WorldWideScience

Sample records for bacterial sec protein

  1. Three-dimensional structure of the bacterial protein-translocation complex SecYEG.

    Science.gov (United States)

    Breyton, Cécile; Haase, Winfried; Rapoport, Tom A; Kühlbrandt, Werner; Collinson, Ian

    2002-08-08

    Transport and membrane integration of polypeptides is carried out by specific protein complexes in the membranes of all living cells. The Sec transport path provides an essential and ubiquitous route for protein translocation. In the bacterial cytoplasmic membrane, the channel is formed by oligomers of a heterotrimeric membrane protein complex consisting of subunits SecY, SecE and SecG. In the endoplasmic reticulum membrane, the channel is formed from the related Sec61 complex. Here we report the structure of the Escherichia coli SecYEG assembly at an in-plane resolution of 8 A. The three-dimensional map, calculated from two-dimensional SecYEG crystals, reveals a sandwich of two membranes interacting through the extensive cytoplasmic domains. Each membrane is composed of dimers of SecYEG. The monomeric complex contains 15 transmembrane helices. In the centre of the dimer we observe a 16 x 25 A cavity closed on the periplasmic side by two highly tilted transmembrane helices. This may represent the closed state of the protein-conducting channel.

  2. In Vitro Interaction of the Housekeeping SecA1 with the Accessory SecA2 Protein of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Irfan Prabudiansyah

    Full Text Available The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.

  3. Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors.

    Science.gov (United States)

    Segers, Kenneth; Anné, Jozef

    2011-06-24

    The rapid rise of drug-resistant bacteria is one of the most serious unmet medical needs facing the world. Despite this increasing problem of antibiotic resistance, the number of different antibiotics available for the treatment of serious infections is dwindling. Therefore, there is an urgent need for new antibacterial drugs, preferably with novel modes of action to potentially avoid cross-resistance with existing antibacterial agents. In recent years, increasing attention has been paid to bacterial protein secretion as a potential antibacterial target. Among the different protein secretion pathways that are present in bacterial pathogens, the general protein secretory (Sec) pathway is widely considered as an attractive target for antibacterial therapy. One of the key components of the Sec pathway is the peripheral membrane ATPase SecA, which provides the energy for the translocation of preproteins across the bacterial cytoplasmic membrane. In this review, we will provide an overview of research efforts on the discovery and development of small-molecule SecA inhibitors. Furthermore, recent advances on the structure and function of SecA and their potential impact on antibacterial drug discovery will be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Decatransin, a new natural product inhibiting protein translocation at the Sec61/SecYEG translocon

    Science.gov (United States)

    Junne, Tina; Wong, Joanne; Studer, Christian; Aust, Thomas; Bauer, Benedikt W.; Beibel, Martin; Bhullar, Bhupinder; Bruccoleri, Robert; Eichenberger, Jürg; Estoppey, David; Hartmann, Nicole; Knapp, Britta; Krastel, Philipp; Melin, Nicolas; Oakeley, Edward J.; Oberer, Lukas; Riedl, Ralph; Roma, Guglielmo; Schuierer, Sven; Petersen, Frank; Tallarico, John A.; Rapoport, Tom A.; Spiess, Martin; Hoepfner, Dominic

    2015-01-01

    ABSTRACT A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest ‘decatransin’ as the name for this new decadepsipeptide translocation inhibitor. PMID:25616894

  5. Protein translocation: the Sec61/SecYEG translocon caught in the act.

    Science.gov (United States)

    Spiess, Martin

    2014-04-14

    The Sec61/SecYEG complex mediates both the translocation of newly synthesized proteins across the membrane and the integration of transmembrane segments into the lipid bilayer. New cryo-electron microscopy studies show ribosome-channel complexes in action and reveal their repertoire of conformational states. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Structure and function of a protein export-enhancing membrane component SecDF

    Science.gov (United States)

    Tsukazaki, Tomoya; Mori, Hiroyuki; Echizen, Yuka; Ishitani, Ryuichiro; Fukai, Shuya; Tanaka, Takeshi; Perederina, Anna; Vassylyev, Dmitry G.; Kohno, Toshiyuki; Maturana, Andrés D.; Ito, Koreaki; Nureki, Osamu

    2013-01-01

    Summary Protein translocation across the bacterial membrane, mediated by the SecYEG translocon and the SecA ATPase1–4, is enhanced by proton-motive force (PMF)5,6 and membrane-integrated SecDF7–9, which associates with SecYEG. Here, we determined the crystal structure of Thermus thermophilus SecDF at 3.3 Å resolution, which revealed a pseudo-symmetrical, 12-helix transmembrane (TM) domain belonging to the RND superfamily and major periplasmic domains (P1 and P4). Higher resolution analysis of the latter suggested that P1, which proved to bind an unfolded protein, undergoes functionally important conformational changes. In vitro analyses identified an ATP-independent step of protein translocation that requires both SecDF and PMF. Electrophysiological analyses revealed that SecDF conducts protons in a pH- and unfolded protein-dependent fashion, in which conserved Asp and Arg residues at the TM SecD/SecF-interface play essential roles in the movements of protons and preproteins. Therefore, we propose that SecDF functions as a membrane-integrated chaperone, powered by PMF, to achieve ATP-independent protein translocation. PMID:21562494

  7. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  8. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.

    Science.gov (United States)

    Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A

    2017-05-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Protein export by the mycobacterial SecA2 system is determined by the preprotein mature domain.

    Science.gov (United States)

    Feltcher, Meghan E; Gibbons, Henry S; Ligon, Lauren S; Braunstein, Miriam

    2013-02-01

    At the core of the bacterial general secretion (Sec) pathway is the SecA ATPase, which powers translocation of unfolded preproteins containing Sec signal sequences through the SecYEG membrane channel. Mycobacteria have two nonredundant SecA homologs: SecA1 and SecA2. While the essential SecA1 handles "housekeeping" export, the nonessential SecA2 exports a subset of proteins and is required for Mycobacterium tuberculosis virulence. Currently, it is not understood how SecA2 contributes to Sec export in mycobacteria. In this study, we focused on identifying the features of two SecA2 substrates that target them to SecA2 for export, the Ms1704 and Ms1712 lipoproteins of the model organism Mycobacterium smegmatis. We found that the mature domains of Ms1704 and Ms1712, not the N-terminal signal sequences, confer SecA2-dependent export. We also demonstrated that the lipid modification and the extreme N terminus of the mature protein do not impart the requirement for SecA2 in export. We further showed that the Ms1704 mature domain can be efficiently exported by the twin-arginine translocation (Tat) pathway. Because the Tat system exports only folded proteins, this result implies that SecA2 substrates can fold in the cytoplasm and suggests a putative role of SecA2 in enabling export of such proteins. Thus, the mycobacterial SecA2 system may represent another way that bacteria solve the problem of exporting proteins that can fold in the cytoplasm.

  10. Protein Export by the Mycobacterial SecA2 System Is Determined by the Preprotein Mature Domain

    Science.gov (United States)

    Feltcher, Meghan E.; Gibbons, Henry S.; Ligon, Lauren S.

    2013-01-01

    At the core of the bacterial general secretion (Sec) pathway is the SecA ATPase, which powers translocation of unfolded preproteins containing Sec signal sequences through the SecYEG membrane channel. Mycobacteria have two nonredundant SecA homologs: SecA1 and SecA2. While the essential SecA1 handles “housekeeping” export, the nonessential SecA2 exports a subset of proteins and is required for Mycobacterium tuberculosis virulence. Currently, it is not understood how SecA2 contributes to Sec export in mycobacteria. In this study, we focused on identifying the features of two SecA2 substrates that target them to SecA2 for export, the Ms1704 and Ms1712 lipoproteins of the model organism Mycobacterium smegmatis. We found that the mature domains of Ms1704 and Ms1712, not the N-terminal signal sequences, confer SecA2-dependent export. We also demonstrated that the lipid modification and the extreme N terminus of the mature protein do not impart the requirement for SecA2 in export. We further showed that the Ms1704 mature domain can be efficiently exported by the twin-arginine translocation (Tat) pathway. Because the Tat system exports only folded proteins, this result implies that SecA2 substrates can fold in the cytoplasm and suggests a putative role of SecA2 in enabling export of such proteins. Thus, the mycobacterial SecA2 system may represent another way that bacteria solve the problem of exporting proteins that can fold in the cytoplasm. PMID:23204463

  11. Position-dependent Effects of Polylysine on Sec Protein Transport*

    Science.gov (United States)

    Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.

    2012-01-01

    The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204

  12. SEC-translocon dependent extracytoplasmic proteins of Candidatus Liberibacter asiaticus

    Directory of Open Access Journals (Sweden)

    Nian Wang

    2016-12-01

    Full Text Available Citrus Huanglongbing (HLB is the most destructive citrus disease worldwide. HLB is associated with three species of the phloem-limited, gram-negative, fastidious α-proteobacteria: Candidatus Liberibacter asiaticus (Las, Ca. L. americanus (Lam, and Ca. L. africanus (Laf with Las being the most widespread species. Las has not been cultured in artificial media, which has greatly hampered our efforts to understand its virulence mechanisms. Las contains a complete Sec-translocon, which has been suggested to transport Las proteins including virulence factors into the extracytoplasmic milieu. In this study, we characterized the Sec-translocon dependent, signal peptide containing extracytoplasmic proteins of Las. A total of 166 proteins of Las_psy62 strain were predicted to contain signal peptides targeting them out of the cell cytoplasm via the Sec-translocon using LipoP, SigalP 3.0, SignalP 4.1, and Phobius. We also predicated SP containing extracytoplasmic proteins for Las_gxpsy and Las Ishi-1, Lam, Laf, Ca. L. solanacearum (Lso, and L. crescens (Lcr. For experimental validation of the predicted extracytoplasmic proteins, Escherichia coli based alkaline phosphatase (PhoA gene fusion assays were conducted. A total of 86 out of the 166 predicted Las proteins were experimentally validated to contain signal peptides. Additionally, Las_psy62 lepB (CLIBASIA_04190, the gene encodes signal peptidase I, was able to partially complement the amber mutant of lepB of E. coli. This work will contribute to the identification of Sec-translocon dependent effector proteins of Las, which might be involved in virulence of Las.

  13. Suppressor analysis reveals a role for SecY in the SecA2-dependent protein export pathway of Mycobacteria.

    Science.gov (United States)

    Ligon, Lauren S; Rigel, Nathan W; Romanchuk, Artur; Jones, Corbin D; Braunstein, Miriam

    2013-10-01

    All bacteria use the conserved Sec pathway to transport proteins across the cytoplasmic membrane, with the SecA ATPase playing a central role in the process. Mycobacteria are part of a small group of bacteria that have two SecA proteins: the canonical SecA (SecA1) and a second, specialized SecA (SecA2). The SecA2-dependent pathway exports a small subset of proteins and is required for Mycobacterium tuberculosis virulence. The mechanism by which SecA2 drives export of proteins across the cytoplasmic membrane remains poorly understood. Here we performed suppressor analysis on a dominant negative secA2 mutant (secA2 K129R) of the model mycobacterium Mycobacterium smegmatis to better understand the pathway used by SecA2 to export proteins. Two extragenic suppressor mutations were identified as mapping to the promoter region of secY, which encodes the central component of the canonical Sec export channel. These suppressor mutations increased secY expression, and this effect was sufficient to alleviate the secA2 K129R phenotype. We also discovered that the level of SecY protein was greatly diminished in the secA2 K129R mutant, but at least partially restored in the suppressors. Furthermore, the level of SecY in a suppressor strongly correlated with the degree of suppression. Our findings reveal a detrimental effect of SecA2 K129R on SecY, arguing for an integrated system in which SecA2 works with SecY and the canonical Sec translocase to export proteins.

  14. Conformational Changes of the Clamp of the Protein Translocation ATPase SecA.

    Science.gov (United States)

    Chen, Yu; Bauer, Benedikt W; Rapoport, Tom A; Gumbart, James C

    2015-07-17

    Post-translational protein translocation across the bacterial plasma membrane is mediated by the interplay of the SecA ATPase and the protein-conducting SecY channel. SecA consists of several domains, including two nucleotide-binding domains (NBD1 and NBD2), a polypeptide cross-linking domain (PPXD), a helical scaffold domain (HSD), and a helical wing domain (HWD). PPXD, HSD, and NBD2 form a clamp that positions the polypeptide substrate above the channel so that it can be pushed into the channel by a two-helix finger of the HSD. How the substrate is accommodated in the clamp during translocation is unclear. Here, we report a crystal structure of Thermotoga maritima SecA at 1.9 Å resolution. Structural analysis and free-energy calculations indicate that the new structure represents an intermediate state during the transition of the clamp from an open to a closed conformation. Molecular dynamics simulations show that closure of the clamp occurs in two phases, an initial movement of PPXD, HSD, and HWD as a unit, followed by a movement of PPXD alone toward NBD2. Simulations in the presence of a polypeptide chain show that the substrate associates with the back of the clamp by dynamic hydrogen bonding and that the clamp is laterally closed by a conserved loop of the PPXD. Mutational disruption of clamp opening or closure abolishes protein translocation. These results suggest how conformational changes of SecA allow substrate binding and movement during protein translocation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase and a Tat-dependent model protein (agarase in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients' depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.

  16. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  17. Structural basis of Sec-independent membrane protein insertion by YidC.

    Science.gov (United States)

    Kumazaki, Kaoru; Chiba, Shinobu; Takemoto, Mizuki; Furukawa, Arata; Nishiyama, Ken-ichi; Sugano, Yasunori; Mori, Takaharu; Dohmae, Naoshi; Hirata, Kunio; Nakada-Nakura, Yoshiko; Maturana, Andrés D; Tanaka, Yoshiki; Mori, Hiroyuki; Sugita, Yuji; Arisaka, Fumio; Ito, Koreaki; Ishitani, Ryuichiro; Tsukazaki, Tomoya; Nureki, Osamu

    2014-05-22

    Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane.

  18. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bao, Jichen; Huang, Mingtao; Petranovic, Dina

    2017-01-01

    in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased α-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species...... were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-α-glucosidase, indicating that this mechanism is of general relevance....

  19. The exocyst subunit Sec3 is regulated by a protein quality control pathway

    DEFF Research Database (Denmark)

    Kampmeyer, Caroline; Karakostova, Antonina; Schenstrøm, Signe Marie

    2017-01-01

    of the sec3-913 strain was gene dosage-dependent and suppressed by blocking the proteasome, Hsp70-type molecular chaperones, the Pib1 E3 ubiquitin-protein ligase, and the deubiquitylating enzyme Ubp3. Moreover, defects in cell septation, exocytosis, and endocytosis in sec3 mutant strains were similarly...... alleviated by mutation of components in this pathway. We also found that, particularly under stress conditions, wild-type Sec3 degradation is regulated by Pib1 and the 26S proteasome. In conclusion, our results suggest that a cytosolic protein quality control pathway monitors folding and proteasome...

  20. Engineered fluorescent proteins illuminate the bacterial periplasm

    Directory of Open Access Journals (Sweden)

    Thorben Dammeyer

    2012-10-01

    Full Text Available The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP, remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat pathway, but actively fold in the periplasm following general secretory pathway (Sec and signal recognition particle (SRP mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  1. Engineered fluorescent proteins illuminate the bacterial periplasm.

    Science.gov (United States)

    Dammeyer, Thorben; Tinnefeld, Philip

    2012-01-01

    The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP), remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat) pathway, but actively fold in the periplasm following general secretory pathway (Sec) and signal recognition particle (SRP) mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  2. ENGINEERED FLUORESCENT PROTEINS ILLUMINATE THE BACTERIAL PERIPLASM

    Directory of Open Access Journals (Sweden)

    Thorben Dammeyer

    2012-10-01

    Full Text Available The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation – a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP, remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat pathway, but actively fold in the periplasm following general secretory pathway (Sec and signal recognition particle (SRP mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  3. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins.

    Directory of Open Access Journals (Sweden)

    Aniko Vörös

    Full Text Available The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.

  4. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins.

    Science.gov (United States)

    Vörös, Aniko; Simm, Roger; Slamti, Leyla; McKay, Matthew J; Hegna, Ida K; Nielsen-LeRoux, Christina; Hassan, Karl A; Paulsen, Ian T; Lereclus, Didier; Økstad, Ole Andreas; Molloy, Mark P; Kolstø, Anne-Brit

    2014-01-01

    The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.

  5. Amblyomma americanum salivary gland homolog of nSec1 is essential for saliva protein secretion

    International Nuclear Information System (INIS)

    Karim, Shahid; Ramakrishnan, Vijay G.; Tucker, James S.; Essenberg, Richard C.; Sauer, John R.

    2004-01-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins assemble in tight core complexes which promote fusion of carrier vesicles with target compartments. Members of this class of proteins are expressed in all eukaryotic cells and distributed in distinct subcellular compartments. All vesicle transport mechanisms known to date have an essential requirement for a member of the Sec1 protein family, including the nSec1 in regulated exocytosis. A homolog of nSec1 was cloned and sequenced from the salivary glands of partially fed female ticks. Double-stranded RNA was used to specifically reduce the amount of nSec1 mRNA and protein in female adult tick salivary glands. This reduction was accompanied by a decrease in anticoagulant protein release by the glands and by abnormalities in feeding by dsRNA treated ticks. We report the efficacy of double-stranded RNA-mediated interference in 'knocking down' nSec1 both in vivo and in vitro in tick salivary glands and the applicability of this technique for studying the mechanism of exocytosis in tick salivary glands

  6. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli

    DEFF Research Database (Denmark)

    Cristóbal, S.; de Gier, J.-W.; Nielsen, Henrik

    1999-01-01

    Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused...

  7. Protein transport into the human ER and related diseases, Sec61-channelopathies.

    Science.gov (United States)

    Haßdenteufel, Sarah; Klein, Marie-Christine; Melnyk, Armin; Zimmermann, Richard

    2014-12-01

    Protein transport into the human endoplasmic reticulum (ER) is relevant to the biogenesis of most soluble and membrane proteins of organelles, which are involved in endo- or exo-cytsosis. It involves amino-terminal signal peptides in the precursor polypeptides and various transport components in the cytosol plus the ER, and can occur co- or post-translationally. The two mechanisms merge at the level of the ER membrane, specifically at the level of the heterotrimeric Sec61 complex, which forms a dynamic polypeptide-conducting channel in the ER membrane. Since the mammalian ER is also the main intracellular calcium storage organelle, and the Sec61 complex is calcium permeable, the Sec61 complex is tightly regulated in its equilibrium between the closed and open conformations, or "gated", by ligands, such as signal peptides of the transport substrates and the ER lumenal Hsp70-type molecular chaperone BiP. Furthermore, BiP binding to the incoming polypeptide contributes to the efficiency and unidirectionality of transport. Recent insights into the structure and dynamic equilibrium of the Sec61 complex have various mechanistic as well as medical implications.

  8. SecA is required for membrane targeting of the cell division protein DivIVA in vivo

    Directory of Open Access Journals (Sweden)

    Sven eHalbedel

    2014-02-01

    Full Text Available The conserved protein DivIVA is involved in different morphogenetic processes in Gram-positive bacteria. In Bacillus subtilis, the protein localises to the cell division site and cell poles, and functions as a scaffold for proteins that regulate division site selection, and for proteins that are required for sporulation. To identify other proteins that bind to DivIVA, we performed an in vivo cross-linking experiment. A possible candidate that emerged was the secretion motor ATPase SecA. SecA mutants have been described that inhibit sporulation, and since DivIVA is necessary for sporulation, we examined the localisation of DivIVA in these mutants. Surprisingly, DivIVA was delocalised, suggesting that SecA is required for DivIVA targeting. To further corroborate this, we performed SecA depletion and inhibition experiments, which provided further indications that DivIVA localisation depends on SecA. Cell fractionation experiments showed that SecA is important for binding of DivIVA to the cell membrane. This was unexpected since DivIVA does not contain a signal sequence, and is able to bind to artificial lipid membranes in vitro without support of other proteins. SecA is required for protein secretion and membrane insertion, and therefore its role in DivIVA localisation is likely indirect. Possible alternative roles of SecA in DivIVA folding and/or targeting are discussed.

  9. Long-Timescale Dynamics and Regulation of Sec-Facilitated Protein Translocation

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2012-10-01

    Full Text Available We present a coarse-grained modeling approach that spans the nanosecond- to minute-timescale dynamics of cotranslational protein translocation. The method enables direct simulation of both integral membrane protein topogenesis and transmembrane domain (TM stop-transfer efficiency. Simulations reveal multiple kinetic pathways for protein integration, including a mechanism in which the nascent protein undergoes slow-timescale reorientation, or flipping, in the confined environment of the translocon channel. Competition among these pathways gives rise to the experimentally observed dependence of protein topology on ribosomal translation rate and protein length. We further demonstrate that sigmoidal dependence of stop-transfer efficiency on TM hydrophobicity arises from local equilibration of the TM across the translocon lateral gate, and it is predicted that slowing ribosomal translation yields decreased stop-transfer efficiency in long proteins. This work reveals the balance between equilibrium and nonequilibrium processes in protein targeting, and it provides insight into the molecular regulation of the Sec translocon.

  10. A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation

    Directory of Open Access Journals (Sweden)

    S. Julia Wu

    2017-06-01

    Full Text Available Cross-presentation initiates immune responses against tumors and viral infections by presenting extracellular antigen on MHC I to activate CD8+ T cell-mediated cytotoxicity. In vitro studies in dendritic cells (DCs established SNARE protein SEC22B as a specific regulator of cross-presentation. However, the in vivo contribution of SEC22B to cross-presentation has not been tested. To address this, we generated DC-specific Sec22b knockout (CD11c-Cre Sec22bfl/fl mice. Contrary to the paradigm, SEC22B-deficient DCs efficiently cross-present both in vivo and in vitro. Although in vitro small hairpin RNA (shRNA-mediated Sec22b silencing in bone-marrow-derived dendritic cells (BMDCs reduced cross-presentation, treatment of SEC22B-deficient BMDCs with the same shRNA produced a similar defect, suggesting the Sec22b shRNA modulates cross-presentation through off-target effects. RNA sequencing of Sec22b shRNA-treated SEC22B-deficient BMDCs demonstrated several changes in the transcriptome. Our data demonstrate that contrary to the accepted model, SEC22B is not necessary for cross-presentation, cautioning against extrapolating phenotypes from knockdown studies alone.

  11. A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation.

    Science.gov (United States)

    Wu, S Julia; Niknafs, Yashar S; Kim, Stephanie H; Oravecz-Wilson, Katherine; Zajac, Cynthia; Toubai, Tomomi; Sun, Yaping; Prasad, Jayendra; Peltier, Daniel; Fujiwara, Hideaki; Hedig, Israel; Mathewson, Nathan D; Khoriaty, Rami; Ginsburg, David; Reddy, Pavan

    2017-06-27

    Cross-presentation initiates immune responses against tumors and viral infections by presenting extracellular antigen on MHC I to activate CD8 + T cell-mediated cytotoxicity. In vitro studies in dendritic cells (DCs) established SNARE protein SEC22B as a specific regulator of cross-presentation. However, the in vivo contribution of SEC22B to cross-presentation has not been tested. To address this, we generated DC-specific Sec22b knockout (CD11c-Cre Sec22b fl/fl ) mice. Contrary to the paradigm, SEC22B-deficient DCs efficiently cross-present both in vivo and in vitro. Although in vitro small hairpin RNA (shRNA)-mediated Sec22b silencing in bone-marrow-derived dendritic cells (BMDCs) reduced cross-presentation, treatment of SEC22B-deficient BMDCs with the same shRNA produced a similar defect, suggesting the Sec22b shRNA modulates cross-presentation through off-target effects. RNA sequencing of Sec22b shRNA-treated SEC22B-deficient BMDCs demonstrated several changes in the transcriptome. Our data demonstrate that contrary to the accepted model, SEC22B is not necessary for cross-presentation, cautioning against extrapolating phenotypes from knockdown studies alone. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Inactivation of protein translocation by cold-sensitive mutations in the yajC-secDF operon

    NARCIS (Netherlands)

    Nouwen, N; Driessen, AJM

    2005-01-01

    Most mutations in the yajC-secDF operon identified via genetic screens confer a cold-sensitive growth phenotype. Here we report that two of these mutations confer this cold-sensitive phenotype by inactivating the SecDF-YajC complex in protein translocation.

  13. Tunnel Formation Inferred from the I-Form Structures of the Proton-Driven Protein Secretion Motor SecDF

    Directory of Open Access Journals (Sweden)

    Arata Furukawa

    2017-05-01

    Full Text Available Protein secretion mediated by SecYEG translocon and SecA ATPase is enhanced by membrane-embedded SecDF by using proton motive force. A previous structural study of SecDF indicated that it comprises 12 transmembrane helices that can conduct protons and three periplasmic domains, which form at least two characterized transition states, termed the F and I forms. We report the structures of full-length SecDF in I form at 2.6- to 2.8-Å resolution. The structures revealed that SecDF in I form can generate a tunnel that penetrates the transmembrane region and functions as a proton pathway regulated by a conserved Asp residue of the transmembrane region. In one crystal structure, periplasmic cavity interacts with a molecule, potentially polyethylene glycol, which may mimic a substrate peptide. This study provides structural insights into the Sec protein translocation that allows future analyses to develop a more detailed working model for SecDF.

  14. Fluorophore Absorption Size Exclusion Chromatography (FA-SEC): An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins.

    Science.gov (United States)

    Lin, Sung-Yao; Sun, Xing-Han; Hsiao, Yu-Hsuan; Chang, Shao-En; Li, Guan-Syun; Hu, Nien-Jen

    2016-01-01

    Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.

  15. Fluorophore Absorption Size Exclusion Chromatography (FA-SEC: An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins.

    Directory of Open Access Journals (Sweden)

    Sung-Yao Lin

    Full Text Available Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.

  16. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines.

    Directory of Open Access Journals (Sweden)

    Ireos Filipuzzi

    2016-11-01

    Full Text Available Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

  17. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  18. The first gene in the Escherichia coli secA operon, gene X, encodes a nonessential secretory protein.

    OpenAIRE

    Rajapandi, T; Dolan, K M; Oliver, D B

    1991-01-01

    TnphoA insertions in the first gene of the Escherichia coli secA operon, gene X, were isolated and analyzed. Studies of the Gene X-PhoA fusion proteins showed that gene X encodes a secretory protein, since the fusion proteins possessed normal alkaline phosphatase activity and a substantial portion of this activity was found in the periplasm. In addition, the Gene X-PhoA fusion proteins were initially synthesized with a cleavable signal peptide. A gene X::TnphoA insertion was used to construct...

  19. Bacterial antagonist mediated protein molecules

    OpenAIRE

    Urbizu, Lucia Paola; Sparo, Mónica Delfina; Sanchez Bruni, Sergio Fabian

    2016-01-01

    Bacterial antagonism mediated by ribosomally synthesised peptides has gained considerable attention in recent years because of its potential applications in the control of undesirable microbiota. These peptides, generally referred to as bacteriocins, are defined as a heterogeneous group of ribosomally synthesised, proteinaceous substances (with or without further modifications) extracellularly secreted by many Gram-positive and some Gram-negative bacteria. Their mode of activity is primarily ...

  20. Stepwise evolution of the Sec machinery in Proteobacteria

    NARCIS (Netherlands)

    van der Sluis, EO; Driessen, AJM; Sluis, Eli O. van der

    The Sec machinery facilitates the translocation of proteins across and into biological membranes. In several of the Proteobacteria, this machinery contains accessory features that are not present in any other bacterial division. The genomic distribution of these features in the context of bacterial

  1. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... measured in serum, and 4 in which it had been measured in both cerebrospinal fluid and serum. The odds ratio for bacterial meningitis versus aseptic meningitis for a positive CRP test with cerebrospinal fluid was estimated at 241 (95% confidence interval [CI]: 59-980), and the central tendencies.......06-0.08, respectively, the post-test probability of not having bacterial meningitis given a negative test is very high (> or = 97%), in the range of a pre-test probability (prevalence of bacterial meningitis) from 10 to 30%, whereas the post-test probability of bacterial meningitis given a positive test is considerably...

  2. Increasing production of proteins in gram-positive microorganisms using SecG

    NARCIS (Netherlands)

    Quax, Wilhelmus J.; Caldwell, Robert M

    2003-01-01

    The present invention relates to secretion in Gram-positive microorganisms. The present invention provides the nuclei acid and amino acid sequences for the Bacillus subtilis secretion factor SecG. The present invention also provides means for increasing the secretion of heterologous or homologous

  3. Protein phosphorylation and bacterial chemotaxis

    International Nuclear Information System (INIS)

    Hess, J.F.; Bourret, R.B.; Oosawa, K.; Simon, M.I.; Matsumura, P.

    1988-01-01

    Bacteria are able to respond to changes in concentration of a large variety of chemicals and to changes in physical parameters, including viscosity, osmolarity, and temperature, by swimming toward a more favorable location (for review, see Stewart and Dahlquist 1987). Most chemotactic responses are mediated by a series of transmembrane receptor proteins that interact with or bind specific chemicals and thus monitor environmental conditions. Over the past 10 years, work in a number of laboratories has resulted in the identification and characterization of many of the genes and proteins required for the signal transduction process. The authors postulated that rapid and transient covalent modification of the chemotaxis gene products could function to transmit information from the receptor by regulating protein-protein interaction between the chemotaxis gene products. To test this idea, the authors purified the proteins corresponding to the cheA, cheY, cheZ, cheW, and cheB genes and tested the purified polypeptides to determine whether they could be covalently modified and whether they would interact with each other in vitro

  4. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly.

    Science.gov (United States)

    Baker, Richard W; Jeffrey, Philip D; Zick, Michael; Phillips, Ben P; Wickner, William T; Hughson, Frederick M

    2015-09-04

    Fusion of intracellular transport vesicles requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18-family (SM) proteins. Membrane-bridging SNARE complexes are critical for fusion, but their spontaneous assembly is inefficient and may require SM proteins in vivo. We report x-ray structures of Vps33, the SM subunit of the yeast homotypic fusion and vacuole protein-sorting (HOPS) complex, bound to two individual SNAREs. The two SNAREs, one from each membrane, are held in the correct orientation and register for subsequent complex assembly. Vps33 and potentially other SM proteins could thus act as templates for generating partially zipped SNARE assembly intermediates. HOPS was essential to mediate SNARE complex assembly at physiological SNARE concentrations. Thus, Vps33 appears to catalyze SNARE complex assembly through specific SNARE motif recognition. Copyright © 2015, American Association for the Advancement of Science.

  5. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    This study was designed to assess the effects of protein malnutrition (PM) associated with antibiotic on growth weight, cecal bacterial overgrowth and enterobacteria translocation. Eighteen Gnotobiotic young Wistar rats (135 ± 2.35 g) were treated orally with antibiotic and submitted to dietary restriction based on maize diet ...

  6. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    phosphorylation. Protein-tyrosine phosphorylation in bacteria is particular with respect to very low occupancy of phosphorylation sites in vivo; this has represented a major challenge for detection techniques. Only the recent breakthroughs in gel-free high resolution mass spectrometry allowed the systematic...... detection of phosphorylated tyrosines by phosphoprotomics studies in bacteria. Other pioneering studies conducted in recent years, such as the first structures of BY-kinases and biochemical and phyiological studies of new BY-kinase substrates significantly furthered our understanding of these enzymes...

  7. Bacterial systems for production of heterologous proteins.

    Science.gov (United States)

    Zerbs, Sarah; Frank, Ashley M; Collart, Frank R

    2009-01-01

    Proteins are the working molecules of all biological systems and participate in a majority of cellular chemical reactions and biological processes. Knowledge of the properties and function of these molecules is central to an understanding of chemical and biological processes. In this context, purified proteins are a starting point for biophysical and biochemical characterization methods that can assist in the elucidation of function. The challenge for production of proteins at the scale and quality required for experimental, therapeutic and commercial applications has led to the development of a diverse set of methods for heterologous protein production. Bacterial expression systems are commonly used for protein production as these systems provide an economical route for protein production and require minimal technical expertise to establish a laboratory protein production system.

  8. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.).

    Science.gov (United States)

    Wang, Xiaoyu; Shan, Xiaohui; Xue, Chunmei; Wu, Ying; Su, Shengzhong; Li, Shipeng; Liu, Hongkui; Jiang, Yuan; Zhang, Yanfei; Yuan, Yaping

    2016-08-01

    A Sec14-like protein, ZmSEC14p , from maize was structurally analyzed and functionally tested. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. Sec14-like proteins are involved in essential biological processes, such as phospholipid metabolism, signal transduction, membrane trafficking, and stress response. Here, we reported a phosphatidylinositol transfer-associated protein, ZmSEC14p (accession no. KT932998), isolated from a cold-tolerant maize inbred line using the cDNA-AFLP approach and RACE-PCR method. Full-length cDNA that consisted of a single open reading frame (ORF) encoded a putative polypeptide of 295 amino acids. The ZmSEC14p protein was mainly localized in the nucleus, and its transcript was induced by cold, salt stresses, and abscisic acid (ABA) treatment in maize leaves and roots. Overexpression of ZmSEC14p in transgenic Arabidopsis conferred tolerance to cold stress. This tolerance was primarily displayed by the increased germination rate, root length, plant survival rate, accumulation of proline, activities of antioxidant enzymes, and the reduction of oxidative damage by reactive oxygen species (ROS). ZmSEC14p overexpression regulated the expression of phosphoinositide-specific phospholipase C, which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) and generates second messengers (inositol 1,4,5-trisphosphate and 1,2-diacylglycerol) in the phosphoinositide signal transduction pathways. Moreover, up-regulation of some stress-responsive genes such as CBF3, COR6.6, and RD29B in transgenic plants under cold stress could be a possible mechanism for enhancing cold tolerance. Taken together, this study strongly suggests that ZmSEC14p plays an important role in plant tolerance to cold stress.

  9. Absence of phosphatidylcholine in bacterial membranes facilitates translocation of Sec-dependent β-lactamase AmpC from cytoplasm to periplasm in two Pseudomonas strains.

    Science.gov (United States)

    Liu, Xin; Sun, Yufang; Cao, Fang; Xiong, Min; Yang, Sheng; Li, Yang; Yu, Xuejing; Li, Yadong; Wang, Xingguo

    2017-05-01

    Phosphatidylcholine (PC) is a rare membrane lipid in bacteria but crucial for virulence of various plant and animal pathogens. The pcs- mutant lacking PC in bacterial membranes of Pseudomonas syringae pv. syringae van Hall 1336 displayed more ampicillin resistance. Ampicillin susceptibility tests gave an IC50 (half maximal inhibitory concentration) of 52 mg/ml for Pseudomonas syringae pv. syringae van Hall 1336, 53 mg/ml for the complemented strain 1336 RM (pcs-/+) and 90 mg/ml for the 1336 pcs- mutant. Activity assay of β-lactamase in periplasmic extracts gave 0.050 U/mg for the 1336 wild type, 0.052 U/mg for the 1336RM (pcs-/+), 0.086 U/mg for the 1336 pcs- mutant. Analysis by western blotting showed that the content of AmpC enzyme was markedly different in periplasmic extracts between the wild-type and pcs- mutant strains. Reverse transcriptase PCR also showed that the presence or absence of PC in bacterial membranes did not affect the transcription of ampC gene. The phenotype of the pcs- mutant was able to be recovered to the wild type by introducing a wild-type pcs gene into the pcs- mutant. Similar results were also obtained from the soil-dwelling bacterium Pseudomonas sp. 593. Our results demonstrate that the absence of PC in bacterial membranes facilitates the translocation of Sec-dependent β-lactamase AmpC from cytoplasm to periplasm, and the enhanced ampicillin-resistance in the pcs- strains mainly comes from effective translocation of AmpC via Sec-pathway. Copyright © 2016. Published by Elsevier Ltd.

  10. Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence.

    Directory of Open Access Journals (Sweden)

    Chantal Quiblier

    Full Text Available The Sec pathway plays a prominent role in protein export and membrane insertion, including the secretion of major bacterial virulence determinants. The accessory Sec constituent SecDF has been proposed to contribute to protein export. Deletion of Staphylococcus aureus secDF has previously been shown to reduce resistance, to alter cell separation, and to change the expression of certain virulence factors. To analyse the impact of the secDF deletion in S. aureus on protein secretion, a quantitative secretome analysis was performed. Numerous Sec signal containing proteins involved in virulence were found to be decreased in the supernatant of the secDF mutant. However, two Sec-dependent hydrolases were increased in comparison to the wild type, suggesting additional indirect, regulatory effects to occur upon deletion of secDF. Adhesion, invasion, and cytotoxicity of the secDF mutant were reduced in human umbilical vein endothelial cells. Virulence was significantly reduced using a Galleria mellonella insect model. Altogether, SecDF is a promising therapeutic target for controlling S. aureus infections.

  11. The Small GTPase MoSec4 Is Involved in Vegetative Development and Pathogenicity by Regulating the Extracellular Protein Secretion in Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Huakun Zheng

    2016-09-01

    Full Text Available The Rab GTPase proteins play important roles in the membrane trafficking, and consequently protein secretion and development of eukaryotic organisms. However, little is known about the function of Rab GTPases in Magnaporthe oryzae. To further explore the function of Rab GTPases, we deleted the ortholog of the yeast Sec4p protein in M. oryzae, namely MoSEC4. The Mosec4 mutant is defective in polarized growth and conidiation, and it displays decreased appressorium turgor pressure and attenuated pathogenicity. Notably, the biotrophic invasive hyphae produced in rice cells are more bulbous and compressed in the Mosec4 mutant. Further studies showed that deletion of the MoSEC4 gene resulted in decreased secretion of extracellular enzymes and mislocalization of the cytoplasmic effector PWL2-mCherry-NLS. In accordance with its role in secretion, the GFP-MoSec4 fusion protein mainly accumulates at tips of growing vegetative hyphae. Our results suggest that the MoSec4 protein plays important roles in the secretion of extracellular proteins and consequently hyphal development and pathogenicity in the rice blast fungus.

  12. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  13. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities.

    Science.gov (United States)

    Hsieh, Ying-Hsin; Huang, Ying-Ju; Jin, Jin-Shan; Yu, Liyan; Yang, Hsiuchin; Jiang, Chun; Wang, Binghe; Tai, Phang C

    2014-11-14

    SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The large first periplasmic loop of SecD and SecF plays an important role in SecDF functioning

    NARCIS (Netherlands)

    Nouwen, N; Piwowarek, M; Berrelkamp, G; Driessen, AJM

    A remarkable feature of proteins of the SecD and SecF family involved in protein translocation is that they possess a very large first periplasmic domain. Here we report that this large first periplasmic domain is not required for the SecD-SecF interaction but that it is important for catalyzing

  15. Functional Identification of the Product of the Bacillus subtilis yvaL Gene as a SecG Homologue

    NARCIS (Netherlands)

    Wely, Karel H.M. van; Swaving, Jelto; Broekhuizen, Cees P.; Rose, Matthias; Quax, Wim J.; Driessen, Arnold J.M.

    1999-01-01

    Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been

  16. BLANNOTATOR: enhanced homology-based function prediction of bacterial proteins

    Directory of Open Access Journals (Sweden)

    Kankainen Matti

    2012-02-01

    Full Text Available Abstract Background Automated function prediction has played a central role in determining the biological functions of bacterial proteins. Typically, protein function annotation relies on homology, and function is inferred from other proteins with similar sequences. This approach has become popular in bacterial genomics because it is one of the few methods that is practical for large datasets and because it does not require additional functional genomics experiments. However, the existing solutions produce erroneous predictions in many cases, especially when query sequences have low levels of identity with the annotated source protein. This problem has created a pressing need for improvements in homology-based annotation. Results We present an automated method for the functional annotation of bacterial protein sequences. Based on sequence similarity searches, BLANNOTATOR accurately annotates query sequences with one-line summary descriptions of protein function. It groups sequences identified by BLAST into subsets according to their annotation and bases its prediction on a set of sequences with consistent functional information. We show the results of BLANNOTATOR's performance in sets of bacterial proteins with known functions. We simulated the annotation process for 3090 SWISS-PROT proteins using a database in its state preceding the functional characterisation of the query protein. For this dataset, our method outperformed the five others that we tested, and the improved performance was maintained even in the absence of highly related sequence hits. We further demonstrate the value of our tool by analysing the putative proteome of Lactobacillus crispatus strain ST1. Conclusions BLANNOTATOR is an accurate method for bacterial protein function prediction. It is practical for genome-scale data and does not require pre-existing sequence clustering; thus, this method suits the needs of bacterial genome and metagenome researchers. The method and a

  17. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  18. Structure-function analysis of small G proteins from Volvox and Chlamydomonas by complementation of Saccharomyces cerevisiae YPT/SEC mutations.

    Science.gov (United States)

    Fabry, S; Steigerwald, R; Bernklau, C; Dietmaier, W; Schmitt, R

    1995-05-10

    cDNAs representing nine small G protein genes encoding Ypt proteins from the green algae Volvox carteri (YptV) and Chlamydomonas reinhardtii (YptC) were tested for their ability to complement mutations in the YPT1, SEC4, and YPT7 genes of Saccharomyces cerevisiae strains defective in different steps of intracellular vesicle transport. None of the heterologously expressed algal genes was able to complement mutations in SEC4 or YPT7, but three of them, yptV1, yptC1, and yptV2, restored a YPT1 null mutation. On the amino acid sequence level, and particularly with respect to known small G protein specificity domains, YptV1p and YptC1p are the closest algal analogs of yeast Ypt1p, with 70% overall identity and identical effector regions, but YptV2p is only 55% identical to Ypt1p, and its effector domain resembles that of Sec4p. To define more precisely the regions that supply Ypt1p function, six chimeras were constructed by reciprocal exchange of 68/72-, 122/123-, and 162/163-amino acid segments of the C-terminal regions between YptV1p (complementing) and YptV3p (non-complementing). Segments containing 68 amino acids of the hypervariable C-terminal, and 41 residues of the N-terminal region including the effector region, of YptV1p could be replaced by the corresponding parts of YptV3p without loss of function in yeast, but exchanges within the central core destroyed the ability to rescue the YPT1 mutation. Sequence analysis of ypt1-complementing and -noncomplementing Ypt types suggests that surface loop3 represents a novel specificity domain of small G proteins.

  19. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... Key words: Rats, enteric bacilli translocation, protein malnutrition, antibiotic, mesenteric lymph nodes. INTRODUCTION. Protein malnutrition ... In animal models, malnutrition is associated with villous atrophy and ..... the thoracic duct and the systemic circulation or via vascular channels to reach the portal.

  20. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  1. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    Science.gov (United States)

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  2. [Changes of urinary proteins in a bacterial meningitis rat model].

    Science.gov (United States)

    Ni, Yanying; Zhang, Fanshuang; An, Manxia; Gao, Youhe

    2017-07-25

    Unlike cerebrospinal fluid or blood, urine accumulates metabolic changes of the body and has the potential to be a promising source of early biomarkers discovery. Bacterial meningitis is a major cause of illness among neonates and children worldwide. In this study, we used Escherichia coli-injected rat model to mimic meningitis and collected urine samples on day 1 and day 3. We used two different methods to digest proteins and analyzed peptides by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 17 and 20 differential proteins by two methods respectively on day 1, and 5 differential proteins by filter-aided digestion method on day 3. Finding these differential proteins laid a foundation to further explore biomarkers of bacterial meningitis.

  3. Demodex-associated bacterial proteins induce neutrophil activation

    OpenAIRE

    O'Reilly, N.; Bergin, D.; Reeves, E.P.; McElvaney, N.G.; Kavanagh, K.

    2012-01-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than do controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea, thus suggesting a possible role for bacterial proteins in the aetiology of this condition. Objectives To examine the response of neutrophils to proteins derived from a bacterium isolated...

  4. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  5. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein......The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...

  6. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  7. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  8. Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast

    DEFF Research Database (Denmark)

    Kraynack, Bryan A; Chan, Angela; Rosenthal, Eva Helga

    2005-01-01

    -ER retrograde transport. Size exclusion chromatography and affinity purification approaches confirmed that Dsl3p is associated with subunits of the "Dsl1p complex." The complex also includes the Q/t-SNARE proteins, Use1p, Sec20p, and Ufe1p, integral membrane proteins that constitute the trimeric acceptor for R...

  9. CK2 phosphorylation of human Sec63 regulates its interaction with Sec62.

    Science.gov (United States)

    Ampofo, Emmanuel; Welker, Sabrina; Jung, Martin; Müller, Linda; Greiner, Markus; Zimmermann, Richard; Montenarh, Mathias

    2013-04-01

    Protein kinase CK2 is a pleiotropic enzyme which is ubiquitously expressed in eukaryotic cells. Several years ago CK2 was found to be associated with the mammalian endoplasmic reticulum. So far nothing is known about the function of CK2 at the ER. CK2 phosphorylation sites in the polypeptide chain of Sec63 were mapped using deletion mutants and a peptide library. Binding of Sec63 to CK2 and to Sec62 was analyzed by pull-down assays and by co-immunoprecipitation Sec63 was identified as a novel substrate and binding partner of protein kinase CK2. We identified serine 574, serine 576 and serine 748 as CK2 phosphorylation sites. Phosphorylation of Sec63 by CK2 enhanced its binding to Sec62. Protein kinase CK2 phosphorylation of Sec63 leads to an enhanced binding of Sec63 to Sec62. This complex formation is a prerequisite for a functional ER protein translocon. Thus, our present data indicate a regulatory role of CK2 in the ER protein translocation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    Science.gov (United States)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  11. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  12. Packaging protein drugs as bacterial inclusion bodies for therapeutic applications

    Directory of Open Access Journals (Sweden)

    Villaverde Antonio

    2012-06-01

    Full Text Available Abstract A growing number of insights on the biology of bacterial inclusion bodies (IBs have revealed intriguing utilities of these protein particles. Since they combine mechanical stability and protein functionality, IBs have been already exploited in biocatalysis and explored for bottom-up topographical modification in tissue engineering. Being fully biocompatible and with tuneable bio-physical properties, IBs are currently emerging as agents for protein delivery into mammalian cells in protein-replacement cell therapies. So far, IBs formed by chaperones (heat shock protein 70, Hsp70, enzymes (catalase and dihydrofolate reductase, grow factors (leukemia inhibitory factor, LIF and structural proteins (the cytoskeleton keratin 14 have been shown to rescue exposed cells from a spectrum of stresses and restore cell functions in absence of cytotoxicity. The natural penetrability of IBs into mammalian cells (reaching both cytoplasm and nucleus empowers them as an unexpected platform for the controlled delivery of essentially any therapeutic polypeptide. Production of protein drugs by biopharma has been traditionally challenged by IB formation. However, a time might have arrived in which recombinant bacteria are to be engineered for the controlled packaging of therapeutic proteins as nanoparticulate materials (nanopills, for their extra- or intra-cellular release in medicine and cosmetics.

  13. Identification of the magnesium-binding domain of the high affinity ATP binding-site of the Bacillus subtilis and Escherichia coli seca protein

    NARCIS (Netherlands)

    van der Wolk, J.P.W.; Klose, M; de Wit, Janny; Blaauwen, T.den; Freudl, R; Driessen, A.J.M.

    1995-01-01

    The homodimeric SecA protein is the peripheral subunit of the translocase, and couples the hydrolysis of ATP to the translocation of precursor proteins across the bacterial cytoplasmic membrane. The high affinity ATP binding activity of SecA resides in the amino-terminal domain of SecA. This domain

  14. The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Scott G Shanks

    Full Text Available Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic.

  15. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  16. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    Full Text Available Abstract Background In the past decades, various protein subcellular-location (SCL predictors have been developed. Most of these predictors, like TMHMM 2.0, SignalP 3.0, PrediSi and Phobius, aim at the identification of one or a few SCLs, whereas others such as CELLO and Psortb.v.2.0 aim at a broader classification. Although these tools and pipelines can achieve a high precision in the accurate prediction of signal peptides and transmembrane helices, they have a much lower accuracy when other sequence characteristics are concerned. For instance, it proved notoriously difficult to identify the fate of proteins carrying a putative type I signal peptidase (SPIase cleavage site, as many of those proteins are retained in the cell membrane as N-terminally anchored membrane proteins. Moreover, most of the SCL classifiers are based on the classification of the Swiss-Prot database and consequently inherited the inconsistency of that SCL classification. As accurate and detailed SCL prediction on a genome scale is highly desired by experimental researchers, we decided to construct a new SCL prediction pipeline: LocateP. Results LocateP combines many of the existing high-precision SCL identifiers with our own newly developed identifiers for specific SCLs. The LocateP pipeline was designed such that it mimics protein targeting and secretion processes. It distinguishes 7 different SCLs within Gram-positive bacteria: intracellular, multi-transmembrane, N-terminally membrane anchored, C-terminally membrane anchored, lipid-anchored, LPxTG-type cell-wall anchored, and secreted/released proteins. Moreover, it distinguishes pathways for Sec- or Tat-dependent secretion and alternative secretion of bacteriocin-like proteins. The pipeline was tested on data sets extracted from literature, including experimental proteomics studies. The tests showed that LocateP performs as well as, or even slightly better than other SCL predictors for some locations and outperforms

  17. Protein export through the bacterial flagellar type III export pathway.

    Science.gov (United States)

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. © 2013 Elsevier B.V. All rights reserved.

  18. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  19. Bacterial flagellar capping proteins adopt diverse oligomeric states

    Energy Technology Data Exchange (ETDEWEB)

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A.; Yu, Xiong; Diederichs, Kay; Helmsing, Saskia; Vromen, Aviv; Friedler, Assaf; Hust, Michael; Egelman, Edward H.; Beckett, Dorothy; Wintrode, Patrick L.; Sundberg, Eric J. (UV); (Braunschweig); (Maryland-MED); (Konstanz); (Maryland); (Hebrew)

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD fromPseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find thatPseudomonasFliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.

  20. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    Directory of Open Access Journals (Sweden)

    Federica Laddomada

    2016-04-01

    Full Text Available The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome” and/or cell wall elongation (the “elongasome”, in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies.

  1. Genetic reporter system for positioning of proteins at the bacterial pole.

    Science.gov (United States)

    Fixen, Kathryn R; Janakiraman, Anuradha; Garrity, Sean; Slade, Daniel J; Gray, Andrew N; Karahan, Nilay; Hochschild, Ann; Goldberg, Marcia B

    2012-01-01

    Spatial organization within bacteria is fundamental to many cellular processes, although the basic mechanisms underlying localization of proteins to specific sites within bacteria are poorly understood. The study of protein positioning has been limited by a paucity of methods that allow rapid large-scale screening for mutants in which protein positioning is altered. We developed a genetic reporter system for protein localization to the pole within the bacterial cytoplasm that allows saturation screening for mutants in Escherichia coli in which protein localization is altered. Utilizing this system, we identify proteins required for proper positioning of the Shigella autotransporter IcsA. Autotransporters, widely distributed bacterial virulence proteins, are secreted at the bacterial pole. We show that the conserved cell division protein FtsQ is required for localization of IcsA and other autotransporters to the pole. We demonstrate further that this system can be applied to the study of proteins other than autotransporters that display polar positioning within bacterial cells. Many proteins localize to specific sites within bacterial cells, and localization to these sites is frequently critical to proper protein function. The mechanisms that underlie protein localization are incompletely understood, in part because of the paucity of methods that allow saturation screening for mutants in which protein localization is altered. We developed a genetic reporter assay that enables screening of bacterial populations for changes in localization of proteins to the bacterial pole, and we demonstrate the utility of the system in identifying factors required for proper localization of the polar Shigella autotransporter protein IcsA. Using this method, we identify the conserved cell division protein FtsQ as being required for positioning of IcsA to the bacterial pole. We demonstrate further that the requirement for FtsQ for polar positioning applies to other autotransporters

  2. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  3. The bacterial sec machinery : structure, dynamics & evolution

    NARCIS (Netherlands)

    Sluis, Elize Ouwe van der

    2006-01-01

    In een cel moeten sommige eiwitten naar de andere kant van een membraan getransporteerd worden en anderen moeten in diezelfde membraan worden ingebouwd. Er bestaan verschillende eiwittransportsystemen die deze processen kunnen uitvoeren, maar er is slechts één transport systeem dat in elke cel

  4. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    Science.gov (United States)

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  5. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins

    Directory of Open Access Journals (Sweden)

    Rinas Ursula

    2004-09-01

    Full Text Available Abstract Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures.

  7. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that ...

  8. Disruption of the Sec24d gene results in early embryonic lethality in the mouse.

    Directory of Open Access Journals (Sweden)

    Andrea C Baines

    Full Text Available Transport of newly synthesized proteins from the endoplasmic reticulum (ER to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.

  9. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-like receptors and Nod prote...ins in bacterial infection. Authors Philpott DJ, Girardi

  10. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

    Directory of Open Access Journals (Sweden)

    Mary M. Weber

    2018-01-01

    Full Text Available Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  11. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins.

    Science.gov (United States)

    Weber, Mary M; Faris, Robert

    2018-01-01

    Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis , and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  12. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  13. 46 CFR Sec. 12 - Audit.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Audit. Sec. 12 Section 12 Shipping MARITIME... TRANSACTIONS UNDER AGENCY AGREEMENTS Reports and Audit Sec. 12 Audit. (a) The owner will audit as currently as possible subsequent to audit by the agent, all documents relating to the activities, maintenance and...

  14. 46 CFR Sec. 5 - Accounting.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Accounting. Sec. 5 Section 5 Shipping MARITIME... Sec. 5 Accounting. The General Agent shall record the amounts of compensation paid from the NSA... Accounting Office, at which time the Maritime Administration will take custody of the records. [16 FR 2885...

  15. 46 CFR Sec. 9 - Communications.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Communications. Sec. 9 Section 9 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION B-CONTROL AND UTILIZATION OF PORTS RESTRICTIONS UPON THE TRANSFER OR CHANGE IN USE OR IN TERMS GOVERNING UTILIZATION OF PORT FACILITIES Sec. 9 Communications. Communications...

  16. 46 CFR Sec. 13 - Insurance.

    Science.gov (United States)

    2010-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 13 Insurance. Article 9 of the NSA-LUMPSUMREP Contract sets forth the Contractor's liabilities and obligations with... 46 Shipping 8 2010-10-01 2010-10-01 false Insurance. Sec. 13 Section 13 Shipping MARITIME...

  17. 46 CFR Sec. 15 - Subcontracts.

    Science.gov (United States)

    2010-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 15 Subcontracts. Under Article 29 of the NSA-LUMPSUMREP Contract, the Contractor is authorized to subcontract... 46 Shipping 8 2010-10-01 2010-10-01 false Subcontracts. Sec. 15 Section 15 Shipping MARITIME...

  18. The diagnostic value of c-reactive protein estimation in differentiating bacterial from viral meningitis

    International Nuclear Information System (INIS)

    Sheikh, A.

    2001-01-01

    Objective: To evaluate the efficacy of serum and CSF C-reactive protein (C-rp) in differentiating bacterial from viral meningitis. Design: An observational, respective hospital-based study. Place and duration of study: It was conducted at the Department of Medicine and Department of Pediatrics, Shaikh Zayed Postgraduate Medical Institute Lahore, Over a Period of one year between march, 1999 and March, 2000. Subject and Methods: A randomized group of thirty patients, who presented with clinical features, suggestive of meningitis, were included in the study. C-reactive protein determinations were performed by latex agglutination method on the serum and cerebrospinal fluid (CSF) of these patients. Results: In the present study, c-reactive protein was found to be a more sensitive test for differentiating bacterial from non-bacterial meningitis on initial examination than the usual conventional methods used to diagnose bacterial meningitis. CSF C-reactive protein had a greater sensitivity (92% as compared to serum C-reactive protein (71%). Conclusion: C-reactive protein determination in CSF was found to be a useful indicator of bacterial meningitis that can be used to distinguish it from viral meningitis. (author)

  19. Characterization and expression of secA in Mycobacterium avium.

    Science.gov (United States)

    Limia, A; Sangari, F J; Wagner, D; Bermudez, L E

    2001-04-13

    Mycobacterium avium is both a pathogen that infects several hosts such as humans, pigs, and birds, as well as a microorganism that is encountered in environmental sources (soil and water). Protein secretion by the bacterium is likely to influence its ability to overcome adverse and competitive conditions both within or outside the host. Using a combination of cloning and information available in the databank, we characterized the secA gene from M. avium, encoding for a major preprotein translocase subunit associated with the secretion system of prokaryotics. In addition, we cloned the secA promoter sequence in a reporter construct upstream of a promoterless gfp. It was determined that the secA of M. avium shares large homology with the secA of Mycobacterium tuberculosis but not with secA of Mycobacterium leprae. secA expression was determined to be greater at logarithmic growth phase although it was also expressed at low levels during the stationary phase. secA expression was also observed when the bacteria were incubated in water as well as within human monocyte-derived macrophages and in conditions that are associated with biofilm formation. Future evaluation of the sec pathway in M. avium might provide important information about secreted proteins that are required for survival in different environments.

  20. Identifying bacterial immune evasion proteins using phage display

    NARCIS (Netherlands)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional

  1. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...... of proteins were clustered based on sequence domains so that each group represented a protein function. Each function was then modeled using Arti- ficial Neural Networks (ANN) and the model was evaluated based on its ability to identify true positives and negatives, that is proteins with or without...... the function of the model. The models were used to annotate a number of proteins without functional annotations and predicted functions for 98% of the genes. Evaluation of the precision of the method was performed, using data from the Critical Assessment of Functional Annotation (CAFA) project, and correct...

  2. Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance

    Science.gov (United States)

    2007-04-01

    in double-distilled de-ionized water (dH2O) [15,16], 1% dimethylsulphoxide (DMSO, a HO scavenger) [15] conferred substantial protection on super...O’loughlin EJ, et al. (2004) Elemental and redox analysis of single bacterial cells by x-ray microbeam analysis. Science 306: 686–687. 26. Lin J, Qi R, Aston C...Brennan S, editors. Synchrotron Radiation Instru- mentation: Eleventh U.S. National Conference . Stanford, California, 13–15 October 1999. CP521

  3. Methyl-accepting protein associated with bacterial sensory phodopsin I

    International Nuclear Information System (INIS)

    Spudich, E.N.; Hasselbacher, C.A.; Spudich, J.L.

    1988-01-01

    In vivo radiolabeling of Halaobacterium halobium phototaxis mutants and revertants with L-[methyl- 3 H] methionine implicated seven methyl-accepting protein bands with apparent molecular masses from 65 to 150 kilodaltons (kDa) in adaptation of the organism to chemo and photo stimuli, and one of these (94 kDa) was specifically implicated in photoaxis. The lability of the radiolabeled bands to mild base treatment indicated the the methyl linkages are carboxylmethylesters, as is the case in the eubacterial chemotaxis receptor-transducers. The 94-kDa protein was present in increased amounts in an overproducer of the apoprotein of sensory rhodopsin I, one of two retinal-containing photoaxis receptors in H. halobium. It was absent in a strain the contained sensory rhodopsin II and that lacked sensory rhodopsin I and was also absent in a mutant that lacked both photoreceptors. Based in the role of methyl-accepting proteins in chemotaxis in other bacteria, we suggest that the 94-kDa protein is the signal transducer for sensory rhodopsin I. By [ 3 H]retinal labeling studies, we previously identified a 25-kDa retinal-binding polypeptide that was derived from photochemically reactive sensory rhodopsin I. When H. halobium membranes containing sensory rhodopsin I were treated by a procedure that stably reduced [ 3 H] retinal onto the 25-kDa apoprotein, a 94-kDa protein was also found to be radiolabeled. Protease digestion confirmed that the 94-kDa retinal-labeled protein was the same as the methyl-accepting protein that was suggested above to be the siginal transducer for sensory rhodopsin I. Possible models are that the 25- and 94-kDa proteins are tightly interacting components of the photosensory signaling machinery or that both are forms of sensory rhodopsin I

  4. [An active Romanian organization: SECS].

    Science.gov (United States)

    Pedersen, B

    1994-05-01

    Under the old regime in Romania, no contraceptives were available and the media campaigned against contraception. Abortion was only allowed for women older than 45 years who had more than 5 children or for medical reasons. Thus, women sought illegal abortions which were performed under unhygienic conditions, resulting in the highest maternal mortality rate in Europe (1.69/1000 live births). After the fall of the old regime, the abortion law was liberalized but the number of abortions remained high (4 abortions for each live birth). Maternal mortality fell considerably, however. In 1989, after the fall, 20 volunteers created the Society for Education on Contraception and Sexuality (SECS) to address all aspects of family planning: information, education, organization, and services. It became affiliated with IPPF in 1992. Initially, SECS actively supported expansion of family planning nationwide, attempted organization activities for health professionals, and to set up model family planning centers. Romania now has a national family planning program operated through maternal and child health centers. SECS operates 6 model centers, but concentrates its efforts towards information and promotion. Its main goal is to encourage practitioners to propose family planning to their patients. One of SECS' 6 model centers is in Timisoara. It serves, on average, 2400 clients/year which is a very small number considering that there are 19,200 abortions in Timisoara each year. There are 50,000 women in Timisoara who could benefit from SECS' clinic. Practitioners at government clinics have prescribed practically no contraceptives. Obstetric/gynecology clinics grant a low priority to family planning. IPPF and CEDPA support SECS. SECS receives a minimal fee from clients, which covers just 2% of incurred expenses. SECS needs to find other funding resources.

  5. A bacterial two-hybrid system that utilizes Gateway cloning for rapid screening of protein-protein interactions.

    Science.gov (United States)

    Karna, S L Rajasekhar; Zogaj, Xhavit; Barker, Jeffrey R; Seshu, Janakiram; Dove, Simon L; Klose, Karl E

    2010-11-01

    Comprehensive clone sets representing the entire genome now exist for a large number of organisms. The Gateway entry clone sets are a particularly useful means to study gene function, given the ease of introduction into any Gateway-suitable destination vector. We have adapted a bacterial two-hybrid system for use with Gateway entry clone sets, such that potential interactions between proteins encoded within these clone sets can be determined by new destination vectors. We show that utilizing the Gateway clone sets for Francisella tularensis and Vibrio cholerae, known interactions between F. tularensis IglA and IglB and V. cholerae VipA and VipB could be confirmed with these destination vectors. Moreover, the introduction of unique tags into each vector allowed for visualization of the expressed hybrid proteins via Western immunoblot. This Gateway-suitable bacterial two-hybrid system provides a new tool for rapid screening of protein-protein interactions.

  6. Reversals and collisions optimize protein exchange in bacterial swarms

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  7. Coexisting protist-bacterial community accelerates protein transformation in microcosm experiments

    Directory of Open Access Journals (Sweden)

    Ngo Vy Thao

    2014-12-01

    Full Text Available Proteins constitute the major portion of labile substances in the marine environment and are an important source of organic matter supporting marine ecosystems. However, previous studies have revealed that specific bacterial membrane proteins are refractory in the oceans. We here show by kinetic analyses of protease degradation activity using inactivated Pseudomonas aeruginosa (Pa cells as a proteinaceous substrate that bacterial proteases are insufficient to completely hydrolyze proteins, which may partially cause the protein accumulation in seawater. Protease activity was monitored simultaneously in 8 microcosms subjected to differing conditions. Some Pa proteins were retained for 30 days in the presence of bacteria without protists, whereas the Pa proteins were completely disappeared in the presence of both, indicating that these proteins were substantially incorporated into protist biomass. Our result suggests that protists play an important role in the transformation of bacterial proteins in seawater. Our experiments also imply that the functional/taxonomic diversity should be taken into account when considering decomposition activity in marine environments.

  8. An ER-directed fusion protein comprising a bacterial subtilisin ...

    African Journals Online (AJOL)

    nausch

    Many recombinant therapeutic proteins have been expressed in transgenic plants to demonstrate proof-of- concept and there have been significant improvements in yields (Sharma and Sharma, 2009). However, downstream processing costs remain a major constraint for the commercial development of plant-derived.

  9. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems.

    Science.gov (United States)

    Feeley, Eric M; Pilla-Moffett, Danielle M; Zwack, Erin E; Piro, Anthony S; Finethy, Ryan; Kolb, Joseph P; Martinez, Jennifer; Brodsky, Igor E; Coers, Jörn

    2017-02-28

    Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella -containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia- containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella- containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.

  10. Cryo-Electron Microscopic Structure of SecA Bound to the 70S Ribosome.

    NARCIS (Netherlands)

    Singh, R.; Kraft, C.; Jaiswal, R.; Sejwal, K.; Kasaragod, V.B.; Kuper, J.; Berger, J.; Mielke, T.; Luirink, J.; Bhushan, S.

    2014-01-01

    Background: SecA targets preproteins to the protein-conducting channel in bacteria. Results: Both the single and double copies of SecA bind to the 70S ribosome. Conclusion: Two copies of SecA completely surround the polypeptide tunnel exit. Significance: The structures suggest a function of the

  11. Exploitation of an iron transporter for bacterial protein antibiotic import.

    Science.gov (United States)

    White, Paul; Joshi, Amar; Rassam, Patrice; Housden, Nicholas G; Kaminska, Renata; Goult, Jonathan D; Redfield, Christina; McCaughey, Laura C; Walker, Daniel; Mohammed, Shabaz; Kleanthous, Colin

    2017-11-07

    Unlike their descendants, mitochondria and plastids, bacteria do not have dedicated protein import systems. However, paradoxically, import of protein bacteriocins, the mechanisms of which are poorly understood, underpins competition among pathogenic and commensal bacteria alike. Here, using X-ray crystallography, isothermal titration calorimetry, confocal fluorescence microscopy, and in vivo photoactivatable cross-linking of stalled translocation intermediates, we demonstrate how the iron transporter FpvAI in the opportunistic pathogen Pseudomonas aeruginosa is hijacked to translocate the bacteriocin pyocin S2 (pyoS2) across the outer membrane (OM). FpvAI is a TonB-dependent transporter (TBDT) that actively imports the small siderophore ferripyoverdine (Fe-Pvd) by coupling to the proton motive force (PMF) via the inner membrane (IM) protein TonB1. The crystal structure of the N-terminal domain of pyoS2 (pyoS2 NTD ) bound to FpvAI ( K d = 240 pM) reveals that the pyocin mimics Fe-Pvd, inducing the same conformational changes in the receptor. Mimicry leads to fluorescently labeled pyoS2 NTD being imported into FpvAI-expressing P. aeruginosa cells by a process analogous to that used by bona fide TBDT ligands. PyoS2 NTD induces unfolding by TonB1 of a force-labile portion of the plug domain that normally occludes the central channel of FpvAI. The pyocin is then dragged through this narrow channel following delivery of its own TonB1-binding epitope to the periplasm. Hence, energized nutrient transporters in bacteria also serve as rudimentary protein import systems, which, in the case of FpvAI, results in a protein antibiotic 60-fold bigger than the transporter's natural substrate being translocated across the OM. Copyright © 2017 the Author(s). Published by PNAS.

  12. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  13. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection.

    Science.gov (United States)

    Perkowski, E F; Zulauf, K E; Weerakoon, D; Hayden, J D; Ioerger, T R; Oreper, D; Gomez, S M; Sacchettini, J C; Braunstein, M

    2017-04-25

    Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory ( in vitro ) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT ( ex ported i n vivo t echnology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro ). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions. IMPORTANCE There is long-standing interest in identifying exported proteins of bacteria as they play critical roles in physiology and virulence and are commonly immunogenic antigens and targets of antibiotics. While significant effort has been made to identify the bacterial proteins that are exported beyond the cytoplasm to the membrane, cell wall, or host environment, current methods to identify exported proteins are limited by their use of bacteria growing under laboratory ( in vitro ) conditions. Because in vitro conditions do not mimic the complexity of the host environment, critical exported proteins that are preferentially exported in the context of infection may be overlooked. We developed a novel method to identify proteins that are exported by bacteria during host infection and applied it to identify Mycobacterium tuberculosis proteins exported in a mouse model of tuberculosis

  14. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  15. Pro-inflammatory Effects of Bacterial Recombinant Human C-Reactive Protein are Caused by Contamination with Bacterial Products not by C-Reactive Protein Itself

    Science.gov (United States)

    Pepys, Mark B.; Hawkins, Philip N.; Kahan, Melvyn C.; Tennent, Glenys A.; Gallimore, J. Ruth; Graham, David; Sabin, Caroline A.; Zychlinsky, Arturo; de Diego, Juana

    2006-01-01

    Intravenous administration to human volunteers of a commercial preparation of recombinant human C-reactive protein (CRP) produced in E. coli was recently reported in this journal to induce an acute phase response of serum amyloid A protein (SAA) and of CRP itself, and to activate the coagulation system. The authors concluded that CRP is probably a mediator of atherothrombotic disease. Here we confirm that this recombinant CRP preparation was pro-inflammatory both for mouse macrophages in vitro and for mice in vivo, but show that pure natural human CRP had no such activity. Furthermore mice transgenic for human CRP, and expressing it throughout their lives, maintained normal concentrations of their most sensitive endogenous acute phase reactants, SAA and serum amyloid P component (SAP). The patterns of in vitro cytokine induction and of in vivo acute phase stimulation by the recombinant CRP preparation were consistent with contamination by bacterial products, and there was 46.6 EU of apparent endotoxin activity per mg of CRP in the bacterial product, compared to 0.9 EU per mg of our isolated natural human CRP preparation. The absence of any pro-inflammatory activity in natural CRP for macrophages or healthy mice strongly suggests that the in vivo effects of the recombinant preparation observed in humans were due to pro-inflammatory bacterial products and not human CRP. PMID:16254214

  16. SNARE-encoding genes VdSec22 and VdSso1 mediate protein secretion required for full virulence in Verticillium dahliae

    Science.gov (United States)

    Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle fusion components that included 22 soluble N-ethylmaleimide...

  17. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association

    NARCIS (Netherlands)

    Zacharogianni, M.; Kondylis, V.; Tang, Y.; Farhan, H.; Xanthakis, D.; Fuchs, F.; Boutros, M.; Rabouille, C.

    2011-01-01

    RNAi screening for kinases regulating the functional organization of the early secretory pathway in Drosophila S2 cells has identified the atypical Mitotic-Associated Protein Kinase (MAPK) Extracellularly regulated kinase 7 (ERK7) as a new modulator. We found that ERK7 negatively regulates secretion

  18. Jun N-terminal protein kinase enhance middle ear mucosal proliferation during bacterial otitis media

    OpenAIRE

    Furukawa, Masayuki; Ebmayer, Jörg; Pak , Kwang; Austin, Darrell A.; Melhus , Åsa; Webster, Nicholas J. G.; Ryan, Allen F.

    2007-01-01

    Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but pa...

  19. Molecular mechanism of pore creation in bacterial membranes by amyloid proteins

    International Nuclear Information System (INIS)

    Tsigelny, I F; Sharikov, Y; Miller, M A; Masliah, E

    2009-01-01

    This study explores the mechanism of pore creation in cellular membranes by MccE92 bacterial proteins. The results of this study are then compared with the mechanism of alpha-synuclein (aS)-based pore formation in mammalian cells, and its role in Parkinson's disease.

  20. SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review

    Directory of Open Access Journals (Sweden)

    Skyla A. Duncan

    2017-12-01

    Full Text Available Severe bacterial infections can lead to both acute and chronic inflammatory conditions. Innate immunity is the first defense mechanism employed against invading bacterial pathogens through the recognition of conserved molecular patterns on bacteria by pattern recognition receptors (PRRs, especially the toll-like receptors (TLRs. TLRs recognize distinct pathogen-associated molecular patterns (PAMPs that play a critical role in innate immune responses by inducing the expression of several inflammatory genes. Thus, activation of immune cells is regulated by cytokines that use the Janus kinase/signal transducers and activators of transcription (JAK/STAT signaling pathway and microbial recognition by TLRs. This system is tightly controlled by various endogenous molecules to allow for an appropriately regulated and safe host immune response to infections. Suppressor of cytokine signaling (SOCS family of proteins is one of the central regulators of microbial pathogen-induced signaling of cytokines, principally through the inhibition of the activation of JAK/STAT signaling cascades. This review provides recent knowledge regarding the role of SOCS proteins during bacterial infections, with an emphasis on the mechanisms involved in their induction and regulation of antibacterial immune responses. Furthermore, the implication of SOCS proteins in diverse processes of bacteria to escape host defenses and in the outcome of bacterial infections are discussed, as well as the possibilities offered by these proteins for future targeted antimicrobial therapies.

  1. Bacterial collagen-like proteins that form triple-helical structures

    Science.gov (United States)

    Yu, Zhuoxin; An, Bo; Ramshaw, John A.M.; Brodsky, Barbara

    2014-01-01

    A large number of collagen-like proteins have been identified in bacteria during the past ten years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in E. coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35–39 °C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions. PMID:24434612

  2. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    Directory of Open Access Journals (Sweden)

    Sungback Cho

    2015-09-01

    Full Text Available This study was performed to investigate the effect of different levels of dietary crude protein (CP on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg fed diets containing three levels of dietary CP (20%, 17.5%, and 15% and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05 in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05 in CP 15% than in CP 20% group. There was a positive correlation (p<0.05 between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

  3. Cooperative Binding and Activation of Fibronectin by a Bacterial Surface Protein*

    Science.gov (United States)

    Marjenberg, Zoe R.; Ellis, Ian R.; Hagan, Robert M.; Prabhakaran, Sabitha; Höök, Magnus; Talay, Susanne R.; Potts, Jennifer R.; Staunton, David; Schwarz-Linek, Ulrich

    2011-01-01

    Integrin-dependent cell invasion of some pathogenic bacteria is mediated by surface proteins targeting the extracellular matrix protein fibronectin (FN). Although the structural basis for bacterial FN recognition is well understood, it has been unclear why proteins such as streptococcal SfbI contain several FN-binding sites. We used microcalorimetry to reveal cooperative binding of FN fragments to arrays of binding sites in SfbI. In combination with thermodynamic analyses, functional cell-based assays show that SfbI induces conformational changes in the N-terminal 100-kDa region of FN (FN100kDa), most likely by competition with intramolecular interactions defining an inactive state of FN100kDa. This study provides insights into how long range conformational changes resulting in FN activation may be triggered by bacterial pathogens. PMID:21059652

  4. Bacterial protein meal in diets for growing pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Kjos, N.P.

    2007-01-01

    % of the digestible nitrogen (N), respectively. Once during each balance period, 22-h respiration experiments were performed using indirect calorimetry. Daily weight gain, feed intake and feed conversion rate were the same for all diets. The apparent digestibility of N was lower on diet BP10 than on BP0 (P = 0...... blocks according to age. One pig from each litter was fed one of the four experimental diets. Soya-bean meal was replaced with BPM on the basis of digestible protein, and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), corresponding to 0%, 17%, 35% and 52.......002), whereas the apparent digestibility of energy was similar on all diets. The retention of nitrogen did not differ between diets and was 1.50, 1.53, 1.33 and 1.46 g N per kg0.75 per day on BP0, BP5, BP10 and BP15, respectively. Neither metabolisable energy intake nor heat production were affected...

  5. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment.

    Science.gov (United States)

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K

    2012-08-22

    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  6. Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole

    International Nuclear Information System (INIS)

    Backbone dynamics of mouse major urinary protein I (MUP-I) was studied by 15 N NMR relaxation. Data were collected at multiple temperatures for a complex of MUP-I with its natural pheromonal ligand, 2-sec-4,5-dihydrothiazole, and for the free protein. The measured relaxation rates were analyzed using the reduced spectral density mapping. Graphical analysis of the spectral density values provided an unbiased qualitative picture of the internal motions. Varying temperature greatly increased the range of analyzed spectral density values and therefore improved reliability of the analysis. Quantitative parameters describing the dynamics on picosecond to nanosecond time scale were obtained using a novel method of simultaneous data fitting at multiple temperatures. Both methods showed that the backbone flexibility on the fast time scale is slightly increased upon pheromone binding, in accordance with the previously reported results. Zero-frequency spectral density values revealed conformational changes on the microsecond to millisecond time scale. Measurements at different temperatures allowed to monitor temperature depencence of the motional parameters

  7. Clinical Prognosis in Neonatal Bacterial Meningitis: The Role of Cerebrospinal Fluid Protein

    Science.gov (United States)

    Zhao, Dongying; Ren, Fang; Luo, Zhongcheng; Zhang, Yongjun

    2015-01-01

    Neonates are at high risk of meningitis and of resulting neurologic complications. Early recognition of neonates at risk of poor prognosis would be helpful in providing timely management. From January 2008 to June 2014, we enrolled 232 term neonates with bacterial meningitis admitted to 3 neonatology departments in Shanghai, China. The clinical status on the day of discharge from these hospitals or at a postnatal age of 2.5 to 3 months was evaluated using the Glasgow Outcome Scale (GOS). Patients were classified into two outcome groups: good (167 cases, 72.0%, GOS = 5) or poor (65 cases, 28.0%, GOS = 1–4). Neonates with good outcome had less frequent apnea, drowsiness, poor feeding, bulging fontanelle, irritability and more severe jaundice compared to neonates with poor outcome. The good outcome group also had less pneumonia than the poor outcome group. Besides, there were statistically significant differences in hemoglobin, mean platelet volume, platelet distribution width, C-reaction protein, procalcitonin, cerebrospinal fluid (CSF) glucose and CSF protein. Multivariate logistic regression analyses suggested that poor feeding, pneumonia and CSF protein were the predictors of poor outcome. CSF protein content was significantly higher in patients with poor outcome. The best cut-offs for predicting poor outcome were 1,880 mg/L in CSF protein concentration (sensitivity 70.8%, specificity 86.2%). After 2 weeks of treatment, CSF protein remained higher in the poor outcome group. High CSF protein concentration may prognosticate poor outcome in neonates with bacterial meningitis. PMID:26509880

  8. Clinical Prognosis in Neonatal Bacterial Meningitis: The Role of Cerebrospinal Fluid Protein.

    Science.gov (United States)

    Tan, Jintong; Kan, Juan; Qiu, Gang; Zhao, Dongying; Ren, Fang; Luo, Zhongcheng; Zhang, Yongjun

    2015-01-01

    Neonates are at high risk of meningitis and of resulting neurologic complications. Early recognition of neonates at risk of poor prognosis would be helpful in providing timely management. From January 2008 to June 2014, we enrolled 232 term neonates with bacterial meningitis admitted to 3 neonatology departments in Shanghai, China. The clinical status on the day of discharge from these hospitals or at a postnatal age of 2.5 to 3 months was evaluated using the Glasgow Outcome Scale (GOS). Patients were classified into two outcome groups: good (167 cases, 72.0%, GOS = 5) or poor (65 cases, 28.0%, GOS = 1-4). Neonates with good outcome had less frequent apnea, drowsiness, poor feeding, bulging fontanelle, irritability and more severe jaundice compared to neonates with poor outcome. The good outcome group also had less pneumonia than the poor outcome group. Besides, there were statistically significant differences in hemoglobin, mean platelet volume, platelet distribution width, C-reaction protein, procalcitonin, cerebrospinal fluid (CSF) glucose and CSF protein. Multivariate logistic regression analyses suggested that poor feeding, pneumonia and CSF protein were the predictors of poor outcome. CSF protein content was significantly higher in patients with poor outcome. The best cut-offs for predicting poor outcome were 1,880 mg/L in CSF protein concentration (sensitivity 70.8%, specificity 86.2%). After 2 weeks of treatment, CSF protein remained higher in the poor outcome group. High CSF protein concentration may prognosticate poor outcome in neonates with bacterial meningitis.

  9. Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1).

    Science.gov (United States)

    Schubert, Desirée; Klein, Marie-Christine; Hassdenteufel, Sarah; Caballero-Oteyza, Andrés; Yang, Linlin; Proietti, Michele; Bulashevska, Alla; Kemming, Janine; Kühn, Johannes; Winzer, Sandra; Rusch, Stephan; Fliegauf, Manfred; Schäffer, Alejandro A; Pfeffer, Stefan; Geiger, Roger; Cavalié, Adolfo; Cao, Hongzhi; Yang, Fang; Li, Yong; Rizzi, Marta; Eibel, Hermann; Kobbe, Robin; Marks, Amy L; Peppers, Brian P; Hostoffer, Robert W; Puck, Jennifer M; Zimmermann, Richard; Grimbacher, Bodo

    2017-08-04

    Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1, segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  10. Participation of CD1 molecules in the presentation of bacterial protein antigens in humans.

    Science.gov (United States)

    Ulanova, M; Tarkowski, A; Hahn-Zoric, M; Hanson, L A

    1999-10-01

    Human CD1 molecules, expressed on the surface of professional antigen-presenting cells (including dendritic cells, Langerhans' cells, B cells and activated monocytes) are structurally homologous to major histocompatibility complex (MHC) class I and class II molecules. CD1b and CD1c have been shown to present nonpeptide bacterial antigens to T cells. We hypothesized that CD1 molecules may also be involved in the presentation of bacterial protein antigens. Human peripheral blood mononuclear cells (PBMC) were exposed to two medically important proteins, tetanus toxoid (TT) and purified protein derivative (PPD), with and without murine monoclonal antibodies (MoAbs) specific for CD1a, CD1b and CD1c. All the MoAbs substantially inhibited the proliferative responses of PBMC to TT and PPD. Simultaneous interaction of CD1 and MHC class II molecules was even more inhibitory to these antigen-specific proliferative responses. In contrast, neither mixed lymphocyte reaction nor superantigen and mitogenic responses were affected by CD1-specific antibodies, indicating a certain restriction pattern in antigen presentation. Our findings suggest that, besides MHC class I and II molecules, there is a family of nonpolymorphic cell surface molecules that is able to present certain bacterial protein antigens to T cells.

  11. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2009-01-01

    with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...... protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C...... parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14-18 h after lung...

  12. Oxidative stress and S-100B protein in children with bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Hamed Enas A

    2009-10-01

    Full Text Available Abstract Background Bacterial meningitis is often associated with cerebral compromise which may be responsible for neurological sequelae in nearly half of the survivors. Little is known about the mechanisms of CNS involvement in bacterial meningitis. Several studies have provided substantial evidence for the key role of nitric oxide (NO and reactive oxygen species in the complex pathophysiology of bacterial meningitis. Methods In the present study, serum and CSF levels of NO, lipid peroxide (LPO (mediators for oxidative stress and lipid peroxidation; total thiol, superoxide dismutase (SOD (antioxidant mediators and S-100B protein (mediator of astrocytes activation and injury, were investigated in children with bacterial meningitis (n = 40. Albumin ratio (CSF/serum is a marker of blood-CSF barriers integrity, while mediator index (mediator ratio/albumin ratio is indicative of intrathecal synthesis. Results Compared to normal children (n = 20, patients had lower serum albumin but higher NO, LPO, total thiol, SOD and S-100B. The ratios and indices of NO and LPO indicate blood-CSF barriers dysfunction, while the ratio of S-100B indicates intrathecal synthesis. Changes were marked among patients with positive culture and those with neurological complications. Positive correlation was found between NO index with CSF WBCs (r = 0.319, p Conclusion This study suggests that loss of integrity of brain-CSF barriers, oxidative stress and S-100B may contribute to the severity and neurological complications of bacterial meningitis.

  13. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    Science.gov (United States)

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  14. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation.

    Science.gov (United States)

    Sadarangani, Manish; Hoe, Claire J; Makepeace, Katherine; van der Ley, Peter; Pollard, Andrew J

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5'-CTCTT-3' coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opa genes demonstrated variable rates of PV, between 6.4 × 10(-4) and 6.9 × 10(-3) per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r(2) = 0.77, p = 0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opa genes in UK disease isolates (315/463, 68.0%) were in the 'on' phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  15. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection

    Science.gov (United States)

    Perkowski, E. F.; Zulauf, K. E.; Weerakoon, D.; Hayden, J. D.; Ioerger, T. R.; Oreper, D.; Gomez, S. M.; Sacchettini, J. C.

    2017-01-01

    ABSTRACT Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory (in vitro) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT (exported in vivo technology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions. PMID:28442606

  16. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance].

    Science.gov (United States)

    Xie, Long-xiang; Yu, Zhao-xiao; Guo, Si-yao; Li, Ping; Abdalla, Abualgasim Elgaili; Xie, Jian-ping

    2015-08-01

    The increasing antibiotic resistance is now threatening to take us back to a pre-antibiotic era. Bacteria have evolved diverse resistance mechanisms, on which in-depth research could help the development of new strategies to control antibiotic-resistant infections. Epigenetic alterations and protein post-translational modifications (PTMs) play important roles in multiple cellular processes such as metabolism, signal transduction, protein degradation, DNA replication regulation and stress response. Recent studies demonstrated that epigenetics and PTMs also play vital roles in bacterial antibiotic resistance. In this review, we summarize the regulatory roles of epigenetic factors including DNA methylation and regulatory RNAs as well as PTMs such as phosphorylation and succinylation in bacterial antibiotic resistance, which may provide innovative perspectives on selecting antibacterial targets and developing antibiotics.

  18. Bacterial infection affects protein synthesis in primary lymphoid tissues and circulating lymphocytes of rats.

    Science.gov (United States)

    Papet, Isabelle; Ruot, Benoît; Breuillé, Denis; Walrand, Stéphane; Farges, Marie-Chantal; Vasson, Marie-Paule; Obled, Christiane

    2002-07-01

    Bacterial infection alters whole-body protein homeostasis. Although immune cells are of prime importance for host defense, the effect of sepsis on their protein synthesis rates is poorly documented. We analyzed protein synthesis rates in rat primary lymphoid tissues and circulating lymphocytes after infection. Male Sprague-Dawley rats were studied 1, 2, 6 or 10 d after an intravenous injection of live Escherichia coli. Control healthy rats consumed food ad libitum (d 0) or were pair-fed to infected rats. Protein synthesis was quantified using a flooding dose of L-(4,4,4-(2)H(3))valine. Sepsis induced a delayed increase in total blood leukocytes and a rapid and persistent inversion of the counts. Basal fractional rates of protein synthesis (ks) were 117, 73 and 29%/d in bone marrow, thymus and circulating lymphocytes, respectively. Pair-feeding strongly depressed the absolute protein synthesis rates (ASR) of bone marrow (d 2 and 10) and thymus (d 2-10). The infection per se increased bone marrow, thymus and circulating lymphocyte ks but at various postinfection times. It decreased bone marrow (d 1) and thymus (d 1 and 2) ASR but increased lymphocyte (d 2 and 10) and bone marrow (d 10) ASR. Our results reflect the deleterious effect of anorexia on primary lymphoid tissues. The host defense against bacterial infection exhibited time- and tissue-dependent modifications of protein synthesis, indicating that blood lymphocyte protein data are not representative of the immune system as a whole. Optimization of nutritional supports would be facilitated by including protein synthesis measurements of the immune system.

  19. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen......Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence...... of complementary rare codons in genes-of-interest. Here we show that such extra tRNA, supplied by the commonly used pLysSRARE2 plasmid, can cause two side effects: (1) growth and gene expression can be impaired, and (2) apparent positive effects can be caused by differential expression of the lysozyme gene encoded...... on the same plasmid and not the tRNAs per se. These phenomena seem to have been largely overlooked despite the huge popularity of the T7/pET-based systems for bacterial protein production....

  20. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  1. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  2. Automated lanes detection and comparison of bacterial electrophoretic protein fingerprints using fast Fourier transformation.

    Science.gov (United States)

    Millership, S; Ragoonaden, K

    1992-08-01

    A method of computer-automated analysis of bacterial fingerprints produced by electrophoresis of proteins in a one-dimensional slab gel system is described. Proteins were visualized by silver staining. Western blotting, or autoradiography. Gels were recorded with a CCD camera, and after initial manual removal of the unwanted image margins, track margins were identified and extracted and a normalized trace was produced automatically using Fourier routines to smooth plots required for this process. Normalized traces were then compared by Fourier correlation after application of a high-pass step filter.

  3. Natural Products at Work: Structural Insights into Inhibition of the Bacterial Membrane Protein MraY.

    Science.gov (United States)

    Koppermann, Stefan; Ducho, Christian

    2016-09-19

    Natural(ly) fit: The X-ray crystal structure of the bacterial membrane protein MraY in complex with its natural product inhibitor muraymycin D2 is discussed. MraY catalyzes one of the membrane-associated steps in peptidoglycan biosynthesis and, therefore, represents a promising target for novel antibiotics. Structural insights derived from the protein-inhibitor complex might now pave the way for the development of new antimicrobial drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    Science.gov (United States)

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  5. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid.

    Science.gov (United States)

    Muñoz-Espín, Daniel; Holguera, Isabel; Ballesteros-Plaza, David; Carballido-López, Rut; Salas, Margarita

    2010-09-21

    The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.

  6. Changes In Protein Abundance Are Observed In Bacterial Isolates from a Natural Host

    Directory of Open Access Journals (Sweden)

    Megan Anne Rees

    2015-10-01

    Full Text Available Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterisation of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.

  7. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    Science.gov (United States)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  8. Changes in protein abundance are observed in bacterial isolates from a natural host.

    Science.gov (United States)

    Rees, Megan A; Stinear, Timothy P; Goode, Robert J A; Coppel, Ross L; Smith, Alexander I; Kleifeld, Oded

    2015-01-01

    Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterization of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the lymph nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins were identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.

  9. Multicolor imaging of bacterial nucleoid and division proteins with blue, orange and near-infrared fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Fabai eWu

    2015-06-01

    Full Text Available Studies of the spatiotemporal protein dynamics within live bacterial cells impose a strong demand for multi-color imaging. Despite the increasingly large collection of fluorescent-protein variants engineered to date, only a few of these were successfully applied in bacteria. Here, we explore the performance of recently engineered variants with the blue (TagBFP, orange (TagRFP-T, mKO2 and far-red (mKate2 spectral colors by tagging HU, LacI, MinD, and FtsZ for visualizing the nucleoid and the cell division process. We find that, these fluorescent proteins outperformed previous versions in terms of brightness and photostability at their respective spectral range, both when expressed as cytosolic label and when fused to native proteins. As this indicates that their folding is sufficiently fast, these proteins thus successfully expand the applicable spectra for multi-color imaging in bacteria. A near-infrared protein (eqFP670 is found to be the most red-shifted protein applicable to bacteria so far, with brightness and photostability that are advantageous for cell-body imaging, such as in microfluidic devices. Despite the multiple advantages, we also report the alarming observation that TagBFP directly interacts with TagRFP-T, causing interference of localization patterns between their fusion proteins. Our application of diverse fluorescent proteins for endogenous tagging provides guidelines for future engineering of fluorescent fusions in bacteria, specifically: 1 The performance of newly developed fluorescent proteins should be quantified in vivo for their introduction into bacteria; 2 spectral crosstalk and inter-variant interactions between fluorescent proteins should be carefully examined for multi-color imaging; and 3 successful genomic fusion to the 5’-end of a gene strongly depends on the translational read-through of the inserted coding sequence.

  10. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Science.gov (United States)

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  11. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria.

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Zhao, Fan; Shi, Xuebin; Li, He; Li, Yingqiu; Zhu, Weiyun; Xu, Xinglian; Li, Chunbao; Lu, Chunbao; Zhou, Guanghong

    2015-10-14

    Long-term consumption of red meat has been considered a potential risk to gut health, but this is based on clinic investigations, excessive intake of fat, heme and some injurious compounds formed during cooking or additions to processed meat products. Whether intake of red meat protein affects gut bacteria and the health of the host remains unclear. In this work, we compared the composition of gut bacteria in the caecum, by sequencing the V4-V5 region of 16S ribosomal RNA gene, obtained from rats fed with proteins from red meat (beef and pork), white meat (chicken and fish) and other sources (casein and soy). The results showed significant differences in profiles of gut bacteria between the six diet groups. Rats fed with meat proteins had a similar overall structure of caecal bacterial communities separated from those fed non-meat proteins. The beneficial genus Lactobacillus was higher in the white meat than in the red meat or non-meat protein groups. Also, rats fed with meat proteins and casein had significantly lower levels of lipopolysaccharide-binding proteins, suggesting that the intake of meat proteins may maintain a more balanced composition of gut bacteria, thereby reducing the antigen load and inflammatory response in the host.

  12. An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases

    Directory of Open Access Journals (Sweden)

    Sven Lang

    2017-11-01

    Full Text Available The membrane of the endoplasmic reticulum (ER of nucleated human cells harbors the protein translocon, which facilitates membrane integration or translocation of almost every newly synthesized polypeptide targeted to organelles of the endo- and exocytotic pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins and complexes that are permanently or transiently associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, modification of precursor polypeptides in transit through the Sec61 complex, and Sec61 channel gating, i.e., dynamic regulation of the pore forming subunit to mediate precursor transport and calcium efflux. Recently, cryoelectron tomography of translocons in native ER membrane vesicles, derived from human cell lines or patient fibroblasts, and even intact cells has given unprecedented insights into the architecture and dynamics of the native translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion, and translocation of newly synthesized polypeptides as well as the putative physiological roles of the Sec61 channel as a passive ER calcium leak channel. Furthermore, the structural insights into the Sec61 channel are incorporated into an overview and update on Sec61 channel-related diseases—the Sec61 channelopathies—and novel therapeutic concepts for their treatment.

  13. A novel bacterial expression method with optimized parameters for very high yield production of triple-labeled proteins.

    Science.gov (United States)

    Murray, Victoria; Huang, Yuefei; Chen, Jianglei; Wang, Jianjun; Li, Qianqian

    2012-01-01

    The Gram-negative bacterium Escherichia coli offer a means for rapid, high-yield, and economical production of recombinant proteins. However, when preparing protein samples for NMR, high-level production of functional isotopically labeled proteins can be quite challenging. This is especially true for the preparation of triple-labeled protein samples in D(2)O ((2)H/(13)C/(15)N). The large expense and time-consuming nature of triple-labeled protein production for NMR led us to revisit the current bacterial protein expression protocols. Our goal was to develop an efficient bacterial expression method for very high-level production of triple-labeled proteins that could be routinely utilized in every NMR lab without changing expression vectors or requiring fermentation. We developed a novel high cell-density IPTG-induction bacterial expression method that combines tightly controlled traditional IPTG-induction expression with the high cell-density of auto-induction expression. In addition, we optimize several key experimental protocols and parameters to ensure that our new high cell-density bacterial expression method routinely produces 14-25 mg of triple-labeled proteins and 15-35 mg of unlabeled proteins from 50-mL bacterial cell cultures.

  14. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  16. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents

    Directory of Open Access Journals (Sweden)

    Roxanne P. Smith

    2016-07-01

    Full Text Available Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.

  17. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number...... of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild...... background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations...

  18. N-acetylation and phosphorylation of Sec complex subunits in the ER membrane

    Directory of Open Access Journals (Sweden)

    Soromani Christina

    2012-12-01

    Full Text Available Abstract Background Covalent modifications of proteins provide a mechanism to control protein function. Here, we have investigated modifications of the heptameric Sec complex which is responsible for post-translational protein import into the endoplasmic reticulum (ER. It consists of the Sec61 complex (Sec61p, Sbh1p, Sss1p which on its own mediates cotranslational protein import into the ER and the Sec63 complex (Sec63p, Sec62p, Sec71p, Sec72p. Little is known about the biogenesis and regulation of individual Sec complex subunits. Results We show that Sbh1p when it is part of the Sec61 complex is phosphorylated on T5 which is flanked by proline residues. The phosphorylation site is conserved in mammalian Sec61ß, but only partially in birds, and not in other vertebrates or unicellular eukaryotes, suggesting convergent evolution. Mutation of T5 to A did not affect the ability of mutant Sbh1p to complement the growth defect in a Δsbh1Δsbh2 strain, and did not result in a hypophosphorylated protein which shows that alternate sites can be used by the T5 kinase. A survey of yeast phosphoproteome data shows that Sbh1p can be phosphorylated on multiple sites which are organized in two patches, one at the N-terminus of its cytosolic domain, the other proximal to the transmembrane domain. Surprisingly, although N-acetylation has been shown to interfere with ER targeting, we found that both Sbh1p and Sec62p are cotranslationally N-acetylated by NatA, and N-acetyl-proteome data indicate that Sec61p is modified by the same enzyme. Mutation of the N-acetylation site, however, did not affect Sec62p function in posttranslational protein import into the ER. Disabling NatA resulted in growth retardation, but not in co- or posttranslational translocation defects or instability of Sec62p or Sbh1p. Conclusions We conclude that N-acetylation of transmembrane and tail-anchored proteins does not interfere with their ER-targeting, and that Sbh1p phosphorylation on T5

  19. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  20. The Aspergillus nidulans syntaxin PepA(Pep12) is regulated by two Sec1/Munc-18 proteins to mediate fusion events at early endosomes, late endosomes and vacuoles.

    Science.gov (United States)

    López-Berges, Manuel S; Pinar, Mario; Abenza, Juan F; Arst, Herbert N; Peñalva, Miguel A

    2016-01-01

    Syntaxins are target-SNAREs that crucially contribute to determine membrane compartment identity. Three syntaxins, Tlg2p, Pep12p and Vam3p, organize the yeast endovacuolar system. Remarkably, filamentous fungi lack the equivalent of the yeast vacuolar syntaxin Vam3p, making unclear how these organisms regulate vacuole fusion. We show that the nearly essential Aspergillus nidulans syntaxin PepA(Pep12) , present in all endocytic compartments between early endosomes and vacuoles, shares features of Vam3p and Pep12p, and is capable of forming compositional equivalents of all known yeast endovacuolar SNARE bundles including that formed by yeast Vam3p for vacuolar fusion. Our data further indicate that regulation by two Sec1/Munc-18 proteins, Vps45 in early endosomes and Vps33 in early and late endosomes/vacuoles contributes to the wide domain of PepA(Pep12) action. The syntaxin TlgB(Tlg2) localizing to the TGN appears to mediate retrograde traffic connecting post-Golgi (sorting) endosomes with the TGN. TlgB(Tlg2) is dispensable for growth but becomes essential if the early Golgi syntaxin SedV(Sed5) is compromised, showing that the Golgi can function with a single syntaxin, SedV(Sed5) . Remarkably, its pattern of associations with endosomal SNAREs is consistent with SedV(Sed5) playing roles in retrograde pathway(s) connecting endocytic compartments downstream of the post-Golgi endosome with the Golgi, besides more conventional intra-Golgi roles. © 2015 John Wiley & Sons Ltd.

  1. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  2. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.

    Science.gov (United States)

    Slininger Lee, Marilyn F; Jakobson, Christopher M; Tullman-Ercek, Danielle

    2017-10-20

    Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.

  3. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone

    2003-01-01

    The surface of AISI 316 grade stainless steel (SS) was modified with a layer of poly(ethylene glycol) (PEG) (molecular weight 5000) with the aim of preventing protein adsorption and bacterial adhesion. Model SS substrates were first modified to introduce a very high density of reactive amine groups....... The chemical composition and uniformity of the surfaces were determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SSIMS) in the imaging mode. The effects of PEI concentration and different substrate pre-cleaning methods on the structure...

  4. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  5. Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion

    International Nuclear Information System (INIS)

    Liu, S.-H.; Chou, W.-I; Lin, S.-C.; Sheu, C.-C.; Chang, Margaret Dah-Tsyr

    2005-01-01

    We have previously engineered a recombinant Pichia pastoris GS115 transformant, MSPGA-7, harboring seven copies of glucoamylase (GA) fused with modified signal peptide. High yield secretion of GA was achieved as an extra copy of SEC4 was integrated to the transformant. To elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4 S28N , was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4 S28N mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4 S28N gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated the delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. It was because expression of only one copy of SEC4 resulted in delay of cell growth at an early stage while still maintaining high level Sec4p at long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but not inhibition of cell growth was achieved. Taken together, our results demonstrate that SEC4 is essential for P. pastoris in regulating cell growth and heterologous protein secretion in a dosage-dependent manner

  6. Minimum inhibitory concentration of irradiated silk protein powder for bacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tuntivisoottikul, Kunya; Bunnak, Jintana [King Mongkut' s Institute of Technology Chaokhun Taharn Ladkrabang, Faculty of Industrial Education, Dept. of Agricultural Educaiton, Bangkok (Thailand); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    The objective of this research was to study a minimum concentration level of irradiated silk protein powder, which inhibited bacterial activity. The concentration of 100 kGy irradiated silk protein powder (ISP) solution was ranged from 5 to 15% in distilled water. The activities of three types of bacteria, Escherichia coli B/r, Bacillus subtilis M3-1 and Staphylococcus aureus K, were tested by using minimum inhibition concentration method (MIC). The results indicated that the minimum concentration level that inhibited growth of E. coli B/r and S. aureus K was 5% ISP and all concentration levels studied could not inhibit the Bacilus subtilis M3-1 activity. (author)

  7. Flocculation behaviour of hematite-kaolinite suspensions in presence of extracellular bacterial proteins and polysaccharides.

    Science.gov (United States)

    Poorni, S; Natarajan, K A

    2014-02-01

    Cells of Bacillus subtilis exhibited higher affinity towards hematite than to kaolinite. Bacterial cells were grown and adapted in the presence of hematite and kaolinite. Higher amounts of mineral-specific proteinaceous compounds were secreted in the presence of kaolinite while hematite-grown cells produced higher amounts of exopolysaccharides. Extracellular proteins (EP) exhibited higher adsorption density on kaolinite which was rendered more hydrophobic. Hematite surfaces were rendered more hydrophilic due to increased adsorption of extracellular polysaccharides (ECP). Significant surface chemical changes were produced due to interaction between minerals and extracellular proteins and polysaccharides. Iron oxides such as hematite could be effectively removed from kaolinite clays using selective bioflocculation of hematite after interaction with EP and ECP extracted from mineral-grown cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy

    Science.gov (United States)

    Khweek, Arwa Abu; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A.; Tazi, Mia; Hassan, Hoda; Majumdar, Neal; Doran, Andrew; Guirado, Evelyn; Schlesinger, Larry S.; Shuman, Howard; Amer, Amal O.

    2013-01-01

    Legionella pneumophila (L. pneumophila) is an intracellular bacterium of human alveolar macrophages that causes Legionnaires' disease. In contrast to humans, most inbred mouse strains are restrictive to L. pneumophila replication. We demonstrate that autophagy targets L. pneumophila vacuoles to lysosomes and that this process requires ubiquitination of L. pneumophila vacuoles and the subsequent binding of the autophagic adaptor p62/SQSTM1 to ubiquitinated vacuoles. The L. pneumophila legA9 encodes for an ankyrin-containing protein with unknown role. We show that the legA9 mutant is the first L. pneumophila mutant to replicate in wild-type (WT) mice and their bone marrow derived macrophages (BMDMs). Less legA9 mutant- containing vacuoles acquired ubiquitin labeling and p62/SQSTM1 staining, evading autophagy uptake and avoiding lysosomal fusion. Thus, we describe a bacterial protein that targets the L. pneumophila -containing vacuole for autophagy uptake. PMID:23420491

  9. Marine gastropod hemocyanins as adjuvants of non-conjugated bacterial and viral proteins.

    Science.gov (United States)

    Gesheva, Vera; Idakieva, Krassimira; Kerekov, Nikola; Nikolova, Kalina; Mihaylova, Nikolina; Doumanova, Lyuba; Tchorbanov, Andrey

    2011-01-01

    Killed viral vaccines and bacterial toxoids are weakly immunogenic. Numerous compounds are under evaluation as immunological adjuvants and peptide-carriers to improve the immune response. The hemocyanins, giant extracellular copper proteins in the blood of many mollusks, are widely used as immune stimulants. In the present study we investigated the adjuvant properties of hemocyanins isolated from marine gastropods Rapana thomasiana and Megathura crenulata. An immunization with Influenza vaccine or tetanus toxoid combined with Rapana thomasiana hemocyanin (RtH) and Keyhole limpet hemocyanin (KLH) in mice induced an anti-influenza cytotoxic response lasting at least 5 months and an antibody response to viral proteins. The IgG antibody response to the tetanus toxoid (TT) combined with RtH or KLH was comparable to the response of the toxoid in complete Freund's adjuvant. The results obtained demonstrate that the both hemocyanins are acceptable as potential bio-adjuvants for subunit vaccines. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    Science.gov (United States)

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  11. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens.

    Science.gov (United States)

    van Eijk, Erika; Wittekoek, Bert; Kuijper, Ed J; Smits, Wiep Klaas

    2017-05-01

    With the impending crisis of antimicrobial resistance, there is an urgent need to develop novel antimicrobials to combat difficult infections and MDR pathogenic microorganisms. DNA replication is essential for cell viability and is therefore an attractive target for antimicrobials. Although several antimicrobials targeting DNA replication proteins have been developed to date, gyrase/topoisomerase inhibitors are the only class widely used in the clinic. Given the numerous essential proteins in the bacterial replisome that may serve as a potential target for inhibitors and the relative paucity of suitable compounds, it is evident that antimicrobials targeting the replisome are underdeveloped so far. In this review, we report on the diversity of antimicrobial compounds targeting DNA replication and highlight some of the challenges in developing new drugs that target this process. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  12. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Directory of Open Access Journals (Sweden)

    Elizabeth Muir

    Full Text Available There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location.To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate.Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed

  13. Signal-dependent turnover of the bacterial flagellar switch protein FliM

    Science.gov (United States)

    Delalez, Nicolas J.; Wadhams, George H.; Rosser, Gabriel; Xue, Quan; Brown, Mostyn T.; Dobbie, Ian M.; Berry, Richard M.; Leake, Mark C.; Armitage, Judith P.

    2010-01-01

    Most biological processes are performed by multiprotein complexes. Traditionally described as static entities, evidence is now emerging that their components can be highly dynamic, exchanging constantly with cellular pools. The bacterial flagellar motor contains ∼13 different proteins and provides an ideal system to study functional molecular complexes. It is powered by transmembrane ion flux through a ring of stator complexes that push on a central rotor. The Escherichia coli motor switches direction stochastically in response to binding of the response regulator CheY to the rotor switch component FliM. Much is known of the static motor structure, but we are just beginning to understand the dynamics of its individual components. Here we measure the stoichiometry and turnover of FliM in functioning flagellar motors, by using high-resolution fluorescence microscopy of E. coli expressing genomically encoded YPet derivatives of FliM at physiological levels. We show that the ∼30 FliM molecules per motor exist in two discrete populations, one tightly associated with the motor and the other undergoing stochastic turnover. This turnover of FliM molecules depends on the presence of active CheY, suggesting a potential role in the process of motor switching. In many ways the bacterial flagellar motor is as an archetype macromolecular assembly, and our results may have further implications for the functional relevance of protein turnover in other large molecular complexes. PMID:20498085

  14. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver

    Directory of Open Access Journals (Sweden)

    Anna Kędziora

    2016-06-01

    Full Text Available The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  15. Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors

    Directory of Open Access Journals (Sweden)

    Berger-Bächi Brigitte

    2011-04-01

    Full Text Available Abstract Background SecDF is an accessory factor of the conserved Sec protein translocation machinery and belongs to the resistance-nodulation-cell division (RND family of multidrug exporters. SecDF has been shown in Escherichia coli and Bacillus subtilis to be involved in the export of proteins. RND proteins can mediate resistance against various substances and might be of relevance in antimicrobial therapy. The role of RND proteins in Staphylococcus aureus has not yet been determined. Results Markerless deletion mutants were constructed to analyze the impact of the so far uncharacterized RND proteins in S. aureus. While the lack of Sa2056 and Sa2339 caused no phenotype regarding growth and resistance, the secDF mutant resulted in a pleiotropic phenotype. The secDF mutant was cold sensitive, but grew normally in rich medium at 37°C. Resistance to beta-lactams, glycopeptides and the RND substrates acriflavine, ethidium bromide and sodium dodecyl sulfate was reduced. The secDF mutant showed an aberrant cell separation and increased spontaneous and Triton X-100 induced autolysis, although the amounts of penicillin-binding proteins in the membrane were unchanged. The impact of secDF deletion on transcription and expression of specific virulence determinants varied: While coagulase transcription and activity were reduced, the opposite was observed for the autolysin Atl. A reduction of the transcription of the cell wall anchored protein A (spa was also found. The accumulation of SpA in the membrane and lowered amounts in the cell wall pointed to an impaired translocation. Conclusions The combination of different effects of secDF deletion on transcription, regulation and translocation lead to impaired cell division, reduced resistance and altered expression of virulence determinants suggesting SecDF to be of major relevance in S. aureus. Thus SecDF could be a potential target for the control and eradication of S. aureus in the future.

  16. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    Science.gov (United States)

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. Copyright © 2015 Elsevier B

  17. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  18. Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein.

    Science.gov (United States)

    Hughes, H Velocity; Lisher, John P; Hardy, Gail G; Kysela, David T; Arnold, Randy J; Giedroc, David P; Brun, Yves V

    2013-12-01

    Organelles with specialized form and function occur in diverse bacteria. Within the Alphaproteobacteria, several species extrude thin cellular appendages known as stalks, which function in nutrient uptake, buoyancy and reproduction. Consistent with their specialization, stalks maintain a unique molecular composition compared with the cell body, but how this is achieved remains to be fully elucidated. Here we dissect the mechanism of localization of StpX, a stalk-specific protein in Caulobacter crescentus. Using a forward genetics approach, we identify a penicillin-binding-protein, PbpC, which is required for the localization of StpX in the stalk. We show that PbpC acts at the stalked cell pole to anchor StpX to rigid components of the outer membrane of the elongating stalk, concurrent with stalk synthesis. Stalk-localized StpX in turn functions in cellular responses to copper and zinc, suggesting that the stalk may contribute to metal homeostasis in Caulobacter. Together, these results identify a novel role for a penicillin-binding-protein in compartmentalizing a bacterial organelle it itself helps create, raising the possibility that cell wall-synthetic enzymes may broadly serve not only to synthesize the diverse shapes of bacteria, but also to functionalize them at the molecular level. © 2013 John Wiley & Sons Ltd.

  19. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  20. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  1. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    Science.gov (United States)

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.

  2. Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method.

    Science.gov (United States)

    Wang, Tong; Yang, Jie

    2010-01-01

    With the rapid increase of protein sequences in the post-genomic age, the need for an automated and accurate tool to predict protein subcellular localization becomes increasingly important. Many efforts have been tried. Most of them aim to find the optimal classification scheme and less of them take the simplifying the complexity of biological system into consideration. This work shows how to decrease the complexity of biological system with linear DR (Dimensionality Reduction) method by transforming the original high-dimensional feature vectors into the low-dimensional feature vectors. A powerful sequence encoding scheme by fusing PSSM (Position-Specific Score Matrix) and Chou's PseAA (Pseudo Amino Acid) composition is proposed to represent the protein samples. Then, the K-NN (K-Nearest Neighbor) classifier is employed to identify the subcellular localization based on their reduced low-dimensional feature vectors. Experimental results thus obtained are quite encouraging, indicating that the aforementioned linear DR method is quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  3. Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Muriel Mercier-Bonin

    2017-11-01

    Full Text Available Food and probiotic bacteria, in particular lactic acid bacteria, are ingested in large amounts by humans and are part of the transient microbiota which is increasingly considered to be able to impact the resident microbiota and thus possibly the host health. The lactic acid bacterium Lactococcus lactis is extensively used in starter cultures to produce dairy fermented food. Also because of a generally recognized as safe status, L. lactis has been considered as a possible vehicle to deliver in vivo therapeutic molecules with anti-inflammatory properties in the gastrointestinal tract. One of the key factors that may favor health effects of beneficial bacteria to the host is their capacity to colonize transiently the gut, notably through close interactions with mucus, which covers and protects the intestinal epithelium. Several L. lactis strains have been shown to exhibit mucus-binding properties and bacterial surface proteins have been identified as key determinants of such capacity. In this review, we describe the different types of surface proteins found in L. lactis, with a special focus on mucus-binding proteins and pili. We also review the different approaches used to investigate the adhesion of L. lactis to mucus, and particularly to mucins, one of its major components, and we present how these approaches allowed revealing the role of surface proteins in muco-adhesion.

  4. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis

    OpenAIRE

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-01-01

    Abstract There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children. All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and Novemb...

  5. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

    Directory of Open Access Journals (Sweden)

    Shuaiqi Guo

    Full Text Available A novel role for antifreeze proteins (AFPs may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII and region IV (RIV, divide MpAFP into five distinct regions, all of which require mM Ca(2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2 server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.

  6. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Shi-qi An

    2014-10-01

    Full Text Available Bis-(3',5' cyclic di-guanylate (cyclic di-GMP is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc. This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d∼2 µM. Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  7. Lactoferrin binding protein B - a bi-functional bacterial receptor protein.

    Directory of Open Access Journals (Sweden)

    Nicholas K H Ostan

    2017-03-01

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB, there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.

  8. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films.

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R; Sleytr, U B; Toca-Herrera, José L

    2013-09-28

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (T(g)) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below T(g). The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm(2)), followed by PDLLA (0.034 μm(2)), and PLGA (0.039 μm(2)), and the largest size for PLCL (0.09 μm(2)). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (~1800 ng cm(-2)) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest T(g)). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  9. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment.

    Science.gov (United States)

    Jones, Robert T; Sanchez-Contreras, Maria; Vlisidou, Isabella; Amos, Matthew R; Yang, Guowei; Muñoz-Berbel, Xavier; Upadhyay, Abhishek; Potter, Ursula J; Joyce, Susan A; Ciche, Todd A; Jenkins, A Toby A; Bagby, Stefan; Ffrench-Constant, Richard H; Waterfield, Nicholas R

    2010-05-12

    Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28 degrees C) and human (37 degrees C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of EPS properties. Despite

  10. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R.; Sleytr, U. B.; Toca-Herrera, José L.

    2013-09-01

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (Tg) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below Tg. The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm2), followed by PDLLA (0.034 μm2), and PLGA (0.039 μm2), and the largest size for PLCL (0.09 μm2). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (˜1800 ng cm-2) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest Tg). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  11. Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria

    NARCIS (Netherlands)

    Meissner, Daniel; Vollstedt, Angela; van Dijl, Jan Maarten; Freudl, Roland

    In contrast to the general protein secretion (Sec) system, the twin-arginine translocation (Tat) export pathway allows the translocation of proteins across the bacterial plasma membrane in a fully folded conformation. Due to this feature, the Tat pathway provides an attractive alternative to the

  12. Structure of an essential bacterial protein YeaZ (TM0874) from Thermotoga maritima at 2.5 Å resolution

    International Nuclear Information System (INIS)

    Xu, Qingping; McMullan, Daniel; Jaroszewski, Lukasz; Krishna, S. Sri; Elsliger, Marc-André; Yeh, Andrew P.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grant, Joanna; Han, Gye Won; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Bedem, Henry van den; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of an essential bacterial protein, YeaZ, from T. maritima identifies an interface that potentially mediates protein–protein interaction. YeaZ is involved in a protein network that is essential for bacteria. The crystal structure of YeaZ from Thermotoga maritima was determined to 2.5 Å resolution. Although this protein belongs to a family of ancient actin-like ATPases, it appears that it has lost the ability to bind ATP since it lacks some key structural features that are important for interaction with ATP. A conserved surface was identified, supporting its role in the formation of protein complexes

  13. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    2016-06-01

    Full Text Available Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro-and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds.

  14. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  15. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  16. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    Science.gov (United States)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  17. Using the nonlinear dimensionality reduction method for the prediction of subcellular localization of Gram-negative bacterial proteins.

    Science.gov (United States)

    Wang, Tong; Yang, Jie

    2009-11-01

    One of the central problems in computational biology is protein function identification in an automated fashion. A key step to achieve this is predicting to which subcellular location the protein belongs, since protein localization correlates closely with its function. A wide variety of methods for protein subcellular localization prediction have been proposed over recent years. Linear dimensionality reduction (DR) methods have been introduced to address the high-dimensionality problem by transforming the representation of protein sequences. However, this approach is not suitable for some complex biological systems that have nonlinear characteristics. Herein, we use nonlinear DR methods such as the kernel DR method to capture the nonlinear characteristics of a high-dimensional space. Then, the K-nearest-neighbor (K-NN) classifier is employed to identify the subcellular localization of Gram-negative bacterial proteins based on their reduced low-dimensional features. Experimental results thus obtained are quite encouraging, indicating that the applied nonlinear DR method is effective to deal with this complicated problem of predicting subcellular localization of Gram-negative bacterial proteins. An online web server for predicting subcellular location of Gram-negative bacterial proteins is available at (http://202.120.37.185:8080/).

  18. 46 CFR Sec. 3 - Accounting for revenues.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Accounting for revenues. Sec. 3 Section 3 Shipping... FINANCIAL TRANSACTIONS UNDER AGENCY AGREEMENTS Accounting for Revenues Sec. 3 Accounting for revenues. (a... a passenger accounting procedure, may continue to follow such procedure under the agency operations...

  19. 46 CFR Sec. 2 - Bank account.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Bank account. Sec. 2 Section 2 Shipping MARITIME... TRANSACTIONS UNDER AGENCY AGREEMENTS Accounts Sec. 2 Bank account. A separate joint bank account will be... account. The order will set forth the conditions governing the establishment and maintenance of the...

  20. 46 CFR Sec. 18 - Group classification.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Group classification. Sec. 18 Section 18 Shipping... Sec. 18 Group classification. In the preparation of specifications, Job Orders, Supplemental Job... inserted thereon: Number Classification 41 Maintenance Repairs (deck, engine and stewards department...

  1. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  2. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics

    International Nuclear Information System (INIS)

    Khan, S. Sudheer; Srivatsan, P.; Vaishnavi, N.; Mukherjee, Amitava; Chandrasekaran, N.

    2011-01-01

    Highlights: → Bacterial extracellular proteins stabilize the silver nanoparticles. → Adsorption process varies with pH and salt concentration of the interaction medium. → Adsorption process was strongly influenced by surface charge. → Adsorption equilibrium isotherms was fitted well by the Freundlich model. → Kinetics of adsorption was fitted by pseudo-second-order. -- Abstract: Indiscriminate and increased use of silver nanoparticles (SNPs) in consumer products leads to the release of it into the environment. The fate and transport of SNPs in environment remains unknown. We have studied the interaction of SNPs with extracellular protein (ECP) produced by two environmental bacterial species and the adsorption behavior in aqueous solutions. The effect of pH and salt concentrations on the adsorption was also investigated. The adsorption process was found to be dependent on surface charge (zeta potential). The capping of SNPs by ECP was confirmed by Fourier transform infrared spectroscopy and X-ray diffraction. The adsorption of ECP on SNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fitted well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicated that pseudo-second-order kinetic equation would better describe the adsorption kinetics. The capping was stable at environmental pH and salt concentration. The destabilization of nanoparticles was observed at alkaline pH. The study suggests that the stabilization of nanoparticles in the environment might lead to the accumulation and transport of nanomaterials in the environment, and ultimately destabilizes the functioning of the ecosystem.

  3. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth.

    Science.gov (United States)

    Breton, Jonathan; Tennoune, Naouel; Lucas, Nicolas; Francois, Marie; Legrand, Romain; Jacquemot, Justine; Goichon, Alexis; Guérin, Charlène; Peltier, Johann; Pestel-Caron, Martine; Chan, Philippe; Vaudry, David; do Rego, Jean-Claude; Liénard, Fabienne; Pénicaud, Luc; Fioramonti, Xavier; Ebenezer, Ivor S; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2016-02-09

    The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  5. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    Energy Technology Data Exchange (ETDEWEB)

    Welling, M. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Feitsma, H.I.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Calame, W. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Ensing, G.J. (Mallinckrodt Medical, Petten (Netherlands)); Goedemans, W. (Mallinckrodt Medical, Petten (Netherlands)); Pauwels, E.K.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands))

    1994-10-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P<0.03) higher for the purified than for the unpurified immunoglobulin. For the in vivo study, mice were infected in the thigh muscle with Staph. aureus or K. pneumoniae. After 18 h 0.1 mg of technetium-99m labelled polyclonal immunoglobulin or [sup 99m]Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P<0.03) for protein charge-purified polyclonal immunoglobulin than for unpurified polyclonal human immunoglobulin. Already within 1 h the infected tissues could be detected by the purified immunoglobulin. It is concluded that [sup 99m]Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than [sup 99m]Tc-labelled unpurified immunoglobulin. (orig.)

  6. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    Science.gov (United States)

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  7. SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans

    Science.gov (United States)

    Chayakulkeeree, Methee; Johnston, Simon Andrew; Oei, Johanes Bijosono; Lev, Sophie; Williamson, Peter Richard; Wilson, Christabel Frewen; Zuo, Xiaoming; Leal, Ana Lusia; Vainstein, Marilene Henning; Meyer, Wieland; Sorrell, Tania Christine; May, Robin Charles; Djordjevic, Julianne Teresa

    2011-01-01

    Summary Secreted phospholipase B1 (CnPlb1) is essential for dissemination of Cryptococcus neoformans to the central nervous system (CNS) yet essential components of its secretion machinery remain to be elucidated. Using gene deletion analysis we demonstrate that CnPlb1 secretion is dependent on the CnSEC14 product, CnSec14-1p. CnSec14-1p is a homologue of the phosphatidylinositol transfer protein (PITP) ScSec14p, which is essential for secretion and viability in Saccharomyces cerevisiae. In contrast to CnPlb1, neither laccase 1 (Lac1)-induced melanization within the cell wall nor capsule induction were negatively impacted in CnSEC14-1 deletion mutants (CnΔsec14-1 and CnΔsec14-1CnΔsfh5). Similar to the CnPLB1 deletion mutant (CnΔplb1), CnΔsec14-1 was hypo-virulent in mice and did not disseminate to the CNS by day 14 post infection. Furthermore, macrophage expulsion of live CnΔsec14-1 and CnΔplb1 (vomocytosis) was reduced. Individual deletion of CnSEC14-2, a closely-related CnSEC14-1 homologue, and CnSFH5, a distantly-related SEC fourteen-like homologue, did not abrogate CnPlb1 secretion or virulence. However, reconstitution of CnΔsec14-1 with CnSEC14-1 or CnSEC14-2 restored both phenotypes, consistent with functional genetic redundancy. We conclude that CnPlb1 secretion is SEC14-dependent and that C. neoformans preferentially exports virulence determinants to the cell periphery via distinct pathways. We also demonstrate that CnPlb1 secretion is essential for vomocytosis. PMID:21453402

  8. The role of bacterial fermentation in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages.

    Science.gov (United States)

    Chen, Qian; Kong, Baohua; Han, Qi; Liu, Qian; Xu, Li

    2016-11-01

    Pediococcus pentosaceus, Lactobacillus curvatus, Lactobacillus sake and Staphylococcus xylosus were evaluated to determine their role in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages. Electrophoresis analysis showed that the hydrolysis of sarcoplasmic and myofibrillar proteins in dry sausages inoculated with bacterial strains was more severe than that in the non-inoculated control. The predominant free amino acids at the end of the fermentation were glutamic acid and alanine, both of which are involved in creating a desirable taste. The inoculation of dry sausages with bacterial strains, especially mixed strains, significantly decreased carbonyl formation and sulfhydryl loss in sausages (Psausage with multiple bacterial strains could contribute to flavour formation via flavour precursors. The results demonstrate that Harbin dry sausage can be inoculated with a starter culture mixture of P. pentosaceus, L. curvatus and S. xylosus to improve flavour formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Directory of Open Access Journals (Sweden)

    Tauson Anne-Helene

    2007-11-01

    Full Text Available Abstract The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07 with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.

  10. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Science.gov (United States)

    Hellwing, Anne Louise F; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07) with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters. PMID:17996082

  11. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  12. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  13. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  14. Development of Phage-Based Antibody Fragment Reagents for Affinity Enrichment of Bacterial Immunoglobulin G Binding Proteins.

    Science.gov (United States)

    Säll, Anna; Sjöholm, Kristoffer; Waldemarson, Sofia; Happonen, Lotta; Karlsson, Christofer; Persson, Helena; Malmström, Johan

    2015-11-06

    Disease and death caused by bacterial infections are global health problems. Effective bacterial strategies are required to promote survival and proliferation within a human host, and it is important to explore how this adaption occurs. However, the detection and quantification of bacterial virulence factors in complex biological samples are technically demanding challenges. These can be addressed by combining targeted affinity enrichment of antibodies with the sensitivity of liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS). However, many virulence factors have evolved properties that make specific detection by conventional antibodies difficult. We here present an antibody format that is particularly well suited for detection and analysis of immunoglobulin G (IgG)-binding virulence factors. As proof of concept, we have generated single chain fragment variable (scFv) antibodies that specifically target the IgG-binding surface proteins M1 and H of Streptococcus pyogenes. The binding ability of the developed scFv is demonstrated against both recombinant soluble protein M1 and H as well as the intact surface proteins on a wild-type S. pyogenes strain. Additionally, the capacity of the developed scFv antibodies to enrich their target proteins from both simple and complex backgrounds, thereby allowing for detection and quantification with LC-SRM MS, was demonstrated. We have established a workflow that allows for affinity enrichment of bacterial virulence factors.

  15. Cloning and Sequencing of yajC and secD Homologs of Brucella abortus and Demonstration of Immune Responses to YajC in Mice Vaccinated with B. abortus RB51

    Science.gov (United States)

    Vemulapalli, Ramesh; Duncan, A. Jane; Boyle, Stephen M.; Sriranganathan, Nammalwar; Toth, Thomas E.; Schurig, Gerhardt G.

    1998-01-01

    To identify Brucella antigens that are potentially involved in stimulating a protective cell-mediated immune response, a gene library of Brucella abortus 2308 was screened for the expression of antigens reacting with immunoglobulin G2a antibodies from BALB/c mice vaccinated with B. abortus RB51. One selected positive clone (clone MCB68) contained an insert of 2.6 kb; nucleotide sequence analysis of this insert revealed two open reading frames (ORFs). The deduced amino acid sequences of the first and second ORFs had significant similarities with the YajC and SecD proteins, respectively, of several bacterial species. Both the YajC and SecD proteins were expressed in Escherichia coli as fusion proteins with maltose binding protein (MBP). In Western blots, sera from mice vaccinated with B. abortus RB51 recognized YajC but not SecD. Further Western blot analysis with purified recombinant YajC protein indicated that mice inoculated with B. abortus 19 or 2308 or B. melitensis RM1 also produced antibodies to YajC. In response to in vitro stimulation with recombinant MBP-YajC fusion protein, splenocytes from mice vaccinated with B. abortus RB51 were able to proliferate and produce gamma interferon but not interleukin-4. This study demonstrates, for the first time, the involvement of YajC protein in an immune response to an infectious agent. PMID:9826342

  16. Direct demonstration of ATP-dependent release of SecA from a translocating preprotein by surface plasmon resonance

    NARCIS (Netherlands)

    de Keyzer, J; van der Does, C; Kloosterman, TG; Driessen, AJM

    2003-01-01

    Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding

  17. Receptor interacting protein kinase-2 inhibition by CYLD impairs anti-bacterial immune responses in macrophages

    Directory of Open Access Journals (Sweden)

    Katharina eWex

    2016-01-01

    Full Text Available Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 (NOD2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2. RIPK2 mediates the activation of immune responses via the nuclear factor-κB (NF-κB and extracellular-signal regulated kinase (ERK pathways. Previously, it has been shown that RIPK2 activation dependens on its K63-ubiquitination by the E3 ligases pellino-3 and ITCH, whereas the deubiquitinating enzyme A20 counter-regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new interacting partner and inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm infected bone-marrow-derived macrophages (BMDM. CYLD-mediated K63-deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines (IL-6, IL-12, anti-listerial ROS and NO, and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD-deficiency with respect to the production of IL-6, NO, ROS and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2 dependent manner.The protective function of CYLD-deficiency was dependent on IFN-γ pre-stimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent STAT1 activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent anti-bacterial immune responses in macrophages.

  18. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  19. Streptococcus pneumoniae Proteins AmiA, AliA, and AliB Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species

    Directory of Open Access Journals (Sweden)

    Fauzy Nasher

    2018-01-01

    Full Text Available The nasopharynx is frequently colonized by both commensal and pathogenic bacteria including Streptococcus pneumoniae (pneumococcus. Pneumococcus is an important pathogen responsible for bacterial meningitis and community acquired pneumonia but is also commonly an asymptomatic colonizer of the nasopharynx. Understanding interactions between microbes may provide insights into pathogenesis. Here, we investigated the ability of the three oligopeptide-binding proteins AmiA, AliA, and AliB of an ATP-binding cassette transporter of pneumococcus to detect short peptides found in other bacterial species. We found three possible peptide ligands for AmiA and four each for AliA and AliB of which two for each protein matched ribosomal proteins of other bacterial species. Using synthetic peptides we confirmed the following binding: AmiA binds peptide AKTIKITQTR, matching 50S ribosomal subunit protein L30, AliA binds peptide FNEMQPIVDRQ, matching 30S ribosomal protein S20, and AliB binds peptide AIQSEKARKHN, matching 30S ribosomal protein S20, without excluding the possibility of binding of the other peptides. These Ami–AliA/AliB peptide ligands are found in multiple species in the class of Gammaproteobacteria which includes common colonizers of the nostrils and nasopharynx. Binding such peptides may enable pneumococcus to detect and respond to neighboring species in its environment and is a potential mechanism for interspecies communication and environmental surveillance.

  20. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  1. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    Science.gov (United States)

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A Bacterial Surface Display System Expressing Cleavable Capsid Proteins of Human Norovirus: A Novel System to Discover Candidate Receptors

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2017-12-01

    Full Text Available Human noroviruses (HuNoVs are the dominant cause of food-borne outbreaks of acute gastroenteritis. However, fundamental researches on HuNoVs, such as identification of viral receptors have been limited by the currently immature system to culture HuNoVs and the lack of efficient small animal models. Previously, we demonstrated that the recombinant protruding domain (P domain of HuNoVs capsid proteins were successfully anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with a plasmid expressing HuNoVs P protein fused with bacterial transmembrane anchor protein. The cell-surface-displayed P proteins could specifically recognize and bind to histo-blood group antigens (HBGAs, receptors of HuNoVs. In this study, an upgraded bacterial surface displayed system was developed as a new platform to discover candidate receptors of HuNoVs. A thrombin-susceptible “linker” sequence was added between the sequences of bacterial transmembrane anchor protein and P domain of HuNoV (GII.4 capsid protein in a plasmid that displays the functional P proteins on the surface of bacteria. In this new system, the surface-displayed HuNoV P proteins could be released by thrombin treatment. The released P proteins self-assembled into small particles, which were visualized by electron microscopy. The bacteria with the surface-displayed P proteins were incubated with pig stomach mucin which contained HBGAs. The bacteria-HuNoV P proteins-HBGAs complex could be collected by low speed centrifugation. The HuNoV P proteins-HBGAs complex was then separated from the recombinant bacterial surface by thrombin treatment. The released viral receptor was confirmed by using the monoclonal antibody against type A HBGA. It demonstrated that the new system was able to capture and easily isolate receptors of HuNoVs. This new strategy provides an alternative, easier approach for isolating unknown receptors/ligands of HuNoVs from different samples

  3. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N-U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  4. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes.

    Science.gov (United States)

    Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David

    2017-12-01

    Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Development of a Microemulsion Formulation for Antimicrobial SecA Inhibitors.

    Science.gov (United States)

    Hu, Jiahuai; Akula, Nagaraju; Wang, Nian

    2016-01-01

    In our previous study, we have identified five antimicrobial small molecules via structure based design, which inhibit SecA of Candidatus Liberibacter asiaticus (Las). SecA is a critical protein translocase ATPase subunit and is involved in pre-protein translocation across and integration into the cellular membrane in bacteria. In this study, eleven compounds were identified using similarity search method based on the five lead SecA inhibitors identified previously. The identified SecA inhibitors have poor aqueous solubility. Thus a microemulsion master mix (MMX) was developed to address the solubility issue and for application of the antimicrobials. MMX consists of N-methyl-2-pyrrolidone and dimethyl sulfoxide as solvent and co-solvent, as well as polyoxyethylated castor oil, polyalkylene glycol, and polyoxyethylene tridecyl ether phosphate as surfactants. MMX has significantly improved the solubility of SecA inhibitors and has no or little phytotoxic effects at concentrations less than 5.0% (v/v). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the SecA inhibitors and streptomycin against eight bacteria including Agrobacterium tumefaciens, Liberibacter crescens, Rhizobium etli, Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti phylogenetically related to Las were determined using the broth microdilution method. MIC and MBC results showed that the 16 SecA inhibitors have antibacterial activities comparable to that of streptomycin. Overall, we have identified 11 potent SecA inhibitors using similarity search method. We have developed a microemulsion formulation for SecA inhibitors which improved the antimicrobial activities of SecA inhibitors.

  6. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  7. Investigating the Bacterial Inactivation Potential of Purified Okra (Hibiscus esculentus Seed Proteins in Water Purification

    Directory of Open Access Journals (Sweden)

    Alfred N. Jones

    2017-02-01

    Full Text Available The ability of purified okra protein (POP as coagulant and as disinfectant material in comparison with aluminium sulphate (AS in water treatment was assessed. A laboratory jar test experiments and Colilert-18/Quanti-Tray method of bacterial analysis were conducted using POP as coagulant in treating river water. The results show an excellent dual performance function of POP against the conventional coagulant, AS in drinking water treatment. It was observed that a marked inactivation of approximately 100% of faecal and E-coli count in raw water was achieved with POP and zero regrowth of bacteria after 72-hour post treatment. However, there was regrowth in total coliform count as a result of the presence of other microbes other than E-coli and faecal coliform in the system. In all cases AS showed a reduced performance against the two indicator organisms achieving only 93% with remarkable regrowth of E-coli and faecal coliform after prolonged storage time in the clarified water. Turbidity removal was also noted to be approximately similar, 92% across all coagulants tested. Therefore, the use of POP in water treatment could improve access to clean water in developing countries and could help in reducing the import of water treatment chemicals.

  8. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    Hirst, T.R.; Holmgren, J.

    1987-01-01

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [ 35 S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  9. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion

    Science.gov (United States)

    Chen, Xiao-Wei; Wang, He; Bajaj, Kanika; Zhang, Pengcheng; Meng, Zhuo-Xian; Ma, Danjun; Bai, Yongsheng; Liu, Hui-Hui; Adams, Elizabeth; Baines, Andrea; Yu, Genggeng; Sartor, Maureen A; Zhang, Bin; Yi, Zhengping; Lin, Jiandie; Young, Stephen G; Schekman, Randy; Ginsburg, David

    2013-01-01

    The secretory pathway of eukaryotic cells packages cargo proteins into COPII-coated vesicles for transport from the endoplasmic reticulum (ER) to the Golgi. We now report that complete genetic deficiency for the COPII component SEC24A is compatible with normal survival and development in the mouse, despite the fundamental role of SEC24 in COPII vesicle formation and cargo recruitment. However, these animals exhibit markedly reduced plasma cholesterol, with mutations in Apoe and Ldlr epistatic to Sec24a, suggesting a receptor-mediated lipoprotein clearance mechanism. Consistent with these data, hepatic LDLR levels are up-regulated in SEC24A-deficient cells as a consequence of specific dependence of PCSK9, a negative regulator of LDLR, on SEC24A for efficient exit from the ER. Our findings also identify partial overlap in cargo selectivity between SEC24A and SEC24B, suggesting a previously unappreciated heterogeneity in the recruitment of secretory proteins to the COPII vesicles that extends to soluble as well as trans-membrane cargoes. DOI: http://dx.doi.org/10.7554/eLife.00444.001 PMID:23580231

  10. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis

    Science.gov (United States)

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-01-01

    Abstract There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children. All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated. Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%). The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis. PMID:28858084

  11. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  12. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    International Nuclear Information System (INIS)

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance

  13. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    Directory of Open Access Journals (Sweden)

    David S Milner

    2014-04-01

    Full Text Available Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd GTP-binding are conserved. Deletion of mglA(Bd abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd interacted with a previously uncharacterised tetratricopeptide repeat (TPR domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.

  14. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress.

    Science.gov (United States)

    Vaishnav, A; Kumari, S; Jain, S; Varma, A; Choudhary, D K

    2015-08-01

    Plant root-associated rhizobacteria elicit plant immunity referred to as induced systemic tolerance (IST) against multiple abiotic stresses. Among multibacterial determinants involved in IST, the induction of IST and promotion of growth by putative bacterial volatile compounds (VOCs) is reported in the present study. To characterize plant proteins induced by putative bacterial VOCs, proteomic analysis was performed by MALDI-MS/MS after exposure of soybean seedlings to a new strain of plant growth promoting rhizobacteria (PGPR) Pseudomonas simiae strain AU. Furthermore, expression analysis by Western blotting confirmed that the vegetative storage protein (VSP), gamma-glutamyl hydrolase (GGH) and RuBisCo large chain proteins were significantly up-regulated by the exposure to AU strain and played a major role in IST. VSP has preponderant roles in N accumulation and mobilization, acid phosphatase activity and Na(+) homeostasis to sustain plant growth under stress condition. More interestingly, plant exposure to the bacterial strain significantly reduced Na(+) and enhanced K(+) and P content in root of soybean seedlings under salt stress. In addition, high accumulation of proline and chlorophyll content also provided evidence of protection against osmotic stress during the elicitation of IST by bacterial exposure. The present study reported for the first time that Ps. simiae produces a putative volatile blend that can enhance soybean seedling growth and elicit IST against 100 mmol l(-1) NaCl stress condition. The identification of such differentially expressed proteins provide new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to stresses. Further work should uncover more about the chemical side of VOC compounds and a detailed study about their molecular mechanism responsible for plant growth. © 2015 The Society for Applied Microbiology.

  15. Protecting the Herd: The Remarkable Effectiveness of the Bacterial Meningitis Polysaccharide-Protein Conjugate Vaccines in Altering Transmission Dynamics

    OpenAIRE

    Stephens, David S.

    2011-01-01

    Interrupting human-to-human transmission of the agents (Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae) of bacterial meningitis by new capsular polysaccharide-protein conjugate vaccines (PPCVs) has proven to be a remarkable (and unanticipated) contributor to vaccine effectiveness. Herd immunity accounts for ∼50% of the protection by meningococcal serogroup C PPCVs, pneumococcal PPCV7, and H. influenzae b PPCVs. Nasopharyngeal carriage can be reduced ≥75% for vacc...

  16. [Analysis of bacterial colonization associated with Gigaspora margarita spores by green fluorescence protein (GFP) marked technology].

    Science.gov (United States)

    Long, Liangkun; Yao, Qing; Ai, Yuncan; Zhu, Honghui

    2009-05-01

    We analyzed bacterial colonization associated with spores of arbuscular mycorrhizal fungi (AMF) Gigaspora margarita, to indicate their ecological niche, and to provide information for further researches on their populations or functions. Six bacteria strains (Peanibacillus sp. M060106-1, Peanibacillus sp. M061122-2, Peanibacillus sp. M061122-6, Bacillus sp. M061122-4, Bacillus sp. M061122-10 and Brevibacillus sp. M061122-12) isolated from G. margarita spores were tagged with green fluorescence protein (GFP) using the carrier plasmid pNF8 (gfp-mut1). We analyzed the ecological niche and population dynamics of tagged strains on G. margarita under different conditions by using fluorescent microscope and/or plate counts. Four strains (M060106-1, M061122-6, M061122-10 and M061122-12) were tagged with GFP, showing high plasmid stability. These tagged strains possessed the basic characteristics identical to their original strains and, hence, were fit for short-term study of environmental colonization. All four GFP-tagged strains colonized the spore wall of G. margarita, and M061122-6 and M061122-12 further colonized the fungal hyphae. Under different pH conditions,the population dynamic of each GFP-tagged strain on the spores showed the same trend, i.e. first increased and then decreased, and the effects on the population size varied with different pH value. GFP-tagged strains colonized the spores of low viability more easily than those of high viability, and the population dynamic on the spores of high viability was different for each tagged strain. The isolated bacteria associated with G. margarita spores can re-colonize the fungal spores, whereas their colonizing ability depends on their characteristics and environmental factors. These data contributes to the further understanding of populations and functions of AMF-associated bacteria.

  17. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    Preston, D.A.; Wu, C.Y.; Blaszczak, L.C.; Seitz, D.E.; Halligan, N.G. (Eli Lilly and Co., Indianapolis, IN (USA))

    1990-05-01

    Radiolabeled penicillin G is widely used as the imaging agent in penicillin-binding protein (PBP) assays. The disadvantages of most forms of labeled penicillin G are instability on storage and the long exposure times usually required for autoradiography or fluorography of electrophoretic gels. We investigated the utility of radioiodinated penicillin V as an alternative reagent. Radioiodination of p-(trimethylstannyl)penicillin V with ({sup 125}I)Na, using a modification of the chloramine-T method, is simple, high yielding, and site specific. We demonstrated the general equivalence of commercially obtained ({sup 3}H)penicillin G and locally synthesized ({sup 125}I)penicillin V (IPV) in their recognition of bacterial PBPs. Profiles of PBPs in membranes from Bacteroides fragilis, Escherichia coli, Providencia rettgeri, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, and Enterococcus faecium labeled with IPV or (3H)penicillin G were virtually identical. Use of IPV as the imaging agent in competition experiments for determination of the affinities of various beta-lactam antibiotics for the PBPs of E. coli yielded results similar to those obtained in experiments with ({sup 3}H)penicillin G. Dried electrophoretic gels from typical PBP experiments, using IPV at 37.3 Ci/mmol and 30 micrograms/ml, exposed X-ray film in 8 to 24 h. The stability of IPV on storage at 4{degrees}C was inversely proportional to specific activity. At 37.3 Ci/mmol and 60 micrograms/ml, IPV retained useful activity for at least 60 days at 4{degrees}C. IPV represents a practical and stable reagent for rapid PBP assays.

  18. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins

    International Nuclear Information System (INIS)

    Preston, D.A.; Wu, C.Y.; Blaszczak, L.C.; Seitz, D.E.; Halligan, N.G.

    1990-01-01

    Radiolabeled penicillin G is widely used as the imaging agent in penicillin-binding protein (PBP) assays. The disadvantages of most forms of labeled penicillin G are instability on storage and the long exposure times usually required for autoradiography or fluorography of electrophoretic gels. We investigated the utility of radioiodinated penicillin V as an alternative reagent. Radioiodination of p-(trimethylstannyl)penicillin V with [ 125 I]Na, using a modification of the chloramine-T method, is simple, high yielding, and site specific. We demonstrated the general equivalence of commercially obtained [ 3 H]penicillin G and locally synthesized [ 125 I]penicillin V (IPV) in their recognition of bacterial PBPs. Profiles of PBPs in membranes from Bacteroides fragilis, Escherichia coli, Providencia rettgeri, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, and Enterococcus faecium labeled with IPV or [3H]penicillin G were virtually identical. Use of IPV as the imaging agent in competition experiments for determination of the affinities of various beta-lactam antibiotics for the PBPs of E. coli yielded results similar to those obtained in experiments with [ 3 H]penicillin G. Dried electrophoretic gels from typical PBP experiments, using IPV at 37.3 Ci/mmol and 30 micrograms/ml, exposed X-ray film in 8 to 24 h. The stability of IPV on storage at 4 degrees C was inversely proportional to specific activity. At 37.3 Ci/mmol and 60 micrograms/ml, IPV retained useful activity for at least 60 days at 4 degrees C. IPV represents a practical and stable reagent for rapid PBP assays

  19. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.

    Directory of Open Access Journals (Sweden)

    Alessandro Pandini

    Full Text Available Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM domains (amino-terminal (FliGN, middle (FliGM and FliGC as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6. FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM

  20. Secondary and tertiary structure modeling reveals effects of novel mutations in polycystic liver disease genes PRKCSH and SEC63.

    NARCIS (Netherlands)

    Waanders, E.; Venselaar, H.; Morsche, R.H.M. te; Koning, D.B. de; Kamath, P.S.; Torres, V.E.; Somlo, S.; Drenth, J.P.H.

    2010-01-01

    Polycystic liver disease (PCLD) is characterized by intralobular bile duct cysts in the liver. It is caused by mutations in PRKCSH, encoding hepatocystin, and SEC63, encoding Sec63p. The main goals of this study were to screen for novel mutations and to analyze mutations for effects on protein

  1. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    International Nuclear Information System (INIS)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-01-01

    Research highlights: → Bacterial alginate-binding Algp7 is similar to component EfeO of Fe 2+ transporter. → We determined the crystal structure of Algp7 with a metal-binding motif. → Algp7 consists of two helical bundles formed through duplication of a single bundle. → A deep cleft involved in alginate binding locates around the metal-binding site. → Algp7 may function as a Fe 2+ -chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  2. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  3. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted prot...... to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae....

  4. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties.

    Science.gov (United States)

    Uhrig, R Glen; Moorhead, Greg B

    2011-12-01

    Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.

  5. 46 CFR Sec. 5 - Repatriation charges.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Repatriation charges. Sec. 5 Section 5 Shipping MARITIME... Repatriation charges. (a) If it is deemed necessary to repatriate a seaman as a passenger aboard a privately... flat transportation charge of $5.00 per day shall be made for every day spent aboard the repatriating...

  6. 46 CFR Sec. 6 - Awarding of work.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Awarding of work. Sec. 6 Section 6 Shipping MARITIME... of work. (a) Those portions of all bids reflecting the total aggregate cost of the work involved shall be opened publicly. The work shall be awarded to the contractor submitting the lowest qualified...

  7. ASSESSMENT OF C-REACTIVE PROTEIN AND OXIDATIVE/ANTIOXIDATIVE STATUS IN CHILDREN WITH ACUTE BACTERIAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    IMAD A.J. THANOON

    2009-01-01

    Full Text Available The objectives of this study were to compare the serum levels of C-reactive protein (CRP, serum malondialdehyde (MDA, antioxidant parameters [represented by serum ferritin, uric acid and totalantioxidant status (TAS] in children with bacterial meningitis with a control group. Twenty-seven children with bacterial meningitis were included in this study. Thirty apparently healthy childrenwere also included as the control group. Assays of serum CRP, uric acid, ferritin and TAS were performed on samples from controls and from patients prior to antibiotic therapy. After two weeksof antibiotic therapy, assays of the same parameters were repeated in the patients. A significant rise in the serum levels of MDA and CRP, and a significant reduction in serum uric acid levels andTAS were noted in children with acute bacterial meningitis (before therapy compared to controls. Serum ferritin levels showed no significant differences. When measured parameters of children withbacterial meningitis after therapy were compared with those of the controls, highly significant differences in the mean serum levels of uric acid, CRP and TAS were noted. There were no significant differences in the mean serum ferritin levels. Serum oxidative/antioxidative balance shifted to the oxidative side in meningitis patients before therapy, and improved after therapy.Elevation of CRP in cases with bacterial meningitis may reflect its importance as an aid in the diagnosis of such cases.

  8. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

    Science.gov (United States)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-02-18

    A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    International Nuclear Information System (INIS)

    Tuasikal, B.J.; Wibawan, I.W.T.; Pasaribu, F.H; Estuningsih, S.

    2012-01-01

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic characteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD 50 ) is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 - 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 - 0.05X (where Y = bands distance; X = MW standard protein); r 2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis. (author)

  10. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    B.J. Tuasikal

    2012-08-01

    Full Text Available A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder vaccine in ruminant. The study aims to determine the Molecular Weight (MW bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic caharacteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD50 is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 – 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 – 0.05X (where Y = bands distance; X = MW standard protein; r2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis

  11. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    Science.gov (United States)

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    Science.gov (United States)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  13. In vitro antibacterial activity of venom protein isolated from sea snake Enhydrina schistosa against drugresistant human pathogenic bacterial strains

    Directory of Open Access Journals (Sweden)

    Palani Damotharan

    2015-06-01

    Full Text Available Objective: To evaluate the antibacterial activity of sea snake (Enhydrina schistosa venom protein against drug-resistant human pathogenic bacterial strains. Methods: The venom was collected by milking process from the live specimens of sea snake are using capillary tubes or glass plates. Venom was purified by ion exchange chromatography and it was tested for in-vitro antibacterial activity against 10 drug-resistant human pathogenic bacterial strains using the standard disc diffusion method. Results: The notable antibacterial activity was observed at 150 µg/mL concentration of purified venom and gave its minimum inhibitory concentrations values exhibited between 200-100 µg/mL against all the tested bacterial strains. The maximum zone of inhibition was observed at 16.4 mm against Salmonella boydii and the minimum activity was observed at 7.5 mm against Pseudomonas aeruginosa. After the sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis there were a clear single band was detected in the gel that corresponding to purified venom protein molecular weight of 44 kDa. Conclusions: These results suggested that the sea snake venom might be a feasible source for searching potential antibiotics agents against human pathogenic diseases.

  14. Immunotoxicity of nucleic acid reduced BioProtein - a bacterial derived single cell protein - in Wistar rats

    DEFF Research Database (Denmark)

    Mølck, Anne-marie; Poulsen, Morten; Christensen, Hanne Risager

    2002-01-01

    BioProtein is a single cell protein produced by a mixed methanotrophic and heterotrophic bacteria culture using natural gas as energy source, which has been approved for animal feed. BioProtein contains a large amount of nucleic acids making the product less suitable for human consumption, theref...

  15. The topology of the bacterial co-conserved protein network and its implications for predicting protein function

    Directory of Open Access Journals (Sweden)

    Leach Sonia M

    2008-06-01

    Full Text Available Abstract Background Protein-protein interactions networks are most often generated from physical protein-protein interaction data. Co-conservation, also known as phylogenetic profiles, is an alternative source of information for generating protein interaction networks. Co-conservation methods generate interaction networks among proteins that are gained or lost together through evolution. Co-conservation is a particularly useful technique in the compact bacteria genomes. Prior studies in yeast suggest that the topology of protein-protein interaction networks generated from physical interaction assays can offer important insight into protein function. Here, we hypothesize that in bacteria, the topology of protein interaction networks derived via co-conservation information could similarly improve methods for predicting protein function. Since the topology of bacteria co-conservation protein-protein interaction networks has not previously been studied in depth, we first perform such an analysis for co-conservation networks in E. coli K12. Next, we demonstrate one way in which network connectivity measures and global and local function distribution can be exploited to predict protein function for previously uncharacterized proteins. Results Our results showed, like most biological networks, our bacteria co-conserved protein-protein interaction networks had scale-free topologies. Our results indicated that some properties of the physical yeast interaction network hold in our bacteria co-conservation networks, such as high connectivity for essential proteins. However, the high connectivity among protein complexes in the yeast physical network was not seen in the co-conservation network which uses all bacteria as the reference set. We found that the distribution of node connectivity varied by functional category and could be informative for function prediction. By integrating of functional information from different annotation sources and using the

  16. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins.

    Science.gov (United States)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-12-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted proteins, they are frequently N-glycosylated. This hampers production in microbes as these hosts glycosylate proteins differently. The resulting products may therefore be immunogenic, unstable and show reduced efficacy. Recently, successful glycoengineering of microbes has demonstrated that it is possible to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  18. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts.

    Science.gov (United States)

    Galperin, Michael Y

    2005-06-14

    Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes

  19. Nanocomposited coatings produced by laser-assisted process to prevent silicone hydogels from protein fouling and bacterial contamination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guobang; Chen, Yi; Zhang, Jin, E-mail: jzhang@eng.uwo.ca

    2016-01-01

    Graphical abstract: Nanocomposited-coating was deposited on silicone hydrogel by using the matrix-assisted pulsed laser evaporation (MAPLE) process. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel, and can inhibit the bacterial growth efficiently. - Highlights: • We developed a nanocomposited coating to prevent silicone hydrogel from biofouling. • Matrix-assisted pulsed laser evaporation can deposit inorganic–organic nanomaterials. • The designed nanocomposited coating reduces protein absorption by over 50%. • The designed nanocomposited coating shows significant antimicrobial efficiency. - Abstract: Zinc oxide (ZnO) nanoparticles incorporating with polyethylene glycol (PEG) were deposited together on the surface of silicone hydrogel through matrix-assisted pulsed laser evaporation (MAPLE). In this process, frozen nanocomposites (ZnO–PEG) in isopropanol were irradiated under a pulsed Nd:YAG laser at 532 nm for 1 h. Our results indicate that the MAPLE process is able to maintain the chemical backbone of polymer and prevent the nanocomposite coating from contamination. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel. The cytotoxicity study shows that the ZnO–PEG nanocomposites deposited on silicone hydrogels do not impose the toxic effect on mouse NIH/3T3 cells. In addition, MAPLE-deposited ZnO–PEG nanocomposites can inhibit the bacterial growth significantly.

  20. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer

    Science.gov (United States)

    HATAKEYAMA, Masanori

    2017-01-01

    Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor of gastric cancer. The cagA gene-encoded CagA protein is delivered into gastric epithelial cells via bacterial type IV secretion, where it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs. Delivered CagA then acts as a non-physiological scaffold/hub protein by interacting with multiple host signaling molecules, most notably the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1/MARK, in both tyrosine phosphorylation-dependent and -independent manners. CagA-mediated manipulation of intracellular signaling promotes neoplastic transformation of gastric epithelial cells. Transgenic expression of CagA in experimental animals has confirmed the oncogenic potential of the bacterial protein. Structural polymorphism of CagA influences its scaffold function, which may underlie the geographic difference in the incidence of gastric cancer. Since CagA is no longer required for the maintenance of established gastric cancer cells, studying the role of CagA during neoplastic transformation will provide an excellent opportunity to understand molecular processes underlying “Hit-and-Run” carcinogenesis. PMID:28413197

  1. Bacterial Growth State Distinguished by Single-Cell Protein Profiling: Does Chlorination Kill Coliforms in Municipal Effluent?

    Science.gov (United States)

    Rockabrand, David; Austin, Teresa; Kaiser, Robyn; Blum, Paul

    1999-01-01

    Municipal effluent is the largest reservoir of human enteric bacteria. Its public health significance, however, depends upon the physiological status of the wastewater bacterial community. A novel immunofluorescence assay was developed and used to examine the bacterial growth state during wastewater disinfection. Quantitative levels of three highly conserved cytosolic proteins (DnaK, Dps, and Fis) were determined by using enterobacterium-specific antibody fluorochrome-coupled probes. Enterobacterial Fis homologs were abundant in growing cells and nearly undetectable in stationary-phase cells. In contrast, enterobacterial Dps homologs were abundant in stationary-phase cells but virtually undetectable in growing cells. The range of variation in the abundance of both proteins was at least 100-fold as determined by Western blotting and immunofluorescence analysis. Enterobacterial DnaK homologs were nearly invariant with growth state, enabling their use as permeabilization controls. The cellular growth states of individual enterobacteria in wastewater samples were determined by measurement of Fis, Dps, and DnaK abundance (protein profiling). Intermediate levels of Fis and Dps were evident and occurred in response to physiological transitions. The results indicate that chlorination failed to kill coliforms but rather elicited nutrient starvation and a reversible nonculturable state. These studies suggest that the current standard procedures for wastewater analysis which rely on detection of culturable cells likely underestimate fecal coliform content. PMID:10473432

  2. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles.

    Directory of Open Access Journals (Sweden)

    Felipe O Bendezú

    Full Text Available The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.

  3. Molecular Characterization of Sec2 Loci in Wheat—Secale africanum Derivatives Demonstrates Genomic Divergence of Secale Species

    Directory of Open Access Journals (Sweden)

    Guangrong Li

    2015-04-01

    Full Text Available The unique 75 K γ-secalins encoded by Sec2 loci in Secale species is composed of almost half rye storage proteins. The chromosomal location of Sec2 loci in wild Secale species, Secale africanum, was carried out by the wheat—S. africanum derivatives, which were identified by genomic in situ hybridization and multi-color fluorescence in situ hybridization. The Sec2 gene-specific PCR analysis indicated that the S. cereale Sec2 was located on chromosome 2R, while the S. africanum Sec2 was localized on chromosome 6Rafr of S. africanum. A total of 38 Sec2 gene sequences were isolated from S. africanum, S. cereale and S. sylvestre by PCR-based cloning. Phylogenetic analysis showed that S. africanum Sec2 diverged from S. cereale Sec2 approximately 2–3 million years ago. The illegitimate recombination of chromosome 2R–6R involving the Sec2 loci region may accelerate sequence variation during evolutionary process from wild to cultivated Secale species.

  4. Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers.

    Science.gov (United States)

    Wagner, Victoria E; Koberstein, Jeffrey T; Bryers, James D

    2004-05-01

    The potential for base poly(ethylene glycol) graft poly(acrylic acid) PEG-g-PA copolymers and surface-modified PEG-g-PA materials to inhibit random protein fouling and bacterial adhesion are investigated. PEG-g-PA co-polymers were synthesized that inhibited non-specific protein and cellular adhesion. PEG-g-PA co-polymers were then covalently modified with either cell adhesion peptides (YRGDS, YEILDV) or fragments of antibodies to monocyte/macrophage integrin receptors (Anti-VLA4, Anti-beta1, Anti-beta2, and Anti-CD64) known to enhance macrophage adhesion and, perhaps, modulate their activation. Materials produced in this work were characterized using: hydrophobicity by contact angle; angle-resolved X-ray Photoelectron Spectroscopy to confirm the presence of PEG in the bulk material and the surface; degree of hydration; differential scanning calorimetry; and thermal gravimetric analysis. To evaluate the non-fouling efficacy of the various modified surfaces, three proteins, human serum albumin, human fibronectin (Fraction I) and human immunoglobulin were 125I labeled. Samples of base PEG-g-PA and PEG-g-PA, modified with various peptides, were exposed to solutions containing either 2 or 200 microg/ml of one of the labeled proteins at 37 degrees C for 24 h. PEG-g-PA substrata modified with directly bound peptides exhibited protein adsorption that varied depending upon the surface bounded peptide. PEG-g-PA modified with peptides linked by linear PEG tethers reduced protein adsorption at 24 h by approximately 45% in comparison to PEG-g-PA. Peptides linked by way of StarPEO and StarlikePEO tethers further decreased protein adsorption in comparison to PEG-g-PA. The ability of peptide:PEOtethers to inhibit protein adsorption appeared to be a function of type and surface coverage of the PEO tether and not influenced by the amount or molecular structure the tethered peptide. Peptides directly coupled to the PEG-g-PA increased the amount of protein fouling relative to controls

  5. Strategies for production of active eukaryotic proteins in bacterial expression system

    OpenAIRE

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  6. Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip

    DEFF Research Database (Denmark)

    Ponsero, Alise J.; Igbaria, Aeid; Darch, Maxwell A.

    2017-01-01

    GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip...... and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient. Ponsero et al. show that cytosol-to-ER transport of glutathione proceeds via facilitated diffusion through Sec61. Upon import, glutathione activates Ero1...

  7. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors

    International Nuclear Information System (INIS)

    Liao, V.H.-C.; Chien, M.-T.; Tseng, Y.-Y.; Ou, K.-L.

    2006-01-01

    A green fluorescent protein (GFP)-based bacterial biosensor Escherichia coli DH5α (pVLCD1) was developed based on the expression of gfp under the control of the cad promoter and the cadC gene of Staphylococcus aureus plasmid pI258. DH5α (pVLCD1) mainly responded to Cd(II), Pb(II), and Sb(III), the lowest detectable concentrations being 0.1 nmol L -1 , 10 nmol L -1 , and 0.1 nmol L -1 , respectively, with 2 h exposure. The biosensor was field-tested to measure the relative bioavailability of the heavy metals in contaminated sediments and soil samples. The results showed that the majority of heavy metals remained adsorbed to soil particles: Cd(II)/Pb(II) was only partially available to the biosensor in soil-water extracts. Our results demonstrate that the GFP-based bacterial biosensor is useful and applicable in determining the bioavailability of heavy metals with high sensitivity in contaminated sediment and soil samples and suggests a potential for its inexpensive application in environmentally relevant sample tests. - Nonpathogenic GFP-based bacterial biosensor is applicable in determining the bioavailability of heavy metals in environmental samples

  8. Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of Photosystem II proteins in the cyanobacterium Synechocystis PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Linhartová, Markéta; Bučinská, Lenka; Halada, Petr; Ječmen, T.; Šetlík, Jiří; Komenda, Josef; Sobotka, Roman

    2014-01-01

    Roč. 93, č. 6 (2014), s. 1207-1223 ISSN 0950-382X R&D Projects: GA MŠk CZ.2.16/3.1.00/24023; GA ČR GA14-13967S Institutional support: RVO:61388971 Keywords : prepilin * cab-like proteins * Synechocystit Subject RIV: EE - Microbiology, Virology Impact factor: 4.419, year: 2014

  9. A secretory system for bacterial production of high-profile protein targets

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Vernet, Erik; Hammarström, Martin

    2011-01-01

    Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To impr......Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli...... membrane protein F (OmpF) and osmotically inducible protein Y (OsmY). Based on the results of this initial study, we carried out an extended expression screen employing the OsmY fusion and multiple constructs of a more diverse set of human proteins. Using this high-throughput compatible system, we clearly...

  10. Bacterial production of site specific {sup 13}C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L., E-mail: robert.mcfeeters@uah.edu [University of Alabama in Huntsville, Department of Chemistry (United States)

    2017-01-15

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific {sup 13}C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct {sup 13}C chemical shifts and multiple magnetically equivalent {sup 1}H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with {sup 13}C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated {sup 1}H-{sup 13}C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.

  11. The level of neuron-specific enolase and S-100 protein in the cerebrospinal fluid of patients with acute bacterial meningitis

    Directory of Open Access Journals (Sweden)

    A. V. Sokhan

    2016-08-01

    Full Text Available Aim. To evaluate the diagnostic and prognostic role of neuron-specific enolase (NSE and S-100 protein levels in cerebrospinal fluid (CSF of patients with acute bacterial meningitis in the course of the disease. Materials and Methods. 54 cases of acute bacterial meningitis were analyzed, among them – 26 with pneumococcal and 28 with meningococcal etiology. Patients were divided into groups depending on the severity and etiology of disease. In addition to routine laboratory methods, we analyzed the CSF levels of S-100 protein and NSE at admission and after 10 – 12 days of treatment. 12 patients with acute respiratory infections and meningism were examined as a comparison group. Results. In all patients with acute bacterial meningitis CSF NSE and protein S-100 levels were significantly higher than in the control group (P <0,05. CSF neuro specific proteins level was in direct dependence on severity of the disease, and in patients with severe disease was significantly higher than in patients with moderate severity and in the control group (P <0,01. After 10 – 12 days of treatment, the level of the NSE and S-100 protein decreased, but in severe cases was still higher than in the control group (P <0,05. Conclusions. Increased cerebrospinal fluid NSE and S – 100 protein levels shows the presence and value of neurons and glial cells damage in patients with acute bacterial meningitis. CSF S-100 protein and neuron-specific enolase levels help to determine the severity of neurons destruction and glial cells in patients with acute bacterial meningitis. Level of neurospecific protein is in direct proportion to the severity of the disease and is the highest in patients with severe cases (P<0,05. It confirms the diagnostic and prognostic value of CSF neurospecific protein determination in patients with bacterial meningitis.

  12. Xylo-Oligosaccharides and Inulin Affect Genotoxicity and Bacterial Populations Differently in a Human Colonic Simulator Challenged with Soy Protein

    Directory of Open Access Journals (Sweden)

    Michael A. Conlon

    2013-09-01

    Full Text Available High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS could be protective against DNA strand breaks by adding them to a human colonic simulator consisting of a proximal vessel (PV (pH 5.5 and a distal vessel (DV (pH 6.8 inoculated with human faeces and media containing soy protein. Genotoxicity of the liquid phase and microbial population changes in the vessels were measured. Soy protein (3% was fermented with 1% low amylose cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH. There was a significant overall inverse correlation between levels of damage induced by the ferments and levels of sulphate-reducing bacteria, Bacteroides fragilis, and acetate. In conclusion, dietary XOS can potentially modulate the genotoxicity of the colonic environment and specific bacterial groups and short chain fatty acids may mediate this.

  13. Xylo-Oligosaccharides and Inulin Affect Genotoxicity and Bacterial Populations Differently in a Human Colonic Simulator Challenged with Soy Protein

    Science.gov (United States)

    Christophersen, Claus T.; Petersen, Anne; Licht, Tine R.; Conlon, Michael A.

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic simulator consisting of a proximal vessel (PV) (pH 5.5) and a distal vessel (DV) (pH 6.8) inoculated with human faeces and media containing soy protein. Genotoxicity of the liquid phase and microbial population changes in the vessels were measured. Soy protein (3%) was fermented with 1% low amylose cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse correlation between levels of damage induced by the ferments and levels of sulphate-reducing bacteria, Bacteroides fragilis, and acetate. In conclusion, dietary XOS can potentially modulate the genotoxicity of the colonic environment and specific bacterial groups and short chain fatty acids may mediate this. PMID:24064573

  14. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    and instrumental setup was similar to that previously described [3]. Static bacteria attachment assay: Punched out pieces were placed in 24 well microtitre plates and quantification of bacterial adhesion was carried out using a method based on the assay by Christensen et al. [4], but substantially modified...... adsorption and bacteria attachment/colonization. This is emphasized by the fact that long dwelling urinary catheters, which is a typical silicone medical device, causes 5% per day incidence of urinary tract infection [1,2]. A demand therefore exists for surface modifications providing the silicone material...... with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...

  15. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism

    Energy Technology Data Exchange (ETDEWEB)

    Stekhoven, Daniel J. [Univ. of Zurich (Switzerland); Omasits, Ulrich [Univ. of Zurich (Switzerland); ETH Zurich (Switzerland); Quebatte, Maxime [Univ. of Basel (Switzerland); Dehio, Christoph [Univ. of Basel (Switzerland); Ahrens, Christian H. [Univ. of Zurich (Switzerland)

    2014-03-01

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.

  16. Thionin-D4E1 chimeric protein protects plants against bacterial infections

    Science.gov (United States)

    Stover, Eddie W; Gupta, Goutam; Hao, Guixia

    2017-08-08

    The generation of a chimeric protein containing a first domain encoding either a pro-thionon or thionin, a second domain encoding D4E1 or pro-D4E1, and a third domain encoding a peptide linker located between the first domain and second domain is described. Either the first domain or the second domain is located at the amino terminal of the chimeric protein and the other domain (second domain or first domain, respectively) is located at the carboxyl terminal. The chimeric protein has antibacterial activity. Genetically altered plants and their progeny expressing a polynucleotide encoding the chimeric protein resist diseases caused by bacteria.

  17. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  18. A common theme in interaction of bacterial immunoglobulin-binding proteins with immunoglobulins illustrated in the equine system.

    Science.gov (United States)

    Lewis, Melanie J; Meehan, Mary; Owen, Peter; Woof, Jenny M

    2008-06-20

    The M protein of Streptococcus equi subsp. equi known as fibrinogen-binding protein (FgBP) is a cell wall-associated protein with antiphagocytic activity that binds IgG. Recombinant versions of the seven equine IgG subclasses were used to investigate the subclass specificity of FgBP. FgBP bound predominantly to equine IgG4 and IgG7, with little or no binding to the other subclasses. Competitive binding experiments revealed that FgBP could inhibit the binding of staphylococcal protein A and streptococcal protein G to both IgG4 and IgG7, implicating the Fc interdomain region in binding to FgBP. To identify which of the two IgG Fc domains contributed to the interaction with FgBP, we tested two human IgG1/IgA1 domain swap mutants and found that both domains are required for full binding, with the CH3 domain playing a critical role. The binding site for FgBP was further localized using recombinant equine IgG7 antibodies with single or double point mutations to residues lying at the CH2-CH3 interface. We found that interaction of FgBP with equine IgG4 and IgG7 was able to disrupt C1q binding and antibody-mediated activation of the classical complement pathway, demonstrating an effective means by which S. equi may evade the immune response. The mode of interaction of FgBP with IgG fits a common theme for bacterial Ig-binding proteins. Remarkably, for those interactions studied in detail, it emerges that all the Ig-binding proteins target the CH2-CH3 domain interface, regardless of specificity for IgG or IgA, streptococcal or staphylococcal origin, or host species (equine or human).

  19. Recombinant expression and purification of 'virus-like' bacterial encapsulin protein cages

    NARCIS (Netherlands)

    Rurup, W.F.; Cornelissen, Jeroen Johannes Lambertus Maria; Koay, M.S.T.; Orner, Brendan P.

    2015-01-01

    Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules

  20. Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability

    DEFF Research Database (Denmark)

    Lauritsen, Ida; Martinez, Virginia; Ronda, Carlotta

    2018-01-01

    In molecular biology and cell factory engineering, tools that enable control of protein production and stability are highly important. Here, we describe protocols for tagging genes in Escherichia coli allowing for inducible degradation and transcriptional control of any soluble protein of interes...

  1. Avoiding acidic region streaking in two-dimensional gel electrophoresis: case study with two bacterial whole cell protein extracts.

    Science.gov (United States)

    Roy, Arnab; Varshney, Umesh; Pal, Debnath

    2014-09-01

    Acidic region streaking (ARS) is one of the lacunae in two-dimensional gel electrophoresis (2DE) of bacterial proteome. This streaking is primarily caused by nucleic acid (NuA) contamination and poses major problem in the downstream processes like image analysis and protein identification. Although cleanup and nuclease digestion are practiced as remedial options, these strategies may incur loss in protein recovery and perform incomplete removal of NuA. As a result, ARS has remained a common observation across publications, including the recent ones. In this work, we demonstrate how ultrasound wave can be used to shear NuA in plain ice-cooled water, facilitating the elimination of ARS in the 2DE gels without the need for any additional sample cleanup tasks. In combination with a suitable buffer recipe, IEF program and frequent paper-wick changing approach, we are able to reproducibly demonstrate the production of clean 2DE gels with improved protein recovery and negligible or no ARS. We illustrate our procedure using whole cell protein extracts from two diverse organisms, Escherichia coli and Mycobacterium smegmatis. Our designed protocols are straightforward and expected to provide good 2DE gels without ARS, with comparable times and significantly lower cost.

  2. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction.

    Directory of Open Access Journals (Sweden)

    Kristina V Tugaeva

    Full Text Available Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods.

  3. Changes in the protein fraction of Merluccius bilinearis muscle under lactic acid bacterial fermentation using a Lactobacillus Acidophilus starter culture (ESP)

    OpenAIRE

    Elizondo, Luis J.

    2016-01-01

    The effect of lactic acid bacterial fermentation on the protein fraction of Merluccius bilinearis muscle was evaluated. The non-protein fraction increased progressively with corresponding decreases in the percentage protein (dry weight) indicating proteolytic activity during fermentation. Significant increases in the percentages of the amino acids cystine, isoleucine, phenylalanine and tyrosine were observed after two months of fermentation. Percentages of arginine decreased significantly aft...

  4. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C J; Nassif, Xavier; Armengaud, Jean

    2013-09-01

    Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640-12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. © 2013 Elsevier B.V. All rights reserved.

  5. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface.

    Directory of Open Access Journals (Sweden)

    Ya-Ping Ko

    Full Text Available Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a 'capsule'-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.

  6. Biosensing for the Environment and Defence: Aqueous Uranyl Detection Using Bacterial Surface Layer Proteins

    Directory of Open Access Journals (Sweden)

    David J.R. Conroy

    2010-05-01

    Full Text Available The fabrication of novel uranyl (UO22+ binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+.

  7. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat.

    Science.gov (United States)

    Upadhyaya, Narayana M; Mago, Rohit; Staskawicz, Brian J; Ayliffe, Michael A; Ellis, Jeffrey G; Dodds, Peter N

    2014-03-01

    Large numbers of candidate effectors from fungal pathogens are being identified through whole-genome sequencing and in planta expression studies. Although Agrobacterium-mediated transient expression has enabled high-throughput functional analysis of effectors in dicot plants, this assay is not effective in cereal leaves. Here, we show that a nonpathogenic Pseudomonas fluorescens engineered to express the type III secretion system (T3SS) of P. syringae and the wheat pathogen Xanthomonas translucens can deliver fusion proteins containing T3SS signals from P. syringae (AvrRpm1) and X. campestris (AvrBs2) avirulence (Avr) proteins, respectively, into wheat leaf cells. A calmodulin-dependent adenylate cyclase reporter protein was delivered effectively into wheat and barley by both bacteria. Absence of any disease symptoms with P. fluorescens makes it more suitable than X. translucens for detecting a hypersensitive response (HR) induced by an effector protein with avirulence activity. We further modified the delivery system by removal of the myristoylation site from the AvrRpm1 fusion to prevent its localization to the plasma membrane which could inhibit recognition of an Avr protein. Delivery of the flax rust AvrM protein by the modified delivery system into transgenic tobacco leaves expressing the corresponding M resistance protein induced a strong HR, indicating that the system is capable of delivering a functional rust Avr protein. In a preliminary screen of effectors from the stem rust fungus Puccinia graminis f. sp. tritici, we identified one effector that induced a host genotype-specific HR in wheat. Thus, the modified AvrRpm1:effector-Pseudomonas fluorescens system is an effective tool for large-scale screening of pathogen effectors for recognition in wheat.

  8. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  9. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  10. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity

    International Nuclear Information System (INIS)

    Cunningham, K.; Wickner, W.T.

    1989-01-01

    Isolation of the integral membrane components of protein translocation requires methods for fractionation and functional reconstitution. The authors treated inner-membrane vesicles of Escherichia coli with mixtures of octyl β-D-glucoside, phospholipids, and an integral membrane carrier protein under conditions that extract most of the membrane proteins into micellar solution. Upon dialysis, proteoliposomes were reconstituted that supported translocation of radiochemically pure [ 35 S]pro-OmpA (the precursor of outer membrane protein A). Translocation into these proteoliposomes required ATP hydrolysis and membrane proteins, indicating that the reaction is that of the inner membrane. The suspension of membranes in detergent was separated into supernatant and pellet fractions by ultracentrifugation. After reconstitution, translocation activity was observed in both fractions, but processing by leader peptidase of translocated pro-OmpA to OmpA was not detectable in the reconstituted pellet fraction. Processing activity was restored by addition of pure leader peptidase as long as this enzyme was added before detergent removal, indicating that the translocation activity is not associated with detergent-resistant membrane vesicles. These results show that protein translocation activity can be recovered from detergent-disrupted membrane vesicles, providing a first step towards the goal of isolating the solubilized components

  11. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  12. Structural and functional similarity between the bacterial type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins.

    Directory of Open Access Journals (Sweden)

    Matthew D Shortridge

    2009-10-01

    Full Text Available Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function.The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS. A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI.A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites. These results demonstrate the unique opportunity

  13. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.; BEWLEY,M.C.

    2001-12-03

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of -5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in folding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to aggregation and

  14. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.BEWLEY,M.C.

    2002-10-01

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of {approx}5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in ffolding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to

  15. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES

    International Nuclear Information System (INIS)

    FLANAGAN, J.M.; BEWLEY, M.C.

    2001-01-01

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of -5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol(approx)1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in folding are only completed post-translationally since(approx)40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to aggregation and

  16. [Diagnostic usefulness of procalcitonin and C-reactive protein in the Emergency Department for predicting bacterial meningitis in the elderly].

    Science.gov (United States)

    Morales-Casado, María Isabel; Julián-Jiménez, Agustín; Moreno-Alonso, Fernando; Valente-Rodríguez, Eder; López-Muñoz, Diego; Saura-Montalbán, José; Cuena-Boy, Rafael

    2016-01-01

    To analyse and compare procalcitonin (PCT) and C-reactive protein (CRP) as tools for detecting bacterial meningitis (BM) in the elderly (>74 years of age). A prospective, observational, descriptive, analytical study of 220 consecutive patients aged ≥1year and diagnosed with acute meningitis in an emergency department between September 2009 and July 2014. A total of 220 patients (136 [62%] male) were studied. The mean age was 30±26years, with BM being diagnosed in 17/83 patients from 1 to 14years of age, 32/111 from 15 to 74years of age, and 17/26 patients ≥75years of age. PCT had the highest area under the receiver operating characteristic curve (AUC) (0.972; 95%CI, 0.946-0,998; P<.001) to predict bacterial meningitis. With a cut-off of ≥0.52ng/mL, PCT achieved 93% sensitivity and 86% specificity, and for patients over 75years of age 96% sensitivity and 75% specificity, with the same AUC (0.972). The AUC for CRP was 0.888, and a ≥54,4mg/L cut-off achieved 91% sensitivity and 78% specificity, and for patients over 75years of age an AUC of only 0.514 achieved with 97% sensitivity and 43% specificity. For all patients with acute meningitis in the emergency department, PCT has a high diagnostic power, outperforming CRP and Leukocytes for detection of bacterial etiology, but CPR is of not useful in the elderly. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Bacterial infections in patients with liver cirrhosis: clinical characteristics and the role of C-reactive protein

    Science.gov (United States)

    Deutsch, Melanie; Manolakopoulos, Spilios; Andreadis, Ioannis; Giannaris, Markos; Kontos, George; Kranidioti, Hariklia; Pirounaki, Maria; Koskinas, John

    2018-01-01

    Background: The diagnosis of bacterial infection in cirrhotic patients may be difficult, because of the absence of classical signs such as fever and raised white blood cell count. The role of C-reactive protein (CRP) in this context has not been clearly defined. Methods: Clinical and laboratory characteristics of 210 consecutive cirrhotic patients with (n=100) or without (n=110) bacterial infection were compared with a control group of non-cirrhotic patients with infection (n=106). Results: Significantly fewer patients with cirrhosis had a body temperature ≥37°C when presenting with bacterial infection (56% cirrhotic vs. 85.5% non-cirrhotic patients, P=0.01). Mean leukocyte count was 6.92 × 103/mm3 in patients with cirrhosis and infection, 5.75 × 103/mm3 (P=0.02) in cirrhotic patients without infection, and 11.28 × 103/mm3 in non-cirrhotic patients with infection (P10 mg/L indicated the presence of infection with a sensitivity of 68%, a specificity of 84.5% and an area under the receiver operating characteristic curve of 0.8197. CRP cutoff level differed according to the severity of the liver disease: Child-Pugh score (CPS) A: 21.3 mg/L, B: 17 mg/L, and C: 5.78 mg/L. Conclusions: CRP at admission could help diagnose infection in cirrhotic patients. Since the severity of liver disease seems to affect the CRP values, lower CRP levels might indicate infection. Clinical suspicion is necessary to avoid delay in diagnosis and initiate antibiotic treatment. PMID:29333070

  18. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    Science.gov (United States)

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  19. Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis.

    Science.gov (United States)

    Miglietta, Fabio; Faneschi, Maria Letizia; Lobreglio, Giambattista; Palumbo, Claudio; Rizzo, Adriana; Cucurachi, Marco; Portaccio, Gerolamo; Guerra, Francesco; Pizzolante, Maria

    2015-09-01

    The aim of this study was to evaluate procalcitonin (PCT), C-reactive protein (CRP), platelet count (PLT) and serum lactate dehydrogenase (LDH) as early markers for diagnosis of SIRS, bacterial sepsis and systemic candidiasis in intensive care unit (ICU) patients. Based on blood culture results, the patients were divided into a sepsis group (70 patients), a SIRS group (42 patients) and a systemic candidiasis group (33 patients). PCT, CRP, LDH and PLT levels were measured on day 0 and on day 2 from the sepsis symptom onset. PCT levels were higher in Gram negative sepsis than those in Gram positive sepsis, although the P value between the two subgroups is not significant (P=0.095). Bacterial sepsis group had higher PCT and CRP levels compared with the systemic candidiasis group, whereas PLT and LDH levels showed similar levels in these two subgroups. The AUC for PCT (AUC: 0.892, P candidiasis groups (P=0.093 N.S.). In conclusion, PCT can be used as a preliminary marker in the event of clinical suspicion of systemic candidiasis; however, low PCT levels (candidiasis and SIRS groups.

  20. Enhanced green fluorescent protein in optofluidic Fabry-Perot microcavity to detect laser induced temperature changes in a bacterial culture

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Walo, D.; Freire, R.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-09-01

    Thermal therapy using laser sources can be used in combination with other cancer therapies to eliminate tumors. However, high precision temperature control is required to avoid damage in healthy surrounding tissues. Therefore, in order to detect laser induced temperature changes, we have used the fluorescence signal of the enhanced Green Fluorescent Protein (eGFP) over-expressed in an E. coli bacterial culture. For that purpose, the bacteria expressing eGFP are injected in a Fabry-Perot (FP) optofluidic planar microcavity. In order to locally heat the bacterial culture, external infrared or ultraviolet lasers were used. Shifts in the wavelengths of the resonant FP modes are used to determine the temperature increase as a function of the heating laser pump power. Laser induced local temperature increments up to 6-7 °C were measured. These results show a relatively easy way to measure laser induced local temperature changes using a FP microcavity and using eGFP as a molecular probe instead of external nanoparticles, which could damage/alter the cell. Therefore, we believe that this approach can be of interest for the study of thermal effects in laser induced thermal therapies.

  1. BacHbpred: Support Vector Machine Methods for the Prediction of Bacterial Hemoglobin-Like Proteins

    Directory of Open Access Journals (Sweden)

    MuthuKrishnan Selvaraj

    2016-01-01

    Full Text Available The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM models were developed for predicting HbL proteins based upon amino acid composition (AC, dipeptide composition (DC, hybrid method (AC + DC, and position specific scoring matrix (PSSM. In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM profiles. The average accuracy, standard deviation (SD, false positive rate (FPR, confusion matrix, and receiver operating characteristic (ROC were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.

  2. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders.

    Science.gov (United States)

    Breton, Jonathan; Legrand, Romain; Akkermann, Kirsti; Järv, Anu; Harro, Jaanus; Déchelotte, Pierre; Fetissov, Sergueï O

    2016-08-01

    Caseinolytic protease B (ClpB) produced by Enterobacteria, such as Escherichia coli, has been identified as a conformational mimetic of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic and anxiogenic neuropeptide. In mice, ClpB induces α-MSH cross-reactive antibodies and activates anorexigenic brain neurons. In patients with eating disorders (ED), anti-ClpB and anti-α-MSH antibodies correlate with psychopathological traits. However, it is not known if ClpB is present in human plasma including ED patients. Plasma concentrations of ClpB were measured using a recently developed ClpB immunoassay in female patients with anorexia nervosa, bulimia nervosa, and binge-eating disorder and compared with healthy participants, all characterized by the Eating Disorder Inventory-2 (EDI-2) scale. We found that ClpB was readably detectable in plasma of healthy participants and ED patients and that its concentrations were elevated in ED patients, without significant differences in patient's subgroups. Plasma ClpB concentrations correlated with the EDI-2 scores, with α-MSH as well as with plasma levels of anti-ClpB and anti-α-MSH antibodies. These data revealed that bacterial ClpB is naturally present in human plasma and that its concentrations can be elevated in ED patients and associated with ED-related psychopathological traits. These results support a link between bacterial ClpB and the ED pathophysiology. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:805-808). © 2016 Wiley Periodicals, Inc.

  3. HupB Is a Bacterial Nucleoid-Associated Protein with an Indispensable Eukaryotic-Like Tail

    Directory of Open Access Journals (Sweden)

    Joanna Hołówka

    2017-11-01

    Full Text Available In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing, we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC to the terminus (ter of the mycobacterial chromosome (numbers of binding sites decreased toward ter. We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.

  4. Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Ahlstrøm, Øystein

    2005-01-01

    % (Diet IV) of the digested nitrogen (DN) was replaced with BPM. Nitrogen balance and respiration experiments (indirect calorimetry) were carried out when the animals were approximately 9.5, 14.5, 17.5, 23.5 and 28.5 weeks of age. The apparent digestibility of crude protein and energy decreased......The objective of this study was to estimate the effect of increasing the dietary content of bacterial protein meal (BPM) on energy and protein metabolism in growing mink kits. Sixteen male mink kits of the standard brown genotype were randomly fed one of four diets: A control (Diet III) and 60...... significantly with increasing dietary BPM. The retained nitrogen was 0.45, 0.54, 0.52 and 0.40 g/kg0,75 on Diets I, II, III and IV, respectively, the observed differences between diets being non-significant (p=0.06). Heat production (HE) was between 645 and 665 kJ/kg0.75 on all diets (p=0.78). retained energy...

  5. Protecting the herd: the remarkable effectiveness of the bacterial meningitis polysaccharide-protein conjugate vaccines in altering transmission dynamics.

    Science.gov (United States)

    Stephens, David S

    2011-01-01

    Interrupting human-to-human transmission of the agents (Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae) of bacterial meningitis by new capsular polysaccharide-protein conjugate vaccines (PPCVs) has proven to be a remarkable (and unanticipated) contributor to vaccine effectiveness. Herd immunity accounts for ∼50% of the protection by meningococcal serogroup C PPCVs, pneumococcal PPCV7, and H. influenzae b PPCVs. Nasopharyngeal carriage can be reduced ≥75% for vaccine serotypes; the decrease in carriage is correlated with disease reduction in unvaccinated individuals, and the impact of herd immunity lasts for years. Based on these data, models for using herd immunity in vaccine-based prevention strategies are underway for control of meningitis in sub-Saharan Africa. Although the immunologic basis of herd immunity and impact on microbial biology need more study, protecting the unvaccinated by altering pathogen transmission dynamics is a powerful effect of PPCVs and increasingly important in vaccine introduction, implementation, and evaluation strategies.

  6. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    Science.gov (United States)

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  8. Excretion of purine base derivatives after intake of bacterial protein meal in pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, A.

    2007-01-01

    increased with increasing dietary content of BPM. No differences in fasting plasma concentration of uric acid, xanthine and hypoxanthine were observed. It can therefore be concluded that increasing levels of dietary BPM maintained protein accretion and led to changes in excretion of purine detrivatices...

  9. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori

    NARCIS (Netherlands)

    Michielse, C.B.; Ram, A.F.J.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den

    2004-01-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins

  10. Bacterial-based Systems for Expression and Purification of Recombinant Lassa Virus Proteins of Immunological Relevance

    National Research Council Canada - National Science Library

    Branco, Luis M; Matschiner, Alex; Fair, Joseph N; Goba, Augustine; Sampey, Darryl B; Ferro, Philip J; Cashman, Kathleen A; Schoepp, Randal J; Tesh, Robert B; Bausch, Daniel G

    2008-01-01

    ...) fusions in the Rosetta strains of Escherichia coli (E. coli) using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively...

  11. Expression, secretion and antigenic variation of bacterial S-layer proteins

    NARCIS (Netherlands)

    Boot, H.J.; Pouwels, P.H.

    1996-01-01

    The function of the S-layer, a regularly arranged structure on the outside of numerous bacteria, appears to be different for bacteria living in different environments. Almost no similarity exists between the primary sequences of S-proteins, although their amino acid composition is comparable.

  12. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins

    Science.gov (United States)

    Shibata, Toshio; Maki, Kouki; Hadano, Jinki; Fujikawa, Takumi; Kitazaki, Kazuki; Koshiba, Takumi; Kawabata, Shun-ichiro

    2015-01-01

    Transglutaminase (TG) catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi) of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes. PMID:26506243

  13. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins.

    Directory of Open Access Journals (Sweden)

    Toshio Shibata

    2015-10-01

    Full Text Available Transglutaminase (TG catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes.

  14. Effect of Antimicrobial Agents on MinD Protein Oscillations in E. coli Bacterial Cells

    Science.gov (United States)

    Kelly, Corey; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    The pole-to-pole oscillation of MinD proteins in E. coli cells determines the location of the division septum, and is integral to healthy cell division. It has been shown previously that the MinD oscillation period is approximately 40 s for healthy cells [1] but is strongly dependant on environmental factors such as temperature, which may place stress on the cell [2,3]. We use a strain of E. coli in which the MinD proteins are tagged with green fluorescent protein (GFP), allowing fluorescence visualization of the MinD oscillation. We use high-resolution total internal reflection fluorescence (TIRF) microscopy and a custom, temperature controlled flow cell to observe the effect of exposure to antimicrobial agents on the MinD oscillation period and, more generally, to analyze the time variation of the spatial distribution of the MinD proteins within the cells. These measurements provide insight into the mechanism of antimicrobial action. [1] Raskin, D.M.; de Boer, P. (1999) Proc. Natl. Acad. Sci. 96: 4971-4976. [2] Touhami, A.; Jericho, M; Rutenberg, A. (2006) J. Bacteriol. 188: 7661-7667. [3] Downing, B.; Rutenberg, A.; Touhami, A.; Jericho, M. (2009) PLoS ONE 4: e7285.

  15. Systems level analysis of protein synthesis patterns associated with bacterial growth and metabolic transitions

    Czech Academy of Sciences Publication Activity Database

    Vohradský, Jiří; Thompson, CH. J.

    2006-01-01

    Roč. 6, - (2006), s. 785-793 ISSN 1615-9853 R&D Projects: GA ČR GA310/03/0293; GA ČR GA310/04/0804 Institutional research plan: CEZ:AV0Z50200510 Keywords : fuzzy clustering * principal component analysis * protein profiling Subject RIV: EE - Microbiology, Virology Impact factor: 5.735, year: 2006

  16. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress

    NARCIS (Netherlands)

    C. Abrantes, Marta; Kok, Jan; de Fatima Silva Lopes, Maria

    2014-01-01

    Two Enterococcus faecalis genes encoding the P-type ATPase EF1400 and the putative SapB protein EF0759 were previously shown to be strongly upregulated in the presence of high concentrations of zinc. In the present work, we showed that a Zn(2+)-responsive DNA-binding motif (zim) is present in the

  17. TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production

    DEFF Research Database (Denmark)

    Rennig, Maja; Martinez, Virginia; Mirzadeh, Kiavash

    2018-01-01

    and allows expression levels in large clone libraries to be probed using a simple cell survival assay on the respective antibiotic. The power of the approach is demonstrated by substantially increasing production of two commercially interesting proteins, a Nanobody and an Affibody. The method is a simple...

  18. Evolutionary conservation of dual Sec translocases in the cyanelles of Cyanophora paradoxa

    Directory of Open Access Journals (Sweden)

    Löffelhardt Wolfgang

    2008-11-01

    Full Text Available Abstract Background Cyanelles, the peptidoglycan-armored plastids of glaucocystophytes, occupy a unique bridge position in between free-living cyanobacteria and chloroplasts. In some respects they side with cyanobacteria whereas other features are clearly shared with chloroplasts. The Sec translocase, an example for "conservative sorting" in the course of evolution, is found in the plasma membrane of all prokaryotes, in the thylakoid membrane of chloroplasts and in both these membrane types of cyanobacteria. Results In this paper we present evidence for a dual location of the Sec translocon in the thylakoid as well as inner envelope membranes of the cyanelles from Cyanophora paradoxa, i. e. conservative sorting sensu stricto. The prerequisite was the generation of specific antisera directed against cyanelle SecY that allowed immunodetection of the protein on SDS gels from both membrane types separated by sucrose density gradient floatation centrifugation. Immunoblotting of blue-native gels yielded positive but differential results for both the thylakoid and envelope Sec complexes, respectively. In addition, heterologous antisera directed against components of the Toc/Tic translocons and binding of a labeled precursor protein were used to discriminate between inner and outer envelope membranes. Conclusion The envelope translocase can be envisaged as a prokaryotic feature missing in higher plant chloroplasts but retained in cyanelles, likely for protein transport to the periplasm. Candidate passengers are cytochrome c6 and enzymes of peptidoglycan metabolism. The minimal set of subunits of the Toc/Tic translocase of a primitive plastid is proposed.

  19. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass

    Science.gov (United States)

    Steinberg, Lisa M.; Kronyak, Rachel E.; House, Christopher H.

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design

  20. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  1. Plant-synthesized E. coli CFA/I fimbrial protein protects Caco-2 cells from bacterial attachment.

    Science.gov (United States)

    Lee, Jin-Yong; Yu, Jie; Henderson, David; Langridge, William H R

    2004-11-25

    A DNA fragment encoding the cholera toxin A2 subunit (CTA2) linked to the enterotoxigenic Escherichia coli (ETEC) colony forming fimbrial antigen CFA/I was inserted into a plant expression vector containing the cholera toxin B subunit (CTB) fused to the rotavirus enterotoxin 22 amino acid epitope NSP422. Anti-CFA/I antibodies recognized a single band of approximately 72-kDa in transformed potato tuber tissue consistent with CFA/I-CTA2 and CTB-NSP4 fusion protein assembly into a cholera holotoxin-like structure. Enzyme-linked immunosorbent assay (GM1 ELISA) indicated that the CFA/I-CTA2 fusion protein bound specific GM1 ganglioside membrane receptors and made up approximately 0.002% of the total soluble tuber protein. Oral immunization of BALB/c mice with transformed tuber tissues generated anti-CFA/I serum and intestinal IgG and IgA secretory antibodies. Attachment of ETEC H10407 to enterocyte-like Caco-2 human colon carcinoma cells incubated with antiserum from immunized mice was reduced by 15% in comparison with Caco-2 cells incubated with serum from unimmunized mice. Immunogold staining of bacterial preparations revealed deposition of gold particles on E. coli H10407 fimbria incubated with immune serum but not on fimbria treated with sera from unimmunized mice demonstrating the specificity of antibodies in the immune serum for binding to CFA/I protein containing fimbria. The protection against toxic E. coli binding to Caco-2 cells generated by antisera from mice immunized with plant-synthesized CFA/I antigen demonstrates the feasibility of plant-based multi-component vaccine protection against enterotoxigenic E. coli, rotavirus and cholera, three enteric diseases that together exert the highest levels of child morbidity and mortality in economically emerging countries.

  2. Electrochemical characterization of pore formation by bacterial protein toxins on hybrid supported membranes.

    Science.gov (United States)

    Wilkop, Thomas; Xu, Danke; Cheng, Quan

    2008-05-20

    The interaction of pore-forming streptolysin O (SLO) with biomimetic lipid membranes has been studied by electrochemical methods. Phosphatidylcholine lipid vesicles were deposited onto gold electrodes modified with supporting layers of hexyl thioctate (HT) or thioctic acid tri(ethylene glycol) ester (TA-TEGE), and integrity and permeability of the resulting membranes were characterized by cyclic voltammetry and impedance spectroscopy. Both positively and negatively charged electrochemical probes, potassium ferrocyanide, hexaammineruthenium(III) chloride, and ferrocene carboxylic acid (FCA), were employed to evaluate their suitability to probe the membrane permeability properties, with FCA exhibiting ideal behavior and thus employed throughout the work. Fusion of vesicles incubated with SLO on the electrodes yielded membranes that showed a distinctive response pattern for FCA as a function of SLO concentration. A direct dependence of both the currents and peak separation of FCA in the cyclic voltammograms was observed over a concentration range of 0-10 hemolytic units (HU)/microL of the toxin. The interaction of SLO with preformed supported lipid membranes was also investigated, and much lower response was observed, suggesting a different extent of membrane-toxin interactions on such an interface. Nonionic surfactant Triton was found to disrupt the vesicle structure but could not completely remove a preformed membrane to fully restore the electrode response. The information reported here offers some unique insight into toxin-surface interactions on a hybrid membrane, facilitating the development of electrochemically based sensing platforms for detecting trace amounts of bacterial toxins via the perforation process.

  3. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases.

    Science.gov (United States)

    Makarova, K S; Aravind, L; Koonin, E V

    1999-08-01

    Computer analysis using profiles generated by the PSI-BLAST program identified a superfamily of proteins homologous to eukaryotic transglutaminases. The members of the new protein superfamily are found in all archaea, show a sporadic distribution among bacteria, and were detected also in eukaryotes, such as two yeast species and the nematode Caenorhabditis elegans. Sequence conservation in this superfamily primarily involves three motifs that center around conserved cysteine, histidine, and aspartate residues that form the catalytic triad in the structurally characterized transglutaminase, the human blood clotting factor XIIIa'. On the basis of the experimentally demonstrated activity of the Methanobacterium phage pseudomurein endoisopeptidase, it is proposed that many, if not all, microbial homologs of the transglutaminases are proteases and that the eukaryotic transglutaminases have evolved from an ancestral protease.

  4. Cancer therapy using viral- and bacterial proteins, as vectors for vaccines or as carriers of cytostatics

    OpenAIRE

    Eriksson, Mathilda

    2012-01-01

    New cancer therapies are urgently needed, since available treatment options today have negative side effects, and cure only about half of the patients with invasive cancer. One, relatively new, option is to vaccinate against cancer, by introducing an antigen that is present on the tumor cells into the patient to stimulate specific immunity against the tumor. For this purpose viral capsid proteins, which can self-assemble into so called virus-like particles (VLPs), can be e...

  5. Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein.

    Directory of Open Access Journals (Sweden)

    Chen Wang

    Full Text Available Antifreeze proteins (AFPs enhance the survival of organisms inhabiting cold environments by affecting the formation and/or structure of ice. We report the crystal structure of the first multi-domain AFP that has been characterized. The two ice binding domains are structurally similar. Each consists of an irregular β-helix with a triangular cross-section and a long α-helix that runs parallel on one side of the β-helix. Both domains are stabilized by hydrophobic interactions. A flat plane on the same face of each domain's β-helix was identified as the ice binding site. Mutating any of the smaller residues on the ice binding site to bulkier ones decreased the antifreeze activity. The bulky side chain of Leu174 in domain A sterically hinders the binding of water molecules to the protein backbone, partially explaining why antifreeze activity by domain A is inferior to that of domain B. Our data provide a molecular basis for understanding differences in antifreeze activity between the two domains of this protein and general insight on how structural differences in the ice-binding sites affect the activity of AFPs.

  6. Bacterial-Chromatin Structural Proteins Regulate the Bimodal Expression of the Locus of Enterocyte Effacement (LEE) Pathogenicity Island in EnteropathogenicEscherichia coli.

    Science.gov (United States)

    Leh, Hervé; Khodr, Ahmad; Bouger, Marie-Christine; Sclavi, Bianca; Rimsky, Sylvie; Bury-Moné, Stéphanie

    2017-08-08

    In enteropathogenic Escherichia coli (EPEC), the locus of enterocyte effacement (LEE) encodes a type 3 secretion system (T3SS) essential for pathogenesis. This pathogenicity island comprises five major operons ( LEE1 to LEE5 ), with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1 , encodes Ler (LEE-encoded regulator), an H-NS (nucleoid structuring protein) paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression. IMPORTANCE Gene expression stochasticity is an emerging phenomenon in microbiology. In certain contexts, gene expression stochasticity can shape bacterial epigenetic regulation. In enteropathogenic Escherichia coli (EPEC), the interplay between H-NS (a nucleoid structuring protein) and Ler (an H-NS paralog) is required for bimodal LEE5 and LEE1 expression, leading to the emergence of two bacterial subpopulations (with low and high states of expression). The two proteins share mutual nucleation binding sites in the LEE5 promoter region. In vitro , the binding of H

  7. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  8. Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics

    Directory of Open Access Journals (Sweden)

    C. Liu

    2018-04-01

    Full Text Available We developed and fabricated novel polyvinylidene fluoride (PVDF-(0.5–2%Ag and PVDF-(0.5–2%Ag-1% graphene oxide (GO nanocomposite membranes with antifouling properties through electrospinning. Silver nanoparticles (AgNPs were in situ synthesized from silver nitrate precursor directly. The tensile properties, wetting, antifouling characteristics of pristine PVDF and its nanocomposite membranes were studied. Tensile tests showed that the addition of 0.5–2% AgNPs to PVDF improves its elastic modulus and tensile strength markedly. A further increase in both tensile modulus and strength of PVDF were obtained by hybridizing AgNPs with 1% GO. Water contact angle measurements revealed that the incorporation of AgNPs or AgNPs/GO nanofillers into PVDF decreases its degree of hydrophobicity. This led to the nanocomposite membranes having higher water flux permeation. In addition, AgNPs and AgNPs/GO fillers played a crucial role against protein and bacterial fouling of the resulting composite membranes. The antibacterial activities of electrospun nanocomposite membranes were assessed against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. On the basis of water contact angle, water permeation flux and antifouling results, electrospun PVDF-2% Ag-GO composite membrane was found to exhibit excellent filtration performance, protein antifouling and bactericidal activities. Thus such a fibrous nanocomposite is considered as a high-potential membrane for water purification and disinfection applications.

  9. Seeing is believing: Direct imaging of charge flow along pili proteins reveals new mechanism for bacterial electron transfer

    Science.gov (United States)

    Malvankar, Nikhil; Yalcin, Sibel Ebru; Adhikari, Ramesh; Tuominen, Mark; Lovley, Derek

    2015-03-01

    Visualization of charge flow on the nanoscale in proteins is crucial for a fundamental understanding of several life processes. Here, we report direct visualization of charge propagation along native pili of Geobacter sulfurreducens at nanometer resolution using electrostatic force microscopy. Surprisingly, charges injected at a single point into individual, untreated pili, still attached to cells, propagate over the entire filament. The charges propagate despite a lack of cytochromes on the pili, in contrast to the dominant biochemical model that proteins are electronically insulating and must incorporate redox-active cofactors in order to achieve electron transport functionality. The mobile charge density in pili is comparable to synthetic organic conductors, increasing with proton doping, and with temperature-dependence consistent with previously discovered metallic-like transport mechanism. Conductive pili enable syntrophic bacteria to share energy by directly exchanging electrons among each other. Measurements along individual pilus using nanoelectrodes showed ohmic behavior strongly dependent on the amino acid composition of pili. Electron transfer rate measurement revealed that the pili conductivity is the decisive factor in controlling the bacterial respiration rate. Funded by Office of Naval Research, DOE Genomic Sciences, NSF-NSEC CHM (CMMI-1025020) and Burroughs Wellcome Fund.

  10. An Investigation of Bacterial Protein Interactions as a Primary Research Project in a Sophomore-Level Molecular Biology Course

    Directory of Open Access Journals (Sweden)

    Jean A. Cardinale

    2011-09-01

    Full Text Available Longer term research activities that may be incorporated in undergraduate courses are a powerful tool for promoting student interest and learning, developing cognitive process skills, and allowing undergraduates to experience real research activities in which they may not otherwise have the opportunity to participate. The challenge to doing so in lower-level courses is that students may have not fully grasped the scientific concepts needed to undertake such research endeavors, and that they may be discouraged if activities are perceived to be too challenging. The paper describes how a bacterial protein:protein interaction detection system was adapted and incorporated into the laboratory component of a sophomore-level Molecular Cell Biology course. The project was designed to address multiple learning objectives connecting course content to the laboratory activities, as well as teach basic molecular biology laboratory skills and procedures in the context of a primary research activity. Pre- and posttesting and student surveys both suggest that the laboratory curriculum resulted in significant learning gains, as well as being well received and valued by the students.

  11. An investigation of bacterial protein interactions as a primary research project in a sophomore-level molecular biology course.

    Science.gov (United States)

    Cardinale, Jean A

    2011-01-01

    Longer term research activities that may be incorporated in undergraduate courses are a powerful tool for promoting student interest and learning, developing cognitive process skills, and allowing undergraduates to experience real research activities in which they may not otherwise have the opportunity to participate. The challenge to doing so in lower-level courses is that students may have not fully grasped the scientific concepts needed to undertake such research endeavors, and that they may be discouraged if activities are perceived to be too challenging. The paper describes how a bacterial protein:protein interaction detection system was adapted and incorporated into the laboratory component of a sophomore-level Molecular Cell Biology course. The project was designed to address multiple learning objectives connecting course content to the laboratory activities, as well as teach basic molecular biology laboratory skills and procedures in the context of a primary research activity. Pre- and posttesting and student surveys both suggest that the laboratory curriculum resulted in significant learning gains, as well as being well received and valued by the students.

  12. Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.

    Science.gov (United States)

    Lin, Abraham; Jimenez, Jose; Derr, Julien; Vera, Pedro; Manapat, Michael L; Esvelt, Kevin M; Villanueva, Laura; Liu, David R; Chen, Irene A

    2011-01-01

    Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage), these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.

  13. Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.

    Directory of Open Access Journals (Sweden)

    Abraham Lin

    Full Text Available Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage, these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.

  14. Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus-Associated Pneumonia Among Children Aged <5 Years in the PERCH Study.

    Science.gov (United States)

    Higdon, Melissa M; Le, Tham; O'Brien, Katherine L; Murdoch, David R; Prosperi, Christine; Baggett, Henry C; Brooks, W Abdullah; Feikin, Daniel R; Hammitt, Laura L; Howie, Stephen R C; Kotloff, Karen L; Levine, Orin S; Scott, J Anthony G; Thea, Donald M; Awori, Juliet O; Baillie, Vicky L; Cascio, Stephanie; Chuananon, Somchai; DeLuca, Andrea N; Driscoll, Amanda J; Ebruke, Bernard E; Endtz, Hubert P; Kaewpan, Anek; Kahn, Geoff; Karani, Angela; Karron, Ruth A; Moore, David P; Park, Daniel E; Rahman, Mohammed Ziaur; Salaudeen, Rasheed; Seidenberg, Phil; Somwe, Somwe Wa; Sylla, Mamadou; Tapia, Milagritos D; Zeger, Scott L; Deloria Knoll, Maria; Madhi, Shabir A

    2017-06-15

    Lack of a gold standard for identifying bacterial and viral etiologies of pneumonia has limited evaluation of C-reactive protein (CRP) for identifying bacterial pneumonia. We evaluated the sensitivity and specificity of CRP for identifying bacterial vs respiratory syncytial virus (RSV) pneumonia in the Pneumonia Etiology Research for Child Health (PERCH) multicenter case-control study. We measured serum CRP levels in cases with World Health Organization-defined severe or very severe pneumonia and a subset of community controls. We evaluated the sensitivity and specificity of elevated CRP for "confirmed" bacterial pneumonia (positive blood culture or positive lung aspirate or pleural fluid culture or polymerase chain reaction [PCR]) compared to "RSV pneumonia" (nasopharyngeal/oropharyngeal or induced sputum PCR-positive without confirmed/suspected bacterial pneumonia). Receiver operating characteristic (ROC) curves were constructed to assess the performance of elevated CRP in distinguishing these cases. Among 601 human immunodeficiency virus (HIV)-negative tested controls, 3% had CRP ≥40 mg/L. Among 119 HIV-negative cases with confirmed bacterial pneumonia, 77% had CRP ≥40 mg/L compared with 17% of 556 RSV pneumonia cases. The ROC analysis produced an area under the curve of 0.87, indicating very good discrimination; a cut-point of 37.1 mg/L best discriminated confirmed bacterial pneumonia (sensitivity 77%) from RSV pneumonia (specificity 82%). CRP ≥100 mg/L substantially improved specificity over CRP ≥40 mg/L, though at a loss to sensitivity. Elevated CRP was positively associated with confirmed bacterial pneumonia and negatively associated with RSV pneumonia in PERCH. CRP may be useful for distinguishing bacterial from RSV-associated pneumonia, although its role in discriminating against other respiratory viral-associated pneumonia needs further study. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Low ascitic fluid total protein levels is not associated to the development of spontaneous bacterial peritonitis in a cohort of 274 patients with cirrhosis

    DEFF Research Database (Denmark)

    Mo, Silje; Bendtsen, Flemming; Wiese, Signe Skovgaard

    2018-01-01

    Background: Spontaneous bacterial peritonitis (SBP) is a complication to decompensated cirrhosis. Fluoroquinolones may prevent SBP. However, predictive markers for SBP are wanted. Guidelines suggest that patients with ascitic fluid protein below 15 g/l receive fluoroquinolones to prevent SBP...

  16. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Science.gov (United States)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  17. Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein.

    Directory of Open Access Journals (Sweden)

    Jianhua Zhao

    2017-06-01

    Full Text Available Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires' Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the 'open' conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK.

  18. Structural correlates of carrier protein recognition in tetanus toxoid-conjugated bacterial polysaccharide vaccines.

    Science.gov (United States)

    Lockyer, Kay; Gao, Fang; Derrick, Jeremy P; Bolgiano, Barbara

    2015-03-10

    An analysis of structure-antibody recognition relationships in nine licenced polysaccharide-tetanus toxoid (TT) conjugate vaccines was performed. The panel of conjugates used included vaccine components to protect against disease caused by Haemophilus influenzae type b, Neisseria meningitidis groups A, C, W and Y and Streptococcus pneumoniae serotype 18C. Conformation and structural analysis included size exclusion chromatography with multi-angle light scattering to determine size, and intrinsic fluorescence spectroscopy and fluorescence quenching to evaluate the protein folding and exposure of Trp residues. A capture ELISA measured the recognition of TT epitopes in the conjugates, using four rat monoclonal antibodies: 2 localised to the HC domain, and 2 of which were holotoxoid conformation-dependent. The conjugates had a wide range of average molecular masses ranging from 1.8×10(6) g/mol to larger than 20×10(6) g/mol. The panel of conjugates were found to be well folded, and did not have spectral features typical of aggregated TT. A partial correlation was found between molecular mass and epitope recognition. Recognition of the epitopes either on the HC domain or the whole toxoid was not necessarily hampered by the size of the molecule. Correlation was also found between the accessibility of Trp side chains and polysaccharide loading, suggesting also that a higher level of conjugated PS does not necessarily interfere with toxoid accessibility. There were different levels of carrier protein Trp side-chain and epitope accessibility that were localised to the HC domain; these were related to the saccharide type, despite the conjugates being independently manufactured. These findings extend our understanding of the molecular basis for carrier protein recognition in TT conjugate vaccines. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Sec61 blockade by mycolactone inhibits antigen cross-presentation independently of endosome-to-cytosol export.

    Science.gov (United States)

    Grotzke, Jeff E; Kozik, Patrycja; Morel, Jean-David; Impens, Francis; Pietrosemoli, Natalia; Cresswell, Peter; Amigorena, Sebastian; Demangel, Caroline

    2017-07-18

    Although antigen cross-presentation in dendritic cells (DCs) is critical to the initiation of most cytotoxic immune responses, the intracellular mechanisms and traffic pathways involved are still unclear. One of the most critical steps in this process, the export of internalized antigen to the cytosol, has been suggested to be mediated by Sec61. Sec61 is the channel that translocates signal peptide-bearing nascent polypeptides into the endoplasmic reticulum (ER), and it was also proposed to mediate protein retrotranslocation during ER-associated degradation (a process called ERAD). Here, we used a newly identified Sec61 blocker, mycolactone, to analyze Sec61's contribution to antigen cross-presentation, ERAD, and transport of internalized antigens into the cytosol. As shown previously in other cell types, mycolactone prevented protein import into the ER of DCs. Mycolactone-mediated Sec61 blockade also potently suppressed both antigen cross-presentation and direct presentation of synthetic peptides to CD8 + T cells. In contrast, it did not affect protein export from the ER lumen or from endosomes into the cytosol, suggesting that the inhibition of cross-presentation was not related to either of these trafficking pathways. Proteomic profiling of mycolactone-exposed DCs showed that expression of mediators of antigen presentation, including MHC class I and β2 microglobulin, were highly susceptible to mycolactone treatment, indicating that Sec61 blockade affects antigen cross-presentation indirectly. Together, our data suggest that the defective translocation and subsequent degradation of Sec61 substrates is the cause of altered antigen cross-presentation in Sec61-blocked DCs.

  20. Flat Drops, Elastic Sheets, and Microcapsules by Interfacial Assembly of a Bacterial Biofilm Protein, BslA.

    Science.gov (United States)

    Kaufman, Gilad; Liu, Wei; Williams, Danielle M; Choo, Youngwoo; Gopinadhan, Manesh; Samudrala, Niveditha; Sarfati, Raphael; Yan, Elsa C Y; Regan, Lynne; Osuji, Chinedum O

    2017-11-28

    Protein adsorption and assembly at interfaces provide a potentially versatile route to create useful constructs for fluid compartmentalization. In this context, we consider the interfacial assembly of a bacterial biofilm protein, BslA, at air-water and oil-water interfaces. Densely packed, high modulus monolayers form at air-water interfaces, leading to the formation of flattened sessile water drops. BslA forms elastic sheets at oil-water interfaces, leading to the production of stable monodisperse oil-in-water microcapsules. By contrast, water-in-oil microcapsules are unstable but display arrested rather than full coalescence on contact. The disparity in stability likely originates from a low areal density of BslA hydrophobic caps on the exterior surface of water-in-oil microcapsules, relative to the inverse case. In direct analogy with small molecule surfactants, the lack of stability of individual water-in-oil microcapsules is consistent with the large value of the hydrophilic-lipophilic balance (HLB number) calculated based on the BslA crystal structure. The occurrence of arrested coalescence indicates that the surface activity of BslA is similar to that of colloidal particles that produce Pickering emulsions, with the stability of partially coalesced structures ensured by interfacial jamming. Micropipette aspiration and flow in tapered capillaries experiments reveal intriguing reversible and nonreversible modes of mechanical deformation, respectively. The mechanical robustness of the microcapsules and the ability to engineer their shape and to design highly specific binding responses through protein engineering suggest that these microcapsules may be useful for biomedical applications.

  1. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  2. Identification and characterization of a novel protective antigen, Sec_205 of Streptococcus equi ssp. Zooepidemicus.

    Science.gov (United States)

    Liang, Huihuang; Tang, Bin; Zhao, Pengpeng; Deng, Mingyong; Yan, Lili; Zhai, Pan; Wei, Zigong

    2018-02-01

    Streptococcus equi ssp. zooepidemicus (SEZ) is an important pathogen of swine streptococcal diseases and can infect a wide range of animals as well as human beings. The absence of effective vaccine confounds the control of SEZ infection. Sec_205, a novel protein identified in the previous study, was inducibly over-expressed in Escherichia coli in the present study. The purified recombinant protein could elicit a significant humoral antibody response and provide efficient protection against lethal challenge of SEZ C55138 in mouse model. The protection against SEZ infection was mediated by specific antibodies to Sec_205 to some extent and was identified by the passive protection assay. The Sec_205 was an in vivo-induced antigen confirmed by the real-time PCR and could adhere to the Hep-2 cells by the inhibition assay. These suggest that Sec_205 may play a vital role in pathogenicity and serve as a new vaccine candidate against SEZ infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins.

    Science.gov (United States)

    Pulliainen, Arto Tapio; Dehio, Christoph

    2009-03-01

    Bartonella henselae (Bh) is a worldwide distributed zoonotic pathogen. Depending on the immune status of the infected individual this bacterium can cause a wide spectrum of clinical manifestations, ranging from cat scratch disease (CSD) to bacillary angiomatosis (BA) and bacillary peliosis (BP). BA and BP are characterized by tumor-like lesions at the skin or in the inner organs, respectively. These structures display pathological sprouting of capillaries with enlarged and hyperproliferated vascular endothelial cells (ECs) that are frequently found in close association with bacteria. Here we review the cellular changes observed upon Bh infection of ECs in vitro and outline the role of the VirB type IV secretion system (T4SS) and its translocated effector proteins in the modulation of EC signalling cascades. The current model how this virulence system could contribute to the vasoproliferative activity of Bh is described.

  4. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    heterologous overexpression of almost all OMPs should be feasible in E. coli and other Gram-negative bacterial model organisms. This is relevant especially for biotechnology applications, where recombinant OMPs are used e.g. for the development of vaccines. For the species in which the motif is significantly different, we identify the residues mainly responsible for this difference that can now be changed in heterologous expression experiments to yield functional proteins.

  5. Bacterial-Chromatin Structural Proteins Regulate the Bimodal Expression of the Locus of Enterocyte Effacement (LEE Pathogenicity Island in Enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Hervé Leh

    2017-08-01

    Full Text Available In enteropathogenic Escherichia coli (EPEC, the locus of enterocyte effacement (LEE encodes a type 3 secretion system (T3SS essential for pathogenesis. This pathogenicity island comprises five major operons (LEE1 to LEE5, with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1, encodes Ler (LEE-encoded regulator, an H-NS (nucleoid structuring protein paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro. Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression.

  6. 14 CFR Sec. 1-6 - Accounting entities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Accounting entities. Sec. 1-6 Section 1-6... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS General Accounting Provisions Sec. 1-6 Accounting entities. (a) Separate accounting records shall be maintained for each air...

  7. 14 CFR Sec. 2-4 - Accounting period.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Accounting period. Sec. 2-4 Section 2-4... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS General Accounting Provisions Sec. 2-4 Accounting period. (a) The accounting year of each air carrier subject to this Uniform...

  8. 14 CFR Sec. 2-5 - Revenue and accounting practices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Revenue and accounting practices. Sec. 2-5... General Accounting Provisions Sec. 2-5 Revenue and accounting practices. (a) Revenue accounting practices... physically verify the reliability of its passenger revenue accounting practice at least once each accounting...

  9. Financial Journalism under Fire: The SEC and Newsroom Ethics.

    Science.gov (United States)

    Spellman, Robert L.

    Although noting that the Securities and Exchange Commission (SEC) has been a valuable ally of journalists, this paper suggests that recent efforts of the SEC in prosecuting the case of R. Foster Winans, Jr., a former writer for the "Wall Street Journal," may be unconstitutional. Following an introduction to the First Amendment issues…

  10. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Sun

    2016-08-01

    Full Text Available Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii displayed no apparent flagella and motility, (iii was defective in the attachment to host cells and unable to form self-aggregation, (iv displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  11. The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity.

    Science.gov (United States)

    Maqbool, Abbas; Horler, Richard S P; Muller, Axel; Wilkinson, Anthony J; Wilson, Keith S; Thomas, Gavin H

    2015-10-01

    ATP-binding cassette (ABC) transporters, although being ubiquitous in biology, often feature a subunit that is limited primarily to bacteria and archaea. This subunit, the substrate-binding protein (SBP), is a key determinant of the substrate specificity and high affinity of ABC uptake systems in these organisms. Most prokaryotes have many SBP-dependent ABC transporters that recognize a broad range of ligands from metal ions to amino acids, sugars and peptides. Herein, we review the structure and function of a number of more unusual SBPs, including an ABC transporter involved in the transport of rare furanose forms of sugars and an SBP that has evolved to specifically recognize the bacterial cell wall-derived murein tripeptide (Mtp). Both these examples illustrate that subtle changes in binding-site architecture, including changes in side chains not directly involved in ligand co-ordination, can result in significant alteration of substrate range in novel and unpredictable ways. © 2015 Authors; published by Portland Press Limited.

  12. Structure of the Neisserial outer membrane protein Opa₆₀: loop flexibility essential to receptor recognition and bacterial engulfment.

    Science.gov (United States)

    Fox, Daniel A; Larsson, Per; Lo, Ryan H; Kroncke, Brett M; Kasson, Peter M; Columbus, Linda

    2014-07-16

    The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen-host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors.

  13. Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin.

    Science.gov (United States)

    Tishchenko, S V; Vassilieva, J M; Platonova, O B; Serganov, A A; Fomenkova, N P; Mudrik, E S; Piendl, W; Ehresmann, C; Ehresmann, B; Garber, M B

    2001-09-01

    The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.

  14. Cloning, purification, crystallization and preliminary crystallographic analysis of SecA from Enterococcus faecalis

    International Nuclear Information System (INIS)

    Meining, Winfried; Scheuring, Johannes; Fischer, Markus; Weinkauf, Sevil

    2006-01-01

    SecA ATPase from E. faecalis has been cloned, overexpressed, purified and crystallized. Crystals belong to space group C2 and diffract to 2.4 Å resolution. The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 Å resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 Å, α = γ = 90.0, β = 119.1°. A selenomethionine derivative was prepared and is currently being tested in crystallization trials

  15. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: A cross-sectional study.

    Science.gov (United States)

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-09-01

    There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children.All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated.Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%).The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis.

  16. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    Science.gov (United States)

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  17. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    Science.gov (United States)

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  18. Accuracy of cerebrospinal leucocyte count, protein and culture for the diagnosis of acute bacterial meningitis: a comparative study using Bayesian latent class analysis.

    Science.gov (United States)

    Manning, Laurens; Laman, Moses; Mare, Trevor; Hwaiwhanje, Ilomo; Siba, Peter; Davis, Timothy M E

    2014-12-01

    To examine the utility of laboratory methods other than bacterial culture in diagnosing acute bacterial meningitis (ABM). Bayesian latent class analysis was used to estimate diagnostic precision of cerebrospinal fluid (CSF) culture, leucocyte counts and protein concentrations for ABM in Melanesian children. With a cut-off of ≥20 leucocytes/mm(3) , the area under the receiver operating characteristic curve (AUC ROC) was >97.5% for leucocyte counts. A lower (93%) AUC ROC was observed for CSF protein concentrations ≥1 g/l. CSF culture had poor sensitivity and high specificity. Leucocyte counts provide sufficient diagnostic precision to aid clinical decision-making in ABM. © 2014 John Wiley & Sons Ltd.

  19. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies.

    Science.gov (United States)

    Dada, Oluwatosin O; Rao, Romesh; Jones, Natalie; Jaya, Nomalie; Salas-Solano, Oscar

    2017-10-25

    Fragmentation of monoclonal antibodies is a critical quality attribute routinely monitored to assess the purity and integrity of the product from development to commercialization. Cleavage in the upper hinge region of IgG1 monoclonal antibodies is a common fragmentation pattern widely studied by size exclusion chromatography (SEC). Capillary electrophoresis with sodium dodecylsulfate (CE-SDS) is a well-established technique commonly used for monitoring antibody fragments as well, but its comparability to SEC in monitoring hinge fragments has not been established until now. We report a characterization strategy that establishes the correlation between hinge region fragments analyzed by SEC and CE-SDS. Monoclonal antibodies with elevated hinge fragments were generated under low pH stress conditions and analyzed by SEC and CE-SDS. The masses of the fragments generated were determined by LC-MS. Electrophoretic migration of the hinge fragmentation products in CE-SDS were determined based on their mass values. Comparative assessment of fragments by SEC, and CE-SDS showed similar correlation with incubation time. This study demonstrates that CE-SDS can be employed as a surrogate technique to SEC for monitoring hinge region fragments. Most importantly, combination of these techniques can be used to obtain comprehensive understanding of fragment related characteristics of therapeutic protein products. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus.

    Directory of Open Access Journals (Sweden)

    Nemanja Vukašinović

    Full Text Available Repetitive sequences present a challenge for genome sequence assembly, and highly similar segmental duplications may disappear from assembled genome sequences. Having found a surprising lack of observable phenotypic deviations and non-Mendelian segregation in Arabidopsis thaliana mutants in SEC10, a gene encoding a core subunit of the exocyst tethering complex, we examined whether this could be explained by a hidden gene duplication. Re-sequencing and manual assembly of the Arabidopsis thaliana SEC10 (At5g12370 locus revealed that this locus, comprising a single gene in the reference genome assembly, indeed contains two paralogous genes in tandem, SEC10a and SEC10b, and that a sequence segment of 7 kb in length is missing from the reference genome sequence. Differences between the two paralogs are concentrated in non-coding regions, while the predicted protein sequences exhibit 99% identity, differing only by substitution of five amino acid residues and an indel of four residues. Both SEC10 genes are expressed, although varying transcript levels suggest differential regulation. Homozygous T-DNA insertion mutants in either paralog exhibit a wild-type phenotype, consistent with proposed extensive functional redundancy of the two genes. By these observations we demonstrate that recently duplicated genes may remain hidden even in well-characterized genomes, such as that of A. thaliana. Moreover, we show that the use of the existing A. thaliana reference genome sequence as a guide for sequence assembly of new Arabidopsis accessions or related species has at least in some cases led to error propagation.

  1. The Yersinia enterocolitica type 3 secretion system (T3SS) as toolbox for studying the cell biological effects of bacterial Rho GTPase modulating T3SS effector proteins.

    Science.gov (United States)

    Wölke, Stefan; Ackermann, Nikolaus; Heesemann, Jürgen

    2011-09-01

    The bacterial effector proteins IpgB(1) and IpgB(2) of Shigella and Map of Escherichia coli activate the Rho GTPases Rac1, RhoA and Cdc42, respectively, whereas YopE and YopT of Yersinia inhibit these Rho family GTPases. We established a Yersinia toolbox which allows to study the cellular effects of these effectors in different combinations in the context of Yersinia type 3 secretion system (Ysc)-T3SS-mediated injection into HeLa cells. For this purpose hybrid proteins were constructed by fusion of YopE with the effector protein of interest. As expected, injected hybrid proteins induced membrane ruffles and Yersinia uptake for IpgB(1) , stress fibres for IpgB(2) and microspikes for Map. By co-infection experiments we could demonstrate (i) IpgB(2) -mediated and ROCK-dependent inhibition of IpgB(1) -mediated Rac1 effects, (ii) YopT-mediated suppression of IpgB(1) -induced Yersinia invasion and (iii) failure of YopE-mediated suppression of IpgB(1) -induced Yersinia invasion, presumably due to preferential inhibition of RhoG by YopE GAP function. By infecting polarized MDCK cells we could demonstrate that Map or IpgB(1) but not IpgB(2) affects cell monolayer integrity. In summary, the Yersinia toolbox is suitable to study cellular effects of effector proteins of diverse bacterial species separately or in combination in the context of bacterial T3SS-mediated injection. © 2011 Blackwell Publishing Ltd.

  2. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation

    Directory of Open Access Journals (Sweden)

    Angelica Aguilera-Gomez

    2017-07-01

    Full Text Available Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein.

  3. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation.

    Science.gov (United States)

    Aguilera-Gomez, Angelica; Zacharogianni, Margarita; van Oorschot, Marinke M; Genau, Heide; Grond, Rianne; Veenendaal, Tineke; Sinsimer, Kristina S; Gavis, Elizabeth R; Behrends, Christian; Rabouille, Catherine

    2017-07-25

    Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Electrostatic interactions between the CTX phage minor coat protein and the bacterial host receptor TolA drive the pathogenic conversion ofVibrio cholerae.

    Science.gov (United States)

    Houot, Laetitia; Navarro, Romain; Nouailler, Matthieu; Duché, Denis; Guerlesquin, Françoise; Lloubes, Roland

    2017-08-18

    Vibrio cholerae is a natural inhabitant of aquatic environments and converts to a pathogen upon infection by a filamentous phage, CTXΦ, that transmits the cholera toxin-encoding genes. This toxigenic conversion of V. cholerae has evident implication in both genome plasticity and epidemic risk, but the early stages of the infection have not been thoroughly studied. CTXΦ transit across the bacterial periplasm requires binding between the minor coat protein named pIII and a bacterial inner-membrane receptor, TolA, which is part of the conserved Tol-Pal molecular motor. To gain insight into the TolA-pIII complex, we developed a bacterial two-hybrid approach, named Oxi-BTH, suited for studying the interactions between disulfide bond-folded proteins in the bacterial cytoplasm of an Escherichia coli reporter strain. We found that two of the four disulfide bonds of pIII are required for its interaction with TolA. By combining Oxi-BTH assays, NMR, and genetic studies, we also demonstrate that two intermolecular salt bridges between TolA and pIII provide the driving forces of the complex interaction. Moreover, we show that TolA residue Arg-325 involved in one of the two salt bridges is critical for proper functioning of the Tol-Pal system. Our results imply that to prevent host evasion, CTXΦ uses an infection strategy that targets a highly conserved protein of Gram-negative bacteria essential for the fitness of V. cholerae in its natural environment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Sec24C-Dependent Transport of Claudin-1 Regulates Hepatitis C Virus Entry.

    Science.gov (United States)

    Yin, Peiqi; Li, Ye; Zhang, Leiliang

    2017-09-15

    Claudin-1 is a hepatitis C virus (HCV) coreceptor required for viral entry. Although extensive studies have focused on claudin-1 as an anti-HCV target, little is known about how the level of claudin-1 at the cell surface is regulated by host vesicular transport. Here, we identified an interaction between claudin-1 and Sec24C, a cargo-sorting component of the coat protein complex II (COPII) vesicular transport system. By interacting with Sec24C through its C-terminal YV, claudin-1 is transported from the endoplasmic reticulum (ER) and is eventually targeted to the cell surface. Blocking COPII transport inhibits HCV entry by reducing the level of claudin-1 at the cell surface. These findings provide mechanistic insight into the role of COPII vesicular transport in HCV entry. IMPORTANCE Tight junction protein claudin-1 is one of the cellular receptors for hepatitis C virus, which infects 185 million people globally. Its cellular distribution plays important role in HCV entry; however, it is unclear how the localization of claudin-1 to the cell surface is controlled by host transport pathways. In this paper, we not only identified Sec24C as a key host factor for HCV entry but also uncovered a novel mechanism by which the COPII machinery transports claudin-1 to the cell surface. This mechanism might be extended to other claudins that contain a C-terminal YV or V motif. Copyright © 2017 American Society for Microbiology.

  6. SEC-SANS: size exclusion chromatography combined in situ with small-angle neutron scattering.

    Science.gov (United States)

    Jordan, Ashley; Jacques, Mark; Merrick, Catherine; Devos, Juliette; Forsyth, V Trevor; Porcar, Lionel; Martel, Anne

    2016-12-01

    The first implementation and use of an in situ size exclusion chromatography (SEC) system on a small-angle neutron scattering instrument (SANS) is described. The possibility of deploying such a system for biological solution scattering at the Institut Laue-Langevin (ILL) has arisen from the fact that current day SANS instruments at ILL now allow datasets to be acquired using small sample volumes with exposure times that are often shorter than a minute. This capability is of particular importance for the study of unstable biological macromolecules where aggregation or denaturation issues are a major problem. The first use of SEC-SANS on ILL's instrument D22 is described for a variety of proteins including one particularly aggregation-prone system.

  7. Performance of C-reactive protein and procalcitonin to distinguish viral from bacterial and malarial causes of fever in Southeast Asia.

    Science.gov (United States)

    Lubell, Yoel; Blacksell, Stuart D; Dunachie, Susanna; Tanganuchitcharnchai, Ampai; Althaus, Thomas; Watthanaworawit, Wanitda; Paris, Daniel H; Mayxay, Mayfong; Peto, Thomas J; Dondorp, Arjen M; White, Nicholas J; Day, Nicholas P J; Nosten, François; Newton, Paul N; Turner, Paul

    2015-11-11

    Poor targeting of antimicrobial drugs contributes to the millions of deaths each year from malaria, pneumonia, and other tropical infectious diseases. While malaria rapid diagnostic tests have improved use of antimalarial drugs, there are no similar tests to guide the use of antibiotics in undifferentiated fevers. In this study we estimate the diagnostic accuracy of two well established biomarkers of bacterial infection, procalcitonin and C-reactive protein (CRP) in discriminating between common viral and bacterial infections in malaria endemic settings of Southeast Asia. Serum procalcitonin and CRP levels were measured in stored serum samples from febrile patients enrolled in three prospective studies conducted in Cambodia, Laos and, Thailand. Of the 1372 patients with a microbiologically confirmed diagnosis, 1105 had a single viral, bacterial or malarial infection. Procalcitonin and CRP levels were compared amongst these aetiological groups and their sensitivity and specificity in distinguishing bacterial infections and bacteraemias from viral infections were estimated using standard thresholds. Serum concentrations of both biomarkers were significantly higher in bacterial infections and malaria than in viral infections. The AUROC for CRP in discriminating between bacterial and viral infections was 0.83 (0.81-0.86) compared with 0.74 (0.71-0.77) for procalcitonin (p < 0.0001). This relative advantage was evident in all sites and when stratifying patients by age and admission status. For CRP at a threshold of 10 mg/L, the sensitivity of detecting bacterial infections was 95% with a specificity of 49%. At a threshold of 20 mg/L sensitivity was 86% with a specificity of 67%. For procalcitonin at a low threshold of 0.1 ng/mL the sensitivity was 90% with a specificity of 39%. At a higher threshold of 0.5 ng/ul sensitivity was 60% with a specificity of 76%. In samples from febrile patients with mono-infections from rural settings in Southeast Asia, CRP was a highly

  8. Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube.

    Science.gov (United States)

    Rivas, Germán; Alfonso, Carlos; Jiménez, Mercedes; Monterroso, Begoña; Zorrilla, Silvia

    2013-06-01

    The division of Escherichia coli is an essential process strictly regulated in time and space. It requires the association of FtsZ with other proteins to assemble a dynamic ring during septation, forming part of the functionally active division machinery, the divisome. FtsZ reversibly interacts with FtsA and ZipA at the cytoplasmic membrane to form a proto-ring, the first molecular assembly of the divisome, which is ultimately joined by the rest of the division-specific proteins. In this review we summarize the quantitative approaches used to study the activity, interactions, and assembly properties of FtsZ under well-defined solution conditions, with the aim of furthering our understanding of how the behavior of FtsZ is controlled by nucleotides and physiological ligands. The modulation of the association and assembly properties of FtsZ by excluded-volume effects, reproducing in part the natural crowded environment in which this protein has evolved to function, will be described. The subsequent studies on the reactivity of FtsZ in membrane-like systems using biochemical, biophysical, and imaging technologies are reported. Finally, we discuss the experimental challenges to be met to achieve construction of the minimum protein set needed to initiate bacterial division, without cells, in a cell-like compartment. This integrated approach, combining quantitative and synthetic strategies, will help to support (or dismiss) conclusions already derived from cellular and molecular analysis and to complete our understanding on how bacterial division works.

  9. Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: Case study of cytotoxin I from cobra N. oxiana.

    Science.gov (United States)

    Shulepko, M A; Lyukmanova, E N; Shenkarev, Z O; Dubovskii, P V; Astapova, M V; Feofanov, A V; Arseniev, A S; Utkin, Y N; Kirpichnikov, M P; Dolgikh, D A

    2017-02-01

    Cytotoxins or cardiotoxins is a group of polycationic toxins from cobra venom belonging to the 'three-finger' protein superfamily (Ly6/uPAR family) which includes small β-structural proteins (60-90 residues) with high disulfide bond content (4-5 disulfides). Due to a high cytotoxic activity for cancer cells, cytotoxins are considered as potential anticancer agents. Development of the high-throughput production methods is required for the prospective applications of cytotoxins. Here, efficient approach for bacterial production of recombinant analogue of cytotoxin I from N. oxiana containing additional N-terminal Met-residue (rCTX1) was developed. rCTX1 was produced in the form of E. coli inclusion bodies. Refolding in optimized conditions provided ∼6 mg of correctly folded protein from 1 L of bacterial culture. Cytotoxicity of rCTX1 for C6 rat glioma cells was found to be similar to the activity of wild type CTX1. The milligram quantities of 13 C, 15 N-labeled rCTX1 were obtained. NMR study confirmed the similarity of the spatial structures of recombinant and wild-type toxins. Additional Met residue does not perturb the overall structure of the three-finger core. The analysis of available data for different Ly6/uPAR proteins of snake and human origin revealed that efficiency of their folding in vitro is correlated with the number of proline residues in the third loop and the surface area of hydrophobic residues buried within the protein interior. The obtained data indicate that hydrophobic core is important for the folding of proteins with high disulfide bond content. Developed expression method opens new possibilities for structure-function studies of CTX1 and other related three-finger proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycH–YopH chaperone–effector complex

    International Nuclear Information System (INIS)

    Vujanac, Milos; Stebbins, C. Erec

    2013-01-01

    The structure of a SycH–YopH chaperone–effector complex from Yersinia reveals the bacterial state of a protein that adopts different folds in the host and pathogen environments. Yersinia pestis injects numerous bacterial proteins into host cells through an organic nanomachine called the type 3 secretion system. One such substrate is the tyrosine phosphatase YopH, which requires an interaction with a cognate chaperone in order to be effectively injected. Here, the first crystal structure of a SycH–YopH complex is reported, determined to 1.9 Å resolution. The structure reveals the presence of (i) a nonglobular polypeptide in YopH, (ii) a so-called β-motif in YopH and (iii) a conserved hydrophobic patch in SycH that recognizes the β-motif. Biochemical studies establish that the β-motif is critical to the stability of this complex. Finally, since previous work has shown that the N-terminal portion of YopH adopts a globular fold that is functional in the host cell, aspects of how this polypeptide adopts radically different folds in the host and in the bacterial environments are analysed

  11. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    Science.gov (United States)

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  12. A novel host-protein assay outperforms routine parameters for distinguishing between bacterial and viral lower respiratory tract infections.

    Science.gov (United States)

    Stein, Michal; Lipman-Arens, Shelly; Oved, Kfir; Cohen, Asi; Bamberger, Ellen; Navon, Roy; Boico, Olga; Friedman, Tom; Etshtein, Liat; Paz, Meital; Gottlieb, Tanya M; Kriger, Or; Fonar, Yura; Pri-Or, Ester; Yacobov, Renata; Dotan, Yaniv; Hochberg, Amit; Grupper, Moti; Chistyakov, Irina; Potasman, Israel; Srugo, Isaac; Eden, Eran; Klein, Adi

    2018-03-01

    Bacterial and viral lower respiratory tract infections (LRTIs) are often clinically indistinguishable, leading to antibiotic overuse. We compared the diagnostic accuracy of a new assay that combines 3 host-biomarkers (TRAIL, IP-10, CRP) with parameters in routine use to distinguish bacterial from viral LRTIs. Study cohort included 184 potentially eligible pediatric and adult patients. Reference standard diagnosis was based on adjudication by an expert panel following comprehensive clinical and laboratory investigation (including respiratory PCRs). Experts were blinded to assay results and assay performers were blinded to reference standard outcomes. Evaluated cohort included 88 bacterial and 36 viral patients (23 did not fulfill inclusion criteria; 37 had indeterminate reference standard outcome). Assay distinguished bacterial from viral LRTI patients with sensitivity of 0.93±0.06 and specificity of 0.91±0.09, outperforming routine parameters, including WBC, CRP and chest x-ray signs. These findings support the assay's potential to help clinicians avoid missing bacterial LRTIs or overusing antibiotics. Published by Elsevier Inc.

  13. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.

    Science.gov (United States)

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2017-09-01

    To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O 2 , including K D , k on , and k off , of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The K D (NO) and K D (CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  15. Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2009-01-01

    Full Text Available Abstract Background The exported repetitive protein (erp gene encodes a secreted 36-kDa protein with a central domain containing several proline-glycine-leucine-threonine-serine (PGLTS repeats. It has been demonstrated that erp is a virulence-associated factor since the disruption of this gene impairs the growth of Mycobacterium bovis and Mycobacterium tuberculosis in mice. Results In order to elucidate the function of Erp we searched for Erp-binding proteins from M. tuberculosis by using a bacterial two-hybrid system. Our results indicate that Erp interacts specifically with two putative membrane proteins, Rv1417 and Rv2617c. Further analysis revealed that the latter two interact with each other, indicating that Rv1417, Rv2617c and Erp are connected through multiple interactions. While Rv1417 is disseminated in several Actinomycetales genera, orthologues of Rv2617c are exclusively present in members of the M. tuberculosis complex (MTC. The central and amino-terminal regions of Erp were determined to be involved in the interaction with Rv1417 and Rv2627c. Erp forms from Mycobacterium smegmatis and Mycobacterium leprae were not able to interact with Rv2617c in two-hybrid assays. Immunolocalization experiments showed that Rv1417 and Rv2617c are found on the cell membrane and Erp on the bacterial cell wall. Finally, comparative genomics and expression studies revealed a possible role of Rv1417 in riboflavin metabolism. Conclusion We identified interactive partners of Erp, an M. tuberculosis protein involved in virulence, which will be the focus of future investigation to decipher the function of the Erp family protein.

  16. Bacterial Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Bacterial Keratitis Sections What Is Bacterial Keratitis? Bacterial Keratitis Symptoms ... Lens Care Bacterial Keratitis Treatment What Is Bacterial Keratitis? Leer en Español: ¿Qué Es la Queratitis Bacteriana? ...

  17. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1987-01-01

    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with [ 32 P]NAD + and pertussis toxin and to prevent by more than 90% the labelling with [ 32 P]NAD + and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased the amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study

  18. GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin

    NARCIS (Netherlands)

    Läppchen, Tilman; Hartog, Aloysius F.; Pinas, Victorine A.; Koomen, Gerrit-Jan; den Blaauwen, Tanneke

    2005-01-01

    The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of

  19. GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin.

    NARCIS (Netherlands)

    Läppchen, T.; Hartog, A.F.; Pinas, V.; Koomen, G.J.; den Blaauwen, T.

    2005-01-01

    The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of

  20. Novel near-infrared BiFC systems from a bacterial phytochrome for imaging protein interactions and drug evaluation under physiological conditions.

    Science.gov (United States)

    Chen, Minghai; Li, Wei; Zhang, Zhiping; Liu, Sanying; Zhang, Xiaowei; Zhang, Xian-En; Cui, Zongqiang

    2015-04-01

    Monitoring protein-protein interactions (PPIs) in live subjects is critical for understanding these fundamental biological processes. Bimolecular fluorescence complementation (BiFC) provides a good technique for imaging PPIs; however, a BiFC system with a long wavelength remains to be pursued for in vivo imaging. Here, we conducted systematic screening of split reporters from a bacterial phytochrome-based, near-infrared fluorescent protein (iRFP). Several new near-infrared phytochrome BiFC systems were built based on selected split sites including the amino acids residues 97/98, 99/100, 122/123, and 123/124. These new near-infrared BiFC systems from a bacterial phytochrome were verified as powerful tools for imaging PPIs under physiological conditions in live cells and in live mice. The interaction between HIV-1 integrase (IN) and cellular cofactor protein Lens epithelium-derived growth factor (LEDGF/p75) was visualized in live cells using the newly constructed iRFP BiFC system because of its important roles in HIV-1 integration and replication. Because the HIV IN-LEDGF/p75 interaction is an attractive anti-HIV target, drug evaluation assays to inhibit the HIV IN-LEDGF/p75 interaction were also performed using the newly constructed BiFC system. The results showed that compound 6 and carbidopa inhibit the HIV IN-LEDGF/p75 interaction in a dose-dependent manner under physiological conditions in the BiFC assays. This study provides novel near-infrared BiFC systems for imaging protein interactions under physiological conditions and provides guidance for splitting other bacterial phytochrome-like proteins to construct BiFC systems. The study also provides a new method for drug evaluation in live cells based on iRFP BiFC systems and supplies some new information regarding candidate drugs for anti-HIV therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The 12 item Social and Economic Conservatism Scale (SECS).

    Science.gov (United States)

    Everett, Jim A C

    2013-01-01

    Recent years have seen a surge in psychological research on the relationship between political ideology (particularly conservatism) and cognition, affect, behaviour, and even biology. Despite this flurry of investigation, however, there is as yet no accepted, validated, and widely used multi-item scale of conservatism that is concise, that is modern in its conceptualisation, and that includes both social and economic conservatism subscales. In this paper the 12-Item Social and Economic Conservatism Scale (SECS) is proposed and validated to help fill this gap. The SECS is suggested to be an important and useful tool for researchers working in political psychology.

  2. The 12 item Social and Economic Conservatism Scale (SECS.

    Directory of Open Access Journals (Sweden)

    Jim A C Everett

    Full Text Available Recent years have seen a surge in psychological research on the relationship between political ideology (particularly conservatism and cognition, affect, behaviour, and even biology. Despite this flurry of investigation, however, there is as yet no accepted, validated, and widely used multi-item scale of conservatism that is concise, that is modern in its conceptualisation, and that includes both social and economic conservatism subscales. In this paper the 12-Item Social and Economic Conservatism Scale (SECS is proposed and validated to help fill this gap. The SECS is suggested to be an important and useful tool for researchers working in political psychology.

  3. IRS, FERC let more wells receive Sec. 29 credits

    International Nuclear Information System (INIS)

    Lewis, F.W.; Grapentine, T.

    1993-01-01

    Two new ways exist for producers in the U.S. to qualify additional production for federal Sec. 29 nonconventional fuel tax credits. Until now the Federal Energy Regulatory Commission and Internal Revenue Service deadlines had limited eligible production to wells spud or recompleted and filings made under the Natural Gas Policy Act on or before Dec. 31, 1992. Large numbers of producers in many states filed timely NGPA applications seeking federal and state regulatory approval, and currently most producers believe the deadline to apply for Sec. 29 tax credits to have passed. The paper describes several filing exceptions and recommends producer response to the new rules

  4. Bacterial interactions with proteins and cells relevant to the development of life-threatening endocarditis studied by use of a quartz-crystal microbalance.

    Science.gov (United States)

    Krajewski, Stefanie; Rheinlaender, Johannes; Ries, Philip; Canjuga, Denis; Mack, Carmen; Scheideler, Lutz; Schäffer, Tilman E; Geis-Gerstorfer, Jürgen; Wendel, Hans-Peter; Rupp, Frank

    2014-05-01

    Implant-related infections are a major challenge in clinical routine because of severe complications, for example infective endocarditis (IE). The purpose of this study was to investigate the real-time interaction of S. gordonii with proteins and cells important in the development of IE, in a flow system, by use of a quartz-crystal microbalance (QCM). Acoustic sensors were biologically modified by preconditioning with sterile saliva, platelet-poor plasma (PPP), or platelet-rich plasma (PRP), followed then by perfusion of a bacterial suspension. After perfusion, additional fluorescence and scanning electron microscopic (SEM) studies were performed. The surface structure of S. gordonii was analyzed by atomic force microscopy (AFM). Compared with S. gordonii adhesion on the abiotic sensor surface following normal mass loading indicated by a frequency decrease, adhesion on saliva, PPP, or PRP-conditioned sensors resulted in an increase in frequency. Furthermore, adhesion induced slightly increased damping signals for saliva and PPP-coated sensors but a decrease upon bacterial adhesion to PRP, indicating the formation of a more rigid biofilm. Microscopic analysis confirmed the formation of dense and vital bacterial layers and the aggregation of platelets and bacteria. In conclusion, our study shows that the complex patterns of QCM output data observed are strongly dependent on the biological substrate and adhesion mechanisms of S. gordonii. Overall, QCM sheds new light on the pathways of such severe infections as IE.

  5. The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice.

    Science.gov (United States)

    Liu, Qing; Yang, Jianyuan; Yan, Shijuan; Zhang, Shaohong; Zhao, Junliang; Wang, Wenjuan; Yang, Tifeng; Wang, Xiaofei; Mao, Xingxue; Dong, Jingfang; Zhu, Xiaoyuan; Liu, Bin

    2016-11-01

    This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H 2 O 2 both before and after pathogen inoculation. Moreover, OsGLP2-1 was significantly induced by jasmonic acid (JA). Overexpression of OsGLP2-1 induced three well-characterized defense-related genes which are associated in JA-dependent pathway after pathogen infection. Higher endogenous level of JA was also identified in OsGLP2-1 overexpressing plants than in control plants both before and after pathogen inoculation. Together, these results suggest that OsGLP2-1 functions as a positive regulator to

  6. Semi-automated hydrophobic interaction chromatography column scouting used in the two-step purification of recombinant green fluorescent protein.

    Science.gov (United States)

    Stone, Orrin J; Biette, Kelly M; Murphy, Patrick J M

    2014-01-01

    Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein

  7. Semi-Automated Hydrophobic Interaction Chromatography Column Scouting Used in the Two-Step Purification of Recombinant Green Fluorescent Protein

    Science.gov (United States)

    Murphy, Patrick J. M.

    2014-01-01

    Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in

  8. The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function

    International Nuclear Information System (INIS)

    Das, Debanu; Finn, Robert D.; Carlton, Dennis; Miller, Mitchell D.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of the BVU2987 gene product from B. vulgatus (UniProt A6L4L1) reveals that members of the new Pfam family PF11396 (domain of unknown function; DUF2874) are similar to β-lactamase inhibitor protein and YpmB. Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA-OmlA proteins and hence are likely to function as inhibitory proteins

  9. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes.

    Science.gov (United States)

    Mercante, Virginia; Duarte, Cecilia M; Sánchez, Cintia M; Zalguizuri, Andrés; Caetano-Anollés, Gustavo; Lepek, Viviana C

    2015-01-01

    Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.

  10. Intramammary Immunization of Pregnant Mice with Staphylococcal Protein A Reduces the Post-Challenge Mammary Gland Bacterial Load but Not Pathology.

    Directory of Open Access Journals (Sweden)

    Jully Gogoi-Tiwari

    Full Text Available Protein A, encoded by the spa gene, is one of the major immune evading MSCRAMM of S. aureus, demonstrated to be prevalent in a significant percentage of clinical bovine mastitis isolates in Australia. Given its' reported significance in biofilm formation and the superior performance of S. aureus biofilm versus planktonic vaccine in the mouse mastitis model, it was of interest to determine the immunogenicity and protective potential of Protein A as a potential vaccine candidate against bovine mastitis using the mouse mastitis model. Pregnant Balb/c mice were immunised with Protein A emulsified in an alum-based adjuvant by subcutaneous (s/c or intramammary (i/mam routes. While humoral immune response of mice post-immunization were determined using indirect ELISA, cell-mediated immune response was assessed by estimation of interferon-gamma (IFN-γ produced by protein A-stimulated splenocyte supernatants. Protective potential of Protein A against experimental mastitis was determined by challenge of immunized versus sham-vaccinated mice by i/mam route, based upon manifestation of clinical symptoms, total bacterial load and histopathological damage to mammary glands. Significantly (p<0.05 higher levels of IgG1 isotype were produced in mice immunized by the s/c route. In contrast, significantly higher levels of the antibody isotype IgG2a were produced in mice immunized by the i/mam route (p<0.05. There was significant reduction (p<0.05 in bacterial loads of the mammary glands of mice immunized by Protein A regardless of the route of immunization, with medium level of clinical symptoms observed up to day 3 post-challenge. However, Protein A vaccine failed to protect immunized mice post-challenge with biofilm producing encapsulated S. aureus via i/mam route, regardless of the route of immunization, as measured by the level of mammary tissue damage. It was concluded that, Protein A in its' native state was apparently not a suitable candidate for inclusion

  11. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins.

    Science.gov (United States)

    Cirl, Christine; Wieser, Andreas; Yadav, Manisha; Duerr, Susanne; Schubert, Sören; Fischer, Hans; Stappert, Dominik; Wantia, Nina; Rodriguez, Nuria; Wagner, Hermann; Svanborg, Catharina; Miethke, Thomas

    2008-04-01

    Pathogenic microbes have evolved sophisticated molecular strategies to subvert host defenses. Here we show that virulent bacteria interfere directly with Toll-like receptor (TLR) function by secreting inhibitory homologs of the Toll/interleukin-1 receptor (TIR) domain. Genes encoding TIR domain containing-proteins (Tcps) were identified in Escherichia coli CFT073 (TcpC) and Brucella melitensis (TcpB). We found that TcpC is common in the most virulent uropathogenic E. coli strains and promotes bacterial survival and kidney pathology in vivo. In silico analysis predicted significant tertiary structure homology to the TIR domain of human TLR1, and we show that the Tcps impede TLR signaling through the myeloid differentiation factor 88 (MyD88) adaptor protein, owing to direct binding of Tcps to MyD88. Tcps represent a new class of virulence factors that act by inhibiting TLR- and MyD88-specific signaling, thus suppressing innate immunity and increasing virulence.

  12. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics.

    Science.gov (United States)

    Rocco, C J; Davey, M E; Bakaletz, L O; Goodman, S D

    2017-04-01

    Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that whereas antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Influence of cytokine gene polymorphisms and of the Helicobacter pylori outer membrane protein Hp0638 on bacterial pathogenesis

    OpenAIRE

    Dossumbekova, Anar

    2006-01-01

    Infection with H. pylori leads to persistent colonisation and chronic inflammation of the gastric mucosa, thereby increasing the risk for the developing peptic ulceration, distal gastric adenocarcinoma and gastric lymphoma. In the current study we showed that cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation and the long-term development of precancerous lesions in H. pylori infection. Host polymorphisms are associated with certain bacterial strain types, ...

  14. 14 CFR Sec. 2-1 - Generally accepted accounting principles.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Generally accepted accounting principles... AIR CARRIERS General Accounting Provisions Sec. 2-1 Generally accepted accounting principles. (a) The accounting provisions contained in this part are based on generally accepted accounting principles (GAAP...

  15. Sequence Variability in Staphylococcal Enterotoxin Genes seb, sec, and sed

    Directory of Open Access Journals (Sweden)

    Sophia Johler

    2016-06-01

    Full Text Available Ingestion of staphylococcal enterotoxins preformed by Staphylococcus aureus in food leads to staphylococcal food poisoning, the most prevalent foodborne intoxication worldwide. There are five major staphylococcal enterotoxins: SEA, SEB, SEC, SED, and SEE. While variants of these toxins have been described and were linked to specific hosts or levels or enterotoxin production, data on sequence variation is still limited. In this study, we aim to extend the knowledge on promoter and gene variants of the major enterotoxins SEB, SEC, and SED. To this end, we determined seb, sec, and sed promoter and gene sequences of a well-characterized set of enterotoxigenic Staphylococcus aureus strains originating from foodborne outbreaks, human infections, human nasal colonization, rabbits, and cattle. New nucleotide sequence variants were detected for all three enterotoxins and a novel amino acid sequence variant of SED was detected in a strain associated with human nasal colonization. While the seb promoter and gene sequences exhibited a high degree of variability, the sec and sed promoter and gene were more conserved. Interestingly, a truncated variant of sed was detected in all tested sed harboring rabbit strains. The generated data represents a further step towards improved understanding of strain-specific differences in enterotoxin expression and host-specific variation in enterotoxin sequences.

  16. 14 CFR Sec. 19-4 - Service classes.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Operating Statistics Classifications Sec. 19-4 Service classes. The statistical classifications are designed to reflect the operating elements attributable to each distinctive class of service offered. The operating elements shall be grouped...

  17. 46 CFR Sec. 2 - Stand-by agreements.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION B-CONTROL AND UTILIZATION OF PORTS OPERATING CONTRACT Sec. 2 Stand-by agreements. The Director NSA, Maritime Administration, in advance of an emergency, may negotiate... 1901) under the control of the Maritime Administration and allocated for long term exclusive use by the...

  18. The Dynamics of SecM-Induced Translational Stalling

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2014-06-01

    Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

  19. The dynamics of SecM-induced translational stalling.

    Science.gov (United States)

    Tsai, Albert; Kornberg, Guy; Johansson, Magnus; Chen, Jin; Puglisi, Joseph D

    2014-06-12

    SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. 46 CFR Sec. 3 - Application for remission of duties.

    Science.gov (United States)

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY GENERAL AGENT'S RESPONSIBILITY IN CONNECTION WITH FOREIGN REPAIR CUSTOM'S ENTRIES Sec. 3 Application for remission... District Director of Customs as defined in 19 CFR 1.1(d) if the following circumstances prevail: (a) When...

  1. 46 CFR Sec. 2 - Submission of repair entries.

    Science.gov (United States)

    2010-10-01

    ... MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY GENERAL AGENT'S RESPONSIBILITY IN CONNECTION WITH FOREIGN REPAIR CUSTOM'S ENTRIES Sec. 2 Submission of repair entries. At the... with the District Director of Customs as defined in 19 CFR 1.1(d) an affidavit on Custom's Form 3417...

  2. 46 CFR Sec. 5 - Procedure for negotiated price awards.

    Science.gov (United States)

    2010-10-01

    ... shall be furnished with the information provided for in Article 1(a) of the NSA-LUMPSUMREP Contract. (b... Article 27 of the NSA-LUMPSUMREP Contract. ... 46 Shipping 8 2010-10-01 2010-10-01 false Procedure for negotiated price awards. Sec. 5 Section 5...

  3. 46 CFR Sec. 8 - Extra work and changes.

    Science.gov (United States)

    2010-10-01

    ... Contractor may appeal such contract price or revised completion date as provided in Article 27 of the NSA... 46 Shipping 8 2010-10-01 2010-10-01 false Extra work and changes. Sec. 8 Section 8 Shipping... ACCOMPLISHMENT OF VESSEL REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP...

  4. Bacterial GroEL-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3.

    Science.gov (United States)

    Zhang, Liangxuan; Pelech, Steven; Uitto, Veli-Jukka

    2004-01-01

    Bacterial heat shock proteins (hsps) can have various effects on human cells. We investigated whether bacterial hsp60s can protect epithelial cells from cell death by affecting the mitogen-activated protein kinase (MAPK) signal pathways. Cell protection was studied by adding bacterial hsp60s to skin keratinocyte cultures (HaCaT cell line) before UV radiation. The results show that hsp60 significantly protected against UV radiation-induced cell death. Effects of UV radiation and exogenous hsp60 on phosphorylation of MAPKs and on activation of caspase 3 were examined by Western blot analysis. UV radiation strongly induced phosphorylation of p38 MAPK and formation of active caspase 3. A p38 inhibitor, SB 203580, totally blocked UV radiation-mediated activation of caspase 3. Preincubation with hsp60 strongly induced phosphorylation of ERK1/2 and inhibited UV radiation-mediated activation of caspase 3. PD 98059, a specific inhibitor of the ERK1/2 pathway, blocked this inhibitory effect of exogenous hsp60. Studies on the association between activity of MAPKs or caspase 3 and cell death showed that the ERK1/2 pathway inhibitor reversed protective effect of hsp60 while specific inhibition of p38 and caspase 3 reduced cell death. These results indicate that in HaCaT cells UV radiation mediates cell death through activation of p38 followed by caspase 3 activation. Exogenous hsp60 partially protects against UV radiation-mediated epithelial cell death through activation of ERK1/2, which inhibits caspase 3 activation.

  5. SCM, a novel M-like protein from Streptococcus canis, binds (mini)-plasminogen with high affinity and facilitates bacterial transmigration.

    Science.gov (United States)

    Fulde, Marcus; Rohde, Manfred; Hitzmann, Angela; Preissner, Klaus T; Nitsche-Schmitz, D Patric; Nerlich, Andreas; Chhatwal, Gursharan Singh; Bergmann, Simone

    2011-03-15

    Streptococcus canis is an important zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. In the present paper we report the binding of human plasminogen to S. canis and the recruitment of proteolytically active plasmin on its surface. The binding receptor for plasminogen was identified as a novel M-like protein designated SCM (S. canis M-like protein). SPR (surface plasmon resonance) analyses, radioactive dot-blot analyses and heterologous expression on the surface of Streptococcus gordonii confirmed the plasminogen-binding capability of SCM. The binding domain was located within the N-terminus of SCM, which specifically bound to the C-terminal part of plasminogen (mini-plasminogen) comprising kringle domain 5 and the catalytic domain. In the presence of urokinase, SCM mediated plasminogen activation on the bacterial surface that was inhibited by serine protease inhibitors and lysine amino acid analogues. Surface-bound plasmin effectively degraded purified fibrinogen as well as fibrin clots, resulting in the dissolution of fibrin thrombi. Electron microscopic illustration and time-lapse imaging demonstrated bacterial transmigration through fibrinous thrombi. The present study has led, for the first time, to the identification of SCM as a novel receptor for (mini)-plasminogen mediating the fibrinolytic activity of S. canis.

  6. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    Science.gov (United States)

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Three novel C1q domain containing proteins from the disk abalone Haliotis discus discus: Genomic organization and analysis of the transcriptional changes in response to bacterial pathogens.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Godahewa, G I; Park, Hae-Chul; Lee, Jehee

    2016-09-01

    The globular C1q (gC1q) domain containing proteins, commonly referred as C1q domain containing (C1qDC) proteins, are an essential family of proteins involved in various innate immune responses. In this study, three novel C1qDC proteins were identified from the disk abalone (Haliotis discus discus) transcriptome database and designated as AbC1qDC1, AbC1qDC2, and AbC1qDC3. The cDNA sequences of AbC1qDC1, AbC1qDC2, and AbC1qDC3 consisted of 807, 1305, and 660 bp open reading frames (ORFs) encoding 269, 435, and 220 amino acids (aa), respectively. Putative signal peptides and the N-terminal gC1q domain were identified in all three AbC1qDC proteins. An additional predicted motif region, known as the coiled coil region (CCR), was identified next to the signal sequence of AbC1qDC2. The genomic organization of the AbC1qDCs was determined using a bacterial artificial chromosome (BAC) library. It was found that the CDS of AbC1qDC1 was distributed among three exons, while the CDSs of AbC1qDC2 and AbC1qDC3 were distributed between two exons. Sequence analysis indicated that the AbC1qDC proteins shared <40% identity with other counterparts from different species. According to the neighbor-joining phylogenetic tree, the proteins were grouped within an invertebrate group with high evolutionary distances, which suggests that they are new members of the C1qDC family. Higher expression of AbC1qDC1 and AbC1qDC2 was detected in hepatopancreas, muscle, and mantle tissues compare to the other tissues analyzed, using reverse transcription, followed by quantitative real-time PCR (qPCR) using SYBR Green, whereas AbC1qDC3 was predominantly expressed in gill tissues, followed by muscles and the hepatopancreas. The temporal expression of AbC1qDC transcripts in gills after bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and lipopolysaccharide stimulation indicated that AbC1qDCs can be strongly induced by both Gram-negative and Gram-positive bacterial species with different

  8. Monocyte CD64 or CD89 targeting by surfactant protein D/anti-Fc receptor mediates bacterial uptake.

    NARCIS (Netherlands)

    Tacken, P.J.; Batenburg, J.J.

    2006-01-01

    We recently showed that a chimeric protein, consisting of a recombinant fragment of human surfactant protein D (rfSP-D) coupled to a Fab' fragment directed against the human Fcalpha receptor (CD89), effectively targets pathogens recognized by SP-D to human neutrophils. The present study evaluates

  9. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  10. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system.

    Science.gov (United States)

    Dunbar, Sherry A; Vander Zee, Coe A; Oliver, Kerry G; Karem, Kevin L; Jacobson, James W

    2003-05-01

    Escherichia coli, Salmonella, Listeria monocytogenes and Campylobacter jejuni are bacterial pathogens commonly implicated in foodborne illnesses. Generally used detection methods (i.e., culture, biochemical testing, ELISA and nucleic acid amplification) can be laborious, time-consuming and require multiple tests to detect all of the pathogens. Our objective was to develop rapid assays to simultaneously detect these four organisms through the presence of antigen or DNA using the Luminex LabMAP system. For nucleic acid detection, organism-specific capture probes corresponding to the 23S ribosomal RNA gene (rrl) were coupled covalently to LabMAP microspheres. Target molecules included synthetic complementary oligonucleotides and genomic DNA isolated from ATCC type strains or other well-characterized strains of each organism. Universal PCR primers were designed to amplify variable regions of bacterial 23S ribosomal DNA, yielding biotinylated amplicons of 86 to 109 bp in length. Varying quantities of targets were hybridized to the combined microsphere sets, labeled with streptavidin-R-phycoerythrin and analyzed on the Luminex(100) system. Results of nucleic acid detection assays, obtained in 30 to 40 min following amplification, correctly and specifically identified each bacterial species with a detection sensitivity of 10(3) to 10(5) genome copies. Capture-sandwich immunoassays were developed with organism-specific antibodies coupled to different microsphere sets. Microspheres were incubated with organism-specific standards and reactivity was assessed with biotinylated detection antibodies and streptavidin-R-phycoerythrin. In the immunoassays, microsphere-associated fluorescence was organism concentration dependent with detectable response at detection of pathogens. The practical significance of this multiplexing approach would be to provide more timely, economical and comprehensive information than is available with conventional isolation and identification

  11. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites.

    Directory of Open Access Journals (Sweden)

    Xuan Xiao

    Full Text Available Prediction of protein subcellular localization is a challenging problem, particularly when the system concerned contains both singleplex and multiplex proteins. In this paper, by introducing the "multi-label scale" and hybridizing the information of gene ontology with the sequential evolution information, a novel predictor called iLoc-Gneg is developed for predicting the subcellular localization of gram-positive bacterial proteins with both single-location and multiple-location sites. For facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gneg-mPLoc was adopted to demonstrate the power of iLoc-Gneg. The dataset contains 1,392 gram-negative bacterial proteins classified into the following eight locations: (1 cytoplasm, (2 extracellular, (3 fimbrium, (4 flagellum, (5 inner membrane, (6 nucleoid, (7 outer membrane, and (8 periplasm. Of the 1,392 proteins, 1,328 are each with only one subcellular location and the other 64 are each with two subcellular locations, but none of the proteins included has pairwise sequence identity to any other in a same subset (subcellular location. It was observed that the overall success rate by jackknife test on such a stringent benchmark dataset by iLoc-Gneg was over 91%, which is about 6% higher than that by Gneg-mPLoc. As a user-friendly web-server, iLoc-Gneg is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc-Gneg. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user's convenience, the iLoc-Gneg web-server also has the function to accept the batch job submission, which is not available in the existing version of Gneg-mPLoc web-server. It is anticipated that iLoc-Gneg may become a useful high throughput tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development.

  12. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins.

    Directory of Open Access Journals (Sweden)

    Lieke A van Gijtenbeek

    2016-12-01

    Full Text Available By using fluorescence imaging, we provide a time-resolved single-cell view on coupled defects in transcription, translation, and growth during expression of heterologous membrane proteins in Lactococcus lactis. Transcripts encoding poorly produced membrane proteins accumulate in mRNA-dense bodies at the cell poles, whereas transcripts of a well-expressed homologous membrane protein show membrane-proximal localization in a translation-dependent fashion. The presence of the aberrant polar mRNA foci correlates with cessation of cell division, which is restored once these bodies are cleared. In addition, activation of the heat-shock response and a loss of nucleoid-occluded ribosomes are observed. We show that the presence of a native-like N-terminal domain is key to SRP-dependent membrane localization and successful production of membrane proteins. The work presented gives new insights and detailed understanding of aberrant membrane protein biogenesis, which can be used for strategies to optimize membrane protein production.

  13. Accuracy of C - Reactive protein as a bacterial infection marker in critically immunosuppressed patients: A systematic review and meta-analysis.

    Science.gov (United States)

    de Oliveira, Vanessa Martins; Moraes, Rafael Barberena; Stein, Airton Tetelbom; Wendland, Eliana Márcia

    2017-12-01

    There is a need for a better understanding of the role of C-reactive protein (CRP) as a valid marker for the detection of bacterial infections in critically immunosuppressed patients. A high negative predictive value of CRP is also needed to rule out sepsis and bacterial infections in immunocompetent patients. However, few studies have evaluated the performance of CRP in immunocompromised hosts. The aim of the present study was to evaluate the performance of CRP as a marker of infection in critically immunosuppressed patients. The inclusion criterion was immunosuppression for which CRP was used as a bacterial infection marker. Searches were performed in the Cochrane Register, MEDLINE, EMBASE, SCOPUS, Web OF Science, LILACS and CINAHL databases. We applied the Quality Assessment of Diagnostic Accuracy Studies tool 2 (QUADAS 2) to evaluate the quality of the articles and evaluated the test accuracy parameters using hierarchical summary receiver operating characteristic (HSROC) curves and bivariate random effect models. Only 13 of 21 studies produced quantitative results. We analyzed all studies using the random effects method (restricted maximum likelihood) and obtained a joint diagnostic odds ratio (DOR) of 3.04 (95% confidence interval [CI] 1.71-5.40) with heterogeneity (I 2 =91%, Q=181.48, p<0.001). Therefore, a bivariate model was applied. Analyzing the tuberculosis carrier, steroid user, or presence of opportunistic infection subgroups, as described in the proposal, was not possible due to the lack of information on these topics included in the articles. CRP appears to be a good screening tool for sepsis in critically immunosuppressed patients. Submitted PROSPERO 2015: CRD42015019329. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Diagnostic accuracies of procalcitonin and C-reactive protein for bacterial infection in patients with systemic rheumatic diseases: a meta-analysis.

    Science.gov (United States)

    Song, Gwan Gyu; Bae, Sang-Cheol; Lee, Young Ho

    2015-01-01

    The purpose of this study was to compare the diagnostic performance of procalcitonin and C-reactive protein (CRP) for bacterial infection in patients with systemic rheumatic diseases. We searched Medline, Embase, and the Cochran library, and performed two meta-analyses on the diagnostic accuracy of procalcitonin and CRP for bacterial infection in systemic rheumatic disease patients. A total of eight studies including 668 patients in whom the patients with bacterial infection were 208 were available for the meta-analysis. The pooled sensitivity and specificity of procalcitonin were 66.8% (95% confidence interval [CI] 60.0-73.2) and 89.8% (86.6-92.4), respectively, and those of CRP were 81.3% (75.3-86.3) and 63.0% (58.5-67.5). Procalcitonin PLR, NLR, and DOR were 5.930 (3.593-9.786), 0.352 (0.229-0.539), and 19.33 (10.25-36.45), respectively, and those for CRP were 2.228 (1.376-3.608), 0.367 (0.252-0.534), and 7.066 (3.559-14.03), respectively. The AUC of procalcitonin was 0.884 and the Q* index was 0.814, while the AUC of CRP was 0.789 and the Q* index was 0.726, which indicated that the diagnostic accuracy of procalcitonin in patients with systemic rheumatic diseases is higher than that of CRP (difference of AUC 0.095, 95% CI 0.004-0.185, p=0.039). When the data were limited to SLE, the specificity of procalcitonin was also significantly higher than that of CRP (difference 0.219, 95% CI 0.127-0.310, prheumatic diseases.

  15. Gestió d'un magatzem de fruits secs

    OpenAIRE

    Piqueras Rodriguez, Francisco Javier

    2012-01-01

    Estudi i disseny de la implantació d'un ERP (Enterprise Resource Planning) en una fàbrica de fruits secs. Estudio y diseño de la implantación de un ERP (Enterprise Resource Planning) en una fábrica de frutos secos. Study design and implementation of an ERP (Enterprise Resource Planning) in a nuts factory.

  16. On the self-organisation of the bacterial proteins MinD and MinE and of the protein kinase PKCα

    OpenAIRE

    Bonny, Mike

    2014-01-01

    Es existieren viele faszinierende Beispiele von Musterbildung in biologischen Systemen. Es wird seit langem vermutet, dass physikalische Mechanismen eine wichtige Rolle in der Bildung dieser Muster spielen. In dieser Arbeit verwenden wir Konzepte der Physik von Systemen außerhalb des thermodynamischen Gleichgewichts um die komplexen raumzeitlichen Muster der bakteriellen Proteine MinD und MinE und der Proteinkinase Cα (PKCα) zu untersuchen. Die Min Proteine organisieren sich im Bakterium ...

  17. Genome-wide RNAi Screen Identifies SEC61A and VCP as Conserved Regulators of Sindbis Virus Entry

    Directory of Open Access Journals (Sweden)

    Debasis Panda

    2013-12-01

    Full Text Available Alphaviruses are a large class of insect-borne human pathogens and little is known about the host-factor requirements for infection. To identify such factors, we performed a genome-wide RNAi screen using model Drosophila cells and validated 94 genes that impacted infection of Sindbis virus (SINV, the prototypical alphavirus. We identified a conserved role for SEC61A and valosin-containing protein (VCP in facilitating SINV entry in insects and mammals. SEC61A and VCP selectively regulate trafficking of the entry receptor NRAMP2, and loss or pharmacological inhibition of these proteins leads to altered NRAMP2 trafficking to lysosomal compartments and proteolytic digestion within lysosomes. NRAMP2 is the major iron transporter in cells, and loss of NRAMP2 attenuates intracellular iron transport. Thus, this study reveals genes and pathways involved in both infection and iron homeostasis that may serve as targets for antiviral therapeutics or for iron-imbalance disorders.

  18. Psychometric properties of the reading comprehension test ECOMPLEC.Sec.

    Science.gov (United States)

    Olmos Albacete, Ricardo; León Cascón, José A; Martín Arnal, Lorena A; Moreno Pérez, José D; Escudero Domínguez, Inmaculada; Sánchez Sánchez, Fernando

    2016-01-01

    ECOMPLEC.Sec is a reading comprehension test for secondary students, conceived from a multidimensional perspective in line with large-scale educational surveys such as PISA or PIRLS. The objective of this study was to validate the theoretical model of ECOMPLEC.Sec. A bifactor model that postulates the existence of a general reading comprehension factor and three specific factors provided a good fit to the data. 1,912 adolescents (13-18 years) participated in this study. Data analysis included construct validity via confirmatory factor analysis, and factors were regressed onto observed covariates for the interpretation of the constructs. Reliability was calculated from a non-linear SEM in order to justify the interpretability of the observed scale and subscale scores. The bifactor model exhibited a significantly better fit to the data than the second-order model. Furthermore, construct validity analysis suggests the existence of specific reading comprehension factors. Finally, the reliability study also supports the idea of using a total score to obtain a measure of reading comprehension. ECOMPLEC.Sec displays a valid parsimonious factor structure, as well as metric properties that make it a suitable tool to assess reading comprehension.

  19. Neisserial Opa Protein-CEACAM Interactions: Competition for Receptors as a Means of Bacterial Invasion and Pathogenesis.

    Science.gov (United States)

    Martin, Jennifer N; Ball, Louise M; Solomon, Tsega L; Dewald, Alison H; Criss, Alison K; Columbus, Linda

    2016-08-09

    Carcino-embryonic antigen-like cellular adhesion molecules (CEACAMs), members of the immunoglobulin superfamily, are responsible for cell-cell interactions and cellular signaling events. Extracellular interactions with CEACAMs have the potential to induce phagocytosis, as is the case with pathogenic Neisseria bacteria. Pathogenic Neisseria species express opacity-associated (Opa) proteins, which interact with a subset of CEACAMs on human cells, and initiate the engulfment of the bacterium. We demonstrate that recombinant Opa proteins reconstituted into liposomes retain the ability to recognize and interact with CEACAMs in vitro but do not maintain receptor specificity compared to that of Opa proteins natively expressed by Neisseria gonorrhoeae. We report that two Opa proteins interact with CEACAMs with nanomolar affinity, and we hypothesize that this high affinity is necessary to compete with the native CEACAM homo- and heterotypic interactions in the host. Understanding the mechanisms of Opa protein-receptor recognition and engulfment enhances our understanding of Neisserial pathogenesis. Additionally, these mechanisms provide insight into how human cells that are typically nonphagocytic can utilize CEACAM receptors to internalize exogenous matter, with implications for the targeted delivery of therapeutics and development of imaging agents.

  20. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  1. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790

  2. Differential effect of early antibiotic intervention on bacterial fermentation patterns and mucosal gene expression in the colon of pigs under diets with different protein levels.

    Science.gov (United States)

    Zhang, Chuanjian; Yu, Miao; Yang, Yuxiang; Mu, Chunlong; Su, Yong; Zhu, Weiyun

    2017-03-01

    The study aimed to evaluate the effects of early antibiotic intervention (EAI) on bacterial fermentation patterns and mucosal immune markers in the colon of pigs with different protein level diets. Eighteen litters of piglets at day (d) 7 were fed creep feed without or with growth promoting antibiotics until d 42. At d 42, pigs within each group were further randomly assigned to a normal- or low-crude protein (CP) diet. At d 77 and d 120, five pigs per group were slaughtered for analyzing colonic bacteria, metabolites, and mucosal gene expressions. Results showed that low-CP diet increased propionate and butyrate concentrations at d 77 but reduced ammonia and phenol concentrations (P fermentation and gene expressions of pro-inflammatory cytokines. Low-CP diet markedly reduced protein fermentation, modified microbial communities, and down-regulated gene expressions of pro-inflammatory cytokines possibly via down-regulating TLR4-MyD88-NF-κB signaling pathway.

  3. Interferon-induced protein 56 (IFI56) is induced by VHSV infection but not by bacterial infection in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Hwang, Jee Youn; Ahn, Sang Jung; Kwon, Mun-Gyeong; Seo, Jung Soo; Hwang, Seong Don; Son, Maeng-Hyun

    2017-07-01

    Interferon-inducible protein 56 (IFI56, also known as ISG56/IFIT1, interferon-induced protein with tetratricopeptide repeats 1) is strongly induced in response to interferon and a potent inhibitor of viral replication and translational initiation. Here, we describe the identification of IFI56 (OfIFI56) in olive flounder, its characteristic features, and expression levels in various tissues before and after viral hemorrhagic septicemia virus (VHSV) infection. The full-length OfIFI56 sequence was identified from rapid amplification of cDNA ends PCR. The complete coding sequence of OfIFI56 is 1971 bp in length and encodes 431 amino acids. The putative OfIFI56 protein has multiple tetratricopeptide (TPR) motifs, which regulate diverse biological processes, such as organelle targeting, protein import, and vesicle fusion. Based on sequence analysis, the Larimichthys crocea IFI56 protein (61%) had the highest sequence homology to OfIFI56. In healthy olive flounder, OfIFI56 mRNA expression was detected in many tissues such as intestine, gill, head kidney, heart, spleen, and trunk kidney tissues. After VHSV challenge, OfIFI56 mRNA was significantly up-regulated in these tissues. Additionally, OfIFI56 expression was induced by poly I:C but not by Streptococcus parauberis and S. iniae infection or lipopolysaccharide injection in kidney and spleen tissues of olive flounder. These results demonstrate that piscine OfIFI56 expression is not induced by bacterial infection but is selectively induced by viral infection, especially VHSV, and that OfIFI56 may play an important role in the host response against VHSV infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    Science.gov (United States)

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.

  5. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  6. Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein

    DEFF Research Database (Denmark)

    Christophersen, C. T.; Petersen, Anne; Licht, Tine Rask

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic...... cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate......-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse...

  7. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice.

    Science.gov (United States)

    Taniguchi, Shiduku; Hosokawa-Shinonaga, Yumi; Tamaoki, Daisuke; Yamada, Shoko; Akimitsu, Kazuya; Gomi, Kenji

    2014-02-01

    Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice. © 2013 John Wiley & Sons Ltd.

  8. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation

    OpenAIRE

    Aguilera-Gomez, Angelica; Zacharogianni, Margarita; van Oorschot, Marinke M; Genau, Heide; Grond, Rianne; Veenendaal, Tineke; Sinsimer, Kristina S; Gavis, Elizabeth R; Behrends, Christian; Rabouille, Catherine

    2017-01-01

    Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and sta...

  9. Solution structure of the cytohesin-1 (B2–1) Sec7 domain and its interaction with the GTPase ADP ribosylation factor 1

    Science.gov (United States)

    Betz, Stephen F.; Schnuchel, Arndt; Wang, Hong; Olejniczak, Edward T.; Meadows, Robert P.; Lipsky, Brian P.; Harris, Edith A. S.; Staunton, Donald E.; Fesik, Stephen W.

    1998-01-01

    Cytohesin-1 (B2–1) is a guanine nucleotide exchange factor for human ADP ribosylation factor (Arf) GTPases, which are important for vesicular protein trafficking and coatamer assembly in the cell. Cytohesin-1 also has been reported to promote cellular adhesion via binding to the β2 integrin cytoplasmic domain. The solution structure of the Sec7 domain of cytohesin-1, which is responsible for both the protein’s guanine nucleotide exchange factor function and β2 integrin binding, was determined by NMR spectroscopy. The structure consists of 10 α-helices that form a unique tertiary fold. The binding between the Sec7 domain and a soluble, truncated version of human Arf-1 was investigated by examining 1H-15N and 1H-13C chemical shift changes between the native protein and the Sec7/Arf-1 complex. We show that the binding to Arf-1 occurs through a large surface on the C-terminal subdomain that is composed of both hydrophobic and polar residues. Structure-based mutational analysis of the cytohesin-1 Sec7 domain has been used to identify residues important for binding to Arf and for mediating nucleotide exchange. Investigations into the interaction between the Sec7 domain and the β2 integrin cytoplasmic domain suggest that the two proteins do not interact in the solution phase. PMID:9653114

  10. Evaluation of spectral libraries and sample preparation for DIA-LC-MS analysis of host cell proteins: A case study of a bacterially expressed recombinant biopharmaceutical protein.

    Science.gov (United States)

    Heissel, Søren; Bunkenborg, Jakob; Kristiansen, Max Per; Holmbjerg, Anne Fich; Grimstrup, Marie; Mørtz, Ejvind; Kofoed, Thomas; Højrup, Peter

    2018-07-01

    Recombinantly expressed biopharmaceutical proteins often undergo a series of purification steps with the aim of removing contaminating material. Depending on the application of the protein, there are various requirements for the degree of purity, but host cell proteins (HCPs) will in general remain in small amounts. LC-MS has emerged as an orthogonal technique, capable of providing detailed information regarding the individual proteins. The aim of this case study was to characterize the HCPs associated with a biopharmaceutical protein, provided by Statens Serum Institut (DK), which is used in the field of tuberculosis and has not previously been studied by LC-MS. The developed method and acquired experiences served to develop a generalized strategy for HCP-characterization in our laboratory. We evaluated the use of different spectral libraries, recorded in data-dependent mode for obtaining the highest HCP coverage, combined with SWATH-based absolute quantification. The accuracy of two label-free absolute quantification strategies was evaluated using stable isotope peptides. Two different sample preparation workflows were evaluated for optimal HCP yield. . The label-free strategy produced accurate quantification across several orders of magnitude, and the calculated purity was found to be in agreement with previously obtained ELISA data. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Undetectable bacterial resistance to phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Science.gov (United States)

    The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we tested for the emergence of resistant Staphylococcus aureus to any of three phage lytic proteins constructs. The investigated cell wall lytic enzymes w...

  12. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2004-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells w...

  13. Variant size- and glycoforms of the scavenger receptor cysteine-rich protein gp-340 with differential bacterial aggregation

    DEFF Research Database (Denmark)

    Eriksson, Christer; Frängsmyr, Lars; Danielsson Niemi, Liza

    2007-01-01

    bands. Purified I to IV proteins all revealed a N-terminal sequence TGGWIP upon Edman degradation. Moreover, purified gp-340 from the seven donors and lung gp-340 shared N-glycans, sialylated Galbeta1-3GalNAc and (poly)lactosamine structures. However, the larger size gp-340 grouping II/III (n = 4...

  14. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    ." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  15. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    The components of the COPII machinery, which are essential in establishing an effective Endoplasmic Reticulum (ER) to Golgi transport from ER exit sites (ERES), have been identified and characterized within the last 25 years. These consist of the essential Sec12, Sec23, Sec24, Sec13, Sec31 and Sar1...... domain of p125A utilizes a stretch of positively charged residues (KGRKR) to bind lipid membranes that are enriched in Phosphatidylinositol‐4‐phosphates (PI(4)P). The specificity of the DDHD domain lipid recognition is demonstrated to be enhanced through p125A oligomerization mediated by the upstream SAM...... at a later stage of the ER export. The temperature‐dependent block of ER export is shown to cause a clear segregation of ERES composed of Sec31A, Sec23 and p125A from the known COPII‐associating ERES nucleation scaffold protein mSec16A. The temperature block furthermore causes mSec16A to collect on the ER...

  16. Effects of corn-based diet starch content and corn particle size on lactation performance, digestibility, and bacterial protein flow in dairy cows.

    Science.gov (United States)

    Fredin, S M; Ferraretto, L F; Akins, M S; Bertics, S J; Shaver, R D

    2015-01-01

    An experiment was conducted to determine the effects of dietary starch content in corn-based diets and corn particle size on lactation performance, nutrient digestibility, and bacterial protein flow in dairy cows using the omasal and reticular sampling technique. Eight ruminally cannulated lactating multiparous Holstein cows were used in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of treatments. Treatments were fine (FG; mean particle size=552µm) and coarse (CG; 1,270µm) ground dry shelled corn in normal- (NS) and reduced- (RS) starch diets fed as total mixed rations. The NS and RS rations contained 27 and 18% starch (dry matter basis), respectively, and were formulated by partially replacing corn with soy hull pellets. Mean dry matter intake was unaffected by treatment (23.2kg/d). Cows fed NS diets produced 1.9kg/d more milk and 0.06kg/d more milk protein compared with cows fed RS diets. Cows fed NSFG and RSCG diets produced more fat-corrected milk than did cows fed NSCG and RSFG diets. Milk urea concentration was decreased for cows fed NS diets (12.4mg/dL) compared with RS diets (13.5mg/dL). Ruminal digestibility of neutral detergent fiber (NDF; % of NDF intake) determined by the omasal sampling technique was increased in cows fed RS diets compared with NS diets (43.4 vs. 34.9%), and total-tract digestibility of NDF (% of NDF intake) was increased in cows fed RS diets compared with those fed NS diets (50.1 vs. 43.1%). Ruminal digestibility of starch (% of starch intake) determined by the omasal sampling technique was greater in cows fed NS diets compared with those fed RS diets (85.6 vs. 81.6%). Total-tract starch digestion was increased in cows fed RS diets compared with those fed NS diets (96.9 vs. 94.6%) and in cows fed FG diets compared with those fed CG diets (98.0 vs. 93.5%). Bacterial protein flow was unaffected by treatment. The omasal and reticular sampling techniques resulted in similar treatment effects for nutrient flow

  17. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.

    Directory of Open Access Journals (Sweden)

    David Kerk

    Full Text Available Mg+2/Mn+2-dependent type 2C protein phosphatases (PP2Cs are ubiquitous in eukaryotes, mediating diverse cellular signaling processes through metal ion catalyzed dephosphorylation of target proteins. We have identified a distinct PP2C sequence class ("PP2C7s" which is nearly universally distributed in Eukaryotes, and therefore apparently ancient. PP2C7s are by far most prominent and diverse in plants and green algae. Combining phylogenetic analysis, subcellular localization predictions, and a distillation of publically available gene expression data, we have traced the evolutionary trajectory of this gene family in photosynthetic eukaryotes, demonstrating two major sequence assemblages featuring a succession of increasingly derived sub-clades. These display predominant expression moving from an ancestral pattern in photosynthetic tissues toward non-photosynthetic, specialized and reproductive structures. Gene co-expression network composition strongly suggests a shifting pattern of PP2C7 gene functions, including possible regulation of starch metabolism for one homologue set in Arabidopsis and rice. Distinct plant PP2C7 sub-clades demonstrate novel amino terminal protein sequences upon motif analysis, consistent with a shifting pattern of regulation of protein function. More broadly, neither the major events in PP2C sequence evolution, nor the origin of the diversity of metal binding characteristics currently observed in different PP2C lineages, are clearly understood. Identification of the PP2C7 sequence clade has allowed us to provide a better understanding of both of these issues. Phylogenetic analysis and sequence comparisons using Hidden Markov Models strongly suggest that PP2Cs originated in Bacteria (Group II PP2C sequences, entered Eukaryotes through the ancestral mitochondrial endosymbiosis, elaborated in Eukaryotes, then re-entered Bacteria through an inter-domain gene transfer, ultimately producing bacterial Group I PP2C sequences. A

  18. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  19. Transformations of membrane-bound organelles in sec 14 mutants of the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica.

    Science.gov (United States)

    Rambourg, A; Clermont, Y; Nicaud, J M; Gaillardin, C; Kepes, F

    1996-07-01

    were dispersed throughout the cytoplasm. Later on, the faintly stained ER elements and related tubular networks decreased in number, whereas the intensely stained nodular tubular networks increased in frequency. The incidence of secretion granules also increased and were distributed at random throughout the cytoplasm. Widemeshed, intensely stained fenestrated spheres were often encountered and increased in number, in parallel to the increase in the number of nodular tubular networks. At late time intervals, the fenestrated spheres decreased in number as they seemingly transformed into spherical bodies identical to vacuoles. In contrast to what occurred in S. cerevisiae sec14 mutant, the main ultrastructural modification observed in Y. lipolytica transferred to the YPD medium was the formation of deep plasma membrane invaginations. It appears that two functionally homologous PI/PC transfer proteins (Sec14psc and Sec14pyl) control distinct physiological processes in the two sec14 mutants examined. Such differences are perhaps related to the regulatory role of these proteins in different target organelles, i.e., the Golgi apparatus in S. cerevisiae or the plasma membrane in Y. lipolytica.

  20. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds.

    Science.gov (United States)

    Ying, Sheng; Hill, Allyson T; Pyc, Michal; Anderson, Erin M; Snedden, Wayne A; Mullen, Robert T; She, Yi-Min; Plaxton, William C

    2017-06-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds ( Ricinus communis ) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca 2+ -dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC's BTPC subunit's at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca 2+ -dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting: ( i ) a pair of Ca 2+ binding sites with identical dissociation constants of 5.03 μM, ( ii ) a Ca 2+ -dependent electrophoretic mobility shift, and ( iii ) a marked Ca 2+ -independent hydrophobicity. Pull-down experiments established the Ca 2+ -dependent interaction of N-terminal GST-tagged RcCDPK1 with BTPC. RcCDPK1-Cherry localized to the cytosol and nucleus of tobacco bright yellow-2 cells, but colocalized with mitochondrial-surface associated BTPC-enhanced yellow fluorescent protein when both fusion proteins were coexpressed. Deletion analyses demonstrated that although its N-terminal variable domain plays an essential role in optimizing Ca 2+ -dependent RcCDPK1 autophosphorylation and BTPC transphosphorylation activity, it is not critical for in vitro or in vivo target recognition. Arabidopsis ( Arabidopsis thaliana ) CPK4 and soybean ( Glycine max ) CDPKβ are RcCDPK1 orthologs that effectively phosphorylated castor BTPC at Ser-451. Overall, the results highlight a potential link between cytosolic Ca 2+ signaling and the posttranslational control of respiratory CO 2 refixation and anaplerotic photosynthate partitioning in support of storage oil and protein biosynthesis in developing COS. © 2017 American Society of Plant

  1. Regulatory Phosphorylation of Bacterial-Type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oil Seeds1[OPEN

    Science.gov (United States)

    Hill, Allyson T.; Anderson, Erin M.; She, Yi-Min

    2017-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds (Ricinus communis) a novel, allosterically desensitized 910-kD Class-2 PEPC hetero-octameric complex, arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca2+-dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC’s BTPC subunit’s at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca2+-dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting: (i) a pair of Ca2+ binding sites with identical dissociation constants of 5.03 μM, (ii) a Ca2+-dependent electrophoretic mobility shift, and (iii) a marked Ca2+-independent hydrophobicity. Pull-down experiments established the Ca2+-dependent interaction of N-terminal GST-tagged RcCDPK1 with BTPC. RcCDPK1-Cherry localized to the cytosol and nucleus of tobacco bright yellow-2 cells, but colocalized with mitochondrial-surface associated BTPC-enhanced yellow fluorescent protein when both fusion proteins were coexpressed. Deletion analyses demonstrated that although its N-terminal variable domain plays an essential role in optimizing Ca2+-dependent RcCDPK1 autophosphorylation and BTPC transphosphorylation activity, it is not critical for in vitro or in vivo target recognition. Arabidopsis (Arabidopsis thaliana) CPK4 and soybean (Glycine max) CDPKβ are RcCDPK1 orthologs that effectively phosphorylated castor BTPC at Ser-451. Overall, the results highlight a potential link between cytosolic Ca2+ signaling and the posttranslational control of respiratory CO2 refixation and anaplerotic photosynthate partitioning in support of storage oil and protein biosynthesis in developing COS. PMID:28363991

  2. Monitoring structural changes in intrinsically disordered proteins using QCM-D: application to the bacterial cell division protein ZipA.

    Science.gov (United States)

    Mateos-Gil, Pablo; Tsortos, Achilleas; Vélez, Marisela; Gizeli, Electra

    2016-05-05

    The sensitivity of QCM-D to molecular hydrodynamic properties is applied in this work to study conformational changes of the intrinsically disordered protein ZipA. Acoustic measurements can clearly follow ZipA's unstructured domain expansion and contraction with salt content and be correlated with changes in the hydrodynamic radius of 1.8 nm or less.

  3. Attenuated Streptococcus equi ssp. zooepidemicus as a bacterial vector for expression of porcine circovirus type 2 capsid protein.

    Science.gov (United States)

    Wei, Zigong; Fu, Qiang; Liu, Xiaohong; Chen, Yaosheng

    2012-07-01

    Porcine circovirus type 2 (PCV2) infection and other concurrent factors is associated with post-weaning multisystemic wasting syndrome, which is becoming a major problem for the swine industry worldwide. Coinfection of Streptococcus equi ssp. zooepidemicus (SEZ) and PCV2 in swine has necessitated demand for a recombinant vaccine against these two pathogens. A recombinant SEZ-Cap strain expressing the major immunogenic capsid protein of PCV2 in place of the szp gene of acapsular SEZ C55138 ΔhasB was constructed. Fluorescence-activated cell sorting and immunofluorescence microscopy analyses indicated that the capsid protein is expressed on the surface of the recombinant strain. Experiments in mice demonstrated that strain SEZ-Cap was less virulent than the parental strain and that it induced significant anti-PCV2 antibodies when administered intraperitoneally, which is worthy of further investigation in swine. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Recombinant Fasciola hepatica fatty acid binding protein suppresses toll-like receptor stimulation in response to multiple bacterial ligands.

    Science.gov (United States)

    Ramos-Benítez, Marcos J; Ruiz-Jiménez, Caleb; Aguayo, Vasti; Espino, Ana M

    2017-07-14

    Recently, we reported that a native Fasciola hepatica fatty acid binding protein (FABP) termed Fh12 is a powerful anti-inflammatory protein capable of suppressing the LPS-induced expression of inflammatory markers in vivo and in vitro. Because the purification of a protein in native form is, in many situations not cost-beneficial and unsuitable for industrial grade scale-up, this study accomplished the task of optimizing the expression and purification of a recombinant form of FABP (Fh15). Additionally, we ascertained whether this molecule could exhibit a similar suppressive effect on TLR-stimulation and inflammatory cytokine expression from macrophages than those previously demonstrated for the native molecule. Results demonstrated that Fh15 suppresses the expression of IL-1β and TNFα in murine macrophages and THP1 Blue CD14 cells. Additionally, Fh15 suppress the LPS-induced TLR4 stimulation. This effect was not impaired by a thermal denaturing process or blocked by the presence of anti-Fh12 antibodies. Fh15 also suppressed the stimulation of various TLRs in response to whole bacteria extracts, suggesting that Fh15 could have a broad spectrum of action. These results support the possibility of using Fh15 as an excellent alternative for an anti-inflammatory drug in preclinical studies in the near future.

  5. Protective effects of a bacterially expressed NIF-KGF fusion protein against bleomycin-induced acute lung injury in mice.

    Science.gov (United States)

    Li, Xinping; Li, Shengli; Zhang, Miaotao; Li, Xiukun; Zhang, Xiaoming; Zhang, Wenlong; Li, Chuanghong

    2010-08-01

    Current evidence suggests that the keratinocyte growth factor (KGF) and the polymorphonuclear leukocyte may play key roles in the development of lung fibrosis. Here we describe the construction, expression, purification, and identification of a novel NIF (neutrophil inhibitory factor)-KGF mutant fusion protein (NKM). The fusion gene was ligated via a flexible octapeptide hinge and expressed as an insoluble protein in Escherichia coli BL21 (DE3). The fusion protein retained the activities of KGF and NIF, as it inhibited both fibroblast proliferation and leukocyte adhesion. Next, the effects of NKM on bleomycin-induced lung fibrosis in mice were examined. The mice were divided into the following four groups: (i) saline group; (ii) bleomycin group (instilled with 5 mg/kg bleomycin intratracheally); (iii) bleomycin plus dexamethasone (Dex) group (Dex was given intraperitoneally (i.p.) at 1 mg/kg/day 2 days prior to bleomycin instillation and daily after bleomycin instillation until the end of the treatment); and (iv) bleomycin plus NKM group (NKM was given i.p. at 2 mg/kg/day using the same protocol as the Dex group). NKM significantly improved the survival rates of mice exposed to bleomycin. The marked morphological changes and increased hydroxyproline levels resulted from the instillation of bleomycin (on Day 17) in the lungs were significantly inhibited by NKM. These results revealed that NKM can attenuate bleomycin-induced lung fibrosis, suggesting that NKM could be used to prevent bleomycin-induced lung damage or other interstitial pulmonary fibrosis.

  6. The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris.

    Science.gov (United States)

    Sabuquillo, Pilar; Gea, Adela; Matas, Isabel M; Ramos, Cayo; Cubero, Jaime

    2017-05-01

    Fluorescent proteins have been used to track plant pathogens to understand their host interactions. To be useful, the transgenic pathogens must present similar behaviour than the wild-type isolates. Herein, a GFP marker was used to transform two plant pathogenic bacteria, Agrobacterium and Xanthomonas, to localize and track the bacteria during infection. The transgenic bacteria were evaluated to determine whether they showed the same fitness than the wild-type strains or whether the expression of the GFP protein interfered in the bacterial activity. In Agrobacterium, the plasmid used for transformation was stable in the bacteria and the strain kept the virulence, while Xanthomonas was not able to conserve the plasmid and transformed strains showed virulence variations compared to wild-type strains. Although marking bacteria with GFP to track infection in plants is a common issue, works to validate the transgenic strains and corroborate their fitness are not usual. Results, presented here, confirm the importance of proper fitness tests on the marked strains before performing localization assays, to avoid underestimation of the microbe population or possible artificial effects in its interaction with the plant.

  7. Isolation of prawn ( Exopalaemon carinicauda) lipopolysaccharide and β-1, 3-glucan binding protein gene and its expression in responding to bacterial and viral infections

    Science.gov (United States)

    Ge, Qianqian; Li, Jian; Duan, Yafei; Li, Jitao; Sun, Ming; Zhao, Fazhen

    2016-04-01

    The pattern recognition proteins (PRPs) play a major role in immune response of crustacean to resist pathogens. In the present study, as one of PRPs, lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) gene in the ridge tail white prawn ( Exopalaemon carinicauda) ( EcLGBP) was isolated. The full-length cDNA of EcLGBP was 1338 bp, encoding a polypeptide of 366 amino acid residules. The deduced amino acid sequence of EcLGBP shared high similarities with LGBP and BGBP from other crustaceans. Some conservative domains were predicted in EcLGBP sequence. EcLGBP constitutively expressed in most tissues at different levels, and the highest expression was observed in hepatopancreas. With infection time, the cumulative mortality increased gradually followed by the proliferation of Vibrio parahaemolyticus and white spot syndrome virus (WSSV). The expression of EcLGBP in response to V. parahaemolyticus infection was up-regulated in hemocytes and hepatopancreas, and the up-regulation in hepatopancreas was earlier than that in hemocytes. EcLGBP expression after WSSV infection increased at 3 h, then significantly decreased in both hemocytes and hepatopancreas. The results indicated that EcLGBP was involved in the immune defense against bacterial and viral infections.

  8. 76 FR 6120 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Science.gov (United States)

    2011-02-03

    ... [Release No. 34-63798; File No. 265-26] Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues...''). ACTION: Notice of Meeting of Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues. SUMMARY: The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues will hold a public meeting on...

  9. 75 FR 28667 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Science.gov (United States)

    2010-05-21

    ... Issues AGENCIES: Securities and Exchange Commission (``SEC'') and Commodity Futures Trading Commission...-SEC Advisory Committee on Emerging Regulatory Issues. SUMMARY: The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues is providing notice that it will hold a public meeting on Monday, May...

  10. 75 FR 44781 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Science.gov (United States)

    2010-07-29

    ... COMMISSION SECURITIES AND EXCHANGE COMMISSION Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues...''). ACTION: Notice of Meeting of Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues. SUMMARY: The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues will hold a public meeting on...

  11. 75 FR 66362 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Science.gov (United States)

    2010-10-28

    ... COMMISSION SECURITIES AND EXCHANGE COMMISSION Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues...''). ACTION: Notice of meeting of Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues. SUMMARY: The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues will hold a public meeting on...

  12. 75 FR 34704 - Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues

    Science.gov (United States)

    2010-06-18

    ... Issues AGENCY: Securities and Exchange Commission (``SEC'') and Commodity Futures Trading Commission...-SEC Advisory Committee on Emerging Regulatory Issues. ] SUMMARY: The Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues is providing notice that it will hold a public meeting on Tuesday, June...

  13. SecStAnT: secondary structure analysis tool for data selection, statistics and models building.

    Science.gov (United States)

    Maccari, Giuseppe; Spampinato, Giulia L B; Tozzini, Valentina

    2014-03-01

    Atomistic or coarse grained (CG) potentials derived from statistical distributions of internal variables have recently become popular due to the need of simplified interactions for reaching larger scales in simulations or more efficient conformational space sampling. However, the process of parameterization of accurate and predictive statistics-based force fields requires a huge amount of work and is prone to the introduction of bias and errors. This article introduces SecStAnT, a software for the creation and analysis of protein structural datasets with user-defined primary/secondary structure composition, with a particular focus on the CG representation. In addition, the possibility of managing different resolutions and the primary/secondary structure selectivity allow addressing the mapping-backmapping of atomistic to CG representation and study the secondary to primary structure relations. Sample datasets and distributions are reported, including interpretation of structural features. SecStAnT is available free of charge at secstant.sourceforge.net/. Source code is freely available on request, implemented in Java and supported on Linux, MS Windows and OSX.

  14. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae are related to the digestion of protein and energy in dogs

    Directory of Open Access Journals (Sweden)

    Emma N. Bermingham

    2017-03-01

    Full Text Available Background Much of the recent research in companion animal nutrition has focussed on understanding the role of diet on faecal microbiota composition. To date, diet-induced changes in faecal microbiota observed in humans and rodents have been extrapolated to pets in spite of their very different dietary and metabolic requirements. This lack of direct evidence means that the mechanisms by which microbiota influences health in dogs are poorly understood. We hypothesised that changes in faecal microbiota correlate with physiological parameters including apparent macronutrient digestibility. Methods Fifteen adult dogs were assigned to two diet groups, exclusively fed either a premium kibbled diet (kibble; K; n = 8 or a raw red meat diet (meat; M; n = 7 for nine weeks. Apparent digestibility of macronutrients (protein, fat, gross energy and dry matter, faecal weight, faecal health scores, faecal VFA concentrations and faecal microbial composition were determined. Datasets were integrated using mixOmics in R. Results Faecal weight and VFA levels were lower and the apparent digestibility of protein and energy were higher in dogs on the meat diet. Diet significantly affected 27 microbial families and 53 genera in the faeces. In particular, the abundances of Bacteriodes, Prevotella, Peptostreptococcus and Faecalibacterium were lower in dogs fed the meat diet, whereas Fusobacterium, Lactobacillus and Clostridium were all more abundant. Discussion Our results show clear associations of specific microbial taxa with diet composition. For example, Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae were highly correlated to parameters such as protein and fat digestibility in the dog. By understanding the relationship between faecal microbiota and physiological parameters we will gain better insights into the effects of diet on the nutrition of our pets.

  15. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  16. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2016-03-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase–rhodanese fusion protein functions in sulfur assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Nicole; Skiba, Meredith A.; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma

    2017-07-06

    Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO–rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans. The crystal structures of wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.

  18. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria......-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial...

  19. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks.

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2010-12-01

    Full Text Available We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome.

  20. Protecting Gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa.

    Science.gov (United States)

    Liu, Zhihong; García-Díaz, Beatriz; Catacchio, Bruno; Chiancone, Emilia; Vogel, Hans J

    2015-11-01

    Lysozymes play an important role in host defense by degrading peptidoglycan in the cell envelopes of pathogenic bacteria. Several Gram-negative bacteria can evade this mechanism by producing periplasmic proteins that inhibit the enzymatic activity of lysozyme. The Escherichia coli inhibitor of vertebrate lysozyme, Ivyc and its Pseudomonas aeruginosa homolog, Ivyp1 have been shown to be potent inhibitors of hen egg white lysozyme (HEWL). Since human lysozyme (HL) plays an important role in the innate immune response, we have examined the binding of HL to Ivyc and Ivyp1. Our results show that Ivyp1 is a weaker inhibitor of HL than Ivyc even though they inhibit HEWL with similar potency. Calorimetry experiments confirm that Ivyp1 interacts more weakly with HL than HEWL. Analytical ultracentrifugation studies revealed that Ivyp1 in solution is a monomer and forms a 30kDa heterodimer with both HL and HEWL, while Ivyc is a homodimer that forms a tetramer with both enzymes. The interaction of Ivyp1 with HL was further characterized by NMR chemical shift perturbation experiments. In addition to the characteristic His-containing Ivy inhibitory loop that binds into the active site of lysozyme, an extended loop (P2) between the final two beta-strands also participates in forming protein-protein interactions. The P2 loop is not conserved in Ivyc and it constitutes a flexible region in Ivyp1 that becomes more rigid in the complex with HL. We conclude that differences in the electrostatic interactions at the binding interface between Ivy inhibitors and distinct lysozymes determine the strength of this interaction. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Test experience, 490 N high performance (321 sec Isp) engine

    Science.gov (United States)

    Schoenman, L.; Rosenberg, S. D.; Jassowski, D. M.

    1992-01-01

    Engines with area ratios of 44:1 and 286:1 are tested by means of hot fire tests using the NTO/MMH bipropellant to maximize the performance of the combined technologies. The low-thrust engine systems are designed with oxidation resistant materials that can operate at temperatures of more than 2204 C for tens of hours. The chamber is attached to the injector in a configuration that prevents overheating of the injector, valve, and the spacecraft interface. Three injectors with 44:1 area ratios are capable of nominal specific impulse values of 309 sec, and a performance of 321 lbf-sec/lbm is noted for an all-welded engine assembly with area ratio of 286:1. The all-welded engine is shown to have an acceptable design margin for thermal characteristics. High-performance liquid apogee engines are shown to perform optimally when based on iridium/rhenium chamber technology, use of a special platelet injector, and the minimization of losses due to fuel-film cooling.

  2. Bacterial Proteasomes.

    Science.gov (United States)

    Jastrab, Jordan B; Darwin, K Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology.

  3. Effects of corn-based diet starch content and neutral detergent fiber source on lactation performance, digestibility, and bacterial protein flow in dairy cows.

    Science.gov (United States)

    Fredin, S M; Akins, M S; Ferraretto, L F; Shaver, R D

    2015-01-01

    An experiment was conducted to evaluate the effects of corn-based dietary starch content and source of neutral detergent fiber (NDF) on lactation performance, nutrient digestion, bacterial protein flow, and ruminal parameters in lactating dairy cows. Eight ruminally cannulated multiparous Holstein cows averaging 193±11d in milk were randomly assigned to treatments in a replicated 4×4 Latin square design with 21-d periods. Treatment diets were high corn grain (HCG; 38% corn silage, 19% dry ground corn, and 4% soy hulls), high soy hulls (HSH; 38% corn silage, 11% dry ground corn, and 13% soy hulls), high corn silage (HCS; 50% corn silage, 6% dry ground corn, and 4% soy hulls), and low corn silage (LCS; 29% corn silage, 15% corn, and 19% soy hulls). The HCG, HSH, HCS, and LCS diets contained 29, 23, 24, and 22% starch; 27, 32, 30, and 32% total NDF; and 21, 21, 25, and 17% forage NDF (dry matter basis), respectively. Mean dry matter intake and milk yield were unaffected by treatment. Cows fed LCS had reduced milk fat content compared with HSH and HCS. The concentration of milk urea nitrogen was greater for cows fed HCS compared with the other treatments. Total-tract digestion of NDF was reduced for cows fed the HCG diet. Total-tract starch digestion was increased for cows fed the HSH and HCS compared with HCG and LCS diets. Bacterial protein flow was unaffected by treatment. Ruminal ammonia concentration was reduced in cows fed the HCG and LCS diets compared with the HCS diet. Ruminal propionate increased and the acetate:propionate ratio decreased in cows fed the LCS diet compared with the HCS diet. Ruminal pH was greater for cows fed the HCS diet compared with cows fed the LCS diet. Diet digestibility and performance of mid- to late-lactation cows fed reduced-starch diets by partially replacing corn grain with soy hulls or corn silage was similar to or improved compared with cows fed a normal-starch diet. Copyright © 2015 American Dairy Science Association

  4. Proteomic Analysis of Bacterial Expression Profiles Following ...

    African Journals Online (AJOL)

    Bacterial proteins were then extracted from the cell pellets and culture supernatants, using bacterial protein extraction reagent (Thermo Scientific) and ammonium sulfate precipitation. SDS-PAGE gel electrophoresis and protein sequence analysis. SDS-PAGE gel electrophoresis was performed using 12 % resolving gel [1.5 ...

  5. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp.

    Science.gov (United States)

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (Pmutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases.

  6. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein.

    Science.gov (United States)

    Hosseini-Abari, Afrouzossadat; Kim, Byung-Gee; Lee, Sang-Hyuk; Emtiazi, Giti; Kim, Wooil; Kim, June-Hyung

    2016-12-01

    Tyrosinases, copper-containing monooxygenases, are widely used enzymes for industrial, medical, and environmental applications. We report the first functional surface display of Bacillus megaterium tyrosinase on Bacillus subtilis spores using CotE as an anchor protein. Flow Cytometry was used to verify surface expression of tyrosinase on the purified spores. Moreover, tyrosinase activity of the displayed enzyme on B. subtilis spores was monitored in the presence of L-tyrosine (substrate) and CuSO 4 (inducer). The stability of the spore-displayed tyrosinase was then evaluated after 15 days maintenance of the spores at room temperature, and no significant decrease in the enzyme activity was observed. In addition, the tyrosinase-expressing spores could be repeatedly used with 62% retained enzymatic activity after six times washing with Tris-HCl buffer. This genetically immobilized tyrosinase on the spores would make a new advance in industrial, medical, and environmental applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Neofunctionalization of the Sec1 α1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus.

    Directory of Open Access Journals (Sweden)

    Kristina Nyström

    2015-04-01

    Full Text Available RHDV (rabbit hemorrhagic disease virus, a virulent calicivirus, causes high mortalities in European rabbit populations (Oryctolagus cuniculus. It uses α1,2fucosylated glycans, histo-blood group antigens (HBGAs, as attachment factors, with their absence or low expression generating resistance to the disease. Synthesis of these glycans requires an α1,2fucosyltransferase. In mammals, there are three closely located α1,2fucosyltransferase genes rSec1, rFut2 and rFut1 that arose through two rounds of duplications. In most mammalian species, Sec1 has clearly become a pseudogene. Yet, in leporids, it does not suffer gross alterations, although we previously observed that rabbit Sec1 variants present either low or no activity. Still, a low activity rSec1 allele correlated with survival to an RHDV outbreak. We now confirm the association between the α1,2fucosyltransferase loci and survival. In addition, we show that rabbits express homogenous rFut1 and rFut2 levels in the small intestine. Comparison of rFut1 and rFut2 activity showed that type 2 A, B and H antigens recognized by RHDV strains were mainly synthesized by rFut1, and all rFut1 variants detected in wild animals were equally active. Interestingly, rSec1 RNA levels were highly variable between individuals and high expression was associated with low binding of RHDV strains to the mucosa. Co-transfection of rFut1 and rSec1 caused a decrease in rFut1-generated RHDV binding sites, indicating that in rabbits, the catalytically inactive rSec1 protein acts as a dominant-negative of rFut1. Consistent with neofunctionalization of Sec1 in leporids, gene conversion analysis showed extensive homogenization between Sec1 and Fut2 in leporids, at variance with its limited degree in other mammals. Gene conversion additionally involving Fut1 was also observed at the C-terminus. Thus, in leporids, unlike in most other mammals where it became extinct, Sec1 evolved a new function with a dominant-negative effect

  8. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  9. The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation.

    Science.gov (United States)

    Zulauf, Katelyn E; Sullivan, Jonathan Tabb; Braunstein, Miriam

    2018-04-30

    To subvert host defenses, Mycobacterium tuberculosis (Mtb) avoids being delivered to degradative phagolysosomes in macrophages by arresting the normal host process of phagosome maturation. Phagosome maturation arrest by Mtb involves multiple effectors and much remains unknown about this important aspect of Mtb pathogenesis. The SecA2 dependent protein export system is required for phagosome maturation arrest and consequently growth of Mtb in macrophages. To better understand the role of the SecA2 pathway in phagosome maturation arrest, we identified two effectors exported by SecA2 that contribute to this process: the phosphatase SapM and the kinase PknG. Then, utilizing the secA2 mutant of Mtb as a platform to study effector functions, we identified specific steps in phagosome maturation inhibited by SapM and/or PknG. By identifying a histidine residue that is essential for SapM phosphatase activity, we confirmed for the first time that the phosphatase activity of SapM is required for its effects on phagosome maturation in macrophages. We further demonstrated that SecA2 export of SapM and PknG contributes to the ability of Mtb to replicate in macrophages. Finally, we extended our understanding of the SecA2 pathway, SapM, and PknG by revealing that their contribution goes beyond preventing Mtb delivery to mature phagolysosomes and includes inhibiting Mtb delivery to autophagolysosomes. Together, our results revealed SapM and PknG to be two effectors exported by the SecA2 pathway of Mtb with distinct as well as cumulative effects on phagosome and autophagosome maturation. Our results further reveal that Mtb must have additional mechanisms of limiting acidification of the phagosome, beyond inhibiting recruitment of the V-ATPase proton pump to the phagosome, and they indicate differences between effects of Mtb on phagosome and autophagosome maturation.

  10. MicroRNA-21 promotes proliferation, migration, and invasion of colorectal cancer, and tumor growth associated with down-regulation of sec23a expression

    International Nuclear Information System (INIS)

    Li, Chenli; Zhao, Lingxu; Chen, Yuan; He, Tiantian; Chen, Xiaowan; Mao, Jiating; Li, Chunmei; Lyu, Jianxin; Meng, Qing H.

    2016-01-01

    MicroRNA-21 (miR-21) is up-regulated in many cancers, including colorectal cancer (CRC). Nevertheless, the function of miR-21 in CRC and the mechanism underlying that function is still unclear. After analyzing the expression of miR-21 and Sec23A in CRC cell lines, we transfected the highest miR-21 expressing cell line, SW-480, with a plasmid containing an miR-21 inhibitor and the lowest miR-21 expressing cell line, DLD-1, with a plasmid containing an miR-21 mimic and measured the effects on the expression of Sec23A and on cell proliferation, migration, and invasion. We also evaluated the effect of knocking down Sec23A on miR-21 expression and its effects on cell proliferation, migration, and invasion. Finally, we assessed the effect of miR-21 in a xenograft tumor model in mice. Tumor tissues from these mice were subjected to immunohistochemical staining to detect the expression of Sec23A. Genetic deletion of miR-21 suppressed the proliferation, migration, and invasion of SW-480 cells, while over-expression of miR-21 promoted proliferation, migration, and invasion of DLD-1 cells. Inhibition of miR-21 increased the expression of Sec23A protein in SW-480 cells while over-expression of miR-21 significantly suppressed the expression of Sec23A protein and Sec23A mRNA in DLD-1 cells. Knockdown of Sec23A increased the expression of miR-21 in SW480 and DLD-1 cells and their proliferation (DLD-1 only), migration, and invasion. Over-expression of miR-21 promoted tumor growth in BALB/c nude mice and suppressed tumor expression of Sec23A. These findings provide novel insight into the molecular functions of miR-21 in CRC, which may serve as a potential interesting target

  11. Activity of a bacterial cell envelope stress response is controlled by the interaction of a protein binding domain with different partners.

    Science.gov (United States)

    Flores-Kim, Josué; Darwin, Andrew J

    2015-05-01

    The bacterial phage shock protein (Psp) system is a highly conserved cell envelope stress response required for virulence in Yersinia enterocolitica and Salmonella enterica. In non-inducing conditions the transcription factor PspF is inhibited by an interaction with PspA. In contrast, PspA associates with the cytoplasmic membrane proteins PspBC during inducing conditions. This has led to the proposal that PspBC exists in an OFF state, which cannot recruit PspA, or an ON state, which can. However, nothing was known about the difference between these two states. Here, we provide evidence that it is the C-terminal domain of Y. enterocolitica PspC (PspC(CT)) that interacts directly with PspA, both in vivo and in vitro. Site-specific photocross-linking revealed that this interaction occurred only during Psp-inducing conditions in vivo. Importantly, we have also discovered that PspC(CT) can interact with the C-terminal domain of PspB (PspC(CT)·PspB(CT)). However, the PspC(CT)·PspB(CT) and PspC(CT)·PspA interactions were mutually exclusive in vitro. Furthermore, in vivo, PspC(CT) contacted PspB(CT) in the OFF state, whereas it contacted PspA in the ON state. These findings provide the first description of the previously proposed PspBC OFF and ON states and reveal that the regulatory switch is centered on a PspC(CT) partner-switching mechanism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  13. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.

    Science.gov (United States)

    Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve

    2017-07-01

    The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-05

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  16. Functional asymmetry within the Sec61p translocon

    Science.gov (United States)

    Demirci, Erhan; Junne, Tina; Baday, Sefer; Bernèche, Simon; Spiess, Martin

    2013-01-01

    The Sec61 translocon forms a pore to translocate polypeptide sequences across the membrane and offers a lateral gate for membrane integration of hydrophobic (H) segments. A central constriction of six apolar residues has been shown to form a seal, but also to determine the hydrophobicity threshold for membrane integration: Mutation of these residues in yeast Sec61p to glycines, serines, aspartates, or lysines lowered the hydrophobicity required for integration; mutation to alanines increased it. Whereas four leucines distributed in an oligo-alanine H segment were sufficient for 50% integration, we now find four leucines in the N-terminal half of the H segment to produce significantly more integration than in the C-terminal half, suggesting functional asymmetry within the translocon. Scanning a cluster of three leucines through an oligo-alanine H segment showed high integration levels, except around the position matching that of the hydrophobic constriction in the pore where integration was strongly reduced. Both asymmetry and the position effect of H-segment integration disappeared upon mutation of the constriction residues to glycines or serines, demonstrating that hydrophobicity at this position within the translocon is responsible for the phenomenon. Asymmetry was largely retained, however, when constriction residues were replaced by alanines. These results reflect on the integration mechanism of transmembrane domains and show that membrane insertion of H segments strongly depends not only on their intrinsic hydrophobicity but also on the local conditions in the translocon interior. Thus, the contribution of hydrophobic residues in the H segment is not simply additive and displays cooperativeness depending on their relative position. PMID:24191046

  17. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  18. Lysis of bacterial cells in the process of bacteriophage release – canonical and newly discovered mechanisms

    Directory of Open Access Journals (Sweden)

    Wioleta M. Woźnica

    2015-01-01

    Full Text Available The release of phage progeny from an infected bacterium is necessary for the spread of infection. Only helical phages are secreted from a cell without causing its destruction. The release of remaining phages is correlated with bacterial lysis and death. Thus, the understanding of phage lytic functions is crucial for their use in the fight with bacterial pathogens. Bacteriophages with small RNA or DNA genomes encode single proteins which are called amurins and cause lysis by the inhibition of cell wall synthesis. Bacteriophages of double-stranded DNA genomes, which dominate in the environment, encode enzymes that are called endolysins and contribute to lysis by the cleavage of cell wall peptydoglycan. Endolysins that do not contain signal sequences cannot pass the cytoplasmic membrane by themselves. Their access to peptidoglycan is provided by membrane proteins – holins, which can form in the membrane large pores, that are called “holes”. Some endolysins do not require holins for their transport, owing to the presence of the so called SAR sequence at their N-terminus. It enables their transport through the membrane by the bacterial sec system. However, it is not cleaved off, and thus these endolysins remain trapped in the membrane in an inactive form. Their release, which is correlated with the activation, occurs as a result of membrane depolarization and depends on proteins that are called pinholins. Pinholins form in membrane pores that are too small for the passage of endolysins but sufficient for membrane depolarization. Proteins that are called antiholins regulate the timing of lysis, through the blockage of holins action until the end of phage morphogenesis. Additionally, newly identified lytic proteins, spanins, participate in the release of progeny phages from Gram-negative bacteria cells. They cause the destruction of outer cell membrane by its spanning with the cytoplasmic membrane. This is possible after the endolysin

  19. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Science.gov (United States)

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  20. Predictive validity of examinations at the Secondary Education Certificate (SEC) level

    OpenAIRE

    Farrugia, Josette; Ventura, Frank

    2007-01-01

    This paper presents the predictive validity of results obtained by 16-year-old Maltese students in the May 2004 Secondary Education Certificate (SEC) examinations in Biology, Chemistry, Physics, Mathematics, Computing, English and Maltese for the Advanced level examinations in these subjects taken by the same students two years later. The study checks whether the SEC level is a good foundation for the higher level, the likelihood of obtaining a high grade at A-level from particular SEC result...