ascites: Distinguishing secondary peritonitis from spontaneous bacterial peritonitis in a cirrhotic patient with classic symptoms

    Directory of Open Access Journals (Sweden)

    Marvin Louis Roy Lu

    2017-01-01

    Conclusion: Persistence of signs and symptoms of peritonitis despite improvement in ascitic fluid analysis in cirrhotic patients treated for or early relapse of peritonitis with the same organism should prompt the physician to evaluate for secondary peritonitis and surgical management should be considered for potentially correctable sources.

  18. Secondary production at the Polar Front, Barents Sea, August 2007

    Science.gov (United States)

    Basedow, Sünnje L.; Zhou, Meng; Tande, Kurt S.

    2014-02-01

    To investigate spatial patterns of secondary production we sampled four core hydrographical regions of the Polar Front in the Barents Sea (Arctic Water, ArW; Polar Front Water, PFW; Atlantic Water, AtW; and Melt Water, MW) by towing an undulating instrument platform along a transect crossing the front from August 8-9, 2007. Sensors mounted on the platform provided data on the hydrography (CTD), fluorescence (Fluorometer, F) and zooplankton abundance in the size range between 0.1 and 30 mm (Laser Optical Plankton Counter, LOPC). These continuous, biophysical data with high-spatial resolution were supplemented by discrete water and zooplankton net samples at stations for sensor calibrations. After in depth quality assessments of the biophysical data, estimates were made of the vital rates based on biovolume spectrum theory. Five size groups were distinguished from the LOPC data: small (S), mainly Oithona spp. and the appendicularian Fritillaria sp.; medium (M), mainly Pseudocalanus spp. and Calanus spp. CI-CIII; large (L), mainly Calanus spp. CIV-CV; and extra large (XL and 2XL), juvenile and adult euphausids. Size groups were further divided based on transparency of organisms. Vital rates based on the biophysical in situ data in combination with biovolume spectrum theories agreed generally well with data from empirical and numerical models in the literature. ArW was characterised by subsurface maxima of chlorophyll a (chl a), and an estimated population growth of ca. 13 mg C m- 3 d- 1 for CI-CIII Calanus spp. and some older Pseudocalanus within the chl a maxima. Frontal waters were characterised by low chl a concentrations, but high abundances and production (around 1 g C m- 3 d- 1) of small copepods (Oithona spp.) and appendicularians (Fritillaria sp.). The estimated production of small-size zooplankton was an order of magnitude higher than the production of all other size groups combined, including large copepods. The high loss rates (- 166 to - 271 mg C m- 3 d- 1

  19. Method for Bacterial Growth and Ammonia Production and Effect of Inhibitory Substances in Disposable Absorbent Hygiene Products.

    Science.gov (United States)

    Forsgren-Brusk, Ulla; Yhlen, Birgitta; Blomqvist, Marie; Larsson, Peter

    The purpose of this study was to evaluate a pragmatic laboratory method to provide a technique for developing incontinence products better able to reduce malodor when used in the clinical setting. Bacterial growth and bacterially formed ammonia in disposable absorbent incontinence products was measured by adding synthetic urine inoculated with bacteria to test samples cut from the crotch area of the product. The inhibitory effect's of low pH (4.5 and 4.9) and 3 antimicrobial substances-chlorhexidine, polyhexamethylene biguanide (PHMB), and thymol-at 2 concentrations each, were studied. From the initial inocula of 3.3 log colony-forming units per milliliter (cfu/mL) at baseline, the bacterial growth of the references increased to 5.0 to 6.0 log cfu/mL at 6 hours for Escherichia coli, Proteus mirabilis, and Enterococcus faecalis. At 12 hours there was a further increase to 7.0 to 8.9 log cfu/mL. Adjusting the pH of the superabsorbent in the incontinence product from 6.0 to pH 4.5 and pH 4.9 significantly (P bacterial growth rates, in most cases, both at 6 and 12 hours. The effect was most pronounced at pH 4.5. Chlorhexidine had significant (P bacterial growth and ammonia production. This technique, we describe, provides a pragmatic method for assessing the odor-inhibiting capacity of specific incontinence products.

  20. Optimization of the industrial production of bacterial aamylase in ...

    African Journals Online (AJOL)

    specific production rate, and the specific substrate consumption rate and also shortened the time necessary for maximum production of both biomass and enzyme. The increase in biomass either by prolonging the incubation time or by increasing aeration was accompanied by an increase in enzyme production. However ...

  1. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant

    International Nuclear Information System (INIS)

    Liu, Jia; Vipulanandan, Cumaraswamy

    2013-01-01

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. - Highlights: • Modeled the effect of nanoparticles on the bacterial growth and biosurfactant production. • Effects of Au/Fe nonoparticles on Serratia Bacterial Growth and Production of Biosurfactant. • Scanning Electron Micrograph of bacteria-nanoparticles interaction

  2. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Science.gov (United States)

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  3. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Vipulanandan, Cumaraswamy, E-mail: cvipulanandan@uh.edu

    2013-10-15

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10 mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. - Highlights: • Modeled the effect of nanoparticles on the bacterial growth and biosurfactant production. • Effects of Au/Fe nonoparticles on Serratia Bacterial Growth and Production of Biosurfactant. • Scanning Electron Micrograph of bacteria-nanoparticles interaction.

  4. Ozone-driven secondary organic aerosol production chain.

    Science.gov (United States)

    Iinuma, Yoshiteru; Kahnt, Ariane; Mutzel, Anke; Böge, Olaf; Herrmann, Hartmut

    2013-04-16

    Acidic sulfate particles are known to enhance secondary organic aerosol (SOA) mass in the oxidation of biogenic volatile organic compounds (BVOCs) through accretion reactions and organosulfate formation. Enhanced phase transfer of epoxides, which form during the BVOC oxidation, into the acidified sulfate particles is shown to explain the latter process. We report here a newly identified ozone-driven SOA production chain that increases SOA formation dramatically. In this process, the epoxides interact with acidic sulfate particles, forming a new generation of highly reactive VOCs through isomerization. These VOCs partition back into the gas phase and undergo a new round of SOA forming oxidation reactions. Depending on the nature of the isomerized VOCs, their next generation oxidation forms highly oxygenated terpenoic acids or organosulfates. Atmospheric evidence is presented for the existence of marker compounds originating from this chain. The identified process partly explains the enhanced SOA formation in the presence of acidic particles on a molecular basis and could be an important source of missing SOA precursor VOCs that are currently not included in atmospheric models.

  5. Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production.

    Science.gov (United States)

    Bonatelli, Maria L; Quecine, Maria C; Silva, Mariana S; Labate, Carlos A

    2017-09-15

    The industrial ethanolic fermentation process is operated in distilleries, either in fed-batch or continuous mode. A consequence of the large industrial ethanol production is bacterial contamination in the fermentation tanks, which is responsible for significant economic losses. To investigate this community, we accessed the profile of bacterial contaminant from two distilleries in Brazil, each operating a different fermentation mode, throughout sugarcane harvest of 2013-2014. Bacterial communities were accessed through Illumina culture-independent 16S rDNA gene sequencing, and qPCR was used to quantify total bacteria abundance. Both ethanol production modes showed similar bacterial abundance, around 105 gene copies/mL. 16S rDNA sequencing showed that 92%-99% of the sequences affiliated to Lactobacillus genus. Operational taxonomic units differently represented belonged mainly to Lactobacillus, but also to Weissella, Pediococcus, Acetobacter and Anaeosporobacter, although in lower abundance. Alpha-diversity only showed a correlation through the fermentation tanks in continuous mode, where it was always higher in the second and third tanks. Beta-diversity clearly separated the two distilleries and metagenome prediction reinforces clusterization within distilleries. Despite certain variations between bacterial community in the distilleries throughout harvest season, Lactobacillus were the main genera reported in both distilleries and bacterial community seemed to persist along time, suggesting bacterial reinfestation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Impact of School Staff Health on Work Productivity in Secondary Schools in Massachusetts

    Science.gov (United States)

    Alker, Heather J.; Wang, Monica L.; Pbert, Lori; Thorsen, Nancy; Lemon, Stephenie C.

    2015-01-01

    Background: Healthy, productive employees are an integral part of school health programs. There have been few assessments of work productivity among secondary school staff. This study describes the frequency of 3 common health risk factors--obesity, depressive symptoms, and smoking--and their impact on work productivity in secondary school…

  7. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola

    1998-01-01

    experimentally investigated inhibition of marine bacteria by furanones, initially testing the effects of crude extract of D. pulchra (about 50 % of which is furanones) on the growth of 144 strains of bacteria isolated from the surfaces of D. pulchra, nearby rocks, or a co-occurring alga (Sasgassum vestitum......We investigated the effects of halogenated furanones from the red alga Delisea pulchra on colonisation of surfaces by marine bacteria. Bacterial abundance on the surface of D. pulchra, assessed using scanning electron microscopy (SEM), was significantly lower than on the surfaces of 3 co......). This crude extract did not strongly inhibit growth of these bacteria; 79% of the strains grew at 50 pg ml(-1) of crude extract, and 63 % grew at 500 mu g ml(-1). Inhibition of growth that did occur was strongly source dependent, with bacteria isolated from rocks the least affected, and strains from D...

  8. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola

    1998-01-01

    experimentally investigated inhibition of marine bacteria by furanones, initially testing the effects of crude extract of D. pulchra (about 50 % of which is furanones) on the growth of 144 strains of bacteria isolated from the surfaces of D. pulchra, nearby rocks, or a co-occurring alga (Sasgassum vestitum......). This crude extract did not strongly inhibit growth of these bacteria; 79% of the strains grew at 50 pg ml(-1) of crude extract, and 63 % grew at 500 mu g ml(-1). Inhibition of growth that did occur was strongly source dependent, with bacteria isolated from rocks the least affected, and strains from D...... - attachment, swarming, and swimming. Individual furanones or crude extract at natural concentrations strongly inhibited bacterial attachment in the laboratory and in the field. In laboratory assays, attachment of 3 strains isolated from rocks was much more strongly affected than that of 3 isolates from D...

  9. Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media

    Directory of Open Access Journals (Sweden)

    Maryam Jalili Tabaii

    2015-12-01

    Full Text Available The effect of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus (PTCC 1734 and two newly isolated strains (from vinegar under static culture conditions was studied. The production of bacterial cellulose was examined in modified Hestrin-Shramm medium by replacing D-glucose with other carbon sources. The results showed that the yield and characteristics of bacterial cellulose were influenced by the type of carbon source. Glycerol gave the highest yield in all of the studied strains (6%, 9.7% and 3.8% for S, A2 strain and Gluconacetobacter xylinus (PTCC 1734, respectively. The maximum dry bacterial cellulose weight in the glycerol containing medium is due to A2 strain (1.9 g l-1 in comparison to Gluconacetobacter xylinus as reference strain (0.76 g l-1. Although all of the studied strains were in Gluconacetobacter family, each used different sugars for maximum production after glycerol (mannitol and fructose for two newly isolated strains and glucose for Gluconacetobacter xylinus. The maximum moisture content was observed when sucrose and food-grade sucrose were used as carbon source. Contrary to expectations, while the maximum thickness of bacterial cellulose membrane was attained when glycerol was used, bacterial cellulose from glycerol had less moisture content than the others. The oxidized cellulose showed antibacterial activities, which makes it as a good candidate for food-preservatives.

  10. Regulation of annual variation in heterotrophic bacterial production in the Schelde estuary (SW Netherlands)

    NARCIS (Netherlands)

    Goosen, N.K.; Van Rijswijk, P.; Kromkamp, J.C.; Peene, J.

    1997-01-01

    Heterotrophic bacterioplankton production (H-3-thymidine incorporation rate) and abundance in the surface water of the Schelde estuary (The Netherlands) were studied during an annual cycle in 1991 along the salinity gradient (0.8 to 33 psu). Bacterial production and numbers increased from the lower

  11. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis.

    Science.gov (United States)

    Ola, Antonius R B; Thomy, Dhana; Lai, Daowan; Brötz-Oesterhelt, Heike; Proksch, Peter

    2013-11-22

    Coculturing the fungal endophyte Fusarium tricinctum with the bacterium Bacillus subtilis 168 trpC2 on solid rice medium resulted in an up to 78-fold increase in the accumulation in constitutively present secondary metabolites that included lateropyrone (5), cyclic depsipeptides of the enniatin type (6-8), and the lipopeptide fusaristatin A (9). In addition, four compounds (1-4) including (-)-citreoisocoumarin (2) as well as three new natural products (1, 3, and 4) were not present in discrete fungal and bacterial controls and only detected in the cocultures. The new compounds were identified as macrocarpon C (1), 2-(carboxymethylamino)benzoic acid (3), and (-)-citreoisocoumarinol (4) by analysis of the 1D and 2D NMR and HRMS data. Enniatins B1 (7) and A1 (8), whose production was particularly enhanced, inhibited the growth of the cocultivated B. subtilis strain with minimal inhibitory concentrations (MICs) of 16 and 8 μg/mL, respectively, and were also active against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis with MIC values in the range 2-8 μg/mL. In addition, lateropyrone (5), which was constitutively present in F. tricinctum, displayed good antibacterial activity against B. subtilis, S. aureus, S. pneumoniae, and E. faecalis, with MIC values ranging from 2 to 8 μg/mL. All active compounds were equally effective against a multiresistant clinical isolate of S. aureus and a susceptible reference strain of the same species.

  12. Production and characterization of heavy-metal removing bacterial ...

    African Journals Online (AJOL)

    ... agents in the treatment of industrial wastewater effluents. Up to 250% increases in bioflocculant production were achieved by manipulation of the media composition. Increases in peptone and glycerol contents, up to 2 and 3%, respectively enhanced the bioflocculants production. With the exception of Herbaspirillium sp.

  13. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals.

    Science.gov (United States)

    Reiniati, Isabela; Hrymak, Andrew N; Margaritis, Argyrios

    2017-06-01

    Cellulosic nanomaterials provide a novel and sustainable platform for the production of high performance materials enabled by nanotechnology. Bacterial cellulose (BC) is a highly crystalline material and contains pure cellulose without lignin and hemicellulose. BC offers an opportunity to provide control of the products' properties in-situ, via specific BC production methods and culture conditions. The BC potential in advanced material applications are hindered by a limited knowledge of optimal BC production conditions, efficient process scale-up, separation methods, and purification methods. There is a growing body of work on the production of bacterial cellulose nanocrystals (BCNs) from BC fibers. However, there is limited information regarding the effect of BC fibers' characteristics on the production of nanocrystals. This review describes developments in BC and BCNs production methods and factors affecting their yield and physical characteristics.

  14. Fungal and bacterial contaminants of six spices and spice products ...

    African Journals Online (AJOL)

    The spices and spice products collectively harboured Aeromonas salmonicida, Enterobacter cloacae, Enterobacter amnigenus, Enterobacter agglomerans, Enterobacter sakazakii, Flavobacterium sp, Chromobacterium violaceum, Pseudomonas putida, Pseudomonas aeroginosa, Acinetobacter sp, Pseudomonas cepacia, ...

  15. Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production.

    Science.gov (United States)

    Xu, Letian; Lu, Min; Xu, Dandan; Chen, Li; Sun, Jianghua

    2016-12-01

    Gut microbiota are widely involved in insect biology, and many factors can influence the microbiota in guts and frass. Dendroctonus valens is a very destructive forest pest in China, and the mass-attacking behavior is regulated by several semiochemicals, including verbenone, a multifunctional pheromone. The beetle harbors a variety of bacteria in its guts and frass and some of them are capable of verbenone production. D. valens is characterized by monogamy and female-initiated attacking behavior. Whether the bacterial communities fluctuate according to sex, and whether the variation influences the verbenone production, remains to be determined. In this study, the bacterial microbiota in D. valens guts and frass were analyzed, and verbenone production by their crude bacterial suspensions was compared in vitro. Bacterial diversity in female frass is more abundant compared to male frass, and the percentages and total amounts of main genera like Lactococcus and Pseudomonas in female frass are significantly higher than those in male frass. The verbenone produced by the female frass suspension is significantly higher than male frass. This study presents a comprehensive comparison of bacterial communities in guts and frass between both sexes of D. valens, highlighting the potential significance of female frass microbiota in verbenone production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications.

    Science.gov (United States)

    Singh, Ram Sarup; Chauhan, Kanika; Kennedy, John F

    2017-03-01

    Inulinases are important hydrolysing enzymes which specifically act on β-2, 1 linkages of inulin to produce fructose or fructooligosaccharides. Fungi, yeasts and bacteria are the potent microbial sources of inulinases. The data on bacterial inulinases is scarce as compared to other microbial sources. Inulinases yield from bacteria is very less as compared to fungal and yeast sources of inulinases. Submerged fermentation (SmF) is the method of choice for the production of inulinases from bacterial sources. Moreover, inulin is a potent substrate for the production of inulinases in SmF. Many bacterial inulinases have been reported to display magnificent environment abiding features and variability in their biophysical and biochemical properties. These properties have attracted intention of many researchers towards exploring adverse ecological niches for more distinctive inulinase producing bacterial strains. Inulinases are substantially important in current biotechnological era due to their numerous industrial applications. High fructose syrup and fructooligosaccharides are two major industrial applications of inulinases. Additionally, there are many reports on the production of various metabolites like citric acid, lactic acid, ethanol, biofuels, butanediol etc. using mixed cultures of inulinase producing organisms with other microorganisms. The present review mainly envisages inulinase producing bacterial sources, inulinase production, purification, characterization and their applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization and optimization of antibiotic resistant bacterial strains for polyhydroxyalkanoates (phas) production

    International Nuclear Information System (INIS)

    Rehman, S. U.; Jamil, N.; Hussain, S.

    2005-01-01

    In this investigation, sugarcane soil, sewage water and soil containing long chain hydrocarbons was screened to obtain bacterial strains that were able to synthesize poly-beta-hydroxyalkanoates (PHA). The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in glucose and sucrose. Sixteen bacterial strains were isolated, purified and characterized for Gram reaction, biochemical analysis and PHA production. Isolates showed a wide range of tolerance to different commonly used antibiotics. PHA extraction was done by solvent extraction and hypochlorite digestion method. PHA production was optimized for different nitrogen concentrations. (author)

  18. 77 FR 16987 - National Emission Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Science.gov (United States)

    2012-03-23

    ... National Emission Standards for Hazardous Air Pollutants: Secondary Aluminum Production AGENCY... for secondary aluminum production (77 FR 8576). The EPA is extending the deadline for written comments... test data for Group I furnaces. DATES: Comments. The public comment period for the proposed rule...

  19. Seasonal variations in secondary production of the Mandovi-Zuari estuarine system of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Selvakumar, R.A.; Nair, V.R.; Madhupratap, M.

    Mean rates of secondary production in the Mandovi, Zuari and Cumbarjua canal, Goa, India were 16.9, 35.9 and 32.4 mg C/m2/day respectively. The general hydrographic conditions of the Zuari were responsible for the higher secondary production...

  20. Amylase production under solid state fermentation by a bacterial ...

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... degrade starch in random fashion producing various maltooligosaccharide mixtures (Mamo et al., 1999;. Sarikaya and Gurgun, 2000; Kiran and Chandra, 2008). Conclusion. The results in this study indicated that isolate W74 was a potential strain for α-amylase production under solid state fermentation ...

  1. Amylase production under solid state fermentation by a bacterial ...

    African Journals Online (AJOL)

    This study was concerned with the screening of a suitable isolate and optimization of cultural conditions for the biosynthesis of thermostable amylase under solid state fermentation (SSF). Twenty seven isolates were screened for amylase production out of which one isolate designated as W74 showed maximal amylase ...

  2. Production of bacterial amylase by Bacillus species isolated from ...

    African Journals Online (AJOL)

    Optimum pH activity was obtained at 4.0 with a concentration of 0.376 mg/ml. Bacillus licheniformis has the greatest potential for producing amylase than the other isolates and rice husk can be exploited for amylase production. The B. licheniformis strain produced thermostable alpha-amylase with characteristics suitable for ...

  3. Measuring spatial variation in secondary production and food quality using a common consumer approach in Lake Erie

    Science.gov (United States)

    Larson, James H.; Richardson, William B.; Evans, Mary Anne; Schaeffer, Jeff; Wynne, Timothy; Bartsch, Michelle; Bartsch, Lynn; Nelson, J. C.; Vallazza, Jon M.

    2016-01-01

    Lake Erie is a large lake straddling the border of the U.S. and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: How does secondary production and food quality for consumers vary across this large mixing zone? and Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee rivermouth and lowest in the open waters of the lake. Mussel tissues in the Maumee rivermouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee rivermouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the

  4. Quality assurance in the egg production chain to reduce the bacterial contamination of the eggshell.

    Science.gov (United States)

    De Reu, K; Grijspeerdt, K; Heyndrickx, M; Uyttendaele, M; Herman, L

    2003-01-01

    Washing eggs in sterile plastic bags with diluent is an efficient sample preparation method for the determination of the bacterial contamination on eggshells. The total count of aerobic bacteria and the total count of Gramnegative bacteria on the eggshell can be used to detect critical contamination points in the egg production chain. The number of eggs to be sampled in a point of the production chain was determined on a statistical basis and fixed on 40 for non-graded eggs and on 20 for graded eggs. In two production chains, one cage production and one organic production system, critical contamination points were identified. The influence of the housing system on the bacterial contamination of the eggshell at the stable was studied. A positive correlation was found between the initial bacterial eggshell contamination and the concentration of bacteria in the air of the poultry houses. With the exception of heavily soiled shells, like shells from ground eggs, there is a poor correlation between the level of bacterial contamination and the visual eggshell contamination.

  5. PRODUCTIVITY OF GROWING PONDS WHEN APPLYING THE BACTERIAL FERTILIZER «PHOSPHOBAKTERIN»

    Directory of Open Access Journals (Sweden)

    Т. Hryhorenko

    2017-09-01

    Full Text Available Purpose. To investigate the effect of the bacterial fertilizer "Phosphobacterin" on the formation of the hydrochemical regime, development of the natural food supply and fish productivity in the growing ponds. Methodology. The work was conducted according to generally accepted hydrochemical,, microbiological, hydrobiological and fish farming methods. Findings The article presents the results of a study of the productivity of growing ponds with different methods of the application of the bacterial fertilizer "Phosphobacterin". It was found that the hydrochemical regime of the experimental ponds was formed under the effect of the source of water supply and measures aimed at intensifying the development of the natural food supply and was favorable for the development of feed organisms and the cultivation of fish seeds. Application of the bacterial fertilizer at the beginning of the growing season along the water pond surface proved to be little effective for increasing the productivity of the pond ecosystem as a whole. A more effective method of increasing biological productivity, including fish productivity of growing ponds, was the application of "Phosphobacterin" during the growing season both on the bed and on the water surface in combination with the organic fertilizer - cattle humus. In the experimental pond under complex fertilization, the average phytoplankton biomass during the growing season was 1.5 times, bacterioplankton 1.1 times, zoobenthos 2.6 times higher, and the obtained total fish productivity was 1.2 times higher than in the control pond (when applying only cattle humus. Originality. The peculiarities of formation of hydrochemical and hydrobiological (phyto-, bacterio-, zooplankton, zoobenthos regimes of growing ponds and the fishery indices are studied, both for bacterial fertilizer "Phosphobacterin" independently and together with the traditional organic fertilizer - cattle humus. Practical value. Based on the obtained results

  6. Production of secondary Deuterium in the atmosphere at various latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    Secondary deuterium in the atmosphere are produced in interactions by primary cosmic rays. The shape of their energy spectrum depends on the primary cosmic ray spectrum incident at the top of the atmosphere. At high energies, the spectral shape depends on the primary spectrum of helium and heavy nuclei. However, at very low energies, specially below the geomagnetic cut-off, the spectral shape depends on the evaporation and recoil processes and hence almost independent of the spectral shape of the primary radiation. It is undertaken a calculation of the secondary deuterium spectrum at small atmospheric depths at various latitudes and the results will be presented.

  7. Radioprotection offered by bacterial secondary metabolite RK-IP-006.G to the mice by oral route of administration

    International Nuclear Information System (INIS)

    Gupta, Ashutosh K.; Malhotra, Poonam; Singh, Praveen K.; Chhachhia, Neha; Singh, Shravan K.; Kumar, Raj

    2014-01-01

    Ionizing radiation is known to cause oxidative damage in biological system primarily by generating reactive oxygen species (ROS). Gastrointestinal system is considered one of the most radiosensitive biological systems. The most radiosensitive cells type found in the intestine are continuously proliferative crypt cells. Damage to intestinal crypt cells lead to gastrointestinal functions impairment that contribute to mortality. In the present study, whole body radioprotective efficacy of bacterial secondary metabolite RK-IP-006.G was evaluated in C57BL/6 male mice. To determine free radical scavenging properties of RK-IP-006.G 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) assay was performed. Radiation induced lipid peroxidation and its inhibition by RK-IP-006.G pretreatment was assessed in intestinal tissue homogenate. To find out cellular antioxidant status of the irradiated and RK-IP- 006.G treated mice, SOD, Catalase, and Glutathion-S-Transferase activity were estimated in intestinal tissue homogenate. Anti-apoptotic and mitochondrial membrane hypopolarization effect of the RK-IP-006.G was also analyzed using fluorescent probes Acridine Orange and Rhodamine123 respectively. Results of the study demonstrated that, RK-IP-006.G pretreatment (∼2h; 150 mg/kg.b.wt. oral administration) to the lethally irradiated (9 Gy) C57BL/6 male mice contributes to >83% whole body radioprotection in mice. Significant (P>0.05%) inhibition in lipid peroxidation was observed in intestinal tissue of irradiated mice pretreated with RK-IP-006.G compared to only irradiated controls. Significant (P>0.05%) increase in antioxidant enzyme i.e. Catalase, SOD and GST activities was reported in irradiated mice pretreated with RK-IP-006.G compared to irradiated control groups. RK-IP-006.G pretreatment also found to be instrumental in inhibiting radiation induced apoptosis and mitochondrial membrane hyperpolarization. In conclusion, present study revealed that bacterial secondary

  8. Application of Bacterial Laccases for Sustainable Energy Production

    DEFF Research Database (Denmark)

    Lörcher, Samuel; Koschorreck, Katja; Shipovskov, Stepan

    for a number of special applications, such as disposable implantable power suppliers for medical sensor-transmitters and drug delivery/activator systems and self-powered enzyme-based biosensors; and they do offer practical advantages of using abundant organic raw materials for clean and sustainable energy...... production. Progress in enzyme biotechnology and electrochemistry enables now construction of biofuel cells exploiting a wide spectrum of enzymes wired to electrodes, able of prolonged for up to several months function.1-3 One of the most attractive designs exploits direct electronic communication between...

  9. Gender Differences of Popular Music Production in Secondary Schools

    Science.gov (United States)

    Abramo, Joseph Michael

    2011-01-01

    In this case study, the author investigated how students' gender affected their participation in a secondary popular music class in which participants wrote and performed original music. Three same-gendered rock groups and two mixed-gendered rock groups were observed. Would students of different genders rehearse and compose differently? How would…

  10. Associations between cyanobacteria and indices of secondary production in the western basin of Lake Erie

    Science.gov (United States)

    Larson, James H.; Evans, Mary Anne; Kennedy, Robert J.; Bailey, Sean; Loftin, Keith A.; Laughrey, Zachary; Femmer, Robin; Schaeffer, Jeff; Richardson, William B.; Wynne, Timothy; Nelson, J. C.; Duris, Joseph W.

    2018-01-01

    Large lakes provide a variety of ecological services to surrounding cities and communities. Many of these services are supported by ecological processes that are threatened by the increasing prevalence of cyanobacterial blooms which occur as aquatic ecosystems experience cultural eutrophication. Over the past 10 yr, Lake Erie experienced cyanobacterial blooms of increasing severity and frequency, which have resulted in impaired drinking water for the surrounding communities. Cyanobacterial blooms may impact ecological processes that support other services, but many of these impacts have not been documented. Secondary production (production of primary consumers) is an important process that supports economically important higher trophic levels. Cyanobacterial blooms may influence secondary production because cyanobacteria are a poor‐quality food resource and cyanotoxins may be harmful to consumers. Over 3 yr at 34 sites across the western basin of Lake Erie, we measured three indices of secondary production that focus on the dominant bivalve taxa: (1) growth of a native unionid mussel, (2) the size of young‐of‐year dreissenid mussels, and (3) the mass of colonizing animals on a Hester‐Dendy sampler. Associations between these indices and cyanobacterial data were estimated to assess whether cyanobacteria are associated with variation in secondary production in the western basin of Lake Erie. The results suggest cyanobacterial abundance alone is only weakly associated with secondary production, but that cyanotoxins have a larger effect on secondary production. Given recurring late‐summer cyanobacterial blooms, this impact on secondary production has the potential to undermine Lake Erie's ability to sustain important ecosystem services.

  11. Polysaccharides enriched in rare sugars: bacterial sources, production and applications

    Directory of Open Access Journals (Sweden)

    Christophe eRoca

    2015-04-01

    Full Text Available Microbial extracellular polysaccharides (EPS, produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers.This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals and biomedical applications, are discussed.

  12. Production of Metabolites as Bacterial Responses to the Marine Environment

    Directory of Open Access Journals (Sweden)

    Pedro Fernandes

    2010-03-01

    Full Text Available Bacteria in marine environments are often under extreme conditions of e.g., pressure, temperature, salinity, and depletion of micronutrients, with survival and proliferation often depending on the ability to produce biologically active compounds. Some marine bacteria produce biosurfactants, which help to transport hydrophobic low water soluble substrates by increasing their bioavailability. However, other functions related to heavy metal binding, quorum sensing and biofilm formation have been described. In the case of metal ions, bacteria developed a strategy involving the release of binding agents to increase their bioavailability. In the particular case of the Fe3+ ion, which is almost insoluble in water, bacteria secrete siderophores that form soluble complexes with the ion, allowing the cells to uptake the iron required for cell functioning. Adaptive changes in the lipid composition of marine bacteria have been observed in response to environmental variations in pressure, temperature and salinity. Some fatty acids, including docosahexaenoic and eicosapentaenoic acids, have only been reported in prokaryotes in deep-sea bacteria. Cell membrane permeability can also be adapted to extreme environmental conditions by the production of hopanoids, which are pentacyclic triterpenoids that have a function similar to cholesterol in eukaryotes. Bacteria can also produce molecules that prevent the attachment, growth and/or survival of challenging organisms in competitive environments. The production of these compounds is particularly important in surface attached strains and in those in biofilms. The wide array of compounds produced by marine bacteria as an adaptive response to demanding conditions makes them suitable candidates for screening of compounds with commercially interesting biological functions. Biosurfactants produced by marine bacteria may be helpful to increase mass transfer in different industrial processes and in the bioremediation of

  13. Production of metabolites as bacterial responses to the marine environment.

    Science.gov (United States)

    de Carvalho, Carla C C R; Fernandes, Pedro

    2010-03-17

    Bacteria in marine environments are often under extreme conditions of e.g., pressure, temperature, salinity, and depletion of micronutrients, with survival and proliferation often depending on the ability to produce biologically active compounds. Some marine bacteria produce biosurfactants, which help to transport hydrophobic low water soluble substrates by increasing their bioavailability. However, other functions related to heavy metal binding, quorum sensing and biofilm formation have been described. In the case of metal ions, bacteria developed a strategy involving the release of binding agents to increase their bioavailability. In the particular case of the Fe(3+) ion, which is almost insoluble in water, bacteria secrete siderophores that form soluble complexes with the ion, allowing the cells to uptake the iron required for cell functioning. Adaptive changes in the lipid composition of marine bacteria have been observed in response to environmental variations in pressure, temperature and salinity. Some fatty acids, including docosahexaenoic and eicosapentaenoic acids, have only been reported in prokaryotes in deep-sea bacteria. Cell membrane permeability can also be adapted to extreme environmental conditions by the production of hopanoids, which are pentacyclic triterpenoids that have a function similar to cholesterol in eukaryotes. Bacteria can also produce molecules that prevent the attachment, growth and/or survival of challenging organisms in competitive environments. The production of these compounds is particularly important in surface attached strains and in those in biofilms. The wide array of compounds produced by marine bacteria as an adaptive response to demanding conditions makes them suitable candidates for screening of compounds with commercially interesting biological functions. Biosurfactants produced by marine bacteria may be helpful to increase mass transfer in different industrial processes and in the bioremediation of hydrocarbon

  14. BacHBerry:: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

    DEFF Research Database (Denmark)

    Dudnik, Alexey; Almeida, A. Filipa; Andrade, Ricardo

    2017-01-01

    and economically-feasible strategy for the production of novel high-value phenolic compounds isolated from berry fruits using bacterial platforms. The project aimed at covering all stages of the discovery and pre-commercialization process, including berry collection, screening and characterization......-up of production by fermentation up to pilot scale, as well as societal and economic analyses of the processes. This review article summarizes some of the key findings obtained throughout the duration of the project....

  15. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes.

    Science.gov (United States)

    Berdjeb, Lyria; Pollet, Thomas; Domaizon, Isabelle; Jacquet, Stéphan

    2011-04-29

    Over the last 30 years, extensive studies have revealed the crucial roles played by microbes in aquatic ecosystems. It has been shown that bacteria, viruses and protozoan grazers are dominant in terms of abundance and biomass. The frequent interactions between these microbiological compartments are responsible for strong trophic links from dissolved organic matter to higher trophic levels, via heterotrophic bacteria, which form the basis for the important biogeochemical roles of microbial food webs in aquatic ecosystems. To gain a better understanding of the interactions between bacteria, viruses and flagellates in lacustrine ecosystems, we investigated the effect of protistan bacterivory on bacterial abundance, production and structure [determined by 16S rRNA PCR-DGGE], and viral abundance and activity of two lakes of contrasting trophic status. Four experiments were conducted in the oligotrophic Lake Annecy and the mesotrophic Lake Bourget over two seasons (early spring vs. summer) using a fractionation approach. In situ dark vs. light incubations were performed to consider the effects of the different treatments in the presence and absence of phototrophic activity. The presence of grazers (i.e. stimulation of viral production (compared to the treatment with no eukaryotic predators) was more variable between lakes than between seasons, with the highest value having been recorded in the mesotrophic lake (+30%). Viral lysis and grazing activities acted additively to sustain high bacterial production in all experiments. Nevertheless, the stimulation of bacterial production was more variable between seasons than between lakes, with the highest values obtained in summer (+33.5% and +37.5% in Lakes Bourget and Annecy, respectively). The presence of both predators (nanoflagellates and viruses) did not seem to have a clear influence upon bacterial community structure according to the four experiments. Our results highlight the importance of a synergistic effect, i.e. the

  16. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    Science.gov (United States)

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  17. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modulation of bacterial ghosts--induced nitric oxide production in macrophages by bacterial ghost-delivered resveratrol.

    Science.gov (United States)

    Koller, Verena J; Dirsch, Verena M; Beres, Hortenzia; Donath, Oliver; Reznicek, Gottfried; Lubitz, Werner; Kudela, Pavol

    2013-03-01

    The present study aimed to investigate the capacity of resveratrol (RV) delivered into macrophages by bacterial ghosts (BGs), representing intact empty nonliving envelopes of Gram-negative bacteria, to modulate nitric oxide (NO) production related to the presence of the pathogen-associated molecular patterns on the surface of BGs. Incubation of the murine macrophage cell line RAW 264.7 with BGs leads to a dose-dependent activation of inducible NO synthase. To modify BG-induced NO formation in RAW 264.7 cells by RV; BGs were loaded with RV (RV-BGs) and incubated with murine macrophages in a dose-dependent manner. RV-BGs delivering RV to the target macrophages significantly reduced BG-induced NO production with concentration of RV more than one order of magnitude lower than the amount of RV capable of reducing NO formation when applied directly. Moreover, no cytotoxic impact of BGs on the viability of RAW 264.7 cells added to macrophages alone or loaded with RV was detected after a mutual 24 h incubation, whereas cell viability slightly decreased (~ 10%) when RV concentrations of 30 μm alone were applied. The results obtained in the present study clearly indicate that the intracellular delivery of RV by BGs significantly enhances the total RV effect. © 2012 The Authors Journal compilation © 2012 FEBS.

  19. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment

    International Nuclear Information System (INIS)

    Zhong, Weizhang; Li, Guixia; Gao, Yan; Li, Zaixing; Geng, Xiaoling; Li, Yubing; Yang, Jingliang; Zhou, Chonghui

    2015-01-01

    In this study, the orthogonal experimental design was used to determine the optimum conditions for the effect of thermal alkaline; pretreatment on the anaerobic digestion of penicillin bacterial residue. The biodegradability of the penicillin; bacterial residue was evaluated by biochemical methane potential tests in laboratory. The optimum values of temperature,; alkali concentration, pretreatment time and moisture content for the thermal-alkaline pretreatment were determined as; 70 °C, 6% (w/v), 30 min, and 85%, respectively. Thermal-alkaline pretreatment could significantly enhance the soluble; chemical oxygen demand solubilization, the suspended solid solubilization and the biodegradability. Biogas production; was enhanced by the thermal-alkaline pretreatment, probably as a result of the breakdown of cell walls and membranes of; micro-organisms, which may facilitate the contact between organic molecules and anaerobic microorganisms.; Keywords: penicillin bacterial residue; anaerobic digestion; biochemical methane potential tests; pretreatment

  20. Production of bioactive secondary metabolites by marine Vibrionaceae

    DEFF Research Database (Denmark)

    Månsson, Maria; Gram, Lone; Larsen, Thomas Ostenfeld

    2011-01-01

    for their ability to produce bioactive secondary metabolites and studies have been limited to only a few species. Most of the compounds isolated from vibrios so far are non-ribosomal peptides or hybrids thereof, with examples of N-containing compounds produced independent of nonribosomal peptide synthetases (NRPS...... also been isolated from other distantly related bacteria. This cosmopolitan occurrence of metabolites indicates a high incidence of horizontal gene transfer, which raises interesting questions concerning the ecological function of some of these molecules. This account underlines the pending potential...

  1. Media and growth conditions for induction of secondary metabolite production

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    2012-01-01

    -defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity...... as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi....

  2. Use of Natural Antimicrobial Peptides and Bacterial Biopolymers for Cultured Pearl Production.

    Science.gov (United States)

    Simon-Colin, Christelle; Gueguen, Yannick; Bachere, Evelyne; Kouzayha, Achraf; Saulnier, Denis; Gayet, Nicolas; Guezennec, Jean

    2015-06-11

    Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures.

  3. Bacterial natural product biosynthetic domain composition in soil correlates with changes in latitude on a continent-wide scale.

    Science.gov (United States)

    Lemetre, Christophe; Maniko, Jeffrey; Charlop-Powers, Zachary; Sparrow, Ben; Lowe, Andrew J; Brady, Sean F

    2017-10-31

    Although bacterial bioactive metabolites have been one of the most prolific sources of lead structures for the development of small-molecule therapeutics, very little is known about the environmental factors associated with changes in secondary metabolism across natural environments. Large-scale sequencing of environmental microbiomes has the potential to shed light on the richness of bacterial biosynthetic diversity hidden in the environment, how it varies from one environment to the next, and what environmental factors correlate with changes in biosynthetic diversity. In this study, the sequencing of PCR amplicons generated using primers targeting either ketosynthase domains from polyketide biosynthesis or adenylation domains from nonribosomal peptide biosynthesis was used to assess biosynthetic domain composition and richness in soils collected across the Australian continent. Using environmental variables collected at each soil site, we looked for environmental factors that correlated with either high overall domain richness or changes in the domain composition. Among the environmental variables we measured, changes in biosynthetic domain composition correlate most closely with changes in latitude and to a lesser extent changes in pH. Although it is unclear at this time the exact mix of factors that may drive the relationship between biosynthetic domain composition and latitude, from a practical perspective the identification of a latitudinal basis for differences in soil metagenome biosynthetic domain compositions should help guide future natural product discovery efforts. Published under the PNAS license.

  4. A Comment on Class Productions in Elite Secondary Schools in Twenty-First-Century Global Context

    Science.gov (United States)

    Weis, Lois

    2014-01-01

    In this closing essay, Lois Weis offers a broad overview of the contributions of this Special Issue on class production in elite secondary schools in the twenty-first-century global context. Drawing upon her own research within US privileged secondary schools, Weis explores the contemporary social, economic and political landscape as connected to…

  5. Seasonal variability of secondary production of cladocerans and ...

    African Journals Online (AJOL)

    Energy transfer efficiency from producers to zooplankton was 1.3% and 4.4% from zooplankton to planktivores. Herbivores consumed 3.4% of primary production and planktivores 36% of zooplankton production. High biomass turnover rates of cladocerans and rotifers sustain planktivores and, after a month's delay, ...

  6. Impact of Metals on Secondary Metabolites Production and Plant ...

    African Journals Online (AJOL)

    NICO

    enhanced production of reactive oxygen species (ROS) and oxidative damage of important macromolecules including DNA, protens, lipids, chloroplast pigments and enzymes.8 Plant damage occurs when the ability of antioxidant processes and detoxification mechanisms are lower than the amount of. ROS production3.

  7. Biogas production from coumarin-rich plants--inhibition by coumarin and recovery by adaptation of the bacterial community.

    Science.gov (United States)

    Popp, Denny; Schrader, Steffi; Kleinsteuber, Sabine; Harms, Hauke; Sträuber, Heike

    2015-09-01

    Plants like sweet clover (Melilotus spp.) are not suitable as fodder for cattle because of harmful effects of the plant secondary metabolite coumarin. As an alternative usage, the applicability of coumarin-rich plants as substrates for biogas production was investigated. When coumarin was added to continuous fermentation processes codigesting grass silage and cow manure, it caused a strong inhibition noticeable as decrease of biogas production by 19% and increase of metabolite concentrations to an organic acids/alkalinity ratio higher than 0.3(gorganic acids) gCaCO3 (-1). Microbial communities of methanogenic archaea were dominated by the genera Methanosarcina (77%) and Methanoculleus (11%). This community composition was not influenced by coumarin addition. The bacterial community analysis unraveled a divergence caused by coumarin addition correlating with the anaerobic degradation of coumarin and the recovery of the biogas process. As a consequence, biogas production resumed similar to the coumarin-free control with a biogas yield of 0.34 LN g(volatile solids) (-1) and at initial metabolite concentrations (∼ 0.2 g(organic acids) gCaCO3 (-1)). Coumarin acts as inhibitor and as substrate during anaerobic digestion. Hence, coumarin-rich plants might be suitable for biogas production, but should only be used after adaptation of the microbial community to coumarin. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for th...

  9. Potential and costs of electrolytical hydrogen production by secondary energy in Brazil

    International Nuclear Information System (INIS)

    Souza, S. N. M. de; Silva, E. P. da

    1998-01-01

    This paper makes a description of the availability supply secondary hydroelectric power (secondary energy) in the Brazilian interconnected hydroelectric systems, then with the data attained it is made an estimation of electrolytical hydrogen that can be produced by means of Brazilian secondary hydroelectric power. Also are determined the costs of electrolytical hydrogen production, by way of utilisation of the secondary hydroelectric power availability in the hydroelectric system of the South and Southeastern regions, with the variation of hydrogen plant capacity that allow identify the cases where hydrogen can be produced at a lower costs. (author)

  10. Production of L-carnitine by secondary metabolism of bacteria

    OpenAIRE

    Bernal, Vicente; Sevilla, Ángel; Cánovas, Manuel; Iborra, José L

    2007-01-01

    Abstract The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce ...

  11. Contribution of dinitrogen fixation to bacterial and primary productivity in the Gulf of Aqaba (Red Sea)

    Science.gov (United States)

    Rahav, E.; Herut, B.; Mulholland, M. R.; Voß, B.; Stazic, D.; Steglich, C.; Hess, W. R.; Berman-Frank, I.

    2013-06-01

    We evaluated the seasonal contribution of heterotrophic and autotrophic diazotrophy to the total dinitrogen (N2) fixation in a representative pelagic station in the northern Gulf of Aqaba in early spring when the water column was mixed and during summer under full thermal stratification. N2 fixation rates were low during the mixed period (˜ 0.1 nmol N L-1 d-1) and were significantly coupled with both primary and bacterial productivity. During the stratified period N2 fixation rates were four-fold higher (˜ 0.4 nmol N L-1 d-1) and were significantly correlated solely with bacterial productivity. Furthermore, while experimental enrichment of seawater by phosphorus (P) enhanced bacterial productivity and N2 fixation rates during both seasons primary productivity was stimulated by P only in the early spring. Metatranscriptomic analyses from the stratified period identified the major diazotrophic contributors as related to heterotrophic prokaryotes from the Euryarchaeota and Desulfobacterales (Deltaproteobacteria) or Chlorobiales (Chlorobia). Moreover, during this season, experimental amendments to seawater applying a combination of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and a mixture of amino acids increased both bacterial productivity and N2 fixation rates. Our findings from the northern Gulf of Aqaba indicate a~shift in the diazotrophic community from phototrophic and heterotrophic populations, including small blooms of the cyanobacterium Trichodesmium, in winter/early spring, to predominantly heterotrophic diazotrophs in summer that may be both P and carbon limited as the additions of P and amino acids illustrated.

  12. Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis.

    Science.gov (United States)

    Ogier, Jean-Claude; Son, Olivier; Gruss, Alexandra; Tailliez, Patrick; Delacroix-Buchet, Agnes

    2002-08-01

    Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and Staphylococcus. The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products.

  13. Dual-label radioisotope method for simultaneously measuring bacterial production and metabolism in natural waters

    International Nuclear Information System (INIS)

    Jonas, B.J.; Tuttle, J.H.; Stoner, D.L.; Ducklow, H.W.

    1988-01-01

    Bacterial production and amino acid metabolism in aquatic systems can be estimated by simultaneous incubation of water samples with both tritiated methyl-thymidine and 14 C-labeled amino acids. This dual-label method not only saves time, labor, and materials, but also allows determination of these two parameters in the same microbial subcommunity. Both organic carbon incorporation and respiration can be estimated. The method is particularly suitable for large-scale field programs and has been used successfully with eutrophic estuarine samples as well as with oligotrophic oceanic water. In the mesohaline portion of Chesapeake Bay, thymidine incorporation ranged seasonally from 2 to 635 pmol liter -1 h -1 and amino acid turnover rates ranged from 0.01 to 28.4% h -1 . Comparison of thymidine incorporation with amino acid turnover measurements made at a deep, midbay station in 1985 suggested a close coupling between bacterial production and amino acid metabolism during most of the year. However, production-specific amino acid turnover rates increased dramatically in deep bay waters during the spring phytoplankton bloom, indicating transient decoupling of bacterial production from metabolism. Ecological features such as this are readily detectable with the dual-label method

  14. Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns.

    Science.gov (United States)

    Liu, Xiangyang

    2016-06-01

    The increased number of annotated bacterial genomes provides a vast resource for genome mining. Several bacterial natural products with epoxide groups have been identified as pre-mRNA spliceosome inhibitors and antitumor compounds through genome mining. These epoxide-containing natural products feature a common biosynthetic characteristic that cytochrome P450s (CYPs) and its patterns such as epoxidases are employed in the tailoring reactions. The tailoring enzyme patterns are essential to both biological activities and structural diversity of natural products, and can be used for enzyme pattern-based genome mining. Recent development of direct cloning, heterologous expression, manipulation of the biosynthetic pathways and the CRISPR-CAS9 system have provided molecular biology tools to turn on or pull out nascent biosynthetic gene clusters to generate a microbial natural product library. This review focuses on a library of epoxide-containing natural products and their associated CYPs, with the intention to provide strategies on diversifying the structures of CYP-catalyzed bioactive natural products. It is conceivable that a library of diversified bioactive natural products will be created by pattern-based genome mining, direct cloning and heterologous expression as well as the genomic manipulation.

  15. The effect of antibiotics on associated bacterial community of stored product mites.

    Directory of Open Access Journals (Sweden)

    Jan Kopecky

    Full Text Available Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata. The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria.Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mg g(-1 of diet for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor.The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mg g(-1 antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.

  16. Production of L-carnitine by secondary metabolism of bacteria

    Directory of Open Access Journals (Sweden)

    Iborra José L

    2007-10-01

    Full Text Available Abstract The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation.

  17. Production of L-carnitine by secondary metabolism of bacteria.

    Science.gov (United States)

    Bernal, Vicente; Sevilla, Angel; Cánovas, Manuel; Iborra, José L

    2007-10-02

    The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation.

  18. Heterologous production of fungal secondary metabolites in Aspergilli

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    Fungal natural products comprise a wide range of compounds. Some are medically attractive as drugs and drug leads, some are used as food additives, while others are harmful mycotoxins. In recent years the genome sequence of several fungi has become available providing genetic information of a lar...

  19. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    Science.gov (United States)

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  20. Characterization of salt cake from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; Badawy, Amro El; Arambewela, Mahendranath; Ford, Robert; Barlaz, Morton; Tolaymat, Thabet

    2014-05-30

    Salt cake is a major waste component generated from the recycling of secondary aluminum processing (SAP) waste. Worldwide, the aluminum industry produces nearly 5 million tons of waste annually and the end-of-life management of these wastes is becoming a challenge in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 39 SAP waste salt cake samples collected from 10 different facilities across the U.S. were determined. The results showed that aluminum (Al), aluminum oxide, aluminum nitride and its oxides, spinel and elpasolite are the dominant aluminum mineral phases in salt cake. The average total Al content was 14% (w/w). The overall percentage of the total leachable Al in salt cake was 0.6% with approximately 80% of the samples leaching at a level less than 1% of the total aluminum content. The extracted trace metal concentrations in deionized water were relatively low (μgL(-1) level). The toxicity characteristic leaching procedure (TCLP) was employed to further evaluate leachability and the results indicated that the leached concentrations of toxic metals from salt cake were much lower than the EPA toxicity limit set by USEPA. Published by Elsevier B.V.

  1. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen......Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence...... of complementary rare codons in genes-of-interest. Here we show that such extra tRNA, supplied by the commonly used pLysSRARE2 plasmid, can cause two side effects: (1) growth and gene expression can be impaired, and (2) apparent positive effects can be caused by differential expression of the lysozyme gene encoded...... on the same plasmid and not the tRNAs per se. These phenomena seem to have been largely overlooked despite the huge popularity of the T7/pET-based systems for bacterial protein production....

  2. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  3. Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon

    Science.gov (United States)

    Van Wambeke, France; Pfreundt, Ulrike; Barani, Aude; Berthelot, Hugo; Moutin, Thierry; Rodier, Martine; Hess, Wolfgang R.; Bonnet, Sophie

    2016-06-01

    Studies investigating the fate of diazotrophs through the microbial food web are lacking, although N2 fixation can fuel up to 50 % of new production in some oligotrophic oceans. In particular, the role played by heterotrophic prokaryotes in this transfer is largely unknown. In the frame of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) experiment, three replicate large-volume (˜ 50 m3) mesocosms were deployed for 23 days in the new Caledonia lagoon and were intentionally fertilized on day 4 with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. We specifically examined relationships between heterotrophic bacterial production (BP) and N2 fixation or primary production, determined bacterial growth efficiency and established carbon budgets. BP was statistically higher during the second phase of the experiment (P2: days 15-23), when chlorophyll biomass started to increase compared to the first phase (P1: days 5-14). Phosphatase alkaline activity increased drastically during the second phase of the experiment, showing adaptations of microbial populations after utilization of the added DIP. Notably, among autotrophs, Synechococcus abundances increased during P2, possibly related to its capacity to assimilate leucine and to produce alkaline phosphatase. Bacterial growth efficiency based on the carbon budget (27-43 %), was notably higher than generally cited for oligotrophic environments and discussed in links with the presence of abundant species of bacteria expressing proteorhodopsin. The main fates of gross primary production (particulate + dissolved) were respiration (67 %) and export through sedimentation (17 %). BP was highly correlated with particulate primary production and chlorophyll biomass during both phases of the experiment but was slightly correlated, and only during P2 phase, with N2 fixation rates. Heterotrophic bacterial production was strongly stimulated after mineral N enrichment

  4. Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines.

    Directory of Open Access Journals (Sweden)

    Claire M Smith

    Full Text Available Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections.

  5. Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India.

    Science.gov (United States)

    Devi, Khunjamayum Romapati; Deka, Manab; Jeyaram, Kumaraswamy

    2015-04-16

    Ngari is the most popular traditionally processed non-salted fish product, prepared from sun-dried small cyprinid fish Puntius sophore (Ham.) in Manipur state of Northeast India. The microbial involvement in ngari production remained uncertain due to its low moisture content and yearlong incubation in anaerobically sealed earthen pots without any significant change in total microbial count. The culture-independent PCR-DGGE analysis used during this study confirmed a drastic bacterial community structural change in comparison to its raw material. To understand the bacterial dynamics during this dry fermentation, time series samples collected over a period of nine months through destructive sampling from two indigenous ngari production centres were analysed by using both culture-dependent and culture-independent molecular methods. A total of 210 bacteria isolated from the samples were identified by amplified ribosomal DNA restriction analysis (ARDRA) based grouping and 16S rRNA gene sequence similarity analysis. The dominant bacteria were Staphylococcus cohnii subsp. cohnii (38.0%), Tetragenococcus halophilus subsp. flandriensis (16.8%), a novel phylotype related to Lactobacillus pobuzihii (7.2%), Enterococcus faecium (7.2%), Bacillus indicus (6.3%) and Staphylococcus carnosus (3.8%). Distinct bacterial dynamics with the emergence of T. halophilus at third month (10(6)CFU/g), L. pobuzihii at sixth month (10(6)CFU/g), S. carnosus at three to six months (10(4)CFU/g) and B. indicus at six to nine months (10(5)CFU/g) in both the production centres was observed during ngari fermentation. However, the other two dominant bacteria S. cohnii and E. faecium were isolated throughout the fermentation with the population of 10(6)CFU/g and 10(4)CFU/g respectively. Culture-independent PCR-DGGE analysis further showed the presence of additional species, in which Kocuria halotolerans and Macrococcus caseolyticus disappeared during fermentation while Clostridium irregulare and

  6. Improvement production of bacterial cellulose by semi-continuous process in molasses medium.

    Science.gov (United States)

    Cakar, Fatih; Ozer, Işılay; Aytekin, A Özhan; Sahin, Fikrettin

    2014-06-15

    Bacterial cellulose (BC) has unique properties such as structural, functional, physical and chemical. The mass production of BC for industrial application has recently become attractive to produce more economical and high productive cellulose. In this study, to improve the productivity of bacterial cellulose (BC), BC production by Gluconacetobacter xylinus FC01 was investigated in molasses medium with static semi-continuous operation mode. Cell dry weight, polysaccharide, sugar and cellulose concentrations were monitored and cellulose was characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The highest cellulose yield (1.637 g/L) was obtained in SCP50-7d, which molasses of 1/2 ratio for 7 days by static semi-continuous operation mode. The results show that BC can be highly produced by G. xylinus in molasses with static semi-continuous process than batch process. We claimed that low-cost medium with semi-continuous operation mode in static culture is a good candidate for industrial scale BC productions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Application of Recombinant Factor C Reagent for the Detection of Bacterial Endotoxins in Pharmaceutical Products.

    Science.gov (United States)

    Bolden, Jay; Smith, Kelly

    2017-01-01

    Recombinant Factor C (rFC) is non-animal-derived reagent used to detect bacterial endotoxins in pharmaceutical products. Despite the fact that the reagent was first commercially available nearly 15 years ago, the broad use of rFC in pharmaceutical industry has long been lagging, presumably due to historical single-source supplier concerns and the lack of inclusion in worldwide pharmacopeias. Commercial rFC reagents are now available from multiple manufacturers, thus single sourcing is no longer an issue. We report here the successful validation of several pharmaceutical products by an end-point florescence-based endotoxin method using the rFC reagent. The method is equivalent or superior to the compendia bacterial endotoxins test method. Based on the comparability data and extenuating circumstances, the incorporation of the end point fluorescence technique and rFC reagent in global compendia bacterial endotoxins test chapters is desired and warranted. LAY ABSTRACT: Public health has been protected for over 30 years with the use of a purified blood product of the horseshoe crab, limulus amebocyte lysate. More recently, this blood product can be produced in biotech manufacturing processes, which reduces potential impacts to the horseshoe crab and related species dependent upon the crab, for example, migrating shorebirds. The pharmaceutical industry has been slow to adopt the use of this reagent, Recombinant Factor C (rFC), for various reasons. We evaluated the use of rFC across many pharmaceutical products, and in other feasibility demonstration experiments, and found rFC to be a suitable alternative to the animal-derived limulus amebocyte lysate. Incorporation of rFC and its analytical method into national testing standards would provide an equivalent or better test while continuing to maintain patient safety for those who depend on medicines and while securing pharmaceutical supply chains. In addition, widespread use of this method would benefit existing animal

  8. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi [Chinese Academy of Sciences; Fulbright, Scott P [Colorado State University; Zeng, Xiaowei [Chinese Academy of Sciences; Yates, Tracy [Solix Biofuels; Wardle, Greg [Solix Biofuels; Chisholm, Stephen T [Colorado State University; Xu, Jian [Chinese Academy of Sciences; Lammers, Peter [New Mexico State University

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We

  9. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species

    DEFF Research Database (Denmark)

    Nielsen, Jens Christian; Grijseels, Sietske; Prigent, Sylvain

    2017-01-01

    -referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic......Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we...... sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were...

  10. Production of peptone from boso fish (Oxyeleotris marmorata) for bacterial growth medium

    Science.gov (United States)

    Priatni, S.; Kosasih, W.; Budiwati, T. A.; Ratnaningrum, D.

    2017-03-01

    Underutilized Oxyeleotris marmorata fish is abundant and widespread in Indonesia. The study aimed to use O. marmorata fish for peptone production using papain from dried latex of papaya fruit. The peptone was applied as nitrogen sources for bacterial growth. The resulted peptone was optimized at 50-65°C for 5-8 hr, using 0.1% of papain at pH 6.0. Characterization of peptone was based on the soluble protein content, N-amino content, % degree hydrolysis (DH), SDS PAGE profile and growth of bacteria Escherichia coli and Staphylococcus aureus. The results indicated that the optimum condition for hydrolysis was at 50°C for 7 hr (p electrophoresis (SDS PAGE) profile of peptone showed a major band with molecular weight between 17-28 kDa. Fish peptone effectiveness for E. coli and S. aureus growth was similar with commercial bacterial peptone.

  11. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    Science.gov (United States)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  12. Bacterial Glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products.

    Science.gov (United States)

    Schmid, Jochen; Heider, Dominik; Wendel, Norma J; Sperl, Nadine; Sieber, Volker

    2016-01-01

    The enzyme subclass of glycosyltransferases (GTs; EC 2.4) currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides, and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition GTs also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial GTs show a higher sequence similarity in comparison to mammalian ones. Even when most GTs are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial GTs, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.

  13. Bacterial Glycosyltransferases: Challenges and opportunities of a highly diverse enzyme class toward tailoring natural products

    Directory of Open Access Journals (Sweden)

    Jochen eSchmid

    2016-02-01

    Full Text Available The enzyme subclass of glycosyltransferases (EC 2.4 currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition glycosyltransferases also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial glycosyltransferases show a higher sequence similarity in comparison to mammalian ones. Even when most glycosyltransferases are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial glycosyltransferases, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.

  14. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623.

    Science.gov (United States)

    Dayal, Manmeet Singh; Goswami, Navendu; Sahai, Anshuman; Jain, Vibhor; Mathur, Garima; Mathur, Ashwani

    2013-04-15

    Acetobacter aceti MTCC 2623 was studied as an alternative microbial source for bacterial cellulose (BC) production. Effect of media components on cell growth rate, BC production and cellulose characteristics were studied. FTIR results showed significant variations in cellulose characteristics produced by A. aceti in different media. Results have shown the role of fermentation time on crystallinity ratio of BC in different media. Further, effect of six different media components on cell growth and BC production was studied using fractional factorial design. Citric acid was found to be the most significant media component for cell growth rate (95% confidence level, R(2)=0.95). However, direct role of these parameters on cellulose production was not established (p-value>0.05). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Secondary proton production at small atmospheric depths as a function of the geomagnetic cut-off

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    A detailed calculation of the energy spectrum of secondary protons in the atmosphere is being carried out in the energy range 20 MeV - 40 GeV. In this calculation, it is taken into account all processes leading to the production of secondary protons as a function of the atmospheric depth has been calculated using all relevant energy loss processes. In this paper, it is examine the effect of the geomagnetic cut-off on the spectral shape of secondary protons specially at energies below the geomagnetic cut-off for small atmospheric depths.

  16. Ruptured mycotic aneurysm of the superior mesenteric artery secondary to bacterial endocarditis in a 6-year-old-girl

    Energy Technology Data Exchange (ETDEWEB)

    Christophe, C.; Spehl, M.; Cogaert, C.; Perlmutter, N.; Burniat, W.; Biarent, D.; Delaet, F.; Amalou, N.

    1985-02-01

    By non-invasive examination we demonstrated as false mycotic aneurysm on a branch of the superior mesenteric artery (SMA). It suddenly ruptured but was managed successfully. The patient had mitral valve disease and probably bacterial endocarditis also.

  17. Ruptured mycotic aneurysm of the superior mesenteric artery secondary to bacterial endocarditis in a 6-year-old-girl

    International Nuclear Information System (INIS)

    Christophe, C.; Spehl, M.; Cogaert, C.; Perlmutter, N.; Burniat, W.; Biarent, D.; Delaet, F.; Amalou, N.

    1985-01-01

    By non-invasive examination we demonstrated as false mycotic aneurysm on a branch of the superior mesenteric artery (SMA). It suddenly ruptured but was managed successfully. The patient had mitral valve disease and probably bacterial endocarditis also. (orig.)

  18. The Importance of Phytoplankton Biomolecule Availability for Secondary Production

    Directory of Open Access Journals (Sweden)

    Elina T. Peltomaa

    2017-10-01

    Full Text Available The growth and reproduction of animals is affected by their access to resources. In aquatic ecosystems, the availability of essential biomolecules for filter-feeding zooplankton depends greatly on phytoplankton. Here, we analyzed the biochemical composition, i.e., the fatty acid, sterol and amino acid profiles and concentrations as well as protein, carbon, nitrogen, and phosphorus content of 17 phytoplankton monocultures representing the seven most abundant phytoplankton classes in boreal and sub-arctic lakes. To examine how the differences in the biochemical composition between phytoplankton classes affect their nutritional quality for consumers, we assessed the performance of Daphnia, on these diets. Furthermore, we defined the most important biomolecules regulating the somatic growth and reproduction of Daphnia, expecting that higher concentrations of certain biomolecules are needed for reproduction than for growth. Finally, we combined these results with phytoplankton field data from over 900 boreal and sub-arctic lakes in order to estimate whether the somatic growth of Daphnia is sterol-limited when the natural phytoplankton communities are cyanobacteria-dominated. Our analysis shows that Daphnia grows best with phytoplankton rich in sterols, ω-3 fatty acids, protein, and amino acids. Their reproduction follows food sterol and ω-3 concentration as well as C:P-ratio being two times higher in Daphnia feeding on cryptophytes than any other diet. Interestingly, we found that a high dietary ω-6 fatty acid concentration decreases both somatic growth and reproduction of Daphnia. When combined with phytoplankton community composition field data, our results indicate that zooplankton is constantly limited by sterols in lakes dominated by cyanobacteria (≥40% of total phytoplankton biomass, and that the absence of cryptophytes can severely hinder zooplankton production in nature.

  19. Bacterial production in the water column of small streams highly depends on terrestrial dissolved organic carbon

    Science.gov (United States)

    Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert

    2016-04-01

    In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams

  20. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus.

    Directory of Open Access Journals (Sweden)

    Sabine Dittrich

    Full Text Available Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP. To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require 90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i time-to-result <10 min (but maximally <2 hrs; ii storage conditions at 0-40°C, ≤90% non-condensing humidity with a minimal shelf life of 12 months; iii operational conditions of 5-40°C, ≤90% non-condensing humidity; and iv minimal sample collection needs (50-100μL, capillary blood. This expert approach to define assay requirements for a bacterial vs. non-bacterial assay should guide product development, and enable targeted and timely efforts by industry partners and academic institutions.

  1. Soil Bacterial Diversity and Productivity of Coffee - Shade Tree Agro-ecosystems

    Directory of Open Access Journals (Sweden)

    Rusdi Evizal

    2012-05-01

    Full Text Available Coffee productions should have environmental values such as providing high soil microbial diversity while producinghigh yield. To examine that purposes, two experimental plots were constucted at benchmark site of Conservationand Sustainable Management of Below-Ground Biodiversity (CSM-BGBD, in Sumberjaya Subdistrict, WestLampung, Indonesia, during 2007-2010. Types of coffee agro-ecosystem to be examined were Coffea canephorawith shade trees of Gliricidia sepium, Erythrina sububrams, Michelia champaca, and no shade. Two plots wereconstructed at 5-years-coffee and 15-years-coffee. Diversity of soil bacteria was determined based on DNA fingerprinting of total soil bacteria using Ribosomal Intergenic Spacer Analysis (RISA method. The results showed that:(1 For mature coffee (15 years old, shade-grown coffee agro-ecosystems had higher soil bacterial diversity thanthose of no shade coffee agro-ecosystem, (2 Shaded coffee agro-ecosystems were able to conserve soil bacterialdiversity better than no-shade coffee agro-ecosystem. Soil organic C and total litter biomass had positive effect onsoil bacterial diversity, (3 Types of agro-ecosystem significantly affected the bean yield of 15 years coffee. Coffeeagro-ecosystems shaded by legume trees had higher yield than those of non-legume shade and no shade coffeeagro-ecosystem, (4 Shannon-Weaver indices of soil bacterial diversity together with weed biomass and N contentof coffee leaf had positive effect on coffee bean yield.

  2. Novel approach for the use of dairy industry wastes for bacterial growth media production.

    Science.gov (United States)

    Kasmi, Mariam; Elleuch, Lobna; Dahmeni, Ameni; Hamdi, Moktar; Trabelsi, Ismail; Snoussi, Mejdi

    2018-04-15

    This work proposes a novel approach for the reuse and the recovery of dairy wastes valuable components. Thermal coagulation was performed for dairy effluents and the main responsible fraction for the organic matter content (protein and fat) was separated. Dairy curds were prepared for the formulation of bacterial growth media. Protein, sugar, fat and fatty acids contents have been assessed. Samples treated at 100 °C exhibited marked improvement in terms of protein (25-50%) recovery compared to those treated at 80 °C. Fatty acid analysis revealed the presence of unsaturated fatty acids (mainly oleic acid) that are essential to promote Lactobacillus growth. Previously isolated and identified bacterial strains from dairy wastes (Lactobacillus paracasei, Lactobacillus plantarum, Lactococcus lactis and Lactobacillus brevis) were investigated for their ability to grow on the formulated media. All the tested lactic acid bacteria exhibited greater bacterial growth on the formulated media supplemented with glucose only or with both glucose and yeast extract compared to the control media. By reference to the commercial growth medium, the productivity ratio of the supplemented bactofugate (B) and decreaming (D) formulated media exceeded 0.6 for L. paracasei culture. Whereas, the productivity ratio of the supplemented B medium was greater than 1 compared to the control medium for all the tested strains. As for the supplemented D medium, its productivity ratio was greater than 1 compared to the control medium for both L. paracasei and L. plantarum strains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Natural Products at Work: Structural Insights into Inhibition of the Bacterial Membrane Protein MraY.

    Science.gov (United States)

    Koppermann, Stefan; Ducho, Christian

    2016-09-19

    Natural(ly) fit: The X-ray crystal structure of the bacterial membrane protein MraY in complex with its natural product inhibitor muraymycin D2 is discussed. MraY catalyzes one of the membrane-associated steps in peptidoglycan biosynthesis and, therefore, represents a promising target for novel antibiotics. Structural insights derived from the protein-inhibitor complex might now pave the way for the development of new antimicrobial drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Seaweed as source of energy. 1: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasa R.P.; Tarwade, S.J.; Sarma, K.S.R.

    1980-09-01

    Only certain marine bacteria capable of digesting the special type of polysaccharide - agar and alginic acid can bring about the biodegradation of these substances and utilise them as carbon source to produce the organics which will be utilised by the methane bacteria to produce methane. When bacterial strain was used in conjunction with cowdung as a source of methane bacteria in seaweed digester, production of biogas from seaweed was accelerated. Adding of small amount of Ulva to seaweed digester increased the output of gas. (Refs. 4).

  5. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media.

    Science.gov (United States)

    Jozala, Angela Faustino; Pértile, Renata Aparecida Nedel; dos Santos, Carolina Alves; de Carvalho Santos-Ebinuma, Valéria; Seckler, Marcelo Martins; Gama, Francisco Miguel; Pessoa, Adalberto

    2015-02-01

    Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield-60 mg/mL-was achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.

  6. Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus.

    Science.gov (United States)

    Zhang, Shuo; Winestrand, Sandra; Guo, Xiang; Chen, Lin; Hong, Feng; Jönsson, Leif J

    2014-04-30

    Bacterial cellulose (BC) is a polymeric nanostructured fibrillar network produced by certain microorganisms, principally Gluconacetobacter xylinus. BC has a great potential of application in many fields. Lignocellulosic biomass has been investigated as a cost-effective feedstock for BC production through pretreatment and hydrolysis. It is well known that detoxification of lignocellulosic hydrolysates may be required to achieve efficient production of BC. Recent results suggest that phenolic compounds contribute to the inhibition of G. xylinus. However, very little is known about the effect on G. xylinus of specific lignocellulose-derived inhibitors. In this study, the inhibitory effects of four phenolic model compounds (coniferyl aldehyde, ferulic acid, vanillin and 4-hydroxybenzoic acid) on the growth of G. xylinus, the pH of the culture medium, and the production of BC were investigated in detail. The stability of the phenolics in the bacterial cultures was investigated and the main bioconversion products were identified and quantified. Coniferyl aldehyde was the most potent inhibitor, followed by vanillin, ferulic acid, and 4-hydroxybenzoic acid. There was no BC produced even with coniferyl aldehyde concentrations as low as 2 mM. Vanillin displayed a negative effect on the bacteria and when the vanillin concentration was raised to 2.5 mM the volumetric yield of BC decreased to ~40% of that obtained in control medium without inhibitors. The phenolic acids, ferulic acid and 4-hydroxybenzoic acid, showed almost no toxic effects when less than 2.5 mM. The bacterial cultures oxidized coniferyl aldehyde to ferulic acid with a yield of up to 81%. Vanillin was reduced to vanillyl alcohol with a yield of up to 80%. This is the first investigation of the effect of specific phenolics on the production of BC by G. xylinus, and is also the first demonstration of the ability of G. xylinus to convert phenolic compounds. This study gives a better understanding of how

  7. Case Study: A Novel Bacterial Contamination in Cell Culture Production--Leptospira licerasiae.

    Science.gov (United States)

    Chen, Joseph; Bergevin, Jesse; Kiss, Robert; Walker, Gordon; Battistoni, Todd; Lufburrow, Patricia; Lam, Harry; Vinther, Anders

    2012-01-01

    Leptospira licerasiae, a novel bacterial contaminant found in Genentech cell culture manufacturing operations, poses a challenge to current microbial control strategies in upstream cell culture processes, as this microorganism is fully capable of passing through 0.1 μm sterilizing-grade filtration and is not detectable by standard microbiological methods described in major pharmaceutical compendia for microbial screening and quantification required for release of raw materials, in-process intermediates, and finished products in biopharmaceutical production. The root cause investigation was greatly aided by the genetic identification of the contaminant and subsequent confirmation by cultural method and real-time polymerase chain reaction assay from the affected product batches. The purpose of this case study is to share knowledge on the novel contaminant, L. licerasiae, and potential routes of contamination in the cell culture manufacturing environment from a series of investigations involving root cause analysis, impact assessments, risk assessment, and global corrective and preventative action, as well as to provide guidance on the detection and prevention of Leptospira contamination with the intent to aid the industry to continually improve microbial control strategies for the benefit of patients. Leptospira licerasiae, a novel bacterial contaminant found in cell culture manufacturing operations, poses a challenge to current microbial control strategies in upstream cell culture processes because this microorganism is capable of passing through 0.1 μm sterilizing-grade membrane filters and is not detectable by standard microbiological methods used in biopharmaceutical production. The root cause investigation was greatly aided by the genetic identification of the contaminant and subsequent confirmation by cultural method and real-time polymerase chain reaction assay from the affected product batches. The purpose of this case study is to share knowledge on the

  8. Secondary metabolites from Penicillium roqueforti, a starter for the production of Gorgonzola cheese

    Directory of Open Access Journals (Sweden)

    Lisa Vallone

    2014-09-01

    Full Text Available The presence of mold in food, although necessary for production, can involve the presence of secondary metabolites, which are sometimes toxic. Penicillium roqueforti is a common saprophytic fungus but it is also the essential fungus used in the production of Roquefort cheese and other varieties of blue cheese containing internal mold. The study was conducted on industrial batches of Penicillium roqueforti starters used in the production of the Gorgonzola cheese, with the aim to verify the production of secondary metabolites. Nine Penicillium roqueforti strains were tested. The presence of roquefortine C, PR toxin and mycophenolic acid was tested first in vitro, then on bread-like substrate and lastly in vivo in nine cheese samples produced with the same starters and ready to market. In vitro, only Penicillium out of nine produced roquefortine C, four starters showed mycophenolic acid production, while no significant amounts of PR toxin were detected. In the samples grown on bread-like substrate, Penicillium did not produce secondary metabolites, likewise with each cheese samples tested. To protect consumers’ health and safety, the presence of mycotoxins needs to be verified in food which is widely consumed, above all for products protected by the protected denomination of origin (DOP label (i.e. a certificate guaranteeing the geographic origin of the product, such as Gorgonzola cheese.

  9. Secondary Metabolites fromPenicillium roqueforti, A Starter for the Production of Gorgonzola Cheese.

    Science.gov (United States)

    Vallone, Lisa; Giardini, Alberto; Soncini, Gabriella

    2014-08-28

    The presence of mold in food, although necessary for production, can involve the presence of secondary metabolites, which are sometimes toxic. Penicillium roqueforti is a common saprophytic fungus but it is also the essential fungus used in the production of Roquefort cheese and other varieties of blue cheese containing internal mold. The study was conducted on industrial batches of Penicillium roqueforti starters used in the production of the Gorgonzola cheese, with the aim to verify the production of secondary metabolites. Nine Penicillium roqueforti strains were tested. The presence of roquefortine C, PR toxin and mycophenolic acid was tested first in vitro , then on bread-like substrate and lastly in vivo in nine cheese samples produced with the same starters and ready to market. In vitro , only Penicillium out of nine produced roquefortine C, four starters showed mycophenolic acid production, while no significant amounts of PR toxin were detected. In the samples grown on bread-like substrate, Penicillium did not produce secondary metabolites, likewise with each cheese samples tested. To protect consumers' health and safety, the presence of mycotoxins needs to be verified in food which is widely consumed, above all for products protected by the protected denomination of origin (DOP) label ( i.e. a certificate guaranteeing the geographic origin of the product), such as Gorgonzola cheese.

  10. Impact of school staff health on work productivity in secondary schools in Massachusetts.

    Science.gov (United States)

    Alker, Heather J; Wang, Monica L; Pbert, Lori; Thorsen, Nancy; Lemon, Stephenie C

    2015-06-01

    Healthy, productive employees are an integral part of school health programs. There have been few assessments of work productivity among secondary school staff. This study describes the frequency of 3 common health risk factors--obesity, depressive symptoms, and smoking--and their impact on work productivity in secondary school employees. Employees of secondary schools in Massachusetts (N = 630) participated in a longitudinal weight gain prevention intervention study. Assessment completed at baseline, 1-year and 2-year follow-up included survey assessments of health risk factors as well as measurements for height, weight, and body mass index (BMI). The survey also included a depression inventory and Work Limitations Questionnaire. Data analysis included multivariate mixed effect models to identify productivity differences in relation to BMI, depressive symptoms, and smoking in this population stratified by position type (teacher and other school staff). The sample included 361 teachers and 269 other school staff. Obesity, depressive symptoms, and smoking were significantly associated with work productivity, including workdays missed because of health concerns (absenteeism) and decreases in on-the-job productivity because of health concerns (presenteeism). Three common health conditions, namely obesity, depressive symptoms, and smoking, adversely affect the productivity of high school employees. © 2015, American School Health Association.

  11. Modelling ramp-up curves to reflect learning: improving capacity planning in secondary pharmaceutical production

    DEFF Research Database (Denmark)

    Hansen, Klaus Reinholdt Nyhuus; Grunow, Martin

    2015-01-01

    The experience gained during production ramp-up leads to an increase of the effective production capacity over time. However, full utilisation of production capacity is not always possible during ramp-up. In such cases, the experience gained and hence the available effective capacity...... are overestimated. We develop a new method, which captures ramp-up as a function of the cumulative production volume to better reflect the experience gained while producing the new product. The use of the more accurate and computationally effective approach is demonstrated for the case of secondary pharmaceutical...... production. Due to its regulatory framework, this industry cannot fully exploit available capacities during ramp-up. We develop a capacity planning model for a new pharmaceutical drug, which determines the number and location of new production lines and the build-up of inventory such that product...

  12. Green mitigation strategy for cultural heritage: bacterial potential for biocide production.

    Science.gov (United States)

    Silva, Mara; Rosado, Tânia; Teixeira, Dora; Candeias, António; Caldeira, Ana Teresa

    2017-02-01

    Several biosurfactants with antagonistic activity are produced by a variety of microorganisms. Lipopeptides (LPPs) produced by some Bacillus strains, including surfactin, fengycin and iturin are synthesized nonribosomally by mega-peptide synthetase (NRPS) units and they are particularly relevant as antifungal agents. Characterisation, identification and evaluation of the potentials of several bacterial isolates were undertaken in order to establish the production of active lipopeptides against biodeteriogenic fungi from heritage assets. Analysis of the iturin operon revealed four open reading frames (ORFs) with the structural organisation of the peptide synthetases. Therefore, this work adopted a molecular procedure to access antifungal potential of LPP production by Bacillus strains in order to exploit the bioactive compounds synthesis as a green natural approach to be applied in biodegraded cultural heritage context. The results reveal that the bacterial strains with higher antifungal potential exhibit the same morphological and biochemical characteristics, belonging to the genera Bacillus. On the other hand, the higher iturinic genetic expression, for Bacillus sp. 3 and Bacillus sp. 4, is in accordance with the culture antifungal spectra. Accordingly, the adopted methodology combining antifungal screening and molecular data is represent a valuable tool for quick identification of iturin-producing strains, constituting an effective approach for confirming the selection of lipopeptides producer strains.

  13. EFFECT OF REFINED PETROLEUM PRODUCTS CONTAMINATION ON BACTERIAL POPULATION AND PHYSICOCHEMICAL CHARACTERISTICS OF CULTIVATED AGRICULTURAL SOIL

    Directory of Open Access Journals (Sweden)

    Adewale Sogo Olalemi

    2012-10-01

    Full Text Available An investigation into the effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil was carried out. The soil samples obtained from the Teaching and Research Farm, Obakekere, Federal University of Technology, Akure, Ondo State were contaminated with varying volumes of petrol, diesel and kerosene. The results revealed higher bacterial populations in uncontaminated soils than contaminated soils. The counts of bacteria ranged from 3.0 × 105 to 5.0 × 105 cfu/g in uncontaminated soils and 1.0 × 105 to 3.0 × 105 cfu/g in contaminated soils. The isolated bacteria were identified as Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, Corynebacterium variabilis, Pseudomonas fluorescens. The contamination had no significant effect on pH, potassium, sodium, organic carbon and nitrogen content of the soils, while the moisture, calcium, phosphorus and magnesium content of the contaminated soils were significantly different (P < 0.05 compared with the uncontaminated soils. The ability of Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, and Pseudomonas fluorescens to utilize the refined petroleum products suggest that these bacteria had potential to bioremediate petroleum contaminated soils.

  14. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control.

    Science.gov (United States)

    Meitz, Andrea; Sagmeister, Patrick; Lubitz, Werner; Herwig, Christoph; Langemann, Timo

    2016-03-24

    The Bacterial Ghost (BG) platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs) from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8-10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  15. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes

    Directory of Open Access Journals (Sweden)

    Domaizon Isabelle

    2011-04-01

    Full Text Available Abstract Background Over the last 30 years, extensive studies have revealed the crucial roles played by microbes in aquatic ecosystems. It has been shown that bacteria, viruses and protozoan grazers are dominant in terms of abundance and biomass. The frequent interactions between these microbiological compartments are responsible for strong trophic links from dissolved organic matter to higher trophic levels, via heterotrophic bacteria, which form the basis for the important biogeochemical roles of microbial food webs in aquatic ecosystems. To gain a better understanding of the interactions between bacteria, viruses and flagellates in lacustrine ecosystems, we investigated the effect of protistan bacterivory on bacterial abundance, production and structure [determined by 16S rRNA PCR-DGGE], and viral abundance and activity of two lakes of contrasting trophic status. Four experiments were conducted in the oligotrophic Lake Annecy and the mesotrophic Lake Bourget over two seasons (early spring vs. summer using a fractionation approach. In situ dark vs. light incubations were performed to consider the effects of the different treatments in the presence and absence of phototrophic activity. Results The presence of grazers (i.e. Conclusions Our results highlight the importance of a synergistic effect, i.e. the positive influence of grazers on viral activities in sustaining (directly and indirectly bacterial production and affecting composition, in both oligotrophic and mesotrophic lakes.

  16. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  17. Secondary resin production increases with vigor of Abies grandis inoculated with Trichosporium symbioticum in northeastern Oregon.

    Science.gov (United States)

    Gregory M. Filip; Erik Christiansen; Catherine A. Parks

    1989-01-01

    Thirty grand fir (Abies grandis (Dougl. ex D. Don) Lindl.) trees were artificially inoculated with the fungal symbiont, Trichosporium symbioticum Wright, to simulate attack by the fir engraver beetle, Scolytus ventralis LeConte. Fifteen months after treatment, secondary resin production, necrotic lesion...

  18. Increasing secondary metabolite production in plant-cell culture by redirecting transport.

    Science.gov (United States)

    Brodelius, P; Pedersen, H

    1993-01-01

    Various approaches for redirecting transport of secondary metabolites in plant-cell suspension cultures have been attempted in an effort to increase productivity. Little is understood of the transport mechanisms or their regulation, and many of the extractive methods which involve membrane permeabilization have an adverse effect on cell viability. Increasing the activity of metabolic pathways by elicitation, in conjunction with end-product removal and accumulation in an extractive phase, has proven to be the most successful strategy so far.

  19. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Secondary production in a Laminaria hyperborea kelp forest and variation according to wave exposure

    Science.gov (United States)

    Norderhaug, Kjell M.; Christie, Hartvig

    2011-11-01

    The secondary production of mobile invertebrate fauna in the Laminaria hyperborea (Gunn.) Foslie kelp forest increases with wave exposure level. This faunal group has a key function in transferring kelp carbon to higher levels in the food web. By using a size-frequency method the calculated production was 68 (±18) g D.W. m -2 yr -1 (±S.E.) at low, 250 (±57) at medium and 308 (±64) at high exposure levels. The calculations included 30 macrofauna species, which accounted for 96% of the specimens registered, with Gastropods, amphipods and bivalves being the most abundant taxa. The calculated secondary production is high, but comparable to that previously reported from other macrophyte systems and was 3%, 8% and 8% of the total primary production at low, medium and high exposure levels, respectively. Our results indicate that large quantities of Laminaria kelp are exported from the system, although the production of sessile animals was not taken into account. The most important factor in determining faunal densities and secondary production was probably habitat size but at low exposure levels the percentage of egg-carrying crustacean females and juveniles were lower than at medium and high exposure levels, thereby indicating lower fitness for animals at low exposure stations.

  1. Pro-inflammatory Effects of Bacterial Recombinant Human C-Reactive Protein are Caused by Contamination with Bacterial Products not by C-Reactive Protein Itself

    Science.gov (United States)

    Pepys, Mark B.; Hawkins, Philip N.; Kahan, Melvyn C.; Tennent, Glenys A.; Gallimore, J. Ruth; Graham, David; Sabin, Caroline A.; Zychlinsky, Arturo; de Diego, Juana

    2006-01-01

    Intravenous administration to human volunteers of a commercial preparation of recombinant human C-reactive protein (CRP) produced in E. coli was recently reported in this journal to induce an acute phase response of serum amyloid A protein (SAA) and of CRP itself, and to activate the coagulation system. The authors concluded that CRP is probably a mediator of atherothrombotic disease. Here we confirm that this recombinant CRP preparation was pro-inflammatory both for mouse macrophages in vitro and for mice in vivo, but show that pure natural human CRP had no such activity. Furthermore mice transgenic for human CRP, and expressing it throughout their lives, maintained normal concentrations of their most sensitive endogenous acute phase reactants, SAA and serum amyloid P component (SAP). The patterns of in vitro cytokine induction and of in vivo acute phase stimulation by the recombinant CRP preparation were consistent with contamination by bacterial products, and there was 46.6 EU of apparent endotoxin activity per mg of CRP in the bacterial product, compared to 0.9 EU per mg of our isolated natural human CRP preparation. The absence of any pro-inflammatory activity in natural CRP for macrophages or healthy mice strongly suggests that the in vivo effects of the recombinant preparation observed in humans were due to pro-inflammatory bacterial products and not human CRP. PMID:16254214

  2. Exploring plant tissue culture in Withania somnifera (L.) Dunal: in vitro propagation and secondary metabolite production.

    Science.gov (United States)

    Shasmita; Rai, Manoj K; Naik, Soumendra K

    2017-12-26

    Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as "Indian Ginseng", is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and

  3. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    Science.gov (United States)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  4. Target Product Profile for a Diagnostic Assay to Differentiate between Bacterial and Non-Bacterial Infections and Reduce Antimicrobial Overuse in Resource-Limited Settings: An Expert Consensus.

    Science.gov (United States)

    Dittrich, Sabine; Tadesse, Birkneh Tilahun; Moussy, Francis; Chua, Arlene; Zorzet, Anna; Tängdén, Thomas; Dolinger, David L; Page, Anne-Laure; Crump, John A; D'Acremont, Valerie; Bassat, Quique; Lubell, Yoel; Newton, Paul N; Heinrich, Norbert; Rodwell, Timothy J; González, Iveth J

    2016-01-01

    Acute fever is one of the most common presenting symptoms globally. In order to reduce the empiric use of antimicrobial drugs and improve outcomes, it is essential to improve diagnostic capabilities. In the absence of microbiology facilities in low-income settings, an assay to distinguish bacterial from non-bacterial causes would be a critical first step. To ensure that patient and market needs are met, the requirements of such a test should be specified in a target product profile (TPP). To identify minimal/optimal characteristics for a bacterial vs. non-bacterial fever test, experts from academia and international organizations with expertise in infectious diseases, diagnostic test development, laboratory medicine, global health, and health economics were convened. Proposed TPPs were reviewed by this working group, and consensus characteristics were defined. The working group defined non-severely ill, non-malaria infected children as the target population for the desired assay. To provide access to the most patients, the test should be deployable to community health centers and informal health settings, and staff should require 90% and >80% for sensitivity and specificity, respectively. Other key characteristics, to account for the challenging environment at which the test is targeted, included: i) time-to-result targeted and timely efforts by industry partners and academic institutions.

  5. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion

    International Nuclear Information System (INIS)

    Sanders, R.W.; Porter, K.G.

    1986-01-01

    Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with [ 3 H]thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors

  6. Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity.

    Science.gov (United States)

    Kliebenstein, Daniel J; Rowe, Heather C; Denby, Katherine J

    2005-10-01

    Numerous studies have suggested that plant/pathogen interactions are partially mediated via plant secondary metabolite production and corresponding pathogen tolerance. However, there are inconsistent reports on the ability of particular compounds to provide resistance to a pathogen. Most of these studies have focused on individual isolates of a given pathogen, suggesting that pathogens vary in their sensitivity to plant-produced toxins. We tested variability in virulence among pathogen isolates, and the impact on this by plant production of, and pathogen tolerance to, secondary metabolites. Botrytis cinerea isolates showed differing sensitivity to purified camalexin, and camalexin-sensitive isolates produced larger lesions on camalexin-deficient Arabidopsis genotypes than on the wild type. In contrast, the camalexin-insensitive isolate produced lesions of similar size on wild-type and camalexin-deficient Arabidopsis. Additional analysis with Arabidopsis secondary metabolite biosynthetic mutants suggests that Botrytis also has variable sensitivity to phenylpropanoids and glucosinolates. Furthermore, Botrytis infection generates a gradient of secondary metabolite responses emanating from the developing lesion, with the Botrytis isolate used determining the accumulation pattern. Collectively, our results indicate that Arabidopsis/Botrytis interactions are influenced at the metabolic level by variations in toxin production in the host and sensitivity in the pathogen.

  7. Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9

    DEFF Research Database (Denmark)

    Nielsen, Maria Lund; Petersen, Thomas Isbrandt; Rasmussen, Kasper Bøwig

    2017-01-01

    The full potential of fungal secondary metabolism has until recently been impeded by the lack of universal genetic tools for most species. However, the emergence of several CRISPR-Cas9-based genome editing systems adapted for several genera of filamentous fungi have now opened the doors for future......-based genome editing to identify a new gene in T. atroroseus responsible for production of polyketide-nonribosomal peptide hybrid products, hence, linking fungal secondary metabolites to their genetic origin in a species where no genetic engineering has previously been performed....... efforts in discovery of novel natural products and elucidation and engineering of their biosynthetic pathways in fungi where no genetic tools are in place. So far, most studies have focused on demonstrating the performance of CRISPR-Cas9 in various fungal model species, and recently we presented...

  8. INTRODUCTION OF THE PRINCIPLES OF A SUSTAINABLE DEVELOPMENT PRODUCTION OF BIODEGRADABLE PACKING FROM SECONDARY MATERIAL RESOURCES OF FOOD PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2014-01-01

    Full Text Available Summary. For increase of profitability of the food enterprises, decrease in an ecological trace from technogenic activity of the food industry the concept of development of low-waste and waste-free productions considered on the example of technology of receiving a biodegradable packing material from secondary material resources of food productions is offered: beer pellet, beet press, spirit bards, Pancake week press and bone glue. The technology of receiving biodegradable material from secondary material resources of food productions includes itself the following main stages: dehydration, crushing, mixing, leveling, formation, glazing. Advantage of the offered product consists of: - low cost of packing due to use of secondary material resources and full naturalness (now the raw materials for biodegradable packing specially are grown up on technical fields with use of GMO; - full decomposition in nature less than in 6 months according to GOST R 54533-2011 (EN 13432:2000 "Resource-saving. Packing. Requirements, criteria and the scheme of utilization of packing by means of a composting and biological decomposition"; - presence at the compost received at decomposition, the elements promoting increase of fertility of the soil. Application of technology allows reach at the same time three effects of a positive orientation: economic, ecological and social.

  9. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  10. Discovery and characterization of novel bioactive peptides from marine secondary products

    DEFF Research Database (Denmark)

    Falkenberg, Susan Skanderup

    whether digestion of fish secondary tissue with gastrointestinal proteases generates peptides, which also have these health promoting properties either in relation to gastrointestinal digestion or as an alternative to the use of industrial proteases. Furthermore, as a bioactive defense system against...... the bacterial load in the water, fish is expected to possess bio-components as small peptides. It could therefore be relevant whether these naturally occurring peptides exhibit other functional and health promoting bioactive properties.On this background the overall goal of the present PhD research......, if any detected, an aim was to characterize the corresponding candidate bioactive molecules. Part II was to investigate peptides in hydrolysates from salmon (Salmo salar) belly flap muscle and skin generated by gastrointestinal proteases for radical scavenging activity, DPP-IV and ACE inhibiting...

  11. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    DEFF Research Database (Denmark)

    Singer, B.C.; Coleman, B.K.; Destaillats, H.

    2006-01-01

    -oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone......-weather seasons: an air exchange rate of 1.0 h(-1) and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented...

  12. Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process

    Directory of Open Access Journals (Sweden)

    Eglantina Lopez-Echartea

    2016-11-01

    Full Text Available Pentachlorophenol (PCP is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants’ degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.

  13. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Science.gov (United States)

    Asem, Dhaneshwaree; Leo, Vincent Vineeth; Passari, Ajit Kumar; Tonsing, Mary Vanlalhruaii; Joshi, J Beslin; Uthandi, Sivakumar; Hashem, Abeer; Abd Allah, Elsayed Fathi; Singh, Bhim Pratap

    2017-01-01

    The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  14. Evaluation of gastrointestinal bacterial population for the production of holocellulose enzymes for biomass deconstruction.

    Directory of Open Access Journals (Sweden)

    Dhaneshwaree Asem

    Full Text Available The gastrointestinal (GI habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk and a domesticated goat (Black Bengal were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF of D2 (alkaline pretreated pulpy biomass using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL and FPase (0.5 U/mL activities (55°C, pH 8. The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.

  15. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.

    Science.gov (United States)

    Hong, Feng; Guo, Xiang; Zhang, Shuo; Han, Shi-fen; Yang, Guang; Jönsson, Leif J

    2012-01-01

    Cotton-based waste textiles were explored as alternative feedstock for production of bacterial cellulose (BC) by Gluconacetobacter xylinus. The cellulosic fabrics were treated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). [AMIM]Cl caused 25% inactivation of cellulase activity at a concentration as low as of 0.02 g/mL and decreased BC production during fermentation when present in concentrations higher than 0.0005 g/mL. Therefore, removal of residual IL by washing with hot water was highly beneficial to enzymatic saccharification as well as BC production. IL-treated fabrics exhibited a 5-7-fold higher enzymatic hydrolysis rate and gave a seven times larger yield of fermentable sugars than untreated fabrics. BC from cotton cloth hydrolysate was obtained at an yield of 10.8 g/L which was 83% higher than that from the culture grown on glucose-based medium. The BC from G. xylinus grown on IL-treated fabric hydrolysate had a 79% higher tensile strength than BC from glucose-based culture medium which suggests that waste cotton pretreated with [AMIM]Cl has potential to serve as a high-quality carbon source for BC production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products.

    Science.gov (United States)

    Orús, Pilar; Gomez-Perez, Laura; Leranoz, Sonia; Berlanga, Mercedes

    2015-03-01

    To ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives. Diminished susceptibility to formaldehyde-donors was detected in isolates but not to other preservatives commonly used in the cosmetics industry, although increasing resistance to different antibiotics (β-lactams, quinolones, rifampicin, and tetracycline) was demonstrated in these strains when compared with the wild-type strain. The outer membrane protein modifications and efflux mechanism activities responsible for the resistance trait were evaluated. The development of antibiotic-resistant microorganisms due to the selective pressure from preservatives included in cosmetic products could be a risk for the emergence and spread of bacterial resistance in the environment. Nevertheless, the large contribution of disinfection and preservation cannot be denied in cosmetic products. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  17. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production.

    Science.gov (United States)

    Vardhan, P Vivek; Shukla, Lata I

    2017-09-01

    The profitable production of some important plant-based secondary metabolites (ginsenosides, saponins, camptothecin, shikonins etc.) in vitro by gamma irradiation is a current area of interest. We reviewed different types of secondary metabolites, their mode of synthesis and effect of γ-radiation on their yield for different plants, organs and in vitro cultures (callus, suspension, hairy root). Special effort has been made to review the biochemical mechanisms underlying the increase in secondary metabolites. A comparison of yield improvement with biotic and abiotic stresses was made. Phenolic compounds increase with γ-irradiation in whole plants/plant parts; psoralen content in the common herb babchi (Psoralea corylifolia) was increased as high as 32-fold with γ-irradiation of seeds at 20 kGy. The capsaicinoids, a phenolic compound increased about 10% with 10 kGy in paprika (Capsicum annum L.). The in vitro studies show all the three types of secondary metabolites are reported to increase with γ-irradiation. Stevioside, total phenolic and flavonoids content were slightly increased in 15 Gy-treated callus cultures of stevia (Stevia rebaudiana Bert.). In terpenoids, total saponin and ginsenosides content were increased 1.4- and 1.8-fold, respectively, with 100 Gy for wild ginseng (Panax ginseng Meyer) hairy root cultures. In alkaloids, camptothecin yield increased as high as 20-fold with 20 Gy in callus cultures of ghanera (Nothapodytes foetida). Shikonins increased up to 4-fold with 16 Gy in suspension cultures of purple gromwell (Lithospermum erythrorhizon S.). The enzymes associated with secondary metabolite production were increased with γ-irradiation of 20 Gy; namely, phenylalanine ammonia-lyase (PAL) for phenolics, chalcone synthase (CHS) for flavonoids, squalene synthase (SS), squalene epoxidase (SE) and oxidosqualene cyclases (OSC) for ginsenosides and PHB (p-hydroxylbenzoic acid) geranyl transferase for shikonins. An increase in secondary

  18. Food additives reduce lactic acid bacterial growth in culture medium and in meat products, increasing product shelf life

    Directory of Open Access Journals (Sweden)

    Cleonice Mendes Pereira Sarmento

    2015-12-01

    Full Text Available The uncontrolled growth of lactic acid bacteria (LAB in meat and meat products leads to product spoilage, and thus shortens product shelf life. Although food additives are known to decrease LAB growth, this effect has not been analyzed in detail. Here, a detailed analysis was performed of the effects of sodium chloride, sodium polyphosphate, sodium lactate, sodium nitrite/nitrate, and garlic on the growth of the Lactobacillus plantarum in culture medium. The results were used to design and test experimental formulations of meat products. Initially, the effect of food additives on L. plantarum was evaluated using a Fractional Factorial Design (FFD, followed by a Central Composite Rotatable Design (CCRD. The Modified Gompertz Model was adjusted to the growth curves to determine the Kinetic parameters of bacterial growth (logarithmic increase in the population, specific growth rate, and lag phase extension. Higher sodium lactate and sodium chloride levels had a negative impact on L. plantarum growth parameters (p?0.05. Therefore, we designed experimental formulations of mortadella and smoked pork sausages containing 4% sodium lactate (w w-1 and 2.4-3.5% sodium chloride (w w-1, and determined LAB growth from samples of stored products produced according to these formulations, in order to determine product shelf life. There was an increased lag phase of LAB growth for most experimental formulations. Also, the experimental smoked pork sausages had a longer shelf life, which was increased by at least 22 days, suggesting that the proposed formulation, with higher than standard lactate concentration, increased the product’s shelf life.

  19. A novel bacterial expression method with optimized parameters for very high yield production of triple-labeled proteins.

    Science.gov (United States)

    Murray, Victoria; Huang, Yuefei; Chen, Jianglei; Wang, Jianjun; Li, Qianqian

    2012-01-01

    The Gram-negative bacterium Escherichia coli offer a means for rapid, high-yield, and economical production of recombinant proteins. However, when preparing protein samples for NMR, high-level production of functional isotopically labeled proteins can be quite challenging. This is especially true for the preparation of triple-labeled protein samples in D(2)O ((2)H/(13)C/(15)N). The large expense and time-consuming nature of triple-labeled protein production for NMR led us to revisit the current bacterial protein expression protocols. Our goal was to develop an efficient bacterial expression method for very high-level production of triple-labeled proteins that could be routinely utilized in every NMR lab without changing expression vectors or requiring fermentation. We developed a novel high cell-density IPTG-induction bacterial expression method that combines tightly controlled traditional IPTG-induction expression with the high cell-density of auto-induction expression. In addition, we optimize several key experimental protocols and parameters to ensure that our new high cell-density bacterial expression method routinely produces 14-25 mg of triple-labeled proteins and 15-35 mg of unlabeled proteins from 50-mL bacterial cell cultures.

  20. Endophytes as in vitro production platforms of high value plant secondary metabolites.

    Science.gov (United States)

    Venugopalan, Aarthi; Srivastava, Smita

    2015-11-01

    Many reports have been published on bioprospecting of endophytic fungi capable of producing high value bioactive molecules like, paclitaxel, vincristine, vinblastine, camptothecin and podophyllotoxin. However, commercial exploitation of endophytes for high value-low volume plant secondary metabolites remains elusive due to widely reported genomic instability of endophytes in the axenic culture. While most of the endophyte research focuses on screening endophytes for novel or existing high value biomolecules, very few reports seek to explore the possible mechanisms of production of host-plant associated or novel secondary metabolites in these organisms. With an overview of host-endophyte relationship and its possible impact on the secondary metabolite production potential of endophytes, the review highlights the evidence reported for and against the presence of host-independent biosynthetic machinery in endophytes. The review aims to address the question, why should and how can endophytes be exploited for large scale in vitro production of high value phytochemicals? In this regard, various bioprocess optimization strategies that have been applied to sustain and enhance the product yield from the endophytes have also been described in detail. Further, techniques like mixed fermentation/co-cultivation and use of epigenetic modifiers have also been discussed as potential strategies to activate cryptic gene clusters in endophytes, thereby aiding in novel metabolite discovery and overcoming the limitations associated with axenic culture of endophytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops.

    Science.gov (United States)

    Kalita, Munmi; Bharadwaz, Moonmee; Dey, Tapan; Gogoi, Kabita; Dowarah, Pallavi; Unni, Bala Gopalan; Ozah, Dibyajyoti; Saikia, Indira

    2015-01-01

    Plant growth promoting rhizobacteria (PGPR) are beneficial rhizobacteria which enhance plant growth as well as the productivity by a variety of mechanisms PGPR were isolated from the rhizosphere region of som plants (Machilus bombycina King) maintained at the Central Muga Eri Research and Training Institute, Lahdoigarh, Jorhat. A bacterial based bioformulation was prepared and sprayed over the experimental crops including tomato (Solanum lycopersicum), cauliflower (Brassica oleracea var botrytis), chili (Capsicum annuum) and brinjal (Solanum melongena). Biochemical analysis was done on these PGPR treated crops as well as the untreated crops. The bioformulations prepared from Bacillus cereus (MTCC 8297), Pseudomonas rhodesiae (MTCC 8299) and Pseudomonas rhodesiae (MTCC 8300) was found to be the most effective in increasing the shoot height, number of leaves, early fruiting and total biomass content of the plants after treatment.

  2. Conformational control of the bacterial Clp protease by natural product antibiotics.

    Science.gov (United States)

    Malik, I T; Brötz-Oesterhelt, H

    2017-07-06

    Covering: up to 2017The bacterial Clp protease is a highly conserved and structurally versatile machine. It has gained a lot of recognition during the last decade as a novel antibacterial drug target with an unprecedented mechanism of action. Due to its complexity, there are distinct means of interfering with its natural functions and several compounds targeting this machine have been identified. In this review, we summarize the current state of knowledge about natural products deregulating Clp proteolysis, a crucial and delicate process within the cell. Among those, acyldepsipeptide antibiotics of the ADEP class (ADEPs) are characterized best. The molecular mechanism of ADEP-mediated deregulation sheds light on the inner workings of the Clp protease.

  3. Bacterial production in Guanabara Bay (Rio de Janeiro, Brazil evaluated by ³H-leucine incorporation

    Directory of Open Access Journals (Sweden)

    Alessandra M. Gonzalez

    2000-01-01

    Full Text Available The aim of this work was to evaluate the necessary ³H-leucine concentration to estimate bacterial production in Guanabara Bay through saturation curves. A second aim was to collect preliminary data of bacterial production in two distinct sites corresponding to different water qualities: Urca inlet and Governador Island. Saturation curves were made with water samples taken at the main circulation channel of the bay, Paquetá Island, and the two sites mentioned before. The ³H-leucine curves showed similar pattern for all studied areas, indicating the ideal isotope concentration to be 10 nM. Bacterial biomass production ranged from 0.40 to 4.53 µgC L-1 h-1 in Urca and from 3.86 to 73.72 µgC L-1 h-1 in Governador Island indicating the relationship between nutrients and organic matter supply and bacterial productivity. This work is an important reference for studies on trophodynamics, biogeochemical cycles and modelling in Guanabara Bay.O objetivo desse trabalho foi realizar curvas de saturação a fim de otimizar a concentração de ³H-leucina necessária para avaliar produção bacteriana na Baía de Guanabara. Objetivou-se ainda a aquisição de dados preliminares de produção bacteriana em dois locais distintos em termos de qualidade de água : enseada da Urca e Ilha do Governador. As amostras para as curvas foram obtidas na região do Canal Central e na Ilha de Paquetá, além dos dois locais de coleta citados acima. Seguiu-se a metodologia descrita por Kirchman et al. (1985 e modificada por Smith & Azam (1992. As curvas de ³H-leucina mostraram um padrão semelhante para todas as áreas estudadas, indicando a concentração ótima de isótopo de 10 nM. A produção de biomassa bacteriana variou de 0,40 a 4,53 µgC L-1 h-1 na Urca e de 3,86 a 73,72 µgC L-1 h-1 na Ilha do Governador confirmando a relação entre a disponibilidade de nutrientes e matéria orgânica e o aumento da produtividade bacteriana. Essas análises poderão ser

  4. Seaweed as source of energy. I: effect of a specific bacterial strain on biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.S.; Tarwade, S.J.; Sarma, K.S.R.

    1980-01-01

    Biogas was produced from seaweed by making use of alginate-digesting marine bacteria that were isolated from decomposing seaweed and can digest seaweed carbohydrates (agar and alginic acid). Laboratory digesters containing 100 g seaweed were inoculated with 50 mL broth cultures of different seaweed-derived bacterial strains, and the maximum amount of degradation obtained was 28% (compared with 13% for a bacteria-free digestion). Cow dung was added as a source of methanogenic bacteria, and the amount of biogas produced was more than double the amount obtained when seaweed and cow dung were digested in the absence of the seaweed-derived bacteria. Adding a small amount of Ulva to the seaweed digester increased the production of biogas.

  5. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    Science.gov (United States)

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  6. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species.

    Science.gov (United States)

    Nielsen, Jens Christian; Grijseels, Sietske; Prigent, Sylvain; Ji, Boyang; Dainat, Jacques; Nielsen, Kristian Fog; Frisvad, Jens Christian; Workman, Mhairi; Nielsen, Jens

    2017-04-03

    Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were identified, and polyketide synthase and non-ribosomal peptide synthetase based BGCs were grouped into gene cluster families and mapped to known pathways. The grouping of BGCs allowed us to study the evolutionary trajectory of pathways based on 6-methylsalicylic acid (6-MSA) synthases. Finally, we cross-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic diversity of Penicillia and highlights the potential of these species as a source of new antibiotics and other pharmaceuticals.

  7. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    Science.gov (United States)

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  8. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis - a systematic review and meta-analysis.

    Science.gov (United States)

    Beez, Thomas; Steiger, Hans-Jakob; Etminan, Nima

    2017-12-07

    The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities. Randomized, controlled, double-blinded trials on aforementioned entities with 'death' as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients. In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85-1.02)], ICH [RR 0.92 (95% CI:0.82-1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68-1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00-1.11)] and TBI [RR 1.03 (95% CI:0.93-1.15)]. Additional analysis of "poor outcome" as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category "oxidative metabolism/stress" for aSAH with a risk ratio of 0.86 [95% CI: 0.73-1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis. Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms

  9. Permeabilization of cultivated plant cells by electroporation for release of intracellularly stored secondary products.

    Science.gov (United States)

    Brodelius, P E; Funk, C; Shillito, R D

    1988-05-01

    Plant cell suspension cultures producing secondary metabolites have been permeabilized for product release by electroporation. The two cell cultures studied, i.e. Thalictrum rugosum and Chenopodium rubrum, require about 5 and 10 kV cm(-1), respectively, for complete permeabilization (release of all the intracellularly stored product). The number of electrical pulses and capacitance used had a relatively limited effect on product release while the viability of the cells was strongly influenced by the latter. Conditions for complete product release resulted in total loss of viability of the cells after treatment. The release of product from immobilized cells was also achieved by electroporation. Cells entrapped in alginate required less voltage for permeabilization than free or agarose entrapped cells.

  10. Alteration Products and Secondary Minerals in Martian Meteorite Allan Hills 84001

    Science.gov (United States)

    Wentworth, S. J.; Thomas-Keprta, K. L.; McKay, D. S.

    1998-01-01

    The martian meteorites contain alteration products and secondary minerals that are a critical part of understanding their near-surface histories on both Mars and Earth. In some martian meteorites, suspected martian preterrestrial alteration products can be distinguished from terrestrial weathering effects Using scanning electron microscopy (SEM), field emission SEM (FE-SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analysis (EDS), we are studying natural fracture surfaces of ALH 84001 chips, including samples from both the interior and the exterior of the meteorite. Exterior samples include fusion crust surfaces, which are important in determining the extent of terrestrial weathering of meteorites. The focus of this study is weathering features and secondary minerals other than the distinctive carbonate globules that continue to be studied by many researchers.

  11. Production of bacterial cellulose using different carbon sources and culture media.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-06

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    Science.gov (United States)

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  13. Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering.

    Science.gov (United States)

    Keskin, Zalike; Sendemir Urkmez, Aylin; Hames, E Esin

    2017-06-01

    As it is known that bacterial cellulose (BC) is a biocompatible and natural biopolymer due to which it has a large set of biomedical applications. But still it lacks some desired properties, which limits its uses in many other applications. Therefore, the properties of BC need to be boosted up to an acceptable level. Here in this study for the first time, a new natural nanocomposite was produced by the incorporating keratin (isolated from human hair) to the BC (produced by Acetobacter xylinum) to enhance dermal fibroblast cells' attachment. Two different approaches were used in BC based nanocomposite production: in situ and post modifications. BC/keratin nanocomposites were characterized using SEM, FTIR, EDX, XRD, DSC and XPS analyses. Both production methods have yielded successful results for production of BC based nanocomposite-containing keratin. In vitro cell culture experiments performed with human skin keratinocytes and human skin fibroblast cells indicate the potential of the novel BC/keratin nanocomposites for use in skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    Directory of Open Access Journals (Sweden)

    Kevin Holvoet

    2014-12-01

    Full Text Available The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC PCR signals (vt1 or vt2 positive and eae positive, Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7% versus from greenhouse production (9/75, 12.0%. The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards.

  15. Phytoplankton production systems in a shellfish hatchery: variations of the bacterial load and diversity of vibrios.

    Science.gov (United States)

    Dubert, J; Fernández-Pardo, A; Nóvoa, S; Barja, J L; Prado, S

    2015-06-01

    Outbreaks of disease caused by some Vibrio species represent the main production bottleneck in shellfish hatcheries. Although the phytoplankton used as food is one of the main sources of bacteria, studies of the associated bacterial populations, specifically vibrios, are scarce. The aim of the study was the microbiological monitoring of the microalgae as the first step in assessing the risk disease for bivalve cultures. Two phytoplankton production systems were sampled weekly throughout 1-year period in a bivalve hatchery. Quantitative analysis revealed high levels of marine heterotrophic bacteria in both systems throughout the study. Presumptive vibrios were detected occasionally and at low concentrations. In most of the cases, they belonged to the Splendidus and Harveyi clades. The early detection of vibrios in the microalgae may be the key for a successful bivalve culture. Their abundance and diversity were affected by factors related to the hatchery environment. This work represents the first long study where the presence of vibrios was evaluated rigorously in phytoplankton production systems and provides a suitable microbiological protocol to control and guarantee the quality of the algal cultures to avoid the risk of transferring potential pathogens to shellfish larvae and/or broodstock. © 2015 The Society for Applied Microbiology.

  16. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abir [ORNL; Brooks, Scott C [ORNL; Miller, Carrie L [ORNL; Mosher, Jennifer J [ORNL; Yin, Xiangping Lisa [ORNL; Drake, Meghan M [ORNL

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24h before sampling (late addition) resulted in {approx}2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to {approx}3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  17. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abir [ORNL; Brooks, Scott C [ORNL; Miller, Carrie L [ORNL; Mosher, Jennifer J [ORNL; Yin, Xiangping Lisa [ORNL; Drake, Meghan M [ORNL

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg NOM to growing cultures 24 h before sampling (late addition) resulted in ~2 greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid-and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~3 more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  18. Secondary Plant Products Causing Photosensitization in Grazing Herbivores: Their Structure, Activity and Regulation

    Science.gov (United States)

    Quinn, Jane C.; Kessell, Allan; Weston, Leslie A.

    2014-01-01

    Photosensitivity in animals is defined as a severe dermatitis that results from a heightened reactivity of skin cells and associated dermal tissues upon their exposure to sunlight, following ingestion or contact with UV reactive secondary plant products. Photosensitivity occurs in animal cells as a reaction that is mediated by a light absorbing molecule, specifically in this case a plant-produced metabolite that is heterocyclic or polyphenolic. In sensitive animals, this reaction is most severe in non-pigmented skin which has the least protection from UV or visible light exposure. Photosensitization in a biological system such as the epidermis is an oxidative or other chemical change in a molecule in response to light-induced excitation of endogenous or exogenously-delivered molecules within the tissue. Photo-oxidation can also occur in the plant itself, resulting in the generation of reactive oxygen species, free radical damage and eventual DNA degradation. Similar cellular changes occur in affected herbivores and are associated with an accumulation of photodynamic molecules in the affected dermal tissues or circulatory system of the herbivore. Recent advances in our ability to identify and detect secondary products at trace levels in the plant and surrounding environment, or in organisms that ingest plants, have provided additional evidence for the role of secondary metabolites in photosensitization of grazing herbivores. This review outlines the role of unique secondary products produced by higher plants in the animal photosensitization process, describes their chemistry and localization in the plant as well as impacts of the environment upon their production, discusses their direct and indirect effects on associated animal systems and presents several examples of well-characterized plant photosensitization in animal systems. PMID:24451131

  19. Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer

    OpenAIRE

    Syeda Maryam Hussain

    2016-01-01

    Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the lite...

  20. Use of the [14C]Leucine Incorporation Technique To Measure Bacterial Production in River Sediments and the Epiphyton

    Science.gov (United States)

    Fischer, Helmut; Pusch, Martin

    1999-01-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [14C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 μM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 μM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined. PMID:10508068

  1. Hijacking bacterial glycosylation for the production of glycoconjugates, from vaccines to humanised glycoproteins.

    Science.gov (United States)

    Cuccui, Jon; Wren, Brendan

    2015-03-01

    Glycosylation or the modification of a cellular component with a carbohydrate moiety has been demonstrated in all three domains of life as a basic post-translational process important in a range of biological processes. This review will focus on the latest studies attempting to exploit bacterial N-linked protein glycosylation for glycobiotechnological applications including glycoconjugate vaccine and humanised glycoprotein production. The challenges that remain for these approaches to reach full biotechnological maturity will be discussed. Oligosaccharyltransferase-dependent N-linked glycosylation can be exploited to make glycoconjugate vaccines against bacterial pathogens. Few technical limitations remain, but it is likely that the technologies developed will soon be considered a cost-effective and flexible alternative to current chemical-based methods of vaccine production. Some highlights from current glycoconjugate vaccines developed using this in-vivo production system include a vaccine against Shigella dysenteriae O1 that has passed phase 1 clinical trials, a vaccine against the tier 1 pathogen Francisella tularensis that has shown efficacy in mice and a vaccine against Staphylococcus aureus serotypes 5 and 8. Generation of humanised glycoproteins within bacteria was considered impossible due to the distinct nature of glycan modification in eukaryotes and prokaryotes. We describe the method used to overcome this conundrum to allow engineering of a eukaryotic pentasaccharide core sugar modification within Escherichia coli. This core was assembled by combining the function of the initiating transferase WecA, several Alg genes from Saccharomyces cerevisiae and the oligosaccharyltransferase function of the Campylobacter jejuni PglB. Further exploitation of a cytoplasmic N-linked glycosylation system found in Actinobacillus pleuropneumoniae where the central enzyme is known as N-linking glycosyltransferase has overcome some of the limitations demonstrated by the

  2. Reestimation of the production spectra of cosmic ray secondary positrons and electrons in the ISM

    Science.gov (United States)

    Wong, C. M.; Ng, L. K.

    1985-01-01

    A detailed calculation of the production spectra of charged hadrons produced by interactions of cosmic rays in the interstellar medium is presented along with a thorough treatment of pion and muon decays. Newly parameterized inclusive cross sections of hadrons were used and exact kinematic limitations were taken into account. Single parametrized expressions for the production spectra of both secondary positrons and electrons in the energy range .1 to 100 GeV are presented. The results are compared with other authors' predictions. Equilibrium spectra using various models are also presented.

  3. Methods to assess secondary volatile lipid oxidation products in complex food matrices

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Yesiltas, Betül

    available. This presentation will briefly discuss advantages and disadvantages of spectrophotometric methods versus GC- based methods. Moreover, the different extraction methods used for GC-based analysis will be discussed and examples on results obtained with SPME, the traditional and the automated dynamic......A range of different methods are available to determine secondary volatile lipid oxidation products. These methods include e.g. spectrophotometric determination of anisidine values and TBARS as well as GC based methods for determination of specific volatile oxidation products such as pentanal...... headspace methods on the same food matrices will be presented....

  4. Spatial distribution and secondary production of Copepoda in a tropical reservoir: Barra Bonita, SP, Brazil

    Directory of Open Access Journals (Sweden)

    MJ. Santos-Wisniewski

    Full Text Available The present paper aims to describe the spatial distribution of zooplankton copepods, their biomass and instantaneous secondary production, in Barra Bonita, a large eutrophic, polymitic reservoir (22° 29' S and 48° 34' W on the Tietê River, of the Paraná basin. Sampling was carried out during two seasons: dry winter and rainy summer. Species composition, age structure and numerical density of each copepod species population were analyzed at 25 sampling stations. Secondary production was calculated for Copepoda, the dominant group in zooplankton communities, taking Calanoida and Cyclopoida separately. Copepoda represented the largest portion of the total zooplankton biomass, the dominant species being Notodiaptomus iheringi among the Calanoida and Mesocyclops ogunnus and Thermocyclops decipiens among the Cyclopoida. The production of Copepoda was higher during the rainy summer (23.61 mgDW.m-3.d-1 in January 1995 than during the dry winter season (14 mgDW.m-3.d-1 in August 1995, following the general pattern of abundance for the whole zooplankton community. Among the copepods, Cyclopoida production was higher than that of Calanoida, a pattern commonly observed for tropical lakes and reservoirs. Barra Bonita copepods are very productive, but there was a great degree of spatial heterogeneity, related to the physical and chemical conditions, particularly the level of nutrients and also to phytoplankton biomass.

  5. Leaky RAG Deficiency in Adult Patients with Impaired Antibody Production against Bacterial Polysaccharide Antigens.

    Directory of Open Access Journals (Sweden)

    Christoph B Geier

    Full Text Available Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency.

  6. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung Chung [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Huang, Chi-Yu.; Fu, Tzu-Ning [Department of Environmental Engineering and Science, Tunghai University, Taichung 407 (China); Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-08-15

    Hydrogen gas was produced via dark fermentation from natural cellulosic materials and {alpha}-cellulose via a two-step process, in which the cellulosic substrates were first hydrolyzed by an isolated cellulolytic bacterium Clostridium strain TCW1, and the resulting hydrolysates were then used as substrate for fermentative H{sub 2} production. The TCW1 strain was able to hydrolyze all the cellulosic materials examined to produce reducing sugars (RS), attaining the best reducing sugar production yield of 0.65 g reducing sugar/g substrate from hydrolysis of {alpha}-cellulose. The hydrolysates of those cellulosic materials were successfully converted to H{sub 2} via dark fermentation using seven H{sub 2}-producing bacterial isolates. The bioH{sub 2} production performance was highly dependent on the type of cellulosic feedstock used, the initial reducing sugar concentration (C{sub RS,o}) (ranging from 0.7 to 4.5 mg/l), as well as the composition of sugar and soluble metabolites present in the cellulosic hydrolysates. It was found that Clostridium butyricum CGS5 displayed the highest H{sub 2}-producing efficiency with a cumulative H{sub 2} production of 270 ml/l from {alpha}-cellulose hydrolysate (C{sub RS,o} = 4.52 mg/l) and a H{sub 2} yield of 7.40 mmol/g RS (or 6.66 mmol/g substrate) from napier grass hydrolysate (C{sub RS,o} = 1.22 g/l). (author)

  7. Amylase production potentials of bacterial isolates obtained from the gut of Oryctes rhinoceros larvae

    Science.gov (United States)

    Aryati, P. C.; Pangastuti, A.; Sari, S. L. A.

    2017-04-01

    Amylase is one of the main enzymes used in industry, such as food, detergent, textile, and pharmaceutical industry. Amylase can be produced by plants, animals, and microorganisms. However, bacterial and fungal amylases have dominated application in industries. This research was aimed to determine amylolytic activity of bacteria isolated from the gut of Oryctes rhinoceros larvae. Based on clear zone formation, 9 from 11 isolates showed amylolytic activity. Isolates with the widest clear zone, i.e Bacillus subtilis GOR1, Bacillus cereus GOR3, and Bacillus pumilus GOR2, were screened for amylolytic activity based on reduction sugar production. The result showed that Bacillus subtilis GOR1 was the most potential as amylase producer, showed by the widest clear zone 5.224 cm2 and highest reduction sugar production 0.0235 mg/ml. Highest amylase specific activity (0.1447 U/mg protein) was obtained at 60°C and pH 7. Amylase activity was stable for 3 hours at 60°C with residual activity respectively was 59.7%.

  8. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Wang, Bo; Shi, Si-Lan; Chen, Xue-Fang; Lin, Xiao-Qing; Wang, Can; Luo, Jun; Chen, Xin-De

    2016-01-20

    In this study, lipid fermentation wastewater (fermentation broth after separation with yeast biomass) with high Chemical Oxygen Demand (COD) value of 25,591 mg/L was used as substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus for the first time. After 5 days of fermentation, the highest BC yield (0.659 g/L) was obtained. Both monosaccharide and polysaccharides present in lipid fermentation wastewater could be utilized by G. xylinus simultaneously during fermentation. By this bioconversion, 30.0% of COD could be removed after 10 days of fermentation and the remaining wastewater could be used for further BC fermentation. The crystallinity of BC samples in lipid fermentation wastewater increased gradually during fermentation but overall the environment of lipid fermentation wastewater showed small influence on BC structure by comparison with that in traditional HS medium by using FE-SEM, FTIR, and XRD. By this work, the possibility of using lipid fermentation wastewater containing low value carbohydrate polymer (extracellular polysaccharides) for high value carbohydrate polymer (BC) production was proven. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biocontrol of Fusarium graminearum Growth and Deoxynivalenol Production in Wheat Kernels with Bacterial Antagonists

    Directory of Open Access Journals (Sweden)

    Cuijuan Shi

    2014-01-01

    Full Text Available Fusarium graminearum is the main causal pathogen affecting small-grain cereals, and it produces deoxynivalenol, a kind of mycotoxin, which displays a wide range of toxic effects in human and animals. Bacterial strains isolated from peanut shells were investigated for their activities against F. graminearum by dual-culture plate and tip-culture assays. Among them, twenty strains exhibited potent inhibition to the growth of F. graminearum, and the inhibition rates ranged from 41.41% to 54.55% in dual-culture plate assay and 92.70% to 100% in tip-culture assay. Furthermore, eighteen strains reduced the production of deoxynivalenol by 16.69% to 90.30% in the wheat kernels assay. Finally, the strains with the strongest inhibitory activity were identified by morphological, physiological, biochemical methods and also 16S rDNA and gyrA gene analysis as Bacillus amyloliquefaciens. The current study highlights the potential application of antagonistic microorganisms and their metabolites in the prevention of fungal growth and mycotoxin production in wheat kernels. As a biological strategy, it might avoid safety problems and nutrition loss which always caused by physical and chemical strategies.

  10. Copepod egg production, moulting and growth rates and secondary production in the Skagerrak in August 1988

    DEFF Research Database (Denmark)

    Peterson, W.T.; Tiselius, P.; Kiørboe, Thomas

    1991-01-01

    Measurements of hydrography, chlorophyll, moulting rates of juvenile copepods and egg production rates of adult female copepods were made at eight stations along a transect across the Skagerrak. The goals of the study were to determine (i) if there were correlations between spatial variations...... in hydrography, phytoplankton and copepod production rates, (ii) if copepod egg production rates were correlated with juvenile growth rates, and (iii) if there was evidence of food-niche separation among co-occurring female copepods. The 200 km wide Skagerrak had a stratified water column in the center...... and a mixed water column along the margins. Such spatial variations should lead to a dominance of small phytoplankton cells in the center and large cells along the margins; however, during our study blooms of Gyrodinium aureolum and Ceratium (three species) masked any locally driven differences in cell size...

  11. Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies.

    Science.gov (United States)

    Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L

    2017-11-16

    Despite the continuing development of new insect-derived food products, microbial research on edible insects and insect-based foods is still very limited. The goal of this study was to increase the knowledge on the microbial quality of edible insects by comparing the bacterial community composition of mealworms (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from several production cycles and rearing companies. Remarkable differences in the bacterial community composition were found between different mealworm rearing companies and mealworm production cycles from the same company. In comparison with mealworms, the bacterial community composition of the investigated crickets was more similar among different companies, and was highly similar between both cricket species investigated. Mealworm communities were dominated by Spiroplasma and Erwinia species, while crickets were abundantly colonised by (Para)bacteroides species. With respect to food safety, only a few operational taxonomic units could be associated with potential human pathogens such as Cronobacter or spoilage bacteria such as Pseudomonas. In summary, our results implicate that at least for cricket rearing, production cycles of constant and good quality in terms of bacterial composition can be obtained by different rearing companies. For mealworms however, more variation in terms of microbial quality occurs between companies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved.

    Science.gov (United States)

    Li, Yuanjing; Tian, Chunjie; Tian, Hua; Zhang, Jiliang; He, Xin; Ping, Wenxiang; Lei, Hong

    2012-12-01

    Nowadays, bacterial cellulose has played more and more important role as new biological material for food industry and medical and industrial products based on its unique properties. However, it is still a difficult task to improve the production of bacterial cellulose, especially a large number of byproducts are produced in the metabolic biosynthesis processes. To improve bacterial cellulose production, ethanol and sodium citrate are added into the medium during the fermentation, and the activities of key enzymes and concentration of extracellular metabolites are measured to assess the changes of the metabolic flux of the hexose monophosphate pathway (HMP), the Embden-Meyerhof-Parnas pathway (EMP), and the tricarboxylic acid cycle (TCA). Our results indicate that ethanol functions as energy source for ATP generation at the early stage of the fermentation in the HMP pathway and the supplementation of ethanol significantly reduces glycerol generation (a major byproduct). While in the EMP pathway, sodium citrate plays a key role, and its supplementation results in the byproducts (mainly acetic acid and pyruvic acid) entering the gluconeogenesis pathway for cellulose synthesis. Furthermore, by adding ethanol and sodium citrate, the main byproduct citric acid in the TCA cycle is also reduced significantly. It is concluded that bacterial cellulose production can be improved by increasing energy metabolism and reducing the formation of metabolic byproducts through the metabolic regulations of the bypasses.

  13. Evaluation of factors controlling global secondary organic aerosol production from cloud processes

    Science.gov (United States)

    He, C.; Liu, J.; Carlton, A. G.; Fan, S.; Horowitz, L. W.; Levy, H., II; Tao, S.

    2013-02-01

    Secondary organic aerosols (SOA) exert a significant influence on ambient air quality and regional climate. Recent field, laboratorial and modeling studies have confirmed that in-cloud processes contribute to a large fraction of SOA production with large space-time heterogeneity. This study evaluates the key factors that govern the production of cloud-process SOA (SOAcld) on a global scale based on the GFDL coupled chemistry-climate model AM3 in which full cloud chemistry is employed. The association between SOAcld production rate and six factors (i.e., liquid water content (LWC), total carbon chemical loss rate (TCloss), temperature, VOC/NOx, OH, and O3) is examined. We find that LWC alone determines the spatial pattern of SOAcld production, particularly over the tropical, subtropical and temperate forest regions, and is strongly correlated with SOAcld production. TCloss ranks the second and mainly represents the seasonal variability of vegetation growth. Other individual factors are essentially uncorrelated spatiotemporally to SOAcld production. We find that the rate of SOAcld production is simultaneously determined by both LWC and TCloss, but responds linearly to LWC and nonlinearly (or concavely) to TCloss. A parameterization based on LWC and TCloss can capture well the spatial and temporal variability of the process-based SOAcld formation (R2 = 0.5) and can be easily applied to global three dimensional models to represent the SOA production from cloud processes.

  14. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  15. LISE 3: a magnetic spectrometer—Wien filter combination for secondary radioactive beam production

    Science.gov (United States)

    Anne, Remy; Mueller, Alex C.

    1992-08-01

    The doubly achromatic spectrometer LISE installed at GANIL has been running since six years for the study of exotic nuclei and the production of secondary beams obtained by the interaction of high energy heavy ions ( E/ A 30). ii) A velocity filter based on an electrostatic field crossed with a magnetic one has been installed. This filter provides a third selection which is powerful in suppressing contaminants. Furthermore, the flight path between the target and the final focus is now increased to 43 m, which allows easy time-of-flight measurements also for heavy species. LISE 3 provides separated secondary beams of increased intensity and isotopic purity. We shall review the essential properties and present some recent experimental results for illustration.

  16. Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons

    Directory of Open Access Journals (Sweden)

    Saiqa Tufail

    Full Text Available ABSTRACT Polyhydroxyalkanoates (PHA are efficient, renewable and environment friendly polymeric esters. These polymers are synthesized by a variety of microbes under stress conditions. This study was carried out to check the suitability of waste frying oil in comparison to other oils for economical bioplastic production. Six bacterial strains were isolated and identified as Bacillus cereus (KF270349, Klebsiella pneumoniae (KF270350, Bacillus subtilis (KF270351, Brevibacterium halotolerance (KF270352, Pseudomonas aeruginosa (KF270353, and Stenotrophomonas rhizoposid (KF270354 by ribotyping. All strains were PHA producers so were selected for PHA synthesis using four different carbon sources, i.e., waste frying oil, canola oil, diesel and glucose. Extraction of PHA was carried out using sodium hypochlorite method and maximum amount was detected after 72 h in all cases. P. aeruginosa led to maximum PHA production after 72 h at 37 °C and 100 rpm using waste frying oil that was 53.2% PHA in comparison with glucose 37.8% and cooking oil 34.4%. B. cereus produced 40% PHA using glucose as carbon source which was high when compared against other strains. A significantly lesser amount of PHA was recorded with diesel as a carbon source for all strains. Sharp Infrared peaks around 1740-1750 cm-1 were present in Fourier Transform Infrared spectra that correspond to exact position for PHA. The use of waste oils and production of poly-3hydroxybutyrate-co-3hydroxyvalerate (3HB-co-3HV by strains used in this study is a good aspect to consider for future prospects as this type of polymer has better properties as compared to PHBs.

  17. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis.

    Science.gov (United States)

    Tzin, Vered; Malitsky, Sergey; Aharoni, Asaph; Galili, Gad

    2009-10-01

    Plants can synthesize the aromatic amino acid Phe via arogenate, but it is still not known whether they also use an alternative route for Phe biosynthesis via phenylpyruvate, like many micro-organisms. To examine this possibility, we expressed a bacterial bi-functional PheA (chorismate mutase/prephenate dehydratase) gene in Arabidopsis thaliana that converts chorismate via prephenate into phenylpyruvate. The PheA-expressing plants showed a large increase in the level of Phe, implying that they can convert phenylpyruvate into Phe. In addition, PheA expression rendered the plants more sensitive than wild-type plants to the Trp biosynthesis inhibitor 5-methyl-Trp, implying that Phe biosynthesis competes with Trp biosynthesis from their common precursor chorismate. Surprisingly, GC-MS, LC-MS and microarray analyses showed that this increase in Phe accumulation only had a very minor effect on the levels of other primary metabolites as well as on the transcriptome profile, implying little regulatory cross-interaction between the aromatic amino acid biosynthesis network and the bulk of the Arabidopsis transcriptome and primary metabolism. However, the levels of a number of secondary metabolites derived from all three aromatic amino acids (Phe, Trp and Tyr) were altered in the PheA plants, implying regulatory cross-interactions between the flux of aromatic amino acid biosynthesis from chorismate and their further metabolism into various secondary metabolites. Taken together, our results provide insights into the regulatory mechanisms of aromatic amino acid biosynthesis and their interaction with central primary metabolism, as well as the regulatory interface between primary and secondary metabolism.

  18. The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. cell suspension cultures.

    Science.gov (United States)

    Cetin, Emine Sema; Babalik, Zehra; Hallac-Turk, Filiz; Gokturk-Baydar, Nilgun

    2014-09-23

    Plant secondary metabolites are possess several biological activities such as anti-mutagenic, anti-carcinogenic, anti-aging, etc. Cell suspension culture is one of the most effective systems to produce secondary metabolites. It is possible to increase the phenolic compounds and tocopherols by using cell suspensions. Studies on tocopherols production by cell suspension cultures are seldom and generally focused on seed oil plants. Although fresh grape, grape seed, pomace and grape seed oil had tocopherols, with our best knowledge, there is no research on tocopherol accumulation in the grape cell suspension cultures. In this study, it was aimed to determine the effects of cadmium chloride treatments on secondary metabolite production in cell suspension cultures of grapevine. Cell suspensions initiated from callus belonging to petiole tissue was used as a plant material. Cadmium chloride was applied to cell suspension cultures in different concentration (1.0 mM and 1.5 mM) to enhance secondary metabolite (total phenolics, total flavanols, total flavonols, trans-resveratrol, and α-, β-, γ- δ-tocopherols) production. Cells were harvested at two days intervals until the 6th day of cultures. Amounts of total phenolics, total flavanols and total flavonols; trans-resveratrol and tocopherols (α-, β-, γ- and δ-tocopherols) and dry cell weights were determined in the harvested cells. Phenolic contents were significantly affected by the sampling time and cadmium concentrations. The highest values of total phenolic (168.82 mg/100 g), total flavanol (15.94 mg/100 g), total flavonol (14.73 mg/100 g) and trans-resveratrol (490.76 μg/100 g) were found in cells treated with 1.0 mM CdCl2 and harvested at day 2. Contents of tocopherols in the cells cultured in the presence of 1.0 mM CdCl2 gradually increased during the culture period and the highest values of α, β and γ tocopherols (145.61, 25.52 and 18.56 μg/100 g) were detected in the cell cultures collected at day 6

  19. The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Emine Sema Cetin

    2014-01-01

    Full Text Available BACKGROUND: Plant secondary metabolites are possess several biological activities such as anti-mutagenic, anti-carcinogenic, anti-aging, etc. Cell suspension culture is one of the most effective systems to produce secondary metabolites. It is possible to increase the phenolic compounds and tocopherols by using cell suspensions. Studies on tocopherols production by cell suspension cultures are seldom and generally focused on seed oil plants. Although fresh grape, grape seed, pomace and grape seed oil had tocopherols, with our best knowledge, there is no research on tocopherol accumulation in the grape cell suspension cultures. In this study, it was aimed to determine the effects of cadmium chloride treatments on secondary metabolite production in cell suspension cultures of grapevine. Cell suspensions initiated from callus belonging to petiole tissue was used as a plant material. Cadmium chloride was applied to cell suspension cultures in different concentration (1.0 mM and 1.5 mM to enhance secondary metabolite (total phenolics, total flavanols, total flavonols, trans-resveratrol, and α-, β-, γ- δ-tocopherols production. Cells were harvested at two days intervals until the 6th day of cultures. Amounts of total phenolics, total flavanols and total flavonols; trans-resveratrol and tocopherols (α-, β-, γ- and δ-tocopherols and dry cell weights were determined in the harvested cells. RESULTS: Phenolic contents were significantly affected by the sampling time and cadmium concentrations. The highest values of total phenolic (168.82 mg/100 g, total flavanol (15.94 mg/100 g, total flavonol (14.73 mg/100 g and trans-resveratrol (490.76 µg/100 g were found in cells treated with 1.0 mM CdCl2 and harvested at day 2. Contents of tocopherols in the cells cultured in the presence of 1.0 mM CdCl2 gradually increased during the culture period and the highest values of α, β and γ tocopherols (145.61, 25.52 and 18.56 µg/100 g were detected in the cell

  20. Establishing the Secondary Metabolite Profile of the Marine Fungus: Tolypocladium geodes sp. MF458 and Subsequent Optimisation of Bioactive Secondary Metabolite Production.

    Science.gov (United States)

    Kebede, Bethlehem; Wrigley, Stephen K; Prashar, Anjali; Rahlff, Janina; Wolf, Markus; Reinshagen, Jeanette; Gribbon, Philip; Imhoff, Johannes F; Silber, Johanna; Labes, Antje; Ellinger, Bernhard

    2017-03-23

    As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes , by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A ( 1 ), efrapeptin D ( 2 ), pyridoxatin ( 3 ), terricolin A ( 4 ), malettinins B and E ( 5 and 6 ), and tolypocladenols A1/A2 ( 8 ), we identified a new secondary metabolite which we termed tolypocladenol C ( 7 ). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E ( 5 and 6 ) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields.

  1. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites.

    Directory of Open Access Journals (Sweden)

    Felipe Eng

    Full Text Available Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl-cyclopentane-1-butanoic acid (OPC-4 and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

  2. Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9.

    Directory of Open Access Journals (Sweden)

    Maria Lund Nielsen

    Full Text Available The full potential of fungal secondary metabolism has until recently been impeded by the lack of universal genetic tools for most species. However, the emergence of several CRISPR-Cas9-based genome editing systems adapted for several genera of filamentous fungi have now opened the doors for future efforts in discovery of novel natural products and elucidation and engineering of their biosynthetic pathways in fungi where no genetic tools are in place. So far, most studies have focused on demonstrating the performance of CRISPR-Cas9 in various fungal model species, and recently we presented a versatile CRISPR-Cas9 system that can be successfully applied in several diverse Aspergillus species. Here we take it one step further and show that our system can be used also in a phylogenetically distinct and largely unexplored species from the genus of Talaromyces. Specifically, we exploit CRISPR-Cas9-based genome editing to identify a new gene in T. atroroseus responsible for production of polyketide-nonribosomal peptide hybrid products, hence, linking fungal secondary metabolites to their genetic origin in a species where no genetic engineering has previously been performed.

  3. Extracellular Lipase and Protease Production from a Model Drinking Water Bacterial Community Is Functionally Robust to Absence of Individual Members.

    Directory of Open Access Journals (Sweden)

    Graham G Willsey

    Full Text Available Bacteria secrete enzymes into the extracellular space to hydrolyze macromolecules into constituents that can be imported for microbial nutrition. In bacterial communities, these enzymes and their resultant products can be modeled as community property. Our goal was to investigate the impact of individual community member absence on the resulting community production of exoenzymes (extracellular enzymes involved in lipid and protein hydrolysis. Our model community contained nine bacteria isolated from the potable water system of the International Space Station. Bacteria were grown in static conditions individually, all together, or in all combinations of eight species and exoproduct production was measured by colorimetric or fluorometric reagents to assess short chain and long chain lipases, choline-specific phospholipases C, and proteases. The exoenzyme production of each species grown alone varied widely, however, the enzyme activity levels of the mixed communities were functionally robust to absence of any single species, with the exception of phospholipase C production in one community. For phospholipase C, absence of Chryseobacterium gleum led to increased choline-specific phospholipase C production, correlated with increased growth of Burkholderia cepacia and Sphingomonas sanguinis. Because each individual species produced different enzyme activity levels in isolation, we calculated an expected activity value for each bacterial mixture using input levels or known final composition. This analysis suggested that robustness of each exoenzyme activity is not solely mediated by community composition, but possibly influenced by bacterial communication, which is known to regulate such pathways in many bacteria. We conclude that in this simplified model of a drinking water bacterial community, community structure imposes constraints on production and/or secretion of exoenzymes to generate a level appropriate to exploit a given nutrient environment.

  4. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol Nanocomposite

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2013-05-01

    Full Text Available Bacterial cellulose (BC is characterized for its high water holding capacity, high crystallinity, an ultrafine fiber network and high tensile strength. This work demonstrates the production of a new interpenetrated polymer network nanocomposite obtained through the incorporation of poly(vinyl alcohol (PVA on the BC matrix and evaluates the effect of oven drying on the morphological, mechanical and mass transfer properties of the composite membranes. Both the addition of PVA and oven drying induce the appearance of larger pores (circa 1–3 µm in average diameter in dried BC/PVA membranes. Both types of treatments also affect the permeability of the composite, as assessed by the diffusion coefficients of polyethylene glycol (PEG molecules (900, 8,000, 35,000 and 100,000 Da across the membranes. Finally, the Young’s modulus of dry pristine BC decreases following PVA incorporation, resulting in a change from 3.5 GPa to 1 GPa and a five-fold loss in tensile strength.

  5. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions.

    Science.gov (United States)

    Shi, Yi-Ming; Bode, Helge B

    2018-01-23

    Covering: up to November 2017Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.

  6. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin

    2017-07-01

    Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges

    Science.gov (United States)

    Lackner, Gerald; Peters, Eike Edzard; Helfrich, Eric J. N.; Piel, Jörn

    2017-01-01

    The as-yet uncultured filamentous bacteria “Candidatus Entotheonella factor” and “Candidatus Entotheonella gemina” live associated with the marine sponge Theonella swinhoei Y, the source of numerous unusual bioactive natural products. Belonging to the proposed candidate phylum “Tectomicrobia,” Candidatus Entotheonella members are only distantly related to any cultivated organism. The Ca. E. factor has been identified as the source of almost all polyketide and modified peptides families reported from the sponge host, and both Ca. Entotheonella phylotypes contain numerous additional genes for as-yet unknown metabolites. Here, we provide insights into the biology of these remarkable bacteria using genomic, (meta)proteomic, and chemical methods. The data suggest a metabolic model of Ca. Entotheonella as facultative anaerobic, organotrophic organisms with the ability to use methanol as an energy source. The symbionts appear to be auxotrophic for some vitamins, but have the potential to produce most amino acids as well as rare cofactors like coenzyme F420. The latter likely accounts for the strong autofluorescence of Ca. Entotheonella filaments. A large expansion of protein families involved in regulation and conversion of organic molecules indicates roles in host–bacterial interaction. In addition, a massive overrepresentation of members of the luciferase-like monooxygenase superfamily points toward an important role of these proteins in Ca. Entotheonella. Furthermore, we performed mass spectrometric imaging combined with fluorescence in situ hybridization to localize Ca. Entotheonella and some of the bioactive natural products in the sponge tissue. These metabolic insights into a new candidate phylum offer hints on the targeted cultivation of the chemically most prolific microorganisms known from microbial dark matter. PMID:28049838

  8. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges.

    Science.gov (United States)

    Lackner, Gerald; Peters, Eike Edzard; Helfrich, Eric J N; Piel, Jörn

    2017-01-17

    The as-yet uncultured filamentous bacteria "Candidatus Entotheonella factor" and "Candidatus Entotheonella gemina" live associated with the marine sponge Theonella swinhoei Y, the source of numerous unusual bioactive natural products. Belonging to the proposed candidate phylum "Tectomicrobia," Candidatus Entotheonella members are only distantly related to any cultivated organism. The Ca E. factor has been identified as the source of almost all polyketide and modified peptides families reported from the sponge host, and both Ca Entotheonella phylotypes contain numerous additional genes for as-yet unknown metabolites. Here, we provide insights into the biology of these remarkable bacteria using genomic, (meta)proteomic, and chemical methods. The data suggest a metabolic model of Ca Entotheonella as facultative anaerobic, organotrophic organisms with the ability to use methanol as an energy source. The symbionts appear to be auxotrophic for some vitamins, but have the potential to produce most amino acids as well as rare cofactors like coenzyme F 420 The latter likely accounts for the strong autofluorescence of Ca Entotheonella filaments. A large expansion of protein families involved in regulation and conversion of organic molecules indicates roles in host-bacterial interaction. In addition, a massive overrepresentation of members of the luciferase-like monooxygenase superfamily points toward an important role of these proteins in Ca Entotheonella. Furthermore, we performed mass spectrometric imaging combined with fluorescence in situ hybridization to localize Ca Entotheonella and some of the bioactive natural products in the sponge tissue. These metabolic insights into a new candidate phylum offer hints on the targeted cultivation of the chemically most prolific microorganisms known from microbial dark matter.

  9. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations

    Science.gov (United States)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Wu, Weichao; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2017-04-01

    Interpretations of the abundance and distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids have been increasingly applied to infer changes in paleoenvironment and to estimate terrigenous organic matter inputs into estuarine and marine sediments. However, only preliminary information is known regarding the ecology and physiology of the source organisms of these biomarkers. We assessed the production rates of brGDGTs under different redox conditions in peat, where these lipids are found in high concentrations, particularly at greater depths below the fluctuating water table. The incorporation of hydrogen relative to carbon into lipids observed in our dual stable isotope probing assay indicates that brGDGTs were produced by heterotrophic bacteria. Unexpectedly, incubations with stable isotope tracers of the surface horizon (5-20 cm) initiated under oxic conditions before turning suboxic and eventually anoxic exhibited up to one order of magnitude higher rates of brGDGT production (16-87 ng cm-3 y-1) relative to the deeper, anoxic zone (20-35 cm; ca. 7 ng cm-3 y-1), and anoxic incubations of the surface horizon (Turnover times of brGDGTs in the surface horizon ranged between 8 and 41 years in the incubations initiated under oxic conditions, in contrast to 123-742 years in anoxic incubations. As brGDGTs were actively produced during both anoxic incubations and those exposed to oxygen, we conclude that their source organisms are likely facultative aerobic heterotrophs that are particularly active in the peat acrotelm. Production rates of bacterial fatty acids (ca. 2 μg cm-3 y-1) were roughly two orders of magnitude higher than those of brGDGTs, suggesting that brGDGT producers are a minor constituent of the microbial community or that brGDGTs are a small component of the microbial cell membrane in comparison to fatty acids, despite the typically high brGDGT concentrations observed in peat. Multivariate analysis identified two branched fatty acids

  10. Comparison of Asian porcine high fever disease isolates of porcine reproductive and respiratory syndrome virus to United States isolates for their ability to cause disease and secondary bacterial infection in swine

    Science.gov (United States)

    Epidemiologic data from Asian outbreaks of highly-pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) suggest that disease severity was associated with both the virulence of the PRRSV isolates and secondary bacterial infections. Previous reports have indicated that U.S. isola...

  11. Secondary Organic Aerosol Production over Seoul, South Korea, during KORUS-AQ

    Science.gov (United States)

    Nault, B.; Campuzano Jost, P.; Day, D. A.; Schroder, J. C.; Blake, D. R.; Brune, W. H.; Choi, Y.; DiGangi, J. P.; Fried, A.; Huey, L. G.; Knote, C. J.; Montzka, D. D.; Weinheimer, A. J.; Jimenez, J. L.; Armin, W.

    2017-12-01

    Secondary organic aerosol (SOA) is rapidly produced over and downwind of urban areas, causing important effects on health, visibility, and climate. However, multiple studies over different cities have shown that the production of SOA over urban areas cannot be accounted for when only using traditional volatile compounds (e.g., aromatics). Non-traditional anthropogenic volatile compounds—semi- and intermediate-volatile organic compounds (S/IVOC) are needed to account the observed urban SOA production. At this time, only a few megacities have been well characterized for urban SOA production; however, urban SOA production has not been well characterized in a megacity embedded in a region of rapid economic growth and energy consumption. In this study, we utilize observations from the NASA DC-8 over Seoul, South Korea, during the NASA/NIER 2016 KORean United States-Air Quality (KORUS-AQ) study to investigate the influence of transported OA and SOA precursors to Seoul versus the influence of local emissions of SOA precursors on the observed SOA production. We utilize the ambient gas-phase and OA observations over Seoul and the Western Sea along with Oxidation Flow Reactor (OFR) observations and FLEXPART tracer analysis to investigate the influence of transport versus local emissions. We find that the contribution of transported OA and SOA precursors to Seoul, during the campaign, was minor and had a small impact on the observed SOA production. Using the observed traditional volatile compounds, along with estimates of S/IVOC, brought near closure for the observed SOA production. We found that greater than 90% of the SOA production can be accounted for by reactive organic compounds with OH lifetimes less than 1 day, consistent with several previous megacity studies, further suggesting that local SOA precursor emissions are dominant. Our study highlights the need to further investigate and account for speciated S/IVOC measurements, as these represented an estimated 60

  12. Synthesis, X-Ray diffraction, theoretical and anti-bacterial studies of bis-thiourea secondary amine

    Science.gov (United States)

    Fakhar, Imran; Hussien, Nasry Jassim; Sapari, Suhaila; Bloh, Anmar Hameed; Yusoff, Siti Fairus Mohd; Hasbullah, Siti Aishah; Yamin, Bohari Mohammad; Mutalib, Sahilah Abdul; Shihab, Mehdi Salih; Yousif, Emad

    2018-05-01

    N1,N4-Bis{(2-hydroxyethyl)(methyl)carbamothioyl}terephthalamide (1A) was synthesized by reacting terephthaloyl chloride and ammonium thiocyanate and the product was reacted with 2-Methyl amino ethanol to afford the final product. The product was characterized by Infra Red, Nuclear Magnetic Resonance and Electrospray Ionization mass Spectrometric techniques. The crystal was obtained by recrystallization from DMSO by slow evaporation technique. The X-ray studies reveal that (1A) is crystallized in monoclinic system with space group P 21/n, a = 6.9727(9), b = 17.649(2), c = 8.2629(11), α = 90, β = 112.329(4), γ = 90. Z = 2 and V = 940.6(2). In the crystal structure, the molecules are linked by O(1) … H(1) … S(1), and O(1) … H(1) … O(2) intermolecular H-bonds forming a 3-D network. In addition, the antibacterial activities against four different strains of bacteria and theoretical evaluation for the stable geometries for (1A) has been performed using semi-empirical calculations of PM3 method.

  13. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    Science.gov (United States)

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  14. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms.

    Science.gov (United States)

    Zacchino, Susana A; Butassi, Estefanía; Cordisco, Estefanía; Svetaz, Laura A

    2017-12-15

    works respectively. Regarding combinations against bacterial biofilms, in vitro studies were performed in all works by using several different methods of higher variety than the used against fungal biofilms. Biofilms of both the gram (+) and gram (-) bacteria were prepared, although biofilm of Staphylococcus spp. were the most used in the collected works. Among the discovered potentiators of antibacterial drugs, 75% were terpenes, including mono, di- and triterpenes, and, among the atibacterial drugs, several structurally diverse types were used in the combinations: aminoglycosides, β-lactams, glucopeptides and fluoroquinolones. The potentiating capacity of natural products, mainly terpenes, on the antibiofilm effect of antimicrobial drugs opens a wide range of possibilities for the combination antimicrobial therapy. More in vivo studies on combinations of natural products with antimicrobial drugs acting against biofilms are highly required to cope the difficult to treat biofilm-associated infections. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Productivity in using school's resources: A case study of secondary school in Dumai, Riau Indonesia

    Science.gov (United States)

    Rozamuri, Arif Murti; Suradi, Nur Riza Mohd

    2015-09-01

    Definition of good school's differs for every individual. The performance of the school's has always been an interesting discussion topic. This situation requires parents to be more selective for choosing the best school's for their child, especially in the efficient management of resources. This study evaluated changes in total productivity, technology, technical efficiency, and scale efficiency among 12 school of Dumai City in Riau Indonesia using DEA Malmquist Index. The inputs include number of teacher's, number of students, and number of classrooms while output is the number of students that passed the national examination. The results show that average efficiency of secondary school in Dumai City from 2011 to 2013 recorded good changes in terms of technical efficiency, pure technical efficiency and scale efficiency. However, technological and total factor productivity change do not show a positive change.

  16. Neutron secondary-particle production cross sections and their incorporation into Monte-Carlo transport codes

    International Nuclear Information System (INIS)

    Brenner, D.J.; Prael, R.E.; Little, R.C.

    1987-01-01

    Realistic simulations of the passage of fast neutrons through tissue require a large quantity of cross-sectional data. What are needed are differential (in particle type, energy and angle) cross sections. A computer code is described which produces such spectra for neutrons above ∼14 MeV incident on light nuclei such as carbon and oxygen. Comparisons have been made with experimental measurements of double-differential secondary charged-particle production on carbon and oxygen at energies from 27 to 60 MeV; they indicate that the model is adequate in this energy range. In order to utilize fully the results of these calculations, they should be incorporated into a neutron transport code. This requires defining a generalized format for describing charged-particle production, putting the calculated results in this format, interfacing the neutron transport code with these data, and charged-particle transport. The design and development of such a program is described. 13 refs., 3 figs

  17. Bacterial endosymbiosis in a chordate host: long-term co-evolution and conservation of secondary metabolism.

    Directory of Open Access Journals (Sweden)

    Jason C Kwan

    Full Text Available Intracellular symbiosis is known to be widespread in insects, but there are few described examples in other types of host. These symbionts carry out useful activities such as synthesizing nutrients and conferring resistance against adverse events such as parasitism. Such symbionts persist through host speciation events, being passed down through vertical transmission. Due to various evolutionary forces, symbionts go through a process of genome reduction, eventually resulting in tiny genomes where only those genes essential to immediate survival and those beneficial to the host remain. In the marine environment, invertebrates such as tunicates are known to harbor complex microbiomes implicated in the production of natural products that are toxic and probably serve a defensive function. Here, we show that the intracellular symbiont Candidatus Endolissoclinum faulkneri is a long-standing symbiont of the tunicate Lissoclinum patella, that has persisted through cryptic speciation of the host. In contrast to the known examples of insect symbionts, which tend to be either relatively recent or ancient relationships, the genome of Ca. E. faulkneri has a very low coding density but very few recognizable pseudogenes. The almost complete degradation of intergenic regions and stable gene inventory of extant strains of Ca. E. faulkneri show that further degradation and deletion is happening very slowly. This is a novel stage of genome reduction and provides insight into how tiny genomes are formed. The ptz pathway, which produces the defensive patellazoles, is shown to date to before the divergence of Ca. E. faulkneri strains, reinforcing its importance in this symbiotic relationship. Lastly, as in insects we show that stable symbionts can be lost, as we describe an L. patella animal where Ca. E. faulkneri is displaced by a likely intracellular pathogen. Our results suggest that intracellular symbionts may be an important source of ecologically significant

  18. USING OF SECONDARY PRODUCTS OF RAPESEED PROCESSING IN THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    E. A. Raksha-Slusareva

    2014-04-01

    Full Text Available When oil and biodiesel are extracted from rapeseed, secondary derived products are formed, which are not used effectively at the moment. The article deals with the problems of possible their use in food industry. During food product preparation for special dietary consumption we used electrophysical (processing by hydroelectropulse and physical (drying, grinding, steam treatment processing of raw materials. Through the developed technology for rapeseed cake processing, we received raw materials suitable for use in food industry. On the basis of these raw materials, the «Nutrition product for special dietary consumption “Ripakovyi”» was developed. It is a part of rape seed meal obtained from the seeds with low content of glucosinolates and erucic acid processed by hydroelectropulse dried in the cabinet oven or in the convective dryer, crushed and disinfected based on a developed soft technology for biologically active substances conservation. The production of this product solves the problem of rational utilization of rapeseed meal and diversification of foods for special dietary consumption.

  19. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    DEFF Research Database (Denmark)

    Jančič, Sašo; Frisvad, Jens Christian; Kocev, Dragi

    2016-01-01

    of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known...... to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although...... the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has...

  20. LISE 3: a magnetic spectrometer-Wien filter combination for secondary radioactive beam production

    Energy Technology Data Exchange (ETDEWEB)

    Anne, R. (GANIL, 14 - Caen (France)); Mueller, A.C. (IPN, 91 - Orsay (France))

    1992-08-01

    The double achromatic spectrometer LISE installed at GANIL has been running since six years for the study of exotic nuclei and the production of secondary beams obtained by the interaction of high energy heavy ions (E/A < 100 MeV) with thick targets (up to 1 g/cm[sup 2]). Essentially it is composed of two dipole magnets selecting the nuclear reaction products according to A/Z at 0[sup 0]. Combined with an achromatic degrader located in the intermediate focal plane, it provides a selection in A[sup 3]/Z[sup 2]. Recently we have upgraded LISE by two major improvements. i) The angle of entry of the primary beam with respect to the axis of the spectrometer has been made variable (0[sup 0] to 3.5[sup 0]). This allows the suppression of remaining incomplete stripped beam-charge-states in experiments with heavy beams (Z > 30). ii) A velocity filter based on an electrostatic field crossed with a magnetic one has been installed. This filter provides a third selection which is powerful in suppressing contaminants. Furthermore, the flight path between the target and the final focus is now increased to 43 m, which allows easy time-of-flight measurements also for heavy species. LISE 3 provides separated secondary beams of increased intensity and isotopic purity. We shall review the essential properties and present some recent experiment results for illustration. (orig.).

  1. Production of secondary metabolites trimethyl xanthina by Camellia sinensis L suspension culture

    Science.gov (United States)

    Sutini, Sodiq, Mochamad; Muslihatin, Wirdhatul; Indra, Mochamad Rasjad

    2017-06-01

    Bioactive trimethyl xanthina can be obtained from the plant Camellia sinensis L. To obtain bioactive plant of which there are several hurdles for instance to wait up to five years to be harvested, also it needs land at a certain height from the sea level. Therefore, the production of secondary metabolites trimethyl xanthina need to be developed with suspense culture techniques. The purpose of this study obtained the production of bioactive trimethyl xanthina way culturally suspense in large scale with a relatively short time, potentially as anti-oxidants. Research methods include: (1) initiation of callus from pieces of leaves, shoots the youngest of the plant Camellia sinensis L in the media MS with the optimization of the addition of growth regulators, (2) the subculture of callus on media and plant growth regulator that is equal to the stage of initiation, (3) initiation of suspension culture using explants of callus Camellia sinensis L, (4) Analysis of secondary metabolites trimethyl xanthina growth in suspension culture, (5) the isolation and identification of trimethyl xanthina qualitatively and quantitatively using thin layer chromatography/high performance chromatography column. The results of the study suspension cultures containing bioactive trimethyl xanthina candidates that can be used as an antioxidant.

  2. Nitrogen fertilization of the host plant influences production and pathogenicity of Botrytis cinerea secondary inoculum.

    Science.gov (United States)

    Abro, Manzoor Ali; Lecompte, François; Bryone, Florian; Nicot, Philippe C

    2013-03-01

    The influence of nitrogen (N) nutrition on a plant's susceptibility to Botrytis spp. and other pathogens is well documented. However, little is known of possible effects on sporulation of the pathogen on diseased tissue and on the pathogenicity of resulting secondary inoculum. To address this question, sporulation by two strains of Botrytis cinerea was quantified on tomato plants produced under different N irrigation regimes with inputs of NO(3)- at 0.5 to 45 mmol liter(-1) (mM). Sporulation decreased significantly (P tomato plants produced under a standard fertilization regime. Pathogenicity of the spores was significantly influenced by the nutritional status of their production substrate. Disease severity was highest with spores produced on plants with very low or very high N fertilization (NO(3)- at 0.5 or 30 mM). It was lowest for inoculum from plants with moderate levels of N fertilization. These results suggest that it may be possible to find an optimum level of N fertilization to reduce the production of secondary inoculum and its pathogenicity to tomato.

  3. A Comparison of Parameterizations of Secondary Organic Aerosol Production: Global Budget and Spatiotemporal Variability

    Science.gov (United States)

    Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.

    2014-12-01

    Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.

  4. Development of a Low Input and sustainable Switchgrass Feedstock Production System Utilizing Beneficial Bacterial Endophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Chuansheng [IALR; Nowak, Jerzy [VPISU; Seiler, John [VPISU

    2014-10-24

    Switchgrass represents a promising feedstock crop for US energy sustainability. However, its broad utilization for bioenergy requires improvements of biomass yields and stress tolerance. In this DOE funded project, we have been working on harnessing beneficial bacterial endophytes to enhance switchgrass performance and to develop a low input feedstock production system for marginal lands that do not compete with the production of food crops. We have demonstrated that one of most promising plant growth-promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize roots and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, greenhouse, as well as field conditions. Furthermore, PsJN bacterization improved growth and development of switchgrass seedlings, significantly stimulated plant root and shoot growth, and tiller number in the field, and enhanced biomass accumulation on both poor (p<0.001) and rich (p<0.05) soils, with more effective stimulation of plant growth in low fertility soil. Plant physiology measurements showed that PsJN inoculated Alamo had consistently lower transpiration, lower stomatal conductance, and higher water use efficiency in greenhouse conditions. These physiological changes may significantly contribute to the recorded growth enhancement. PsJN inoculation rapidly results in an increase in photosynthetic rates which contributes to the advanced growth and development. Some evidence suggests that this initial growth advantage decreases with time when resources are not limited such as in greenhouse studies. Additionally, better drought resistance and drought hardening were observed in PsJN inoculated switchgrass. Using the DOE-funded switchgrass EST microarray, in a collaboration with the Genomics Core Facility at the Noble Foundation, we have determined gene expression profile changes in both responsive switchgrass cv. Alamo and non-responsive cv. Cave-in-Rock (CR) following Ps

  5. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose.

    Science.gov (United States)

    Dubey, Swati; Sharma, Raj Kumar; Agarwal, Pragati; Singh, Jyoti; Sinha, Neeraj; Singh, R P

    2017-03-01

    Bacterial nanocellulose (BNC), being ultrapure and unique in its properties, is a booming and ageless precursor of several breakthrough technologies of materials sciences; however, its low yield and high cost has created a challenge for its usage at industrial level. Herein, we report a novel, high yielding bacterial cell factory Komagataeibacter europaeus SGP37, isolated from rotten grapes, for the production of high quality and value added BNC. The strain was kinetically analyzed to evaluate BNC production under different physiological conditions and had demonstrated the production of 9.98±0.24gL -1 BNC at the expense of 12.08±1.94gL -1 sugar following 2 weeks of cultivation, thus having the conversion yield of 0.82g BNC/g sugar which seems to be the maximum reported yield so far. The analysis of produced pellicle using FTIR, 13 C CP MAS NMR, FE-SEM, XRD and TGA had shown similar structural, morphological and chemical characteristics with that of bacterial nanocellulose. Thus, K. europaeus SGP37 appears to be a potential strain and may offer a promising platform for industrial scale production of nanocelluloses. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Using the overlay assay to qualitatively measure bacterial production of and sensitivity to pneumococcal bacteriocins.

    Science.gov (United States)

    Maricic, Natalie; Dawid, Suzanne

    2014-09-30

    Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.

  7. Yield improvement strategies for the production of secondary metabolites in plant tissue culture: silymarin from Silybum marianum tissue culture.

    Science.gov (United States)

    AbouZid, S

    2014-01-01

    Plant cell culture can be a potential source for the production of important secondary metabolites. This technology bears many advantages over conventional agricultural methods. The main problem to arrive at a cost-effective process is the low productivity. This is mainly due to lack of differentiation in the cultured cells. Many approaches have been used to maximise the yield of secondary metabolites produced by cultured plant cells. Among these approaches: choosing a plant with a high biosynthetic capacity, obtaining efficient cell line for growth and production of metabolite of interest, manipulating culture conditions, elicitation, metabolic engineering and organ culture. This article gives an overview of the various approaches used to maximise the production of pharmaceutically important secondary metabolites in plant cell cultures. Examples of using these different approaches are shown for the production of silymarin from Silybum marianum tissue culture.

  8. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    Directory of Open Access Journals (Sweden)

    Andrea F. S. Costa

    2017-10-01

    Full Text Available Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL]. A jeans laundry was also tested. None of the tested sources (beside CSL worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film

  9. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    Science.gov (United States)

    Costa, Andrea F. S.; Almeida, Fabíola C. G.; Vinhas, Glória M.; Sarubbo, Leonie A.

    2017-01-01

    Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC) is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS) medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose) and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL)]. A jeans laundry was also tested. None of the tested sources (beside CSL) worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The values

  10. Effect of Single Bacterial Starter Culture on Odour Reduction During Controlled Fermentation of Cassava Tubers for Foofoo Production

    OpenAIRE

    Henshaw, E. E.; Ikpoh, I. S

    2010-01-01

    Effects of single bacterial starter culture on odour reduction during controlled fermentation of cassava tubers for foofoo production were investigated. Pure cultures were used to ferment cassava tubers in water for 96 h. The cultures used include Bacillus subtilis, Klebsiela sp., Lactobacillus plantarum and Leuconostoc mesenteroides. L. plantarum exhibited the highest acid producing ability, decreasing the pH of the Cassava tubers from 6.2 to 3.68 with a corresponding increase in total titra...

  11. Effects of Plant Secondary Metabolites on Methane Production and Fermentation Parameters in In vitro Ruminal Cultures

    Directory of Open Access Journals (Sweden)

    Mihaela Giuburunca

    2014-10-01

    Full Text Available Enteric fermentation process is of concern worldwide for its contribution to global warming. It is known that ruminant animals, due to natural fermentation process contribute substantially to the increase in methane production. Methanogenesis process represents besides its contribution to greenhouse gases emissions an energy loss to the animal. To reduce ruminal methane productions in an ecologically and sustainable way, many attempts have been initiated, such as: uses of chemicals additives or ionophore antibiotics, defaunation process or immunization against ruminal methanogenesis. In the last years, a new strategy has been evaluated whether plant secondary metabolites can be used as natural additives to reduce ruminal methane emissions. The present study has been conducted to investigate the effects of trans-cinnamic, caffeic, p-coumaric acids and catechin hydrate, four plant secondary metabolites (PSMs on methane production and fermentation in in vitro ruminal cultures. The four PSMs were added anaerobically in a 6 mM concentration to 100 ml serum bottles containing 500 mg grass hay as a substrate, 10 ml rumen fluid collected from a fistulated sheep before morning feeding and 40 ml 141 DSM culture medium. The bottles were incubated at 39 ̊C. After 24 h, the following variables were measured: total gas volume, pH, methane and volatile fatty acids (VFAs production. The results showed that caffeic (p = 0.058 and p-coumaric (p = 0.052 acids tended to decrease methane production in comparison to control but the decrease was not statistic significantly at α= 0.05. The other two PSMs had no significant effect on methane production. Addition of PSMs did not affected the total gas volume, the pH and VFAs profile (P>0.05 in relation to the control (no PSM added. In conclusion, caffeic and p-coumaric acids in 6 mM concentration showed some promising effects for decreasing ruminal methane emissions without affecting ruminal fermentation parameters but

  12. Spatially Resolved Characterization of Biogenic Manganese Oxide Production within a Bacterial Biofilm

    Science.gov (United States)

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2005-01-01

    Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2(aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2(aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained. PMID:15746332

  13. High-throughput assessment of bacterial ecology in hog, cow and ovine casings used in sausages production.

    Science.gov (United States)

    Rebecchi, Annalisa; Pisacane, Vincenza; Miragoli, Francesco; Polka, Justyna; Falasconi, Irene; Morelli, Lorenzo; Puglisi, Edoardo

    2015-11-06

    Natural casings derived from different intestine portions have been used for centuries in the production of fresh and dry-fermented sausages. Here we analysed by means of culture-dependent methods and Illumina high-throughput sequencing of 16S rRNA amplicons the bacterial ecology of hog, cow and ovine casings at different stages of their preparation for sausages production. Several strains of Staphylococcus, Lactobacillus, Bifidobacterium, Vagococcus and Clostridium were counted, isolated and characterised at phylogenetic level. High-throughput sequencing analyses revealed a high bacterial diversity, which differed strongly between casings of different animal species. The technological processes involved in the preparation for casing had also a strong impact on the casings bacterial ecology, with a significant reduction of undesired microorganisms, and an increase in the proportion of lactobacilli and staphylococci. Natural casings were demonstrated to be complex ecological environments, whose role as microbiological inoculants in the production of sausages should not be underestimated. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Bacterial biomass in warm-core Gulf Stream ring 82-B: mesoscale distributions, temporal changes and production

    Science.gov (United States)

    Ducklow, Hugh

    1986-11-01

    The distribution of bacterioplankton biomass and productivity in warm-core Gulf Stream ring 82-B generally corresponded to the physical and dynamical structure of the ring. Mean cell volumes were uniform for 4 months, but were larger by a factor of 2-3 in the high velocity (frontal) region (HVR) near the ring edge. As a result of this gradient and higher abundances, water column biomass and production were highest in the front, which appeared to be a local maximum in those properties. In this regard bacterioplankton contrasted strongly to phytoplankton, which exhibited strong local maxima at the center of the ring in June. In April when the water column inside the ring was isothermal to 450 m, bacterial biomass and production were low and uniform to 250 and 50 m, respectively. Bacterioplankton responded dramatically to the vernal restratification of the ring. In June when the surface layer was characterized by a strong pycnocline at 10-40 m, bacterial biomass and production often had strong subsurface maxima, and were 3 and 5 times greater than in April, respectively. Abundance exceeded 1.5 × 10 9 cells l -1 at ring center and exceeded 3 × 10 9 l -1 in the HVR. Turnover rates for the euphotic zone bacterioplankton as a whole were 0.24 d -1 in April, 0.56 d -1 in June, and 0.27 d -1 in August at ring center. Bacterial production averaged 12% of hourly primary production (range 1-32%), suggesting that bacteria control a significant and sometimes large portion of the carbon cycling in the euphotic zone. These data suggest that warm-core rings are sites of enhanced variability of bacterioplankton properties in the open sea. Furthermore, the data strongly support recent work showing that frontal zones are sites of locally enhanced bacterial biomass and production. In the ring system as a whole, the euphotic zone bacterioplankton biomass and production were comparable to and occasionally greater than the biomass and production of the >64 μm zooplankton, especially in

  15. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process

    DEFF Research Database (Denmark)

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc

    2017-01-01

    in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral......Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long...... chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi...

  16. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    Science.gov (United States)

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  18. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    DEFF Research Database (Denmark)

    Nazaroff, W.; Weschler, Charles J.

    2004-01-01

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated...... by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals...... by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic...

  19. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence...... trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates......Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile...

  20. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

  1. Is a Schools' Performance Related to Technical Change?--A Study on the Relationship between Innovations and Secondary School Productivity

    Science.gov (United States)

    Haelermans, Carla; Blank, Jos L. T.

    2012-01-01

    This paper examines the relation between innovations and productivity in Dutch secondary schools. Innovation clusters are directly included in the production model. In order to correct for differences between schools, we add school type, region and year controls. The results indicate that process innovations, teacher professionalization…

  2. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  3. Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production.

    Science.gov (United States)

    de Almeida Couto, Camila Rattes; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Azevedo Jurelevicius, Diogo; Seldin, Lucy

    2015-10-28

    Biosurfactants are surface-active biomolecules with great applicability in the food, pharmaceutical and oil industries. Endospore-forming bacteria, which survive for long periods in harsh environments, are described as biosurfactant producers. Although the ubiquity of endospore-forming bacteria in saline and hypersaline environments is well known, studies on the diversity of the endospore-forming and biosurfactant-producing bacterial genera/species in these habitats are underrepresented. In this study, the structure of endospore-forming bacterial communities in sediment/mud samples from Vermelha Lagoon, Massambaba, Dois Rios and Abraão Beaches (saline environments), as well as the Praia Seca salterns (hypersaline environments) was determined via denaturing gradient gel electrophoresis. Bacterial strains were isolated from these environmental samples and further identified using 16S rRNA gene sequencing. Strains presenting emulsification values higher than 30 % were grouped via BOX-PCR, and the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20 % NaCl to test their emulsifying activities in these extreme conditions. Mass spectrometry analysis was used to demonstrate the presence of surfactin. A diverse endospore-forming bacterial community was observed in all environments. The 110 bacterial strains isolated from these environmental samples were molecularly identified as belonging to the genera Bacillus, Thalassobacillus, Halobacillus, Paenibacillus, Fictibacillus and Paenisporosarcina. Fifty-two strains showed emulsification values of at least 30%, and they were grouped into 18 BOX groups. The stability of the emulsification values varied when the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20% NaCl. The presence of surfactin was demonstrated in one of the most promising strains. The environments studied can harbor endospore

  4. Litter production in different successional stages of a subtropical secondary rain forest, in Antonina, PR

    Directory of Open Access Journals (Sweden)

    Kauana Melissa Cunha Dickow

    2012-03-01

    Full Text Available This study was conducted in the Cachoeira River Natural Reserve, in Antonina, Paraná state, Brazil. The main goal was to assess the litter production of secondary tropical rain forests in different sucessional stages (initial, medium and advanced stages. The litter fall was collected every 3 weeks during four years (2004 to 2007, in circular litter traps of 0.25m2, distributed in 30 plots of 100m2 of area. A total of 60 litter traps were installed in an area of 3000m2. The litter fall collected at each retrieval date was dried, separated into fractions (leaves, twigs, reproductive organs and miscellaneous and weighed. Leaves of some tree species were selected from the total litter for a specific study of their contribution to the total litter. The average annual litter production for the three years was 5201, 5399 and 5323 kg.ha-1.year-1, and the percentage contribution of the leaf fraction was 77, 75 and 68%, in the initial, medium and advanced sucessional stages, respectively. The leaf litter fraction produced in the initial stage was dominated by the species Tibouchina pulchra (jacatirão (75%, but in the medium and advanced stages the dominance of only one tree species in leaf litter fraction did not occur. The production of twigs and reproductive organs did not differ statistically among the sucessional stages. The production of miscellaneous fraction was higher in the advanced stage and did not differ between the initial and medium stages. In general, the differences in litter production were little along the sucessional stage in the area of the study.

  5. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    Science.gov (United States)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  6. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na + -taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  7. Production and propagation of secondary particles near the earth; Production et propagation de particules secondaires au voisinage de la Terre

    Energy Technology Data Exchange (ETDEWEB)

    Derome, L

    2008-01-15

    A few years ago the AMS01 embarked experiment showed a particular high component of the cosmic particle flux detected below the geo-magnetic cut which was surprising because this cut represents the minimal energy that is required for cosmic radiation to reach the earth and any cosmic ray below the cut is pushed away by the earth's magnetic field. This work is based on Monte-Carlo simulations involving the generation of primary cosmic particles, their propagation in the earth magnetic field, their interaction with earth's atmosphere and the production of secondary particles. These simulations have shown that the particles below the cut are in fact particles generated in the upper part of the atmosphere, escaping from it and being trapped by the earth's magnetic field. These Monte-Carlo simulations have also been used to assess the composition of below-the-cut flux in terms of protons, electrons, positrons and light nuclei, to check the production of anti-matter in the atmosphere, and to estimate the flux of atmospheric neutrinos. (A.C.)

  8. Bacterial production, primary production, phytoplankton, zooplankton, biological analysis of fish, and massive fish length data from the EVRIKA and other platforms in the Antarctic from 23 February 1980 to 09 December 1988 (NODC Accession 9600039)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacterial production, primary production, phytoplankton, zooplankton, biological analysis of fish, and massive fish length data were collected from the EVRIKA and...

  9. Bacterial Production and Contamination Mineralization in Sediments of the Ala Wai Canal, Oahu, Hawaii

    Science.gov (United States)

    2009-09-29

    sediments near the middle of Pearl Harbor (Montgomery and Osburn 2004) but lower than those taken near creosote -treated pilings (Boyd et al. 2008...marine sediments. Bioremediation 12(2):1-13. Montgomery, M.T., S.E. Walker, T.J. Boyd, L.J. Hamdan, and C.L. Osburn. 2008. Bacterial degradation

  10. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  11. An overview of food safety and bacterial foodborne zoonoses in food production animals in the Caribbean region.

    Science.gov (United States)

    Guerra, Maria Manuela Mendes; de Almeida, Andre M; Willingham, Arve Lee

    2016-08-01

    Foodborne diseases (FBDs) in the Caribbean have a high economic burden. Public health and tourism concerns rise along with the increasing number of cases and outbreaks registered over the last 20 years. Salmonella spp., Shigella spp., and Campylobacter spp. are the main bacteria associated with these incidents. In spite of undertaking limited surveillance on FBD in the region, records related to bacterial foodborne zoonoses in food-producing animals and their associated epidemiologic significance are poorly documented, giving rise to concerns about the importance of the livestock, food animal product sectors, and consumption patterns. In this review, we report the available published literature over the last 20 years on selected bacterial foodborne zoonoses in the Caribbean region and also address other food safety-related aspects (e.g., FBD food attribution, importance, surveillance), mainly aiming at recognizing data gaps and identifying possible research approaches in the animal health sector.

  12. Secondary production of Chasmagnathus granulatus (Crustacea; Decapoda in a Ramsar Site from Argentina

    Directory of Open Access Journals (Sweden)

    II. César

    Full Text Available Secondary production of Chasmagnathus granulatus was calculated at the Refugio de Vida Silvestre Bahía Samborombón, Argentina (36° 16' S and 57° 06' W. Sampling was conducted on nine occasions between March 2001 and February 2003, crabs were collected by hand, physico-chemical variables, granulometry and organic matter contents of the sediments were registered. Crabs were classified as male, female and undifferentiated, measured (total carapace width: CW and weighed (wet and dry weight: DW at 60 °C, during 48 hours. A correlation analysis between CW and DW was made. Morphometric growth of C. granulatus was by the application of the power function (y = a x b, where the carapace width (CW was used as an independent variable. Males, females and undifferentiated individuals were analysed separately as well as all together as a group. The data were fitted indicating a positive allometry (constant of allometry b > 3, the males showing the greatest allometric value. The individuals (n = 957 juveniles and adults were separated in cohorts by the polymodal width-frequency distribution converted into normal curves. Three cohorts were found during the whole study period, and two cohorts coexisting in each sampling date. Ovigerous females were caught on December 2001, 2002 and February 2003. The size-frequency method was used to estimate the annual production. The major contribution to production was carried out by the mature individuals, in particular those with size between 25 and 30 mm, but on the other hand, only few individuals measuring from 10 to 20 mm were collected. The annual production of C. granulatus was estimated in 7.76 g.m-2. The biomass (expressed as total dry weight varied between 0.55 and 1.85 g.m-2, with the greater values being registered during autumn and spring, and the lower values during summer.

  13. Understanding chemistry behind secondary aerosol production from nitrogen and sulfur compounds from agriculture

    Science.gov (United States)

    Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...

  14. Production of secondary radioactive beams from 44 MeV/u Ar projectiles

    International Nuclear Information System (INIS)

    Bimbot, R.; Della Negra, S.; Aguer, P.; Bastin, G.; Anne, R.; Delagrange, H.; Hubert, F.

    1985-01-01

    Secondary beams have been produced through interaction of a 1760 MeV Ar beam with a 99 mg/cm 2 Be target. An achromatic spectrometer is used to select the magnetic rigidity corresponding to a given beam, and to transport this beam over a distance of about 18 m. The beam purity is studied using a solid state ΔE-E telescope. Beams of 38 S and 39 Cl are produced with a purity of about 80% and production rates of 1.5 10 -6 Isub(o) and 5.10 -5 Isub(o) respectively. Here Isub(o) denotes the primary beam intensity. Beams of 38 Ar, 39 Ar and 41 Kr are produced with about the same abundances as 39 Cl but with lower purities. It is shown that, by setting properly the experimental parameters, the beam production can be improved by a factor 2 to 5. This could lead to intensities of about 2.10 6 pps for 38 S and of 10 7 to 10 8 pps for the four other beams. The possibility of purifying these beams by placing a degrader between the two dipoles of the spectrometer is shown experimentally

  15. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes.

    Science.gov (United States)

    Ota, Ajda; Ulrih, Nataša P

    2017-01-01

    Diabetes mellitus is a common effect of uncontrolled high blood sugar and it is associated with long-term damage, dysfunction, and failure of various organs. In the adult population, the global prevalence of diabetes has nearly doubled since 1980. Without effective prevention and management programs, the continuing significant rise in diabetes will have grave consequences on the health and lifespan of the world population, and also on the world economy. Supplements can be used to correct nutritional deficiencies or to maintain an adequate intake of certain nutrients. These are often used as treatments for diabetes, sometimes because they have lower costs, or are more accessible or "natural" compared to prescribed medications. Several vitamins, minerals, botanicals, and secondary metabolites have been reported to elicit beneficial effects in hypoglycemic actions in vivo and in vitro ; however, the data remain conflicting. Many pharmaceuticals commonly used today are structurally derived from natural compounds from traditional medicinal plants. Botanicals that are most frequently used to help manage blood glucose include: bitter melon ( Momordica charantia ), fenugreek ( Trigonella foenum graecum ), gurmar ( Gymnema sylvestre ), ivy gourd ( Coccinia indica ), nopal ( Opuntia spp.), ginseng, Russian tarragon ( Artemisia dracunculus ), cinnamon ( Cinnamomum cassia ), psyllium ( Plantago ovata ), and garlic ( Allium sativum ). In majority of the herbal products and secondary metabolites used in treating diabetes, the mechanisms of action involve regulation of insulin signaling pathways, translocation of GLUT-4 receptor and/or activation the PPARγ. Several flavonoids inhibit glucose absorption by inhibiting intestinal α-amylase and α-glucosidase. In-depth studies to validate the efficacies and safeties of extracts of these traditional medicinal plants are needed, and large, well designed, clinical studies need to be carried out before the use of such preparations can

  16. Bacterial community in naturally fermented milk products of Arunachal Pradesh and Sikkim of India analysed by high-throughput amplicon sequencing

    OpenAIRE

    Shangpliang, H. Nakibapher Jones; Rai, Ranjita; Keisam, Santosh; Jeyaram, Kumaraswamy; Tamang, Jyoti Prakash

    2018-01-01

    Naturally fermented milk (NFM) products are popular ethnic fermented foods in Arunachal Pradesh and Sikkim states of India. The present study is the first to have documented the bacterial community in 54 samples of NFM products viz. chhurpi, churkam, dahi and gheu/mar by high-throughput Illumina amplicon sequencing. Metagenomic investigation showed that Firmicutes (Streptococcaceae, Lactobacillaceae) and Proteobacteria (Acetobacteraceae) were the two predominant members of the bacterial commu...

  17. Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams

    Science.gov (United States)

    Carlisle, D.M.; Clements, W.H.

    2003-01-01

    Secondary production estimates from several Rocky Mountain streams were used to test hypotheses about the effects of chronic metal contamination on insect populations and ecosystem processes. Quantitative samples of chemistry, habitat, and benthic insects were collected monthly during the ice-free period (May-November) from five 2nd- to 3rd-order streams that varied primarily in Zn contamination. Secondary production was estimated for the 19 dominant taxa using increment-summation, size-frequency, and P/B methods. Uncertainty was estimated by bootstrapping estimates of mean abundance, biomass, and cohort production intervals. Secondary production of metal-sensitive Heptageniidae (Rhithrogena robusta, Cinygmula spp., and Epeorus longimanus) was lower in lightly to moderately contaminated streams than in reference streams. Experiments were done to determine whether herbivore growth was influenced by food quality in contaminated streams. Growth estimates from field and microcosm experiments revealed that low mayfly production in contaminated streams was caused mostly by reduced population abundances. Production of predatory stoneflies was also lower in contaminated streams than reference streams. Estimates of the trophic basis of production revealed that, although the relative contribution to community production from various food sources was similar among streams, total production attributable to algae and animal prey declined in contaminated streams. Much of the reduction in herbivory in contaminated streams was the result of lower production of heptageniids, especially R. robusta. Assemblage and taxon-specific estimates of secondary production were sensitive to variation in metal contamination and indicated that relatively low metal concentrations may have ecosystem-wide consequences for energy flow.

  18. Bacterial production of site specific {sup 13}C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L., E-mail: robert.mcfeeters@uah.edu [University of Alabama in Huntsville, Department of Chemistry (United States)

    2017-01-15

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific {sup 13}C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct {sup 13}C chemical shifts and multiple magnetically equivalent {sup 1}H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with {sup 13}C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated {sup 1}H-{sup 13}C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.

  19. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids.

    Science.gov (United States)

    Schöner, Tim A; Gassel, Sören; Osawa, Ayako; Tobias, Nicholas J; Okuno, Yukari; Sakakibara, Yui; Shindo, Kazutoshi; Sandmann, Gerhard; Bode, Helge B

    2016-02-02

    Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  1. Evaluation of effectiveness of bacterial product which can degrade pesticide-dimethoate on the scale of true practice test

    International Nuclear Information System (INIS)

    Pham Thi Le Ha; Tran Thi Thuy; Le Hai; Nguyen Duy Hang; Vo Thi Thu Ha; Nguyen Tuong Ly Lan; Le Tat Mua; Tran Kim Duyen; Mai Hoang Lam

    2004-01-01

    Dimethoate, an organophosphate pesticide has been widely used in Dalat, Lamdong. It is much toxic to birds, human being and other mammals. Its widespread use has caused environmental concern on the basic of frequent detection of dimethoate in soil and water. Microorganisms are key agents in the degradation of waste, oil and a vast array of organic pesticide in terrestrial and aquatic ecosystems. In previous study, bacteria products which can degrade. Dimethoate were produced. The present study was designed to evaluate the effectiveness of bacterial product which can degrade Pesticide-Dimethoate on the scale of true practice test. The results indicated that application bacteria product to soil grown with Cauliflower and Chinese Cabbage sprayed with organic phosphorus pesticides (Dimethoate and Chloropyrifos), the pesticide residues in soil, water and vegetables were as follow: The residues of Dimethoate and Chloropyrifos in soil grown with Cauliflower, Chinese cabbages are different. They concentrated mostly in the surface litter and top soil layers with the depth from 0 to 20 cm. From the depth of 20 cm to 100 cm, the pesticide residues were ignorable. Residue of Chloropyrifos in soil was small as well. Dimethoate residues in soil grown with Cauliflower were higher than that of Chinese cabbages. On the basis of the environmental criteria of Ministry for Science, Technology and Environment (6/95), Dimethoate residues in soil grown with cauliflowers were in excess of the maximum limit. In the case of using bacteria product to soil, pesticide residues in soil were decreased. The results also indicated that Chloropyrifos residues in water (water obtained at the depth of 75 cm and 100 cm by days) were small. Residue of Dimethoate in water small. Residue of Dimethoate in water obtained from the Cauliflower bed were higher than of Chinese cabbages one. Using bacteria product to soil, pesticide residues in water decreased. On the basis of the environmental criteria of

  2. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekar, Aruliah; Ting, Yen-Peng [National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Anandkumar, Balakrishnan [Sourashtra Coll., Madurai (India). Dept. of Biotechnology; Maruthamuthu, Sundaram [Central Electrochemical Research Inst., Karaikudi (India). Biocorrosion Group; Rahman, Pattanathu K.S.M. [Teesside Univ., Tees Valley (United Kingdom). Chemical and Bioprocess Engineering Group

    2010-01-15

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. (orig.)

  3. On the Complex Coupling Between the Production of Ozone and Secondary Organic Aerosol in Polluted Urban Regions

    Science.gov (United States)

    Stewart, D. R.; Stockwell, W. R.; Morris, V. R.; Fitzgerald, R. M.

    2016-12-01

    The major photochemical processes that produce ozone and aerosols are coupled together strongly in the polluted urban atmosphere. Aerosols are either directly emitted or formed through the same kind of chemistry that leads to the production of ozone. The aerosols produced through atmospheric chemistry are known as secondary aerosols and they may be composed of inorganic (nitrates, sulfates) or organic compounds. Wind blown dust and soot are two examples of primary aerosols. The component of secondary inorganic aerosols includes compounds such as ammonium nitrate, ammonium bisulfate and ammonium sulfate. Secondary organic aerosols are a very important component of PM with strong implications for health. The formation of secondary organic aerosol is linked with ozone photochemistry through the reactions of volatile organic compounds (VOC). The oxidation of VOC produces radicals that convert nitric oxide to nitrogen dioxide that photolyze to produce ozone. Larger VOC (those with more carbon atoms) undergo a number of oxidation cycles that add oxygen atoms to large organic molecules. The vapor pressure of many of these highly oxidized compounds is sufficiently low that they condense to produce secondary organic aerosols. The Community Multi-scale Air Quality model (CMAQ) and other chemical simulations have been made to quantify the relationship between varying emissions of VOC and NOx and the production of inorganic and secondary organic aerosols. The results from this analysis will be presented.

  4. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    Science.gov (United States)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  5. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    International Nuclear Information System (INIS)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M.S.; Andersen, Henrik R.

    2015-01-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  6. Heterotrophic bacterial production, respiration, and growth efficiency associated with upwelling intensity in the Ulleung Basin, East Sea

    Science.gov (United States)

    Kim, Bomina; Kim, Sung-Han; Kwak, Jung Hyun; Kang, Chang-Keun; Lee, Sang Heon; Hyun, Jung-Ho

    2017-09-01

    We investigated bacterial production (BP) and respiration (BR), as well as the physico-chemical properties of the water column, to elucidate the effect of upwelling on heterotrophic bacterial metabolic activities and growth efficiency (BGE) in July 2012 and May 2013 in the Ulleung Basin (UB), East/Japan Sea. The upwelled conditions were characterized by higher chlorophyll-a (Chl-a) concentrations resulting from the upward shift of the nitracline compared to that of the non-upwelled condition. Analyses of the size fractions of Chl-a and pigment composition revealed that large size phytoplankton (> 20 μm), mainly consisting of diatoms, appeared to be the major phytoplankton component. BP and BR were significantly correlated with Chl-a (P 0.05). These results suggest that bacterial metabolic activities are stimulated by the availability of organic resources enhanced by upwelling in the UB. Further statistical analysis showed that the difference in BP and BGE with variations in upwelling intensity were significant (P = 0.018 for BP, P = 0.035 for BGE), but the difference in BR was not significant (P = 0.321). These results suggest that metabolic energy is partitioned more for BP under a strong upwelling condition, i.e. high nutrient and Chl-a conditions. In contrast, the energy generated via respiration was partitioned more for maintaining metabolism rather than for biomass production under weakly or non-upwelled conditions, i.e. stratified and low Chl-a conditions. Overall, our results suggest that any changes in upwelling intensity would significantly affect the carbon cycle associated with the fate of primary production, and the role of the microbial loop in the UB where changes in the intensity and frequency of upwelling associated with climatic changes are in progress.

  7. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions.

    Science.gov (United States)

    Jančič, Sašo; Frisvad, Jens C; Kocev, Dragi; Gostinčar, Cene; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone.

  8. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    , the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...

  9. Longitudinal changes in protistan bacterivory and bacterial production in two canyon-shaped reservoirs of different trophic status

    Czech Academy of Sciences Publication Activity Database

    Jezbera, Jan; Nedoma, Jiří; Šimek, Karel

    2003-01-01

    Roč. 504, - (2003), s. 115-130 ISSN 0018-8158. [Reservoir Limnology and Water Quality /4./. České Budějovice, 12.08.2002-16.08.2002] R&D Projects: GA ČR GA206/99/0028; GA ČR GA206/02/0003 Institutional research plan: CEZ:AV0Z6017912 Keywords : canyon-shaped reservoirs * bacterial production * protistan bacterivory Subject RIV: EE - Microbiology, Virology Impact factor: 0.720, year: 2003

  10. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products.

    Science.gov (United States)

    Delgado-Andrade, Cristina; Pastoriza de la Cueva, Silvia; Peinado, M Jesús; Rufián-Henares, José Ángel; Navarro, M Pilar; Rubio, Luis A

    2017-10-01

    Bread crust (BC) is one of the major sources of Maillard reaction products (MRPs) in the Western diet. This work was designed to analyze the impact of diets containing important levels of MRPs from BC on intestinal bacterial growth and short chain fatty acids (SCFAs) production in adult rats. Additionally, the pools of compounds excreted in feces attending to their molecular weights were analyzed. Rats were fed for 88days a control diet or diets containing BC or its soluble high molecular weight (HMW), soluble low molecular weight (LMW) or insoluble fractions, respectively. Intestinal (cecum) microbiota composition was determined by qPCR analysis. Consumption of the BC diet lowered (PMaillard reaction products are in vivo fermented by the gut microbiota, thereby changing both the pattern of SCFAs production and the microbiota composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    Science.gov (United States)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  12. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Huang, C; Yang, X-Y; Xiong, L; Guo, H-J; Luo, J; Wang, B; Zhang, H-R; Lin, X-Q; Chen, X-D

    2015-05-01

    To reduce the cost of bacterial cellulose (BC) production, the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater with high COD value (18 050 mg l(-1) ) for BC production by Gluconacetobacter xylinus was evaluated. After 7 days of fermentation, the highest BC yield (1·34 g l(-1) ) was obtained. The carbon sources including sugars (glucose and xylose), organic acids (acetic acid and butyric acid) and alcohol compounds (ethanol and butanol) were utilized by G. xylinus simultaneously during fermentation. Although the COD decrease ratio (about 14·7%) was low, the highest BC yield on COD consumption (56·2%, g g(-1) ) was relatively high and the remaining wastewater could be used for further BC fermentation. Besides, the environment of ABE fermentation wastewater showed small influence on the BC structure by comparison with the BC products obtained in traditional HS medium using field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Overall, ABE fermentation wastewater is one promising substrate for BC production. The possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose (BC) production by Gluconacetobacter xylinus was evaluated in this study. This is the first time that ABE fermentation wastewater was used as substrate for BC fermentation. The results provide detail information of metabolism of G. xylinus in ABE fermentation wastewater and the influence of wastewater environment on the structure of BC samples. Overall, this bioconversion could reduce the cost of BC production greatly. © 2015 The Society for Applied Microbiology.

  13. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted prot...... to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae....

  14. Ozone and secondary organic aerosol production by interaction between and organophosphorous pesticide and biogenic VOCs mixture

    Science.gov (United States)

    Borrás, Esther; Ródenas, Mila; Vera, Teresa; Muñoz, Amalia

    2017-04-01

    Pesticides are the chemical compounds most widely used worldwide, and their toxicological characteristics can have harmful effects on human health. The entry into the atmosphere of pesticides occurs during application or subsequent processes. Once they are emitted, they can be distributed in the gas phase or particulate phase. However, most of them are in both phases, since they are semi-volatile compounds. As with other organic compounds, pesticides' removal in the atmosphere can be mainly accomplished by wet or dry deposition, by photolysis or by reaction with hydroxyl radicals (OH), nitrate radicals (NO3) and ozone (O3) [1]. All these processes give rise to the formation of other products, which could become more harmful than the starting compounds. It is therefore necessary to know all these processes to estimate the impact of pesticides in the atmosphere. In addition, it is important to study how the pesticides interact with organic compounds naturally emitted by crops and their possible impact on the formation of secondary organic aerosols, ozone and other compounds. In this work, the gas phase atmospheric degradation of an organothiophosphate insecticide has been investigated at the large outdoor European Photoreactor (EUPHORE) in the presence of a biogenic compound mixture typical from orange trees emissions. Its photolysis has been studied under sunlight conditions, in the presence of different concentration ratios of chlorpyrifos and biogenic VOCs mixture and in the absence of initial inorganic seeds. Reaction with ozone has also been studied. Gaseous phase compounds were determined by a Fourier Transform Infrared Spectrometer (FTIR), Proton Transfer Reaction - Mass Spectrometry (PTRMS), Solid Phase Microextraction (SPME) coupled to gas chromatography-mass spectrometry (GCMS) and NOx, O3 and SO2 monitors. Aerosol mass concentration was measured using a scanning mobility particle sizer (SMPS) and a tapered element oscillating monitor (TEOM). Chemical

  15. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites

    DEFF Research Database (Denmark)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep

    2014-01-01

    have been more systematized with high-throughput techniques through inspections of correlations among components of the primary and secondary metabolisms at the genome scale. Moreover, up-to-date information on the genome of Streptomyces species with emphasis on their secondary metabolism has been...... collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species....

  16. Secondary indium production from end-of-life liquid crystal displays

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Alessia; Rocchetti, Laura; Fonti, Viviana; Ruello, Maria Letizia; Beolchini, Francesca [Universita Politecnica of Marche, DISVA, Via Brecce Bianche, 60131 Ancona (Italy)

    2016-12-15

    In 2014, the European Union identified 20 raw materials critical for economic importance and high supply risk. Indium, used in several innovative technologies, is among such critical raw materials. Generally, it is mined as a by-product of zinc from a mineral named sphalerite, with a concentration between 1 and 100 ppm. Currently, the largest producer of indium is China and about 84% of the worldwide indium consumption is used for liquid crystal display (LCD) production, in particular to form an indium-tin-oxide (ITO) film with transparent conductor properties. The fast evolution of LCD technologies caused a double effect: the growth of indium demand and an increase of waste electrical and electronic equipment (WEEE). Considering these two factors, the aim of this study is to make the end-of-life LCDs a secondary indium resource. With this purpose, an indium recovery process was developed carrying out an acidic leaching, followed by a zinc cementation. The first step allowed a complete indium extraction using 2M sulfuric acid at 80 C for 10 min. The problem of low indium concentration in the scraps (around 150 ppm) was overcome using a cross-current configuration in the leaching phase that allowed an increase of metal concentration and a decrease of reagents consumption. An indium recovery higher than 90% was obtained in the final cementation step, using 5 g/L of zinc powder at pH 3 and 55 C for 10 min. Considering its high efficiency, this process is promising in a context of circular economy, where a waste becomes a resource. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  18. Effect of copper contaminated food on the life cycle and secondary production of Daphnia laevis.

    Science.gov (United States)

    Rocha, Giseli S; Tonietto, Alessandra E; Lombardi, Ana T; Melão, Maria da G G

    2016-11-01

    In aquatic environments, copper (Cu) plays important physiological roles in planktonic food chain, such as electron transfer in photosynthesis and constituting proteins that transport oxygen in some arthropods, while at higher concentrations it is toxic on these organisms and higher trophic levels. The combined effects of natural (e.g. volcanic activity) and anthropogenic sources (e.g. mining waste) contribute to the increase in copper pollution in different ecosystems and regions around the world. In the present study, we evaluated the bioaccumulation and effect of Cu on Raphidocelis subcapitata (freshwater algae), and the influence of Cu-contaminated food (algae) on Daphnia laevis (tropical cladoceran). The amount of copper accumulated in microalgae and cladoceran was quantified, and life-history parameters of D. laevis such as growth, reproduction and longevity were measured. The cell density of Cu exposed R. subcapitata declined, and cladoceran fed with contaminated food had lower longevity, production of eggs and neonates, and reduced secondary production. A concentration dependent increase in Cu accumulation was observed in the microalgae, while the opposite occurred in the animal, indicating a cellular metal regulatory mechanism in the latter. However, this regulation seems not to be sufficient to avoid metal induced damages in the cladoceran such as decreased longevity and reproduction. We conclude that diet is an important metal exposure route to this cladoceran, and the assessment of chronic contamination during the complete life cycle of cladoceran provides results that are similar to those observed in natural environments, especially when native organisms are investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism.

    Science.gov (United States)

    Tzin, Vered; Malitsky, Sergey; Ben Zvi, Michal Moyal; Bedair, Mohamed; Sumner, Lloyd; Aharoni, Asaph; Galili, Gad

    2012-04-01

    The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway. To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedback-insensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS. Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates. We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  1. Allochthonous Organic Matter Subsidize the High Secondary Production of the Invasive Bivalve Corbicula fluminea in Minho Estuary (N-Portugal)

    Science.gov (United States)

    The Asian clam Corbicula fluminea is one of the most invasive species in freshwater ecosystems. In Minho estuary, this species colonize all the middle and upper part of the estuary, dominating the abundance, biomass and secondary production in River Minho tidal freshwater area (T...

  2. Lumber attributes, characteristics, and species preferences as indicated by secondary wood products firms in the continental United States.

    Science.gov (United States)

    David L. Nicholls; Joseph. Roos

    2006-01-01

    The purpose of this research was to evaluate selected lumber attributes, species preferences, and lumber use properties among secondary wood manufacturers in the United States. Our sample included producers of kitchen cabinets, furniture, doors, windows, and molded products who attended regional and national wood manufacturing events. More than 51% of respondents had...

  3. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites

    Science.gov (United States)

    Aspergillus flavus produces many secondary metabolites including aflatoxins. Besides conidia, the fungus uses sclerotia as another type of propagule. We obtained transcriptomes from four growth conditions of the aswA mutant, a strain impaired in sclerotial development and production of sclerotium-sp...

  4. Measurement of secondary gamma-ray production cross sections of vanadium induced by D-T neutrons

    International Nuclear Information System (INIS)

    Kondo, Tetsuo; Murata, Isao; Takahashi, Akito

    1999-01-01

    The secondary gamma-ray production cross sections of vanadium induced by D-T neutrons have been measured. The experimental values were compared with the theoretical calculation results by SINCROS-II and the evaluation result based on experimental data compiled by Simakov. The calculation results supported our data, while Simakov's evaluation did not agree with the present result very well. (author)

  5. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Science.gov (United States)

    2010-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under this...

  6. Preliminary Analysis of the (Process and Product) Quality of Physical Education in Flemish Secondary Schools: Implementation of IKLO

    Science.gov (United States)

    Huts, K.; Van Hoecke, J.; De Knop, P.; Theeboom, M.

    2009-01-01

    The purpose of the present study was twofold, namely implementing a multifunctional (self-) evaluation instrument for physical education in a sample of Flemish secondary schools (N=100), while simultaneously obtaining a preliminary picture of the subjects' product and process quality. Descriptive statistics revealed that P. E. teachers' engagement…

  7. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins.

    Science.gov (United States)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-12-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted proteins, they are frequently N-glycosylated. This hampers production in microbes as these hosts glycosylate proteins differently. The resulting products may therefore be immunogenic, unstable and show reduced efficacy. Recently, successful glycoengineering of microbes has demonstrated that it is possible to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes

    Directory of Open Access Journals (Sweden)

    Ajda Ota

    2017-07-01

    Full Text Available Diabetes mellitus is a common effect of uncontrolled high blood sugar and it is associated with long-term damage, dysfunction, and failure of various organs. In the adult population, the global prevalence of diabetes has nearly doubled since 1980. Without effective prevention and management programs, the continuing significant rise in diabetes will have grave consequences on the health and lifespan of the world population, and also on the world economy. Supplements can be used to correct nutritional deficiencies or to maintain an adequate intake of certain nutrients. These are often used as treatments for diabetes, sometimes because they have lower costs, or are more accessible or “natural” compared to prescribed medications. Several vitamins, minerals, botanicals, and secondary metabolites have been reported to elicit beneficial effects in hypoglycemic actions in vivo and in vitro; however, the data remain conflicting. Many pharmaceuticals commonly used today are structurally derived from natural compounds from traditional medicinal plants. Botanicals that are most frequently used to help manage blood glucose include: bitter melon (Momordica charantia, fenugreek (Trigonella foenum graecum, gurmar (Gymnema sylvestre, ivy gourd (Coccinia indica, nopal (Opuntia spp., ginseng, Russian tarragon (Artemisia dracunculus, cinnamon (Cinnamomum cassia, psyllium (Plantago ovata, and garlic (Allium sativum. In majority of the herbal products and secondary metabolites used in treating diabetes, the mechanisms of action involve regulation of insulin signaling pathways, translocation of GLUT-4 receptor and/or activation the PPARγ. Several flavonoids inhibit glucose absorption by inhibiting intestinal α-amylase and α-glucosidase. In-depth studies to validate the efficacies and safeties of extracts of these traditional medicinal plants are needed, and large, well designed, clinical studies need to be carried out before the use of such preparations can be

  9. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes

    Science.gov (United States)

    Ota, Ajda; Ulrih, Nataša P.

    2017-01-01

    Diabetes mellitus is a common effect of uncontrolled high blood sugar and it is associated with long-term damage, dysfunction, and failure of various organs. In the adult population, the global prevalence of diabetes has nearly doubled since 1980. Without effective prevention and management programs, the continuing significant rise in diabetes will have grave consequences on the health and lifespan of the world population, and also on the world economy. Supplements can be used to correct nutritional deficiencies or to maintain an adequate intake of certain nutrients. These are often used as treatments for diabetes, sometimes because they have lower costs, or are more accessible or “natural” compared to prescribed medications. Several vitamins, minerals, botanicals, and secondary metabolites have been reported to elicit beneficial effects in hypoglycemic actions in vivo and in vitro; however, the data remain conflicting. Many pharmaceuticals commonly used today are structurally derived from natural compounds from traditional medicinal plants. Botanicals that are most frequently used to help manage blood glucose include: bitter melon (Momordica charantia), fenugreek (Trigonella foenum graecum), gurmar (Gymnema sylvestre), ivy gourd (Coccinia indica), nopal (Opuntia spp.), ginseng, Russian tarragon (Artemisia dracunculus), cinnamon (Cinnamomum cassia), psyllium (Plantago ovata), and garlic (Allium sativum). In majority of the herbal products and secondary metabolites used in treating diabetes, the mechanisms of action involve regulation of insulin signaling pathways, translocation of GLUT-4 receptor and/or activation the PPARγ. Several flavonoids inhibit glucose absorption by inhibiting intestinal α-amylase and α-glucosidase. In-depth studies to validate the efficacies and safeties of extracts of these traditional medicinal plants are needed, and large, well designed, clinical studies need to be carried out before the use of such preparations can be recommended

  10. 9 CFR 113.100 - General requirements for inactivated bacterial products.

    Science.gov (United States)

    2010-01-01

    ... from each serial shall be tested for safety in young adult mice in accordance with the test provided in... in poultry as defined in the specific Standard Requirement or Outline of Production for the product...

  11. The most important structures utilizing primary and secondary hydroenergetic potential for electric energy production

    International Nuclear Information System (INIS)

    Zacharovsky, M.

    1997-01-01

    In this paper the construction, technological parameters and operation of Gabcikovo (primary hydro energy power) and Cierny Vah (secondary hydro energy power) are described. Construction of the hydroelectric power plant (HPP) Gabcikovo started in 1978 as a part of a system of hydro power projects Gabcikovo-Nagymaros. Basic technical data are: installed capacity 8 x 90 MW, production in an average aqueous year 2.650 GWh, number of hydroelectric generating sets (HGS) 8, turbine flow 8 x 413-636 m 3 /s, head 12.9-24 m.The Gabcikovo plant produced 9.163 GWh of electricity from the beginning of its operation till the end of 1966. The construction of the pumped storage plant (PSP) Cierny Vah started in 1976 and it was put into operation at the end of 1980. The main goal of the PSP Cierny Vah is to meet the control functions of an electrification system of the Slovak Republic, a substitute function in the cases of unexpected power outages and a planned electricity production from re-pumping. Technological parts are: six re-pumping vertical HGS in a three machine arrangement - a motor-generator, a turbine, a pump - are located in three double-blocks. Basic technical data: installed capacity 6 x 122.4 MW + 0.768 MW, yearly production 1,281 GWh, number of HGS 6, number of domestic hydroelectric generating sets 1, turbine flow 3 x 30 m / s, pump flow 6 x 22 m 3 /s, upper reservoir volume 3.7 mil. m 3 , max. head 434 m, peak time 5.71 hour, pumping time 7.78 hour, re-pumping cycle efficiency 74.36%. From putting the PSP into operation till the end of 1996, the HGS in operation 145,269 hours in total, including 53,332 hours in a turbine mode of operation, 70,293 hours in a pumping mode operation and 21,644 hours in a compensation mode operation. Whereas they supplied 5,346 GWh in the mains and the consumed 6,933 GWh of electricity for pumping. Hydroenergetic potential is a primary source of energy which is recyclable, i.e. unexhaustible and also ecologically the most tolerable

  12. Nitrogen control of bacterial signal production in Rhizobium meliloti-alfalfa symbiosis.

    Science.gov (United States)

    Dusha, Ilona

    2002-09-01

    Under nitrogen-depleted conditions nitrogen-fixing soil bacteria of the family Rhizobiaceae are able to induce symbiotic nodules on the roots of leguminous plants where bacteroids convert atmospheric nitrogen to ammonia. The presence of exogenous nitrogen source inhibits the development and the functioning of bacterium-plant symbiosis. Earlier experiments demonstrated that nitrate inhibited all stages of symbiotic interaction, affecting primarily the host functions. The investigation of the possible involvement of the microsymbiont in nitrogen regulation showed that two signalling steps were controlled by ammonium. The synthesis of the first bacterial signal, the Nod factor was repressed by ammonium. The nitrogen signal is conveyed to nodulation (nod) genes by the general nitrogen regulatory (ntr) system and by the nodD3-syrM self-amplifying system. The fine control also involves a negative regulatory factor, ntrR. When ntrR is mutated, more efficient nodule formation and nitrogen fixation is observed in symbiosis with alfalfa even in the presence of ammonium. The biosynthesis of the second bacterial signal succinoglycan is also controlled by ammonium. SyrM, a common regulatory factor for nod and exo gene expression, may contribute to the adjustment of the amount of succinoglycan and the ratio of its biologically active form.

  13. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    Science.gov (United States)

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design.

    Science.gov (United States)

    Hassan, Mariam; Essam, Tamer; Yassin, Aymen S; Salama, Aisha

    2016-01-01

    Biosurfactants are biological surfactants produced by microorganisms. Pseudomonas species are well known for the production of the rhamnolipid biosurfactant. In this work, the production of rhamnolipid biosurfactant by Pseudomonas spp. was investigated and further optimized. Two Plackett-Burman designs to study the effect of carbon source, nitrogen source, C/N ratio, iron concentration, magnesium concentration, phenol toxicity, pH, temperature, agitation and sampling time were tested. The first design revealed an optimization that increased biosurfactant productivity by almost two to fivefolds for the tested isolates. However, using the second design showed no remarkable increase in biosurfactant productivity. An additional validation run was adopted using the predicted optimal medium with predicted optimal conditions. The validation run showed remarkable increase in the productivity of the tested isolates. The use of microorganisms with biodegradation ability coupled with optimization of the parameters affecting productivity provides an efficient strategy for biosurfactant production. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Gas phase emissions from cooking processes and their secondary aerosol production potential

    Science.gov (United States)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR

  16. Measurement of secondary gamma-ray production cross sections of structural materials for fusion reactor. Extraction of discrete and continuum components

    International Nuclear Information System (INIS)

    Kondo, Tetsuo; Morotomi, Ryutaro; Nishio, Takashi; Murata, Isao; Takahashi, Akito

    2000-01-01

    A new method to deal with measured spectrum of secondary gamma-rays induced by D-T neutrons with Ge detector is proposed. Subtracting background components and discrete peaks from the raw secondary gamma-ray spectrum, the continuum component of secondary gamma-ray was successfully extracted. By using unfolding process, the continuum component of the secondary gamma-ray production cross section was derived. The measured cross section data obtained by this method are very useful for precise evaluation of secondary gamma-ray production cross sections. (author)

  17. Glycerol as a Cheaper Carbon Source in Bacterial Cellulose (BC) Production by Gluconacetobacter Xylinus DSM46604 in Batch Fermentation System

    International Nuclear Information System (INIS)

    Azila Adnan; Nair, G.R.; Roslan Umar; Roslan Umar

    2015-01-01

    Bacterial cellulose (BC) is a polymer of glucose monomers, which has unique properties including high crystallinity and high strength. It has potential to be used in biomedical applications such as making artificial blood vessel, wound dressings, and in the paper making industry. Extensive study on BC aimed to improve BC production such as by using glycerol as a cheaper carbon source. BC was produced in shake flask culture using five different concentrations of glycerol (10, 20, 30, 40 and 50 g/ L). Using concentration of glycerol above 20 g/ L inhibited culture growth and BC production. Further experiments were performed in batch culture (3-L bioreactor) using 20 g/ L glycerol. It produced yield and productivity of 0.15 g/ g and 0.29 g/ L/ day BC, respectively. This is compared with the control medium, 50 g/ L glucose, which only gave yield and productivity of 0.05 g/ g and 0.23 g/ L/ day, respectively. Twenty g/ L of glycerol enhanced BC production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. (author)

  18. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-11-01

    In this study, the ozone and OH-radical reactions of myrcene were investigated in an aerosol chamber (at 292-295 K and 50% relative humidity) to examine the gas-phase oxidation products and secondary organic aerosol (SOA) formation. The ozone reaction studies were performed in the presence and absence of CO, which serves as an OH radical scavenger. In the photooxidation experiments OH radicals were generated by photolysis of methyl nitrite. The ozonolysis of myrcene in the presence of CO resulted in a substantial yield of 4-vinyl-4-pentenal (55.3%), measured as m/z 111 plus m/z 93 using proton transfer reaction-mass spectrometry (PTR-MS) and confirmed unambiguously as C7H10O by denuder measurements and HPLC/ESI-TOFMS analysis of its 2,4-dinitrophenylhydrazine (DNPH) derivative. Additionally, the formation of two different organic dicarbonyls with m/z 113 and a molecular formula of C6H8O2 were observed (2.1%). The yields of these dicarbonyls were higher in the ozonolysis experiments without an OH scavenger (5.4%) and even higher (13.8%) in the myrcene OH radical reaction. The formation of hydroxyacetone as a direct product of the myrcene reaction with ozone with a molar yield of 17.6% was also observed. The particle size distribution and volume concentrations were monitored and facilitated the calculation of SOA yields, which ranged from 0 to 0.01 (ozonolysis in the presence of CO) to 0.39 (myrcene OH radical reaction). Terpenylic acid was found in the SOA samples collected from the ozonolysis of myrcene in the absence of an OH scavenger and the OH radical-initiated reaction of myrcene but not in samples collected from the ozonolysis in the presence of CO as an OH radical scavenger, suggesting that terpenylic acid formation involves the reaction of myrcene with an OH radical. A reaction mechanism describing the formation of terpenylic acid is proposed.

  19. Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice.

    Science.gov (United States)

    Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E

    2014-05-01

    The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. © 2014 John Wiley & Sons Ltd.

  20. An Internal Reference Control Duplex Real-Time Polymerase Chain Reaction Assay for Detecting Bacterial Contamination in Blood Products.

    Directory of Open Access Journals (Sweden)

    Jin-Ju Zhang

    Full Text Available Real-time polymerase chain reaction (RT-PCR enables effective and sensitive screening for infectious risk in the field of blood safety. However, when using RT-PCR to detect bacterial contamination, several intractable points must be considered, one of which is the lack of appropriate quality control. In this study, we developed a simplified RT-PCR assay in which the same primer set and two distinct probes were used to detect both, an internal reference control and the target in a reaction. The copy number of the internal reference control represents the positive detection limit of the assay; therefore, when the threshold-cycle value of the target is less than or equal to that of the internal reference control, the result obtained for the target can be considered to be a true positive. When human gDNA was spiked with Escherichia coli gDNA and the detection limit for the internal reference control was set to five copies, the measured detection limit for E. coli gDNA was two copies. The internal reference control duplex RT-PCR assay showed high efficiency (0.91-1.02, high linearity (R2 > 0.99, and good reproducibility in intra- and inter-assay comparisons. Lastly, when human platelet-rich plasma samples were spiked with E. coli or other bacterial species, all species were detected efficiently, and the results of a two-sample pooled t test showed that the limit of detection for E. coli was 1 cfu/mL. Here, we present a synthetic internal reference control molecule and a new statistical method for improving the reliability of RT-PCR assays when screening for bacterial contamination in blood products.

  1. Human β-defensin-2 production upon viral and bacterial co-infection is attenuated in COPD.

    Science.gov (United States)

    Arnason, Jason W; Murphy, James C; Kooi, Cora; Wiehler, Shahina; Traves, Suzanne L; Shelfoon, Christopher; Maciejewski, Barbara; Dumonceaux, Curtis J; Lewenza, W Shawn; Proud, David; Leigh, Richard

    2017-01-01

    Viral-bacterial co-infections are associated with severe exacerbations of COPD. Epithelial antimicrobial peptides, including human β-defensin-2 (HBD-2), are integral to innate host defenses. In this study, we examined how co-infection of airway epithelial cells with rhinovirus and Pseudomonas aeruginosa modulates HBD-2 expression, and whether these responses are attenuated by cigarette smoke and in epithelial cells obtained by bronchial brushings from smokers with normal lung function or from COPD patients. When human airway epithelial cells from normal lungs were infected with rhinovirus, Pseudomonas aeruginosa, or the combination, co-infection with rhinovirus and bacteria resulted in synergistic induction of HBD-2 (p<0.05). The combination of virus and flagellin replicated this synergistic increase (p<0.05), and synergy was not seen using a flagella-deficient mutant Pseudomonas (p<0.05). The effects of Pseudomonas aeruginosa were mediated via interactions of flagellin with TLR5. The effects of HRV-16 depended upon viral replication but did not appear to be mediated via the intracellular RNA helicases, retinoic acid-inducible gene-I or melanoma differentiation-associated gene-5. Cigarette smoke extract significantly decreased HBD-2 production in response to co-infection. Attenuated production was also observed following co-infection of cells obtained from healthy smokers or COPD patients compared to healthy controls (p<0.05). We conclude that co-exposure to HRV-16 and Pseudomonas aeruginosa induces synergistic production of HBD-2 from epithelial cells and that this synergistic induction of HBD-2 is reduced in COPD patients. This may contribute to the more severe exacerbations these patients experience in response to viral-bacterial co-infections.

  2. Human β-defensin-2 production upon viral and bacterial co-infection is attenuated in COPD.

    Directory of Open Access Journals (Sweden)

    Jason W Arnason

    Full Text Available Viral-bacterial co-infections are associated with severe exacerbations of COPD. Epithelial antimicrobial peptides, including human β-defensin-2 (HBD-2, are integral to innate host defenses. In this study, we examined how co-infection of airway epithelial cells with rhinovirus and Pseudomonas aeruginosa modulates HBD-2 expression, and whether these responses are attenuated by cigarette smoke and in epithelial cells obtained by bronchial brushings from smokers with normal lung function or from COPD patients. When human airway epithelial cells from normal lungs were infected with rhinovirus, Pseudomonas aeruginosa, or the combination, co-infection with rhinovirus and bacteria resulted in synergistic induction of HBD-2 (p<0.05. The combination of virus and flagellin replicated this synergistic increase (p<0.05, and synergy was not seen using a flagella-deficient mutant Pseudomonas (p<0.05. The effects of Pseudomonas aeruginosa were mediated via interactions of flagellin with TLR5. The effects of HRV-16 depended upon viral replication but did not appear to be mediated via the intracellular RNA helicases, retinoic acid-inducible gene-I or melanoma differentiation-associated gene-5. Cigarette smoke extract significantly decreased HBD-2 production in response to co-infection. Attenuated production was also observed following co-infection of cells obtained from healthy smokers or COPD patients compared to healthy controls (p<0.05. We conclude that co-exposure to HRV-16 and Pseudomonas aeruginosa induces synergistic production of HBD-2 from epithelial cells and that this synergistic induction of HBD-2 is reduced in COPD patients. This may contribute to the more severe exacerbations these patients experience in response to viral-bacterial co-infections.

  3. Production of secondary particles in soft γp interactions at high energy

    International Nuclear Information System (INIS)

    Lugovoi, V.V.; Sivoklokov, S.Yu.; Shabel'skii, Yu.M.

    1995-01-01

    The predictions of three different models for the photoproduction of secondary hadrons by real or quasi-real photons are considered in connection with HERA experiments. The calculated distributions of various mesons and baryons in rapidity, the Feynman variable x, and transverse momentum, as well as the distributions of all charged secondary particles in pseudorapidity and multiplicity, are presented for inelastic γp interactions at √s = 250 GeV. 15 refs., 9 figs., 1 tab

  4. Evaluation of MODIS-LAI products in the tropical dry secondary forest of Mata Seca, Minas Gerais, Brazil

    Science.gov (United States)

    Yamarte Loreto, Payri Alejandra

    Leaf Area Index (LAI) advances scientific knowledge of the role of secondary forests in forest area conservation. MODIS-LAI products provide an alternative, efficient and cost-effective method for measuring LAI in Tropical Dry Forests (TDFs). The performance of MODIS-LAI satellite products in a TDF was studied as a function of successional stages by (1) estimating seasonal LAI variations compared to in situ LAI values (2) using dry season MODIS-LAI products to estimate Woody Area Index (WAI) (3) estimating phenology changes through comparisons to in situ data. The study demonstrates (1) MODIS-LAI product showed agreement with in situ values with increasing successional stage. (2) MODIS-LAI product showed best agreement to in situ WAI values in the intermediate successional stage. (3) TIMESAT analysis indicated that MODIS-LAI products detected start-of-season 1-2 weeks before in situ values and end-of-season 20-30 days after in situ values, indicating that MODIS-LAI product captures canopy leafing, but is not suitable for detecting senescence. Keywords: Leaf Area Index, Validation, MODIS, Woody Area Index, Phenology, Tropical Secondary Forest Succession, Hemispherical Photography, LAI-2000,.

  5. Secondary Aroma Compounds in Fresh Grape Marc Distillates as a Result of Variety and Corresponding Production Technology

    Directory of Open Access Journals (Sweden)

    Borislav Miličević

    2011-01-01

    Full Text Available In order to investigate the composition of secondary aroma compounds of fresh grape marc distillates as a result of variety and production technology, 30 samples (6 varieties×5 samples were analysed. White grape marc samples from Malvazija istarska, Chardonnay and Muscat Blanc were obtained as by-products in standard white wine production, while red grape marc samples from Teran and Cabernet Sauvignon were obtained after standard red wine production procedures. Marc from red grape variety Muškat ruža porečki was obtained during the production of rosé wines. All fermented marc samples were distilled using a traditional copper alembic. The obtained distillates were subjected to GC/MS and GC/FID analyses. Malvazija istarska distillates exhibited exceptionally high methanol content. Distillates from white grape varieties were found to be characterized by higher C6 alcohol and 1-propanol concentrations, while red grape distillates contained higher amounts of the majority of alcohols, acids, and esters. In Muškat ruža distillates intermediate concentrations of many important aroma compounds were found. It was concluded that differences in the production technology parameters, depending on the variety, resulted in differences in secondary aroma profiles, most evident between distillates from white and red varieties. These findings were confirmed applying stepwise linear discriminant analysis (SLDA, which resulted in 100 % correct classification of distillates according to the variety and corresponding production technology.

  6. Isotope Effects Associated with N2O Production by Fungal and Bacterial Nitric Oxide Reductases: Implications for Enzyme Mechanisms

    Science.gov (United States)

    Hegg, E. L.; Yang, H.; Gandhi, H.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.

    2014-12-01

    Nitrous oxide (N2O) is both a powerful greenhouse gas and a key participant in ozone destruction. Microbial activity accounts for over 70% of the N2O produced annually, and the atmospheric concentration of N2O continues to rise. Because the fungal and bacterial denitrification pathways are major contributors to microbial N2O production, understanding the mechanism by which NO is reduced to N2O will contribute to both N2O source tracing and quantification. Our strategy utilizes stable isotopes to probe the enzymatic mechanism of microbial N2O production. Although the use of stable isotopes to study enzyme mechanisms is not new, our approach is distinct in that we employ both measurements of isotopic preferences of purified enzyme and DFT calculations, thereby providing a synergistic combination of experimental and computational approaches. We analyzed δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom) of N2O produced by purified fungal cytochrome P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum as well as bacterial cytochrome c dependent nitric oxide reductase (cNOR) from Paracoccus denitrificans. P450nor exhibits an inverse kinetic isotope effect for Nβ (KIE = 0.9651) but a normal isotope effect for both Nα (KIE = 1.0127) and the oxygen atom (KIE = 1.0264). These results suggest a mechanism where NO binds to the ferric heme in the P450nor active site and becomes Nβ. Analysis of the NO-binding step indicated a greater difference in zero point energy in the transition state than the ground state, resulting in the inverse KIE observed for Nβ. Following protonation and rearrangement, it is speculated that this complex forms a FeIV-NHOH- species as a key intermediate. Our data are consistent with the second NO (which becomes Nα and O in the N2O product) attacking the FeIV-NHOH- species to generate a FeIII-N2O2H2 complex that enzymatically (as opposed to abiotically) breaks down to release N2O. Conversely, our preliminary data

  7. A survey of fermentation products and bacterial communities in corn silage produced in a bunker silo in China.

    Science.gov (United States)

    Wang, Chao; Han, Hongyan; Gu, Xueying; Yu, Zhu; Nishino, Naoki

    2014-01-01

    To evaluate the current practice of corn silage management in China, samples of bunker-made silage were collected from 14 farms within a 500-km radius of Beijing for the analysis of fermentation products and bacterial communities. Mean values for dry matter (DM) content were as low as 250 g/kg in both corn stover (St) and whole crop corn (Wc) silages, and pH values averaged 4.48 and 3.73, respectively. Only three of the 14 silages exhibited a lactic-to-acetic acid ratio > 1.0, indicating that the presence of acetic acid was predominant in fermentation. Although 1,2-propanediol content was marginal in most cases ( 25 g/kg DM. In contrast, 3 St silages had large amounts (> 10 g/kg DM) of butyric acid, and two of the three butyrate silages also had high concentrations of 1-propanol. Denaturing gradient gel electrophoresis analysis demonstrated that the bacterial community appeared similar in 10 out of the 14 silage samples. Bands indicating Lactobacillus buchneri, L. acetotolerans and Acetobacter pasteurianus were found in both the St and Wc silages, accounting for the high acetic acid content found across silage samples. © 2013 Japanese Society of Animal Science.

  8. Bacterial biomes and potential human pathogens in irrigation water and leafy greens from different production systems described using pyrosequencing.

    Science.gov (United States)

    Jongman, M; Chidamba, L; Korsten, L

    2017-10-01

    To investigate the influence of irrigation water microbial quality on leafy green vegetables produced in commercial and small-scale farms as well as homestead gardens using pyrosequencing. Next generation sequencing analysis of the V1-V3 hypervariable region of bacterial 16S rDNA was used to compare bacterial diversity in irrigation water sources and on leafy vegetables. In all samples (12) analysed, the phylum Proteobacteria (64·5%), class Gammaproteobacteria (56·6%) and genus Aeromonas (14·4%) were found to be dominant. Of the total Escherichia sequences detected in tested samples, lettuce (16·3%) from the one commercial farm harboured more sequences than cabbage from the small-scale farm (1·3%) or homestead gardens (1·9%). Escherichia sequences were detected in both irrigation water (4·6%) and on cabbage (1·3%) samples from the small-scale farm. The genus Salmonella was absent in borehole water but was detected in the holding dam water (biomes in irrigation water and on leafy greens were described with pyrosequencing and revealed insights into prevalence of potential and opportunistic pathogens across different production systems. © 2017 The Society for Applied Microbiology.

  9. Statistical optimization of medium components and physicochemical parameters to simultaneously enhance bacterial growth and esterase production by Bacillus thuringiensis.

    Science.gov (United States)

    Mazzucotelli, Cintia Anabela; Moreira, María del Rosario; Ansorena, María Roberta

    2016-01-01

    Bacillus thuringiensis is a genus extensively studied because of its high potential for biotechnological application, principally in biocontrol techniques. However, the optimization of esterase production by this strain has been scarcely studied. The aim of this work was to select and optimize the physicochemical and nutritional parameters that significantly influence the growth and esterase production of B. thuringiensis. To this purpose, 6 nutritional factors and 2 physicochemical parameters were evaluated using a Plackett-Burman design. Significant variables were optimized using a Box-Behnken design and through the desirability function to select the levels of the variables that simultaneously maximize microbial growth and esterase production. The optimum conditions resulting from simultaneous optimization of the responses under study were found to be 1 g/L glucose, 15 g/L peptone, and 3.25 g/L NaCl. Under these optimal conditions, it was possible to achieve a 2.5 log CFU/mL increase in bacterial growth and a 113-fold increase in esterase productivity, compared with minimal medium without agitation.

  10. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis

    Science.gov (United States)

    Nonejuie, Poochit; Trial, Rachelle M.; Newton, Gerald L.; Lamsa, Anne; Perera, Varahenage Ranmali; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C.; Pogliano, Joe; Pogliano, Kit

    2016-01-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities. PMID:26648120

  11. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass.

    Science.gov (United States)

    Minty, Jeremy J; Singer, Marc E; Scholz, Scott A; Bae, Chang-Hoon; Ahn, Jung-Ho; Foster, Clifton E; Liao, James C; Lin, Xiaoxia Nina

    2013-09-03

    Synergistic microbial communities are ubiquitous in nature and exhibit appealing features, such as sophisticated metabolic capabilities and robustness. This has inspired fast-growing interest in engineering synthetic microbial consortia for biotechnology development. However, there are relatively few reports of their use in real-world applications, and achieving population stability and regulation has proven to be challenging. In this work, we bridge ecology theory with engineering principles to develop robust synthetic fungal-bacterial consortia for efficient biosynthesis of valuable products from lignocellulosic feedstocks. The required biological functions are divided between two specialists: the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We developed and experimentally validated a comprehensive mathematical model for T. reesei/E. coli consortia, providing insights on key determinants of the system's performance. To illustrate the bioprocessing potential of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated corn stover to isobutanol. Without costly nutrient supplementation, we achieved titers up to 1.88 g/L and yields up to 62% of theoretical maximum. In addition, we show that cooperator-cheater dynamics within T. reesei/E. coli consortia lead to stable population equilibria and provide a mechanism for tuning composition. Although we offer isobutanol production as a proof-of-concept application, our modular system could be readily adapted for production of many other valuable biochemicals.

  12. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment

    International Nuclear Information System (INIS)

    Seo, Dong Cheol; DeLaune, Ronald D.

    2010-01-01

    Fungal and bacterial carbon dioxide (CO 2 ) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, + 100, + 250 and + 400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C 15 H 23 NO 4 ) was used as the fungal inhibitor and streptomycin (C 21 H 39 N 7 O 12 ) as the bacterial inhibitor. Under moderately reducing conditions (Eh > + 250 mV), fungi contributed more than bacteria to the CO 2 production. Under highly reducing conditions (Eh ≤ 0 mV), bacteria contributed more than fungi to the total CO 2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh ≥ + 100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh ≤ 0 mV). In moderately reducing conditions (Eh ≥ + 100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh ≤ 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO 2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO 2 production to bacteria

  13. Production of secondary particles and nuclei in cosmic rays collisions with the interstellar gas using the FLUKA code

    CERN Document Server

    Mazziotta, M N; Ferrari, A; Gaggero, D; Loparco, F; Sala, P R

    2016-01-01

    The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of the secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a ki...

  14. Cytotoxicity of Bacterial Metabolic Products, including Listeriolysin O, on Leukocyte Targets

    Directory of Open Access Journals (Sweden)

    R. Stachowiak

    2012-01-01

    Full Text Available Bacterial toxins can exhibit anticancer activities. Here we investigated the anticancer effects of the listeriolysin O toxin produced by Listeria monocytogenes. We found that supernatants of Listeria monocytogenes strains (wild type, 1189, and 1190 were cytotoxic to the Jurkat cell line and human peripheral blood mononuclear cells (PBMC in a concentration-dependent manner. The supernatant of strain 1044, not producing listeriolysin O, was inactive. The supernatants of Listeria strains were also cytotoxic toward B cells of chronic leukemia patients, with no significant differences in activities between strains. We also tested supernatants of Bacillus subtilis strains BR1-90, BR1-S, and BR1-89 producing listeriolysin O. BR1-S and BR1-89 were cytotoxic to PBMC and to Jurkat cells, the latter being more sensitive to the supernatants. BR1-90 was not hemolytic or cytotoxic to PBMC, but was cytotoxic to Jurkat cells in the concentration range of 10–30%, suggesting that listeriolysin O is selectively effective against T cells. Overall, the response of human peripheral blood mononuclear and human leukemia cell lines to bacteria supernatants containing listeriolysin O depended on the bacteria strain, target cell type, and supernatant concentration.

  15. A bacterial cell factory for efficient production of ethanol from whey

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a method for homo-ethanol production from lactose using a genetically modified lactic acid bacterium of the invention, where the cells are provided with a substrate comprising dairy waste supplemented with an amino nitrogen source (such as acid hydrolysed corn steep liquo......B) encoding enzymes catalysing the conversion of pyruvate to ethanol. Additionally a number of genes (Idh, pta and adhE) are deleted in order to maximise homo-ethanol production as compared to production of lactate, acetoin and acetate production.......The invention relates to a method for homo-ethanol production from lactose using a genetically modified lactic acid bacterium of the invention, where the cells are provided with a substrate comprising dairy waste supplemented with an amino nitrogen source (such as acid hydrolysed corn steep liquor......). The invention further relates to genetically modified lactic acid bacterium and its use for homo-ethanol production from lactose in dairy waste. The lactic acid bacterium comprises both genes (lacABCD, LacEF, lacG) encoding enzymes catalysing the lactose catabolism pathway; and transgenes (pdc and adh...

  16. Influence of Thermal and Bacterial Pretreatment of Microalgae on Biogas Production in Mesophilic and Thermophilic Conditions.

    Science.gov (United States)

    Vidmar, Beti; Marinšek Logar, Romana; Panjičko, Mario; Fanedl, Lijana

    2017-01-01

    Microalgae biomass has a great potential in search for new alternative energy sources. They can be used as a substrate for the biogas production in anaerobic digestion. When using microalgae, the efficiency of this process is hampered due to the resistant cell wall. In order to accelerate the hydrolysis of cell wall and increase the efficiency of biogas production we applied two different pretreatments - biological and thermal under mesophilic and thermophilic conditions. During biological pretreatment we incubated microalgae with anaerobic hydrolytic bacteria Pseudobutyrivibrio xylanivorans Mz5T. In thermal pretreatment we incubated microalgae at 90 °C. We also tested a combined thermal and biological pretreatment in which we incubated P. xylanivorans Mz5T with thermally pretreated microalgae. Thermal pretreatment in mesophilic and thermophilic process has increased methane production by 21% and 6%, respectively. Biological pretreatment of microalgae has increased methane production by 13%, but only under thermophilic conditions (pretreatment under mesophilic conditions showed no effect on methane production). Thermal-biological pretreatment increased methane production by 12% under thermophilic conditions and by 6% under mesophilic conditions.

  17. Metabolomics and bioanalysis of terpenoid derived secondary metabolites : Analysis of Cannabis sativa L. metabolite production and prenylases for cannabinoid production

    NARCIS (Netherlands)

    Muntendam, Remco

    2015-01-01

    Cannabinoid research has gained a renenewed interest by both the public and scientist. Focus is mainly directed to the medicinal activities, as reported for various cannabinoid structures. This thesis focusses on prenyl-derived secondary metabolites with main focus on cannabinoids. Firstly the

  18. Secondary production and zooplankton abundance in the coastal waters from Vengurla to Malpe, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C

    of haul taken. Secondary production values were slightly higher for the vertical (av. 26.17 mg C m/2 d/1) than for the surface samples (av. 24.5 mg C m/2 d/1). Highest (47.83 mg C m/2 d/1) and lowest (14.97 mg C m/2 d/1) values were obtained at 20 and 5 m...

  19. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    Science.gov (United States)

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  20. Synthetic biology approaches for protein production optimization in bacterial cell factories

    DEFF Research Database (Denmark)

    Rennig, Maja; Andersen, Mikael Rørdam

    such sustainable alternative if converted into so-called microbial cell factories. Instead of crude oil, cell factories use renewable resources or waste products as source material. The challenge is, however, that microbial production needs to be economically feasible to compete with the classical chemical...... devices and their fusion to antibiotic selection markers enables subsequent selection of high-expressing constructs. The approach is a simple and inexpensive alternative to advanced screening techniques. In addition, a second synthetic biology approach provides the means for fast and efficient plasmid......Society’s strong dependence on fossil fuels and petroleum-based products leads not only to a rapid decline of natural oil reserves but contributes massively to global warming and environmental damage. This consequently urges society to look into more sustainable alternatives. Microorganisms present...

  1. [Phenotypic and genotypic characterization of probiotic bacterial strains used in medicinal products].

    Science.gov (United States)

    Wiatrzyk, Aldona; Polak, Maciej; Czajka, Urszula; Krysztopa-Grzybowska, Katarzyna; Lutyńska, Anna

    2013-01-01

    The optimization of quality testing strategy of products containing probiotics might allow to general improvement of its safer use in humans. The goal of the study was the evaluation of quality expressed by identity, colony forming unit (CFU) and antibiotic sensitivity ofprobiotics used in medicinal products available in Poland using the appropriate and validated procedures. The medicinal products containing L. rhamnosus, L. acidophilus, L. delbrueckii subsp. bulgaricus and B. animalis subsp. lactis, L. helveticus, and L. gasseri were tested for species identity performed with validated rep-PCR (BOXA 1R) method. The antimicrobial susceptibility of working seeds and strains isolated to 26 antibiotics were tested by disk diffusion and E-test methods using relevant references as recommended by EUCAST. The numbers of probiotic strains, expressed as cfu count per package, was done using plating plunge method. All strains tested, except B. lactis, were found to be resistant to trimethoprim-sulphamethoxazole, nalidixic acid, metronidazole, and colistin. B. lactis was resistant to aminoglycosides. L. rhamnosus strains were found to be resistant to vancomycin, (MIC > 256 microg/ml) similarly to ATCC strains (L. rhamnosus GG 53103 and 244). The sensitivity to other antibiotics was strain specific. The rep-PCR method was found species and strain specific. All products tested fulfilled declared countent as measured by cfu count/package. Quality of medicinal products containing probiotics was found undoubted and confirmed. The optimized strategy of quality monitoring of probiotics used in medicinal products can be used in dietary supplements and foodstuffs intended for particular nutritional uses.

  2. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    Science.gov (United States)

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.

  3. Effect of partially replacing a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows.

    Science.gov (United States)

    Castillo-Lopez, E; Moats, J; Aluthge, N D; Ramirez Ramirez, H A; Christensen, D A; Mutsvangwa, T; Penner, G B; Fernando, S C

    2018-01-01

    The effects of partial replacement of a barley-based concentrate with flaxseed-based products on the rumen bacterial population of lactating Holstein dairy cows were evaluated. Treatments fed were CONT, a normal diet that included barley silage, alfalfa hay and a barley-based concentrate that contained no flaxseed or faba beans; FLAX, inclusion of a nonextruded flaxseed-based product containing 55·0% flaxseed, 37·8% field peas and 6·9% alfalfa; EXT, similar to FLAX, but the product was extruded and EXTT, similar to FLAX, but product was extruded and field peas were replaced by high-tannin faba beans. The rumen bacterial population was evaluated by utilizing 16S rRNA gene sequencing. Most abundant phyla, families and genera were unaffected. However, some taxa were affected; for example, unsaturated fatty acid content was negatively correlated with Clostridiaceae, and tannin content was negatively correlated with BS11 and Paraprevotellaceae. Predominant rumen bacterial taxa were not affected, but the abundance of some taxa found in lower proportions shifted, possibly due to sensitivity to unsaturated fatty acids or tannins. Flaxseed-based products were effective for partially replacing barley-based concentrate in rations of lactating dairy cows. No negative effects of these products were observed on the abundance of predominant rumen bacterial taxa, with only minor shifts in less abundant bacteria. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  4. Systematic analysis of secondary life cycle inventories when modelling agricultural production: A case study for arable crops.

    Science.gov (United States)

    Corrado, Sara; Castellani, Valentina; Zampori, Luca; Sala, Serenella

    2018-01-20

    Analysis of agricultural production with life cycle based methodologies is data demanding. To build comprehensive life cycle inventories, secondary datasets are commonly used when primary data are not available. However, different inventory data and modelling approaches are used to populate secondary datasets, leading to different results. The present study analyses the features of twelve secondary datasets to support datasets selection and proper interpretation of results. We assess twelve datasets for arable crop production in France, as modelled in three databases often used in the LCA field (Agri-footprint, ecoinvent and AGRIBALYSE). First, we compared system boundaries and general assumptions. Second, we focused on foreground systems comparing, inventory data, data sources and modelling approaches. Third, we performed a contribution analysis of impact assessment results to identify modelling choices that contribute most to differences in the results. Nine relevant elements were identified and assessed: definition of system boundaries and modelling of agricultural practices, characteristics of inventory data, agricultural operations, fertiliser application and fate, plant protection products application and fate, heavy metals inputs to the agricultural system and fate, irrigation assumptions, land use and transformation. The datasets differ greatly with respect to these elements. Hence, recommendations are drawn from the datasets comparison, supporting the selection of the datasets coherently with the goal and scope of a study and interpretation of results.

  5. Secondary productivity of main microcrustacean species of two tropical reservoirs in Brazil and its relationship with trophic state

    Directory of Open Access Journals (Sweden)

    Sofia L. Brito

    2016-02-01

    Full Text Available In view of the importance of the zooplankton community in energy transfer between trophic levels, this study had as objective to estimate the secondary productivity rates of the main microcrustacean in two large tropical reservoirs, Três Marias and Furnas, state of Minas Gerais, Brazil. We included Thermocyclops minutus, Bosminopsis deitersi, Bosmina hagmanni, Ceriodaphnia cornuta and Moina minuta in Três Marias Reservoir, and, in Furnas, these species and also Notodiaptomus henseni, Daphnia ambigua, Ceriodaphnia silvestrii, Diaphanosoma spinulosum, D. fluviatile and Bosmina freyi. With respect to total productivity, higher rates were obtained in the rainy period in both reservoirs (P<0.000, with mean values during the dry and rainy periods of 0.44 and 1.80 mg DW m-3 d-1 for Três Marias Reservoir and 1.50 and 3.10 mg DW m-3 d-1 for Furnas Reservoir, respectively. Thermocyclops minutus was the most important species in terms of density and biomass in Três Marias Reservoir, and M. minuta showed the highest rates of secondary productivity, especially during the rainy period. In Furnas, N. henseni and D. ambigua showed the highest productivity rates in both periods, and C. silvestrii, C. cornuta, D. spinulosum and D. fluviatile were also important during the rainy period. Values of the productivity:biomass ratio were usually lower for the copepods; the cladoceran M. minuta showed the highest values in both reservoirs. The higher microcrustacean secondary productivity rates in Furnas Reservoir are probably the result of greater efficiency in energy transfer between trophic levels, due to the presence of phytoplankton species with better nutritional quality in this environment.

  6. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases.

    Science.gov (United States)

    Newaj-Fyzul, A; Austin, B

    2015-11-01

    There is a rapidly increasing literature pointing to the success of probiotics, immunostimulants, plant products and oral vaccines in immunomodulation, namely stimulation of the innate, cellular and/or humoral immune response, and the control of bacterial fish diseases. Probiotics are regarded as live micro-organisms administered orally and leading to health benefits. However, in contrast with the use in terrestrial animals, a diverse range of micro-organisms have been evaluated in aquaculture with the mode of action often reflecting immunomodulation. Moreover, the need for living cells has been questioned. Also, key subcellular components, including lipopolysaccharides, have been attributed to the beneficial effect in fish. Here, there is a link with immunostimulants, which may also be administered orally. Furthermore, numerous plant products have been reported to have health benefits, namely protection against disease for which stimulation of some immune parameters has been reported. Oral vaccines confer protection against some diseases, although the mode of action is usually linked to humoral rather than the innate and cellular immune responses. This review explores the relationship between probiotics, immunostimulants, plant products and oral vaccines. © 2014 John Wiley & Sons Ltd.

  7. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    Directory of Open Access Journals (Sweden)

    Bas ter Braak

    Full Text Available Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  8. Bacterial quality of a smoked meat product (“Suya”) | Inyang ...

    African Journals Online (AJOL)

    Isolation of faecal coliforms from all samples in this investigation should be a serious concern to consumers. This calls for urgent improvement on the hygienic handling of the product by suya processors. Keywords: suya, faecal coliforms, contamination, bacteriological quality, hygienic conditions. Nigerian Food Journal Vol.

  9. Mucosal Immune Regulation in Intestinal Disease. The role of bacterial products, food components and drugs

    NARCIS (Netherlands)

    Bol-Schoenmakers, M.

    2009-01-01

    The challenge of the mucosal gut associated immune system is to remain unresponsive to food products and commensal microbiota, while mounting an appropriate immune response towards pathogens. This implicates the necessity of tight immune regulation within the gut associated lymphoid tissue (GALT).

  10. Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells

    Science.gov (United States)

    Heterologous expression of many proteins in bacteria, yeasts, and plants is often limited by low titers of functional protein. To address this problem, we have created a two-tiered directed evolution strategy in Escherichia coli that enables optimization of protein production while maintaining high ...

  11. Limited bacterial diversity within a treatment plant receiving antibiotic containing waste from bulk drug production

    NARCIS (Netherlands)

    Marathe, Nachiket P.; Shetty, Sudarshan A.; Shouche, Yogesh S.; Larsson, D.G.J.

    2016-01-01

    Biological treatment of waste water from bulk drug production, contaminated with high levels of fluoroquinolone antibiotics, can lead to massive enrichment of antibiotic resistant bacteria, resistance genes and associated mobile elements, as previously shown. Such strong selection may be boosted

  12. TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production

    DEFF Research Database (Denmark)

    Rennig, Maja; Martinez, Virginia; Mirzadeh, Kiavash

    2018-01-01

    and allows expression levels in large clone libraries to be probed using a simple cell survival assay on the respective antibiotic. The power of the approach is demonstrated by substantially increasing production of two commercially interesting proteins, a Nanobody and an Affibody. The method is a simple...

  13. A bicistronic expression system for bacterial production of authentic human interleukin-18.

    Science.gov (United States)

    Kirkpatrick, Robert B; McDevitt, Patrick J; Matico, Rosalie E; Nwagwu, Silas; Trulli, Stephen H; Mao, Joyce; Moore, Dwight D; Yorke, Adam F; McLaughlin, Megan M; Knecht, Kristin A; Elefante, Louis C; Calamari, Amy S; Fornwald, Jim A; Trill, John J; Jonak, Zdenka L; Kane, James; Patel, Pramathesh S; Sathe, Ganesh M; Shatzman, Allan R; Tapley, Peter M; Johanson, Kyung O

    2003-02-01

    Interleukin-18 (IL-18) is activated and released from immune effector cells to stimulate acquired and innate immune responses involving T and natural killer (NK) cells. The release of IL-18 from mammalian cells is linked to its proteolytic activation by caspases including interleukin 1 converting enzyme (ICE). The absence of a signal peptide sequence and the requirement for coupled activation and cellular release have presented challenges for the large-scale recombinant production of IL-18. In this study, we have explored methods for the direct production of authentic human IL-18 toward the development of a large-scale production system. Expression of mature IL-18 directly in Escherichia coli with a methionine initiating codon leads to the production of MetIL-18 that is dramatically less potent in bioassays than IL-18 produced as a pro-peptide and activated in vitro. To produce an authentic IL-18, we have devised a bicistronic expression system for the coupled transcription and translation of ProIL-18 with caspase-1 (ICE) or caspase-4 (ICE-rel II, TX, ICH-2). Mature IL-18 with an authentic N-terminus was produced and has a biological activity and potency comparable to that of in vitro processed mature IL-18. Optimization of this system for the maximal production yields can be accomplished by modulating the temperature, to affect the rate of caspase activation and to favor the accumulation of ProIL-18, prior to its proteolytic processing by activated caspase. The effect of temperature is particularly profound for the caspase-4 co-expression process, enabling optimized production levels of over 150 mg/L in shake flasks at 25 degrees C. An alternative bicistronic expression design utilizing a precise ubiquitin IL-18 fusion, processed by co-expressed ubiquitinase, was also successfully used to generate fully active IL-18, thereby demonstrating that the pro-sequence of IL-18 is not required for recombinant IL-18 production. Copyright 2002 Elsevier Science (USA)

  14. Bacterial contaminants from frozen puff pastry production process and their growth inhibition by antimicrobial substances from lactic acid bacteria.

    Science.gov (United States)

    Rumjuankiat, Kittaporn; Keawsompong, Suttipun; Nitisinprasert, Sunee

    2017-05-01

    Seventy-five bacterial contaminants which still persisted to cleaning system from three puff pastry production lines (dough forming, layer and filling forming, and shock freezing) were identified using 16S rDNA as seven genera of Bacillus , Corynebacterium , Dermacoccus , Enterobacter , Klebsiella, Pseudomonas , and Staphylococcus with detection frequencies of 24.00, 2.66, 1.33, 37.33, 1.33, 2.66, and 30.66, respectively. Seventeen species were discovered while only 11 species Bacillus cereus, B. subtilis, B. pumilus, Corynebacterium striatum , Dermacoccus barathri , Enterobacter asburiae, Staphylococcus kloosii, S. haemolyticus, S. hominis, S. warneri , and S. aureus were detected at the end of production. Based on their abundance, the highest abundance of E. asburiae could be used as a biomarker for product quality. While a low abundance of the mesophile pathogen C. striatum , which causes respiratory and nervous infection and appeared only at the shock freezing step was firstly reported for its detection in bakery product. Six antimicrobial substances (AMSs) from lactic acid bacteria, FF1-4, FF1-7, PFUR-242, PFUR-255, PP-174, and nisin A were tested for their inhibition activities against the contaminants. The three most effective were FF1-7, PP-174, and nisin A exhibiting wide inhibition spectra of 88.00%, 85.33%, and 86.66%, respectively. The potential of a disinfectant solution containing 800 AU/ml of PP-174 and nisin A against the most resistant strains of Enterobacter , Staphylococcus , Bacillus and Klebsiella was determined on artificially contaminated conveyor belt coupons at 0, 4, 8, 12, and 16 hr. The survival levels of the test strains were below 1 log CFU/coupon at 0 hr. The results suggested that a combined solution of PP-174 and nisin A may be beneficial as a sanitizer to inhibit bacterial contaminants in the frozen puff pastry industry.

  15. Mineral phases and metals in baghouse dust from secondary aluminum production

    Science.gov (United States)

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  16. UTILIZATION OF SECONDARY COMBUSTIBLE POWER RESOURCES FOR PRODUCTION OF MUNICIPAL AND HOUSEHOLD FUEL

    Directory of Open Access Journals (Sweden)

    N. I. Berezovsky

    2005-01-01

    Full Text Available The paper shows an advantage to utilize secondary power resources (lignin, wastes of fine coal with its dressing, sawdust in mixture with local types of fuel (peat in order to fulfill power supply purpose, namely: obtaining hot water in boilers of small capacity and obtaining household fuel.

  17. Hydrogen production and anaerobic decolorization of wastewater containing Reactive Blue 4 by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa.

    Science.gov (United States)

    Watanapokasin, Ramida Yuwadee; Boonyakamol, Anantabhathra; Sukseree, Supawadee; Krajarng, Aungkana; Sophonnithiprasert, Thanet; Kanso, Sungwan; Imai, Tsuyoshi

    2009-06-01

    Anaerobic biodegradability of wastewater (3,000 mg CODcr/l) containing 300 mg/l Reactive Blue 4, with different co-substrates, glucose, butyrate and propionate by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa, concomitantly with hydrogen production was investigated at 35 degrees C. The accumulative hydrogen production at 3,067 mg CODcr/l was obtained after 7 days of incubation with glucose, sludge, the bacterial consortium. The volatile fatty acids, residual glucose and the total organic carbon were correlated to hydrogen obtained. Interestingly, the bacterial consortium possess decolorization ability showing approximately 24% dye removal after 24 h incubation using glucose as a co-substrate, which was about two and eight times those of butyrate (10%), propionate (12%) and control (3%), respectively. RB4 decolorization occurred through acidogenesis, as high volatile fatty acids but low methane was detected. The bacterial consortium will be the bacterial strains of interest for further decolorization and hydrogen production of industrial waste water.

  18. A secretory system for bacterial production of high-profile protein targets

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Vernet, Erik; Hammarström, Martin

    2011-01-01

    Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To impr......Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli...... membrane protein F (OmpF) and osmotically inducible protein Y (OsmY). Based on the results of this initial study, we carried out an extended expression screen employing the OsmY fusion and multiple constructs of a more diverse set of human proteins. Using this high-throughput compatible system, we clearly...

  19. Strategies for production of active eukaryotic proteins in bacterial expression system

    OpenAIRE

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  20. Tear production, intraocular pressure and conjunctival bacterial flora in selected captive wild ruminants.

    Science.gov (United States)

    Kvapil, Pavel; Pirš, Tina; Slavec, Brigita; Luštrik, Roman; Zemljič, Tadej; Bártová, Eva; Stranjac, Bojana; Kastelic, Marjan

    2018-01-01

    Evaluation of tear production (Schirmer's tear test, STT) and measurement of intraocular pressure (IOP) were performed in a population of captive wild ungulates in a Slovenian ZOO during routine annual health check. In total, 10 fallow deer (Dama dama), 25 mouflons (Ovis aries musimon), 20 alpine ibexes (Capra ibex), and three alpine chamois (Rupicapra rupicapra) were included in the study. Tear production was performed by Schirmer's tear test, IOP was measured with an applanation tonometer, and ophthalmological examination was conducted with slit-lamp biomicroscopy and indirect ophthalmoscopy. Conjunctival swabs were taken and submitted for aerobic bacteriology and for detection of Chlamydia spp. and Mycoplasma spp. tested by PCR. Average tear production (in mm/min) was 17.8 ± 3.16 for fallow deer, 17.9 ± 3.87 for mouflons, and 11.7 ± 3.87 for ibexes. Mean intraocular pressure (IOP, in mm Hg) was 14.1 ± 2.48 for fallow deer, 14.9 ± 2.20 for mouflons, and 13.1 ± 2.43 for ibexes. For chamois, average tear production and IOP were 14.5 ± 3.0 and 10.2 ± 2.5, respectively; this is the first record of STT I and IOP in chamois. Bacteriological swabs were positive for bacteria in 100% of the fallow deer, 56% of mouflons, 35% of ibexes, and 100% of chamois. Gram-positive bacteria were predominant. Moraxella spp., Chlamydia spp., and Mycoplasma spp. were not detected. The reported values were obtained in animals under manual restraint only to be applicative in similar conditions. © 2017 American College of Veterinary Ophthalmologists.

  1. Marine Fungal and Bacterial Isolates for Lipase Production: A Comparative Study.

    Science.gov (United States)

    Patnala, H S; Kabilan, U; Gopalakrishnan, L; Rao, R M D; Kumar, D S

    Lipases, belonging to the class of enzymes called hydrolases, can catalyze triglycerides to fatty acids and glycerol. They are produced by microbes of plant and animal origin, and also by marine organisms. As marine microorganisms thrive in extreme conditions, lipases isolated from their origin possess characteristics of extremozymes, retain its activity in extreme conditions and can catalyze few chemical reactions which are impossible otherwise relative to the lipase produced from terrestrial microorganisms. Lipases are useful in many industries like detergent, food, leather, pharmaceutical, diary, etc. Few commercial enzymes have been developed and the use of them in certain industries like dairy, soaps are proved to be beneficial. There are few research papers reporting the production of lipase from marine bacteria and fungi. Lipase production involves two types of fermentation processes-solid-state fermentation (SSF) and submerged fermentation (SmF). Although SmF process is used conventionally, SSF process produces lipase in higher amounts. The production is also influenced by the composition of the medium, physiochemical parameters like temperature, pH, carbon, and nitrogen sources. © 2016 Elsevier Inc. All rights reserved.

  2. Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp. using halotolerant yeast

    Directory of Open Access Journals (Sweden)

    C.M.T. Perez

    2018-03-01

    Full Text Available Macroalgae are known to have many industrial applications, with current research targeting the potential of macroalgal biomass as feedstock in production of biofuels. Marine algal biomass is rich in storage carbohydrates, laminarin, and cellulose, which can be converted to fermentable sugars using appropriate enzymes, for fermentation to ethanol. This study focused on ethanol production from macroalgae using only enzymatic treatment for saccharification of algal biomass. This involved the isolation and identification of cellulase and laminarinase-producing microorganisms from mangrove area in the Philippines and production of partially purified enzymes for algal biomass saccharification. Results showed that the partially purified laminarinase produced from Bacillus sp. was capable of hydrolyzing the laminarin present in the macroalage. Fermentation of the algal hydrolysate yielded only small amount of ethanol due to lack of other pre-treatment methods, however, it was observed that higher ethanol was produced in saccharification treatments using a combination of cellulase and laminarinase which implies a possible synergistic effect between the two enzymes.

  3. Food safety in raw milk production: risk factors associated to bacterial DNA contamination.

    Science.gov (United States)

    Cerva, Cristine; Bremm, Carolina; Reis, Emily Marques dos; Bezerra, André Vinícius Andrade; Loiko, Márcia Regina; Cruz, Cláudio Estêvão Farias da; Cenci, Alexander; Mayer, Fabiana Quoos

    2014-06-01

    While human illness from milkborne pathogens may be linked to contamination of the product after pasteurization or improper pasteurization, such diseases are usually associated with consumption of raw milk or its by-products. Molecular biology tools were applied to investigate contamination by Listeria monocytogenes, Salmonella spp., some pathogenic strains of Escherichia coli, and Campylobacter jejuni in 548 raw milk samples from 125 dairy farms established in two regions from southern Brazil. Moreover, 15 variables were evaluated for their association with raw milk contamination levels, and the risk factors were determined by multiple regression analysis. Salmonella spp. were more frequently detected, followed by pathogenic E. coli. There was difference in contamination index between the regions, in which risk factors such as temporary cattle confinement, low milk production, low milking machine cleaning frequency, and milk storage area without tile walls were identified. The risk factors were specific to each region studied. Nevertheless, the data can be used to improve milk quality of dairy farms/herds with similar management practices.

  4. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.

    Science.gov (United States)

    Kumar, Abhishek; Srivastava, Janmejai K; Mallick, Nirupama; Singh, Akhilesh K

    2015-01-01

    Ubiquitous conventional plastics, generally manufactured from finite, nonsustainable fossil fuels are non-biodegradable wonder entities but their ill effect on Mother Nature has subsequently raised major environmental concerns like their safe disposal, solid waste management and several potential hazards. Such concerns have fuelled initiatives for research globally towards development of sustainable and eco-friendly bioplastics. The new generation of plastics called 'bioplastics' are polymers of long chain of repeating monomer units that are classified as photodegradable, semi-biodegradable, chemically synthesized and polyhydroxyalkanoates (PHAs). The commonly emerged novel bioplastics are polyesters of hydroxyalkanoates (HAs) called PHAs, which are lipoidic storage materials found in the cytosol of vast and diverse forms of bacteria. Among 150 different PHAs known so far, poly- 3-hydroxybutyrate is the most common and comprehensively characterized PHA. Interestingly, PHAs are only completely biodegradable plastics with material properties comparable to conventional plastics that can be achieved by regulating the co-monomers incorporation into PHAs backbone. PHA bioplastics are exploited in the form of user-friendly goods viz. films, absorbable sutures, bone plates, drug carriers, etc. Besides advantages, such useful entity(s) has major shortcomings as well like high production cost compared to conventional plastics. Precisely, in PHAs production, about fifty percent of the overall price is due to the carbon substrates. Consequently, exploring novel cost-effective substrates is a major compulsion for successful commercialization of this bioplastic, which is anticipated to reduce the cost of production as a result of advancing and intensifying research work. This review presents an insight and patent developments in the field of PHAs bioplastics.

  5. A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence.

    Directory of Open Access Journals (Sweden)

    Michele Chu

    2016-10-01

    Full Text Available Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA- and lcpB- mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB- mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA- and lcpB- strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence.

  6. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    Science.gov (United States)

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes

  7. 'In-Crystallo' Capture of a Michaelis Complex And Product Binding Modes of a Bacterial Phosphotriesterase

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C.J.; Foo, J.-L.; Kim, H.-K.; Carr, P.D.; Liu, J.-W.; Salem, G.; Ollis, D.L.

    2009-05-18

    The mechanism by which the binuclear metallophosphotriesterases (PTEs, E.C. 3.1.8.1) catalyse substrate hydrolysis has been extensively studied. The {mu}-hydroxo bridge between the metal ions has been proposed to be the initiating nucleophile in the hydrolytic reaction. In contrast, analysis of some biomimetic systems has indicated that {mu}-hydroxo bridges are often not themselves nucleophiles, but act as general bases for freely exchangeable nucleophilic water molecules. Herein, we present crystallographic analyses of a bacterial PTE from Agrobacterium radiobacter, OpdA, capturing the enzyme-substrate complex during hydrolysis. This model of the Michaelis complex suggests the alignment of the substrate will favor attack from a solvent molecule terminally coordinated to the {alpha}-metal ion. The bridging of both metal ions by the product, without disruption of the {mu}-hydroxo bridge, is also consistent with nucleophilic attack occurring from the terminal position. When phosphodiesters are soaked into crystals of OpdA, they coordinate bidentately to the {beta}-metal ion, displacing the {mu}-hydroxo bridge. Thus, alternative product-binding modes exist for the PTEs, and it is the bridging mode that appears to result from phosphotriester hydrolysis. Kinetic analysis of the PTE and promiscuous phosphodiesterase activities confirms that the presence of a {mu}-hydroxo bridge during phosphotriester hydrolysis is correlated with a lower pK{sub a} for the nucleophile, consistent with a general base function during catalysis.

  8. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source.

    Science.gov (United States)

    Lin, Dehui; Lopez-Sanchez, Patricia; Li, Rui; Li, Zhixi

    2014-01-01

    In order to improve the use of waste beer yeast (WBY) for bacterial cellulose production by Gluconacetobacter hansenii CGMCC 3917, a two-step pre-treatment was designed. First WBY was treated by 4 methods: 0.1M NaOH treatment, high speed homogenizer, ultrasonication and microwave treatment followed by hydrolysis (121°C, 20 min) under mild acid condition (pH 2). The optimal pre-treatment conditions were evaluated by the reducing sugar yield after hydrolysis. 15% WBY treated by ultrasonication for 40 min had the highest reducing sugar yield (29.19%), followed by NaOH treatment (28.98%), high speed homogenizer (13.33%) and microwaves (13.01%). Treated WBY hydrolysates were directly supplied as only nutrient source for BC production. A sugar concentration of 3% WBY hydrolysates treated by ultrasonication gave the highest BC yield (7.02 g/L), almost 6 times as that from untreated WBY (1.21 g/L). Furthermore, the properties of the BC were as good as those obtained from the conventional chemical media. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products.

    Science.gov (United States)

    Kjer, Julia; Debbab, Abdessamad; Aly, Amal H; Proksch, Peter

    2010-03-01

    Marine-derived fungi have been shown in recent years to produce a plethora of new bioactive secondary metabolites, some of them featuring new carbon frameworks hitherto unprecedented in nature. These compounds are of interest as new lead structures for medicine as well as for plant protection. The aim of this protocol is to give a detailed description of methods useful for the isolation and cultivation of fungi associated with various marine organisms (sponges, algae and mangrove plants) for the extraction, characterization and structure elucidation of biologically active secondary metabolites produced by these marine-derived endophytic fungi, and for the preliminary evaluation of their pharmacological properties based on rapid 'in house' screening systems. Some results exemplifying the positive outcomes of the protocol are given at the end. From sampling in marine environment to completion of the structure elucidation and bioactivity screening, a period of at least 3 months has to be scheduled.

  10. Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties.

    Science.gov (United States)

    Coker, Victoria S; Telling, Neil D; van der Laan, Gerrit; Pattrick, Richard A D; Pearce, Carolyn I; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E P; Lloyd, Jonathan R

    2009-07-28

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe(2)O(4)) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼10(6) erg cm(-3) can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies.

  11. Development of a yeast cell factory for production of aromatic secondary metabolites

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica

    Aromatic secondary metabolites are compounds mainly synthesized by plants and fungi as a response to predators and environmental stresses. These compounds have a broad range of natural properties such as reduction of oxidative damage in cells, antibacterial effects and UV protection. Many of thes...... six different types of flavonoids, and some of the engineered strains produced significant titers of flavonoid compounds such as kaempferol and quercetin. Moreover, for the first time, we synthesized the flavonoids liquiritigenin, resokaempferol and fisetin in yeast....

  12. Resources and recycling of secondary raw materials as basis for aluminum alloys production

    OpenAIRE

    Aćimović-Pavlović, Zagorka; Simović, Đuro; Andrić, Ljubiša

    2012-01-01

    Raw materials which represent basis for 'secondary' aluminum alloys are waste and scrap of pure aluminum and its alloys, as well as waste and scrap of various materials which contain aluminum or its alloys. Hence aluminum residues are numerous and they appear on various places, there is alerting open question considering necessity of collecting, preparing and processing, i.e. returning aluminum waste into the recycling process. Aluminum recycling can be considered from different point of view...

  13. Patulin and secondary metabolite production by marine-derived Penicillium strains

    DEFF Research Database (Denmark)

    Vansteelandt, Marieke; Kerzaon, Isabelle; Blanchet, Elodie

    2012-01-01

    )–mass spectrometry (MS)/MS. Each strain was grown on six different culture media to enhance the number of observable metabolites.Thirty-two secondary metabolites were detected in crude extracts with twenty first observations for studied species. Patulin, a major mycotoxin, was classically detected in extracts...... of these fungi in shellfish farming areas.Patulin induced acute neurotoxicity on Diptera larvae, indicating the interest of this bioassay as an additional tool for detection of this major mycotoxin in crude extracts....

  14. Bacterial Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Bacterial Keratitis Sections What Is Bacterial Keratitis? Bacterial Keratitis Symptoms ... Lens Care Bacterial Keratitis Treatment What Is Bacterial Keratitis? Leer en Español: ¿Qué Es la Queratitis Bacteriana? ...

  15. Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites

    Directory of Open Access Journals (Sweden)

    Miriam H. Kossuga

    2011-12-01

    Full Text Available In the present investigation we evaluate methods for the isolation and growth of marine-derived fungal strains in artificial media for the production of secondary metabolites. Inoculation of marine macroorganisms fragments in Petri dishes proved to be the most convenient procedure for the isolation of the largest number of strains. Among the growth media used, 3% malt extract showed the best result for strains isolation and growth, and yielded the largest number of strains from marine macroorganisms. The percentage of strains isolated using each of the growth media which yielded cytotoxic and/or antibiotic extracts was in the range of 23-35%, regardless of the growth media used. Further investigation of extracts obtained from different marine-derived fungal strains yielded several bioactive secondary metabolites, among which (E-4-methoxy-5-(3-methoxybut-1-enyl-6-methyl-2H-pyran-2-one is a new metabolite isolated from the Penicillium paxilli strain Ma(GK.

  16. Staphylococcus aureus Infection of Human Gestational Membranes Induces Bacterial Biofilm Formation and Host Production of Cytokines.

    Science.gov (United States)

    Doster, Ryan S; Kirk, Leslie A; Tetz, Lauren M; Rogers, Lisa M; Aronoff, David M; Gaddy, Jennifer A

    2017-02-15

    Staphylococcus aureus, a metabolically flexible gram-positive pathogen, causes infections in a variety of tissues. Recent evidence implicates S. aureus as an emerging cause of chorioamnionitis and premature rupture of membranes, which are associated with preterm birth and neonatal disease. We demonstrate here that S. aureus infects and forms biofilms on the choriodecidual surface of explanted human gestational membranes. Concomitantly, S. aureus elicits the production of proinflammatory cytokines, which could ultimately perturb maternal-fetal tolerance during pregnancy. Therefore, targeting the immunological response to S. aureus infection during pregnancy could attenuate disease among infected individuals, especially in the context of antibiotic resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Comparison of some indigenous bacterial strains of pseudomonas ssp. for production of biosurfactants

    International Nuclear Information System (INIS)

    Sahafeeq, M.; Kokub, D.; Khalid, Z.M.; Malik, K.A.

    1991-01-01

    Some indigenous pseudomonas spp. were found to have the ability of emulsification, lowering the surface and interfacial tensions, and formation of high reciprocal CMCs. Six strains of Pseudomonas spp were compared for biosurfactant production grown on hexadecane. Supernatant from whole culture broth of these strains could lower surface tension from 65 mN/m to 28-32 nM/m, interfacial tension from 40 nM/m to 1-3 mN/m and had high reciprocal CMCs. When compared for emulsification ability by the culture broth of these strains, the emulsification index (E24) was found to range between 60-65. Biosurfactant containing culture broth of some strains could retain the property up to 80 C, pH of 13 and sodium chloride concentration for 17% which indicates their possible role in some depleted oil well. (author)

  18. Saponin, an inhibitory agent of carbon dioxide production by white cells : its use in the microbiologic examination of blood components in an automated bacterial culture system

    NARCIS (Netherlands)

    van Doorne, Hans; van der Tuuk Adriani, W.P A; van der Ven, L.I; Bosch, E.H; de Natris, T; Smit Sibinga, C.Th.

    1998-01-01

    BACKGROUND: Blood components with a white cell count >100 x 10(9) per L may cause false-positive results when the BacT/Alert system is used for the microbiologic examination. The effects of different concentrations of saponin on bacterial growth and on carbon dioxide production by blood fractions

  19. An IgaA/UmoB Family Protein from Serratia marcescens Regulates Motility, Capsular Polysaccharide Biosynthesis, and Secondary Metabolite Production.

    Science.gov (United States)

    Stella, Nicholas A; Brothers, Kimberly M; Callaghan, Jake D; Passerini, Angelina M; Sigindere, Cihad; Hill, Preston J; Liu, Xinyu; Wozniak, Daniel J; Shanks, Robert M Q

    2018-03-15

    Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-microbe interactions. The bacterium Serratia marcescens is part of the Enterobacteriaceae family of eubacteria and produces a number of biologically active secondary metabolites. In this study, we screened for novel regulators of secondary metabolites synthesized by a clinical isolate of S. marcescens and found mutations in a gene for an uncharacterized UmoB/IgaA family member here named gumB Mutation of gumB conferred a severe loss of the secondary metabolites prodigiosin and serratamolide. The gumB mutation conferred pleiotropic phenotypes, including altered biofilm formation, highly increased capsular polysaccharide production, and loss of swimming and swarming motility. These phenotypes corresponded to transcriptional changes in fimA , wecA , and flhD Unlike other UmoB/IgaA family members, gumB was found to be not essential for growth in S. marcescens , yet igaA from Salmonella enterica , yrfF from Escherichia coli , and an uncharacterized predicted ortholog from Klebsiella pneumoniae complemented the gumB mutant secondary metabolite defects, suggesting highly conserved function. These data support the idea that UmoB/IgaA family proteins are functionally conserved and extend the known regulatory influence of UmoB/IgaA family proteins to the control of competition-associated secondary metabolites and biofilm formation. IMPORTANCE IgaA/UmoB family proteins are found in members of the Enterobacteriaceae family of bacteria, which are of environmental and public health importance. IgaA/UmoB family proteins are thought to be inner membrane proteins that report extracellular stresses to intracellular signaling pathways that respond to environmental challenge. This study introduces a new member of the IgaA/UmoB family and demonstrates a high degree of functional similarity between IgaA/UmoB family proteins. Moreover, this study extends the phenomena controlled by Iga

  20. Harvesting microalgae using activated sludge can decrease polymer dosing and enhance methane production via co-digestion in a bacterial-microalgal process

    DEFF Research Database (Denmark)

    Wágner, Dorottya Sarolta; Radovici, Maria; Smets, Barth F.

    2016-01-01

    Third generation biofuels, e.g. biofuels production from algal biomass, have gained attention due to increased interest on global renewable energy. However, crop-based biofuels compete with food production and should be avoided. Microalgal cultivation for biofuel production offers an alternative...... to crops and can become economically viable when combined with the use of used water resources. Besides nutrients and water, harvesting microalgal biomass represents one of the major costs related to biofuel production and thus efficient and cheap solutions are needed. In bacterial-algal systems......, there is the potential to produce energy by co-digesting the two types of biomass. We present an innovative approach to recover microalgal biomass via a two-step flocculation using bacterial biomass after the destabilisation of microalgae with conventional cationic polymer. A short solids retention time (SRT) enhanced...

  1. A strategy for bacterial production of a soluble functional human neonatal Fc receptor

    DEFF Research Database (Denmark)

    Andersen, Jan Terje; Justesen, Sune; Berntzen, Gøril

    2008-01-01

    (human) or newborn (rodents), and may translocate IgG over mucosal surfaces. FcRn interacts with the Fc-region of IgG and domain III of albumin with binding at pH 6.0 and release at pH 7.4. Knowledge of these interactions has facilitated design of recombinant proteins with altered serum half-lives and....../or altered biodistribution. To generate further research in this field, there is a great need for large amounts of soluble human FcRn (shFcRn) for in vitro interaction studies. In this report, we describe a novel laboratory scale production of functional shFcRn in Escherichia coli (E. coli) at milligram...... correctly formed as demonstrated by circular dichroism (CD). Furthermore, functional and stringent pH dependent binding to IgG and human serum albumin were demonstrated by ELISA and surface plasmon resonance (SPR). This method may be easily adapted for the expression of large amounts of other FcRn species...

  2. By-product utilisation within the Jamaica Broilers Group and factors determining secondary processing options implemented

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, V. [Jamaica Broilers Group (Jamaica)

    1996-10-01

    Waste disposal within the agro-industrial sector of Jamaica was discussed. Seven options for utilisation of processing by-products within the Jamaica Broilers Group, which is involved in the production and processing of poultry, beef and fish, were presented. These were: rendering, composting, biofermentation, dry extrusion lagoons, biodigesters, solar drying, engineered marshes, and dumping. The criteria to be considered for an option to be effective were: location, type of by-product produced, and re-use potential of the end product. 4 figs.

  3. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...... (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...

  4. Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes.

    Directory of Open Access Journals (Sweden)

    Nicolas Ginet

    Full Text Available Enzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (reuse. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide. For this, we genetically fused the opd gene from Flavobacterium sp. ATCC 27551 encoding a paraoxonase to mamC, an abundant protein of the magnetosome membrane in Magnetospirillum magneticum AMB-1. The MamC protein acts as an anchor for the paraoxonase to the magnetosome surface, thus producing magnetic nanoparticles displaying phosphohydrolase activity. Magnetosomes functionalized with Opd were easily recovered from genetically modified AMB-1 cells: after cellular disruption with a French press, the magnetic nanoparticles are purified using a commercially available magnetic separation system. The catalytic properties of the immobilized Opd were measured on ethyl-paraoxon hydrolysis: they are comparable with the purified enzyme, with K(m (and k(cat values of 58 µM (and 178 s(-1 and 43 µM (and 314 s(-1 for the immobilized and purified enzyme respectively. The Opd, a metalloenzyme requiring a zinc cofactor, is thus properly matured in AMB-1. The recycling of the functionalized magnetosomes was investigated and their catalytic activity proved to be stable over repeated use for pesticide degradation. In this study, we demonstrate the easy production of functionalized magnetic nanoparticles with suitably genetically modified magnetotactic bacteria that are efficient as a reusable nanobiocatalyst for pesticides bioremediation in contaminated effluents.

  5. Alginato bacteriano: aspectos tecnológicos, características e produção Bacterial alginate: technological aspects, characteristics and production

    Directory of Open Access Journals (Sweden)

    Crispin Humberto Garcia-Cruz

    2008-01-01

    Full Text Available Alginate is a biopolymer used for a variety of industrial applications, for example, in the textiles, cosmetics, foods, agricultural and biotechnological industries. This biopolymer is traditionally extracted from some brown seaweeds (Phaeophyceae and can be produced by bacteria isolated from soil, as Azotobacter vinelandii, like capsular polysaccharide using glucose, sucrose, among others as carbon sources. The main difference between the alginate of seaweed and the bacterial ones, is the biggest degree of acetylation of this last one, with great influence in the gel force. These chemical characteristics and production of bacterial alginate are presented in this work.

  6. Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite: An in situ study

    NARCIS (Netherlands)

    Thomas, R.Z.; van der Mei, H.C.; van der Veen, M.H.; de Soet, J.J.; Huysmans, M.C.D.N.J.M.

    2008-01-01

    Background/hypothesis: Secondary caries has been suggested as the main reason for restoration replacement. We hypothesized that more caries-associated bacteria are found on composite resin restoration material, compared to sound tooth tissue. Methods: Both restored and unrestored dentin and enamel

  7. Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite: an in situ study.

    NARCIS (Netherlands)

    Thomas, R.Z.; Mei, H.C. van der; Veen, M.H. van der; Soet, J.J. de; Huysmans, M.C.D.N.J.M.

    2008-01-01

    BACKGROUND/HYPOTHESIS: Secondary caries has been suggested as the main reason for restoration replacement. We hypothesized that more caries-associated bacteria are found on composite resin restoration material, compared to sound tooth tissue. METHODS: Both restored and unrestored dentin and enamel

  8. Bacterial composition and red fluorescence of plaque in relation to primary and secondary caries next to composite : an in situ study

    NARCIS (Netherlands)

    Thomas, R. Z.; van der Mei, H. C.; van der Veen, M. H.; de Soet, J. J.; Huysmans, M. C. D. N. J. M.

    Background/ hypothesis: Secondary caries has been suggested as the main reason for restoration replacement. We hypothesized that more caries-associated bacteria are found on composite resin restoration material, compared to sound tooth tissue. Methods: Both restored and unrestored dentin and enamel

  9. Exploring the Classroom Practice of Productive Pedagogies of the Malaysian Secondary School Geography Teacher

    Science.gov (United States)

    Ahmad@Shaari, Mohammad Zohir; Jamil, Hazri; Razak, Nordin Abd

    2012-01-01

    The productive pedagogies as a framework to enhance teaching and learning outcomes were developed by Lingard et al. (2001) consisted of four main dimensions--intellectual quality, connectedness, supportive classroom environment, and working with and valuing differences. This study is to investigate the productive pedagogical practices among…

  10. Toxic secondary metabolite production in genetically modified potatoes in response to stress.

    Science.gov (United States)

    Matthews, Derek; Jones, Huw; Gans, Paul; Coates, Steven; Smith, Lydia M J

    2005-10-05

    Potatoes produce a number of toxic secondary metabolites, which are divided into two groups: the sesquiterpenes and the glycoalkaloids (PGAs): whereas PGAs are largely preformed and present in toxic quantities in both the foliage and "green" potatoes, it is well documented that the levels of PGAs and sesquiterpenes are effected by many biotic an abiotic stresses. The development of genetically modified potato varieties has made it prudent to ascertain whether there may be changes in the amounts or types of these secondary metabolites either as a direct effect of the transgene or due to its interactions with environmental variables. Transgenic potato lines were exposed, along with nontransgenic lines, to a range of biotic and abiotic stresses and a range of environmental conditions in the field and store. Following stressing, a comparison was made of levels of potato glycoalkaloid and sesquiterpene levels between the two groups. Significant differences were observed in the levels of both glycoalkaloid and sesquiterpene levels between transgenic and control material and between infected and noninfected material.

  11. Atomic collisions in secondary ion production by hydrogen near the electronic stopping power maximum

    Science.gov (United States)

    Neugebauer, R.; Pereira, J. A. M.; Wünsch, R.; Jalowy, T.; Groeneveld, K. O.

    1999-06-01

    H + projectiles from a 2.5 MV van de Graaff accelerator were used to bombard a carbon target (500 Å) under high vacuum conditions. By varying the H + projectile energy (50-160 keV/u) it was possible to scan the low energetic Lindhard- Scharff- Schiøtt region (LSS), the maximum, and the high energetic Bethe- Bloch region (BB) of the electronic stopping power (d E/d x) e. The secondary ion yields Y(H +,C 2H x+,C 3H x+,C 4H x+,C 5H x+) from the beam entrance surface were measured with a time of flight spectrometer (TOF). The measurements reveal a non-linear behaviour between the electronic stopping power (d E/d x) e calculated with TRIM, in the maximum and the Bethe-Bloch region, and the secondary ion yields. However, the experimental results show good agreement with a new Pereira et al. [Int. J. Mass Spectrom. Ion Proc. 174 (1998) 179] effective energy loss model.

  12. Production of glycolipidic bio surfactants by environment bacteria: diversity and physiological part; Production de biosurfactants glycolipidiques par les bacteries de l`environnement: diversite et role physiologique

    Energy Technology Data Exchange (ETDEWEB)

    Arino, S.

    1996-10-09

    About a hundred bacterial strains, isolated from soils, polluted or not by hydrocarbons, were tested for their capacity to excrete glycosides. The biggest productions were obtained for a soluble carbon source (glycerol) in a culture medium limited in the nitrogen source. In these conditions, 18 g/l of rhamnose lipids were produced by train Pseudomonas aeruginosa GL1 in a 200 h culture. Pseudomonas aeruginosa GL1, Cellulomonas celulans SA43 and Rhodococcus erythropolis DSM 43060 were studied in detail. The bio-surfactants produced were identified respectively as rhamnose lipids, oligosaccharide lipids and trehalose lipids, using various original analytical methods. Sugars and fatty acids composing these glycolipids had been shown to be usual components of the outer part of the cell wall in these microbial species. Moreover, cell hydrophobicity of the producing bacteria varied in time during culture. These results showed that both the cell wall and the extracellular glycolipids take part in the process of hydrocarbon uptake in the polluted environments. As other bacteria of the same species from different origins present the same characteristics, it may be concluded that glycolipid excretion does not constitute a specific response for hydrocarbon assimilation. In fact, a more general physiological role of glycolipids, concerning modifications of hydrophobic interfaces between the producing bacteria and their surrounding environment, could explain the production of glycolipids, and could also be utilized in hydrocarbon uptake. (author)

  13. Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review.

    Science.gov (United States)

    Negreiros de Carvalho, Patrícia Lunardelli; Silva, Eliane de Oliveira; Chagas-Paula, Daniela Aparecida; Hortolan Luiz, Jaine Honorata; Ikegaki, Masaharu

    2016-01-01

    In the natural products research, a valuable approach is the prospection of uncommon sources and unexplored habitat. Special attention has been given to endophytic fungi because of their ability to produce new and interesting secondary metabolites, which have several biological applications. The endophytes establish exclusive symbiotic relationships with plants and the metabolic interactions may support the synthesis of some similar valuables compounds. Among secondary metabolites, phenol-derived structures are responsible for several bioactivities such as antioxidant, cytotoxic, antimicrobial, among others. Phenolic compounds might be biosynthesized from the shikimate pathway. Although shikimic acid is a common precursor in plants, it is described as rare in microorganisms. To the best of our knowledge, this is the first review about phenolic compounds produced by endophytic fungi and a comparison has been made with those produced by the plant host. This review covers 124 phenolic secondary metabolites produced by endophytic fungi. Considering the data analyzed by us, only seven of such compounds were isolated from fungi and from their hosts. These observations claim for more attention to phenolic compounds produced by endophytic fungi with a view to understand the real importance of these compounds to endophytes survival.

  14. Composition, biomass and secondary production of the macrobenthic invertebrate assemblages in a coastal lagoon exploited for extensive aquaculture: Valle Smarlacca (northern Adriatic Sea)

    Science.gov (United States)

    Ponti, Massimo; Antonia Colangelo, Marina; Ugo Ceccherelli, Victor

    2007-10-01

    Macrobenthic invertebrate assemblages were investigated monthly, from June 1998 to October 1999, at four sites in Valle Smarlacca pond, a north-western Adriatic coastal lagoon, in order to estimate secondary production exploitable for extensive fish aquaculture and to investigate the factors affecting this production. Benthic assemblages comprised 28 taxa, of which Hydrobia sp., Chironomus salinarius and Abra segmentum were the main contributors to both overall biomass and secondary production. Annual secondary production varied from 102.7 g AFDM m -2 y -1, in the unvegetated perimeter channel, to 152.6 g AFDM m -2 y -1 in the shallowest area where a Ruppia cirrhosa meadow was present. Multivariate correlations between environmental variables and the macrobenthic assemblage biomass highlighted the role of the water level, temperature, sediment organic carbon content and dissolved oxygen in the differentiation of the communities in the pond. Composition, biomass and secondary annual production of macrobenthic communities were dramatically affected by summer dystrophic crises. The isolation of this habitat limits the recovery of the invertebrate benthic assemblages. Only populations of two species, Hydrobia sp. and C. salinarius, seemed to be able to recover quickly after the dystrophic crises, which, in turn, could compromise the overall secondary production, with negative effects on the aquaculture activities. Water renewal and nutrient inputs should be regulated in this pond to reduce the risk of zoobenthic mass mortality and to ensure a sustainable extensive aquaculture based on natural primary and secondary production.

  15. An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering.

    Science.gov (United States)

    Mehrotra, Shakti; Rahman, Laiq Ur; Kukreja, Arun Kumar

    2010-08-23

    An intrinsic improvement is taking place in the methodologies for the development of culture systems with first-rate production of plant-based molecules. The blending of HR (hairy root) cultures with ME (metabolic engineering) approaches offers new insights into, and possibilities for, improving the system productivity for known and/or novel high-value plant-derived active compounds. The introduction and expression of foreign genes in plants results in improvement of cellular activities by manipulating enzymatic, regulatory and transport function of the cell. The rational amendments in the rate-limiting steps of a biosynthetic pathway as well as inactivating the inefficient pathway(s) for by-product formation can be accomplished either through single-step engineering or through the multi-step engineering. The hierarchical control of any metabolic process can lead the engineer to apply the ME ideas and principles to any of the strata, including transcriptional, moving on to translational and enzymatic activity. The HR culture systems offer a remarkable potential for commercial production of a number of low-volume, but high-value, secondary metabolites. Taking HR as a model system, in the present review, we discuss engineering principles and perceptions to exploit secondary-metabolite pathways for the production of important bioactive compounds. We also talk about requisites and possible challenges that occur during ME, with emphasis on examples of various HR systems. Furthermore, it also highlights the utilization of global information obtained from '-omic' platforms in order to explore pathway architecture, structural and functional aspects of important enzymes and genes that can support the design of sets of engineering, resulting in the generation of wide-ranging views of DNA sequence-to-metabolite passageway networking and their control to obtain desired results.

  16. Total volatile fatty acids and bacterial production rates as affected by rations containing untreated or ammonia (urea) treated rice straw in croos-bred cattle

    International Nuclear Information System (INIS)

    Puri, J.P.; Gupta, B.N.

    1990-01-01

    An experiment was conducted to study the effect of feeding ammoniated rice straw on ruminal total volatile fatty acid (TVFA) and bacterial production rates. Twelve karan swiss, male, rumen fistulated calves (2-2.5 yrs) were divided in three equal groups. Animals were offered rice straw either untreated (A) or 4 per cent urea+40 per cent moisture treated and ensiled for 30 days (B) or 5 per cent urea+30 per cent moisture treated and ensiled for 30 days (C). Protein requirements were met through concentrate mixture. Levels of NH 3 -N and TCA-precipitable-N in strained rumen liquor (SRL) were significantly higher (20.34±0.022, 63.26±0.81 (B), 20.78±0.41, 64.98±0.87 (C) (mg/100 ml SRL) in groups fed ammoniated ±0.31, 45.94±1.91 mg/100 ml S RL), respectively. The bacterial production rates in the rumen (g/day) were significantly higher in groups B and C as compared to group A. TVFA concentrations (mmole/100 ml SRL ) and TVFA production rates (mmole/d) were also significantly higher in groups B and C as compared to group A. The bacterial production rates were significantly co-related with TVFA, NH 3 -N, TCA precipitable-N concentration in the rumen and ATP production. Multiple regression equations relating bacterial production rates with (i)NH 3 -N and TVFA concentration in the rumen, (ii)NH 3 -N and TVFA production rates and (iii)NH 3 -N and ATP produced were also developed. (author). 18 refs., 2 tabs

  17. Effect of Single Bacterial Starter Culture on Odour Reduction During Controlled Fermentation of Cassava Tubers for Foofoo Production

    Directory of Open Access Journals (Sweden)

    Henshaw, E. E.

    2010-01-01

    Full Text Available Effects of single bacterial starter culture on odour reduction during controlled fermentation of cassava tubers for foofoo production were investigated. Pure cultures were used to ferment cassava tubers in water for 96 h. The cultures used include Bacillus subtilis, Klebsiela sp., Lactobacillus plantarum and Leuconostoc mesenteroides. L. plantarum exhibited the highest acid producing ability, decreasing the pH of the Cassava tubers from 6.2 to 3.68 with a corresponding increase in total titratable acidity (TTA from 0.082% to 0.290% during the 96 h fermentation period. The effected changes in pH and TTA by other organisms ranged respectively from 4.88 and 0.135% for Klebsiella sp., 4.68 and 0.136% for L. mesenteroides to 4.90 and 0.139% for B. subtilis with in the period. All the cultures were found to contribute in varying degree to odour reduction in fermented cassava; B. subtilis effected the highest odour reduction followed by L. plantarum.

  18. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    KAUST Repository

    Belila, Abdelaziz

    2016-02-18

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  19. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    Science.gov (United States)

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  20. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China.

    Science.gov (United States)

    Xun, Weibing; Zhao, Jun; Xue, Chao; Zhang, Guishan; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-06-01

    Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Effect of L-glucose and D-tagatose on bacterial growth in media and a cooked cured ham product.

    Science.gov (United States)

    Bautista, D A; Pegg, R B; Shand, P J

    2000-01-01

    Cured meats such as ham can undergo premature spoilage on account of the proliferation of lactic acid bacteria. This spoilage is generally evident from a milkiness in the purge of vacuum-packaged sliced ham. Although cured, most hams are at more risk of spoilage than other types of processed meat products because they contain considerably higher concentrations of carbohydrates, approximately 2 to 7%, usually in the form of dextrose and corn syrup solids. Unfortunately, the meat industry is restricted with respect to the choice of preservatives and bactericidal agents. An alternative approach from these chemical compounds would be to use novel carbohydrate sources that are unrecognizable to spoilage bacteria. L-Glucose and D-tagatose are two such potential sugars, and in a series of tests in vitro, the ability of bacteria to utilize each as an energy source was compared to that of D-glucose. Results showed that both L-glucose and D-tagatose are not easily catabolized by a variety of lactic bacteria and not at all by pathogenic bacteria such as Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Bacillus cereus, and Yersinia enterocolitica. In a separate study, D-glucose, L-glucose, and D-tagatose were added to a chopped and formed ham formulation and the rate of bacterial growth was monitored. Analysis of data by a general linear model revealed that the growth rates of total aerobic and lactic acid bacteria were significantly (P D-tagatose than those containing L- or D-glucose. Levels of Enterobacteriaceae were initially low and these bacteria did not significantly (P D-tagatose at 10 degrees C was extended by 7 to 10 days. These results indicate that D-tagatose could deter the growth of microorganisms and inhibit the rate of spoilage in a meat product containing carbohydrates.

  2. Secondary production of benthic insects in three cold-desert streams

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, W.L.

    1987-07-01

    Aquatic insect production was studied in three cold-desert streams in eastern Washington (Douglas Creek, Snively Springs, and Rattlesnake Springs). The size-frequency method was applied to individual taxa to estimate total insect production. production was also assessed for functional groups and trophic levels in each stream. Optioservus sp. (riffle beetles) and Baetis sp. (mayflies) accounted for 72% of the total insect numbers and 50% of the total biomass in Douglas Creek. Baetis sp. accounted for 42% of the total insect numbers and 25% of the total biomass in Snively Springs. Simulium sp. (blackflies) and Baetis sp. comprised 74% of the total insect numbers and 55% of the total biomass in Rattlesnake Springs. Grazer-scrapers (49%) and collectors (48%) were the most abundant functional groups in Douglas Creek. Collectors were the most abundant functional group in Snively Springs and Rattlesnake Springs. Herbivores and detritivores were the most abundant trophic level in Snively Springs and Rattlesnake Springs. Dipterans (midges and blackflies) were the most productive taxa within the study streams, accounting for 40% to 70% of the total community production. Production by collectors and detritivores was the highest of all functional groups and trophic levels in all study streams.

  3. Transmutation studies using SSNTD and radiochemistry and the associated production of secondary neutrons

    CERN Document Server

    Brandt, R; Wan, J S; Schmidt, T; Langrock, E J; Vater, P; Adam, J; Bamblevski, V P; Bradnova, V; Gelovani, L K; Kalinnikov, V K; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Perelygin, V P; Pronskikh, V S; Stegailov, V I; Tsoupko-Sitnikov, V M; Modolo, G; Odoj, R; Philippen, P W; Adloff, J C; Pape, F; Debeauvais, M; Zamani-Valassiadou, M; Hashemi-Nezhad, S R; Dwivedi, K K; Guo Shi Lun; Li, L; Wang, Y L; Wilson, B

    1999-01-01

    Experiments using 1.5 GeV, 3.7 GeV and 7.4 GeV protons from the Synchrophasotron, LHE, JINR, Dubna, Russia, on extended Pb- and U- targets were carried out using SSNTD and radiochemical sensors for the study of secondary neutron $9 fluences. We also carried out first transmutation studies on the long-lived radwaste nuclei /sup 129/I and /sup 237/Np. In addition, we carried out computer code simulation studies on these systems using LAHET and DCM/CEM codes. We $9 have difficulties to understand rather large transmutation rates observed experimentally when they are compared with computer simulations. There seems to be a rather fundamental problem understanding the large transmutation rates as $9 observed experimentally in Dubna and CERN, as compared to those theoretical computer simulations mentioned above. (10 refs).

  4. Population dynamics and secondary production of Donax trunculus (Mollusca, Bivalvia in the Gulf of Annaba (Northeast Algeria

    Directory of Open Access Journals (Sweden)

    I. HAFSAOUI

    2016-11-01

    Full Text Available The population dynamics and secondary production of the wedge clam Donax trunculus were studied in the Gulf of Annaba (Northeast Algeria monthly for one year at a site close to the Annaba port and the Seybouse river, affected by industrial and agricultural pollution (Sidi Salem, and at a site more distant from major pollution sources, but exploited by fishery (Echatt. The number of individuals (N was lower at Sidi Salem (36–148 ind m-2 than at Echatt (63–272 ind m-2 in most sampling dates, while the biomass was more variable from one date to another, with no consistent pattern of differences between sites. The condition index (CI, although slightly higher at Sidi Salem than at Echatt, showed at both sites a major increase in March/April, June/July and October, reflecting two main periods of gonads development and increase in the level of stored reserves at the end of the reproductive period. Consistently, the recruitment of D. trunculus ran from April to October with a major peak of abundance in spring and a minor one in early fall. The maximum age of D. trunculus was 3 years and the growth rate was highest in the first year. Annual somatic production (P was lower at Sidi Salem (0.773 g AFDM m-2 yr-1 than at Echatt (1.262 g AFDM m-2 yr-1, possibly reflecting a lower mean annual biomass at Sidi Salem (1.642 AFDM m-2 than at Echatt (3.046 AFDM m-2, while the annual P/B ratio was similar between the two sites (i.e. 0.471 and 0.414 yr-1, respectively. Lower N and P at Sidi Salem compared to Echatt are consistent with the proximity of Sidi Salem to the industrial port of Annaba and low hydrodynamic conditions which may favor the accumulation of pollutants, such as hydrocarbons. On the other hand, moderate secondary production of D. trunculus at Echatt compared to other Mediterranean sites may be due to excessive harvesting. We suggest that the low secondary production described in this study should be taken into account for the development of

  5. Further Characterization of CELSS Wastes: A Review of Solid Wastes Present to Support Potential Secondary Biomass Production

    Science.gov (United States)

    Muller, Matthew S.

    1996-01-01

    Controlled ecological life support systems (CELSS) may one day play an essential role in extraterrestrial colonies. Key to the success of any CELSS will be the system's ability to approach a self-supporting status through recovery and reuse of basic resources. Primary CELSS solid wastes with potential to support secondary biomass production will be inedible plant biomass and metabolic human wastes. Solid waste production is summarized and reported as 765 g N per day per person, including 300 g C and 37 g N per day per person. One Resource Recovery configuration using the bioprocessing of solid wastes into a Tilapia feed stream is examined. Based on estimated conversion efficiencies, 12 g of protein per day per person is produced as a nutrition supplement. The unique tissue composition of crops produced at the Kennedy Space Center CELSS Program highlights the need to evaluate Resource Recovery components with data generated in the CELSS environment.

  6. Immobilized oleaginous microalgae for production of lipid and phytoremediation of secondary effluent from palm oil mill in fluidized bed photobioreactor.

    Science.gov (United States)

    Cheirsilp, Benjamas; Thawechai, Tipawan; Prasertsan, Poonsuk

    2017-10-01

    Oleaginous microalga Nannochloropsis sp. was immobilized in alginate gel beads and cultivated under optimal conditions that their growth and lipid production were comparable to those of free cells. The immobilized cells were used in phytoremediation of secondary effluent from palm oil mill and easily recovered by simple sieving method. The immobilized cells contributed to removal of nitrogen and phosphorus >90% and CO 2 mitigation >99%. They also gave the biomass and lipid production of 1.300±0.050g/L and 0.356±0.097g/L, respectively. The repeated-batch cultivation improved the biomass and lipid production by 2.66 folds and 1.41 folds, respectively. The scale up in 3L-fluidized bed photobioreactor gave the maximum biomass of 3.280±0.049g/L and lipid production of 0.362±0.010g/L. Fatty acid compositions of Nannochloropsis sp. lipids showed their suitability as biodiesel feedstocks. This system not only contributes as tertiary treatment of industrial effluent and CO 2 mitigation but also low-cost production of renewable energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Life Cycle and Secondary Production of Four Species from Functional Feeding Groups in a Tropical Stream of South India

    Directory of Open Access Journals (Sweden)

    Sankarappan Anbalagan

    2014-01-01

    Full Text Available This study focused on life strategies of species from functional feeding groups (FFGs found in a tropical stream of the Sirumalai hills, South India. We examined the life cycle and secondary production of species of shredders (Lepidostoma nuburagangai, scrapers (Baetis sp., collectors (Choroterpes alagarensis, and predators (Neoperla biseriata. In addition, we studied the assemblage structure of functional feeding groups. We found the collectors occupied the highest percentage, followed in turn by scrapers, predators, and shredders. The diversity of FFGs was higher at riffle areas and assemblage with stream substrates differing in each functional group. An asynchronous life cycle was observed for Baetis, C. alagarensis, and N. biseriata, while L. nuburagangai was found in four to five generations per year. We acquired data on secondary production of scraper species of Baetis, which reached the highest values among all investigated species. This observation stresses the importance of scrapers as playing a key role in converting coarse particulate organic matter to fine particulate organic matter with low or high abundances of shredder population and maintaining the food chain in tropical streams.

  8. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    Science.gov (United States)

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Secondary analysis of a marketing research database reveals patterns in dairy product purchases over time.

    Science.gov (United States)

    Van Wave, Timothy W; Decker, Michael

    2003-04-01

    Development of a method using marketing research data to assess food purchase behavior and consequent nutrient availability for purposes of nutrition surveillance, evaluation of intervention effects, and epidemiologic studies of diet-health relationships. Data collected on household food purchases accrued over a 13-week period were selected by using Universal Product Code numbers and household characteristics from a marketing research database. Universal Product Code numbers for 39,408 dairy product purchases were linked to a standard reference for food composition to estimate the nutrient content of foods purchased over time. Two thousand one hundred sixty-one households located in Victoria, Texas, and surrounding communities who were active members of a frequent shopper program. Demographic characteristics of sample households and the nutrient content of their dairy product purchases were analyzed using frequency distribution, cross tabulation, analysis of variance, and t test procedures. A method for using marketing research data was successfully used to estimate household purchases of specific foods and their nutrient content from a marketing database containing hundreds of thousands of records. Distribution of dairy product purchases and their concomitant nutrients between Hispanic and non-Hispanic households were significant (P<.01, P<.001, respectively) and sustained over time. Purchase records from large, nationally representative panels of shoppers, such as those maintained by major market research companies, might be used to accomplish detailed longitudinal epidemiologic studies or surveillance of national food- and nutrient-purchasing patterns within and between countries and segments of their respective populations.

  10. Acute drug induced hepatitis secondary to a weight loss product purchased over the internet

    Directory of Open Access Journals (Sweden)

    Cross Tim JS

    2007-06-01

    Full Text Available Abstract Background Many people now seek alternative methods of weight loss. The internet provides a readily available source of weight reduction products, the ingredients of which are often unclear. The authors describe a case of acute hepatitis in a 20 year old woman caused by such a product purchased over the internet. Case Presentation A 20-year old woman presented with a two day history of abdominal pain, vomiting and jaundice. There were no identifiable risk factors for chronic liver disease. Liver function tests demonstrated an acute hepatitis (aminoaspartate transaminase 1230 IU/L. A chronic liver disease screen was negative. The patient had started a weight loss product (Pro-Lean, purchased over the internet two weeks prior to presentation. The patient was treated conservatively, and improved. The sequence of events suggests an acute hepatitis caused by an herbal weight loss product. Conclusion This case report highlights the dangers of weight loss products available to the public over the internet, and the importance of asking specifically about alternative medicines in patients who present with an acute hepatitis.

  11. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production

    Directory of Open Access Journals (Sweden)

    Cha Jae-Soon

    2010-07-01

    Full Text Available Abstract Background Xanthomonas oryzae pv. oryzae (Xoo is the causal agent of rice bacterial blight disease. Xoo produces a range of virulence factors, including EPS, extracellular enzyme, iron-chelating siderophores, and type III-secretion dependent effectors, which are collectively essential for virulence. Genetic and genomics evidence suggest that Xoo might use the diffusible signal factor (DSF type quorum sensing (QS system to regulate the virulence factor production. However, little is known about the chemical structure of the DSF-like signal(s produced by Xoo and the factors influencing the signal production. Results Xoo genome harbours an rpf cluster comprising rpfB, rpfF, rpfC and rpfG. The proteins encoded by these genes are highly homologous to their counterparts in X. campestris pv. campestris (Xcc, suggesting that Xcc and Xoo might use similar mechanisms for DSF biosynthesis and autoregulation. Consistent with in silico analysis, the rpfF mutant was DSF-deficient and the rpfC mutant produced about 25 times higher DSF-like activity than the wild type Xoo strain KACC10331. From the supernatants of rpfC mutant, we purified three compounds showing strong DSF-like activity. Mass spectrometry and NMR analysis revealed that two of them were the previously characterized DSF and BDSF; the third one was a novel unsaturated fatty acid with 2 double bonds and was designated as CDSF in this study. Further analysis showed that all the three DSF-family signals were synthesized via the enzyme RpfF encoded by Xoo2868. DSF and BDSF at a final concentration of 3 μM to the rpfF mutant could fully restore its extracellular xylanase activity and EPS production to the wild type level, but CDSF was less active than DSF and BDSF in induction of EPS and xylanase. DSF and CDSF shared a similar cell density-dependent production time course with the maximum production being detected at 42 h after inoculation, whereas the maximum production of BDSF was observed

  12. Impact of construction and remodeling markets on the U.S. secondary hardwood products industry

    Science.gov (United States)

    Matt Bumgardner; Urs Buehlmann; Al Schuler; Karen. Koenig

    2011-01-01

    The housing correction that started in 2007 continues to run its course. Excessive inventory levels, limited credit availability, and record foreclosure rates continue to have an impact on U.S. housing markets. With inventories high and demand for new construction low, the U.S. hardwood industry's largest markets for appearance-grade products remain under pressure...

  13. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem

    Science.gov (United States)

    W.F. Cross; J.B. Wallace; A.D. Rosemond; S.L. Eggert

    2006-01-01

    Although the effects of nutrient enrichment on consumer-resource dynamics are relatively well studied in ecosystems based on living plants, little is known about the manner in which enrichment influences the dynamics and productivity of consumers and resources in detritus-based ecosystems. Because nutrients can stimulate loss of carbon at the base of detrital food webs...

  14. Influence of Leadership Style on Teacher's Job Productivity in Public Secondary Schools in Taraba State, Nigeria

    Science.gov (United States)

    Shamaki, E. B.

    2015-01-01

    The main aim of this study was to find out the appropriate leadership style that could make teachers to be effective in their job productivity. One hundred and sixty-five teachers were used in the study. Frequency counts, percentage and chi-square test were used in data analysis. Research survey was used as a method of research and stratified…

  15. Real-Time PCR Detection ofBurkholderia cepaciain Pharmaceutical Products Contaminated with Low Levels of Bacterial Contamination.

    Science.gov (United States)

    Jimenez, Luis; Jashari, Theranda; Vasquez, Jenifer; Zapata, Stephanie; Bochis, Joy; Kulko, Margarita; Ellman, Victoria; Gardner, Matthew; Choe, Tina

    2018-01-01

    A real-time polymerase chain reaction (RT-PCR) assay was developed to detect Burkholderia cepacia in pharmaceutical products contaminated with low levels of bacteria. Different pharmaceutical suspensions were artificially contaminated with B. cepacia , Escherichia coli , Staphylococcus aureus , and Bacillus megaterium After a 24 h incubation in trypticase soy broth with Tween 20, samples were streaked on mannitol salt, phenyl ethyl alcohol, eosin methylene blue, MacConkey, and pseudomonas isolation agar. Microbial DNA was extracted from each sample by using a Tris-EDTA, proteinase K, Tween 20 buffer. Regular PCR targeting the 1.5 kilobases 16S rRNA eubacterial gene and cloning showed the predominant DNA in the extracted mix belonged to E. coli Selective media isolation of bacterial contamination showed B. cepacia only detected on pseudomonas isolation while eosin methylene blue and MacConkey detected only E. coli RT-PCR using primers PSL1 and PSR1 amplified a 209 bp 16S rRNA fragment using a Roche LightCycler 96 ® system with SYBR green I, a common double-stranded binding dye. The cycle at which fluorescence from amplification exceeds the background fluorescence was referred to as quantification cycle. All samples were found to be positive by standard microbiological testing and RT-PCR. B. cepacia was detected within 30 h in all contaminated samples using RT-PCR. Based upon standard curve analysis of B. cepacia DNA, the minimum DNA concentration that could be detected was 10 fg/uL with a correlation value of 0.98. RT-PCR detection of B. cepacia allowed faster quality control analysis, corrective actions, and process optimization. LAY ABSTRACT: A real-time polymerase chain reaction (RT-PCR) assay was developed to detect Burkholderia cepacia in pharmaceutical products contaminated with low levels of bacteria. B. cepacia is the number one reason for microbial contamination recalls of non-sterile drug products in the USA. RT-PCR using primers PSL1 and PSR1 amplified a

  16. Mineral phases and metals in baghouse dust from secondary aluminum production.

    Science.gov (United States)

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  17. Plant Secondary Metabolites in some Medicinal Plants of Mongolia Used for Enhancing Animal Health and Production

    Directory of Open Access Journals (Sweden)

    Makkar, HPS.

    2009-01-01

    Full Text Available The levels and activities of a number of plant secondary metabolites (PSMs are known to increase in response to increase in stress. The Mongolian plants considered to possess medicinal properties may contain novel compounds since they are exposed to severe conditions; such plants could become good candidates for modern drug discovery programmes. Information on distribution, palatability to livestock and opinion of local people on their nutritive and medicinal values was compiled for 15 plant materials from 14 plant species considered important for medicinal purposes. These plants were evaluated for nutritive value and PSMs: tannins, saponins, lectins, alkaloids and cyanogens. High levels of tannins were found in roots of Bergenia crassifolia and in leaves of B. crassifolia, Vaccinium vitisidaea and Rheum undulatum. High lectin activity (haemagglutination was present in B. crassifolia roots, and leaves of R. undulatum, Iris lacteal and Thymus gobicus contained weak lectin activity. Tanacetum vulgare, Serratula centauroids, Taraxacum officinale and Delphinum elatum leaves contained saponin activity (haemolysis. Alkaloids and cyanogens were not present in any of the samples. The paper discusses the known medicinal uses of these plants in light of the PSMs levels, and identifies plant samples for future applications in human and livestock health, welfare and safety.

  18. Life history, secondary production and trophic basis of two dominant mayflies in a subtropical stream of China

    Science.gov (United States)

    Yan, Yunjun; Li, Xiaoyu

    2007-01-01

    Mayflies constitute a major part of macroinvertebrate biomass and production in lotic ecosystems, and play an important role in material cycle and energy flow. There are more than 250 species of mayflies in rivers and streams of China. In order to learn their ecological functions, an investigation on life cycle, production and trophic basis of dominant species of mayflies in a second-order branch of Hanjiang River basin, Hubei, China was carried out during June 2003 to June 2004. The results showed that the dominant mayfly species Epeorus sp. and Caenis sp. developed two generations per year; in term of Epeorus sp., putation mainly occurred in spring and then from late summer to early autumn, while Caenis sp. pupated in spring and autumn. The abundance and biomass of the Epeorus sp. population peaked twice (1 226 ind/m2, 3.142 5g/m2) in April and June. Caenis sp. also had two peaks (307ind/m2, 1.590 g/m2), but in February and June. Cohort production and cohort P/B ratio of Epeorus sp. were 161.009 g/m2 wet weight and 7.7, respectively, and annual production and P/B ratio were 267.46g/m2.a wet weight and 15.4, respectively; cohort production and P/B ratio of Caenis sp. were 26.7995g/m2 wet weight and 4.7, its annual production and P/B ratio were 53.60 g/m2.a wet weight and 9.4, respectively. For Epeorus sp., the proportions contributing to secondary production of the main food types were: amorphous detritus, 33.46%; fungi, 10.83%; vascular plant detritus, 1.80%; diatoms, 53.90%; for Caenis sp., the proportions were 70.79%, 6.90%, 3.52% and 18.77%, respectively.

  19. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice.

    Science.gov (United States)

    Weitkunat, Karolin; Schumann, Sara; Petzke, Klaus Jürgen; Blaut, Michael; Loh, Gunnar; Klaus, Susanne

    2015-09-01

    In literature, contradictory effects of dietary fibers and their fermentation products, short-chain fatty acids (SCFA), are described: On one hand, they increase satiety, but on the other hand, they provide additional energy and promote obesity development. We aimed to answer this paradox by investigating the effects of fermentable and non-fermentable fibers on obesity induced by high-fat diet in gnotobiotic C3H/HeOuJ mice colonized with a simplified human microbiota. Mice were fed a high-fat diet supplemented either with 10% cellulose (non-fermentable) or inulin (fermentable) for 6 weeks. Feeding the inulin diet resulted in an increased diet digestibility and reduced feces energy, compared to the cellulose diet with no differences in food intake, suggesting an increased intestinal energy extraction from inulin. However, we observed no increase in body fat/weight. The additional energy provided by the inulin diet led to an increased bacterial proliferation in this group. Supplementation of inulin resulted further in significantly elevated concentrations of total SCFA in cecum and portal vein plasma, with a reduced cecal acetate:propionate ratio. Hepatic expression of genes involved in lipogenesis (Fasn, Gpam) and fatty acid elongation/desaturation (Scd1, Elovl3, Elovl6, Elovl5, Fads1 and Fads2) were decreased in inulin-fed animals. Accordingly, plasma and liver phospholipid composition were changed between the different feeding groups. Concentrations of omega-3 and odd-chain fatty acids were increased in inulin-fed mice, whereas omega-6 fatty acids were reduced. Taken together, these data indicate that, during this short-term feeding, inulin has mainly positive effects on the lipid metabolism, which could cause beneficial effects during obesity development in long-term studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evaluation of hyperimmune colostrum production in bovine against cariogenic streptococci and its impact on growth and bacterial biofilm formation

    Directory of Open Access Journals (Sweden)

    Fateme Ramezanalizadeh

    2017-03-01

    Full Text Available Background and Aims: Dental caries is the most common infectious diseases. Among the oral bacteria, Streptococcus mutans and Streptococcus sobrinus are considered as the main causes of tooth decay. The aim of this study was to evaluate the production of hyperimmune bovine colostrum containing specific antibodies against cariogenic bacteria and its antimicrobial effects on the growth and adhesion of Streptococcus mutans and Streptococcus sobrinus in the laboratory. Materials and Methods: In this experimental study, three pregnant bovine immunized with killed antigens of strains of Streptococcus mutans, Streptococcus mutans with Streptococcus Sobrinus and Streptococcus sobrinus through intramuscular injections. After delivery, The colostrum samples were collected, and the changes of anti-streptococci antibodies titers in colostrum and serum were determined by agglutination. Also,their antimicrobial effects against the growth and adhesion of oral streptococci were surveyed by the microtiter plate method. Data were analysed by One-Wey ANOVA in SPSS software. Results: The results showed that in hyperimmunized bovine , the antibodies titers against injected bacteria were from 1.1000 to 1.3000 in sera samples and from 1.320 to 1.1280 in whey of colostrum samples. Colostrum of hyperimmune cows reduced the attachment of Streptococcus mutans and Streptococcus Sobrinus about 69 and 43 percents, respectively and also, the low dilutions of it reduced bacterial growth. Conclusion:  According to the antibacterial effect immune colostrum on two strains of cariogenic bacteria in vitro, It appears that this material could be useful in the prevention and control of dental caries.

  1. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production.

    Science.gov (United States)

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Singh, Garima; Singh, Pratibha; Kumar, Brijesh; Gupta, Vijai Kumar; Sarma, Rupak Kumar; Saikia, Ratul; Donovan, Anthonia O'; Singh, Bhim Pratap

    2017-09-18

    Endophytic actinobacteria play an important role in growth promotion and development of host plant by producing enormous quantities of novel bioactive natural products. In the present investigation, 169 endophytic actinobacteria were isolated from endospheric tissues of Rhynchotoechum ellipticum. Based on their antimicrobial potential, 81 strains were identified by 16rRNA gene analysis, which were taxonomically grouped into 15 genera. All identified strains were screened for their plant growth promoting attributes and, for the presence of modular polyketide synthases (PKSI, PKSII and nonribosomal peptide synthetase (NRPS) gene clusters to correlate the biosynthetic genes with their functional properties. Expression studies and antioxidant potential for four representative strains were evaluated using qRT-PCR and DPPH assay respectively. Additionally, six antibiotics (erythromycin, ketoconazole, fluconazole, chloramphenicol, rifampicin and miconazole) and nine phenolic compounds (catechin, kaempferol, chebulagic acid, chlorogenic acid, Asiatic acid, ferulic acid, arjunic acid, gallic acid and boswellic acid) were detected and quantified using UHPLC-QqQ LIT -MS/MS. Furthermore, three strains (BPSAC77, 121 and 101) showed the presence of the anticancerous compound paclitaxel which was reported for the first time from endophytic actinobacteria. This study provides a holistic picture, that endophytic actinobacteria are rich bacterial resource for bioactive natural products, which has a great prospective in agriculture and pharmaceutical industries.

  2. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production.

    Science.gov (United States)

    De La Torre, María; Martín-Sampedro, Raquel; Fillat, Úrsula; Eugenio, María E; Blánquez, Alba; Hernández, Manuel; Arias, María E; Ibarra, David

    2017-11-01

    This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.

  3. Bacterial biodiversity in deep-sea sediments from two regions of contrasting surface water productivity near the Crozet Islands, Southern Ocean

    Science.gov (United States)

    Jamieson, R. E.; Heywood, J. L.; Rogers, A. D.; Billett, D. S. M.; Pearce, D. A.

    2013-05-01

    The relationship between surface-derived particulate organic matter (POM) and deep-sea sediment bacterial abundance, community structure and composition was investigated in two different sediment layers from two zones of contrasting surface water productivity in the southern Indian Ocean. Bacterial sediment communities from high chlorophyll (HC) and low chlorophyll (LC) sites were characterized and compared using direct counts, clone library construction, denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Of the 1566 bacterial clones generated from the sediment communities, 1010 matched published 16S rDNA sequences at ≥97% identity. A comparison of surface sediment clone libraries showed that at least one third of all identified operational taxonomic units (OTUs) were common to both HC and LC sites. DGGE community profiles were consistent (82% similar) and evenness of the major phylogenetic groups was 96% similar between surface sediment communities, where gamma- and alpha-Proteobacteria were dominant. Sediment communities shared similarly high biodiversity, while species richness was marginally higher at the LC site. Intra-site shifts in bacterial abundance and composition were observed with increasing sediment depth. Despite the differences in organic matter input between sites, the consistency observed between HC and LC sediment communities pointed to (1) the extent of remineralisation by mega and meio-fauna as a potential factor affecting the quantity and quality of POM available to sediment bacteria, (2) sampling during the early 'nutrient assimilation phase' of the bacterial response to freshly deposited POM or (3) that the action of bacteria in the water column could affect the quantity and quality of POM available to sediment bacteria. Although factors other than these may explain the observed similarities, this first comparison of such deep-sea sediment communities in relation to surface-derived productivity may

  4. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  5. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  6. Room Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    KAUST Repository

    El Demellawi, Jehad K.

    2015-05-29

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from bio-labeling to hydrogen production, their reactivities with their solvents and their catalytic properties re-main still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g. isopropanol) to ketones and hydrogen. This catalytic reaction was followed by gas chromatography, pH measurements, mass spectroscopy and solidstate NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their stability in solvents in general as well as being candidates in catalysis.

  7. Effect of non-tariff barriers on secondary processed wood product trade: New Zealand exports to the United States, China and Japan

    Science.gov (United States)

    James A. Turner; Joseph Buongiorno; Shushuai Zhu; Frances Maplesden

    2008-01-01

    Secondary processed wood products - builder's carpentry and joinery, moldings and millwork, wooden furniture, and prefabricated buildings - have grown significantly in importance in the global trade of wood products. At the same time there has been increased use of non-tariff barriers to restrict their trade.  These barriers could have an important impact on the...

  8. Scoping study of flowpath of simulated fission products during secondary burning of crushed HTGR fuel in a quartz fluidized-bed burner

    International Nuclear Information System (INIS)

    Rindfleisch, J.A.; Barnes, V.H.

    1976-04-01

    The results of four experimental runs in which isotopic tracers were used to simulate fission products during fluidized bed secondary burning of HTGR fuel were studied. The experimental tests provided insight relative to the flow path of fission products during fluidized-bed burning of HTGR fuel

  9. Secondary Organic Aerosol Production fro