WorldWideScience

Sample records for bacterial ribosomal proteins

  1. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.

    Science.gov (United States)

    Robert, Francis; Brakier-Gingras, Léa

    2003-11-01

    In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.

  2. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  3. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  4. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    OpenAIRE

    Luthey-Schulten Zaida; Roberts Elijah; Chen Ke

    2009-01-01

    Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene tr...

  5. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  6. Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin.

    Science.gov (United States)

    Tishchenko, S V; Vassilieva, J M; Platonova, O B; Serganov, A A; Fomenkova, N P; Mudrik, E S; Piendl, W; Ehresmann, C; Ehresmann, B; Garber, M B

    2001-09-01

    The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.

  7. Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens.

    Science.gov (United States)

    Nagaraj, Satish; Senthil-Kumar, Muthappa; Ramu, Vemanna S; Wang, Keri; Mysore, Kirankumar S

    2015-01-01

    Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens. PMID:26779226

  8. Structural diversity in bacterial ribosomes: mycobacterial 70S ribosome structure reveals novel features.

    Directory of Open Access Journals (Sweden)

    Manidip Shasmal

    Full Text Available Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria.

  9. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

    Science.gov (United States)

    Feinauer, Christoph; Szurmant, Hendrik; Weigt, Martin; Pagnani, Andrea

    2016-01-01

    Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data. PMID:26882169

  10. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

    Directory of Open Access Journals (Sweden)

    Christoph Feinauer

    Full Text Available Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data.

  11. Chloroplast ribosomes and protein synthesis.

    OpenAIRE

    Harris, E. H.; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles i...

  12. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  13. tmRNA-SmpB: a journey to the centre of the bacterial ribosome.

    OpenAIRE

    Weis, Félix; Bron, Patrick; Giudice, Emmanuel; Rolland, Jean-Paul; Thomas, Daniel; Felden, Brice; Gillet, Reynald

    2010-01-01

    International audience; Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. He...

  14. Ribosome Inactivating Proteins from Rosaceae

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    2016-08-01

    Full Text Available Ribosome-inactivating proteins (RIPs are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  15. Ribosome Inactivating Proteins from Rosaceae.

    Science.gov (United States)

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-01-01

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  16. Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5.

    Science.gov (United States)

    Yamaguchi, Kenichi; Prieto, Susana; Beligni, María Verónica; Haynes, Paul A; McDonald, W Hayes; Yates, John R; Mayfield, Stephen P

    2002-11-01

    To understand how chloroplast mRNAs are translated into functional proteins, a detailed understanding of all of the components of chloroplast translation is needed. To this end, we performed a proteomic analysis of the plastid ribosomal proteins in the small subunit of the chloroplast ribosome from the green alga Chlamydomonas reinhardtii. Twenty proteins were identified, including orthologs of Escherichia coli S1, S2, S3, S4, S5, S6, S7, S9, S10, S12, S13, S14, S15, S16, S17, S18, S19, S20, and S21 and a homolog of spinach plastid-specific ribosomal protein-3 (PSRP-3). In addition, a novel S1 domain-containing protein, PSRP-7, was identified. Among the identified proteins, S2 (57 kD), S3 (76 kD), and S5 (84 kD) are prominently larger than their E. coli or spinach counterparts, containing N-terminal extensions (S2 and S5) or insertion sequence (S3). Structural predictions based on the crystal structure of the bacterial 30S subunit suggest that the additional domains of S2, S3, and S5 are located adjacent to each other on the solvent side near the binding site of the S1 protein. These additional domains may interact with the S1 protein and PSRP-7 to function in aspects of mRNA recognition and translation initiation that are unique to the Chlamydomonas chloroplast.

  17. Proteomic LC-MS analysis of Arabidopsis cytosolic ribosomes : Identification of ribosomal protein paralogs and re-annotation of the ribosomal protein genes

    NARCIS (Netherlands)

    Hummel, Maureen; Dobrenel, Thomas; Cordewener, Jan J H G; Davanture, Marlène; Meyer, Christian; Smeekens, Sjef J C M; Bailey-Serres, Julia; America, Twan A H P; Hanson, Johannes

    2015-01-01

    UNLABELLED: Arabidopsis thaliana cytosolic ribosomes are large complexes containing eighty-one distinct ribosomal proteins (r-proteins), four ribosomal RNAs (rRNA) and a plethora of associated (non-ribosomal) proteins. In plants, r-proteins of cytosolic ribosomes are each encoded by two to seven dif

  18. Differential Stoichiometry among Core Ribosomal Proteins

    Science.gov (United States)

    Slavov, Nikolai; Semrau, Stefan; Airoldi, Edoardo; Budnik, Bogdan; van Oudenaarden, Alexander

    2015-01-01

    Summary Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function. PMID:26565899

  19. Differential Stoichiometry among Core Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2015-11-01

    Full Text Available Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs, some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function.

  20. The other lives of ribosomal proteins

    Directory of Open Access Journals (Sweden)

    Bhavsar Rital B

    2010-06-01

    Full Text Available Abstract Despite the fact that ribosomal proteins are the constituents of an organelle that is present in every cell, they show a surprising level of regulation, and several of them have also been shown to have other extra-ribosomal functions, such in replication, transcription, splicing or even ageing. This review provides a comprehensive summary of these important aspects.

  1. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...

  2. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.

    Science.gov (United States)

    Cavdar Koc, E; Burkhart, W; Blackburn, K; Moseley, A; Spremulli, L L

    2001-06-01

    Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae.

  3. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    Science.gov (United States)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  4. RPG: the Ribosomal Protein Gene database

    OpenAIRE

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and informa...

  5. tmRNA-SmpB: a journey to the centre of the bacterial ribosome.

    Science.gov (United States)

    Weis, Félix; Bron, Patrick; Giudice, Emmanuel; Rolland, Jean-Paul; Thomas, Daniel; Felden, Brice; Gillet, Reynald

    2010-11-17

    Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo-electron microscopy structures of tmRNA-SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA-SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag-encoding sequence. This provides a structural basis for the transit of the large tmRNA-SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.

  6. On ribosome load, codon bias and protein abundance.

    Directory of Open Access Journals (Sweden)

    Stefan Klumpp

    Full Text Available Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable parameters.

  7. Adaptive Remodeling of the Bacterial Proteome by Specific Ribosomal Modification Regulates Pseudomonas Infection and Niche Colonisation.

    Directory of Open Access Journals (Sweden)

    Richard H Little

    2016-02-01

    Full Text Available Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG. Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome.

  8. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis.

    Science.gov (United States)

    Ren, Jinqi; Wang, Yaqing; Liang, Yuheng; Zhang, Yongqing; Bao, Shilai; Xu, Zhiheng

    2010-04-23

    Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.

  9. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    Directory of Open Access Journals (Sweden)

    Steffen Jakob

    Full Text Available Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA. Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins and ribosome precursors (pre-ribosomes are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  10. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  11. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri

    2011-01-01

    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  12. The Bacterial Translocon SecYEG Opens upon Ribosome Binding*

    OpenAIRE

    Knyazev, Denis G.; Lents, Alexander; Krause, Eberhard; Ollinger, Nicole; Siligan, Christine; Papinski, Daniel; Winter, Lukas; Horner, Andreas; Pohl, Peter

    2013-01-01

    In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which ha...

  13. The bacterial translocon SecYEG opens upon ribosome binding.

    Science.gov (United States)

    Knyazev, Denis G; Lents, Alexander; Krause, Eberhard; Ollinger, Nicole; Siligan, Christine; Papinski, Daniel; Winter, Lukas; Horner, Andreas; Pohl, Peter

    2013-06-21

    In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist. PMID:23645666

  14. The Bacterial Translocon SecYEG Opens upon Ribosome Binding*

    Science.gov (United States)

    Knyazev, Denis G.; Lents, Alexander; Krause, Eberhard; Ollinger, Nicole; Siligan, Christine; Papinski, Daniel; Winter, Lukas; Horner, Andreas; Pohl, Peter

    2013-01-01

    In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist. PMID:23645666

  15. Structural and Functional Studies of Ribosome-inactivating Proteins and Ribosomal RNA

    Institute of Scientific and Technical Information of China (English)

    LIU Wangyi; ZHANG Jinsong; LIU Renshui; HE Wenjun; LING Jun

    2007-01-01

    @@ A plant's ribosome-inactivating proteins (RIPs) are a group of toxic proteins. Theoretically, they can be employed as a tool enzyme in the exploration of the structure and function of the ribosomal RNA; in practical application, they can be used as an insecticide in agriculture, for preparation of immuno-toxic protein to kill cancer cells or against viral infection in medicine.

  16. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  17. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  18. [Topography of ribosomal proteins: reconsideration of of protein map of small ribosomal subunit].

    Science.gov (United States)

    Spirin, A S; Agafonov, D E; Kolb, V A; Kommer, A

    1996-11-01

    Exposure of proteins on the surface of the small (30S) ribosomal subunit of Escherichia coli was studied by the hot tritium bombardment technique. Eight of 21 proteins of the 30 S subunit (S3, S8, S10, S12, S15, S16, S17, and S19) had virtually no groups exposed on the surface of the particle, i.e., they were mainly hidden inside. Seven proteins (S1, S4, S5, S7, S18, S20, and S21) were all well exposed on the surface of the particle, thus being outside proteins. The remaining proteins (S2, S6, S9 and/or S11, S13, and S14) were partially exposed. On the basis of these results a reconcilement of the three-dimensional protein map of the small ribosomal subunit has been done and corrected model is proposed.

  19. The role of human ribosomal proteins in the maturation of rRNA and ribosome production

    OpenAIRE

    Robledo, Sara; Rachel A Idol; Crimmins, Dan L.; Ladenson, Jack H.; Mason, Philip J.; Bessler, Monica

    2008-01-01

    Production of ribosomes is a fundamental process that occurs in all dividing cells. It is a complex process consisting of the coordinated synthesis and assembly of four ribosomal RNAs (rRNA) with about 80 ribosomal proteins (r-proteins) involving more than 150 nonribosomal proteins and other factors. Diamond Blackfan anemia (DBA) is an inherited red cell aplasia caused by mutations in one of several r-proteins. How defects in r-proteins, essential for proliferation in all cells, lead to a hum...

  20. The ribosome can prevent aggregation of partially folded protein intermediates: studies using the Escherichia coli ribosome.

    Directory of Open Access Journals (Sweden)

    Bani Kumar Pathak

    Full Text Available BACKGROUND: Molecular chaperones that support de novo folding of proteins under non stress condition are classified as chaperone 'foldases' that are distinct from chaperone' holdases' that provide high affinity binding platform for unfolded proteins and prevent their aggregation specifically under stress conditions. Ribosome, the cellular protein synthesis machine can act as a foldase chaperone that can bind unfolded proteins and release them in folding competent state. The peptidyl transferase center (PTC located in the domain V of the 23S rRNA of Escherichia coli ribosome (bDV RNA is the chaperoning center of the ribosome. It has been proposed that via specific interactions between the RNA and refolding proteins, the chaperone provides information for the correct folding of unfolded polypeptide chains. RESULTS: We demonstrate using Escherichia coli ribosome and variants of its domain V RNA that the ribosome can bind to partially folded intermediates of bovine carbonic anhydrase II (BCAII and lysozyme and suppress aggregation during their refolding. Using mutants of domain V RNA we demonstrate that the time for which the chaperone retains the bound protein is an important factor in determining its ability to suppress aggregation and/or support reactivation of protein. CONCLUSION: The ribosome can behave like a 'holdase' chaperone and has the ability to bind and hold back partially folded intermediate states of proteins from participating in the aggregation process. Since the ribosome is an essential organelle that is present in large numbers in all living cells, this ability of the ribosome provides an energetically inexpensive way to suppress cellular aggregation. Further, this ability of the ribosome might also be crucial in the context that the ribosome is one of the first chaperones to be encountered by a large nascent polypeptide chains that have a tendency to form partially folded intermediates immediately following their synthesis.

  1. Identification of a mammalian mitochondrial homolog of ribosomal protein S7.

    Science.gov (United States)

    Cavdar Koc, E; Blackburn, K; Burkhart, W; Spremulli, L L

    1999-12-01

    Bovine mitochondrial small subunit ribosomal proteins were separated by two-dimensional electrophoresis. The region containing the most basic protein(s) was excised and the protein(s) present subjected to in-gel digestion with trypsin. Electrospray tandem mass spectrometry was used to provide sequence information on some of the peptide products. Searches of the human EST database using the sequence of the longest peptide analyzed indicated that this peptide was from the mammalian mitochondrial homolog of prokaryotic ribosomal protein S7 (MRP S7(human)). MRP S7(human) is a 28-kDa protein with a pI of 10. Significant homology to bacterial S7 is observed especially in the C-terminal half of the protein. Surprisingly, MRP S7(human) shows less homology to the corresponding mitochondrial proteins from plants and fungi than to bacterial S7.

  2. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability

    Directory of Open Access Journals (Sweden)

    García-Lara Jorge

    2009-12-01

    Full Text Available Abstract Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.

  3. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  4. Molecular mechanisms of ribosomal protein gene coregulation.

    Science.gov (United States)

    Reja, Rohit; Vinayachandran, Vinesh; Ghosh, Sujana; Pugh, B Franklin

    2015-09-15

    The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20-50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1-TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences. PMID:26385964

  5. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  6. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns that e...... in the nucleolus....

  7. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and archaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacteria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variations in some operons across different organisms within each domain, and these variations are informative on the evolutionary relations among the organisms. This method provides a new potential for studying the origin and evolution of old species.

  8. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    王宁; 陈润生; 王永雄

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and ar-chaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacte-ria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variat

  9. A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly.

    Directory of Open Access Journals (Sweden)

    Brittany Burton

    Full Text Available Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20 with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17 tend to adopt more stable solution conformations than an RNA-embedded protein (S20. We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins.

  10. Posttranslational Modifications of Ribosomal Proteins in Escherichia coli.

    Science.gov (United States)

    Nesterchuk, M V; Sergiev, P V; Dontsova, O A

    2011-04-01

    А number of ribosomal proteins inEscherichia coliundergo posttranslational modifications. Six ribosomal proteins are methylated (S11, L3, L11, L7/L12, L16, and L33), three proteins are acetylated (S5, S18, and L7), and protein S12 is methylthiolated. Extra amino acid residues are added to protein S6. С-terminal amino acid residues are partially removed from protein L31. The functional significance of these modifications has remained unclear. These modifications are not vital to the cells, and it is likely that they have regulatory functions. This paper reviews all the known posttranslational modifications of ribosomal proteins inEscherichia coli. Certain enzymes responsible for the modifications and mechanisms of enzymatic reactions are also discussed.

  11. Molecular morphology of ribosomes. Iodination of Escherichia coli ribosomal proteins with solid-state lactoperoxidase.

    Science.gov (United States)

    Michalski, C J; Sells, B H

    1975-03-17

    Using either soluble or solid-state lactoperoxidase, a comparison was made between the enzymic iodination of ribosomal proteins iodinated as 30-S and 50-S subunits or as 70-S monosomes. Proteins S7, S11 and S12 of the 30-S subunit and proteins L2, L11, L26 and L28 of the 50-S subunit were labelled to a greater extent in isolated particles than in the 70-S ribosome. In contrast, proteins S4, S19 and S20 were labelled to a lesser extent in the isolated subunit. No significant differences were observed in the iodination patterns of ribosomes iodinated in the presence of soluble lactoperoxidase and those iodinated in the presence of lactoperoxidase bound to Sepharose 4B. It is suggested that the 30-S subunit undergoes a conformational change during its association with the 50-S subunit to form a 70-S monosome. Implications from results obtained with solid-state lactoperoxidase-catalyzed iodination of ribosomal proteins are also discussed.

  12. In Profile: Models of Ribosome Biogenesis Defects and Regulation of Protein Synthesis

    NARCIS (Netherlands)

    Essers, P.B.M.

    2013-01-01

    Ribosomes are the mediators of protein synthesis in the cell and therefore crucial to proper cell function. In addition, ribosomes are highly abundant, with ribosomal RNA making up 80% of the RNA in the cell. A large amount of resources go into maintaining this pool of ribosomes, so ribosome biogene

  13. An intron in a ribosomal protein gene from Tetrahymena

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Andreasen, Per Hove; Dreisig, Hanne;

    1986-01-01

    of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene...... of a ciliate to be described at the nucleotide sequence level. The intron obeys the GT/AG rule for splice junctions of nuclear mRNA introns from higher eukaryotes but lacks the pyrimidine stretch usually found in the immediate vicinity of the 3' splice junction. The structure of the intron and the fact...

  14. A-Site Residues Move Independently from P-Site Residues in all-Atom Molecular Dynamics Simulations of the 70S Bacterial Ribosome

    OpenAIRE

    Relly Brandman; Yigal Brandman; Pande, Vijay S.

    2012-01-01

    The ribosome is a large macromolecular machine, and correlated motion between residues is necessary for coordinating function across multiple protein and RNA chains. We ran two all-atom, explicit solvent molecular dynamics simulations of the bacterial ribosome and calculated correlated motion between residue pairs by using mutual information. Because of the short timescales of our simulation (ns), we expect that dynamics are largely local fluctuations around the crystal structure. We hypothes...

  15. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1.

    Directory of Open Access Journals (Sweden)

    Monique N O'Leary

    Full Text Available Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/- mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/- mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1 expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.

  16. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition.

    Science.gov (United States)

    Arenz, Stefan; Wilson, Daniel N

    2016-01-01

    Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria. PMID:27481773

  17. Revisiting the Structures of Several Antibiotics Bound to the Bacterial Ribosome

    Energy Technology Data Exchange (ETDEWEB)

    D Bulkley; C Innis; G Blaha; T Steitz

    2011-12-31

    The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model. Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.

  18. Revisiting the structures of several antibiotics bound to the bacterial ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Bulkley, David; Innis, C. Axel; Blaha, Gregor; Steitz, Thomas A. (Yale)

    2010-10-08

    The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model. Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.

  19. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    OpenAIRE

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of rib...

  20. Traffic of interacting ribosomes on mRNA during protein synthesis: effects of chemo-mechanics of individual ribosomes

    CERN Document Server

    Basu, A; Basu, Aakash; Chowdhury, Debashish

    2006-01-01

    Many {\\it ribosomes} simultaneously move on the same messenger RNA (mRNA), each synthesizing a protein. In contrast to the earlier models, here {\\it we develope a ``unified'' theoretical model} that not only incorporates the {\\it mutual exclusions} of the interacting ribosomes, but also describes explicitly the mechano-chemistry of each of these individual cyclic machines during protein synthesis. Using a combination of analytical and numerical techniques of non-equilibrium statistical mechanics, we analyze the rates of protein synthesis and the spatio-temporal oraganization of the ribosomes in this model. We also predict how these properties would change with the changes in the rates of the various chemo-mechanical processes in each ribosome. Finally, we illustrate the power of this model by making experimentally testable predictions on the rates of protein synthesis and the density profiles of the ribosomes on some mRNAs in {\\it E-coli}.

  1. The sequential addition of ribosomal proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

    Science.gov (United States)

    Todorov, I T; Noll, F; Hadjiolov, A A

    1983-03-15

    Nucleolar '80-S' and '40-S' preribosomes (containing 45-S and 21-S pre-rRNA, respectively), as well as cytoplasmic ribosomes, were isolated from Friend erythroleukemia cells. The presence of structural ribosomal proteins in the isolated particles was studied by using antisera against individual rat liver small ribosomal subunit proteins. The analysis is based on the established crossreactivity between rat and mouse ribosomes [F. Noll and H. Bielka (1970) Mol. Gen. Genet. 106, 106-113]. The identification of the proteins was achieved by two independent immunological techniques: the passive haemagglutination test and the enzyme immunoassay of electrophoretically fractionated proteins, blotted on nitrocellulose. All 17 proteins tested are present in cytoplasmic ribosomes. A large number of proteins (S3a, S6, S7, S8, S11, S14, S18, S20, S23/24 and S25) are present in the '80-S' preribosome. Only two proteins (S3 and S21) are added during the formation of the '40-S' preribosome in the nucleolus. Four proteins (S2, S19, S26 and S29) are added at later, possibly extranucleolar, stages of ribosome formation. The results obtained provide evidence for the sequential addition of proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

  2. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor.

    Science.gov (United States)

    Mikulík, Karel; Bobek, Jan; Ziková, Alice; Smětáková, Magdalena; Bezoušková, Silvie

    2011-03-01

    The occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27). The ribosomal proteins were phosphorylated mainly on the Ser/Thr residues. Phosphorylation of the ribosomal proteins influences ribosomal subunits association. Ribosomes with phosphorylated proteins were used to examine poly (U) translation activity. Phosphorylation induced about 50% decrease in polyphenylalanine synthesis. After preincubation of ribosomes with alkaline phosphatase the activity of ribosomes was greatly restored. Small differences were observed between phosphorylated and unphosphorylated ribosomes in the kinetic parameters of the binding of Phe-tRNA to the A-site of poly (U) programmed ribosomes, suggesting that the initial binding of Phe-tRNA is not significantly affected by phosphorylation. On contrary, the rate of peptidyl transferase was about two-fold lower than that in unphosphorylated ribosomes. The data presented demonstrate that phosphorylation of ribosomal proteins affects critical steps of protein synthesis.

  3. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function.

    Science.gov (United States)

    Bowen, Alicia M; Musalgaonkar, Sharmishtha; Moomau, Christine A; Gulay, Suna P; Mirvis, Mary; Dinman, Jonathan D

    2015-01-01

    Prior studies identified allosteric information pathways connecting functional centers in the large ribosomal subunit to the decoding center in the small subunit through the B1a and B1b/c intersubunit bridges in yeast. In prokaryotes a single SSU protein, uS13, partners with H38 (the A-site finger) and uL5 to form the B1a and B1b/c bridges respectively. In eukaryotes, the SSU component was split into 2 separate proteins during the course of evolution. One, also known as uS13, participates in B1b/c bridge with uL5 in eukaryotes. The other, called uS19 is the SSU partner in the B1a bridge with H38. Here, polyalanine mutants of uS19 involved in the uS19/uS13 and the uS19/H38 interfaces were used to elucidate the important amino acid residues involved in these intersubunit communication pathways. Two key clusters of amino acids were identified: one located at the junction between uS19 and uS13, and a second that appears to interact with the distal tip of H38. Biochemical analyses reveal that these mutations shift the ribosomal rotational equilibrium toward the unrotated state, increasing ribosomal affinity for tRNAs in the P-site and for ternary complex in the A-site, and inhibit binding of the translocase, eEF2. These defects in turn affect specific aspects of translational fidelity. These findings suggest that uS19 plays a critical role as a conduit of information exchange between the large and small ribosomal subunits directly through the B1a, and indirectly through the B1b/c bridges. PMID:26824029

  4. Differential expression of ribosomal proteins in myelodysplastic syndromes.

    Science.gov (United States)

    Rinker, Elizabeth B; Dueber, Julie C; Qualtieri, Julianne; Tedesco, Jason; Erdogan, Begum; Bosompem, Amma; Kim, Annette S

    2016-02-01

    Aberrations of ribosomal biogenesis have been implicated in several congenital bone marrow failure syndromes, such as Diamond-Blackfan anaemia, Shwachman-Diamond syndrome and Dyskeratosis Congenita. Recent studies have identified haploinsufficiency of RPS14 in the acquired bone marrow disease isolated 5q minus syndrome, a subtype of myelodysplastic syndromes (MDS). However, the expression of various proteins comprising the ribosomal subunits and other proteins enzymatically involved in the synthesis of the ribosome has not been explored in non-5q minus MDS. Furthermore, differences in the effects of these expression alterations among myeloid, erythroid and megakaryocyte lineages have not been well elucidated. We examined the expression of several proteins related to ribosomal biogenesis in bone marrow biopsy specimens from patients with MDS (5q minus patients excluded) and controls with no known myeloid disease. Specifically, we found that there is overexpression of RPS24, DKC1 and SBDS in MDS. This overexpression is in contrast to the haploinsufficiency identified in the congenital bone marrow failure syndromes and in acquired 5q minus MDS. Potential mechanisms for these differences and aetiology for these findings in MDS are discussed.

  5. The DEAD box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit.

    Science.gov (United States)

    De Silva, Dasmanthie; Fontanesi, Flavia; Barrientos, Antoni

    2013-11-01

    Proteins in a cell are universally synthesized by ribosomes. Mitochondria contain their own ribosomes, which specialize in the synthesis of a handful of proteins required for oxidative phosphorylation. The pathway of mitoribosomal biogenesis and factors involved are poorly characterized. An example is the DEAD box proteins, widely known to participate in the biogenesis of bacterial and cytoplasmic eukaryotic ribosomes as either RNA helicases or RNA chaperones, whose mitochondrial counterparts remain completely unknown. Here, we have identified the Saccharomyces cerevisiae mitochondrial DEAD box protein Mrh4 as essential for large mitoribosome subunit biogenesis. Mrh4 interacts with the 21S rRNA, mitoribosome subassemblies, and fully assembled mitoribosomes. In the absence of Mrh4, the 21S rRNA is matured and forms part of a large on-pathway assembly intermediate missing proteins Mrpl16 and Mrpl39. We conclude that Mrh4 plays an essential role during the late stages of mitoribosome assembly by promoting remodeling of the 21S rRNA-protein interactions.

  6. Folding and escape of nascent proteins at ribosomal exit tunnel

    OpenAIRE

    Thuy, Bui Phuong; Hoang, Trinh Xuan

    2016-01-01

    We investigate the interplay between post-translational folding and escape of two small single-domain proteins at the ribosomal exit tunnel by using Langevin dynamics with coarse-grained models. It is shown that at temperatures lower or near the temperature of the fastest folding, folding proceeds concomitantly with the escape process, resulting in vectorial folding and enhancement of foldability of nascent proteins. The concomitance between the two processes, however, deteriorates as tempera...

  7. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome.

    Science.gov (United States)

    Arenz, Stefan; Juette, Manuel F; Graf, Michael; Nguyen, Fabian; Huter, Paul; Polikanov, Yury S; Blanchard, Scott C; Wilson, Daniel N

    2016-07-01

    The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis. PMID:27330110

  8. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  9. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus

    Science.gov (United States)

    Nikonova, E. Yu.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Shklyaeva, A. A.; Garber, M. B.; Nikonov, S. V.; Nevskaya, N. A.

    2011-07-01

    The crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus was solved by the molecular-replacement method and refined to R cryst = 19.4% and R free = 25.1% at 2.1 Å protein consists of two domains linked together by a flexible hinge region. In the structure under consideration, the domains are in close proximity and adopt a closed conformation. Earlier, this conformation has been found in the structure of protein L1 from the bacterium Thermus thermophilus, whereas the structures of archaeal L1 proteins and the structures of all L1 proteins in the RNA-bound form have an open conformation. The fact that a closed conformation was found in the structures of two L1 proteins which crystallize in different space groups and belong to different bacteria suggests that this conformation is a characteristic feature of L1 bacterial proteins in the free form.

  10. Can we estimate bacterial growth rates from ribosomal RNA content?

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, P.F.

    1995-12-31

    Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.

  11. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yingang, E-mail: fengyg@qibebt.ac.cn [Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 (China); Song, Xiaxia [Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lin, Jinzhong [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xuan, Jinsong [Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cui, Qiu [Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 (China); Wang, Jinfeng [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  12. Evolution of Drosophila ribosomal protein gene core promoters

    OpenAIRE

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2008-01-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, a...

  13. Preferential translation of chloroplast ribosomal proteins in Chlamydomonas reinhardtti

    International Nuclear Information System (INIS)

    The nuclear cr-1 mutant of C. reinhardtii is deficient in the 30S subunit of the chloroplast (cp) ribosome and in cp protein synthesis. The cp spectinomycin resistant mutant, spr-u-1-27-3, has a normal level of 70S ribosomes but only a low rate of cp protein synthesis with spectinomycin present. In both mutants there is little accumulation of the large subunit of ribulose 1,5-bisphosphate carboxylase (Rubisco LSU), but near wild-type levels of cp synthesized r-proteins. In cells pulse-labelled with 35SO4 and immunoprecipitated with specific antisera, the ratio of the rate of synthesis of cp r-proteins to that of Rubisco LSU is 7 times greater in both mutants than in wild-type. No difference in the rate of turnover between r-proteins and Rubisco LSU in mutant and wild-type cells was observed during a one hour chase. The mRNA levels for r-protein L1 and Rubisco LSU actually increase slightly in the mutants. These data suggest that C. reinhardtii has a translation mechanism for preferential synthesis of cp r-proteins that operates under conditions of reduced total cp protein synthesis

  14. Eukaryote-specific extensions in ribosomal proteins of the small subunit: Structure and function

    OpenAIRE

    Ghosh, Arnab; Komar, Anton A.

    2015-01-01

    High-resolution structures of yeast ribosomes have improved our understanding of the architecture and organization of eukaryotic rRNA and proteins, as well as eukaryote-specific extensions present in some conserved ribosomal proteins. Despite this progress, assignment of specific functions to individual proteins and/or eukaryote-specific protein extensions remains challenging. It has been suggested that eukaryote-specific extensions of conserved proteins from the small ribosomal subunit may f...

  15. Classification of genus Pseudomonas by MALDI-TOF MS based on ribosomal protein coding in S10-spc-alpha operon at strain level.

    Science.gov (United States)

    Hotta, Yudai; Teramoto, Kanae; Sato, Hiroaki; Yoshikawa, Hiromichi; Hosoda, Akifumi; Tamura, Hiroto

    2010-12-01

    We have proposed a rapid phylogenetic classification at the strain level by MALDI-TOF MS using ribosomal protein matching profiling. In this study, the S10-spc-alpha operon, encoding half of the ribosomal subunit proteins and highly conserved in eubacterial genomes, was selected for construction of the ribosomal protein database as biomarkers for bacterial identification by MALDI-TOF MS analysis to establish a more reliable phylogenetic classification. Our method revealed that the 14 reliable and reproducible ribosomal subunit proteins with less than m/z 15,000, except for L14, coded in the S10-spc-alpha operon were significantly useful biomarkers for bacterial classification at species and strain levels by MALDI-TOF MS analysis of genus Pseudomonas strains. The obtained phylogenetic tree was consisted with that based on genetic sequence (gyrB). Since S10-spc-alpha operons of genus Pseudomonas strains were sequenced using specific primers designed based on nucleotide sequences of genome-sequenced strains, the ribosomal subunit proteins encoded in S10-spc-alpha operon were suitable biomarkers for construction and correction of the database. MALDI-TOF MS analysis using these 14 selected ribosomal proteins is a rapid, efficient, and versatile bacterial identification method with the validation procedure for the obtained results.

  16. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  17. Bacterial ice crystal controlling proteins.

    Science.gov (United States)

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  18. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome.

    Directory of Open Access Journals (Sweden)

    Surojit Mondal

    Full Text Available BACKGROUND: The ribosome, which acts as a platform for mRNA encoded polypeptide synthesis, is also capable of assisting in folding of polypeptide chains. The peptidyl transferase center (PTC that catalyzes peptide bond formation resides in the domain V of the 23S rRNA of the bacterial ribosome. Proper positioning of the 3' -CCA ends of the A- and P-site tRNAs via specific interactions with the nucleotides of the PTC are crucial for peptidyl transferase activity. This RNA domain is also the center for ribosomal chaperoning activity. The unfolded polypeptide chains interact with the specific nucleotides of the PTC and are released in a folding competent form. In vitro transcribed RNA corresponding to this domain (bDV RNA also displays chaperoning activity. RESULTS: The present study explores the effects of tRNAs, antibiotics that are A- and P-site PTC substrate analogs (puromycin and blasticidin and macrolide antibiotics (erythromycin and josamycin on the chaperoning ability of the E. coli ribosome and bDV RNA. Our studies using mRNA programmed ribosomes show that a tRNA positioned at the P-site effectively inhibits the ribosome's chaperoning function. We also show that the antibiotic blasticidin (that mimics the interaction between 3'-CCA end of P/P-site tRNA with the PTC is more effective in inhibiting ribosome and bDV RNA chaperoning ability than either puromycin or the macrolide antibiotics. Mutational studies of the bDV RNA could identify the nucleotides U2585 and G2252 (both of which interact with P-site tRNA to be important for its chaperoning ability. CONCLUSION: Both protein synthesis and their proper folding are crucial for maintenance of a functional cellular proteome. The PTC of the ribosome is attributed with both these abilities. The silencing of the chaperoning ability of the ribosome in the presence of P-site bound tRNA might be a way to segregate these two important functions.

  19. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  20. Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins.

    Science.gov (United States)

    Culver, G M; Noller, H F

    1999-06-01

    Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated

  1. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling

    DEFF Research Database (Denmark)

    Kristensen, Janni; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk;

    2005-01-01

    We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23) follo...

  2. Ribosome-Inactivating Proteins: From Plant Defense to Tumor Attack

    Directory of Open Access Journals (Sweden)

    Maria Serena Fabbrini

    2010-11-01

    Full Text Available Ribosome-inactivating proteins (RIPs are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential.

  3. Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins

    OpenAIRE

    Guttman, Mitchell; Russell, Pamela; Ingolia, Nicholas T.; Weissman, Jonathan S.; Lander, Eric S.; Lander, Eric S.

    2013-01-01

    Large noncoding RNAs are emerging as an important component in cellular regulation. Considerable evidence indicates that these transcripts act directly as functional RNAs rather than through an encoded protein product. However, a recent study of ribosome occupancy reported that many large intergenic ncRNAs (lincRNAs) are bound by ribosomes, raising the possibility that they are translated into proteins. Here, we show that classical noncoding RNAs and 5′ UTRs show the same ribosome occupancy a...

  4. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Madhav, Sheshu M; Kirti, P B

    2016-01-01

    Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2-3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in rice

  5. Effects of electroacupuncture on the expression of p70 ribosomal protein S6 kinase and ribosomal protein S6 in the hippocampus of rats with vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Yanzhen Zhu; Xuan Wang; Xiaobao Ye; Changhua Gao; Wei Wang

    2012-01-01

    This study investigated the mechanism underlying electroacupuncture therapy for vascular dementia through electroacupuncture at the acupoints of Baihui (DU20), Dazhui (DU14), and bilateral Shenshu (BL23) in a rat model of vascular dementia produced by bilateral middle cerebral artery occlusion. Morris water maze test showed that electroacupuncture improved the learning ability of vascular dementia rats. Western blot assay revealed that the expression of p70 ribosomal protein S6 kinase and ribosomal protein S6 in vascular dementia rats was significantly increased after electroacupuncture, compared with the model group that was not treated with acupuncture. The average escape latency was also shortened after electroacupuncture, and escape strategies in the spatial probe test improved from edge and random searches, to linear and trending swim pathways. The experimental findings indicate that electroacupuncture improves learning and memory ability by up-regulating expression of p70 ribosomal protein S6 kinase and ribosomal protein S6 in the hippocampus of vascular dementia rats.

  6. Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.

    Science.gov (United States)

    Grondek, Joel F; Culver, Gloria M

    2004-12-01

    Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.

  7. Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable.

    Science.gov (United States)

    Vanet, A; Plumbridge, J A; Guérin, M F; Alix, J H

    1994-12-01

    The prmA gene, located at 72 min on the Escherichia coli chromosome, is the genetic determinant of ribosomal protein L11-methyltransferase activity. Mutations at this locus, prmA1 and prmA3, result in a severely undermethylated form of L11. No effect, other than the lack of methyl groups on L11, has been ascribed to these mutations. DNA sequence analysis of the mutant alleles prmA1 and prmA3 detected point mutations near the C-terminus of the protein and plasmids overproducing the wild-type and the two mutant proteins have been constructed. The wild-type PrmA protein could be crosslinked to its radiolabelled substrate, S-adenosyl-L-methionine (SAM), by u.v. irradiation indicating that it is the gene for the methyltransferase rather than a regulatory protein. One of the mutant proteins, PrmA3, was also weakly crosslinked to SAM. Both mutant enzymes when expressed from the overproducing plasmids were capable of catalysing the incorporation of 3H-labelled methyl groups from SAM to L11 in vitro. This confirmed the observation that the mutant proteins possess significant residual activity which could account for their lack of growth phenotype. However, a strain carrying an in vitro-constructed null mutation of the prmA gene, transferred to the E. coli chromosome by homologous recombination, was perfectly viable. PMID:7715456

  8. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition.

    Science.gov (United States)

    Gagnon, Matthieu G; Roy, Raktim N; Lomakin, Ivan B; Florin, Tanja; Mankin, Alexander S; Steitz, Thomas A

    2016-03-18

    With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71 -35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71 -35, Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibiotic-binding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics. PMID:26809677

  9. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    Science.gov (United States)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  10. Autogenous regulation of splicing of the transcript of a yeast ribosomal protein gene.

    OpenAIRE

    Dabeva, M. D.; Post-Beittenmiller, M A; Warner, J R

    1986-01-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  11. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  12. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech;

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached...

  13. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions.

    Science.gov (United States)

    Ladror, Daniel T; Frey, Brian L; Scalf, Mark; Levenstein, Mark E; Artymiuk, Jacklyn M; Smith, Lloyd M

    2014-03-14

    Ribosomes, as the center of protein translation in the cell, require careful regulation via multiple pathways. While regulation of ribosomal synthesis and function has been widely studied on the transcriptional and translational "levels," the biological roles of ribosomal post-translational modifications (PTMs) are largely not understood. Here, we explore this matter by using quantitative mass spectrometry to compare the prevalence of ribosomal methylation and acetylation for yeast in the log phase and the stationary phase of growth. We find that of the 27 modified peptides identified, two peptides experience statistically significant changes in abundance: a 1.9-fold decrease in methylation for k(Me)VSGFKDEVLETV of ribosomal protein S1B (RPS1B), and a 10-fold increase in dimethylation for r(DiMe)GGFGGR of ribosomal protein S2 (RPS2). While the biological role of RPS1B methylation has largely been unexplored, RPS2 methylation is a modification known to have a role in processing and export of ribosomal RNA. This suggests that yeast in the stationary phase increase methylation of RPS2 in order to regulate ribosomal synthesis. These results demonstrate the utility of mass spectrometry for quantifying dynamic changes in ribosomal PTMs.

  14. Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons.

    Science.gov (United States)

    Hotta, Yudai; Sato, Jun; Sato, Hiroaki; Hosoda, Akifumi; Tamura, Hiroto

    2011-05-25

    A rapid bacterial identification method by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) using ribosomal proteins coded in S10 and spc operons as biomarkers, named the S10-GERMS (the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum) method, was applied for the genus Bacillus a Gram-positive bacterium. The S10-GERMS method could successfully distinguish the difference between B. subtilis subsp. subtilis NBRC 13719(T) and B. subtilis subsp. spizizenii NBRC 101239(T) because of the mass difference of 2 ribosomal subunit proteins, despite the difference of only 2 bases in the 16S rRNA gene between them. The 8 selected reliable and reproducible ribosomal subunit proteins without disturbance of S/N level on MALDI-TOF MS analysis, S10, S14, S19, L18, L22, L24, L29, and L30, coded in S10 and spc operons were significantly useful biomarkers for rapid bacterial classification at species and strain levels by the S10-GERMS method of genus Bacillus strains without purification of ribosomal proteins.

  15. Changes in ribosomal proteins in wheat embryos in the course of grain development and maturation

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2014-02-01

    Full Text Available It was found, by comparing the densitometric profiles of ribosomal proteins of wheat embryos in milk and full grain ripeness, that in the process of development and ripening of caryopses the percentual proportion of low molecular weight proteins increases at the cost of those of high molecular weight. This concerns both acidic and basic proteins. In electrophoretic separation of ribosomal proteins from embryos of fully ripe seeds by the method of two-dimensional electrophoresis the appearance of three new low molecular weight proteins - an acidic one and two basic ones - was observed. These proteins were not found in the embryos of caryopses of milk ripeness. These results indicate that with development and ripening of wheat caryopses new low molecular weight ribosomal proteins are built into the ribosomes in the embryo. These changes are both quantitative and qualitative.

  16. Phosphorylation in vivo of non-ribosomal proteins from native 40 S ribosomal particles of Krebs II mouse ascites-tumour cells

    DEFF Research Database (Denmark)

    Schuck, J; Reichert, G; Issinger, O G

    1981-01-01

    Four non-ribosomal proteins from native 40 S ribosomal subunits with mol.wts. of 110 000, 84 000, 68 000 and 26 000 were phosphorylated in vivo when ascites cells were incubated in the presence of [32P]Pi. The 110 000-, 84 000- and 26 000-dalton proteins are identical with phosphorylated products...

  17. Traffic of interacting ribosomes: effects of single-machine mechano-chemistry on protein synthesis

    CERN Document Server

    Basu, A; Basu, Aakash; Chowdhury, Debashish

    2006-01-01

    Many ribosomes simultaneously move on the same messenger RNA (mRNA), each synthesizing a protein. Earlier models of ribosome traffic represent each ribosome by a ``self-propelled particle'' and capture the dynamics by an extension of the totally asymmetric simple exclusion process. In contrast, here we develope a ``unified'' theoretical model that not only incorporates the mutual exclusions of the interacting ribosomes, but also describes explicitly the mechano-chemistry of each of these individual cyclic machines during protein synthesis. Using a combination of analytical and numerical techniques of non-equilibrium statistical mechanics, we analyze this model and illustrate its power by making experimentally testable predictions on the rate of protein synthesis and the density profile of the ribosomes on some mRNAs in E-Coli.

  18. Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli.

    Science.gov (United States)

    Byrgazov, Konstantin; Manoharadas, Salim; Kaberdina, Anna C; Vesper, Oliver; Moll, Isabella

    2012-01-01

    Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.

  19. Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA.

    Science.gov (United States)

    Robert, F; Brakier-Gingras, L

    2001-02-01

    Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3' major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.

  20. Mapping of the RNA recognition site of Escherichia coli ribosomal protein S7.

    Science.gov (United States)

    Robert, F; Gagnon, M; Sans, D; Michnick, S; Brakier-Gingras, L

    2000-11-01

    Bacterial ribosomal protein S7 initiates the folding of the 3' major domain of 16S ribosomal RNA by binding to its lower half. The X-ray structure of protein S7 from thermophilic bacteria was recently solved and found to be a modular structure, consisting of an alpha-helical domain with a beta-ribbon extension. To gain further insights into its interaction with rRNA, we cloned the S7 gene from Escherichia coli K12 into a pET expression vector and introduced 4 deletions and 12 amino acid substitutions in the protein sequence. The binding of each mutant to the lower half of the 3' major domain of 16S rRNA was assessed by filtration on nitrocellulose membranes. Deletion of the N-terminal 17 residues or deletion of the B hairpins (residues 72-89) severely decreased S7 affinity for the rRNA. Truncation of the C-terminal portion (residues 138-178), which includes part of the terminal alpha-helix, significantly affected S7 binding, whereas a shorter truncation (residues 148-178) only marginally influenced its binding. Severe effects were also observed with several strategic point mutations located throughout the protein, including Q8A and F17G in the N-terminal region, and K35Q, G54S, K113Q, and M115G in loops connecting the alpha-helices. Our results are consistent with the occurrence of several sites of contact between S7 and the 16S rRNA, in line with its role in the folding of the 3' major domain.

  1. Studies on the Coordination of Ribosomal Protein Assembly Events Involved in Processing and Stabilization of Yeast Early Large Ribosomal Subunit Precursors.

    Directory of Open Access Journals (Sweden)

    Uli Ohmayer

    Full Text Available Cellular production of ribosomes involves the formation of highly defined interactions between ribosomal proteins (r-proteins and ribosomal RNAs (rRNAs. Moreover in eukaryotic cells, efficient ribosome maturation requires the transient association of a large number of ribosome biogenesis factors (RBFs with newly forming ribosomal subunits. Here, we investigated how r-protein assembly events in the large ribosomal subunit (LSU rRNA domain II are coordinated with each other and with the association of RBFs in early LSU precursors of the yeast Saccharomyces cerevisiae. Specific effects on the pre-ribosomal association of RBFs could be observed in yeast mutants blocked in LSU rRNA domain II assembly. Moreover, formation of a cluster of r-proteins was identified as a downstream event in LSU rRNA domain II assembly. We analyzed in more detail the functional relevance of eukaryote specific bridges established by this r-protein cluster between LSU rRNA domain II and VI and discuss how they can support the stabilization and efficient processing of yeast early LSU precursor RNAs.

  2. Ribosomal targets for antibiotic drug discovery

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  3. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O;

    2000-01-01

    function of these proteins, we are the first to have precisely analyzed mutual interactions among human P-proteins, employing the two hybrid system. The human acidic ribosomal P-proteins, (P1 or P2,) were fused to the GAL4 binding domain (BD) as well as the activation domain (AD), and analyzed in yeast...... forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins.......The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light on the...

  4. Bacterial cell division proteins as antibiotic targets

    NARCIS (Netherlands)

    T. den Blaauwen; J.M. Andreu; O. Monasterio

    2014-01-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of protein

  5. In vitro synthesis of ribosomal proteins directed by Escherichia coli DNA.

    Science.gov (United States)

    Kaltschmidt, E; Kahan, L; Nomura, M

    1974-02-01

    In vitro synthesis of a number of E. coli 30S ribosomal proteins has been demonstrated in a cell-free system consisting of ribosomes, initiation factors, RNA polymerase, a fraction containing soluble enzymes and factors, and E. coli DNA. DNA-dependent synthesis of the following 30S proteins has been demonstrated: S4, S5, S7, S8, S9, S10, S13, S14, S16, S19, and S20.

  6. Structural and Functional Characterization of Ribosomal Protein Gene Introns in Sponges

    OpenAIRE

    Perina, Dragutin; Korolija, Marina; Mikoč, Andreja; Roller Milošević, Maša; Pleše, Bruna; Imešek, Mirna; Morrow, Christine; Batel, Renato; Ćetković, Helena

    2012-01-01

    Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanis...

  7. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress

    OpenAIRE

    Nicolas, Emilien; Parisot, Pascaline; Pinto-Monteiro, Celina; de Walque, Roxane; De Vleeschouwer, Christophe; Lafontaine, Denis L. J.

    2016-01-01

    The nucleolus is a potent disease biomarker and a target in cancer therapy. Ribosome biogenesis is initiated in the nucleolus where most ribosomal (r-) proteins assemble onto precursor rRNAs. Here we systematically investigate how depletion of each of the 80 human r-proteins affects nucleolar structure, pre-rRNA processing, mature rRNA accumulation and p53 steady-state level. We developed an image-processing programme for qualitative and quantitative discrimination of normal from altered nucl...

  8. Single Molecule Force Measurement for Protein Synthesis on the Ribosome

    Science.gov (United States)

    Uemura, Sotaro

    2008-04-01

    The ribosome is a molecular machine that translates the genetic code described on the messenger RNA (mRNA) into an amino acid sequence through repetitive cycles of transfer RNA (tRNA) selection, peptide bond formation and translocation. Although the detailed interactions between the translation components have been revealed by extensive structural and biochemical studies, it is not known how the precise regulation of macromolecular movements required at each stage of translation is achieved. Here we demonstrate an optical tweezer assay to measure the rupture force between a single ribosome complex and mRNA. The rupture force was compared between ribosome complexes assembled on an mRNA with and without a strong Shine-Dalgarno (SD) sequence. The removal of the SD sequence significantly reduced the rupture force, indicating that the SD interactions contribute significantly to the stability of the ribosomal complex on the mRNA in a pre-peptidyl transfer state. In contrast, the post-peptidyl transfer state weakened the rupture force as compared to the complex in a pre-peptidyl transfer state and it was the same for both the SD-containing and SD-deficient mRNAs. The results suggest that formation of the first peptide bond destabilizes the SD interaction, resulting in the weakening of the force with which the ribosome grips an mRNA. This might be an important requirement to facilitate movement of the ribosome along mRNA during the first translocation step. In this article, we discuss about the above new results including the introduction of the ribosome translation mechanism and the optical tweezer method.

  9. Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein.

    Science.gov (United States)

    Pogue-Geile, K; Geiser, J R; Shu, M; Miller, C; Wool, I G; Meisler, A I; Pipas, J M

    1991-08-01

    We have isolated a cDNA clone encoding the human S3 ribosomal protein from a normal human colon cDNA library. The clone was identified as one of many that detected genes whose level of expression was increased in adenocarcinoma of the colon relative to normal colonic mucosa. Increased levels of the S3 transcript were present in the tumors of all eight patients examined. Moreover, the S3 mRNA was also more abundant in 7 of 10 adenomatous polyps, the presumed precursor of carcinoma. Additional studies demonstrated that increased levels of mRNAs encoding several other ribosomal proteins, including S6, S8, S12, L5, and P0, were present in colorectal tumors and polyps. These results suggest that there is increased synthesis of ribosomes in colorectal tumors and that this increase is an early event in colon neoplasia.

  10. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose.

    Science.gov (United States)

    Rozier, C; Mache, R

    1984-10-11

    Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20 degrees C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.

  11. Modulation of decoding fidelity by ribosomal proteins S4 and S5.

    Science.gov (United States)

    Agarwal, Deepali; Kamath, Divya; Gregory, Steven T; O'Connor, Michael

    2015-03-01

    Ribosomal proteins S4 and S5 participate in the decoding and assembly processes on the ribosome and the interaction with specific antibiotic inhibitors of translation. Many of the characterized mutations affecting these proteins decrease the accuracy of translation, leading to a ribosomal-ambiguity phenotype. Structural analyses of ribosomal complexes indicate that the tRNA selection pathway involves a transition between the closed and open conformations of the 30S ribosomal subunit and requires disruption of the interface between the S4 and S5 proteins. In agreement with this observation, several of the mutations that promote miscoding alter residues located at the S4-S5 interface. Here, the Escherichia coli rpsD and rpsE genes encoding the S4 and S5 proteins were targeted for mutagenesis and screened for accuracy-altering mutations. While a majority of the 38 mutant proteins recovered decrease the accuracy of translation, error-restrictive mutations were also recovered; only a minority of the mutant proteins affected rRNA processing, ribosome assembly, or interactions with antibiotics. Several of the mutations affect residues at the S4-S5 interface. These include five nonsense mutations that generate C-terminal truncations of S4. These truncations are predicted to destabilize the S4-S5 interface and, consistent with the domain closure model, all have ribosomal-ambiguity phenotypes. A substantial number of the mutations alter distant locations and conceivably affect tRNA selection through indirect effects on the S4-S5 interface or by altering interactions with adjacent ribosomal proteins and 16S rRNA.

  12. The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA.

    Science.gov (United States)

    Ganapathi, Karthik A; Austin, Karyn M; Lee, Chung-Sheng; Dias, Anusha; Malsch, Maggie M; Reed, Robin; Shimamura, Akiko

    2007-09-01

    Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic dysfunction, and leukemia predisposition. Mutations in the SBDS gene are identified in most patients with SDS. SBDS encodes a highly conserved protein of unknown function. Data from SBDS orthologs suggest that SBDS may play a role in ribosome biogenesis or RNA processing. Human SBDS is enriched in the nucleolus, the major cellular site of ribosome biogenesis. Here we report that SBDS nucleolar localization is dependent on active rRNA transcription. Cells from patients with SDS or Diamond-Blackfan anemia are hypersensitive to low doses of actinomycin D, an inhibitor of rRNA transcription. The addition of wild-type SBDS complements the actinomycin D hypersensitivity of SDS patient cells. SBDS migrates together with the 60S large ribosomal subunit in sucrose gradients and coprecipitates with 28S ribosomal RNA (rRNA). Loss of SBDS is not associated with a discrete block in rRNA maturation or with decreased levels of the 60S ribosomal subunit. SBDS forms a protein complex with nucleophosmin, a multifunctional protein implicated in ribosome biogenesis and leukemogenesis. Our studies support the addition of SDS to the growing list of human bone marrow failure syndromes involving the ribosome.

  13. The protein composition of reconstituted 30S ribosomal subunits: the effects of single protein omission.

    Science.gov (United States)

    Buck, M A; Olah, T V; Perrault, A R; Cooperman, B S

    1991-06-01

    Using reverse phase HPLC, we have been able to quantify the protein compositions of reconstituted 30S ribosomal subunits, formed either with the full complement of 30S proteins in the reconstitution mix or with a single protein omitted. We denote particles formed in the latter case as SPORE (single protein omission reconstitution) particles. An important goal in 30S reconstitution studies is the formation of reconstituted subunits having uniform protein composition, preferably corresponding to one copy of each protein per reconstituted particle. Here we describe procedures involving variation of the protein:rRNA ratio that approach this goal. In SPORE particles the omission of one protein often results in the partial loss in uptake of other proteins. We also describe procedures to increase the uptake of such proteins into SPORE particles, thus enhancing the utility of the SPORE approach in defining the role of specific proteins in 30S structure and function. The losses of proteins other than the omitted protein provide a measure of protein:protein interaction within the 30S subunit. Most of these losses are predictable on the basis of other such measures. However, we do find evidence for several long-range protein:protein interactions (S6:S3, S6:S12, S10:S16, and S6:S4) that have not been described previously.

  14. Acidic ribosomal proteins and histone H3 from Leishmania present a high rate of divergence

    Directory of Open Access Journals (Sweden)

    Ysabel Montoya

    2000-08-01

    Full Text Available Another additional peculiarity in Leishmania will be discussed about of the amino acid divergence rate of three structural proteins: acidic ribosomal P1 and P2b proteins, and histone H3 by using multiple sequence alignment and dendrograms. These structural proteins present a high rate of divergence regarding to their homologous protein in Trypanosoma cruzi. At this regard, L. (V. peruviana P1 and T. cruzi P1 showed 57.4% of divergence rate. Likewise, L. (V. braziliensis histone H3 and acidic ribosomal P2 protein exhibited 31.8% and 41.7% respectively of rate of divergence in comparison with their homologous in T. cruzi.

  15. Auxin-induced changes in the incorporation of /sup 3/H-amino acids into soybean ribosomal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Travis, R.L.; Key, J.L.

    1976-06-01

    Auxin-induced activation of 80S ribosomes and polyribosome formation in mature soybean (Glycine max var. Hawkeye) hypocotyl (R. L. Travis, J. M. Anderson, and J. L. Key. 1973. Plant Physiol. 52: 608-612) in the presence of a mixture of radioactive amino acids correlates with an increased specific radioactivity of at least three ribosomal proteins; the labeling of one of these increased severalfold above the control level. Results of experiments with 5-fluorouracil and cycloheximide indicated that the proteins in question were synthesized in response to auxin and became associated with pre-existing ribosomes. Ribosome dissociation experiments indicated that these proteins were associated with the 60S ribosome subunit.

  16. Regulatory elements of Caenorhabditis elegans ribosomal protein genes

    Directory of Open Access Journals (Sweden)

    Sleumer Monica C

    2012-08-01

    Full Text Available Abstract Background Ribosomal protein genes (RPGs are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from

  17. Rho-modifying bacterial protein toxins.

    Science.gov (United States)

    Aktories, Klaus

    2015-12-01

    Rho proteins are targets of numerous bacterial protein toxins, which manipulate the GTP-binding proteins by covalent modifications, including ADP ribosylation, glycosylation, adenylylation, proteolytic cleavage and deamidation. Bacterial toxins are important virulence factors but are also potent and efficient pharmacological tools to study the physiological functions of their eukaryotic targets. Recent studies indicate that amazing variations exist in the molecular mechanisms by which toxins attack Rho proteins, which are discussed here.

  18. Recent advances in bacterial heme protein biochemistry

    OpenAIRE

    Mayfield, Jeffery A.; Dehner, Carolyn A.; Dubois, Jennifer L.

    2011-01-01

    Recent progress in genetics, fed by the burst in genome sequence data, has led to the identification of a host of novel bacterial heme proteins that are now being characterized in structural and mechanistic terms. The following short review highlights very recent work with bacterial heme proteins involved in the uptake, biosynthesis, degradation, and use of heme in respiration and sensing.

  19. Abiotic Stress Resistance, a Novel Moonlighting Function of Ribosomal Protein RPL44 in the Halophilic Fungus Aspergillus glaucus

    OpenAIRE

    LIU, XIAO-DAN; Xie, Lixia; Wei, Yi; Zhou, Xiaoyang; Jia, Baolei; Liu, Jinliang; Zhang, Shihong

    2014-01-01

    Ribosomal proteins are highly conserved components of basal cellular organelles, primarily involved in the translation of mRNA leading to protein synthesis. However, certain ribosomal proteins moonlight in the development and differentiation of organisms. In this study, the ribosomal protein L44 (RPL44), associated with salt resistance, was screened from the halophilic fungus Aspergillus glaucus (AgRPL44), and its activity was investigated in Saccharomyces cerevisiae and Nicotiana tabacum. Se...

  20. Affinity chromatography and capillary electrophoresis for analysis of the yeast ribosomal proteins

    Directory of Open Access Journals (Sweden)

    Miriam S. Goyder

    2012-04-01

    Full Text Available We present a top down separation platform for yeast ribosomalproteins using affinity chromatography and capillary electrophoresiswhich is designed to allow deposition of proteins ontoa substrate. FLAG tagged ribosomes were affinity purified, andrRNA acid precipitation was performed on the ribosomes followedby capillary electrophoresis to separate the ribosomalproteins. Over 26 peaks were detected with excellent reproducibility(<0.5% RSD migration time. This is the first reportedseparation of eukaryotic ribosomal proteins using capillaryelectrophoresis. The two stages in this workflow, affinity chromatographyand capillary electrophoresis, share the advantagesthat they are fast, flexible and have small sample requirementsin comparison to more commonly used techniques. This methodis a remarkably quick route from cell to separation that hasthe potential to be coupled to high throughput readout platformsfor studies of the ribosomal proteome. [BMB reports2012; 45(4: 233-238

  1. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    Full Text Available Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.

  2. SRY interacts with ribosomal proteins S7 and L13a in nuclear speckles.

    Science.gov (United States)

    Sato, Youichi; Yano, Shojiro; Ewis, Ashraf A; Nakahori, Yutaka

    2011-05-01

    The SRY (sex-determining region on the Y chromosome) is essential for male development; however, the molecular mechanism by which the SRY induces testis development is still unclear. To elucidate the mechanism of testis development, we identified SRY-interacting proteins using a yeast two-hybrid system. We found two ribosomal proteins, RPS7 (ribosomal protein S7) and RPL13a (ribosomal protein L13a) that interact with the HMG (high-mobility group) box domain of SRY. Furthermore, we confirmed the intracellular distributions of RPS7, RPL13a and SRY and found that the three proteins were co-expressed in COS1 cells. SRY, RPS7 and RPL13a were co-localized in nuclear speckles. These findings suggest that SRY plays an important role in activities associated with nuclear speckles via an unknown mechanism.

  3. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA.

    Science.gov (United States)

    Henihan, Grace; Schulze, Holger; Corrigan, Damion K; Giraud, Gerard; Terry, Jonathan G; Hardie, Alison; Campbell, Colin J; Walton, Anthony J; Crain, Jason; Pethig, Ronald; Templeton, Kate E; Mount, Andrew R; Bachmann, Till T

    2016-07-15

    Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification. Using fluorescent microarray methods with rRNA targets from a range of pathogens, an optimal probe was selected from a pool of probe candidates identified in silico. The specificity of probes was investigated on DNA microarray using fluorescently labeled 16S rRNA target. The probe yielding highest specificity performance was evaluated in terms of sensitivity and a LOD of 20 pM was achieved on fluorescent glass microarray. This probe was transferred to an EIS end point format and specificity which correlated to microarray data was demonstrated. Excellent sensitivity was facilitated by the use of uncharged PNA probes and large 16S rRNA target and investigations resulted in an LOD of 50 pM. An alternative kinetic EIS assay format was demonstrated with which rRNA could be detected in a species specific manner within 10-40min at room temperature without wash steps. PMID:27016627

  4. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA.

    Science.gov (United States)

    Henihan, Grace; Schulze, Holger; Corrigan, Damion K; Giraud, Gerard; Terry, Jonathan G; Hardie, Alison; Campbell, Colin J; Walton, Anthony J; Crain, Jason; Pethig, Ronald; Templeton, Kate E; Mount, Andrew R; Bachmann, Till T

    2016-07-15

    Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification. Using fluorescent microarray methods with rRNA targets from a range of pathogens, an optimal probe was selected from a pool of probe candidates identified in silico. The specificity of probes was investigated on DNA microarray using fluorescently labeled 16S rRNA target. The probe yielding highest specificity performance was evaluated in terms of sensitivity and a LOD of 20 pM was achieved on fluorescent glass microarray. This probe was transferred to an EIS end point format and specificity which correlated to microarray data was demonstrated. Excellent sensitivity was facilitated by the use of uncharged PNA probes and large 16S rRNA target and investigations resulted in an LOD of 50 pM. An alternative kinetic EIS assay format was demonstrated with which rRNA could be detected in a species specific manner within 10-40min at room temperature without wash steps.

  5. Covalent modifications of ribosomal proteins in growing and aggregation-competent dictyostelium discoideum: phosphorylation and methylation.

    Science.gov (United States)

    Ramagopal, S

    1991-04-01

    Phosphorylated and methylated ribosomal proteins were identified in vegetatively growing amoebae and in the starvation-induced, aggregation-competent cells of Dictyostelium discoideum. Of the 15 developmentally regulated cell-specific ribosomal proteins reported earlier, protein A and the acidic proteins A1, A2, and A3 were identified as phosphoproteins, and S5, S6, S10, and D were identified as methylated proteins. Three other ribosomal proteins were phosphorylated and 19 others methylated. S19, L13, A1, A2, and A3 were the predominant phosphoproteins in growing amoebae, whereas S20 and A were the predominant ones in the aggregation-competent cells. Among the methylated proteins, eight (S6, S10, S13, S30, D, L1, L2, and L31) were modified only during growth phase, six (S5, S7, S8, S24, S31, and L36) were altered only during aggregation-competent phase, and nine (S9, S27, S28, S29, S34, L7, L35, L41, and L42) were modified under both phases. Five proteins (S6, S24, L7, L41, and L42) were heavily methylated and of these, the large subunit proteins were present in both growing amoebae and aggregation-competent cells. These findings demonstrate that covalent modification of specific ribosomal proteins is regulated during cell differentiation in D. discoideum.

  6. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  7. Crystal structure of the eukaryotic ribosome.

    Science.gov (United States)

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  8. A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth

    DEFF Research Database (Denmark)

    Wanzel, Michael; Russ, Annika C; Kleine-Kohlbrecher, Daniela;

    2008-01-01

    The Myc-associated zinc-finger protein, Miz1, is a negative regulator of cell proliferation and induces expression of the cell-cycle inhibitors p15(Ink4b) and p21(Cip1). Here we identify the ribosomal protein L23 as a negative regulator of Miz1-dependent transactivation. L23 exerts this function ...

  9. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  10. Transcriptional effects of polyamines on ribosomal proteins and on polyamine-synthesizing enzymes in Escherichia coli.

    Science.gov (United States)

    Huang, S C; Panagiotidis, C A; Canellakis, E S

    1990-05-01

    We find that the transcription of various ribosomal proteins can be differentially affected by polyamines and by changes in growth rates. Using strain MG1655 of Escherichia coli K-12 (F-, lambda-), we have determined the effects of polyamines and changes in growth rate on the transcription of several ribosomal genes and the polyamine-synthesizing enzymes ornithine decarboxylase (L-ornithine carboxy-lyase; EC 4.1.1.17) and arginine decarboxylase (L-arginine carboxylyase; EC 4.1.1.19). Ribosomal proteins S20 and L34 can be differentiated from the other ribosomal proteins studied; the transcription of S20 and L34 is especially sensitive to polyamines and less sensitive to changes in growth rates. In contrast, the transcription of S10, S15, S19, L2, L4, L20, L22, and L23 is insensitive to polyamines although it is particularly sensitive to changes in growth rates. Like S20 and L34, the transcription of ornithine decarboxylase and arginine decarboxylase is especially sensitive to polyamines. Polyamines specifically enhance the transcription of ribosomal proteins S20 and L34, and decrease that of ornithine decarboxylase and arginine decarboxylase. It is evident that polyamines can exert both positive and negative regulation of gene expression in E. coli that can be differentiated from the effects caused by changes in growth rates.

  11. Bacterial Ice Crystal Controlling Proteins

    OpenAIRE

    Lorv, Janet S. H.; Rose, David R; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. R...

  12. Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses.

    Science.gov (United States)

    Kang, Chang Ho; Lee, Young Mee; Park, Joung Hun; Nawkar, Ganesh M; Oh, Hun Taek; Kim, Min Gab; Lee, Soo In; Kim, Woe Yeon; Yun, Dae-Jin; Lee, Sang Yeol

    2016-07-01

    The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery. PMID:27004478

  13. Differential Effects of Replacing Escherichia coli Ribosomal Protein L27 with Its Homologue from Aquifex aeolicus

    OpenAIRE

    Maguire, Bruce A.; Manuilov, Anton V; Zimmermann, Robert A.

    2001-01-01

    The rpmA gene, which encodes 50S ribosomal subunit protein L27, was cloned from the extreme thermophile Aquifex aeolicus, and the protein was overexpressed and purified. Comparison of the A. aeolicus protein with its homologue from Escherichia coli by circular dichroism analysis and proton nuclear magnetic resonance spectroscopy showed that it readily adopts some structure in solution that is very stable, whereas the E. coli protein is unstructured under the same conditions. A mutant of E. co...

  14. Study of mammalian ribosomal protein reactivity in situ. II. - Effect of glutaraldehyde and salts.

    Science.gov (United States)

    Reboud, A M; Buisson, M; Madjar, J J; Reboud, J P

    1975-01-01

    Results concerning ribosomal protein sensitivity to glutaraldehyde were compared to protein depletion studies using LiCl centrifugation. The relative degree of reactivity of the different proteins was determined by two-dimensional acrylamide gel electrophoresis, and the activity of the reacted subunits was measured. The results obtained mostly confirmed the studies of methoxynitrotropone reactivity reported earlier. For example, L16, L25, L29, L30, L31, S18, S20 appeared to be definitely exposed to both NH2-reagents and LiCl. Some interesting points emerged from this study regarding protein topography in both subunits: (1) with few exceptions, almost all ribosomal proteins were accessible to the surrounding medium; (2) the sensitivity of the 40S proteins to the three reagents used was lower than was that of the 60S proteins; (3) the reactivities of the subunit components changed when subunits were associated: L8 was more reactive with glutaraldehyde in 60S subunits than in 80S ribosomes. In contrast, S14, S15 and S19 were more exposed in ribosomes than in the 40S subunits.

  15. Expression of Muscle-Specific Ribosomal Protein L3-Like Impairs Myotube Growth.

    Science.gov (United States)

    Chaillou, Thomas; Zhang, Xiping; McCarthy, John J

    2016-09-01

    The ribosome has historically been considered to have no cell-specific function but rather serve in a "housekeeping" capacity. This view is being challenged by evidence showing that heterogeneity in the protein composition of the ribosome can lead to the functional specialization of the ribosome. Expression profiling of different tissues revealed that ribosomal protein large 3-like (Rpl3l) is exclusively expressed in striated muscle. In response to a hypertrophic stimulus, Rpl3l expression in skeletal muscle was significantly decreased by 82% whereas expression of the ubiquitous paralog Rpl3 was significantly increased by ∼fivefold. Based on these findings, we developed the hypothesis that Rpl3l functions as a negative regulator of muscle growth. To test this hypothesis, we used the Tet-On system to express Rpl3l in myoblasts during myotube formation. In support of our hypothesis, RPL3L expression significantly impaired myotube growth as assessed by myotube diameter (-23%) and protein content (-14%). Further analysis showed that the basis of this impairment was caused by a significant decrease in myoblast fusion as the fusion index was significantly lower (-17%) with RPL3L expression. These findings are the first evidence to support the novel concept of ribosome specialization in skeletal muscle and its role in the regulation of skeletal muscle growth. J. Cell. Physiol. 231: 1894-1902, 2016. © 2015 Wiley Periodicals, Inc. PMID:26684695

  16. Ribosomal RNA and protein transcripts persist in the cysts of Entamoeba invadens.

    Science.gov (United States)

    Ojha, Sandeep; Ahamad, Jamaluddin; Bhattacharya, Alok; Bhattacharya, Sudha

    2014-06-01

    In most organisms rDNA transcription ceases under conditions of growth stress. However, we have earlier shown that pre-rRNA accumulates during encystation in Entamoeba invadens. We labeled newly-synthesized rRNA during encystation, with [methyl-(3)H] methionine in the presence of chitinase to enable uptake of isotope. Incorporation rate reduced after 24h, and then increased to reach levels comparable with normal cells. The label was rapidly chased to the ribosomal pellet in dividing cells, while at late stages of encystation the ratio of counts going to the pellet dropped 3-fold. The transcript levels of selected ribosomal protein genes also went down initially but went up again at later stages of encystation. This suggested that rRNA and ribosomal protein transcription may be coordinately regulated. Our data shows that encysting E. invadens cells accumulate transcripts of both the RNA and protein components of the ribosome, which may ensure rapid synthesis of new ribosomes when growth resumes.

  17. Mass spectrometric analysis of 40 S ribosomal proteins from Rat-1 fibroblasts.

    Science.gov (United States)

    Louie, D F; Resing, K A; Lewis, T S; Ahn, N G

    1996-11-01

    Although sequences of most mammalian ribosomal proteins are available, little is known about the post-translational processing of ribosomal proteins. To examine their post-translational modifications, 40 S subunit proteins purified from Rat-1 fibroblasts and their peptides were analyzed by liquid chromatography coupled with electrospray mass spectrometry. Of 41 proteins observed, 36 corresponded to the 32 rat 40 S ribosomal proteins with known sequences (S3, S5, S7, and S24 presented in two forms). The observed masses of S4, S6-S8, S13, S15a, S16, S17, S19, S27a, S29, and S30 matched those predicted. Sa, S3a, S5, S11, S15, S18, S20, S21, S24, S26-S28, and an S7 variant showed changes in mass that were consistent with N-terminal demethionylation and/or acetylation (S5 and S27 also appeared to be internally formylated and acetylated, respectively). S23 appeared to be internally hydroxylated or methylated. S2, S3, S9, S10, S12, S14, and S25 showed changes in mass inconsistent with known covalent modifications (+220, -75, +86, +56, -100, -117, and -103 Da, respectively), possibly representing novel post-translational modifications or allelic sequence variation. Five unidentified proteins (12,084, 13,706, 13,741, 13,884, and 34, 987 Da) were observed; for one, a sequence tag (PPGPPP), absent in any known ribosomal proteins, was determined, suggesting that it is a previously undescribed ribosome-associated protein. This study establishes a powerful method to rapidly analyze protein components of large biological complexes and their covalent modifications.

  18. MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons rapidly classified the Sphingomonadaceae as alkylphenol polyethoxylate-degrading bacteria from the environment.

    Science.gov (United States)

    Hotta, Yudai; Sato, Hiroaki; Hosoda, Akifumi; Tamura, Hiroto

    2012-05-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) using ribosomal subunit proteins coded in the S10-spc-alpha operon as biomarkers was applied for the classification of the Sphingomonadaceae from the environment. To construct a ribosomal protein database, S10-spc-alpha operon of type strains of the Sphingomonadaceae and their related alkylphenol polyethoxylate (APEO(n) )-degrading bacteria were sequenced using specific primers designed based on nucleotide sequences of genome-sequenced strains. The observed MALDI mass spectra of intact cells were compared with the theoretical mass of the constructed ribosomal protein database. The nine selected biomarkers coded in the S10-spc-alpha operon, L18, L22, L24, L29, L30, S08, S14, S17, and S19, could successfully distinguish the Sphingopyxis terrae NBRC 15098(T) and APEO(n) -degrading bacteria strain BSN20, despite only one base difference in the 16S rRNA gene sequence. This method, named the S10-GERMS (S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum) method, is a significantly useful tool for bacterial discrimination of the Sphingomonadaceae at the strain level and can detect and monitor the main APEO(n) -degrading bacteria in the environment.

  19. Mitochondrial ribosomal proteins and human mitochondrial diseases%线粒体核糖体蛋白与人类线粒体疾病

    Institute of Scientific and Technical Information of China (English)

    赵一婷

    2013-01-01

    Mammalian mitochondrial ribosomes (mitoribosome) have experienced a series of structure recombination during the long period of evolution.Mammalian mitochondrial ribosomes lack several major RNA stem structures of bacterial ribosomes but they are rich in mitochondrial ribosomal proteins (MRPs).All MRPs are synthesized in cytoplasm and imported into the mitochondrial matrix,where they assemble with the two mtDNA-encoded rRNAs.In addition to tRNA and rRNA,mitochondrial DNA also encodes 13 proteins for the inner mitochondrial membrane respiratory chain complex.The mitoribosome is responsible for the synthesis of these 13 proteins.Thus,mutations or defects of MRPs or other translation tools can cause mitochondrial diseases.%哺乳动物线粒体核糖体(mitochondrial ribosome,mitoribosome)在漫长的进化阶段经过一系列的结构重组,rRNA比例降低,新增了部分线粒体核糖体蛋白(mitochondrial ribosomal proteins,MRPs),成为蛋白含量最丰富的核糖体.所有MRPs均为核基因编码,在细胞质中合成,再转运到线粒体,与线粒体基因(mitochondrial DNA,mtDNA)编码的两种rRNA结合.mtDNA除编码tRNA和rRNA外,还编码组成线粒体呼吸链复合体的13种蛋白质.由于线粒体核糖体负责翻译这13种蛋白,MRPs和其他翻译工具的突变和缺陷可造成线粒体的相关疾病.

  20. Over-represented localized sequence motifs in ribosomal protein gene promoters of basal metazoans.

    Science.gov (United States)

    Perina, Drago; Korolija, Marina; Roller, Maša; Harcet, Matija; Jeličić, Branka; Mikoč, Andreja; Cetković, Helena

    2011-07-01

    Equimolecular presence of ribosomal proteins (RPs) in the cell is needed for ribosome assembly and is achieved by synchronized expression of ribosomal protein genes (RPGs) with promoters of similar strengths. Over-represented motifs of RPG promoter regions are identified as targets for specific transcription factors. Unlike RPs, those motifs are not conserved between mammals, drosophila, and yeast. We analyzed RPGs proximal promoter regions of three basal metazoans with sequenced genomes: sponge, cnidarian, and placozoan and found common features, such as 5'-terminal oligopyrimidine tracts and TATA-boxes. Furthermore, we identified over-represented motifs, some of which displayed the highest similarity to motifs abundant in human RPG promoters and not present in Drosophila or yeast. Our results indicate that humans over-represented motifs, as well as corresponding domains of transcription factors, were established very early in metazoan evolution. The fast evolving nature of RPGs regulatory network leads to formation of other, lineage specific, over-represented motifs. PMID:21457775

  1. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Porse, B T; Leviev, I; Mankin, A S;

    1998-01-01

    A newly identified class of highly thiostrepton-resistant mutants of the archaeon Halobacterium halobium carry a missense mutation at codon 18 within the gene encoding ribosomal protein L11. In the mutant proteins, a proline, conserved in archaea and bacteria, is converted to either serine...... the binding affinities of the mutated L11 fusion proteins for rRNA of of thiostrepton for the mutant L11-rRNA complexes at rRNA concentrations lower than those prevailing in vivo. Probing the structure of the fusion protein of wild-type L11, from E. coli, using a recently developed protein footprinting...... for the mutant L11-rRNA complexes. These results indicate that although, as shown earlier, thiostrepton binds primarily to 23 S rRNA, the drug probably inhibits peptide elongation by impeding a conformational change within protein L11 that is important for the function of the ribosomal GTPase centre...

  2. Ribosome-associated pentatricopeptide repeat proteins function as translational activators in mitochondria of trypanosomes.

    Science.gov (United States)

    Aphasizheva, Inna; Maslov, Dmitri A; Qian, Yu; Huang, Lan; Wang, Qi; Costello, Catherine E; Aphasizhev, Ruslan

    2016-03-01

    Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial-type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3' adenylation/uridylation factors. The A/U-tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U-tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U-tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U-tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome-associated PPRs may selectively activate mRNAs for translation. PMID:26713541

  3. Molecular Diagnosis of Periprosthetic Joint Infection by Quantitative RT-PCR of Bacterial 16S Ribosomal RNA

    Directory of Open Access Journals (Sweden)

    Mel S. Lee

    2013-01-01

    Full Text Available The diagnosis of periprosthetic joint infection is sometimes straightforward with purulent discharge from the fistula tract communicating to the joint prosthesis. However it is often difficult to differentiate septic from aseptic loosening of prosthesis because of the high culture-negative rates in conventional microbiologic culture. This study used quantitative reverse transcription polymerase chain reaction (RT-qPCR to amplify bacterial 16S ribosomal RNA in vitro and in 11 clinical samples. The in vitro analysis demonstrated that the RT-qPCR method was highly sensitive with the detection limit of bacterial 16S rRNA being 0.148 pg/μl. Clinical specimens were analyzed using the same protocol. The RT-qPCR was positive for bacterial detection in 8 culture-positive cases (including aerobic, anaerobic, and mycobacteria and 2 culture-negative cases. It was negative in one case that the final diagnosis was confirmed without infection. The molecular diagnosis of bacterial infection using RT-qPCR to detect bacterial 16S rRNA around a prosthesis correlated well with the clinical findings. Based on the promising clinical results, we were attempting to differentiate bacterial species or drug-resistant strains by using species-specific primers and to detect the persistence of bacteria during the interim period before the second stage reimplantation in a larger scale of clinical subjects.

  4. Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea xbuttiana

    Indian Academy of Sciences (India)

    Nandlal Choudhary; Harish C Kapoor; Madan L Lodha

    2008-03-01

    A full-length cDNA encoding ribosome-inactivating/antiviral protein (RIP/AVP) from the leaves of Bougainvillea xbuttiana was isolated. The cDNA consisted of 1364 nucleotides with an open reading frame (ORF) of 960 nucleotides encoding a 35.49 kDa protein of 319 amino acids. The deduced amino acid sequence has a putative active domain conserved in RIPs/AVPs and shows a varying phylogenetic relationship to the RIPs from other plant species. The deduced protein has been designated BBAP1 (Bougainvillea xbuttiana antiviral protein1). The ORF was cloned into an expression vector and expressed in E. coli as a fusion protein of ∼78 kDa. The cleaved and purified recombinant BBAP1 exhibited ribosome-inhibiting rRNA -glycosidase activity, and imparted a high level of resistance against the tobacco mosaic virus (TMV).

  5. Synaptic Activation of Ribosomal Protein S6 Phosphorylation Occurs Locally in Activated Dendritic Domains

    Science.gov (United States)

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2016-01-01

    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…

  6. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins

    Science.gov (United States)

    Sung, Min-Kyung; Porras-Yakushi, Tanya R; Reitsma, Justin M; Huber, Ferdinand M; Sweredoski, Michael J; Hoelz, André; Hess, Sonja; Deshaies, Raymond J

    2016-01-01

    Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via residues that are concealed in mature ribosomes. Together, these data point to an important role for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1, restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key element of the quality control machinery that sustains protein homeostasis and cellular fitness in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.19105.001 PMID:27552055

  7. Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes

    OpenAIRE

    Pusnik, Mascha; Small, Ian; Read, Laurie K.; Fabbro, Thomas; Schneider, André

    2008-01-01

    The pentatricopeptide repeat (PPR), a degenerate 35-amino-acid motif, defines a novel eukaryotic protein family. Plants have 400 to 500 distinct PPR proteins, whereas other eukaryotes generally have fewer than 5. The few PPR proteins that have been studied have roles in organellar gene expression, probably via direct interaction with RNA. Here we show that the parasitic protozoan Trypanosoma brucei encodes 28 distinct PPR proteins, an extraordinarily high number for a nonplant organism. A com...

  8. Detecting transcription of ribosomal protein pseudogenes in diverse human tissues from RNA-seq data

    Directory of Open Access Journals (Sweden)

    Tonner Peter

    2012-08-01

    Full Text Available Abstract Background Ribosomal proteins (RPs have about 2000 pseudogenes in the human genome. While anecdotal reports for RP pseudogene transcription exists, it is unclear to what extent these pseudogenes are transcribed. The RP pseudogene transcription is difficult to identify in microarrays due to potential cross-hybridization between transcripts from the parent genes and pseudogenes. Recently, transcriptome sequencing (RNA-seq provides an opportunity to ascertain the transcription of pseudogenes. A challenge for pseudogene expression discovery in RNA-seq data lies in the difficulty to uniquely identify reads mapped to pseudogene regions, which are typically also similar to the parent genes. Results Here we developed a specialized pipeline for pseudogene transcription discovery. We first construct a “composite genome” that includes the entire human genome sequence as well as mRNA sequences of real ribosomal protein genes. We then map all sequence reads to the composite genome, and only exact matches were retained. Moreover, we restrict our analysis to strictly defined mappable regions and calculate the RPKM values as measurement of pseudogene transcription levels. We report evidences for the transcription of RP pseudogenes in 16 human tissues. By analyzing the Human Body Map 2.0 study RNA-sequencing data using our pipeline, we identified that one ribosomal protein (RP pseudogene (PGOHUM-249508 is transcribed with RPKM 170 in thyroid. Moreover, three other RP pseudogenes are transcribed with RPKM > 10, a level similar to that of the normal RP genes, in white blood cell, kidney, and testes, respectively. Furthermore, an additional thirteen RP pseudogenes are of RPKM > 5, corresponding to the 20–30 percentile among all genes. Unlike ribosomal protein genes that are constitutively expressed in almost all tissues, RP pseudogenes are differentially expressed, suggesting that they may contribute to tissue-specific biological processes

  9. Trans-translation in Helicobacter pylori: essentiality of ribosome rescue and requirement of protein tagging for stress resistance and competence.

    Directory of Open Access Journals (Sweden)

    Marie Thibonnier

    Full Text Available BACKGROUND: The ubiquitous bacterial trans-translation is one of the most studied quality control mechanisms. Trans-translation requires two specific factors, a small RNA SsrA (tmRNA and a protein co-factor SmpB, to promote the release of ribosomes stalled on defective mRNAs and to add a specific tag sequence to aberrant polypeptides to direct them to degradation pathways. Helicobacter pylori is a pathogen persistently colonizing a hostile niche, the stomach of humans. PRINCIPAL FINDINGS: We investigated the role of trans-translation in this bacterium well fitted to resist stressful conditions and found that both smpB and ssrA were essential genes. Five mutant versions of ssrA were generated in H. pylori in order to investigate the function of trans-translation in this organism. Mutation of the resume codon that allows the switch of template of the ribosome required for its release was essential in vivo, however a mutant in which this codon was followed by stop codons interrupting the tag sequence was viable. Therefore one round of translation is sufficient to promote the rescue of stalled ribosomes. A mutant expressing a truncated SsrA tag was viable in H. pylori, but affected in competence and tolerance to both oxidative and antibiotic stresses. This demonstrates that control of protein degradation through trans-translation is by itself central in the management of stress conditions and of competence and supports a regulatory role of trans-translation-dependent protein tagging. In addition, the expression of smpB and ssrA was found to be induced upon acid exposure of H. pylori. CONCLUSIONS: We conclude to a central role of trans-translation in H. pylori both for ribosome rescue possibly due to more severe stalling and for protein degradation to recover from stress conditions frequently encountered in the gastric environment. Finally, the essential trans-translation machinery of H. pylori is an excellent specific target for the development of

  10. Ribosomal Protein P2 from apicomplexan parasite Toxoplasma gondii is intrinsically a molten globule.

    Science.gov (United States)

    Mishra, Pushpa; Choudhary, Sinjan; Hosur, Ramakrishna V

    2015-01-01

    Toxoplasma gondii is an apicomplexan parasite, which causes toxoplasmosis. Toxoplasma P2 (TgP2) is a ribosomal protein and exists as supramolecular assembly with other proteins in the ribosome. It is also shown that TgP2 is involved in some extra ribosomal functions. However, till date the protein has evaded structural characterization by any of the known techniques. In this background, we report here a systematic study using a variety of biophysical techniques and NMR, under different conditions of pH and temperature, and deduce that TgP2 consists of only helices and unstructured regions, is a monomer at low pH but forms multimers at higher pH, and has intrinsically a molten globule structure. The C-terminal half is flexible and the helices are concentrated in the N-terminal half of the chain. The dynamism inherent to the molten globule structure may have functional implications for its extra-ribosomal functions. which is contrast to that of human P2. PMID:25866913

  11. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation

    Science.gov (United States)

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  12. Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel.

    Science.gov (United States)

    Zhang, Xinyue; Xu, Xiaojun; Yang, Zhiyu; Burcke, Andrew J; Gates, Kent S; Chen, Shi-Jie; Gu, Li-Qun

    2015-12-23

    Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation and proceeds from the 5' to 3' end. Here we developed a ribosome-mimicking, nanopore pulling assay for dissecting the vectorial unfolding mechanism of pseudoknots. The pseudoknot unfolding pathway in the nanopore, either from the 5' to 3' end or in the reverse direction, can be controlled by a DNA leader that is attached to the pseudoknot at the 5' or 3' ends. The different nanopore conductance between DNA and RNA translocation serves as a marker for the position and structure of the unfolding RNA in the pore. With this design, we provided evidence that the pseudoknot unfolding is a two-step, multistate, metal ion-regulated process depending on the pulling direction. Most notably, unfolding in both directions is rate-limited by the unzipping of the first helix domain (first step), which is Helix-1 in the 5' → 3' direction and Helix-2 in the 3' → 5' direction, suggesting that the initial unfolding step in either pulling direction needs to overcome an energy barrier contributed by the noncanonical triplex base-pairs and coaxial stacking interactions for the tertiary structure stabilization. These findings provide new insights into RNA vectorial unfolding mechanisms, which play an important role in biological functions including frameshifting. PMID:26595106

  13. Crystal structure of the bacterial ribosomal decoding site complexed with amikacin containing the gamma-amino-alpha-hydroxybutyryl (haba) group.

    Science.gov (United States)

    Kondo, Jiro; François, Boris; Russell, Rupert J M; Murray, James B; Westhof, Eric

    2006-08-01

    Amikacin is the 4,6-linked aminoglycoside modified at position N1 of the 2-deoxystreptamine ring (ring II) by the L-haba group. In the present study, the crystal structure of a complex between oligonucleotide containing the bacterial ribosomal A site and amikacin has been solved at 2.7 A resolution. Amikacin specifically binds to the A site in practically the same way as its parent compound kanamycin. In addition, the L-haba group interacts with the upper side of the A site through two direct contacts, O2*...H-N4(C1496) and N4*-H...O6(G1497). The present crystal structure shows how the introduction of the L-haba group on ring II of aminoglycoside is an effective mutation for obtaining a higher affinity to the bacterial A site.

  14. The structure of a ribosomal protein S8/spc operon mRNA complex.

    Science.gov (United States)

    Merianos, Helen J; Wang, Jimin; Moore, Peter B

    2004-06-01

    In bacteria, translation of all the ribosomal protein cistrons in the spc operon mRNA is repressed by the binding of the product of one of them, S8, to an internal sequence at the 5' end of the L5 cistron. The way in which the first two genes of the spc operon are regulated, retroregulation, is mechanistically distinct from translational repression by S8 of the genes from L5 onward. A 2.8 A resolution crystal structure has been obtained of Escherichia coli S8 bound to this site. Despite sequence differences, the structure of this complex is almost identical to that of the S8/helix 21 complex seen in the small ribosomal subunit, consistent with the hypothesis that autogenous regulation of ribosomal protein synthesis results from conformational similarities between mRNAs and rRNAs. S8 binding must repress the translation of its own mRNA by inhibiting the formation of a ribosomal initiation complex at the start of the L5 cistron.

  15. Photoinduced cross-linkage, in situ, of Escherichia coli 30S ribosomal proteins to 16S rRNA: identification of cross-linked proteins and relationships between reactivity and ribosome structure.

    Science.gov (United States)

    Gorelic, L

    1976-08-10

    The kinetics of photoinduced cross-linkage of Escherichia coli 30S ribosomal proteins to the 16S-rRNA molecule in the intact Escherichia coli 30S ribosomal subunit was studied in this report. All of the 30S ribosomal proteins become cross-linked to the 16S rRNA before changes in the sedimentation characteristics of the 30S ribosomal subunit can be detected. The proteins exhibit different reactivities in the cross-linkage reaction. One group of proteins-S3, S7-S9, S11, S12, and S15-S19-is cross-linked to the 16S rRNA by single-hit kinetics, or by photoprocesses of nonunity but low multiplicities. A second group of proteins--S1, S2, S4-S6, S10, S13, S14, and S21--is cross-linked to the 16S rRNA by photoprocesses of a complex nature. A comparison of these data with other properties of the individual 30S ribosomal proteins related to ribosome structure indicated that most of the 30S ribosomal proteins cross-linked to the 16S rRNA by photoprocesses of low multiplicities had been classified rRNA-binding proteins by nonphotochemical methods, and most of the proteins cross-linked to the 16S rRNA by photoprocesses of large multiplicities had been classified as nonbinding proteins. There were certain exceptions to these correlations. Proteins S4 and S20, both RNA-binding proteins, become cross-linked to the 16S rRNA by photoprocessses of large multiplicities, and proteins S3, S11, S12, and S18, none of which have been classified RNA-binding proteins, exhibited low multiplicities in the cross-linkage reaction. All of these exceptions could be explained in terms of limitations inherent in the photochemical methods used in this study and in other types of methods that have been used to study RNA-protein interactions in the 30S ribosomal subunit. The data presented here also suggest that labile RNA-protein cross-links are present in the uv-irradiated 30S ribosomal subunits, and that neither peptide-bond cleavage nor photoinduced modification of the charged side-chain groups in

  16. Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription.

    Science.gov (United States)

    Layer, Justin H; Weil, P Anthony

    2013-08-01

    We have previously shown that yeast TFIID provides coactivator function on the promoters of ribosomal protein-encoding genes (RPGs) by making direct contact with the transactivator repressor activator protein 1 (Rap1). Further, our structural studies of assemblies generated with purified Rap1, TFIID, and TFIIA on RPG enhancer-promoter DNA indicate that Rap1-TFIID interaction induces dramatic conformational rearrangements of enhancer-promoter DNA and TFIID-bound TFIIA. These data indicate a previously unknown yet critical role for yeast TFIIA in the integration of activator-TFIID contacts with promoter conformation and downstream preinitiation complex formation and/or function. Here we describe the use of systematic mutagenesis to define how specific TFIIA contacts contribute to these processes. We have verified that TFIIA is required for RPG transcription in vivo and in vitro, consistent with the existence of a critical Rap1-TFIIA-TFIID interaction network. We also identified essential points of contact for TFIIA and Rap1 within the Rap1 binding domain of the Taf4 subunit of TFIID. These data suggest a mechanism for how interactions between TFIID, TFIIA, and Rap1 contribute to the high rate of transcription initiation seen on RPGs in vivo. PMID:23814059

  17. Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongbing; Franz, Carl J.; Wu, Guang; Renshaw, Hilary; Zhao, Guoyan [Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 (United States); Firth, Andrew E. [Department of Pathology, University of Cambridge, Cambridge CB2 1QP (United Kingdom); Wang, David, E-mail: davewang@borcim.wustl.edu [Departments of Molecular Microbiology and Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 (United States)

    2014-02-15

    Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated into Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha–delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses. - Highlights: • Orsay virus encodes a novel fusion protein by a ribosomal frameshifting mechanism. • Orsay capsid and fusion protein is translated from a non-canonical initiation site. • The fusion protein is likely incorporated into Orsay virions.

  18. Orsay virus utilizes ribosomal frameshifting to express a novel protein that is incorporated into virions

    International Nuclear Information System (INIS)

    Orsay virus is the first identified virus that is capable of naturally infecting Caenorhabditis elegans. Although it is most closely related to nodaviruses, Orsay virus differs from nodaviruses in its genome organization. In particular, the Orsay virus RNA2 segment encodes a putative novel protein of unknown function, termed delta, which is absent from all known nodaviruses. Here we present evidence that Orsay virus utilizes a ribosomal frameshifting strategy to express a novel fusion protein from the viral capsid (alpha) and delta ORFs. Moreover, the fusion protein was detected in purified virus fractions, demonstrating that it is most likely incorporated into Orsay virions. Furthermore, N-terminal sequencing of both the fusion protein and the capsid protein demonstrated that these proteins must be translated from a non-canonical initiation site. While the function of the alpha–delta fusion remains cryptic, these studies provide novel insights into the fundamental properties of this new clade of viruses. - Highlights: • Orsay virus encodes a novel fusion protein by a ribosomal frameshifting mechanism. • Orsay capsid and fusion protein is translated from a non-canonical initiation site. • The fusion protein is likely incorporated into Orsay virions

  19. Ice nucleation protein as a bacterial surface display protein

    OpenAIRE

    Sarhan Mohammed A.A.

    2011-01-01

    Surface display technology can be defined as that phenotype (protein or peptide) which is linked to a genotype (DNA or RNA) through an appropriate anchoring motif. A bacterial surface display system is based on expressing recombinant proteins fused to sorting signals (anchoring motifs) that direct their incorporation on the cell surface.

  20. Crystallization and preliminary X-ray structure analysis of human ribosomal protein L30e.

    Science.gov (United States)

    Kawaguchi, Akiko; Ose, Toyoyuki; Yao, Min; Tanaka, Isao

    2011-12-01

    Many functions have been reported for the eukaryotic ribosomal protein L30e. L30e makes several inter-subunit and intra-subunit interactions with protein or RNA components of the 80S ribosome. Yeast L30e has been shown to bind to its own transcript to autoregulate expression at both the transcriptional and the translational levels. Furthermore, it has been reported that mammalian L30e is a component of the selenocysteine-incorporation machinery by binding to the selenocysteine-insertion sequence on mRNA. As high-resolution crystal structures of mammalian L30e are not available, the purification, crystallization and X-ray structure analysis of human L30e are presented here.

  1. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing

    OpenAIRE

    Wolcott Benjamin M; Rhoads Daniel D; Secor Patrick R; Sun Yan; Dowd Scot E; James Garth A; Wolcott Randall D

    2008-01-01

    Abstract Background Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the bacterial populations that occur within different types of chronic wound biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger ...

  2. Primary structures of three highly acidic ribosomal proteins S6, S12 and S15 from the archaebacterium Halobacterium marismortui.

    Science.gov (United States)

    Kimura, J; Arndt, E; Kimura, M

    1987-11-16

    The amino acid sequences of three extremely acidic ribosomal proteins, S6, S12, and S15, from Halobacterium marismortui have been determined. The sequences were obtained by the sequence analysis of peptides derived by enzymatic digestion with trypsin. Stapylococcus aureus protease and chymotrypsin, as well as by cleavage with dilute HCl. The proteins, S6, S12 and S15, consist of 116, 147 and 102 amino acid residues, and have molecular masses of 12,251, 16,440 and 11,747 Da, respectively. Comparison of the amino acid sequences of these proteins with ribosomal protein sequences of other organisms revealed that halobacterial protein S12 has homology with the eukaryotic protein S16A from Saccharomyces cerevisiae, while S15 is significantly related to the Xenopus laevis S19 protein. No homology was found between these halobacterial proteins and any eubacterial ribosomal proteins.

  3. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    ., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus...... experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution...

  4. Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica.

    Science.gov (United States)

    Ahamad, Jamaluddin; Ojha, Sandeep; Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha

    2015-06-01

    Ribosome synthesis involves all three RNA polymerases which are co-ordinately regulated to produce equimolar amounts of rRNAs and ribosomal proteins (RPs). Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in E. histolytica rDNA transcription continues but pre-rRNA processing slows down and unprocessed pre-rRNA accumulates during serum starvation. To investigate the regulation of RP genes under stress we measured transcription of six selected RP genes from the small- and large-ribosomal subunits (RPS6, RPS3, RPS19, RPL5, RPL26, RPL30) representing the early-, mid-, and late-stages of ribosomal assembly. Transcripts of these genes persisted in growth-stressed cells. Expression of luciferase reporter under the control of two RP genes (RPS19 and RPL30) was studied during serum starvation and upon serum replenishment. Although luciferase transcript levels remained unchanged during starvation, luciferase activity steadily declined to 7.8% and 15% of control cells, respectively. After serum replenishment the activity increased to normal levels, suggesting post-transcriptional regulation of these genes. Mutations in the sequence -2 to -9 upstream of AUG in the RPL30 gene resulted in the phenotype expected of post-transcriptional regulation. Transcription of luciferase reporter was unaffected in this mutant, and luciferase activity did not decline during serum starvation, showing that this sequence is required to repress translation of RPL30 mRNA, and mutations in this region relieve repression. Our data show that during serum starvation E. histolytica blocks ribosome biogenesis post-transcriptionally by inhibiting pre-rRNA processing on the one hand, and the translation of RP mRNAs on the other.

  5. Influence of commonly used primer systems on automated ribosomal intergenic spacer analysis of bacterial communities in environmental samples.

    Directory of Open Access Journals (Sweden)

    Witoon Purahong

    Full Text Available Due to the high diversity of bacteria in many ecosystems, their slow generation times, specific but mostly unknown nutrient requirements and syntrophic interactions, isolation based approaches in microbial ecology mostly fail to describe microbial community structure. Thus, cultivation independent techniques, which rely on directly extracted nucleic acids from the environment, are a well-used alternative. For example, bacterial automated ribosomal intergenic spacer analysis (B-ARISA is one of the widely used methods for fingerprinting bacterial communities after PCR-based amplification of selected regions of the operon coding for rRNA genes using community DNA. However, B-ARISA alone does not provide any taxonomic information and the results may be severely biased in relation to the primer set selection. Furthermore, amplified DNA stemming from mitochondrial or chloroplast templates might strongly bias the obtained fingerprints. In this study, we determined the applicability of three different B-ARISA primer sets to the study of bacterial communities. The results from in silico analysis harnessing publicly available sequence databases showed that all three primer sets tested are specific to bacteria but only two primers sets assure high bacterial taxa coverage (1406f/23Sr and ITSF/ITSReub. Considering the study of bacteria in a plant interface, the primer set ITSF/ITSReub was found to amplify (in silico sequences of some important crop species such as Sorghum bicolor and Zea mays. Bacterial genera and plant species potentially amplified by different primer sets are given. These data were confirmed when DNA extracted from soil and plant samples were analyzed. The presented information could be useful when interpreting existing B-ARISA results and planning B-ARISA experiments, especially when plant DNA can be expected.

  6. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    Science.gov (United States)

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality.

  7. Eliminated chromatin of Ascaris contains a gene that encodes a putative ribosomal protein.

    OpenAIRE

    Etter, A; Aboutanos, M; Tobler, H; Müller, F.

    1991-01-01

    Chromatin diminution in the nematodes Parascaris equorum and Ascaris lumbricoides leads to the formation of somatic cells that contain less DNA than the germ-line cells. We present molecular evidence for the coding potential of germ-line-specific DNA. We report on a cDNA clone that codes for a putative ribosomal protein (ALEP-1, for A. lumbricoides eliminated protein 1). That the corresponding gene is located in the eliminated portion of the genome indicates a difference in germ-line and soma...

  8. Visualization of interaction between ribosome-inactivating proteins and supercoiled DNA with an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    吴晓华; 刘望夷; 欧阳振乾; 李民乾

    1997-01-01

    The interaction between ribosome-inactivating proteins (RIPs) and supercoiled DNA was observed with an atomic force microscope (AFM). It was found that RIPs can bind to both supercoiled DNA and the unwound double stranded loop region in supercoiled DNA. The RIPs hound to the supercoils can induce the conformational change of supercoiled DNA. Furthermore, the supercoiled DNA was relaxed and cleaved into nick or linear form by RIPs. It indicated that RIP seemed to be a supercoil-dependent DNA binding protein and exhibited the activity of su-percoil-dependent DNA endonuclease.

  9. The ribosome in action: Tuning of translational efficiency and protein folding.

    Science.gov (United States)

    Rodnina, Marina V

    2016-08-01

    The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell. PMID:27198711

  10. Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata.

    Science.gov (United States)

    Barbieri, Luigi; Polito, Letizia; Bolognesi, Andrea; Ciani, Marialibera; Pelosi, Emanuele; Farini, Valentina; Jha, Ajay K; Sharma, Neelam; Vivanco, Jorge M; Chambery, Angela; Parente, Augusto; Stirpe, Fiorenzo

    2006-05-01

    The basic protein fraction of tissue extracts from 40 edible plants inhibited cell-free protein synthesis and released adenine from herring sperm DNA, thus having adenine glycosylase activity. This suggested the presence of ribosome-inactivating proteins (RIPs) in the plant extracts. This indication was further strengthened by the presence of the two activities after a partial chromatographic purification of three extracts, including that from Lycopersicon esculentum (tomato), which had very low activity. From the extract of Cucurbita moschata (pumpkin), the most active one, a glycoprotein of 30,665 Da was purified which had the properties of a RIP, in that (i) it inhibited protein synthesis by a rabbit reticulocyte lysate with IC50 (concentration giving 50% inhibition) 0.035 nM (1.08 ng ml(-1)) and by HeLa, HT29 and JM cells with IC50 in the 100 nM range, (ii) deadenylated hsDNA and other polynucleotidic substrates, and (iii) depurinated yeast rRNA at a concentration of 0.1 ng ml(-1), all values being comparable to those of other RIPs. The C. moschata RIP gave a weak cross-reaction only with an antiserum against dianthin 32, but not with antisera against other RIPs, and had superoxide dismutase, antifungal and antibacterial activities.

  11. Fluorescent sensors based on bacterial fusion proteins

    Science.gov (United States)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  12. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  13. Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10

    International Nuclear Information System (INIS)

    The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm's tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribosomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813QM at 25 degree C or 30 degree C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by β- sheet feature. (author)

  14. Partial genomic organization of ribosomal protein S7 gene from malaria vector Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    RAJNIKANT DIXIT; SARITA DIXIT; UPAL ROY; YOGESH S.SHOUCHE; SURENDRA GAKHAR

    2007-01-01

    In this study, we describe the partial genomic organization of ribosomal protein S7 gene isolated from the mosquito Anopheles stephensi. Initially a 558 bp partial cDNA sequence was amplified as precursor mRNA sequence containing 223 bp long intron. 5' and 3' end sequences were recovered using end specific rapid amplification of cDNA ends (RACE) polymerase chain reaction. The full-length cDNA sequence was 914 nucleotide long with an open reading frame capable of encoding 192 amino acid long protein with calculated molecular mass of 22174 Da and a pI point of 9.94. Protein homology search revealed >75% identity to other insect's S7 ribosomal proteins. Analysis of sequence alignment revealed several highly conserved domains, one of which is related to nuclear localization signal (NLS) region of human rpS7. Interestingly, intron nucleotide sequence comparison with A. gambiae showed a lesser degree of conservation as compared to coding and untranslated regions. Like this, early studies on the genomic organization and cDNA/Expressed sequence tag analysis (EST) could help in genome annotation ofA. stephensi, and would be likely to be sequenced in the future.

  15. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress

    Science.gov (United States)

    Nicolas, Emilien; Parisot, Pascaline; Pinto-Monteiro, Celina; de Walque, Roxane; De Vleeschouwer, Christophe; Lafontaine, Denis L. J.

    2016-01-01

    The nucleolus is a potent disease biomarker and a target in cancer therapy. Ribosome biogenesis is initiated in the nucleolus where most ribosomal (r-) proteins assemble onto precursor rRNAs. Here we systematically investigate how depletion of each of the 80 human r-proteins affects nucleolar structure, pre-rRNA processing, mature rRNA accumulation and p53 steady-state level. We developed an image-processing programme for qualitative and quantitative discrimination of normal from altered nucleolar morphology. Remarkably, we find that uL5 (formerly RPL11) and uL18 (RPL5) are the strongest contributors to nucleolar integrity. Together with the 5S rRNA, they form the late-assembling central protuberance on mature 60S subunits, and act as an Hdm2 trap and p53 stabilizer. Other major contributors to p53 homeostasis are also strictly late-assembling large subunit r-proteins essential to nucleolar structure. The identification of the r-proteins that specifically contribute to maintaining nucleolar structure and p53 steady-state level provides insights into fundamental aspects of cell and cancer biology. PMID:27265389

  16. The structure of Aquifex aeolicus ribosomal protein S8 reveals a unique subdomain that contributes to an extremely tight association with 16S rRNA.

    Science.gov (United States)

    Menichelli, Elena; Edgcomb, Stephen P; Recht, Michael I; Williamson, James R

    2012-01-20

    The assembly of ribonucleoprotein complexes occurs under a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from Aquifex aeolicus (AS8) is unique in that there is a 41-residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually high affinity for the 16S ribosomal RNA, characterized by a picomolar dissociation constant that is approximately 26,000-fold tighter than the equivalent interaction from Escherichia coli. Deletion analysis demonstrated that binding to the minimal site on helix 21 occurred at the same nanomolar affinity found for other bacterial species. The additional affinity required the presence of a three-helix junction between helices 20, 21, and 22. The crystal structure of AS8 was solved, revealing the helix-loop-helix geometry of the unique AS8 insertion region, while the core of the molecule is conserved with known S8 structures. The AS8 structure was modeled onto the structure of the 30S ribosomal subunit from E. coli, suggesting the possibility that the unique subdomain provides additional backbone and side-chain contacts between the protein and an unpaired base within the three-way junction of helices 20, 21, and 22. Point mutations in the protein insertion subdomain resulted in a significantly reduced RNA binding affinity with respect to wild-type AS8. These results indicate that the AS8-specific subdomain provides additional interactions with the three-way junction that contribute to the extremely tight binding to ribosomal RNA. PMID:22079365

  17. The structure of Aquifex aeolicus ribosomal protein S8 reveals a unique subdomain that contributes to an extremely tight association with 16S rRNA.

    Science.gov (United States)

    Menichelli, Elena; Edgcomb, Stephen P; Recht, Michael I; Williamson, James R

    2012-01-20

    The assembly of ribonucleoprotein complexes occurs under a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from Aquifex aeolicus (AS8) is unique in that there is a 41-residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually high affinity for the 16S ribosomal RNA, characterized by a picomolar dissociation constant that is approximately 26,000-fold tighter than the equivalent interaction from Escherichia coli. Deletion analysis demonstrated that binding to the minimal site on helix 21 occurred at the same nanomolar affinity found for other bacterial species. The additional affinity required the presence of a three-helix junction between helices 20, 21, and 22. The crystal structure of AS8 was solved, revealing the helix-loop-helix geometry of the unique AS8 insertion region, while the core of the molecule is conserved with known S8 structures. The AS8 structure was modeled onto the structure of the 30S ribosomal subunit from E. coli, suggesting the possibility that the unique subdomain provides additional backbone and side-chain contacts between the protein and an unpaired base within the three-way junction of helices 20, 21, and 22. Point mutations in the protein insertion subdomain resulted in a significantly reduced RNA binding affinity with respect to wild-type AS8. These results indicate that the AS8-specific subdomain provides additional interactions with the three-way junction that contribute to the extremely tight binding to ribosomal RNA.

  18. Secondary structures of proteins from the 30S subunit of the Escherichia coli ribosome.

    Science.gov (United States)

    Dzionara, M; Robinson, S M; Wittmann-Liebold, B

    1977-08-01

    The secondary structures of the proteins S4, S6, S8, S9, S12, S13, S15, S16, S18, S20 and S21 from the subunit of the E. coli ribosome were predicted according to four different methods. From the resultant diagrams indicating regions of helix, turn, extended structure and random coil, average values for the respective secondary structures could be calculated for each protein. Using the known relative distances for residues in the helical, turn and sheet or allowed random conformations, estimates are made of the maximum possible lengths of the proteins in order to correlate these with results obtained from antibody binding studies to the 30S subunit as determined by electron microscopy. The influence of amino acid changes on the predicted secondary structures of proteins from a few selected mutants was studied. The altered residues tend to be structurally conservative or to induce only minimal local changes.

  19. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing.

    Science.gov (United States)

    Background: Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species that cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the different populat...

  20. Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing

    Directory of Open Access Journals (Sweden)

    Wolcott Benjamin M

    2008-03-01

    Full Text Available Abstract Background Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the bacterial populations that occur within different types of chronic wound biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger sequencing, and denaturing gradient gel electrophoresis were utilized to survey the major populations of bacteria that occur in the pathogenic biofilms of three types of chronic wound types: diabetic foot ulcers (D, venous leg ulcers (V, and pressure ulcers (P. Results There are specific major populations of bacteria that were evident in the biofilms of all chronic wound types, including Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia spp. Each of the wound types reveals marked differences in bacterial populations, such as pressure ulcers in which 62% of the populations were identified as obligate anaerobes. There were also populations of bacteria that were identified but not recognized as wound pathogens, such as Abiotrophia para-adiacens and Rhodopseudomonas spp. Results of molecular analyses were also compared to those obtained using traditional culture-based diagnostics. Only in one wound type did culture methods correctly identify the primary bacterial population indicating the need for improved diagnostic methods. Conclusion If clinicians can gain a better understanding of the wound's microbiota, it will give them a greater understanding of the wound's ecology and will allow them to better manage healing of the wound improving the prognosis of patients. This research highlights the necessity to begin evaluating, studying, and treating chronic wound pathogenic biofilms as multi-species entities in

  1. Bacterial protein toxins : tools to study mammalian molecular cell biology

    NARCIS (Netherlands)

    Wüthrich, I.W.

    2014-01-01

    Bacterial protein toxins are genetically encoded proteinaceous macromolecules that upon exposure causes perturbation of cellular metabolism in a susceptible host. A bacterial toxin can work at a distance from the site of infection, and has direct and quantifiable actions. Bacterial protein toxins ca

  2. Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8.

    Science.gov (United States)

    Jagannathan, Indu; Culver, Gloria M

    2003-07-01

    Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.

  3. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus.

    Science.gov (United States)

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner.

  4. Novel receptors for bacterial protein toxins.

    Science.gov (United States)

    Schmidt, Gudula; Papatheodorou, Panagiotis; Aktories, Klaus

    2015-02-01

    While bacterial effectors are often directly introduced into eukaryotic target cells by various types of injection machines, toxins enter the cytosol of host cells from endosomal compartments or after retrograde transport via Golgi from the ER. A first crucial step of toxin-host interaction is receptor binding. Using optimized protocols and new methods novel toxin receptors have been identified, including metalloprotease ADAM 10 for Staphylococcus aureus α-toxin, laminin receptor Lu/BCAM for Escherichia coli cytotoxic necrotizing factor CNF1, lipolysis stimulated lipoprotein receptor (LSR) for Clostridium difficile transferase CDT and low-density lipoprotein receptor-related protein (LRP) 1 for Clostridium perfringens TpeL toxin.

  5. Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield

    Directory of Open Access Journals (Sweden)

    Poyner David R

    2009-01-01

    Full Text Available Abstract Background The production of high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences that has yet to be addressed in a truly rational manner. Typically eukaryotic protein production experiments have relied on varying expression construct cassettes such as promoters and tags, or culture process parameters such as pH, temperature and aeration to enhance yields. These approaches require repeated rounds of trial-and-error optimization and cannot provide a mechanistic insight into the biology of recombinant protein production. We published an early transcriptome analysis that identified genes implicated in successful membrane protein production experiments in yeast. While there has been a subsequent explosion in such analyses in a range of production organisms, no one has yet exploited the genes identified. The aim of this study was to use the results of our previous comparative transcriptome analysis to engineer improved yeast strains and thereby gain an understanding of the mechanisms involved in high-yielding protein production hosts. Results We show that tuning BMS1 transcript levels in a doxycycline-dependent manner resulted in optimized yields of functional membrane and soluble protein targets. Online flow microcalorimetry demonstrated that there had been a substantial metabolic change to cells cultured under high-yielding conditions, and in particular that high yielding cells were more metabolically efficient. Polysome profiling showed that the key molecular event contributing to this metabolically efficient, high-yielding phenotype is a perturbation of the ratio of 60S to 40S ribosomal subunits from approximately 1:1 to 2:1, and correspondingly of 25S:18S ratios from 2:1 to 3:1. This result is consistent with the role of the gene product of BMS1 in ribosome biogenesis. Conclusion This work demonstrates the power of a rational approach to recombinant protein production by using the results of

  6. Import of frog prepropeptide GLa into microsomes requires ATP but does not involve docking protein or ribosomes.

    OpenAIRE

    Schlenstedt, G.; Zimmermann, R.

    1987-01-01

    Frog prepropeptide GLa, a precursor to a secretory protein containing 64 amino acids, was processed and imported by dog pancreas microsomes. These events did not depend on either docking protein or on the presence of ribosomes. A hybrid protein between the first 60 amino acids of prepropeptide GLa and an unrelated peptide of 49 amino acids fused to the carboxy terminus, however, behaved like a typical secretory protein precursor with regard to docking protein dependence. This suggests that in...

  7. From DNA to proteins via the ribosome: Structural insights into the workings of the translation machinery

    Directory of Open Access Journals (Sweden)

    Agirrezabala Xabier

    2010-04-01

    Full Text Available Abstract Understanding protein synthesis in bacteria and humans is important for understanding the origin of many human diseases and devising treatments for them. Over the past decade, the field of structural biology has made significant advances in the visualisation of the molecular machinery involved in protein synthesis. It is now possible to discern, at least in outline, the way that interlocking ribosomal components and factors adapt their conformations throughout this process. The determination of structures in various functional contexts, along with the application of kinetic and fluorescent resonance energy transfer approaches to the problem, has given researchers the frame of reference for what remains as the greatest challenge: the complete dynamic portrait of protein synthesis in the cell.

  8. Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation).

    Science.gov (United States)

    Stirpe, F; Williams, D G; Onyon, L J; Legg, R F; Stevens, W A

    1981-05-01

    1. Dianthin 30 and dianthin 32, two proteins isolated from the leaves of Diathus caryophyllus (carnation), were purified to homogeneity by chromatography on CM-cellulose. 2. The mol.wt. of dianthin 30 is 29 500 and that of dianthin 32 is 31 700. Both dianthins are glycoproteins containing mannose. 3. Dianthins inhibit protein synthesis in a lysate of rabbit reticulocytes, with an ID50 (concentration giving 50% inhibition) of 9.15 ng/ml (dianthin 30) and 3.6 ng/ml (dianthin 32). They act by damaging ribosomes in a less-than-equimolar ratio. Protein synthesis by intact cells is partially inhibited by dianthins at a concentration of 100 microgram/ml. 4. Dianthins mixed with tobacco-mosaic virus strongly decrease the number of local lesions on leaves of Nicotiana glutinosa.

  9. Appraisal of the Missing Proteins Based on the mRNAs Bound to Ribosomes.

    Science.gov (United States)

    Xu, Shaohang; Zhou, Ruo; Ren, Zhe; Zhou, Baojin; Lin, Zhilong; Hou, Guixue; Deng, Yamei; Zi, Jin; Lin, Liang; Wang, Quanhui; Liu, Xin; Xu, Xun; Wen, Bo; Liu, Siqi

    2015-12-01

    Considering the technical limitations of mass spectrometry in protein identification, the mRNAs bound to ribosomes (RNC-mRNA) are assumed to reflect the mRNAs participating in the translational process. The RNC-mRNA data are reasoned to be useful for appraising the missing proteins. A set of the multiomics data including free-mRNAs, RNC-mRNAs, and proteomes was acquired from three liver cancer cell lines. On the basis of the missing proteins in neXtProt (release 2014-09-19), the bioinformatics analysis was carried out in three phases: (1) finding how many neXtProt missing proteins have or do not have RNA-seq and/or MS/MS evidence, (2) analyzing specific physicochemical and biological properties of the missing proteins that lack both RNA-seq and MS/MS evidence, and (3) analyzing the combined properties of these missing proteins. Total of 1501 missing proteins were found by neither RNC-mRNA nor MS/MS in the three liver cancer cell lines. For these missing proteins, some are expected higher hydrophobicity, unsuitable detection, or sensory functions as properties at the protein level, while some are predicted to have nonexpressing chromatin structures on the corresponding gene level. With further integrated analysis, we could attribute 93% of them (1391/1501) to these causal factors, which result in the expression products scarcely detected by RNA-seq or MS/MS.

  10. Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits.

    Science.gov (United States)

    Fredrick, K; Dunny, G M; Noller, H F

    2000-05-01

    Ribosomal protein S7 nucleates folding of the 16 S rRNA 3' major domain, which ultimately forms the head of the 30 S ribosomal subunit. Recent crystal structures indicate that S7 lies on the interface side of the 30 S subunit, near the tRNA binding sites of the ribosome. To map the functional surface of S7, we have tagged the protein with a Protein Kinase A recognition site and engineered alanine substitutions that target each exposed, conserved residue. We have also deleted conserved features of S7, using its structure to guide our design. By radiolabeling the tag sequence using Protein Kinase A, we are able to track the partitioning of each mutant protein into 30 S, 70 S, and polyribosome fractions in vivo. Overexpression of S7 confers a growth defect, and we observe a striking correlation between this phenotype and proficiency in 30 S subunit assembly among our collection of mutants. We find that the side chain of K35 is required for efficient assembly of S7 into 30 S subunits in vivo, whereas those of at least 17 other conserved exposed residues are not required. In addition, an S7 derivative lacking the N-terminal 17 residues causes ribosomes to accumulate on mRNA to abnormally high levels, indicating that our approach can yield interesting mutant ribosomes.

  11. Identification of Novel RNA-Protein Contact in Complex of Ribosomal Protein S7 and 3'-Terminal Fragment of 16S rRNA in E. coli.

    Science.gov (United States)

    Golovin, A V; Khayrullina, G A; Kraal, B; Kopylov, Capital A Cyrillic М

    2012-10-01

    For prokaryotes in vitro, 16S rRNA and 20 ribosomal proteins are capable of hierarchical self- assembly yielding a 30S ribosomal subunit. The self-assembly is initiated by interactions between 16S rRNA and three key ribosomal proteins: S4, S8, and S7. These proteins also have a regulatory function in the translation of their polycistronic operons recognizing a specific region of mRNA. Therefore, studying the RNA-protein interactions within binary complexes is obligatory for understanding ribosome biogenesis. The non-conventional RNA-protein contact within the binary complex of recombinant ribosomal protein S7 and its 16S rRNA binding site (236 nucleotides) was identified. UV-induced RNA-protein cross-links revealed that S7 cross-links to nucleotide U1321 of 16S rRNA. The careful consideration of the published RNA- protein cross-links for protein S7 within the 30S subunit and their correlation with the X-ray data for the 30S subunit have been performed. The RNA - protein cross-link within the binary complex identified in this study is not the same as the previously found cross-links for a subunit both in a solution, and in acrystal. The structure of the binary RNA-protein complex formed at the initial steps of self-assembly of the small subunit appears to be rearranged during the formation of the final structure of the subunit.

  12. Slow formation of stable complexes during coincubation of a minimal rRNA and ribosomal protein S4

    OpenAIRE

    Mayerle, Megan; Bellur, Deepti L.; Woodson, Sarah A.

    2011-01-01

    Ribosomal protein S4 binds and stabilizes a five-helix junction in the 5’ domain of the 16S rRNA, and is one of two proteins responsible for nucleating 30S ribosome assembly. Upon binding, both protein S4 and the five-helix junction reorganize their structures. We show that labile S4 complexes rearrange to stable complexes within a few minutes at 42°C, with longer coincubation leading to an increased population of stable complexes. In contrast, prefolding the rRNA has a smaller effect on stab...

  13. Ribosomal protein S7 is both a regulator and a substrate of MDM2.

    Science.gov (United States)

    Zhu, Yan; Poyurovsky, Masha V; Li, Yingchun; Biderman, Lynn; Stahl, Joachim; Jacq, Xavier; Prives, Carol

    2009-08-14

    MDM2 associates with ribosomal protein S7, and this interaction is required to inhibit MDM2's E3 ligase activity, leading to stabilization of MDM2 and p53. Notably, the MDM2 homolog MDMX facilitates the inhibition of MDM2 E3 ligase activity by S7. Further, ablation of S7 inhibits MDM2 and p53 accumulation induced by different stress signals in some cell types. Thus, ribosomal/nucleolar stress is likely a key integrating event in DNA damage signaling to p53. Interestingly, S7 is itself a substrate for MDM2 E3 ligase activity both in vitro and in vivo. An S7-ubiquitin fusion protein (S7-Ub) selectively inhibits MDM2 degradation of p53 and is unaffected by MDMX. S7-Ub promotes apoptosis to a greater extent than S7 alone. This indicates that MDM2 ubiquitination of S7 is involved in sustaining the p53 response. Thus, S7 functions as both effector and affector of MDM2 to ensure a proper cellular response to different stress signals.

  14. Depletion of ribosomal protein L8 impairs Drosophila development and is associated with apoptosis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ribosomal protein L8 is a component of the 60S subunit of the ribosome and is involved in protein synthesis but its role in Drosophila development is not well understood.We depleted L8 through RNA interference (RNAi) to examine its effects on fly development both in vivo and in vitro.The results demonstrated that L8 RNAi caused embryonic or first-larval lethality,delay of larval development,defects in eye and wing morphology,and dramatically reduced the number of S2 cells.This indicated that L8 plays a crucial role in Drosophila development.Acridine orange staining of the wing discs showed that apoptosis occurred when L8 was depleted,indicating that depletion of L8 is tightly connected to apoptosis.RT-PCR analyses of the transcription level of genes that are known to be key factors in apoptosis (p53,hid,reaper,dark,Dcp-1) and cell cycle regulation (cdc45,MCM3,cyclin B,incenp) in L8-deficient S2 cells,were consistent with their role in apoptosis induction and cell cycle arrest.These results indicate that depletion of L8 strongly impairs Drosophila development,and that this depletion is associated with cell proliferation arrest and apoptosis,in which p53 may play a central role.

  15. Structural and functional characterization of ribosomal protein gene introns in sponges.

    Science.gov (United States)

    Perina, Drago; Korolija, Marina; Mikoč, Andreja; Roller, Maša; Pleše, Bruna; Imešek, Mirna; Morrow, Christine; Batel, Renato; Ćetković, Helena

    2012-01-01

    Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with "higher" metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales. PMID:22880015

  16. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription.

    Science.gov (United States)

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J; Naef, Félix; Shore, David

    2014-08-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output. PMID:25085421

  17. Structural and functional characterization of ribosomal protein gene introns in sponges.

    Directory of Open Access Journals (Sweden)

    Drago Perina

    Full Text Available Ribosomal protein genes (RPGs are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs. These ancient ncRNAs are small nucleolar RNAs (snoRNAs essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with "higher" metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales.

  18. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Elena eIlina

    2013-07-01

    Full Text Available Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant ribosomal protein S5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation (ca. 10-5 CFUs indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer.

  19. Plastid ribosomal protein S5 plays a critical role in photosynthesis, plant development, and cold stress tolerance in arabidopsis

    Science.gov (United States)

    Plastid ribosomal proteins (RPs) are essential components for protein synthesis machinery and exert diverse roles in plant growth and development. Mutations in plastid RPs lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood and th...

  20. Knockdown of ribosomal protein S7 causes developmental abnormalities via p53 dependent and independent pathways in zebrafish.

    Science.gov (United States)

    Duan, Juan; Ba, Qian; Wang, Ziliang; Hao, Miao; Li, Xiaoguang; Hu, Pingting; Zhang, Deyi; Zhang, Ruiwen; Wang, Hui

    2011-08-01

    Ribosomal proteins (RPs), structural components of the ribosome involved in protein synthesis, are of significant importance in all organisms. Previous studies have suggested that some RPs may have other functions in addition to assembly of the ribosome. The small ribosomal subunits RPS7, has been reported to modulate the mdm2-p53 interaction. To further investigate the biological functions of RPS7, we used morpholino antisense oligonucleotides (MO) to specifically knockdown RPS7 in zebrafish. In RPS7-deficient embryos, p53 was activated, and its downstream target genes and biological events were induced, including apoptosis and cell cycle arrest. Hematopoiesis was also impaired seriously in RPS7-deficient embryos, which was confirmed by the hemoglobin O-dianisidine staining of blood cells, and the expression of scl, gata1 and α-E1 globin were abnormal. The matrix metalloproteinase (mmp) family genes were also activated in RPS7 morphants, indicating that improper cell migration might also cause development defects. Furthermore, simultaneously knockdown of the p53 protein by co-injecting a p53 MO could partially reverse the abnormal phenotype in the morphants. These results strengthen the hypothesis that specific ribosomal proteins regulate p53 and that their deficiency affects hematopoiesis. Moreover, our data implicate that RPS7 is a regulator of matrix metalloproteinase (mmp) family in zebrafish system. These specific functions of RPS7 may provide helpful clues to study the roles of RPs in human disease.

  1. Cloning a cDNA Encoding Ribosomal Protein S25 from Amaranthus cruentus L.%籽粒苋(Amaranthus cruentus L.)核糖体蛋白S25基因(cDNA)的克隆及其表达分析

    Institute of Scientific and Technical Information of China (English)

    徐芳秀; 江树业; 等

    2001-01-01

    @@ Ribosomes, the agents of protein synthesis, consist of roughly equal amounts of RNA (rRNA) and protein (r-protein). Knowledge of the ribosome and its function mainly comes from the extensive work on 70S bacterial ribosomes. There are 21 proteins in the small (30S) subunit and 30 in the large (50S) subunit in E. coil ri bosomes. The 80S eukaryotic ribosomes are more com plex than the bacterial ones and contain at least 30 pro teins in the small (40S) subunit and 40 in the large (60 S) subunit. These r-proteins are named S1 to S30 and L1 to L40 according to whether they arise from the small or large subunit, and to their mobility in gels. In plants, several ribosomal protein genes and/or cDNAs have been isolated, such as the small subunit proteins S 11, S13, S14, S16, and S19 and the large subunit proteins L2, L7, L17, and L27. Here we report the r-protein S25 cDNA, Arps25, from Amaranthus cruentus L.

  2. Purification, crystallization and preliminary X-ray diffraction study of human ribosomal protein L10 core domain

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Mitsuhiro [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Protein Research Group, RIKEN Yokohama Institute, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Kaminishi, Tatsuya; Kawazoe, Masahito; Shirouzu, Mikako; Takemoto, Chie [Protein Research Group, RIKEN Yokohama Institute, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Yokoyama, Shigeyuki [Protein Research Group, RIKEN Yokohama Institute, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tanaka, Akiko [Protein Research Group, RIKEN Yokohama Institute, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Sugano, Sumio [Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639 (Japan); Yoshida, Takuya; Ohkubo, Tadayasu [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kobayashi, Yuji, E-mail: nishimu@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Osaka University of Pharmaceutical Sciences, 4-10-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2007-11-01

    A truncated variant of human ribosomal protien L10 was prepared and crystallized. Diffraction data were collected to 2.5 Å resolution. Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34–Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 Å resolution and belongs to space group P3{sub 1}21 or P3{sub 2}21.

  3. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    Science.gov (United States)

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors. PMID:26323301

  4. Mitochondrial ribosomal protein S18-2 evokes chromosomal instability and transforms primary rat skin fibroblasts

    KAUST Repository

    Kashuba, Elena

    2015-05-12

    We have shown earlier that overexpression of the human mitochondrial ribosomal protein MRPS18-2 (S18-2) led to immortalization of primary rat embryonic fibroblasts. The derived cells expressed the embryonic stem cell markers, and cellular pathways that control cell proliferation, oxidative phosphorylation, cellular respiration, and other redox reactions were activated in the immortalized cells. Here we report that, upon overexpression of S18-2 protein, primary rat skin fibroblasts underwent cell transformation. Cells passed more than 300 population doublings, and two out of three tested clones gave rise to tumors in experimental animals. Transformed cells showed anchorage-independent growth and loss of contact inhibition; they expressed epithelial markers, such as E-cadherin and β-catenin. Transformed cells showed increased telomerase activity, disturbance of the cell cycle, and chromosomal instability. Taken together, our data suggest that S18-2 is a newly identified oncoprotein that may be involved in cancerogenesis.

  5. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Science.gov (United States)

    Veit, Guido; Oliver, Kathryn; Apaja, Pirjo M; Perdomo, Doranda; Bidaud-Meynard, Aurélien; Lin, Sheng-Ting; Guo, Jingyu; Icyuz, Mert; Sorscher, Eric J; Hartman Iv, John L; Lukacs, Gergely L

    2016-05-01

    The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.

  6. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Directory of Open Access Journals (Sweden)

    Guido Veit

    2016-05-01

    Full Text Available The most common cystic fibrosis (CF causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del, results in functional expression defect of the CF transmembrane conductance regulator (CFTR at the apical plasma membrane (PM of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER. Deletion of phenylalanine 670 (ΔF670 in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.

  7. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Science.gov (United States)

    Veit, Guido; Oliver, Kathryn; Apaja, Pirjo M; Perdomo, Doranda; Bidaud-Meynard, Aurélien; Lin, Sheng-Ting; Guo, Jingyu; Icyuz, Mert; Sorscher, Eric J; Hartman Iv, John L; Lukacs, Gergely L

    2016-05-01

    The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect. PMID:27168400

  8. The structure and function of the eukaryotic ribosome.

    Science.gov (United States)

    Wilson, Daniel N; Doudna Cate, Jamie H

    2012-05-01

    Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.

  9. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E;

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... lower. Hence, only a negative test is highly informative in a typical clinical setting. This, as well as the absence of analyses to show if CRP tests contribute independent diagnostic information, relatively to the information held in the traditionally used clinical and biochemical variables, makes...... receiver operating characteristic curve analyses (SROCs) to describe central tendencies and examine possible sources of inter-study variability in the results. We included data from 35 studies of both children and adults: 21 in which CRP had been measured in cerebrospinal fluid, 10 in which CRP had been...

  10. Proteins associated with rRNA in the Escherichia coli ribosome.

    Science.gov (United States)

    Bernabeu, C; Vazquez, D; Ballesta, J P

    1978-04-27

    Ribosomal proteins located near the rRNA have been identified by cross linking to [14C]spermine with 1,5-difluoro-2,4-dinitrobenzene. The polyamine binds to double-stranded rRNA; those proteins showing radioactivity covalently bound after treatment with the bifunctional reagent should therefore be located in the vicinity of these regions of rRNA. Six proteins from the small subunit, S4, S5, S9, S18, S19 and S20 and ten proteins from the large subunit L2, L6, L13, L14, L16, L17, L18, L19, L22 and L27 preferentially take up the label. The results obtained with three proteins from the large subunit, L6, L16 and L27, show a high degree of variability that could reflect differences of conformation in the subunit population. Several proteins were drastically modified by the cross-linking agent but were not detected in the two-dimensional gel electrophoresis (e.g., S1, S11, S21, L7, L8 and L12) and therefore could not be studied.

  11. Reduced expression of ribosomal proteins relieves microRNA-mediated repression.

    Science.gov (United States)

    Janas, Maja M; Wang, Eric; Love, Tara; Harris, Abigail S; Stevenson, Kristen; Semmelmann, Karlheinz; Shaffer, Jonathan M; Chen, Po-Hao; Doench, John G; Yerramilli, Subrahmanyam V B K; Neuberg, Donna S; Iliopoulos, Dimitrios; Housman, David E; Burge, Christopher B; Novina, Carl D

    2012-04-27

    MicroRNAs (miRNAs) regulate physiological and pathological processes by inducing posttranscriptional repression of target messenger RNAs (mRNAs) via incompletely understood mechanisms. To discover factors required for human miRNA activity, we performed an RNAi screen using a reporter cell line of miRNA-mediated repression of translation initiation. We report that reduced expression of ribosomal protein genes (RPGs) dissociated miRNA complexes from target mRNAs, leading to increased polysome association, translation, and stability of miRNA-targeted mRNAs relative to untargeted mRNAs. RNA sequencing of polysomes indicated substantial overlap in sets of genes exhibiting increased or decreased polysomal association after Argonaute or RPG knockdowns, suggesting similarity in affected pathways. miRNA profiling of monosomes and polysomes demonstrated that miRNAs cosediment with ribosomes. RPG knockdowns decreased miRNAs in monosomes and increased their target mRNAs in polysomes. Our data show that most miRNAs repress translation and that the levels of RPGs modulate miRNA-mediated repression of translation initiation. PMID:22541556

  12. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    Science.gov (United States)

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2014-05-01

    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival. PMID:24305165

  13. Translation Inhibition of Capped and Uncapped Viral RNAs Mediated by Ribosome-Inactivating Proteins.

    Science.gov (United States)

    Vivanco, Jorge M; Tumer, Nilgun E

    2003-05-01

    ABSTRACT Ribosome-inactivating proteins (RIPs) are N-glycosidases that remove specific purine residues from the sarcin/ricin (S/R) loop of the large rRNA and arrest protein synthesis at the translocation step. In addition to their enzymatic activity, RIPs have been reputed to be potent antiviral agents against many plant, animal, and human viruses. We recently showed that pokeweed antiviral protein (PAP), an RIP from pokeweed, inhibits translation in cell extracts by binding to the cap structure of eukaryotic mRNA and viral RNAs and depurinating these RNAs at multiple sites downstream of the cap structure. In this study, we examined the activity of three different RIPs against capped and uncapped viral RNAs. PAP, Mirabilis expansa RIP (ME1), and the Saponaria officinalis RIP (saporin) depurinated the capped Tobacco mosaic virus and Brome mosaic virus RNAs, but did not depurinate the uncapped luciferase RNA, indicating that other type I RIPs besides PAP can distinguish between capped and uncapped RNAs. We did not detect depurination of Alfalfa mosaic virus (AMV) RNAs at multiple sites by PAP or ME1. Because AMV RNAs are capped, these results indicate that recognition of the cap structure alone is not sufficient for depurination of the RNA at multiple sites throughout its sequence. Furthermore, PAP did not cause detectable depurination of uncapped RNAs from Tomato bushy stunt virus (TBSV), Satellite panicum mosaic virus (SPMV), and uncapped RNA containing poliovirus internal ribosome entry site (IRES). However, in vitro translation experiments showed that PAP inhibited translation of AMV, TBSV, SPMV RNAs, and poliovirus IRES dependent translation. These results demonstrate that PAP does not depurinate every capped RNA and that PAP can inhibit translation of uncapped viral RNAs in vitro without causing detectable depurination at multiple sites. Thus, the cap structure is not the only determinant for inhibition of translation by PAP. PMID:18942981

  14. Elderberries: A Source of Ribosome-Inactivating Proteins with Lectin Activity

    Directory of Open Access Journals (Sweden)

    Jesús Tejero

    2015-01-01

    Full Text Available Sambucus (Adoxaceae species have been used for both food and medicine purposes. Among these, Sambucus nigra L. (black elder, Sambucus ebulus L. (dwarf elder, and Sambucus sieboldiana L. are the most relevant species studied. Their use has been somewhat restricted due to the presence of bioactive proteins or/and low molecular weight compounds whose ingestion could trigger deleterious effects. Over the last few years, the chemical and pharmacological characteristics of Sambucus species have been investigated. Among the proteins present in Sambucus species both type 1, and type 2 ribosome-inactivating proteins (RIPs, and hololectins have been reported. The biological role played by these proteins remains unknown, although they are conjectured to be involved in defending plants against insect predators and viruses. These proteins might have an important impact on the nutritional characteristics and food safety of elderberries. Type 2 RIPs are able to interact with gut cells of insects and mammals triggering a number of specific and mostly unknown cell signals in the gut mucosa that could significantly affect animal physiology. In this paper, we describe all known RIPs that have been isolated to date from Sambucus species, and comment on their antiviral and entomotoxic effects, as well as their potential uses.

  15. Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress

    Indian Academy of Sciences (India)

    Wei Qin; Huang Ming-Xing; Xu Ying; Zhang Xin-Shen; Chen Fang

    2005-06-01

    The open reading frame (ORF) encoding curcin 2 was cloned from total genomic and cDNA of Jatropha curcas leaves, which were treated by drought, temperature stress and fungal infection, by polymerase chain reaction (PCR) and reverse transcriptase (RT)-PCR amplification. The ORF has 927 bp that encodes a precursor protein of 309 amino acid residues. There are high similarities with curcin and the conserved domain of ribosome inactivating proteins (RIPs). Antiserum to curcin recognized one band of 32 kDa on Western blot of the leaves treated by temperature stresses at 4°C and 50°C and by fungal infections of Pestalotia funerea, Curvularia lunata (Walk) Boed, Gibberelle zeae (Schw.) Petch. Two bands of 32 kDa and 65 kDa were recognized on Western blot of the leaves treated by 10%–40% polyethylene glycol (PEG). In addition, the 32 kDa band is nearly the molecular weight of curcin 2. This finding suggests that the protein of 32 kDa should be related to curcin 2. The presence of this protein molecular marker under stresses may provide an experimental foundation to study the stress proteins in J. curcas.

  16. Is The Ribosome Targeted By Adaptive Mutations

    DEFF Research Database (Denmark)

    Jimenez Fernandez, Alicia; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    degree of evolutionary conservation of the cellular MMSM tend to support this view. However, under certain selective conditions the machinery itself may be targeted by adaptive mutations, which result in fitness-increasing phenotypic changes. Here we investigate and characterize the role of ribosomal...... mutations in adaptive evolution. Methods: Several mutations in ribosomal genes have been identified in the genome analysis of nearly 700 Pseudomonas aeruginosa isolates from infected cystic fibrosis patients. Among these mutations we have repeatedly identified insertions, deletions and substitutions...... in specific ribosomal genes. The bacterial phenotypes of the mutated strains will be investigated. Results: Preliminary assays show that mutant strains have reduced growth rate and an altered antibiotic resistance pattern. The selection for mutations in ribosomal protein genes is partly explainable...

  17. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1) Expression through Internal Ribosome Entry Site (IRES)-Mediated Translation during Cellular Stress Condition.

    Science.gov (United States)

    Gao, Wenqing; Li, Qi; Zhu, Ruiyu; Jin, Jian

    2016-01-01

    The function of ribosome binding protein 1 (RRBP1) is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5' untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5' UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES). Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La), which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5' UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions. PMID:27447629

  18. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    International Nuclear Information System (INIS)

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20NLS mutant gene and examined polysome profile of cells that had been transfected with the S20NLS gene. As a result, we observed the formation of recombinant 40S carried S20NLS but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20NLS in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20NLS in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20NLS is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20NLS. • Cytoplasm-retained S20NLS is crucial for creating a functional small subunit

  19. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Lin-Ru [Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC (China); Chou, Chang-Wei [Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC (China); Wu, Jing-Ying; Kirby, Ralph [Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC (China); Lin, Alan, E-mail: alin@ym.edu.tw [Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC (China); Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC (China)

    2013-11-15

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20{sub NLS} mutant gene and examined polysome profile of cells that had been transfected with the S20{sub NLS} gene. As a result, we observed the formation of recombinant 40S carried S20{sub NLS} but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20{sub NLS} in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20{sub NLS} in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20{sub NLS} is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20{sub NLS}. • Cytoplasm-retained S20{sub NLS} is crucial for creating a functional small subunit.

  20. Engineering the rRNA decoding site of eukaryotic cytosolic ribosomes in bacteria

    OpenAIRE

    Hobbie, S N; Kalapala, S K; Akshay, S.; Bruell, C M; S. Schmidt; Dabow, S; Vasella, A; Sander, P; Böttger, E C

    2007-01-01

    Structural and genetic studies on prokaryotic ribosomes have provided important insights into fundamental aspects of protein synthesis and translational control and its interaction with ribosomal drugs. Comparable mechanistic studies in eukaryotes are mainly hampered by the absence of both high-resolution crystal structures and efficient genetic models. To study the interaction of aminoglycoside antibiotics with selected eukaryotic ribosomes, we replaced the bacterial drug binding site in 16S...

  1. Isolation, characterization, sequencing and crystal structure of charybdin, a type 1 ribosome-inactivating protein from Charybdis maritima agg.

    Science.gov (United States)

    Touloupakis, Eleftherios; Gessmann, Renate; Kavelaki, Kalliopi; Christofakis, Emmanuil; Petratos, Kyriacos; Ghanotakis, Demetrios F

    2006-06-01

    A novel, type 1 ribosome-inactivating protein designated charybdin was isolated from bulbs of Charybdis maritima agg. The protein, consisting of a single polypeptide chain with a molecular mass of 29 kDa, inhibited translation in rabbit reticulocytes with an IC50 of 27.2 nm. Plant genomic DNA extracted from the bulb was amplified by PCR between primers based on the N-terminal and C-terminal sequence of the protein from dissolved crystals. The complete mature protein sequence was derived by partial DNA sequencing and terminal protein sequencing, and was confirmed by high-resolution crystal structure analysis. The protein contains Val at position 79 instead of the conserved Tyr residue of the ribosome-inactivating proteins known to date. To our knowledge, this is the first observation of a natural substitution of a catalytic residue at the active site of a natural ribosome-inactivating protein. This substitution in the active site may be responsible for the relatively low in vitro translation inhibitory effect compared with other ribosome-inactivating proteins. Single crystals were grown in the cold room from PEG6000 solutions. Diffraction data collected to 1.6 A resolution were used to determine the protein structure by the molecular replacement method. The fold of the protein comprises two structural domains: an alpha + beta N-terminal domain (residues 4-190) and a mainly alpha-helical C-terminal domain (residues 191-257). The active site is located in the interface between the two domains and comprises residues Val79, Tyr117, Glu167 and Arg170.

  2. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli.

    Science.gov (United States)

    Ramakrishnan, V; Capel, M; Kjeldgaard, M; Engelman, D M; Moore, P B

    1984-04-01

    A map of the 30 S ribosomal subunit is presented giving the positions of 15 of its 21 proteins. The components located in the map are S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S14, S15, S18 and S20.

  3. A Ribosomal Protein AgRPS3aE from Halophilic Aspergillus glaucus Confers Salt Tolerance in Heterologous Organisms

    Directory of Open Access Journals (Sweden)

    Xilong Liang

    2015-01-01

    Full Text Available High salt in soils is one of the abiotic stresses that significantly reduces crop yield, although saline lands are considered potential resources arable for agriculture. Currently, genetic engineering for enhancing salt tolerance is being tested as an efficient and viable strategy for crop improvement. We previously characterized a large subunit of the ribosomal protein RPL44, which is involved in osmotic stress in the extremely halophilic fungus Aspergillus glaucus. Here, we screened another ribosomal protein (AgRPS3aE that also produced high-salt tolerance in yeast. Bioinformatics analysis indicated that AgRPS3aE encodes a 29.2 kDa small subunit of a ribosomal protein belonging to the RPS3Ae family in eukaryotes. To further confirm its protective function against salinity, we expressed AgRPS3aE in three heterologous systems, the filamentous fungus Magnaporthe oryzae and two model plants Arabidopsis and tobacco. Overexpression of AgRPS3aE in all tested transformants significantly alleviated stress symptoms compared with controls, suggesting that AgRPS3aE functions not only in fungi but also in plants. Considering that ribosomal proteins are housekeeping components in organisms from prokaryotes to eukaryotes, we propose that AgRPS3aE is one of the optimal genes for improving high-salt tolerance in crops.

  4. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production.

    Science.gov (United States)

    Li, Jian-ying; Ye, Lu-peng; Che, Jia-qian; Song, Jia; You, Zheng-ying; Yun, Ki-chan; Wang, Shao-hua; Zhong, Bo-xiong

    2015-08-01

    The silkworm middle silk gland (MSG) is the sericin synthesis and secretion unique sub-organ. The molecular mechanisms of regulating MSG protein synthesis are largely unknown. Here, we performed shotgun proteomic analysis on the three MSG subsections: the anterior (MSG-A), middle (MSG-M), and posterior (MSG-P) regions. The results showed that more strongly expressed proteins in the MSG-A were involved in multiple processes, such as silk gland development and silk protein protection. The proteins that were highly expressed in the MSG-M were enriched in the ribosome pathway. MSG-P proteins with stronger expression were mainly involved in the oxidative phosphorylation and citrate cycle pathways. These results suggest that the MSG-M is the most active region in the sericin synthesis. Furthermore, comparing the proteome of the MSG with the posterior silk gland (PSG) revealed that the specific and highly expressed proteins in the MSG were primarily involved in the ribosome and aminoacyl-tRNA biosynthesis pathways. These results indicate that silk protein synthesis is much more active as a result of the enhancement of translation-related pathways in the MSG. These results also suggest that enhancing ribosome biogenesis is important to the efficient synthesis of silk proteins. PMID:26051239

  5. Ribosomal protein L7a is encoded by a gene (Surf-3) within the tightly clustered mouse surfeit locus.

    Science.gov (United States)

    Giallongo, A; Yon, J; Fried, M

    1989-01-01

    The mouse Surfeit locus, which contains a cluster of at least four genes (Surf-1 to Surf-4), is unusual in that adjacent genes are separated by no more than 73 base pairs (bp). The heterogeneous 5' ends of Surf-1 and Surf-2 are separated by only 15 to 73 bp, the 3' ends of Surf-1 and Surf-3 are only 70 bp apart, and the 3' ends of Surf-2 and Surf-4 overlap by 133 bp. This very tight clustering suggests a cis interaction between adjacent Surfeit genes. The Surf-3 gene (which could code for a basic polypeptide of 266 amino acids) is a highly expressed member of a pseudogene-containing multigene family. By use of an anti-peptide serum (against the C-terminal nine amino acids of the putative Surf-3 protein) for immunofluorescence and immunoblotting of mouse cell components and by in vitro translation of Surf-3 cDNA hybrid-selected mRNA, the Surf-3 gene product was identified as a 32-kilodalton ribosomal protein located in the 60S ribosomal subunit. From its subunit location, gel migration, and homology with a limited rat ribosomal peptide sequence, the Surf-3 gene was shown to encode the mouse L7a ribosomal protein. The Surf-3 gene is highly conserved through evolution and was detected by nucleic acid hybridization as existing in multiple copies (multigene families) in other mammals and as one or a few copies in birds, Xenopus, Drosophila, and Schizosaccharomyces pombe. The Surf-3 C-terminal anti-peptide serum detects a 32-kilodalton protein in other mammals, birds, and Xenopus but not in Drosophila and S. pombe. The possible effect of interaction of the Surf-3 ribosomal protein gene with adjacent genes in the Surfeit locus at the transcriptional or posttranscriptional level or both levels is discussed. Images PMID:2648130

  6. Similarity between the association factor of ribosomal subunits and the protein Stm1p from Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Heriberto Correia

    2004-11-01

    Full Text Available A ribosome association factor (AF was isolated from the yeast Sacchharomyces cerevisiae. Partial amino acid sequence of AF was determined from its fragment of 25 kDa isolated by treating AF with 2-(2-nitrophenylsulfenyl-3-methyl-3'-Bromoindolenine (BNPS-skatole. This sequence has a 86% identity to the product of the single-copy S. cerevisiae STM1 gene that is apparently involved in several events like binding to quadruplex and triplex nucleic acids and participating in apoptosis, stability of telomere structures, cell cycle, and ribosomal function. Here we show that AF and Stm1p share some characteristics: both bind to quadruplex and Pu triplex DNA, associates ribosomal subunits, and are thermostable. These observations suggest that these polypeptides belong to a family of proteins that may have roles in the translation process.

  7. Endogenous ribosomal protein L29 (RPL29: a newly identified regulator of angiogenesis in mice

    Directory of Open Access Journals (Sweden)

    Dylan T. Jones

    2013-01-01

    Cellular ribosomal protein L29 (RPL29 is known to be important in protein synthesis, but its function during angiogenesis has never been described before. We have shown previously that mice lacking β3-integrins support enhanced tumour angiogenesis and, therefore, deletion of endothelial αvβ3 can provide a method for discovery of novel regulators of tumour angiogenesis. Here, we describe significant upregulation of RPL29 in β3-null endothelial cells at both the mRNA and protein level. Ex vivo, we show that VEGF-stimulated microvessel sprouting was reduced significantly in Rpl29-heterozygous and Rpl29-null aortic ring assays compared with wild-type controls. Moreover, we provide in vivo evidence that RPL29 can regulate tumour angiogenesis. Tumour blood vessel density in subcutaneously grown Lewis lung carcinomas was reduced significantly in Rpl29-mutant mice. Additionally, depletion of Rpl29 using RNA interference inhibited VEGF-induced aortic ring sprouting, suggesting that anti-RPL29 strategies might have anti-angiogenic potential. Overall, our results identify that loss or depletion of RPL29 can reduce angiogenesis in vivo and ex vivo.

  8. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans.

    Science.gov (United States)

    Chowdhury, Tahmeena; Köhler, Julia R

    2015-10-01

    TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant.

  9. Systematic identification of seven ribosomal protein genes in bighead carp and their expression in response to microcystin-LR.

    Science.gov (United States)

    Cai, Yan; Zhang, Chao; Hao, Le; Chen, Jun; Xie, Ping; Chen, Zhidong

    2016-04-01

    Microcystin-LR (MCLR) is one of the most toxic cyanotoxins produced in algal blooms. The toxic effects of MCLR on the expression of some organelles genes (mitochondrion, endoplasmic reticulum, and cytoskeleton etc) have been widely investigated, but little is known how it impacts on the expression of ribosomal genes. In this study we identified seven ribosomal protein genes RPS6, RPS12, RPS24, RPS27a, RPL12, RPL27 and RPL29 in bighead carp (Aristichthys nobilis), whose expression was regulated by MCLR. The amino acid sequences of those 7 genes shared more than 90% identity with corresponding sequences from zebrafish, and were well conserved throughout evolution. The 3D structure prediction showed that the structures of these ribosomal proteins were conserved, but had species specificity. Q-PCR analysis revealed that expression of seven genes changed dramatically at 3 hr, then went back to a moderate change- level at 24 hr in almost all tested tissues (liver, kidney, intestine, heart, spleen and gill) post MCLR injection, but in brain expression of the seven genes stayed same as the normal level. This study will help us to know not only about the evolution and functions of ribosomal proteins in anti-MCLR response in bighead carp, but also about the MCLR toxicity and its impact on aquaculture and human health. PMID:26961614

  10. Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans

    Science.gov (United States)

    Ero, Rya; Dimitrova, Valya Tenusheva; Chen, Yun; Bu, Wenting; Feng, Shu; Liu, Tongbao; Wang, Ping; Xue, Chaoyang; Tan, Suet Mien; Gao, Yong-Gui

    2015-03-01

    The atypical Gβ-like/RACK1 Gib2 protein promotes cAMP signalling that plays a central role in regulating the virulence of Cryptococcus neoformans. Gib2 contains a seven-bladed β transducin structure and is emerging as a scaffold protein interconnecting signalling pathways through interactions with various protein partners. Here, we present the crystal structure of Gib2 at a 2.2-Å resolution. The structure allows us to analyse the association between Gib2 and the ribosome, as well as to identify the Gib2 amino acid residues involved in ribosome binding. Our studies not only suggest that Gib2 has a role in protein translation but also present Gib2 as a physical link at the crossroads of various regulatory pathways important for the growth and virulence of C. neoformans.

  11. Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo.

    Science.gov (United States)

    Uprety, Bhawana; Sen, Rwik; Bhaumik, Sukesh R

    2015-09-01

    NuA4 (nucleosome acetyltransferase of H4) promotes transcriptional initiation of TFIID (a complex of TBP and TBP-associated factors [TAFs])-dependent ribosomal protein genes involved in ribosome biogenesis. However, it is not clearly understood how NuA4 regulates the transcription of ribosomal protein genes. Here, we show that NuA4 is recruited to the promoters of ribosomal protein genes, such as RPS5, RPL2B, and RPS11B, for TFIID recruitment to initiate transcription, and the recruitment of NuA4 to these promoters is impaired in the absence of its Eaf1p component. Intriguingly, impaired NuA4 recruitment in a Δeaf1 strain depletes recruitment of TFIID (a TAF-dependent form of TBP) but not the TAF-independent form of TBP to the promoters of ribosomal protein genes. However, in the absence of NuA4, SAGA (Spt-Ada-Gcn5-acetyltransferase) is involved in targeting the TAF-independent form of TBP to the promoters of ribosomal protein genes for transcriptional initiation. Thus, NuA4 plays an important role in targeting TFIID to the promoters of ribosomal protein genes for transcriptional initiation in vivo. Such a function is mediated via its targeted histone acetyltransferase activity. In the absence of NuA4, ribosomal protein genes lose TFIID dependency and become SAGA dependent for transcriptional initiation. Collectively, these results provide significant insights into the regulation of ribosomal protein gene expression and, hence, ribosome biogenesis and functions.

  12. Selection of IgE-binding aptameric green fluorescent protein (Ap-GFP) by the ribosome display (RD) platform

    International Nuclear Information System (INIS)

    GFP-Cκ fusion protein was previously shown selectable on ribosome display platform with solid phase antibodies against GFP determinant [Y.-M. Yang, T.J. Barankiewicz, M. He, M. Taussig, S.-S. Chen, Selection of antigenic markers on a GFP-Cκ fusion scaffold with high sensitivity by eukaryotic ribosome display, Biochem. Biophys. Res. Commun. 359 (2007) 251-257]. Herein, we show that members of aptameric peptide library constructed within the site 6 and site 8/9 loops of GFP of the ribosome display construct are selectable upon binding to the solid phase IgE antigen. An input of 1.0 μg of the dual site aptameric GFP library exhibiting a diversity of 7.5 x 1011 was transcribed, translated and incubated with solid phase IgE. RT-PCR products were amplified from mRNA of the aptamer-ribosome-mRNA (ARM) complex captured on the solid phase IgE. Clones of aptameric GFP were prepared from RT-PCR product of ARM complex following repetitive selection. Recombinant aptameric GFP proteins from the selected clones bind IgE coated on the 96-well plate, and the binding was abrogated by incubation with soluble human IgE but not human IgG. Selected aptameric GFP proteins also exhibit binding to three different sources of human IgE (IgE PS, BED, and JW8) but not irrelevant proteins. These observations indicate that appropriately selected aptameric GFP on a solid phase ligand by ribosome display may serve as an affinity reagent for blocking reactivity of a biological ligand

  13. The Cytotoxicity of Elderberry Ribosome-Inactivating Proteins Is Not Solely Determined by Their Protein Translation Inhibition Activity.

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    Full Text Available Although the protein translation inhibition activity of ribosome inactivating proteins (RIPs is well documented, little is known about the contribution of the lectin chain to the biological activity of these proteins. In this study, we compared the in vitro and intracellular activity of several S. nigra (elderberry RIPs and non-RIP lectins. Our data demonstrate that RIPs from elderberry are much more toxic to HeLa cells than to primary fibroblasts. Differences in the cytotoxicity between the elderberry proteins correlated with differences in glycan specificity of their lectin domain, cellular uptake efficiency and intracellular destination. Despite the fact that the bulk of the RIPs accumulated in the lysosomes and partly in the Golgi apparatus, we could demonstrate effective inhibition of protein synthesis in cellula. As we also observed cytotoxicity for non-RIP lectins, it is clear that the lectin chain triggers additional pathways heralding cell death. Our data suggest that one of these pathways involves the induction of autophagy.

  14. Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chengliang [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China); Zhang, Qiongdi [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Hang, Tianrong [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China); Tao, Yue [Shanghai Children’s Medical Center, 1678 Dongfang Road, Pudong, Shanghai 200120, People’s Republic of (China); Ma, Xukai [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Wu, Minhao; Zhang, Xuan, E-mail: xuanzbin@ustc.edu.cn; Zang, Jianye, E-mail: xuanzbin@ustc.edu.cn [University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of (China); Chinese Academy of Sciences, Hefei, Anhui 230026, People’s Republic of (China)

    2015-08-28

    The structure of the complex of NO66 and Rpl8 was solved in the native state and NO66 recognizes the consensus motif NHXH . Tetramerization is required for efficient substrate binding and catalysis by NO66. The JmjC domain-containing proteins belong to a large family of oxygenases possessing distinct substrate specificities which are involved in the regulation of different biological processes, such as gene transcription, RNA processing and translation. Nucleolar protein 66 (NO66) is a JmjC domain-containing protein which has been reported to be a histone demethylase and a ribosome protein 8 (Rpl8) hydroxylase. The present biochemical study confirmed the hydroxylase activity of NO66 and showed that oligomerization is required for NO66 to efficiently catalyze the hydroxylation of Rpl8. The structures of NO66{sup 176–C} complexed with Rpl8{sup 204–224} in a tetrameric form and of the mutant protein M2 in a dimeric form were solved. Based on the results of structural and biochemical analyses, the consensus sequence motif NHXH recognized by NO66 was confirmed. Several potential substrates of NO66 were found by a BLAST search according to the consensus sequence motif. When binding to substrate, the relative positions of each subunit in the NO66 tetramer shift. Oligomerization may facilitate the motion of each subunit in the NO66 tetramer and affect the catalytic activity.

  15. RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Directory of Open Access Journals (Sweden)

    Sams Carl E

    2006-09-01

    Full Text Available Abstract Background Mean phosphorous:nitrogen (P:N ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes. Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and

  16. Cloning, purification, crystallization and preliminary X-ray analysis of the Burkholderia pseudomallei L1 ribosomal protein

    International Nuclear Information System (INIS)

    The L1 ribosomal protein from B. pseudomallei has been overexpressed, purified and crystallized in a form suitable for X-ray analysis. The gene encoding the L1 ribosomal protein from Burkholderia pseudomallei strain D286 has been cloned into the pETBLUE-1 vector system, overexpressed in Escherichia coli and purified. Crystals of the native protein were grown by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant and diffracted to beyond 1.65 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 53.6, b = 127.1, c = 31.8 Å and with a single molecule in the asymmetric unit

  17. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  18. Identification, characterization and structure analysis of a type I ribosome-inactivating protein from Sapium sebiferum (Euphorbiaceae)

    International Nuclear Information System (INIS)

    Ribosome-inactivating proteins (RIPs) are N-glycosidases (EC3.2.2.22) that universally inactivate the ribosome, thereby inhibiting protein biosynthesis. In this study, a novel type I RIPs named SEBIN was identified in Sapium sebiferum. Nuclear acid depurine experiment showed that SEBIN had rRNA N-Glycosidase activity. Further experiment indicated that SEBIN significantly inhibited Caenorhabditis elegans development as well as resulted in worm cell apoptosis. This is the first report to evaluate RIPs toxicity using C. elegans. We proposed that SEBIN may impaire C. elegans reproduction in a DNA-damage manner besides traditional protein synthesis inhibition approach. The predicted 3D structure was modeled using threading and ab initio modeling, and the r-RNA binding residue of SEBIN was identified through the protein-ligand docking approach. It showed the amino acid residues, Glu195, Asn81, Ala82, Tyr83, Glu164, Ser163, Ile159 and Arg167, played critical roles in catalytic process. Our results provided the theoretical foundation of structure–function relationships between enzymatic properties, toxicity and structural characterization of SEBIN. - Graphical abstract: Superposition of main chains of ricin (cyan) and SEBIN (brown), and adenine binding site residues of SEBIN. - Highlights: • A Ribosome-inactivating proteins gene (SEBIN) was isolated from Sapium sebiferum. • SEBIN had DNase activity besides widely reported ribosome inactivation via N-glycosidases activity. • SEBIN significantly inhibited Caenorhabditis elegans development in vivo. • SEBIN may impaire C. elegans reproduction in a DNA-damage manner with the aid of mutant strains hus-1 and clk-2. • The possible active sites between SEBIN and the adenine of rRNA were predicted

  19. Identification, characterization and structure analysis of a type I ribosome-inactivating protein from Sapium sebiferum (Euphorbiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ying [Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui (China); School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui (China); College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan (China); Mao, Yingji [Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui (China); School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui (China); Jin, Shan; Hou, Jinyan; Du, Hua [Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Yang, Minglei, E-mail: yml888@mail.ustc.edu.cn [Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Wu, Lifang, E-mail: lfwu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering and Bioenergy Forest Research Center of State Forestry Administration, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui (China); School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui (China)

    2015-08-07

    Ribosome-inactivating proteins (RIPs) are N-glycosidases (EC3.2.2.22) that universally inactivate the ribosome, thereby inhibiting protein biosynthesis. In this study, a novel type I RIPs named SEBIN was identified in Sapium sebiferum. Nuclear acid depurine experiment showed that SEBIN had rRNA N-Glycosidase activity. Further experiment indicated that SEBIN significantly inhibited Caenorhabditis elegans development as well as resulted in worm cell apoptosis. This is the first report to evaluate RIPs toxicity using C. elegans. We proposed that SEBIN may impaire C. elegans reproduction in a DNA-damage manner besides traditional protein synthesis inhibition approach. The predicted 3D structure was modeled using threading and ab initio modeling, and the r-RNA binding residue of SEBIN was identified through the protein-ligand docking approach. It showed the amino acid residues, Glu195, Asn81, Ala82, Tyr83, Glu164, Ser163, Ile159 and Arg167, played critical roles in catalytic process. Our results provided the theoretical foundation of structure–function relationships between enzymatic properties, toxicity and structural characterization of SEBIN. - Graphical abstract: Superposition of main chains of ricin (cyan) and SEBIN (brown), and adenine binding site residues of SEBIN. - Highlights: • A Ribosome-inactivating proteins gene (SEBIN) was isolated from Sapium sebiferum. • SEBIN had DNase activity besides widely reported ribosome inactivation via N-glycosidases activity. • SEBIN significantly inhibited Caenorhabditis elegans development in vivo. • SEBIN may impaire C. elegans reproduction in a DNA-damage manner with the aid of mutant strains hus-1 and clk-2. • The possible active sites between SEBIN and the adenine of rRNA were predicted.

  20. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility.

    Science.gov (United States)

    Beabout, Kathryn; Hammerstrom, Troy G; Perez, Anisha Maria; Magalhães, Bárbara Freitas; Prater, Amy G; Clements, Thomas P; Arias, Cesar A; Saxer, Gerda; Shamoo, Yousif

    2015-09-01

    Tigecycline is a translational inhibitor with efficacy against a wide range of pathogens. Using experimental evolution, we adapted Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, and Staphylococcus aureus to growth in elevated tigecycline concentrations. At the end of adaptation, 35 out of 47 replicate populations had clones with a mutation in rpsJ, the gene that encodes the ribosomal S10 protein. To validate the role of mutations in rpsJ in conferring tigecycline resistance, we showed that mutation of rpsJ alone in Enterococcus faecalis was sufficient to increase the tigecycline MIC to the clinical breakpoint of 0.5 μg/ml. Importantly, we also report the first identification of rpsJ mutations associated with decreased tigecycline susceptibility in A. baumannii, E. coli, and S. aureus. The identified S10 mutations across both Gram-positive and -negative species cluster in the vertex of an extended loop that is located near the tigecycline-binding pocket within the 16S rRNA. These data indicate that S10 is a general target of tigecycline adaptation and a relevant marker for detecting reduced susceptibility in both Gram-positive and -negative pathogens.

  1. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function.

    Science.gov (United States)

    Shen, Chih-Lung; Liu, Cheng-Der; You, Ren-In; Ching, Yung-Hao; Liang, Jun; Ke, Liangru; Chen, Ya-Lin; Chen, Hong-Chi; Hsu, Hao-Jen; Liou, Je-Wen; Kieff, Elliott; Peng, Chih-Wen

    2016-02-23

    Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection. PMID:26858444

  2. Integrative analyses shed new light on human ribosomal protein gene regulation.

    Science.gov (United States)

    Li, Xin; Zheng, Yiyu; Hu, Haiyan; Li, Xiaoman

    2016-01-01

    Ribosomal protein genes (RPGs) are important house-keeping genes that are well-known for their coordinated expression. Previous studies on RPGs are largely limited to their promoter regions. Recent high-throughput studies provide an unprecedented opportunity to study how human RPGs are transcriptionally modulated and how such transcriptional regulation may contribute to the coordinate gene expression in various tissues and cell types. By analyzing the DNase I hypersensitive sites under 349 experimental conditions, we predicted 217 RPG regulatory regions in the human genome. More than 86.6% of these computationally predicted regulatory regions were partially corroborated by independent experimental measurements. Motif analyses on these predicted regulatory regions identified 31 DNA motifs, including 57.1% of experimentally validated motifs in literature that regulate RPGs. Interestingly, we observed that the majority of the predicted motifs were shared by the predicted distal and proximal regulatory regions of the same RPGs, a likely general mechanism for enhancer-promoter interactions. We also found that RPGs may be differently regulated in different cells, indicating that condition-specific RPG regulatory regions still need to be discovered and investigated. Our study advances the understanding of how RPGs are coordinately modulated, which sheds light to the general principles of gene transcriptional regulation in mammals. PMID:27346035

  3. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes.

    Science.gov (United States)

    Chymkowitch, Pierre; Nguéa, Aurélie P; Aanes, Håvard; Koehler, Christian J; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A; Klungland, Arne; Enserink, Jorrit M

    2015-06-01

    Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. PMID:25800674

  4. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Ilina, Elena N; Malakhova, Maya V; Bodoev, Ivan N; Oparina, Nina Y; Filimonova, Alla V; Govorun, Vadim M

    2013-01-01

    Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 (RPS5) found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant RPS5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation [ca. 10(-5) colony-forming units (CFUs)] indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer (HGT). PMID:23847609

  5. Expression and localization of VCX/Y proteins and their possible involvement in regulation of ribosome assembly during spermatogenesis

    Institute of Scientific and Technical Information of China (English)

    SHENG WEI ZOU; JIAN CHAO ZHANG; XIAO DONG ZHANG; SHI YING MIAO; SHU DONG ZONG; QI SHENG; LIN FANG WANG

    2003-01-01

    Variable Charge X/Y (VCX/Y) is a human testis-specific gene family that localized on X and Y chromo-somes. In this study, VCY protein was expressed in E. coli in the form of glutathione-S-transferase (GST)fusion protein. With the purified fusion protein as antigen, the anti-GST-VCY antibody was generated andthe localization of VCY protein in human testis was determined by immunohistochemistry. In the testisseminiferous epithelium, VCY proteins were highly expressed in nuclei of germ cells. Using propidium io-dide staining and green fluorescent protein (GFP) tag technologies, VCY and VCX-8r proteins were mainlylocalized in the nucleoli of COS7 cells. In addition, the colocalization for VCY and VCX-8r in COS7 cellswas also observed. With VCY cDNA as bait, a cDNA fragment of acidic ribosomal protein PO was obtainedusing yeast two-hybrid system. All the information above indicates that VCX/Y protein family might beinvolved in the regulation of ribosome assembly during spermatogenesis.

  6. CED-4 is an mRNA-binding protein that delivers ced-3 mRNA to ribosomes.

    Science.gov (United States)

    Wang, Miao-xing; Itoh, Masanori; Li, Shimo; Hida, Yoko; Ohta, Kazunori; Hayakawa, Miki; Nishida, Emika; Ueda, Masashi; Islam, Saiful; Tana; Nakagawa, Toshiyuki

    2016-01-29

    Cell death abnormal (ced)-3 and ced-4 genes regulate apoptosis to maintain tissue homeostasis in Caenorhabditis elegans. Apoptosome formation and CED-4 translocation drive CED-3 activation. However, the precise role of CED-4 translocation is not yet fully understood. In this study, using a combination of immunoprecipitation and reverse transcription-polymerase chain reaction methods in cells and a glutathione-S-transferase pull down assay in a cell-free system, we show that CED-4 binds ced-3 mRNA. In the presence of ced-3 mRNA, CED-4 protein is enriched in the microsomal fraction and interacts with ribosomal protein L10a in mammalian cells, increasing the levels of CED-3. These results suggest that CED-4 forms a complex with ced-3 mRNA and delivers it to ribosomes for translation.

  7. Anti-Human Endoglin (hCD105 Immunotoxin—Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1

    Directory of Open Access Journals (Sweden)

    Begoña Barriuso

    2016-06-01

    Full Text Available Endoglin (CD105 is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT—containing recombinant musarmin 1 (single chain ribosome-inactivating proteins linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio propionate (SPDP. The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10−10 to 10−9 M.

  8. Nucleotide sequence of cDNA coding for dianthin 30, a ribosome inactivating protein from Dianthus caryophyllus.

    Science.gov (United States)

    Legname, G; Bellosta, P; Gromo, G; Modena, D; Keen, J N; Roberts, L M; Lord, J M

    1991-08-27

    Rabbit antibodies raised against dianthin 30, a ribosome inactivating protein from carnation (Dianthus caryophyllus) leaves, were used to identify a full length dianthin precursor cDNA clone from a lambda gt11 expression library. N-terminal amino acid sequencing of purified dianthin 30 and dianthin 32 confirmed that the clone encoded dianthin 30. The cDNA was 1153 basepairs in length and encoded a precursor protein of 293 amino acid residues. The first 23 N-terminal amino acids of the precursor represented the signal sequence. The protein contained a carboxy-terminal region which, by analogy with barley lectin, may contain a vacuolar targeting signal.

  9. Crystallization and preliminary crystallographic study of cucurmosin, a ribosome-inactivating protein from the sarcocarp of Cucurbita moschata.

    Science.gov (United States)

    Chen, M; Ye, X; Cai, J; Lin, Y

    2000-05-01

    Cucurmosin, a ribosome-inactivating protein purified from pumpkin, the sarcocarp of Cucurbita moschata, has been crystallized using polyethylene glycol as a precipitant. The crystals belong to space group P2(1)2(1)2(1) and have unit-cell parameters a = 41.91, b = 59. 48, c = 98.78 A. There is one molecule in the asymmetric unit. The diffraction data to 3.0 A resolution were collected on a MAR Research image-plate detector.

  10. A Ribosomal Protein AgRPS3aE from Halophilic Aspergillus glaucus Confers Salt Tolerance in Heterologous Organisms

    OpenAIRE

    Xilong Liang; Yiling Liu; Lixia Xie; Xiaodan Liu; Yi Wei; Xiaoyang Zhou; Shihong Zhang

    2015-01-01

    High salt in soils is one of the abiotic stresses that significantly reduces crop yield, although saline lands are considered potential resources arable for agriculture. Currently, genetic engineering for enhancing salt tolerance is being tested as an efficient and viable strategy for crop improvement. We previously characterized a large subunit of the ribosomal protein RPL44, which is involved in osmotic stress in the extremely halophilic fungus Aspergillus glaucus. Here, we screened another...

  11. Diversity and recombination of dispersed ribosomal DNA and protein coding genes in microsporidia.

    Directory of Open Access Journals (Sweden)

    Joseph Edward Ironside

    Full Text Available Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual

  12. Ribosomal protein S27-like in colorectal cancer: a candidate for predicting prognoses.

    Directory of Open Access Journals (Sweden)

    Chi-Jung Huang

    Full Text Available BACKGROUND: The development and progression of colorectal cancer (CRC involve a complex process of multiple genetic changes. Tumor suppressor p53 is capable of determining the fate of CRC cells. However, the role of a p53-inducible modulator, ribosomal protein S27-like (RPS27L, in CRC is unknown. METHODS: Here, the differential expression of RPS27L was examined in the feces and colonic tissues of CRC patients, to explore its possible correlation with patient survival and to investigate the cellular mechanisms underlying their clinical outcomes. Eighty intermediate-stage CRC patients (42 at stage II and 38 at stage III were divided into two groups according to their fecal RPS27L mRNA levels. The survival probabilities of the groups were estimated using the Kaplan-Meier method. The RPS27L protein in the colonic tissues of stage III patients with different prognoses was further examined immunohistochemically. RPS27L expression in LoVo cells was manipulated to examine the possible cellular responses in vitro. RESULTS: Elevated RPS27L expression, in either feces or tissues, was related to a better prognosis. In vitro, RPS27L-expressing LoVo cells ceased DNA synthesis and apoptotic activity while the expression of their DNA repair molecules was upregulated. CONCLUSIONS: Elevated RPS27L may improve the prognoses of certain CRC patients by enhancing the DNA repair capacity of their colonic cells, and can be determined in feces. By integrating clinical, molecular, and cellular data, our study demonstrates that fecal RPS27L may be a useful index for predicting prognoses and guiding personalized therapeutic strategies, especially in patients with intermediate-stage CRC.

  13. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.

    Science.gov (United States)

    Tadini, Luca; Pesaresi, Paolo; Kleine, Tatjana; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Pribil, Mathias; Rothbart, Maxi; Hedtke, Boris; Grimm, Bernhard; Leister, Dario

    2016-03-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes. PMID:26823545

  14. Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

    Directory of Open Access Journals (Sweden)

    Mary E. Marquart

    2013-01-01

    Full Text Available Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.

  15. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  16. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans.

    Science.gov (United States)

    Poidevin, Laetitia; Andreeva, Kalina; Khachatoorian, Careen; Judelson, Howard S

    2015-01-01

    Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.

  17. Single mutations introduced in the essential ribosomal proteins L3 and S10 cause a sporulation defect in Bacillus subtilis.

    Science.gov (United States)

    Akanuma, Genki; Suzuki, Shota; Yano, Koichi; Nanamiya, Hideaki; Natori, Yousuke; Namba, Eri; Watanabe, Kazuya; Tagami, Kazumi; Takeda, Takuya; Iizuka, Yuka; Kobayashi, Ako; Ishizuka, Morio; Yoshikawa, Hirofumi; Kawamura, Fujio

    2013-01-01

    We introduced single mutations into the rplC and rpsJ genes, which encode the essential ribosomal proteins L3 (RplC) and S10 (RpsJ), respectively, and are located in the S10 gene cluster of the gram-positive, endospore-forming bacterium Bacillus subtilis, and examined whether these mutations affected their growth rate, sporulation, competence development and 70S ribosome formation. Mutant cells harboring the G52D mutation in the L3 ribosomal protein, which is located at the peptidyl transferase center of 50S, accumulated 30S subunit at 45°C, probably due to a defect in 50S formation, and exhibited a reduction in the sporulation frequency at high temperature. On the other hand, mutant cells harboring the H56R mutation in the S10 protein, which is located near the aminoacyl-tRNA site of 30S, showed severe growth defect and deficiency in spore formation, and also exhibited significant delay in competence development.

  18. Influence of magnesium and polyamines on the reactivity of individual ribosomal subunit proteins to lactoperoxidase-catalyzed iodination.

    Science.gov (United States)

    Michalski, C J; Boyle, S M; Sells, B H

    1979-03-01

    30S and 50S subunits, in the presence of either 20 mM Mg2+ or 6 mM Mg2+ and 5mM spermidine plus 25 mM putrescine, were observed to completely associate to form 70S monosomes as monitored by sucrose gradient sedimentation. Subunits maintained under the above ionic conditions were compared with 30S and 50S particles at low (6 mM) magnesium concentration with respect to the reactivity of individual ribosomal proteins to lactoperoxidase-catalyzed iodination. Altered reactivity to enzymatic iodination of ribosomal proteins S4, S9, S10, S14, S17, S19, and S20 in the small subunit of ribosomal proteins, L2, L9, L11, L27, and L30 in the large subunit following incubation with high magnesium or magnesium and polyamines suggests that a conformation change in both subunits accompanies the formation of 70S monosomes. The results further demonstrate that the effect of Mg2+ on subunit conformation is mimicked when polyamines are substituted for magnesium necessary for subunit association.

  19. cDNA sequence analysis of ribosomal protein S13 gene in Plutella xylostella (Lepidoptera: Plutellidae)

    Institute of Scientific and Technical Information of China (English)

    SHAO-LIWANG; CHENG-FASHENG; CHUAN-LINGQIAO; MIYATATADASHI

    2005-01-01

    Ribosomal protein S 13 gene has been cloned and analyzed in many organisms,but there are few documents relating to insects. In this communication, the full-length cDNA sequence of ribosomal protein S 13 gene in the diamondback moth, Plutella xylostella(Lepidoptera: Plutellidae), was determined by using PCR amplification technique. The features of the ribosomal protein S 13 gene sequence were analyzed and the deduced amino acids sequence was compared with those from other insects. The results of multi-alignment of the amino acid sequences between the diamondback moth and other insect species revealed that this gene sequence is highly conserved in insects. Based on maximum likelihood method, a phylogenetic tree was constructed from 10 different species using PHYLIP software. It showed that nematode is one separate lineage and the five insect speciesbe long to another lineage, whereas those species higher than insects form the third one. The pattern of this phylogenetic tree evidently represented the evolution of different species.

  20. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  1. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790

  2. Discrimination of Burkholderia mallei/pseudomallei from Burkholderia thailandensis by sequence comparison of a fragment of the ribosomal protein S21 (rpsU) gene

    OpenAIRE

    Frickmann, H.; Chantratita, N.; Gauthier, Y. P.; Neubauer, H.; Hagen, R. M.

    2012-01-01

    Discrimination of Burkholderia (B.) pseudomallei and B. mallei from environmental B. thailandensis is challenging. We describe a discrimination method based on sequence comparison of the ribosomal protein S21 (rpsU) gene.

  3. Inhibition of protein synthesis occurring on tetracycline-resistant, TetM-protected ribosomes by a novel class of tetracyclines, the glycylcyclines.

    OpenAIRE

    Rasmussen, B A; Gluzman, Y; Tally, F P

    1994-01-01

    One of the two major mechanisms of tetracycline resistance is ribosomal protection. Of this resistance type, tet(M) is the best characterized. Although the mechanism of tet(M) resistance has not yet been fully elucidated, it has been demonstrated that ribosomes isolated from a tet(M) strain are resistant to inhibition of protein synthesis by tetracycline. A new generation of tetracycline compounds, the glycylcyclines, that are able to inhibit protein synthesis occurring on tetracycline-resist...

  4. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies

    KAUST Repository

    Wang, Yong

    2009-10-09

    Bacterial 16S ribosomal DNA (rDNA) amplicons have been widely used in the classification of uncultured bacteria inhabiting environmental niches. Primers targeting conservative regions of the rDNAs are used to generate amplicons of variant regions that are informative in taxonomic assignment. One problem is that the percentage coverage and application scope of the primers used in previous studies are largely unknown. In this study, conservative fragments of available rDNA sequences were first mined and then used to search for candidate primers within the fragments by measuring the coverage rate defined as the percentage of bacterial sequences containing the target. Thirty predicted primers with a high coverage rate (>90%) were identified, which were basically located in the same conservative regions as known primers in previous reports, whereas 30% of the known primers were associated with a coverage rate of <90%. The application scope of the primers was also examined by calculating the percentages of failed detections in bacterial phyla. Primers A519-539, E969- 983, E1063-1081, U515 and E517, are highly recommended because of their high coverage in almost all phyla. As expected, the three predominant phyla, Firmicutes, Gemmatimonadetes and Proteobacteria, are best covered by the predicted primers. The primers recommended in this report shall facilitate a comprehensive and reliable survey of bacterial diversity in metagenomic studies. © 2009 Wang, Qian.

  5. Bacterial protein toxins in human cancers.

    Science.gov (United States)

    Rosadi, Francesca; Fiorentini, Carla; Fabbri, Alessia

    2016-02-01

    Many bacteria causing persistent infections produce toxins whose mechanisms of action indicate that they could have a role in carcinogenesis. Some toxins, like CDT and colibactin, directly attack the genome by damaging DNA whereas others, as for example CNF1, CagA and BFT, impinge on key eukaryotic processes, such as cellular signalling and cell death. These bacterial toxins, together with other less known toxins, mimic carcinogens and tumour promoters. The aim of this review is to fulfil an up-to-date analysis of toxins with carcinogenic potential that have been already correlated to human cancers. Bacterial toxins-induced carcinogenesis represents an emerging aspect in bacteriology, and its significance is increasingly recognized.

  6. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders;

    2007-01-01

    The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...

  7. Protein quality control in the bacterial periplasm.

    Science.gov (United States)

    Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

    2011-01-01

    Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

  8. Characteristic differences between the promoters of intron-containing and intronless ribosomal protein genes in yeast

    Directory of Open Access Journals (Sweden)

    Vingron Martin

    2008-10-01

    Full Text Available Abstract Background More than two thirds of the highly expressed ribosomal protein (RP genes in Saccharomyces cerevisiae contain introns, which is in sharp contrast to the genome-wide five percent intron-containing genes. It is well established that introns carry regulatory sequences and that the transcription of RP genes is extensively and coordinately regulated. Here we test the hypotheses that introns are innately associated with heavily transcribed genes and that introns of RP genes contribute regulatory TF binding sequences. Moreover, we investigate whether promoter features are significantly different between intron-containing and intronless RP genes. Results We find that directly measured transcription rates tend to be lower for intron-containing compared to intronless RP genes. We do not observe any specifically enriched sequence motifs in the introns of RP genes other than those of the branch point and the two splice sites. Comparing the promoters of intron-containing and intronless RP genes, we detect differences in number and position of Rap1-binding and IFHL motifs. Moreover, the analysis of the length distribution and the folding free energies suggest that, at least in a sub-population of RP genes, the 5' untranslated sequences are optimized for regulatory function. Conclusion Our results argue against the direct involvement of introns in the regulation of transcription of highly expressed genes. Moreover, systematic differences in motif distributions suggest that RP transcription factors may act differently on intron-containing and intronless gene promoters. Thus, our findings contribute to the decoding of the RP promoter architecture and may fuel the discussion on the evolution of introns.

  9. Deletions in a ribosomal protein-coding gene are associated with tigecycline resistance in Enterococcus faecium.

    Science.gov (United States)

    Niebel, Marc; Quick, Joshua; Prieto, Ana Maria Guzman; Hill, Robert L R; Pike, Rachel; Huber, Damon; David, Miruna; Hornsey, Michael; Wareham, David; Oppenheim, Beryl; Woodford, Neil; van Schaik, Willem; Loman, Nicholas

    2015-11-01

    Enterococcus faecium is an emerging nosocomial pathogen associated with antibiotic therapy in the hospital environment. Whole-genome sequences were determined for three pairs of related, consecutively collected E. faecium clinical isolates to determine putative mechanisms of resistance to tigecycline. The first isolates (1S, 2S and 3S) in each of the three pairs were sensitive to tigecycline [minimum inhibitory concentration (MIC) of 0.125 mg/L]. Following tigecycline therapy, the second isolate in each pair demonstrated increased resistance to tigecycline. Two isolates (1R and 2R) were resistant (MIC of 8 mg/L) and one isolate (3I) demonstrated reduced susceptibility (MIC of 0.5 mg/L). Mutations distinguishing each pair of sensitive and resistant isolates were determined through alignment to a reference genome and variant detection. In addition, a de novo assembly of each isolate genome was constructed to confirm mutations. A total of 16 mutations in eleven coding sequences were determined. Mutations in the rpsJ gene, which encodes a structural protein forming part of the 30S ribosomal subunit, were detected in each of the pairs. Mutations were in regions proximal to the predicted tigecycline-binding site. Predicted amino acid substitutions were detected in 1R and 3I. The resistant strains were additionally associated with deletions of 15 nucleotides (2R) and 3 nucleotides (1R). This study confirms that amino acid substitutions in rpsJ contribute towards reduced susceptibility to tigecycline and suggests that deletions may be required for tigecycline resistance in E. faecium.

  10. Deletion of the RluD pseudouridine synthase promotes SsrA peptide tagging of ribosomal protein S7.

    Science.gov (United States)

    Schaub, Ryan E; Hayes, Christopher S

    2011-01-01

    RluD catalyses formation of three pseudouridine residues within helix 69 of the 50S ribosome subunit. Helix 69 makes important contacts with the decoding centre on the 30S subunit and deletion of rluD was recently shown to interfere with translation termination in Escherichia coli. Here, we show that deletion of rluD increases tmRNA activity on ribosomes undergoing release factor 2 (RF2)-mediated termination at UGA stop codons. Strikingly, tmRNA-mediated SsrA peptide tagging of two proteins, ribosomal protein S7 and LacI, was dramatically increased in ΔrluD cells. S7 tagging was due to a unique C-terminal peptide extension found in E. coli K-12 strains. Introduction of the rpsG gene (encoding S7) from an E. coli B strain abrogated S7 tagging in the ΔrluD background, and partially complemented the mutant's slow-growth phenotype. Additionally, exchange of the K-12 prfB gene (encoding RF2) with the B strain allele greatly reduced tagging in ΔrluD cells. In contrast to E. coli K-12 cells, deletion of rluD in an E. coli B strain resulted in no growth phenotype. These findings indicate that the originally observed rluD phenotypes result from synthetic interactions with rpsG and prfB alleles found within E. coli K-12 strains.

  11. Crystallization and preliminary crystallographic studies of L30e, a ribosomal protein from Methanocaldococcus jannaschii (MJ1044)

    International Nuclear Information System (INIS)

    The ribosomal protein (L30e) from M. jannaschii was cloned from the gene MJ1044, expressed, purified and crystallized. The crystal belongs to the primitive tetragonal space group P43 and diffracted to 1.9 Å resolution. In view of the biological significance of understanding the ribosomal machinery of both prokaryotes and eukaryotes, the L30e ribosomal protein from Methanocaldococcus jannaschii was cloned, overexpressed, purified and crystallized using the microbatch-under-oil method with the crystallization conditions 40% PEG 400, 0.1 M MES pH 6.0 and 5% PEG 3000 at 291 K. A diffraction-quality crystal (0.20 × 0.20 × 0.35 mm) was obtained that belonged to the primitive tetragonal space group P43, with unit-cell parameters a = 46.1, b = 46.1, c = 98.5 Å, and diffracted to a resolution of 1.9 Å. Preliminary calculations reveal that the asymmetric unit contains two monomers with a Matthews coefficient (VM) of 2.16 Å3 Da−1

  12. Nutritional and growth control of ribosomal protein mRNA and rRNA in Neurospora crassa.

    OpenAIRE

    Cujec, T P; Tyler, B M

    1996-01-01

    The effects of changing growth rates on the levels of 40S pre-rRNA and two r-protein mRNAs were examined to gain insight into the coordinate transcriptional regulation of ribosomal genes in the ascomycete fungus Neurospora crassa. Growth rates were varied either by altering carbon nutritional conditions, or by subjecting the isolates to inositol-limiting conditions. During carbon up- or down-shifts, r-protein mRNA levels were stoichiometrically coordinated. Changes in 40S pre-rRNA levels para...

  13. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    OpenAIRE

    Kraakman, L.S.; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-01-01

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental str...

  14. Cloning and expression of a cDNA encoding ribosomal protein S4 from Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A cDNA clone, pS4, has been isolated from a cDNA library prepared from rice anthers of about 1.0 mm in length. DNA sequence analysis and database search show that the cDNA encodes a protein which is highly homologous to eukaryotic 80S ribosomal protein subunit 4 (S4). Northern hybridization indicates that this gene expresses in all tissues analyzed although the expression level varies and it cannot be induced by mechanical wounding in leaves. Southern blot analysis demonstrates that this rice S4 gene is from a multigene family.

  15. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  16. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    OpenAIRE

    MacBeth, K J; Lee, C. A.

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase ...

  17. Down regulation of ribosomal protein mRNAs during neuronal differentiation of human NTERA2 cells.

    Science.gov (United States)

    Bévort, M; Leffers, H

    2000-10-01

    We have analysed the expression of 32 ribosomal protein (RP) mRNAs during retinoic acid induced neuronal differentiation of human NTERA2 cells. Except for a new S27 variant (S27v), all were down regulated both in selectively replated differentiated neurons and the most differentiated continuous cultures, i.e., non-replated cultures. However, the expression profiles of the individual RP mRNAs were different, most (L3, L7, L8, L10, L13, L23a, L27a, L36a, L39, P0, S2, S3, S3a, S4X, S6, S9, S12, S13, S16, S19, S20, S23, and S27a) exhibited a constant down regulation, whereas a few were either initially constant (L11, L32, S8, and S11) or up regulated (L6, L15, L17, L31, and S27y) and then down regulated. The expression of S27v remained elevated in the most differentiated continuous cultures but was down regulated in replated differentiated neurons. The down regulation of RP mRNAs was variable: the expression levels in differentiated replated neurons were between 10% (S3) and 90% (S11) of the levels in undifferentiated cells. The ratio between rRNA and RP mRNA changed during the differentiation; in differentiated neurons there were, on average, about half the number of RP mRNAs per rRNA as compared to undifferentiated cells. The expression profiles of a few translation-related proteins were also determined. EF1alpha1, EF1beta1, and EF1delta were down regulated, whereas the expression of the neuron and muscle specific EF1alpha2 increased. The reduction in the expression of RP mRNAs was coordinated with a reduction in the expression level of the proliferation marker PCNA. The expression levels of most RP mRNAs were lower in purified differentiated post-mitotic neurons than in the most differentiated continuous cultures, despite similar levels of PCNA, suggesting that both the differentiation state and the proliferative status of the cells affect the expression of RP mRNAs.

  18. A novel full-length gene of human ribosomal protein L14.22 related to human glioma

    Institute of Scientific and Technical Information of China (English)

    QI Zhen-yu; HUI Guo-zhen; LI Yao; ZHOU Zong-xiang; GU Shao-hua; XIE Yi

    2006-01-01

    Background This study was undertaken to obtain differentially expressed genes related to human glioma by cDNA microarray and the characterization of a novel full-length gene. Methods Total RNA was extracted from human glioma and normal brain tissues, and mRNA was used as a probe. The results of hybridization procedure were scanned with the computer system. The gene named 507E08clone was subsequently analyzed by northern blot, bioinformatic approach, and protein expression.Results Fifteen differentially expressed genes were obtained from human glioma by hybridization and scanning for four times. Northern blot analysis confirmed that the 507E08 clone was low expressed in human brain tissue and over expressed in human glioma tissues. The analysis of BLASTn and BLASTx showed that the 507E08clone was a novel full-length gene, which codes 203 amino acid of protein and is called human ribosomal protein 14.22 gene. The nucleotide sequence had been submitted to the GenBankTM with the accession number of AF329277. After expression in E. Coli., protein yielded a major band of apparent molecular mass 22 kDa on an SDS-PAGE gel.Conclusions cDNA microarray technology can be successfully used to identify differentially expressed genes.The novel full-length gene of human ribosomal protein 14.22 may be correlated with the development of human glioma.

  19. The structure of the eukaryotic ribosome at 3.0 Å resolution.

    Science.gov (United States)

    Ben-Shem, Adam; Garreau de Loubresse, Nicolas; Melnikov, Sergey; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2011-12-16

    Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae--including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1--at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.

  20. Slow formation of stable complexes during coincubation of minimal rRNA and ribosomal protein S4.

    Science.gov (United States)

    Mayerle, Megan; Bellur, Deepti L; Woodson, Sarah A

    2011-09-23

    Ribosomal protein S4 binds and stabilizes a five-helix junction or five-way junction (5WJ) in the 5' domain of 16S ribosomal RNA (rRNA) and is one of two proteins responsible for nucleating 30S ribosome assembly. Upon binding, both protein S4 and 5WJ reorganize their structures. We show that labile S4 complexes rearrange into stable complexes within a few minutes at 42 °C, with longer coincubation leading to an increased population of stable complexes. In contrast, prefolding the rRNA has a smaller effect on stable S4 binding. Experiments with minimal rRNA fragments show that this structural change depends only on 16S residues within the S4 binding site. SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical probing experiments showed that S4 strongly stabilizes 5WJ and the helix (H) 18 pseudoknot, which become tightly folded within the first minute of S4 binding. However, a kink in H16 that makes specific contacts with the S4 N-terminal extension, as well as a right-angle motif between H3, H4, and H18, requires a minute or more to become fully structured. Surprisingly, S4 structurally reorganizes the 530-loop and increases the flexibility of H3, which is proposed to undergo a conformational switch during 30S assembly. These elements of the S4 binding site may require other 30S proteins to reach a stable conformation. PMID:21821049

  1. The fail-safe system to rescue the stalled ribosomes in Escherichia coli.

    Science.gov (United States)

    Abo, Tatsuhiko; Chadani, Yuhei

    2014-01-01

    Translation terminates at stop codon. Without stop codon, ribosome cannot terminate translation properly and reaches and stalls at the 3'-end of the mRNA lacking stop codon. Bacterial tmRNA-mediated trans-translation releases such stalled ribosome and targets the protein product to degradation by adding specific "degradation tag." Recently two alternative ribosome rescue factors, ArfA (YhdL) and ArfB (YaeJ), have been found in Escherichia coli. These three ribosome rescue systems are different each other in terms of molecular mechanism of ribosome rescue and their activity, but they are mutually related and co-operate to maintain the translation system in shape. This suggests the biological significance of ribosome rescue.

  2. Ribosomal protein genes are highly enriched among genes with allele-specific expression in the interspecific F1 hybrid catfish.

    Science.gov (United States)

    Chen, Ailu; Wang, Ruijia; Liu, Shikai; Peatman, Eric; Sun, Luyang; Bao, Lisui; Jiang, Chen; Li, Chao; Li, Yun; Zeng, Qifan; Liu, Zhanjiang

    2016-06-01

    Interspecific hybrids provide a rich source for the analysis of allele-specific expression (ASE). In this work, we analyzed ASE in F1 hybrid catfish using RNA-Seq datasets. While the vast majority of genes were expressed with both alleles, 7-8 % SNPs exhibited significant differences in allele ratios of expression. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5420 (8.2 %) and 13,390 (7.5 %) SNPs were identified as significant ASE-SNPs, respectively. With these SNPs, a total of 1519 and 3075 ASE-genes were identified. Gene Ontology analysis revealed that genes encoding cytoplasmic ribosomal proteins (RP) were highly enriched among ASE genes. Parent-of-origin was determined for 27 and 30 ASE RP genes in the liver and gill, respectively. The results indicated that genes from both channel catfish and blue catfish were involved in ASE. However, each RP gene appeared to be almost exclusively expressed from only one parent, indicating that ribosomes in the hybrid catfish were in the "hybrid" form. Overall representation of RP transcripts among the transcriptome appeared lower in the F1 hybrid catfish than in channel catfish or blue catfish, suggesting that the "hybrid" ribosomes may work more efficiently for translation in the F1 hybrid catfish. PMID:26747053

  3. The essential nucleolar yeast protein Nop8p controls the exosome function during 60S ribosomal subunit maturation.

    Directory of Open Access Journals (Sweden)

    Marcia C T Santos

    Full Text Available The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.

  4. Immunological evidence for structural homology between Drosophila melanogaster (S14), rabbit liver (S12), Saccharomyces cerevisiae (S25), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomal proteins.

    Science.gov (United States)

    Chooi, W Y; Otaka, E

    1984-11-01

    Specific antibodies directed against Drosophila melanogaster acidic ribosomal protein S14 were used in a comparative study of eucaryotic and procaryotic ribosomes by immunoblotting and enzyme-linked immunosorbent assays. Common antigenic determinants and, thus, structural homology were found between D. melanogaster, Saccharomyces cerevisiae (S25), rabbit liver (S12), Bacillus subtilis (S6), and Escherichia coli (S6) ribosomes.

  5. Slow formation of stable complexes during coincubation of a minimal rRNA and ribosomal protein S4

    Science.gov (United States)

    Mayerle, Megan; Bellur, Deepti L.; Woodson, Sarah A.

    2011-01-01

    Ribosomal protein S4 binds and stabilizes a five-helix junction in the 5’ domain of the 16S rRNA, and is one of two proteins responsible for nucleating 30S ribosome assembly. Upon binding, both protein S4 and the five-helix junction reorganize their structures. We show that labile S4 complexes rearrange to stable complexes within a few minutes at 42°C, with longer coincubation leading to an increased population of stable complexes. In contrast, prefolding the rRNA has a smaller effect on stable S4 binding. Experiments with minimal rRNA fragments show this structural change depends only on 16S residues within the S4 binding site. SHAPE chemical-probing experiments showed that S4 strongly stabilizes the five-helix junction and helix 18 pseudoknot, which become tightly folded within the first minute of S4 binding. However, a kink in helix 16 that makes specific contacts with the S4 N-terminal extension, and a right angle motif between helices 3, 4 and 18, require a minute or more to become fully structured. Surprisingly, S4 structurally reorganizes the 530-loop and increases the flexibility of helix 3, which is proposed to undergo a conformational switch during 30S assembly. These elements of the S4 binding site may require other 30S proteins to reach a stable conformation. PMID:21821049

  6. Ribosome Assembly as Antimicrobial Target.

    Science.gov (United States)

    Nikolay, Rainer; Schmidt, Sabine; Schlömer, Renate; Deuerling, Elke; Nierhaus, Knud H

    2016-01-01

    Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors. PMID:27240412

  7. Mitochondrial ribosome assembly in health and disease.

    Science.gov (United States)

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.

  8. The Chaotic Structure of Bacterial Virulence Protein Sequences

    Directory of Open Access Journals (Sweden)

    Sevdanur Genc

    2015-01-01

    Full Text Available Bacterial virulence proteins, which have been class ified on structure of virulence, causes several diseases. For instance, Adhesins play an important role in th e host cells. They are inserted DNA sequences for a variety of virulence properties. Several important methods conducted for the prediction of bacterial virulence proteins for finding new drugs or vaccines. In this study, we propose a method for feature sele ction about classification of bacterial virulence protein. The features are constituted dir ectly from the amino acid sequence of a given protein. Amino acids form proteins, which are criti cal to life, and have many important functions in living cells. They occurring with diff erent physicochemical properties by a vector of 20 numerical values, and collected in AAIndex datab ases of known 544 indices. For all that, this approach have two steps. Firstly , the amino acid sequence of a given protein analysed with Lyapunov Exponents that they have a chaotic structure in accordance wi th the chaos theory. After that, if the results show chara cterization over the complete distribution in the phase space from the point of deterministic sys tem, it means related protein will show a chaotic structure. Empirical results revealed that generated feature v ectors give the best performance with chaotic structure of physicochemical features of amino acid s with Adhesins and non-Adhesins data sets.

  9. A novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins.

    OpenAIRE

    Stassinopoulos, I A; Belsham, G J

    2001-01-01

    Translation initiation on foot-and-mouth disease virus (FMDV) RNA occurs by a cap-independent mechanism directed by a highly structured element (approximately 435 nt) termed an internal ribosome entry site (IRES). A functional assay to identify proteins that bind to the FMDV IRES and are necessary for FMDV IRES-mediated translation initiation has been developed. In vitro-transcribed polyadenylated RNAs corresponding to the whole or part of the FMDV IRES were immobilized on oligo-dT Dynabeads ...

  10. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits.

    Science.gov (United States)

    Lambert, J M; Boileau, G; Cover, J A; Traut, R R

    1983-08-01

    Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.

  11. Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polypyrimidine-tract binding protein with internal ribosome entry sites.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Since the 1980s, epidemics of enterovirus 71 (EV71 and other enteroviruses have occurred in Asian countries and regions, causing a wide range of human diseases. No effective therapy is available for the treatment of these infections. Internal ribosome entry sites (IRESs are indispensable for the initiation of translation in enteroviruses. Several cellular factors, as well as the ribosome, are recruited to the conserved IRES during this process. Quinacrine intercalates into the RNA architecture and inhibits RNA transcription and protein synthesis, and a recent study showed that quinacrine inhibited encephalomyocarditis virus and poliovirus IRES-mediated translation in vitro without disrupting internal cellular IRES. Here, we report that quinacrine was highly active against EV71, protecting cells from EV71 infection. Replication of viral RNA, expression of viral capsid protein, and production of virus were all strongly inhibited by quinacrine. Interaction of the polypyrimidine tract-binding protein (PTB with the conserved IRES was prevented by quinacrine. Coxsackieviruses and echovirus were also inhibited by quinacrine in cultured cells. These results indicate that quinacrine may serve as a potential protective agent for use in the treatment of patients with chronic enterovirus infection.

  12. Monocyte chemotactic protein-1 gene polymorphism and spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Levent; Filik

    2010-01-01

    I read with great interest the article by Gbele et al published in issue 44 of World J Gastroenterol 2009.The results of their study indicate that-2518 Monocyte chemotactic protein-1(MCP-1)genotype AA is a risk factor for spontaneous bacterial peritonitis in patients with alcoholic cirrhosis.However,there are some items that need to be discussed.

  13. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  14. Evidence that E. coli ribosomal protein S13 has two separable functional domains involved in 16S RNA recognition and protein S19 binding.

    Science.gov (United States)

    Schwarzbauer, J; Craven, G R

    1985-09-25

    We have found that E. coli ribosomal protein S13 recognizes multiple sites on 16S RNA. However, when protein S19 is included with a mixture of proteins S4, S7, S8, S16/S17 and S20, the S13 binds to the complex with measurably greater strength and with a stoichiometry of 1.5 copies per particle. This suggests that the protein may have two functional domains. We have tested this idea by cleaving the protein into two polypeptides. It was found that one of the fragments, composed of amino acid residues 84-117, retained the capacity to bind 16S RNA at multiple sites. Protein S19 had no affect on the strength or stoichiometry of the binding of this fragment. These data suggest that S13 has a C-terminal domain primarily responsible for RNA recognition and possibly that the N-terminal region is important for association with protein S19.

  15. Ribosome recycling induces optimal translation rate at low ribosomal availability

    OpenAIRE

    Marshall, E.; Stansfield, I; Romano, M. C.

    2014-01-01

    During eukaryotic cellular protein synthesis, ribosomal translation is made more efficient through interaction between the two ends of the messenger RNA (mRNA). Ribosomes reaching the 3′ end of the mRNA can thus recycle and begin translation again on the same mRNA, the so-called ‘closed-loop’ model. Using a driven diffusion lattice model of translation, we study the effects of ribosome recycling on the dynamics of ribosome flow and density on the mRNA. We show that ribosome recycling induces ...

  16. Mapping by interspecies transformation experiments of several ribosomal protein genes near the replication origin of Bacillus subtilis chromosome.

    Science.gov (United States)

    Osawa, S; Tokui, A; Saito, H

    1978-08-17

    Bacillus subtilis 168 was transformed with DNAs from B. amyloliquefaciens K or B. licheniformis IAM 11054. These two species show a considerable difference in ribosomal proteins from B. subtilis. Analyses of the transformants indicated that the genes for 16 proteins, S3, S5, S8, S12, S17, S19, BL1, BL5, BL6, BL8, BL14, BL16, BL17, BL22, BL23 and BL25 are located in the cysA-str-spc region on B. subtilis chromosome. The genes for 10 proteins, S4, S6, S13, S16, S20, BL15, BL18, BL20, BL24 and BL28 could not be found in this region in the present experiments.

  17. Diversity and Recombination of Dispersed Ribosomal DNA and Protein Coding Genes in Microsporidia

    OpenAIRE

    Ironside, Joseph Edward

    2013-01-01

    Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and sh...

  18. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    Science.gov (United States)

    MacBeth, K J; Lee, C A

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase lose their ability to enter cultured cells. In addition, a short-lived capacity to enter cells may be important during infection so that bacterial invasiveness is limited to certain times and host sites during pathogenesis. PMID:8454361

  19. Ribosomal protein L11 is related to brain maturation during the adult phase in Apis cerana cerana (Hymenoptera, Apidae)

    Science.gov (United States)

    Meng, Fei; Lu, Wenjing; Yu, Feifei; Kang, Mingjiang; Guo, Xingqi; Xu, Baohua

    2012-05-01

    Ribosomal proteins (RPs) play pivotal roles in developmental regulation. The loss or mutation of ribosomal protein L11 ( RPL11) induces various developmental defects. However, few RPs have been functionally characterized in Apis cerana cerana. In this study, we isolated a single copy gene, AccRPL11, and characterized its connection to brain maturation. AccRPL11 expression was highly concentrated in the adult brain and was significantly induced by abiotic stresses such as pesticides and heavy metals. Immunofluorescence assays demonstrated that AccRPL11 was localized to the medulla, lobula and surrounding tissues of esophagus in the brain. The post-transcriptional knockdown of AccRPL11 gene expression resulted in a severe decrease in adult brain than in other tissues. The expression levels of other brain development-related genes, p38, ERK2, CacyBP and CREB, were also reduced. Immunofluorescence signal attenuation was also observed in AccRPL11-rich regions of the brain in ds AccRPL11-injected honeybees. Taken together, these results suggest that AccRPL11 may be functional in brain maturation in honeybee adults.

  20. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  1. cDNA Cloning, Expression and Characterization of an Allergenic 60s Ribosomal Protein of Almond (Prunus dulcis

    Directory of Open Access Journals (Sweden)

    Abolhassani Mohsen

    2009-06-01

    Full Text Available Tree nuts, including almond (prunus dulcis are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  2. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...... examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive...

  3. A ribosomal protein gene cluster is encoded in the mitochondrial DNA of Dictyostelium discoideum: UGA termination codons and similarity of gene order to Acanthamoeba castellanii.

    Science.gov (United States)

    Iwamoto, M; Pi, M; Kurihara, M; Morio, T; Tanaka, Y

    1998-04-01

    We sequenced a region of about 14.5 kb downstream from the ribosomal protein L11 gene (rpl11) in the mitochondrial DNA (54+/-2 kb) of the cellular slime mold Dictyostelium discoideum. Sequence analysis revealed that eleven ribosomal protein genes and six open reading frames (ORFs) formed a cluster arranged in the order: rpl11-orf189-rps12-rps7-rpl2-rps19-+ ++orf425-orf1740-rpl16-rpl14-orf188- rps14-rps8-rpl6-rps13-orf127-orf796. This order was very similar to that of homologous genes in Acanthamoeba castellanii mitochondrial DNA. The N-terminal region of ORF425 and the C-terminal region of ORF1740 had partial similarities to the S3 ribosomal protein of other organisms. The termination codons of rpl16 and orf188 were UGA, which has not hitherto been found in genes encoded in D. discoideum mitochondrial DNA. PMID:9560439

  4. Identification of neighbouring protein pairs in the rat liver 40-S ribosomal subunits cross-linked with dimethyl suberimidate.

    Science.gov (United States)

    Terao, K; Uchiumi, T; Kobayashi, Y; Ogata, K

    1980-01-24

    (1) The 40-S ribosomal subunits of rat liver were treated with a bifunctional cross-linking reagent, dimethyl suberimidate. Cross-linked protein-protein dimers were separated by two-dimensional acrylamide gel electrophoresis. The stained cross-linked complexes within the gel were radioiodinated without the elution of proteins from the gel and were cloven into the original monomeric protein constituents by ammonolysis. The proteins in each dimer were finally identified by two-dimensional acrylamide gel electrophoresis of the cloven monomeric proteins, followed by radioautography of the stained gel. (2) The molecular weights of cross-linked complexes were determined by SDS-polyacrylamide gel electrophoresis and were compared with those of their constituent proteins. (3) The following dimers were proposed from these results: S3-S12 (S3 or S3a-S11), S4-S12 (S3b-S11, S5-S7 (S4-S6), S5-S22 (S4-S23 or S24), S6-S8 (S5-S7), S8-S16 (S7-S18), S17-S21 (S16--S19) and S22A-S22B (S23-S24), designated according to our numbering system [1]. The designations according to the proposed uniform nomenclature [2] are described in parentheses.

  5. Cockayne syndrome protein A is a transcription factor of RNA polymerase I and stimulates ribosomal biogenesis and growth

    Science.gov (United States)

    Koch, Sylvia; Garcia Gonzalez, Omar; Assfalg, Robin; Schelling, Adrian; Schäfer, Patrick; Scharffetter-Kochanek, Karin; Iben, Sebastian

    2014-01-01

    Mutations in the Cockayne syndrome A (CSA) protein account for 20% of Cockayne syndrome (CS) cases, a childhood disorder of premature aging and early death. Hitherto, CSA has exclusively been described as DNA repair factor of the transcription-coupled branch of nucleotide excision repair. Here we show a novel function of CSA as transcription factor of RNA polymerase I in the nucleolus. Knockdown of CSA reduces pre-rRNA synthesis by RNA polymerase I. CSA associates with RNA polymerase I and the active fraction of the rDNA and stimulates re-initiation of rDNA transcription by recruiting the Cockayne syndrome proteins TFIIH and CSB. Moreover, compared with CSA deficient parental CS cells, CSA transfected CS cells reveal significantly more rRNA with induced growth and enhanced global translation. A previously unknown global dysregulation of ribosomal biogenesis most likely contributes to the reduced growth and premature aging of CS patients. PMID:24781187

  6. Characterization of the Lactobacillus casei group based on the profiling of ribosomal proteins coded in S10-spc-alpha operons as observed by MALDI-TOF MS.

    Science.gov (United States)

    Sato, Hiroaki; Torimura, Masaki; Kitahara, Maki; Ohkuma, Moriya; Hotta, Yudai; Tamura, Hiroto

    2012-10-01

    The taxonomy of the members of the Lactobacillus casei group is complicated because of their phylogenetic similarity and controversial nomenclatural status. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of ribosomal proteins coded in the S10-spc-alpha operon, termed S10-GERMS, was applied in order to classify 33 sample strains belonging to the L. casei group. A total of 14 types of ribosomal protein genes coded in the operon were first sequenced from four type strains of the L. casei group (L. casei JCM 1134(T), L. paracasei subsp. paracasei JCM 8130(T), L. paracasei subsp. tolerans JCM 1171(T), and L. rhamnosus JCM 1136(T)) together with L. casei JCM 11302, which is the former type strain of 'L. zeae'. The theoretical masses of the 14 types of ribosomal proteins used as biomarkers were classified into five types and compiled into a ribosomal protein database. The observed ribosomal proteins of each strain, identified by MALDI-TOF MS, were categorized into types based on their masses, summarized as ribosomal protein profiles, and they were used to construct a phylogenetic tree. The 33 sample strains, together with seven genome-sequenced strains, could be classified into four major clusters, which coincided precisely with the taxa of the (sub)species within the L. casei group. Three "ancient" strains, identified as L. acidophilus and L. casei, were correctly re-identified as L. paracasei subsp. paracasei by S10-GERMS. S10-GERMS would thus appear to be a powerful tool for phylogenetic characterization, with considerable potential for management of culture collections.

  7. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit.

    Directory of Open Access Journals (Sweden)

    Igor Ruvinsky

    Full Text Available BACKGROUND: Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable serine residues by alanines (rpS6(P-/-, are viable and fertile. However, phenotypic characterization of these mice and embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several cell types, as well as pancreatic beta-cell function and glucose homeostasis. A relatively passive behavior of these mice has raised the possibility that they suffer from muscle weakness, which has, indeed, been confirmed by a variety of physical performance tests. METHODOLOGY/PRINCIPAL FINDINGS: A large variety of experimental methodologies, including morphometric measurements of histological preparations, high throughput proteomic analysis, positron emission tomography (PET and numerous biochemical assays, were used in an attempt to establish the mechanism underlying the relative weakness of rpS6(P-/- muscles. Collectively, these experiments have demonstrated that the physical inferiority appears to result from two defects: a a decrease in total muscle mass that reflects impaired growth, rather than aberrant differentiation of myofibers, as well as a diminished abundance of contractile proteins; and b a reduced content of ATP and phosphocreatine, two readily available energy sources. The abundance of three mitochondrial proteins has been shown to diminish in the knockin mouse. However, the apparent energy deficiency in this genotype does not result from a lower mitochondrial mass or compromised activity of enzymes of the oxidative phosphorylation, nor does it reflect a decline in insulin-dependent glucose uptake, or diminution in storage of glycogen or triacylglycerol (TG in the muscle. CONCLUSIONS/SIGNIFICANCE: This study establishes rpS6 phosphorylation as a determinant of muscle strength through its role in regulation of myofiber growth and energy content. Interestingly, a similar

  8. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.

    Science.gov (United States)

    Sau, S; Chattoraj, P; Ganguly, T; Chanda, P K; Mandal, N C

    2008-06-01

    Bacteriophages utilize host bacterial cellular machineries for their own reproduction and completion of life cycles. The early proteins that phage synthesize immediately after the entry of their genomes into bacterial cells participate in inhibiting host macromolecular biosynthesis, initiating phage-specific replication and synthesizing late proteins. Inhibition of synthesis of host macromolecules that eventually leads to cell death is generally performed by the physical and/or chemical modification of indispensable host proteins by early proteins. Interestingly, most modified bacterial proteins were shown to take part actively in phage-specific transcription and replication. Research on phages in last nine decades has demonstrated such lethal early proteins that interact with or chemically modify indispensable host proteins. Among the host proteins inhibited by lethal phage proteins, several are not inhibited by any chemical inhibitor available today. Under the context of widespread dissemination of antibiotic-resistant strains of pathogenic bacteria in recent years, the information of lethal phage proteins and cognate host proteins could be extremely invaluable as they may lead to the identification of novel antibacterial compounds. In this review, we summarize the current knowledge about some early phage proteins, their cognate host proteins and their mechanism of action and also describe how the above interacting proteins had been exploited in antibacterial drug discovery. PMID:18537683

  9. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis

    Directory of Open Access Journals (Sweden)

    Iyer Lakshminarayan M

    2010-08-01

    Full Text Available Abstract Background Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS in non-ribosomal peptide ligation. Results Here we describe novel examples of AAtRS related proteins that are likely to be involved in the synthesis of widely distributed peptide-derived metabolites. Using sensitive sequence profile methods we show that the cyclodipeptide synthases (CDPSs are members of the HUP class of Rossmannoid domains and are likely to be highly derived versions of the class-I AAtRS catalytic domains. We also identify the first eukaryotic CDPSs in fungi and in animals; they might be involved in immune response in the latter organisms. We also identify a paralogous version of the methionyl-tRNA synthetase, which is widespread in bacteria, and present evidence using contextual information that it might function independently of protein synthesis as a peptide ligase in the formation of a peptide- derived secondary metabolite. This metabolite is likely to be heavily modified through multiple reactions catalyzed by a metal-binding cupin domain and a lysine N6 monooxygenase that are strictly associated with this paralogous methionyl-tRNA synthetase (MtRS. We further identify an analogous system wherein the MtRS has been replaced by more typical peptide ligases with the ATP-grasp or modular condensation-domains. Conclusions The prevalence of these predicted biosynthetic pathways in phylogenetically distant, pathogenic or symbiotic bacteria suggests that metabolites synthesized by them might participate in interactions with the host. More generally, these findings point to a complete spectrum of recruitment of AAtRS to various non-ribosomal biosynthetic pathways, ranging from the

  10. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1993-01-01

    RNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S r......RNA. Within the ribosome, L11 also interacts with this rRNA region, although the protection effects are subtly different and extend to nucleotide 1098. The pentameric r-protein complex L10.(L12)4 binds to an adjacent site on the rRNA, protecting riboses at positions 1043, 1046 to 1049, 1053 to 1055...... and increasing the accessibility of position 1068. The overlap in the positions affected by r-proteins L11 and L10.(L12)4, and the increase in protection between positions 1078 and 1084 when they are bound at the same time, reflect the mutually cooperative nature of their interaction with the rRNA. The data...

  11. Automatic selection of representative proteins for bacterial phylogeny

    Directory of Open Access Journals (Sweden)

    Goldberg David

    2005-05-01

    Full Text Available Abstract Background Although there are now about 200 complete bacterial genomes in GenBank, deep bacterial phylogeny remains a difficult problem, due to confounding horizontal gene transfers and other phylogenetic "noise". Previous methods have relied primarily upon biological intuition or manual curation for choosing genomic sequences unlikely to be horizontally transferred, and have given inconsistent phylogenies with poor bootstrap confidence. Results We describe an algorithm that automatically picks "representative" protein families from entire genomes for use as phylogenetic characters. A representative protein family is one that, taken alone, gives an organismal distance matrix in good agreement with a distance matrix computed from all sufficiently conserved proteins. We then use maximum-likelihood methods to compute phylogenetic trees from a concatenation of representative sequences. We validate the use of representative proteins on a number of small phylogenetic questions with accepted answers. We then use our methodology to compute a robust and well-resolved phylogenetic tree for a diverse set of sequenced bacteria. The tree agrees closely with a recently published tree computed using manually curated proteins, and supports two proposed high-level clades: one containing Actinobacteria, Deinococcus, and Cyanobacteria ("Terrabacteria", and another containing Planctomycetes and Chlamydiales. Conclusion Representative proteins provide an effective solution to the problem of selecting phylogenetic characters.

  12. Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli

    Science.gov (United States)

    Di Pietro, Fabio; Brandi, Anna; Dzeladini, Nadire; Fabbretti, Attilio; Carzaniga, Thomas; Piersimoni, Lolita; Pon, Cynthia L; Giuliodori, Anna Maria

    2013-01-01

    Protein Y (PY) is an Escherichia coli cold-shock protein which has been proposed to be responsible for the repression of bulk protein synthesis during cold adaptation. Here, we present in vivo and in vitro data which clarify the role of PY and its mechanism of action. Deletion of yfiA, the gene encoding protein PY, demonstrates that this protein is dispensable for cold adaptation and is not responsible for the shutdown of bulk protein synthesis at the onset of the stress, although it is able to partially inhibit translation. In vitro assays reveal that the extent of PY inhibition changes with different mRNAs and that this inhibition is related to the capacity of PY of binding 30S subunits with a fairly strong association constant, thus stimulating the formation of 70S monomers. Furthermore, our data provide evidence that PY competes with the other ribosomal ligands for the binding to the 30S subunits. Overall these results suggest an alternative model to explain PY function during cold shock and to reconcile the inhibition caused by PY with the active translation observed for some mRNAs during cold shock. PMID:23420694

  13. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H; Speichermann, N;

    1980-01-01

    from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates...

  14. Protein-lipid interactions in the purple bacterial reaction centre.

    Science.gov (United States)

    Jones, Michael R; Fyfe, Paul K; Roszak, Aleksander W; Isaacs, Neil W; Cogdell, Richard J

    2002-10-11

    The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.

  15. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine;

    2015-01-01

    background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations......-type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3...... are placed in the loops of L3 near the PTC. Growth data show that 9 of the 10 mutations were well accepted in E. coli, although some of them came with a fitness cost. Only one of the mutants exhibited reduced susceptibility to linezolid, while five exhibited reduced susceptibility to tiamulin....

  16. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1

    DEFF Research Database (Denmark)

    Jensen, Claus Antonio Juel; Buch, M B; Krag, T O;

    1999-01-01

    90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of th...... of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.......90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation...... of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we...

  17. TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae

    Science.gov (United States)

    Yerlikaya, Seda; Meusburger, Madeleine; Kumari, Romika; Huber, Alexandre; Anrather, Dorothea; Costanzo, Michael; Boone, Charles; Ammerer, Gustav; Baranov, Pavel V.; Loewith, Robbie

    2016-01-01

    Nutrient-sensitive phosphorylation of the S6 protein of the 40S subunit of the eukaryote ribosome is highly conserved. However, despite four decades of research, the functional consequences of this modification remain unknown. Revisiting this enigma in Saccharomyces cerevisiae, we found that the regulation of Rps6 phosphorylation on Ser-232 and Ser-233 is mediated by both TOR complex 1 (TORC1) and TORC2. TORC1 regulates phosphorylation of both sites via the poorly characterized AGC-family kinase Ypk3 and the PP1 phosphatase Glc7, whereas TORC2 regulates phosphorylation of only the N-terminal phosphosite via Ypk1. Cells expressing a nonphosphorylatable variant of Rps6 display a reduced growth rate and a 40S biogenesis defect, but these phenotypes are not observed in cells in which Rps6 kinase activity is compromised. Furthermore, using polysome profiling and ribosome profiling, we failed to uncover a role of Rps6 phosphorylation in either global translation or translation of individual mRNAs. Taking the results together, this work depicts the signaling cascades orchestrating Rps6 phosphorylation in budding yeast, challenges the notion that Rps6 phosphorylation plays a role in translation, and demonstrates that observations made with Rps6 knock-ins must be interpreted cautiously. PMID:26582391

  18. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery.

    Science.gov (United States)

    Bassler, Jochen; Klein, Isabella; Schmidt, Claudia; Kallas, Martina; Thomson, Emma; Wagner, Maria Anna; Bradatsch, Bettina; Rechberger, Gerald; Strohmaier, Heimo; Hurt, Ed; Bergler, Helmut

    2012-12-01

    The nuclear export of the preribosomal 60S (pre-60S) subunit is coordinated with late steps in ribosome assembly. Here, we show that Bud20, a conserved C(2)H(2)-type zinc finger protein, is an unrecognized shuttling factor required for the efficient export of pre-60S subunits. Bud20 associates with late pre-60S particles in the nucleoplasm and accompanies them into the cytoplasm, where it is released through the action of the Drg1 AAA-ATPase. Cytoplasmic Bud20 is then reimported via a Kap123-dependent pathway. The deletion of Bud20 induces a strong pre-60S export defect and causes synthetic lethality when combined with mutant alleles of known pre-60S subunit export factors. The function of Bud20 in ribosome export depends on a short conserved N-terminal sequence, as we observed that mutations or the deletion of this motif impaired 60S subunit export and generated the genetic link to other pre-60S export factors. We suggest that the shuttling Bud20 is recruited to the nascent 60S subunit via its central zinc finger rRNA binding domain to facilitate the subsequent nuclear export of the preribosome employing its N-terminal extension.

  19. Humoral and Cell-mediated Autoimmune Reactions to Human Acidic Ribosomal P2 Protein in Individuals Sensitized to Aspergillus fumigatus P2 Protein

    Science.gov (United States)

    Mayer, Christina; Appenzeller, Ulrich; Seelbach, Heike; Achatz, Gernot; Oberkofler, Hannes; Breitenbach, Michael; Blaser, Kurt; Crameri, Reto

    1999-01-01

    A panel of cDNAs encoding allergenic proteins was isolated from an Aspergillus fumigatus cDNA library displayed on the surface of filamentous phage. Solid phase–immobilized serum immunoglobulin E (IgE) from A. fumigatus–allergic individuals was used to enrich phage displaying IgE-binding molecules. One of the cDNAs encoded a 11.1-kD protein that was identified as acidic ribosomal phosphoprotein type 2 (P2 protein). The allergen, formally termed rAsp f 8, shares >62% sequence identity and >84% sequence homology to corresponding eukaryotic P2 proteins, including human P2 protein. The sequences encoding human and fungal P2 protein were subcloned, expressed in Escherichia coli as His6-tagged fusion proteins, and purified by Ni2+–chelate affinity chromatography. Both recombinant P2 proteins were recognized by IgE antibodies from allergic individuals sensitized to the A. fumigatus P2 protein and elicited strong type 1–specific skin reactions in these individuals. Moreover, human and fungal P2 proteins induced proliferative responses in peripheral blood mononuclear cells of A. fumigatus– allergic subjects sensitized to the fungal P2 protein. These data provide strong evidence for in vitro and in vivo humoral and cell-mediated autoreactivity to human P2 protein in patients suffering from chronic A. fumigatus allergy. PMID:10224291

  20. The structure of the archaebacterial ribosomal protein S7 and its possible interaction with 16S rRNA.

    Science.gov (United States)

    Hosaka, H; Yao, M; Kimura, M; Tanaka, I

    2001-11-01

    Ribosomal protein S7 is one of the ubiquitous components of the small subunit of the ribosome. It is a 16S rRNA-binding protein positioned close to the exit of the tRNA, and it plays a role in initiating assembly of the head of the 30S subunit. Previous structural analyses of eubacterial S7 have shown that it has a stable alpha-helix core and a flexible beta-arm. Unlike these eubacterial proteins, archaebacterial or eukaryotic S7 has an N-terminal extension of approximately 60 residues. The crystal structure of S7 from archaebacterium Pyrococcus horikoshii (PhoS7) has been determined at 2.1 A resolution. The final model of PhoS7 consists of six major alpha-helices, a short 3(10)-helix and two beta-stands. The major part (residues 18-45) of the N-terminal extension of PhoS7 reinforces the alpha-helical core by well-extended hydrophobic interactions, while the other part (residues 46-63) is not visible in the crystal and is possibly fixed only by interacting with 16S rRNA. These differences in the N-terminal extension as well as in the insertion (between alpha1 and alpha2) of the archaebacterial S7 structure from eubacterial S7 are such that they do not necessitate a major change in the structure of the currently available eubacterial 16S rRNA. Some of the inserted chains might pass through gaps formed by helices of the 16S rRNA.

  1. An evolved ribosome-inactivating protein targets and kills human melanoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Green David E

    2010-02-01

    Full Text Available Abstract Background Few treatment options exist for patients with metastatic melanoma, resulting in poor prognosis. One standard treatment, dacarbazine (DTIC, shows low response rates ranging from 15 to 25 percent with an 8-month median survival time. The development of targeted therapeutics with novel mechanisms of action may improve patient outcome. Ribosome-inactivating proteins (RIPs such as Shiga-like Toxin 1 (SLT-1 represent powerful scaffolds for developing selective anticancer agents. Here we report the discovery and properties of a single chain ribosome-inactivating protein (scRIP derived from the cytotoxic A subunit of SLT-1 (SLT-1A, harboring the 7-amino acid peptide insertion IYSNKLM (termed SLT-1AIYSNKLM allowing the toxin variant to selectively target and kill human melanoma cells. Results SLT-1AIYSNKLM was able to kill 7 of 8 human melanoma cell lines. This scRIP binds to 518-A2 human melanoma cells with a dissociation constant of 18 nM, resulting in the blockage of protein synthesis and apoptosis in such cells. Biodistribution and imaging studies of radiolabeled SLT-1AIYSNKLM administered intravenously into SCID mice bearing a human melanoma xenograft indicate that SLT-1AIYSNKLM readily accumulates at the tumor site as opposed to non-target tissues. Furthermore, the co-administration of SLT-1AIYSNKLM with DTIC resulted in tumor regression and greatly increased survival in this mouse xenograft model in comparison to DTIC or SLT-1AIYSNKLM treatment alone (115 day median survival versus 46 and 47 days respectively; P values IYSNKLM is stable in serum and its intravenous administration resulted in modest immune responses following repeated injections in CD1 mice. Conclusions These results demonstrate that the evolution of a scRIP template can lead to the discovery of novel cancer cell-targeted compounds and in the case of SLT-1AIYSNKLM can specifically kill human melanoma cells in vitro and in vivo.

  2. A single missense mutation in a coiled-coil domain of Escherichia coli ribosomal protein S2 confers a thermosensitive phenotype that can be suppressed by ribosomal protein S1.

    Science.gov (United States)

    Aseev, Leonid V; Chugunov, Anton O; Efremov, Roman G; Boni, Irina V

    2013-01-01

    Ribosomal protein S2 is an essential component of translation machinery, and its viable mutated variants conferring distinct phenotypes serve as a valuable tool in studying the role of S2 in translation regulation. One of a few available rpsB mutants, rpsB1, shows thermosensitivity and ensures enhanced expression of leaderless mRNAs. In this study, we identified the nature of the rpsB1 mutation. Sequencing of the rpsB1 allele revealed a G-to-A transition in the part of the rpsB gene which encodes a coiled-coil domain of S2. The resulting E132K substitution resides in a highly conserved site, TKKE, a so-called N-terminal capping box, at the beginning of the second alpha helix. The protruding coiled-coil domain of S2 is known to provide binding with 16S rRNA in the head of the 30S subunit and, in addition, to interact with a key mRNA binding protein, S1. Molecular dynamics simulations revealed a detrimental impact of the E132K mutation on the coiled-coil structure and thereby on the interactions between S2 and 16S rRNA, providing a clue for the thermosensitivity of the rpsB1 mutant. Using a strain producing a leaderless lacZ transcript from the chromosomal lac promoter, we demonstrated that not only the rpsB1 mutation generating S2/S1-deficient ribosomes but also the rpsA::IS10 mutation leading to partial deficiency in S1 alone increased translation efficiency of the leaderless mRNA by about 10-fold. Moderate overexpression of S1 relieved all these effects and, moreover, suppressed the thermosensitive phenotype of rpsB1, indicating the role of S1 as an extragenic suppressor of the E132K mutation.

  3. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  4. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    International Nuclear Information System (INIS)

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  5. Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency.

    Science.gov (United States)

    Badhai, Jitendra; Fröjmark, Anne-Sophie; Razzaghian, Hamid Reza; Davey, Edward; Schuster, Jens; Dahl, Niklas

    2009-06-18

    Ribosomal protein S19 (RPS19) is mutated in patients with Diamond-Blackfan anemia (DBA). We hypothesized that decreased levels of RPS19 lead to a coordinated down-regulation of other ribosomal (r-)proteins at the subunit level. We show that small interfering RNA (siRNA) knock-down of RPS19 results in a relative decrease of small subunit (SSU) r-proteins (S20, S21 and S24) when compared to large subunit (LSU) r-proteins (L3, L9, L30 and L38). This correlates with a relative decrease in 18S rRNA with respect to 28S rRNA. The r-protein mRNA levels remain relatively unchanged indicating a post transcriptional regulation of r-proteins at the level of subunit formation.

  6. Single protein omission reconstitution studies of tetracycline binding to the 30S subunit of Escherichia coli ribosomes

    International Nuclear Information System (INIS)

    In previous work the authors showed that on photolysis of Escherichia coli ribosomes in the presence of [3H]tetracycline (TC) the major protein labeled is S7, and they presented strong evidence that such labeling takes place from a high-affinity site related to the inhibitory action of TC. In this work they use single protein omission reconstitution (SPORE) experiments to identify those proteins that are important for high-affinity TC binding to the 30S subunit, as measured by both cosedimentation and filter binding assays. With respect to both sedimentation coefficients and relative Phe-tRNAPhe binding, the properties of the SPORE particles they obtain parallel very closely those measured earlier, with the exception of the SPORE particle lacking S13. A total of five proteins, S3, S7, S8, S14, and S19, are shown to be important for TC binding, with the largest effects seen on omission of proteins S7 and S14. Determination of the protein compositions of the corresponding SPORE particles demonstrates that the observed effects are, for the most part, directly attributable to the omission of the given protein rather than reflecting an indirect effect of omitting one protein on the uptake of another. A large body of evidence supports the notion that four of these proteins, S3, S7, S14, and S19, are included, along with 16S rRNA bases 920-1,396, in one of the major domains of the 30S subunit. The results support the conclusion that the structure of this domain is important for the binding of TC and that, within this domain, TC binds directly to S7

  7. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.;

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  8. Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome.

    Science.gov (United States)

    Kumar, Veerendra; Ero, Rya; Ahmed, Tofayel; Goh, Kwok Jian; Zhan, Yin; Bhushan, Shashi; Gao, Yong-Gui

    2016-06-17

    Elongation factor 4 (EF4) is a member of the family of ribosome-dependent translational GTPase factors, along with elongation factor G and BPI-inducible protein A. Although EF4 is highly conserved in bacterial, mitochondrial, and chloroplast genomes, its exact biological function remains controversial. Here we present the cryo-EM reconstitution of the GTP form of EF4 bound to the ribosome with P and E site tRNAs at 3.8-Å resolution. Interestingly, our structure reveals an unrotated ribosome rather than a clockwise-rotated ribosome, as observed in the presence of EF4-GDP and P site tRNA. In addition, we also observed a counterclockwise-rotated form of the above complex at 5.7-Å resolution. Taken together, our results shed light on the interactions formed between EF4, the ribosome, and the P site tRNA and illuminate the GTPase activation mechanism at previously unresolved detail. PMID:27137929

  9. A novel mutation of ribosomal protein S10 gene in a Japanese patient with diamond-Blackfan anemia.

    Science.gov (United States)

    Yazaki, Makoto; Kamei, Michi; Ito, Yasuhiko; Konno, Yuki; Wang, Runan; Toki, Tsutomu; Ito, Etsuro

    2012-05-01

    Diamond-Blackfan anemia (DBA) is an inherited bone marrow disease. The condition is characterized by anemia that usually presents during infancy or early childhood and congenital malformation. Several reports show that DBA is associated with mutations in the ribosomal protein (RP) genes, RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, and RPS7. Recently, 5 and 12 patients with mutations in RPS10 and RPS26, respectively, were identified in a cohort of 117 DBA probands. Therefore, we screened the DBA patients who were negative for mutations in these DBA genes for mutations in RPS10 and RPS26. The present case report describes the identification of the first Japanese DBA patient with a novel mutation in RPS10.

  10. Prokaryote phylogeny based on ribosomal proteins and aminoacyl tRNA synthetases by using the compositional distance approach

    Institute of Scientific and Technical Information of China (English)

    WEI; Haibin; QI; Ji; HAO; Bailin

    2004-01-01

    In order to show that the newly developed K-string composition distance method,based on counting oligopeptide frequencies,for inferring phylogenetic relations of prokaryotes works equally well without requiring the whole proteome data,we used all ribosomal proteins and the set of aminoacyl tRNA synthetases for each species.The latter group has been known to yield inconsistent trees if used individually.Our trees are obtained without making any sequence alignment.Altogether 16 Archaea,105 Bacteria and 2 Eucarya are represented on the tree.Most of the lower branchings agree well with the latest,2003,Outline of the second edition of the Bergey's Manual of Systematic Bacteriology and the trees also suggest some relationships among higher taxa.

  11. Ribosome recycling induces optimal translation rate at low ribosomal availability.

    Science.gov (United States)

    Marshall, E; Stansfield, I; Romano, M C

    2014-09-01

    During eukaryotic cellular protein synthesis, ribosomal translation is made more efficient through interaction between the two ends of the messenger RNA (mRNA). Ribosomes reaching the 3' end of the mRNA can thus recycle and begin translation again on the same mRNA, the so-called 'closed-loop' model. Using a driven diffusion lattice model of translation, we study the effects of ribosome recycling on the dynamics of ribosome flow and density on the mRNA. We show that ribosome recycling induces a substantial increase in ribosome current. Furthermore, for sufficiently large values of the recycling rate, the lattice does not transition directly from low to high ribosome density, as seen in lattice models without recycling. Instead, a maximal current phase becomes accessible for much lower values of the initiation rate, and multiple phase transitions occur over a wide region of the phase plane. Crucially, we show that in the presence of ribosome recycling, mRNAs can exhibit a peak in protein production at low values of the initiation rate, beyond which translation rate decreases. This has important implications for translation of certain mRNAs, suggesting that there is an optimal concentration of ribosomes at which protein synthesis is maximal, and beyond which translational efficiency is impaired. PMID:25008084

  12. Involvement of the N Terminus of Ribosomal Protein L11 in Regulation of the RelA Protein of Escherichia coli†

    OpenAIRE

    Yang, Xiaoming; Ishiguro, Edward E.

    2001-01-01

    Amino acid-deprived rplK (previously known as relC) mutants of Escherichia coli cannot activate (p)ppGpp synthetase I (RelA) and consequently exhibit relaxed phenotypes. The rplK gene encodes ribosomal protein L11, suggesting that L11 is involved in regulating the activity of RelA. To investigate the role of L11 in the stringent response, a derivative of rplK encoding L11 lacking the N-terminal 36 amino acids (designated ′L11) was constructed. Bacteria overexpressing ′L11 exhibited a relaxed ...

  13. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  14. Characterisation of ribosomal proteins from HeLa and Krebs II mouse ascites tumor cells by different two-dimensional polyacrylamide gel electrophoresis techniques

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H

    1978-01-01

    Electrophoresis of ribosomal proteins according to Kaltschmidt and Wittmann, 1970a, b (pH 8.6/pH 4.5 urea system) yielded 29 proteins for the small subunits and 35 and 37 proteins for the large subunits of Krebs II ascites and HeLa ribosomes, respectively. Analysis of the proteins according...... to a modified technique by Mets and Bogorad (1974) (pH 4.5/pH 8.6 SDS system) revealed 28 and 29 proteins in the small subunits and 37 and 38 proteins in the large subunits of Krebs II ascites and HeLa ribosomes. The molecular weights of the individual proteins were determined by: 1. "three-dimensional" gel...... electrophoresis; 2. two-dimensional gel electrophoresis at pH 4.K/pH 8.6 in SDS. The molecular weights for 40S proteins ranged from 10,000 to 39,000 dalton (number average molecular weight: 21,000). The molecular weights for the 60S proteins ranged from 14,000 to 44,000 dalton (number average molecular weight: 23...

  15. Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system.

    Science.gov (United States)

    De Graeve, Stijn; Marinelli, Sarah; Stolz, Frank; Hendrix, Jelle; Vandamme, Jurgen; Engelborghs, Yves; Van Dijck, Patrick; Thevelein, Johan M

    2013-11-01

    Accumulation of aggregated forms of αSyn (α-synuclein) into Lewy bodies is a known hallmark associated with neuronal cell death in Parkinson's disease. When expressed in the yeast Saccharomyces cerevisiae, αSyn interacts with the plasma membrane, forms inclusions and causes a concentration-dependent growth defect. We have used a yeast mutant, cog6Δ, which is particularly sensitive to moderate αSyn expression, for screening a mouse brain-specific cDNA library in order to identify mammalian proteins that counteract αSyn toxicity. The mouse ribosomal and chaperone protein RPS3A was identified as a suppressor of αSyn [WT (wild-type) and A53T] toxicity in yeast. We demonstrated that the 50 N-terminal amino acids are essential for this function. The yeast homologues of RPS3A were not effective in suppressing the αSyn-induced growth defect, illustrating the potential of our screening system to identify modifiers that would be missed using yeast gene overexpression as the first screening step. Co-expression of mouse RPS3A delayed the formation of αSyn-GFP inclusions in the yeast cells. The results of the present study suggest that the recently identified extraribosomal chaperonin function of RPS3A also acts on the neurodegeneration-related protein αSyn and reveal a new avenue for identifying promising candidate mammalian proteins involved in αSyn functioning.

  16. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  17. Ribosomal Antibiotics: Contemporary Challenges.

    Science.gov (United States)

    Auerbach-Nevo, Tamar; Baram, David; Bashan, Anat; Belousoff, Matthew; Breiner, Elinor; Davidovich, Chen; Cimicata, Giuseppe; Eyal, Zohar; Halfon, Yehuda; Krupkin, Miri; Matzov, Donna; Metz, Markus; Rufayda, Mruwat; Peretz, Moshe; Pick, Ophir; Pyetan, Erez; Rozenberg, Haim; Shalev-Benami, Moran; Wekselman, Itai; Zarivach, Raz; Zimmerman, Ella; Assis, Nofar; Bloch, Joel; Israeli, Hadar; Kalaora, Rinat; Lim, Lisha; Sade-Falk, Ofir; Shapira, Tal; Taha-Salaime, Leena; Tang, Hua; Yonath, Ada

    2016-01-01

    Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of "pathogen-specific antibiotics," in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification. PMID:27367739

  18. Structural insights into ribosome translocation.

    Science.gov (United States)

    Ling, Clarence; Ermolenko, Dmitri N

    2016-09-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. Recent structural and single-molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the 'head' domain of small ribosomal subunit undergoes forward- and back-swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF-G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF-G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620-636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. PMID:27117863

  19. The stimulation of Escherichia coli stringent factor-dependent synthesis of guanosine 3',5'-polyphosphate [(p)ppGpp] by rat liver ribosomal proteins.

    Science.gov (United States)

    Fehr, S; Lin, A; Wool, I G; Richter, D

    1979-11-01

    The effect of groups of proteins from rat liver ribosomes on the Escherichia coli stringent factor-catalyzed synthesis of (p)ppGpp was tested. Most groups were capable of supporting (p)ppGpp synthesis; the exceptions were A40, B140, B240 and B160 which contain proteins which are relatively less basic than those in the active groups. The capacity of 30 individual rat liver ribosomal proteins to activate stringent factor was assessed; most sustained the synthesis of (p)ppGpp. Proteins S12, S21, L12, P1, and P2 (which are acidic or relatively acid) had no activity; proteins S6, S8, and L3 were the most active: the others had moderate activity.

  20. Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers

    Directory of Open Access Journals (Sweden)

    Mariën J

    2008-03-01

    Full Text Available Abstract Background In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an unusual positioning of Collembola, suggested that the hexapod body plan evolved at least twice. Here, we re-evaluate the position of Collembola using ribosomal protein gene sequences. Results In total 48 ribosomal proteins were obtained for the collembolan Folsomia candida. These 48 sequences were aligned with sequence data on 35 other ecdysozoans. Each ribosomal protein gene was available for 25% to 86% of the taxa. However, the total sequence information was unequally distributed over the taxa and ranged between 4% and 100%. A concatenated dataset was constructed (5034 inferred amino acids in length, of which ~66% of the positions were filled. Phylogenetic tree reconstructions, using Maximum Likelihood, Maximum Parsimony, and Bayesian methods, resulted in a topology that supports monophyly of Hexapoda. Conclusion Although ribosomal proteins in general may not evolve independently, they once more appear highly valuable for phylogenetic reconstruction. Our analyses clearly suggest that Hexapoda is monophyletic. This underpins the inconsistency between nuclear and mitochondrial datasets when analyzing pancrustacean relationships. Caution is needed when applying mitochondrial markers in deep phylogeny.

  1. Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events

    DEFF Research Database (Denmark)

    Jackers, P; Clausse, N; Fernandez, M;

    1996-01-01

    A cDNA coding for a 37 kDa polypeptide has been identified in several species as both the potential precursor of the 67 kDa laminin receptor (37LRP) and a putative ribosome-associated protein (p40). Interestingly, increased expression of this polypeptide (37LRP/p40) is consistently observed...

  2. Chaperoning ribosome assembly

    OpenAIRE

    Karbstein, Katrin

    2010-01-01

    Chaperones help proteins fold in all cellular compartments, and many associate directly with ribosomes, capturing nascent chains to assist their folding and prevent aggregation. In this issue, new data from Koplin et al. (2010. J. Cell Biol. doi: 10.1083/jcb.200910074) and Albanèse et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201001054) suggest that in addition to promoting protein folding, the chaperones ribosome-associated complex (RAC), nascent chain–associated complex (NAC), and Jjj1 also...

  3. The Structure of Aquifex aeolicus Ribosomal Protein S8 Reveals a Unique Subdomain That Contributes to Extremely-Tight Association With 16S rRNA

    OpenAIRE

    Menichelli, Elena; Edgcomb, Stephen P.; Recht, Michael I.; Williamson, James R.

    2011-01-01

    The assembly of ribonucleoprotein complexes occurs in a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from the hyperthemophilic bacterium Aquifex aeolicus (AS8) is unique in that there is a 41 residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually-high affinity for the 16S ribosomal RNA (rRNA), characterized by a picomolar dissociation constant that is a...

  4. Quinupristin-Dalfopristin Resistance in Streptococcus pneumoniae: Novel L22 Ribosomal Protein Mutation in Two Clinical Isolates from the SENTRY Antimicrobial Surveillance Program

    OpenAIRE

    Ronald N Jones; Farrell, David J.; Morrissey, Ian

    2003-01-01

    Resistance to quinupristin-dalfopristin (Q/D) among gram-positive cocci has been very uncommon. Two clinical isolates among 8,837 (0.02%) Streptococcus pneumoniae isolates were discovered in 2001 to 2002 with Q/D MICs of 4 μg/ml. Each had a 5-amino-acid tandem duplication (RTAHI) in the L22 ribosomal protein gene (rplV) preventing synergistic ribosomal binding of the streptogramin combination. Similar gene duplication has been reported in Q/D-resistant Staphylococcus aureus.

  5. Characterization of the diatomite binding domain in the ribosomal protein L2 from E. coli and functions as an affinity tag.

    Science.gov (United States)

    Li, Junhua; Zhang, Yang; Yang, Yanjun

    2013-03-01

    The ribosomal protein L2, a constituent protein of the 50S large ribosomal subunit, can be used as Si-tag using silica particles for the immobilization and purification of recombinant proteins (Ikeda et al. (Protein Expr Purif 71:91-95, 2010); Taniguchi et al. (Biotechnol Bioeng 96:1023-1029, 2007)). We applied a diatomite powder, a sedimentary rock mainly composed with diatoms silica, as an affinity solid phase and small ubiquitin-like modifier (SUMO) technology to release a target protein from the solid phase. The L2 (203-273) was the sufficient region for the adsorption of ribosomal protein L2 on diatomite. We comparatively analyzed the different adsorption properties of the two deleted proteins of L2 (L2 (1-60, 203-273) and L2 (203-273)) on diatomite. The time required to reach adsorption equilibrium of L2 (203-273) fusion protein on diatomite was shorter than that of L2 (1-60, 203-273) fusion protein. The maximum adsorption capacity of L2 (203-273) fusion protein was larger than that of L2 (1-60, 203-273) fusion protein. In order to study whether the L2 (203-273) can function as an affinity purification tag, SUMO was introduced as one specific protease cleavage site between the target protein and the purification tags. The L2 (203-273) and SUMO fusion protein purification method was tested using enhanced green fluorescent protein as a model protein; the result shows that the purification performance of this affinity purification method was good. The strong adsorption characteristic of L2 (203-273) on diatomite also provides a potential protein fusion tag for the immobilization of enzyme.

  6. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata.

    Science.gov (United States)

    Hou, Xiaomin; Meehan, Edward J; Xie, Jieming; Huang, Mingdong; Chen, Minghuang; Chen, Liqing

    2008-10-01

    A novel type 1 ribosome-inactivating protein (RIP) designated cucurmosin was isolated from the sarcocarp of Cucurbita moschata (pumpkin). Besides rRNA N-glycosidase activity, cucurmosin exhibits strong cytotoxicities to three cancer cell lines of both human and murine origins, but low toxicity to normal cells. Plant genomic DNA extracted from the tender leaves was amplified by PCR between primers based on the N-terminal sequence and X-ray sequence of the C-terminal. The complete mature protein sequence was obtained from N-terminal protein sequencing and partial DNA sequencing, confirmed by high resolution crystal structure analysis. The crystal structure of cucurmosin has been determined at 1.04A, a resolution that has never been achieved before for any RIP. The structure contains two domains: a large N-terminal domain composed of seven alpha-helices and eight beta-strands, and a smaller C-terminal domain consisting of three alpha-helices and two beta-strands. The high resolution structure established a glycosylation pattern of GlcNAc(2)Man(3)Xyl. Asn225 was identified as a glycosylation site. Residues Tyr70, Tyr109, Glu158 and Arg161 define the active site of cucurmosin as an RNA N-glycosidase. The structural basis of cytotoxicity difference between cucurmosin and trichosanthin is discussed.

  7. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaomin; Meehan, Edward J.; Xie, Jieming; Huang, Mingdong; Chen, Minghuang; Chen, Liqing (UAH); (Fujian); (Chinese Aca. Sci.)

    2008-10-27

    A novel type 1 ribosome-inactivating protein (RIP) designated cucurmosin was isolated from the sarcocarp of Cucurbita moschata (pumpkin). Besides rRNA N-glycosidase activity, cucurmosin exhibits strong cytotoxicities to three cancer cell lines of both human and murine origins, but low toxicity to normal cells. Plant genomic DNA extracted from the tender leaves was amplified by PCR between primers based on the N-terminal sequence and X-ray sequence of the C-terminal. The complete mature protein sequence was obtained from N-terminal protein sequencing and partial DNA sequencing, confirmed by high resolution crystal structure analysis. The crystal structure of cucurmosin has been determined at 1.04 {angstrom}, a resolution that has never been achieved before for any RIP. The structure contains two domains: a large N-terminal domain composed of seven {alpha}-helices and eight {beta}-strands, and a smaller C-terminal domain consisting of three {alpha}-helices and two {beta}-strands. The high resolution structure established a glycosylation pattern of GlcNAc{sub 2}Man3Xyl. Asn225 was identified as a glycosylation site. Residues Tyr70, Tyr109, Glu158 and Arg161 define the active site of cucurmosin as an RNA N-glycosidase. The structural basis of cytotoxicity difference between cucurmosin and trichosanthin is discussed.

  8. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  9. BDP-30, a systemic resistance inducer from Boerhaavia diffusa L., suppresses TMV infection, and displays homology with ribosome- inactivating proteins

    Indian Academy of Sciences (India)

    Shalini Srivastava; H N Verma; Aparana Srivastava; Vivek Prasad

    2015-03-01

    Root extract of Boerhaavia diffusa L. induced systemic resistance in tobacco against Tobacco mosaic virus. A 30 kDa protein was isolated as the active component, called BDP-30 on the basis of the molecular weight and source plant. BDP-30, a glycoprotein, was found to be temperature and protease resistant. It was basic, possessing a pI greater than 9.0. In-gel proteolytic digestion of BDP-30 generated two peptides that possessed the amino acid sequence KLYDIPPLR and KVTLPYSGNYER by LC/MS/MS. Both peptides shared absolute sequence identity with trichosanthin, a ribosome-inactivating protein from Trichosanthes kirilowii, and a 78% and 100% homology respectively with an RIP from Bryonia dioica, bryodin. Further, effort was made to look at the fate of TMV in induced resistant Nicotiana tabacum cv. Xanthi, a systemic host of the virus, at specified days after inoculation in control and treated plants. TMV coat protein (CP) was detected by immunoblot 7 days post inoculation up to 21 days in the control set, but not in treated resistant plants. TMV RNA was detected by RT-PCR using TMV-CP specific primers. Resistant tobacco did not show presence of TMV RNA up to 21 days of inoculation. This suggests that BDP-30 may be suppressing TMV replication.

  10. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia.

    Science.gov (United States)

    Menezes, Minal J; Guo, Yiran; Zhang, Jianguo; Riley, Lisa G; Cooper, Sandra T; Thorburn, David R; Li, Jiankang; Dong, Daoyuan; Li, Zhijun; Glessner, Joseph; Davis, Ryan L; Sue, Carolyn M; Alexander, Stephen I; Arbuckle, Susan; Kirwan, Paul; Keating, Brendan J; Xu, Xun; Hakonarson, Hakon; Christodoulou, John

    2015-04-15

    Functional defects of the mitochondrial translation machinery, as a result of mutations in nuclear-encoded genes, have been associated with combined oxidative phosphorylation (OXPHOS) deficiencies. We report siblings with congenital sensorineural deafness and lactic acidemia in association with combined respiratory chain (RC) deficiencies of complexes I, III and IV observed in fibroblasts and liver. One of the siblings had a more severe phenotype showing progressive hepatic and renal failure. Whole-exome sequencing revealed a homozygous mutation in the gene encoding mitochondrial ribosomal protein S7 (MRPS7), a c.550A>G transition that encodes a substitution of valine for a highly conserved methionine (p.Met184Val) in both affected siblings. MRPS7 is a 12S ribosomal RNA-binding subunit of the small mitochondrial ribosomal subunit, and is required for the assembly of the small ribosomal subunit. Pulse labeling of mitochondrial protein synthesis products revealed impaired mitochondrial protein synthesis in patient fibroblasts. Exogenous expression of wild-type MRPS7 in patient fibroblasts rescued complexes I and IV activities, demonstrating the deleterious effect of the mutation on RC function. Moreover, reduced 12S rRNA transcript levels observed in the patient's fibroblasts were also restored to normal levels by exogenous expression of wild-type MRPS7. Our data demonstrate the pathogenicity of the identified MRPS7 mutation as a novel cause of mitochondrial RC dysfunction, congenital sensorineural deafness and progressive hepatic and renal failure.

  11. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    Science.gov (United States)

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. PMID:27329527

  12. Phosphorylation of ribosomal protein S6 in avian sarcoma virus-transformed chicken embryo fibroblasts.

    OpenAIRE

    Decker, S.

    1981-01-01

    Protein phosphorylation was examined in whole cell extracts from normal and avian sarcoma virus-transformed chicken embryo fibroblasts. The addition of serum or epidermal growth factor to serum-starved normal cells resulted in increased 32P labeling of a Mr 30,000 protein. In extracts from cells transformed by a temperature-sensitive mutant of Schmidt-Ruppin virus, subgroup A, and grown at the permissive temperature, the protein was phosphorylated regardless of serum starvation. This Mr 30,00...

  13. A Novel Method for Simultaneous Production of Two Ribosome-Inactivating Proteins, α-MMC and MAP30, from Momordica charantia L

    OpenAIRE

    Yao Meng; Sen Lin; Shuangfeng Liu; Xiang Fan; Gangrui Li; Yanfa Meng

    2014-01-01

    Alpha-momorcharin (α-MMC) and momordica anti-HIV protein (MAP30) from Momordica charantia L. have been confirmed to possess anti-tumor and anti-virus activities. Traditional purification methods of these two ribosome-inactivating proteins (RIPs) were separate which was time consuming and cost effective as well as low efficient. In order to obtain sufficient samples for researches, a strategy combining ion-exchange and gel filtration chromatography was developed and optimized in this study. Us...

  14. Double subgenomic alphaviruses expressing multiple fluorescent proteins using a Rhopalosiphum padi virus internal ribosome entry site element.

    Directory of Open Access Journals (Sweden)

    Michael R Wiley

    Full Text Available Double subgenomic Sindbis virus (dsSINV vectors are widely used for the expression of proteins, peptides, and RNA sequences. These recombinant RNA viruses permit high level expression of a heterologous sequence in a wide range of animals, tissues, and cells. However, the alphavirus genome structure and replication strategy is not readily amenable to the expression of more than one heterologous sequence. The Rhopalosiphum padi virus (RhPV genome contains two internal ribosome entry site (IRES elements that mediate cap-independent translation of the virus nonstructural and structural proteins. Most IRES elements that have been characterized function only in mammalian cells but previous work has shown that the IRES element present in the 5' untranslated region (UTR of the RhPV genome functions efficiently in mammalian, insect, and plant systems. To determine if the 5' RhPV IRES element could be used to express more than one heterologous sequence from a dsSINV vector, RhPV 5' IRES sequences were placed between genes for two different fluorescent marker proteins in the dsSINV, TE/3'2J/mcs. While mammalian and insect cells infected with recombinant viruses containing the RhPV sequences expressed both fluorescent marker proteins, only single marker proteins were routinely observed in cells infected with dsSINV vectors in which the RhPV IRES had been replaced by a luciferase fragment, an antisense RhPV IRES, or no intergenic sequence. Thus, we report development of a versatile tool for the expression of multiple sequences in diverse cell types.

  15. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    Science.gov (United States)

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression. PMID:26837218

  16. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots.

    Science.gov (United States)

    Park, Sang-Wook; Lawrence, Christopher B; Linden, James C; Vivanco, Jorge M

    2002-09-01

    Ribosome-inactivating proteins are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a novel type I ribosome-inactivating protein, termed PAP-H, was purified from Agrobacterium rhizogenes-transformed hairy roots of pokeweed (Phytolacca americana). The protein was purified by anion- and cation-exchange chromatography. PAP-H has a molecular mass of 29.5 kD as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its isoelectric point was determined to be 7.8. Yeast (Saccharomyces cerevisiae) ribosomes incubated with PAP-H released the 360-nucleotide diagnostic fragment from the 26S rRNA upon aniline treatment, an indication of its ribosome-inactivating activity. Using immunofluorescence microscopy, PAP-H was found to be located in the cell walls of hairy roots and root border cells. PAP-H was determined to be constitutively secreted as part of the root exudates, with its secretion enhanced by a mechanism mediated by ethylene induction. Purified PAP-H did not show in vitro antifungal activity against soil-borne fungi. In contrast, root exudates containing PAP-H as well as additional chitinase, beta-1,3-glucanase, and protease activities did inhibit the growth of soil-borne fungi. We found that PAP-H depurinates fungal ribosomes in vitro and in vivo, suggesting an additive mechanism that enables PAP-H to penetrate fungal cells.

  17. Sepsis and development impede muscle protein synthesis in neonatal pigs by different ribosomal mechanisms

    Science.gov (United States)

    In muscle, sepsis reduces protein synthesis (MPS) by restraining translation in neonates and adults. Even though protein accretion decreases with development as neonatal MPS rapidly declines by maturation, the changes imposed by development on the sepsis-associated decrease in MPS have not been desc...

  18. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data.

    Science.gov (United States)

    Mueller, F; Brimacombe, R

    1997-08-29

    The map of the mass centres of the 21 proteins from the Escherichia coli 30 S ribosomal subunit, as determined by neutron scattering, was fitted to a cryoelectron microscopic (cryo-EM) model at a resolution of 20 A of 70 S ribosomes in the pre-translocational state, carrying tRNA molecules at the A and P sites. The fit to the 30 S moiety of the 70 S particles was accomplished with the help of the well-known distribution of the ribosomal proteins in the head, body and side lobe regions of the 30 S subunit, as determined by immuno electron microscopy (IEM). Most of the protein mass centres were found to lie close to the surface (or even outside) of the cryo-EM contour of the 30 S subunit, supporting the idea that the ribosomal proteins are arranged peripherally around the rRNA. The ribosomal protein distribution was then compared with the corresponding model for the 16 S rRNA, fitted to the same EM contour (described in an accompanying paper), in order to analyse the mutual compatibility of the arrangement of proteins and rRNA in terms of the available RNA-protein interaction data. The information taken into account included the hydroxyl radical and base foot-printing data from Noller's laboratory, and our own in situ cross-linking results. Proteins S1 and S14 were not considered, due to the lack of RNA-protein data. Among the 19 proteins analysed, 12 (namely S2, S4, S5, S7, S8, S9, S10, S11, S12, S15, S17 and S21) showed a fit to the rRNA model that varied from being excellent to at least acceptable. Of the remaining 7, S3 and S13 showed a rather poor fit, as did S18 (which is considered in combination with S6 in the foot-printing experiments). S16 was difficult to evaluate, as the foot-print data for this protein cover a large area of the rRNA. S19 and S20 showed a bad fit in terms of the neutron map, but their foot-print and cross-link sites were clustered into compact groups in the rRNA model in those regions of the 30 S subunit where these proteins have

  19. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kakehi

    Full Text Available Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5, shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10, respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5' leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1 homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5' leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.

  20. Identification and fine mapping of nuclear and nucleolar localization signals within the human ribosomal protein S17.

    Directory of Open Access Journals (Sweden)

    Scott P Kenney

    Full Text Available Human ribosomal protein S17 (RPS17 is mutated in Diamond-Blackfan Anemia (DBA, a bone marrow disorder that fails to produce sufficient red blood cells leading to anemia. Recently, an RPS17 protein sequence was also found to be naturally inserted in the genome of hepatitis E virus (HEV from patients chronically-infected by HEV. The role of RPS17 in HEV replication and pathogenesis remains unknown due to the lack of knowledge about how RPS17 functions at a molecular level. Understanding the biological function of RPS17 is critical for elucidating its role in virus infection and DBA disease processes. In this study we probed the subcellular distribution of normal and mutant RPS17 proteins in a human liver cell line (Huh7. RPS17 was primarily detected within the nucleus, and more specifically within the nucleoli. Using a transient expression system in which RPS17 or truncations were expressed as fusions with enhanced yellow fluorescent protein (eYFP, we were able to identify and map, for the first time, two separate nuclear localization signals (NLSs, one to the first 13 amino acids of the amino-terminus of RPS17 and the other within amino acids 30-60. Additionally, we mapped amino acid sequences required for nucleolar accumulation of RPS17 to amino acids 60-70. Amino acids 60-70 possess a di-RG motif that may be necessary for nucleolar retention of RPS17. The results from this study enhance our knowledge of RSP17 and will facilitate future mechanistic studies about the roles of RSP17 in hepatitis E and DBA disease processes.

  1. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  2. Interaction of ribosomal protein L22 with casein kinase 2α: a novel mechanism for understanding the biology of non-small cell lung cancer.

    Science.gov (United States)

    Yang, Mingxia; Sun, Haibo; He, Ji; Wang, Hong; Yu, Xiaowei; Ma, Lei; Zhu, Changliang

    2014-07-01

    Dysfunction of ribosomal proteins (RPs) may play an important role in molecular tumorigenesis, such as lung cancer, acting in extraribosomal functions. Many protein-protein interaction studies and genetic screens have confirmed the extraribosomal capacity of RPs. As reported, ribosomal protein L22 (RPL22) dysfunction could increase cancer risk. In the present study, we examined RPL22-protein complexes in lung cancer cells. Tandem affinity purification (TAP) was used to screen the RPL22-protein complexes, and GST pull-down experiments and confocal microscopy were used to assess the protein-protein interaction. The experiment of kinase assay was used to study the function of the RPL22-protein complexes. The results showed that several differentially expressed proteins were isolated and identified by LC-MS/MS, which revealed that one of the protein complexes included casein kinase 2α (CK2α). RPL22 and CK2α interact in vitro. RPL22 also inhibited CK2α substrate phosphorylation in vitro. This is the first report of the RPL22-CK2α relationship in lung cancer. Dysregulated CK2 may impact cell proliferation and apoptosis, key features of cancer cell biology. Our results indicate that RPL22 may be a candidate anticancer agent due to its CK2α-binding and -inhibitory functions in human lung cancer. PMID:24840952

  3. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  4. Ribosomal Protein Genes S23 and L35 from Amphioxus Branchiostoma belcheri tsingtauense: Identification and Copy Number

    Institute of Scientific and Technical Information of China (English)

    Xian LI; Shi-Cui ZHANG; Zhen-Hui LIU; Hong-Yan LI

    2005-01-01

    The complete cDNA and deduced amino acid sequences of the ribosomal proteins S23 (AmphiS23) and L35 (AmphiL35) from amphioxus Branchiostoma belcheri tsingtauense were identified in this study. AmphiS23 cDNA is 546 bp long and encodes a protein of 143 amino acids. It has a predicted molecular mass of 15,851 Da and a pI of 10.7. AmphiL35 cDNA comprises 473 bp, and codes for a protein of 123 amino acids with a predicted molecular mass of 14,543 Da and a pI of 10.8. AmphiS23 shares more than 83% identity with its homologues in the vertebrates and more than 84% identity with those in the invertebrates. AmphiL35 is more than 63% identical to its counterparts in the vertebrates and more than 52% identical to those in the invertebrates, Southern blot analysis demonstrated the existence of 1-2 copies of the S23 gene and 2-3 copies of the L35 gene in the genome of amphioxus B. belcheri tsingtauense. This is in sharp contrast to the presence of 6-13 copies of the S23 gene and 15-17 copies of the L35 gene in the rat genome. It is clear that the housekeeping genes like S23 and L35 underwent a large-scale duplication in the vertebrate lineage, reinforcing the gene/genome duplication hypothesis.

  5. Bacterial Hydrolysis of Protein and Methylated Protein and Its Implications for Studies of Protein Degradation in Aquatic Systems

    OpenAIRE

    Keil, Richard G.; Kirchman, David L.

    1992-01-01

    Ribulose 1,5-bisphosphate carboxylase was radiolabelled by in vitro translation, resulting in uniformly labelled ribulose 1,5-bisphosphate carboxylase, and also by reductive methylation. We investigated the degradation of the two forms of radiolabelled protein by natural bacterial populations. Although total hydrolysis of uniformly labelled protein and methylated protein was nearly equal, percent assimilation, respiration, and release as low-molecular-weight material were different. Radioacti...

  6. Antifungal activity of the ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum.

    Science.gov (United States)

    Citores, Lucía; Iglesias, Rosario; Gay, Carolina; Ferreras, José Miguel

    2016-02-01

    The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a β-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell.

  7. Discrimination between ovine Babesia and Theileria species in China based on the ribosomal protein S8 (RPS8) gene.

    Science.gov (United States)

    Tian, Zhancheng; Liu, Guangyuan; Yin, Hong; Luo, Jianxun; Guan, Guiquan; Luo, Jin; Xie, Junren; Zheng, Jinfeng; Yuan, Xiaosong; Wang, Fangfang; Shen, Hui; Tian, Meiyuan

    2013-10-18

    Ovine babesiosis and theileriosis are important hemoprotozoal diseases of sheep and goats in tropical and subtropical regions that lead to economic losses in these animals. PCR-restriction fragment length polymorphism (PCR-RFLP) is a reliable molecular diagnostic tool for discriminating Theileria or Babesia species in the same host. In this study, the DNA sequences of a ribosomal protein S8 (RPS8) gene from four species of piroplasms in China were used to develop a species-specific PCR-RFLP diagnostic tool. The sensitivity of the PCR assays was 0.1 pg DNA for B. motasi and 1 pg DNA for T. uilenbergi and 10 pg DNA for Babesia sp. Xinjiang-2005 and T. luwenshuni. The clear size difference of the PCR products allowed for a direct discrimination for B. motasi, Babesia sp. Xinjiang-2005 and ovine Theileria species (T. uilenbergi and T. luwenshuni), except that the mixed infection between T. uilenbergi and T. luwenshuni may be difficult to distinguish, simply after the electrophoretic separation of the amplification products. Further T. uilenbergi and T. luwenshuni diagnoses were made by digesting the PCR product with SacI. The established method could be applicable for the survey of parasite dynamics, and epidemiological studies as well as prevention and control of the disease.

  8. Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21.

    Science.gov (United States)

    Takada, Hiraku; Morita, Masato; Shiwa, Yuh; Sugimoto, Ryoma; Suzuki, Shota; Kawamura, Fujio; Yoshikawa, Hirofumi

    2014-01-01

    Bacillus subtilis differentiates into various cellular states in response to environmental changes. It exists in two states during the exponential growth phase: motile cells and connected chains of sessile cells. Here, we identified new regulators of cell motility and chaining, the ribosomal proteins S21 (rpsU) and S11 (rpsK). Their mutants showed impaired cell motility (observed in a laboratory strain) and robust biofilm formation (observed in an undomesticated strain). The two major operons for biofilm formation, tapA-sipW-tasA and epsA-O, were strongly expressed in the rpsU mutant, whereas the flagellin-encoding hag gene and other SigD-dependent motility regulons were not. Genetic analysis revealed that the mutation of remA, the transcriptional activator of the eps operon, is epistatic to that of rpsU, whereas the mutation of antagonistic regulators of SinR is not. Our studies demonstrate that S11 and S21 participate in the regulation of bistability via the RemA/RemB pathway.

  9. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a of Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2005-08-01

    Full Text Available Abstract Background Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad. This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT. Results We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal protein L7a gene (Rpl7a, that possesses a canonical GT 5' intron boundary sequence. A comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid. Based on these observations, we searched the partial G. lamblia genome sequence for these conserved features and identified a third spliceosomal intron, in an unassigned open reading frame. Our comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is evolutionarily conserved and is an ancient eukaryotic intron. Conclusion An analysis of the phylogenetic distribution and properties of the Rpl7a intron suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings. Additionally, analysis of the G. lamblia introns has provided further insight into some of the conserved and unique features possessed by the recently identified spliceosomal introns in related organisms such as T. vaginalis and Carpediemonas membranifera.

  10. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice.

    Science.gov (United States)

    Sun, Linxiao; Yu, Yonghua; Hu, Weiqin; Min, Qiming; Kang, Huiling; Li, Yilu; Hong, Yue; Wang, Xuemin; Hong, Yueyun

    2016-07-01

    Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). Genetic suppression of S6K1 caused pale yellow-green leaves, defective thylakoid grana architecture. S6K1 directly interacts with Raptor2, a core component in TOR signaling, and S6K1 activity is regulated by Raptor2 and TOR. Plants with suppressed Raptor2 expression or reduced TOR activity by inhibitors mimicked the S6K1-deficient phenotype. A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice. PMID:27102613

  11. Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice.

    Science.gov (United States)

    Sun, Linxiao; Yu, Yonghua; Hu, Weiqin; Min, Qiming; Kang, Huiling; Li, Yilu; Hong, Yue; Wang, Xuemin; Hong, Yueyun

    2016-07-01

    Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). Genetic suppression of S6K1 caused pale yellow-green leaves, defective thylakoid grana architecture. S6K1 directly interacts with Raptor2, a core component in TOR signaling, and S6K1 activity is regulated by Raptor2 and TOR. Plants with suppressed Raptor2 expression or reduced TOR activity by inhibitors mimicked the S6K1-deficient phenotype. A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice.

  12. Preparation and Primary Application of Monoclonal Antibodies against a Novel Ribosome-inactivating Protein Moschatin from Pumpkin Seeds

    Institute of Scientific and Technical Information of China (English)

    Heng-Chuan XIA; Wei-Guo HU; Xin-Xiu YANG; Feng LI; Zu-Chuan ZHANG

    2004-01-01

    Plant ribosome-inactivating proteins (RIPs) have multiple biological functions, and have beenwidely used in the studies on biomedical and agronomic applications. Moschatin is a novel single-chain RIPrecently purified from pumpkin seeds, and it has been successfully applied to construct the immunotoxin thatcan selectively kill the cultured human melanoma cells. Six stable strains of hybridomas (2H8, 4A8, 5B6,6F8, 4H 10 and 6C2) that can secrete high specific monoclonal antibodies against Moschatin have beensuccessfully prepared using hybridoma technique. The isotypes of these monoclonal antibodies areIgG1, IgG1, IgG1, IgG1, IgG2a and IgM. Their affinity constants were determined to be 1.42×108, 2.71×108,8.72×107, 2.06×108, 1.36×108 and 1.51×108M-1 in a sequent order, measured by non-competitive ELISA.The monoclonal antibody 4A8 has been used to detect Moschatin in Western blot. An immunoaffinity gel,which consisted ofa monoclonal antibody 4H10 and Sepharose 4B, was prepared and used to purify Moschatinfrom pumpkin seeds crude extract.

  13. Ribosomal protein s6-ps240 is expressed in lesional skin from patients with autoimmune skin blistering diseases

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-01-01

    Full Text Available Background: The in situ signaling transduction within skin biopsies from patients affected by autoimmune skin blistering diseases is not well-characterized. Aim : In autoimmune skin blistering diseases, autoantibodies seem to trigger several intracellular signaling pathways and we investigated the presence of the phosphorylated form of ribosomal protein S6-pS240 within autoimmune skin blistering diseases biopsies. Materials and Methods: We utilized immunohistochemistry to evaluate the presence of S6-pS240 in lesional skin biopsies of patients affected by autoimmune skin blistering diseases including patients with an endemic and nonendemic pemphigus foliaceus (non EPF, with bullous pemphigoid (BP, pemphigus vulgaris (PV, dermatitis herpetiformis (DH, and the respective controls. Results: Most autoimmune bullous skin diseases biopsies stained positive for S6-pS240 around lesional blisters, including adjacent areas of the epidermis; and within upper dermal inflammatory infiltrates, and/or mesenchymal-endothelial cell junctions within the dermis. Conclusions: We document that S6-pS240 is expressed in lesional areas of skin biopsies from patients with autoimmune skin blistering diseases, as well as on eccrine glands and piloerector muscles. Thus, the role of this molecule in autoimmune skin blistering diseases warrants further study.

  14. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    Science.gov (United States)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  15. Preparation and Primary Application of Monoclonal Antibodies against a Novel Ribosome-inactivating Protein Moschatin from Pumpkin Seeds

    Institute of Scientific and Technical Information of China (English)

    Heng-ChuanXIA; Wei-GuoHU; Xin-XiuYANG; FengLI; Zu-ChuanZHANG

    2004-01-01

    Plant ribosome-inactivating proteins (RIPs) have multiple biological functions, and have beenwidely used in the studies on biomedical and agronomic applications. Moschatin is a novel single-chain RIPrecently purified from pumpkin seeds, and it has been successfully applied to construct the immunotoxin thatcan selectively kill the cultured human melanoma cells. Six stable strains of hybridomas (2H8, 4A8, 5B6,6F8, 4H10 and 6C2) that can secrete high specific monoclonal antibodies against Moschatin have beensuccessfully prepared using hybridoma technique. The isotypes of these monoclonal antibodies areIgG1, IgG1, IgG1, IgG1, IgG2a and IgM. Their affinity constants were determined to be 1.42×108, 2.71×108,8.72×07, 2.06×l08, 1.36×108 and 1.51×108 M-1 in a sequent order, measured by non-competitive ELISA.The monoclonal antibody 4A8 has been used to detect Moschatin in Western blot. An immunoaffinity gel,which consisted ofa monoclonal antibody 4H 10 and Sepharose 4B, was prepared and used to purify Moschatinfrom pumpkin seeds crude extract.

  16. [Transgenic tobacco plants with ribosome inactivating protein gene cassin from Cassia occidentalis and their resistance to tobacco mosaic virus].

    Science.gov (United States)

    Ruan, Xiao-Lei; Liu, Li-Fang; Li, Hua-Ping

    2007-12-01

    Cassin, the new gene of ribosome-inactivating protein (RIP) isolated from Cassia occidentalis, was inserted into expression vector pBI121 to produce plant expression vector pBI121-cassin (Figs.1, 2). pBI121-cassin was introduced into tobacco cultivar 'K326' by the Agrobacteriurm tumefaciens transformation method and more than 100 independent transformants were obtained. Southern blot hybridization analysis showed that a single gene locus was inserted into the chromosome of the transgenic tobacco lines (Fig.5) and PCR analysis of segregation population of progeny indicated that the inheritance of transgene was dominant in transgenic lines (Fig.4, Table 1). Results of RT-PCR and Northern blot hybridization analysis showed that transgene could be transcribed correctly (Figs.5, 6) . Three self-pollination lines of transgenic T(1) and T(2) were challenged with TMV at different concentration titers by mechanical inoculation. The transgenic lines exhibited different levels of resistance to TMV with the nontransgenic plants. After both titers of TMV concentration were inoculated, transgenic lines were considered as the highly resistant type with a delay of 4-13 d in development of symptoms and 10%-25% of test plants were infected, while nontransgenic control plants were susceptible typical symptoms on the newly emerged leaves (Table 2). One T(2) line, T(2)-8-2-1, was regarded as an immune type because it did not show any symptoms during 70 d and all plants were shown to be virus free by ELISA tests.

  17. Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway.

    Science.gov (United States)

    Wu, Chien-Ting; Lin, Tung-Yi; Hsu, Hsien-Yeh; Sheu, Fuu; Ho, Chau-Mei; Chen, Edmund I-T

    2011-12-01

    Ling Zhi-8 (LZ-8), an immunomodulatory protein, is derived from and has been cloned from the medicinal mushroom Ganoderma lucidum (Reishi or Ling Zhi); this protein exhibits immunomodulating and antitumor properties. We investigated the effects of recombinant LZ-8 protein (rLZ-8) on the proliferation of A549 human lung cancer cells. Here, we showed that rLZ-8 inhibits cell growth and that this is correlated with increased G(1) arrest. The treatment of A549 cells with rLZ-8 activated p53 and p21 expression, and both the G(1) arrest and the antigrowth effect were found to be p53 dependent. It was further demonstrated that rLZ-8 inhibited tumor growth in mice transplanted with Lewis lung carcinoma cells. Interestingly, rLZ-8 treatment was found to lead to nucleolar stress (or ribosomal stress) as evidenced by inhibition of precursor ribosomal RNA synthesis and reduced polysome formation in A549 cells. These changes resulted in an increasing binding of ribosomal protein S7 to MDM2 and a decreased interaction between MDM2 and p53. Taking these results together, we have identified a novel rLZ-8 antitumor function that positively modulates p53 via ribosomal stress and inhibits lung cancer cell growth in vitro and in vivo. Our current results suggest that rLZ-8 may have potential as a therapeutic intervention for the treatment of cancers that contain wild-type p53 and high expression of MDM2.

  18. Neisseria gonorrhoeae Strain with High-Level Resistance to Spectinomycin Due to a Novel Resistance Mechanism (Mutated Ribosomal Protein S5) Verified in Norway

    OpenAIRE

    Unemo, Magnus; Golparian, Daniel; Skogen, Vegard; Olsen, Anne Olaug; Moi, Harald; Syversen, Gaute; Hjelmevoll, Stig Ove

    2013-01-01

    Gonorrhea may become untreatable, and new treatment options are essential. Verified resistance to spectinomycin is exceedingly rare. However, we describe a high-level spectinomycin-resistant (MIC, >1,024 μg/ml) Neisseria gonorrhoeae strain from Norway with a novel resistance mechanism. The resistance determinant was a deletion of codon 27 (valine) and a K28E alteration in the ribosomal protein 5S. The traditional spectinomycin resistance gene (16S rRNA) was wild type. Despite this exceedingly...

  19. Target disruption of ribosomal protein pNO40 accelerates aging and impairs osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Lin, Yen-Ming; Wu, Chih-Ching; Chang, Yu-Chen; Wu, Chu-Han; Ho, Hsien Li; Hu, Ji Wei; Chang, Ren-Chi; Wang, Chung-Ta; Ouyang, Pin

    2016-01-22

    pNO40/PS1D, a novel nucleolar protein, has been characterized as a core protein of eukaryotic 60S ribosome and at least two splicing forms of pNO40 mRNAs with alternative starting sites have been identified. Through production of knockout (ko) mice with either exon 2 (△E2), exon 4 (△E4) or △E2+E4 targeted disruption we identified a cryptic splicing product occurring in the ko tissues examined which in general cannot be observed in regular RT-PCR detection of wild-type (wt) animals. Among ko animals, △E4 null embryos exhibited prominent senescence-associated β-galactosidase (SA-β-gal) staining, a marker for senescent cells, in notochord, forelimbs and heart while bone marrow-derived mesenchymal stem cells (MSCs) from △E4 null mice developed accelerated aging and osteogenic differentiation defects compared to those from wt and other isoform mutant mice. Examination of the causal relationship between pNO40 deficiency and MSC-accelerated aging revealed △E4 null disruption in MSCs elicits high levels of ROS and elevated expression levels of p16 and Rb but not p53. Further analysis with iTraq identified CYP1B1, a component of the cytochrome p450 system, as a potential molecule mediating ROS generation in pNO40 deficient MSCs. We herein established a mouse model of MSC aging through pNO40-targeted depletion and demonstrated the effects of loss of pNO40 on bone homeostasis.

  20. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold.

    Directory of Open Access Journals (Sweden)

    Anna V Lomonosova

    Full Text Available Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M. Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M and is more prone to oligomerization. This investigation of an extremophile protein's scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds.

  1. Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis.

    Science.gov (United States)

    Davlieva, Milya; Donarski, James; Wang, Jiachen; Shamoo, Yousif; Nikonowicz, Edward P

    2014-01-01

    Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure.

  2. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.

    Science.gov (United States)

    Kline, Benjamin C; McKay, Susannah L; Tang, William W; Portnoy, Daniel A

    2015-02-01

    During exposure to certain stresses, bacteria dimerize pairs of 70S ribosomes into translationally silent 100S particles in a process called ribosome hibernation. Although the biological roles of ribosome hibernation are not completely understood, this process appears to represent a conserved and adaptive response that contributes to optimal survival during stress and post-exponential-phase growth. Hibernating ribosomes are formed by the activity of one or more highly conserved proteins; gammaproteobacteria produce two relevant proteins, ribosome modulation factor (RMF) and hibernation promoting factor (HPF), while most Gram-positive bacteria produce a single, longer HPF protein. Here, we report the formation of 100S ribosomes by an HPF homolog in Listeria monocytogenes. L. monocytogenes 100S ribosomes were observed by sucrose density gradient centrifugation of bacterial extracts during mid-logarithmic phase, peaked at the transition to stationary phase, and persisted at lower levels during post-exponential-phase growth. 100S ribosomes were undetectable in bacteria carrying an hpf::Himar1 transposon insertion, indicating that HPF is required for ribosome hibernation in L. monocytogenes. Additionally, epitope-tagged HPF cosedimented with 100S ribosomes, supporting its previously described direct role in 100S formation. We examined hpf mRNA by quantitative PCR (qPCR) and identified several conditions that upregulated its expression, including carbon starvation, heat shock, and exposure to high concentrations of salt or ethanol. Survival of HPF-deficient bacteria was impaired under certain conditions both in vitro and during animal infection, providing evidence for the biological relevance of 100S ribosome formation. PMID:25422304

  3. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree).

    Science.gov (United States)

    Stirpe, F; Gasperi-Campani, A; Barbieri, L; Falasca, A; Abbondanza, A; Stevens, W A

    1983-12-15

    Ribosome-inactivating proteins, similar to those already known [Barbieri & Stirpe (1982) Cancer Surveys 1, 489-520] were purified from the seeds of Saponaria officinalis (two proteins), of Agrostemma githago (three proteins), and of Asparagus officinalis (three proteins), and from the latex of Hura crepitans (one protein). The yield ranged from 8 to 400 mg/100 g of starting material. All proteins have an Mr of approx. 30000 and an alkaline isoelectric point. Their sugar content varies from 0 (proteins from S. officinalis) to 40% (protein from H. crepitans). The ribosome-inactivating proteins inhibit protein synthesis by rabbit reticulocyte lysate, the ID50 (concentration giving 50% inhibition) ranging from 1 ng/ml (a protein from S. officinalis) to 18 ng/ml (a protein from A. githago). Those which were tested (the proteins from S. officinalis and from A. githago) also inhibit polymerization of phenylalanine by isolated ribosomes, acting in an apparently catalytic manner. The protein from H. crepitans inhibited protein synthesis by HeLa cells, with an ID50 of 4 micrograms/ml, whereas the proteins from S. officinalis and from A. githago had an ID50 of more than 50-100 micrograms/ml. The ribosome-inactivating proteins from S. officinalis and from A. githago reduced the number of local lesions by tobacco-mosaic virus in the leaves of Nicotiana glutinosa.

  4. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  5. Antibodies against ribosomal protein S29 (RPS29) fused with glutathione's transferase specially react with native RPS29 in mouse and human cells

    Institute of Scientific and Technical Information of China (English)

    Liu Jia; Zhang Junlei; Han Junfeng; Li Dongying; Jian Rui; Rao XianCai; Chen Wei; Wang Jiali; Xu Xiaofeng; Hu Zhen

    2011-01-01

    The ribosomal protein S29 also known as RPS29,is not only a component of the 40S subunit of ribosome,but also involved in embryonic development,oncogenesis and other pathologic conditions. However,rare commercial antibody against RPS29 restricts the discovery of precise physiological and pathological function of this protein. In this study,the whole RPS29 gene was inserted into plasmid pGEX-6p-1 to express glutathione's transferase (GST) fusion proteins in Escherichia coli (E. coli) strain BL21. High yields of soluble recombinant proteins were obtained. Mice were immunized with the recombinant RPS29 protein. The serum from the immunized mice could specially react with purified recombinant RPS29 proteins and native RPS29 proteins in CCE cells by western blotting,immunofluorescence staining and flow cytometric analysis. Further more the polyclonal antibodies also reacted specifically with human cell strain ECV304,which showed typical cytoplasmatic fluorescence. The polyclonal antibodies we prepared would be an available tool for studying the roles of RPS29 in embryonic development and human diseases.

  6. 黄精核糖体灭活蛋白双元表达载体的构建与鉴定%Construction of Binary Vector pGV4945 of Ribosome-Inactivating Protein Gene from Polygonatum multiflorum

    Institute of Scientific and Technical Information of China (English)

    常维山; Henry De Greve; 翟静; Nele Buys; Jan Pierre Hernal Steens

    2004-01-01

    Ribosome-inactivating proteins (RIPs)have been known to have cytotoxic activity by cleaving a specific adenine residue of 28S rRNA. RIPs can be divided into, type 1 and type 2. Type 2 is a toxic protein that was consisted of two Gal/GalNAc-binding chains, A and B Chains that connected through a disulfide linkage. The A chain of RIP has RNA N-glycosidase activity to cleave a specific adenine base from ribosomal RNA,

  7. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens.

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  8. Translational machinery of the chaetognath Spadella cephaloptera: a transcriptomic approach to the analysis of cytosolic ribosomal protein genes and their expression

    Directory of Open Access Journals (Sweden)

    Casanova Jean-Paul

    2007-08-01

    Full Text Available Abstract Background Chaetognaths, or arrow worms, are small marine, bilaterally symmetrical metazoans. The objective of this study was to analyse ribosomal protein (RP coding sequences from a published collection of expressed sequence tags (ESTs from a chaetognath (Spadella cephaloptera and to use them in phylogenetic studies. Results This analysis has allowed us to determine the complete primary structures of 23 out of 32 RPs from the small ribosomal subunit (SSU and 32 out of 47 RPs from the large ribosomal subunit (LSU. Ten proteins are partially determined and 14 proteins are missing. Phylogenetic analyses of concatenated RPs from six animals (chaetognath, echinoderm, mammalian, insect, mollusc and sponge and one fungal taxa do not resolve the chaetognath phylogenetic position, although each mega-sequence comprises approximately 5,000 amino acid residues. This is probably due to the extremely biased base composition and to the high evolutionary rates in chaetognaths. However, the analysis of chaetognath RP genes revealed three unique features in the animal Kingdom. First, whereas generally in animals one RP appeared to have a single type of mRNA, two or more genes are generally transcribed for one RP type in chaetognath. Second, cDNAs with complete 5'-ends encoding a given protein sequence can be divided in two sub-groups according to a short region in their 5'-ends: two novel and highly conserved elements have been identified (5'-TAATTGAGTAGTTT-3' and 5'-TATTAAGTACTAC-3' which could correspond to different transcription factor binding sites on paralog RP genes. And, third, the overall number of deduced paralogous RPs is very high compared to those published for other animals. Conclusion These results suggest that in chaetognaths the deleterious effects of the presence of paralogous RPs, such as apoptosis or cancer are avoided, and also that in each protein family, some of the members could have tissue-specific and extra-ribosomal functions

  9. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Science.gov (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato

    2012-01-01

    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  10. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  11. Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig

    DEFF Research Database (Denmark)

    Maddox-Hyttel, Poul; Svarcova, Olga; Laurincik, Josef

    2007-01-01

    The nucleolus is the site of ribosomal RNA (rRNA) and ribosome production. In the bovine primordial follicle oocyte, this organelle is inactive, but in the secondary follicle an active fibrillo-granular nucleolus develops and proteins involved in rDNA transcription (topoisomerase I, RNA polymerase...... I and upstream binding factor) and early (fibrillarin) or late rRNA processing (nucleolin and nucleophosmin) localize to it. At the end of the oocyte growth phase, the nucleolus is inactivated again and transforms into a solid remnant. The nucleolar remnant is dissolved when meiosis is resumed. Upon...... fertilization, structures resembling the nucleolar remnant, now referred to as nucleolus precursor bodies (NPBs), are established in the pronuclei. These entities are engaged in the re-establishment of fibrilo-granular nucleoli at the major activation of the embryonic genome. This nucleolar formation can...

  12. A key role for the mRNA leader structure in translational control of ribosomal protein S1 synthesis in γ-proteobacteria

    OpenAIRE

    Tchufistova, Ludmila S.; Komarova, Anastassia V.; Boni, Irina V.

    2003-01-01

    The translation initiation region (TIR) of the Escherichia coli rpsA mRNA coding for ribosomal protein S1 is characterized by a remarkable efficiency in driving protein synthesis despite the absence of the canonical Shine–Dalgarno element, and by a strong and specific autogenous repression in the presence of free S1 in trans. The efficient and autoregulated E.coli rpsA TIR comprises not less than 90 nt upstream of the translation start and can be unambiguously folded into three irregular hair...

  13. Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli

    DEFF Research Database (Denmark)

    Egebjerg, Jan; Christiansen, Jan; Garrett, Roger Antony

    1991-01-01

    The attachment sites of the primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli were examined by a chemical and ribonuclease footprinting method using several probes with different specificities. The results show that the sites are confined to localized RNA regions...... within the large ribonuclease-protected ribonucleoprotein fragments that were characterized earlier. They are as follows: 1. (1) L1 recognizes a tertiary structural motif in domain V centred on two interacting internal loops; the main protein interaction sites occur at the internal loop/helix junctions.2...

  14. A unique DNA repair and recombination gene (recN) sequence for identification and intraspecific molecular typing of bacterial wilt pathogen Ralstonia solanacearum and its comparative analysis with ribosomal DNA sequences

    Indian Academy of Sciences (India)

    Aundy Kumar; Thekkan Puthiyaveedu Prameela; Rajamma Suseelabhai

    2013-06-01

    Ribosomal gene sequences are a popular choice for identification of bacterial species and, often, for making phylogenetic interpretations. Although very popular, the sequences of 16S rDNA and 16-23S intergenic sequences often fail to differentiate closely related species of bacteria. The availability of complete genome sequences of bacteria, in the recent years, has accelerated the search for new genome targets for phylogenetic interpretations. The recently published full genome data of nine strains of R. solanacearum, which causes bacterial wilt of crop plants, has provided enormous genomic choices for phylogenetic analysis in this globally important plant pathogen. We have compared a gene candidate recN, which codes for DNA repair and recombination function, with 16S rDNA/16-23S intergenic ribosomal gene sequences for identification and intraspecific phylogenetic interpretations in R. solanacearum. recN gene sequence analysis of R. solanacearum revealed subgroups within phylotypes (or newly proposed species within plant pathogenic genus, Ralstonia), indicating its usefulness for intraspecific genotyping. The taxonomic discriminatory power of recN gene sequence was found to be superior to ribosomal DNA sequences. In all, the recN-sequence-based phylogenetic tree generated with the Bayesian model depicted 21 haplotypes against 15 and 13 haplotypes obtained with 16S rDNA and 16-23S rDNA intergenic sequences, respectively. Besides this, we have observed high percentage of polymorphic sites (S 23.04%), high rate of mutations (Eta 276) and high codon bias index (CBI 0.60), which makes the recN an ideal gene candidate for intraspecific molecular typing of this important plant pathogen.

  15. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1

    NARCIS (Netherlands)

    Su, Y.; Yao, W.; Perez-Gutierrez, O.N.; Smidt, H.; Zhu, W.Y.

    2008-01-01

    16S ribosomal RNA (rRNA) gene based PCR/denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor the changes in the composition of microbiota in the hindgut of piglets after oral administration of Lactobacillus sobrius S1. Six litters of neonatal piglets were divided ran

  16. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation.

    Science.gov (United States)

    Dinos, George P; Connell, Sean R; Nierhaus, Knud H; Kalpaxis, Dimitrios L

    2003-03-01

    In a cell-free system derived from Escherichia coli, it is shown that clarithromycin and roxithromycin, like their parent compound erythromycin, do not inhibit the puromycin reaction (i.e., the peptide bond formation between puromycin and AcPhe-tRNA bound at the P-site of 70S ribosomes programmed with heteropolymeric mRNA). Nevertheless, all three antibiotics compete for binding on the ribosome with tylosin, a 16-membered ring macrolide that behaves as a slow-binding, slowly reversible inhibitor of peptidyltransferase. The mutually exclusive binding of these macrolides to ribosomes is also corroborated by the fact that they protect overlapping sites in domain V of 23S rRNA from chemical modification by dimethyl sulfate. From this competition effect, detailed kinetic analysis revealed that roxithromycin or clarithromycin (A), like erythromycin, reacts rapidly with AcPhe-tRNA.MF-mRNA x 70S ribosomal complex (C) to form the encounter complex CA which is then slowly isomerized to a more tight complex, termed C*A. The value of the overall dissociation constant, K, encompassing both steps of macrolide interaction with complex C, is 36 nM for erythromycin, 20 nM for roxithromycin, and 8 nM for clarithromycin. Because the off-rate constant of C*A complex does not significantly differ among the three macrolides, the superiority of clarithromycin as an inhibitor of translation in E. coli cells and many Gram-positive bacteria may be correlated with its greater rate of association with ribosomes. PMID:12606769

  17. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    Science.gov (United States)

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology. PMID:27170550

  18. Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10; Clonagem, expressao, purificacao e caracterizacao estrutural da proteina ribossomal L10 humana recombinante

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Larissa Miranda

    2009-07-01

    The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm's tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribosomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813{sub Q}M at 25 degree C or 30 degree C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by {beta}- sheet feature. (author)

  19. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. PMID:27561651

  20. Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

    OpenAIRE

    Ling, Losee L.; Xian, Jun; Ali, Syed; Geng, Bolin; Fan, Jun; Mills, Debra M.; Arvanites, Anthony C.; Orgueira, Hernan; Ashwell, Mark A.; Carmel, Gilles; Xiang, Yibin; Moir, Donald T.

    2004-01-01

    Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Esch...

  1. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms.

    Science.gov (United States)

    Gruber, Thomas; Köhrer, Caroline; Lung, Birgit; Shcherbakov, Dmitri; Piendl, Wolfgang

    2003-08-14

    The ribosomal protein S8 plays a pivotal role in the assembly of the 30S ribosomal subunit. Using filter binding assays, S8 proteins from mesophilic, and (hyper)thermophilic species of the archaeal genus Methanococcus and from the bacteria Escherichia coli and Thermus thermophilus were tested for their affinity to their specific 16S rRNA target site. S8 proteins from hyperthermophiles exhibit a 100-fold and S8 from thermophiles exhibit a 10-fold higher affinity than their mesophilic counterparts. Thus, there is a striking correlation of affinity of S8 proteins for their specific RNA binding site and the optimal growth temperatures of the respective organisms. The stability of individual rRNA-protein complexes might modulate the stability of the ribosome, providing a maximum of thermostability and flexibility at the growth temperature of the organism.

  2. Function of individual 30S subunit proteins of Escherichia coli. Effect of specific immunoglobulin fragments (Fab) on activities of ribosomal decoding sites.

    Science.gov (United States)

    Lelong, J C; Gros, D; Gros, F; Bollen, A; Maschler, R; Stöffler, G

    1974-02-01

    Specific anti-30S protein immunoglobulin G fragments (Fab) were used to determine the contribution of each of the 30S ribosomal proteins to: (1) polyphenylalanine synthesis, (2) initiation factor-dependent binding of fMet-tRNA, (3) T-factor-dependent binding of phenylalanyl-tRNA, and (4) fixation of radioactive dihydrostreptomycin. Twenty of the 21 possible antibodies (antibody against S17 excepted) were used. In conditions where all the 30S proteins were accessible to Fabs, all of these monovalent antibodies strongly inhibited polyphenylalanine synthesis in vitro. Antibodies against S4, S6, S7, S12, S15, and S16, however, showed a weaker effect.30S proteins can be classified into four categories by their contributions to the function of sites "A" and "P": class I appears nonessential for tRNA positioning at either site (S4, S7, S15, and S16); class II includes proteins whose role in initiation is critical (S2, S5, S6, S12, and S13); class III (S8, S9, S11, and S18) corresponds to proteins whose blockade prevents internal (elongation factor Tudependent) positioning; and class IV includes entities that are essential for activities of both "A" and "P" sites (S1, S3, S10, S14, S19, S20, and S21). Dihydrostreptomycin fixation to the 30S or 70S ribosomes was inhibited by antibodies against S1, S10, S11, S18, S19, S20, and S21, but only weakly by the anti-S12 (Str A protein) Fab. The significance of these results is discussed in relation to 30S protein function, heterogeneity, and topography.

  3. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.BEWLEY,M.C.

    2002-10-01

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of {approx}5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in ffolding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to

  4. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.; BEWLEY,M.C.

    2001-12-03

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of -5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in folding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to aggregation and

  5. The nucleolus and transcription of ribosomal genes.

    Science.gov (United States)

    Raska, Ivan; Koberna, Karel; Malínský, Jan; Fidlerová, Helena; Masata, Martin

    2004-10-01

    Ribosome biogenesis is a highly dynamic, steady-state nucleolar process that involves synthesis and maturation of rRNA, its transient interactions with non-ribosomal proteins and RNPs and assembly with ribosomal proteins. In the few years of the 21st century, an exciting progress in the molecular understanding of rRNA and ribosome biogenesis has taken place. In this review, we discuss the recent results on the regulation of rRNA synthesis in relation to the functional organization of the nucleolus, and put an emphasis on the situation encountered in mammalian somatic cells.

  6. PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53–MDM2 loop

    OpenAIRE

    Yu, Weishi; Qiu, Zhongwei; Gao, Na; Wang, Liren; Cui, Hengxiang; Qian, Yu; Jiang, Li; Luo, Jian; Yi, Zhengfang; Lu, Hua; Li, Dali; Liu, Mingyao

    2010-01-01

    Cell growth and proliferation are tightly controlled via the regulation of the p53–MDM2 feedback loop in response to various cellular stresses. In this study, we identified a nucleolar protein called PAK1IP1 as another regulator of this loop. PAK1IP1 was induced when cells were treated with chemicals that disturb ribosome biogenesis. Overexpression of PAK1IP1 inhibited cell proliferation by inducing p53-dependent G1 cell-cycle arrest. PAK1IP1 bound to MDM2 and inhibited its ability to ubiquit...

  7. Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells

    Directory of Open Access Journals (Sweden)

    Lim Qing-En

    2010-01-01

    Full Text Available Abstract Background Gene regulation at transcript level can provide a good indication of the complex signaling mechanisms underlying physiological and pathological processes. Transcriptomic methods such as microarray and quantitative real-time PCR require stable reference genes for accurate normalization of gene expression. Some but not all studies have shown that housekeeping genes (HGKs, β-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, which are routinely used for normalization, may vary significantly depending on the cell/tissue type and experimental conditions. It is currently unclear if these genes are stably expressed in cells undergoing drastic morphological changes during neuronal differentiation. Recent meta-analysis of microarray datasets showed that some but not all of the ribosomal protein genes are stably expressed. To test the hypothesis that some ribosomal protein genes can serve as reference genes for neuronal differentiation, a genome-wide analysis was performed and putative reference genes were identified based on stability of expressions. The stabilities of these potential reference genes were then analyzed by reverse transcription quantitative real-time PCR in six differentiation conditions. Results Twenty stably expressed genes, including thirteen ribosomal protein genes, were selected from microarray analysis of the gene expression profiles of GDNF and NGF induced differentiation of PC12 cells. The expression levels of these candidate genes as well as ACTB and GAPDH were further analyzed by reverse transcription quantitative real-time PCR in PC12 cells differentiated with a variety of stimuli including NGF, GDNF, Forskolin, KCl and ROCK inhibitor, Y27632. The performances of these candidate genes as stable reference genes were evaluated with two independent statistical approaches, geNorm and NormFinder. Conclusions The ribosomal protein genes, RPL19 and RPL29, were identified as suitable reference genes

  8. Neisseria gonorrhoeae strain with high-level resistance to spectinomycin due to a novel resistance mechanism (mutated ribosomal protein S5) verified in Norway.

    Science.gov (United States)

    Unemo, Magnus; Golparian, Daniel; Skogen, Vegard; Olsen, Anne Olaug; Moi, Harald; Syversen, Gaute; Hjelmevoll, Stig Ove

    2013-02-01

    Gonorrhea may become untreatable, and new treatment options are essential. Verified resistance to spectinomycin is exceedingly rare. However, we describe a high-level spectinomycin-resistant (MIC, >1,024 μg/ml) Neisseria gonorrhoeae strain from Norway with a novel resistance mechanism. The resistance determinant was a deletion of codon 27 (valine) and a K28E alteration in the ribosomal protein 5S. The traditional spectinomycin resistance gene (16S rRNA) was wild type. Despite this exceedingly rare finding, spectinomycin available for treatment of ceftriaxone-resistant urogenital gonorrhea would be very valuable. PMID:23183436

  9. PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53–MDM2 loop

    Science.gov (United States)

    Yu, Weishi; Qiu, Zhongwei; Gao, Na; Wang, Liren; Cui, Hengxiang; Qian, Yu; Jiang, Li; Luo, Jian; Yi, Zhengfang; Lu, Hua; Li, Dali; Liu, Mingyao

    2011-01-01

    Cell growth and proliferation are tightly controlled via the regulation of the p53–MDM2 feedback loop in response to various cellular stresses. In this study, we identified a nucleolar protein called PAK1IP1 as another regulator of this loop. PAK1IP1 was induced when cells were treated with chemicals that disturb ribosome biogenesis. Overexpression of PAK1IP1 inhibited cell proliferation by inducing p53-dependent G1 cell-cycle arrest. PAK1IP1 bound to MDM2 and inhibited its ability to ubiquitinate and to degrade p53, consequently leading to the accumulation of p53 levels. Interestingly, knockdown of PAK1IP1 in cells also inhibited cell proliferation and induced p53-dependent G1 arrest. Deficiency of PAK1IP1 increased free ribosomal protein L5 and L11 which were required for PAK1IP1 depletion-induced p53 activation. Taken together, our results reveal that PAK1IP1 is a new nucleolar protein that is crucial for rRNA processing and plays a regulatory role in cell proliferation via the p53–MDM2 loop. PMID:21097889

  10. Anti-tumor activity and immunological modification of ribosome-inactivating protein (RIP) from Momordica charantia by covalent attachment of polyethylene glycol

    Institute of Scientific and Technical Information of China (English)

    Mengen Li; Yiwen Chen; Zhongyu Liu; Fubing Shen; Xiaoxiao Bian; Yanfa Meng

    2009-01-01

    Ribosome-inactivating proteins (RIPs) are a family of enzymes that depurinate rRNA and inhibit protein biosynthesis. Here we report the purification, apoptosis-inducing activity, and polyethylene glycol (PEG) modification of RIP from the bitter melon seeds. The protein has a homogenous N-terminal sequence of N-Asp-Val-Ser-Phe-Arg. Moreover, the RIP displayed strong apoptosis-inducing activity and suppressed cancer cell growth. This might be attributed to the acti-vation of caspases-3. To make it available for in vivo application, the immunogenicity of RIP was reduced by chemical modification with 20 kDa (mPEG)2-Lys-NHS. The inhibition activity of both PEGylated and non-PEGylated RIP against cancer cells was much stronger than against normal cells, and the antigenicity of PEGylated RIP was reduced significantly. Our results suggested that the PEGylated RIP might be potentially developed as anti-cancer drug.

  11. The vhs1 mutant form of herpes simplex virus virion host shutoff protein retains significant internal ribosome entry site-directed RNA cleavage activity.

    Science.gov (United States)

    Lu, P; Saffran, H A; Smiley, J R

    2001-01-01

    The virion host shutoff (vhs) protein of herpes simplex virus (HSV) triggers global shutoff of host protein synthesis and accelerated turnover of host and viral mRNAs during HSV infection. As well, it induces endoribonucleolytic cleavage of RNA substrates when produced in a rabbit reticulocyte lysate (RRL) in vitro translation system. The vhs1 point mutation (Thr 214-->Ile) eliminates vhs function during virus infection and in transiently transfected mammalian cells and was therefore previously considered to abolish vhs activity. Here we demonstrate that the vhs1 mutant protein induces readily detectable endoribonuclease activity on RNA substrates bearing the internal ribosome entry site of encephalomyocarditis virus in the RRL assay system. These data document that the vhs1 mutation does not eliminate catalytic activity and raise the possibility that the vhs-dependent endoribonuclease employs more than one mode of substrate recognition.

  12. Surface topography of the Bacillus stearothermophilus ribosome

    International Nuclear Information System (INIS)

    The surface topography of the intact 70S ribosome and free 30S and 50S subunits from Bacillus stearothermophilus strain 2,184 was investigated by lactoperoxidase-catalyzed iodination. Two-dimensional polyacrylamide gel electrophoresis was employed to separate ribosomal proteins for analysis of their reactivity. Free 50S subunits incorporated about 18% more 125I than did 50S subunits derived from 70S ribosomes, whereas free 30S subunits and 30S subunits derived from 70S ribosomes incorporated similar amounts of 125I. Iodinated 70S ribosomes and subunits retained 62-78% of the protein synthesis activity of untreated particles and sedimentation profiles showed no gross conformational changes due to iodination. The proteins most reactive to enzymatic iodination were S4, S7, S10 and Sa of the small subunit and L2, L4, L5/9, L6 and L36 of the large subunit. Proteins S2, S3, S7, S13, Sa, L5/9, L10, L11 and L24/25 were labeled substantially more in the free subunits than in the 70S ribosome. Other proteins, including S5, S9, S12, S15/16, S18 and L36 were more extensively iodinated in the 70S ribosome than in the free subunits. The locations of tyrosine residues in some homologus ribosomal proteins from B. stearothermophilus and E. coli are compared. (orig.)

  13. Viral IRES RNA structures and ribosome interactions.

    Science.gov (United States)

    Kieft, Jeffrey S

    2008-06-01

    In eukaryotes, protein synthesis initiates primarily by a mechanism that requires a modified nucleotide 'cap' on the mRNA and also proteins that recruit and position the ribosome. Many pathogenic viruses use an alternative, cap-independent mechanism that substitutes RNA structure for the cap and many proteins. The RNAs driving this process are called internal ribosome-entry sites (IRESs) and some are able to bind the ribosome directly using a specific 3D RNA structure. Recent structures of IRES RNAs and IRES-ribosome complexes are revealing the structural basis of viral IRES' 'hijacking' of the protein-making machinery. It now seems that there are fundamental differences in the 3D structures used by different IRESs, although there are some common features in how they interact with ribosomes. PMID:18468443

  14. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  15. Ribosome biogenesis during skeletal muscle hypertrophy

    OpenAIRE

    von Walden, Ferdinand

    2014-01-01

    Muscle adaptation to chronic resistance exercise (RE) is the result of a cumulative effect on gene expression and protein content. Following a bout of RE, muscle protein synthesis increases and, if followed by consecutive bouts (training), protein accretion and muscle hypertrophy develops. The protein synthetic capacity of the muscle is dictated by ribosome content. Therefore, the general aim of this thesis is to investigate the regulation of ribosome biogenesis during skeletal muscle hypertr...

  16. A study of ribonucleoproteins: The sequence of rabbit 18S ribosomal RNA and the identification of proteins associated with messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, J.F. Jr.

    1989-01-01

    This study considers the functional role of ribosomal RNA and messenger ribonucleoproteins in the translational regulation of gene expression. The primary structure of rabbit 18S ribosomal RNA was determined by nucleotide sequence analysis of the RNA directly. Rabbit 18S RNA was cleaved with either T{sub 1} ribonuclease or RNase H, using a Pst 1 DNA linker to generate a unique set of overlapping fragments spanning the entire molecule. Both intact and fragmented 18S RNA were end-labeled with {sup 32}P and base-specifically cleaved enzymatically and chemically. Nucleotide sequences were determined from long polyacrylamide sequencing gels run in formamide. To assess functional roles of RNA in gene expression, specific mRNA-protein interactions were also examined. Eukaryotic mRNA is associated with specific proteins that may be important in translational regulation and mRNA stability; mRNP complexes were reconstituted in a message-dependent, cell-free rabbit reticulocyte translation system, using unique mRNA species transcribed in vitro with SP6 polymerase. Transcripts of both rabbit and human {beta}-globin cDNA were labeled with {sup 32}P either throughout the molecule ore selectively at the 5{prime} and 3{prime} terminus.

  17. Molecular paleontology: a biochemical model of the ancestral ribosome

    OpenAIRE

    Hsiao, Chiaolong; Lenz, Timothy K.; Peters, Jessica K; Fang, Po-Yu; Schneider, Dana M.; Anderson, Eric J.; Preeprem, Thanawadee; Bowman, Jessica C.; O'Neill, Eric B.; Lie, Lively; Athavale, Shreyas S.; Gossett, J. Jared; Trippe, Catherine; Murray, Jason; Anton S. Petrov

    2013-01-01

    Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro and in vivo. The resulting model of the ancestral ribosome presented here incorporates ∼20% of the extant 23S rRNA and fragments of five ribosomal proteins. We test hypotheses that ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure and (iii) form native complexes with ribosomal protein fragments. Footprinting exp...

  18. New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from Basella rubra L. and bougainvillea spectabilis Willd.

    Science.gov (United States)

    Bolognesi, A; Polito, L; Olivieri, F; Valbonesi, P; Barbieri, L; Battelli, M G; Carusi, M V; Benvenuto, E; Del Vecchio Blanco, F; Di Maro, A; Parente, A; Di Loreto, M; Stirpe, F

    1997-12-01

    New single-chain (type 1) ribosome-inactivating proteins (RIPs) were isolated from the seeds of Basella rubra L. (two proteins) and from the leaves of Bougainvillea spectabilis Willd. (one protein). These RIPs inhibit protein synthesis both in a cell-free system, with an IC50 (concentration causing 50% inhibition) in the 10(-10) M range, and by various cell lines, with IC50S in the 10(-8)-10(-6) M range. All three RIPs released adenine not only from rat liver ribosomes but also from Escherichia coli rRNA, polyadenylic acid, herring sperm DNA, and artichoke mottled crinkle virus (AMCV) genomic RNA, thus being polynucleotide:adenosine glycosidases. The proteins from Basella rubra had toxicity to mice similar to that of most type 1 RIPs (Barbieri et al., 1993, Biochim Biophys Acta 1154: 237-282) with an LD50 (concentration that is 50% lethal) 32 mg.kg-1. The N-terminal sequence of the two RIPs from Basella rubra had 80-93% identity, whereas it differed from the sequence of the RIP from Bougainvillea spectabilis. When tested with antibodies against various RIPs, the RIPs from Basella gave some cross-reactivity with sera against dianthin 32, and weak cross-reactivity with momordin I and momorcochin-S, whilst the RIP from Bougainvillea did not cross-react with any antiserum tested. An RIP from Basella rubra and one from Bougainvillea spectabilis were tested for antiviral activity, and both inhibited infection of Nicotiana benthamiana by AMCV. PMID:9421927

  19. Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA.

    Science.gov (United States)

    Stern, S; Powers, T; Changchien, L M; Noller, H F

    1988-06-20

    We have examined the effects of assembly of ribosomal proteins S5, S6, S11, S12, S18 and S21 on the reactivities of residues in 16 S rRNA towards chemical probes. The results show that S6, S18 and S11 interact with the 690-720 and 790 loop regions of 16 S rRNA in a highly co-operative manner, that is consistent with the previously defined assembly map relationships among these proteins. The results also indicate that these proteins, one of which (S18) has previously been implicated as a component of the ribosomal P-site, interact with residues near some of the recently defined P-site (class II tRNA protection) nucleotides in 16 S rRNA. In addition, assembly of protein S12 has been found to result in the protection of residues in both the 530 stem/loop and the 900 stem regions; the latter group is closely juxtaposed to a segment of 16 S rRNA recently shown to be protected from chemical probes by streptomycin. Interestingly, both S5 and S12 appear to protect, to differing degrees, a well-defined set of residues in the 900 stem/loop and 5'-terminal regions. These observations are discussed in terms of the effects of S5 and S12 on streptomycin binding, and in terms of the class III tRNA protection found in the 900 stem of 16 S rRNA. Altogether these results show that many of the small subunit proteins, which have previously been shown to be functionally important, appear to be associated with functionally implicated segments of 16 S rRNA.

  20. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme.

    Directory of Open Access Journals (Sweden)

    Jinzhong Lin

    2013-10-01

    Full Text Available A multitude of proteins and small nucleolar RNAs transiently associate with eukaryotic ribosomal RNAs to direct their modification and processing and the assembly of ribosomal proteins. Utp22 and Rrp7, two interacting proteins with no recognizable domain, are components of the 90S preribosome or the small subunit processome that conducts early processing of 18S rRNA. Here, we determine the cocrystal structure of Utp22 and Rrp7 complex at 1.97 Å resolution and the NMR structure of a C-terminal fragment of Rrp7, which is not visible in the crystal structure. The structure reveals that Utp22 surprisingly resembles a dimeric class I tRNA CCA-adding enzyme yet with degenerate active sites, raising an interesting evolutionary connection between tRNA and rRNA processing machineries. Rrp7 binds extensively to Utp22 using a deviant RNA recognition motif and an extended linker. Functional sites on the two proteins were identified by structure-based mutagenesis in yeast. We show that Rrp7 contains a flexible RNA-binding C-terminal tail that is essential for association with preribosomes. RNA-protein crosslinking shows that Rrp7 binds at the central domain of 18S rRNA and shares a neighborhood with two processing H/ACA snoRNAs snR30 and snR10. Depletion of snR30 prevents the stable assembly of Rrp7 into preribosomes. Our results provide insight into the evolutionary origin and functional context of Utp22 and Rrp7.

  1. Ribonucleic acid-protein cross-linking within the intact Escherichia coli ribosome, utilizing ethylene glycol bis[3-(2-ketobutyraldehyde) ether], a reversible, bifunctional reagent: identification of 30S proteins.

    Science.gov (United States)

    Brewer, L A; Noller, H F

    1983-08-30

    To obtain detailed topographical information concerning the spatial arrangement of the multitude of ribosomal proteins with respect to specific sequences in the three RNA chains of intact ribosomes, a reagent capable of covalently and reversibly joining RNA to protein has been synthesized [Brewer, L.A., Goelz, S., & Noller, H. F. (1983) Biochemistry (preceding paper in this issue)]. This compound, ethylene glycol bis[3-(2-ketobutyraldehyde) ether] which we term "bikethoxal", possesses two reactive ends similar to kethoxal. Accordingly, it reacts selectively with guanine in single-stranded regions of nucleic acid and with arginine in protein. The cross-linking is reversible in that the arginine- and guanine-bikethoxal linkage can be disrupted by treatment with mild base, allowing identification of the linked RNA and protein components by standard techniques. Further, since the sites of kethoxal modification within the RNA sequences of intact subunits are known, the task of identifying the components of individual ribonucleoprotein complexes should be considerably simplified. About 15% of the ribosomal protein was covalently cross-linked to 16S RNA by bikethoxal under our standard reaction conditions, as monitored by comigration of 35S-labeled protein with RNA on Sepharose 4B in urea. Cross-linked 30S proteins were subsequently removed from 16S RNA by treatment with T1 ribonuclease and/or mild base cleavage of the reagent and were identified by two-dimensional polyacrylamide gel electrophoresis. The major 30S proteins found in cross-linked complexes are S4, S5, S6, S7, S8, S9 (S11), S16, and S18. The minor ones are S2, S3, S12, S13, S14, S15, and S17.

  2. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    Science.gov (United States)

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  3. Imaging bacterial protein expression using genetically encoded sensors composed of RNA

    OpenAIRE

    Song, Wenjiao; Strack, Rita L.; Jaffrey, Samie R.

    2013-01-01

    We show that the difficulties in imaging the dynamics of protein expression in live bacterial cells can be overcome using fluorescent sensors based on Spinach, an RNA that activates the fluorescence of a small-molecule fluorophore. These RNAs selectively bind target proteins, and exhibit fluorescence increases that enable protein expression to be imaged in living cells. These sensors provide a general strategy to image protein expression in single bacteria in real-time.

  4. Aggregation of Ribosomal Protein S6 at Nucleolus Is Cell Cycle-Controlled and Its Function in Pre-rRNA Processing Is Phosphorylation Dependent.

    Science.gov (United States)

    Zhang, Duo; Chen, Hui-Peng; Duan, Hai-Feng; Gao, Li-Hua; Shao, Yong; Chen, Ke-Yan; Wang, You-Liang; Lan, Feng-Hua; Hu, Xian-Wen

    2016-07-01

    Ribosomal protein S6 (rpS6) has long been regarded as one of the primary r-proteins that functions in the early stage of 40S subunit assembly, but its actual role is still obscure. The correct forming of 18S rRNA is a key step in the nuclear synthesis of 40S subunit. In this study, we demonstrate that rpS6 participates in the processing of 30S pre-rRNA to 18S rRNA only when its C-terminal five serines are phosphorylated, however, the process of entering the nucleus and then targeting the nucleolus does not dependent its phosphorylation. Remarkably, we also find that the aggregation of rpS6 at the nucleolus correlates to the phasing of cell cycle, beginning to concentrate in the nucleolus at later S phase and disaggregate at M phase. J. Cell. Biochem. 117: 1649-1657, 2016. © 2015 Wiley Periodicals, Inc.

  5. Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice

    International Nuclear Information System (INIS)

    This study investigated the preventive effect of ribosomal protein S3 (rpS3) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema in mice. A cell permeable expression vector PEP-1-rpS3 was constructed. Topical application of the vector markedly inhibited TPA-induced expression levels of cyclooxygenase-2 (COX-2) and pro-inflammatory cytokines. Application of PEP-1-rpS3 also resulted in a significant reduction in the activation of nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) in TPA-treated ears. These results indicate that PEP-1-rpS3 inhibits inflammatory response cytokines and enzymes by blocking NF-kB and MAPK, prompting the suggestion that PEP-1-rpS3 can be used as a therapeutic agent against skin inflammation.

  6. The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene trpP (yhaG) by blocking ribosome binding.

    Science.gov (United States)

    Yakhnin, Helen; Zhang, Hong; Yakhnin, Alexander V; Babitzke, Paul

    2004-01-01

    Expression of the Bacillus subtilis tryptophan biosynthetic genes (trpEDCFBA and pabA [trpG]) is regulated in response to tryptophan by TRAP, the trp RNA-binding attenuation protein. TRAP-mediated regulation of the tryptophan biosynthetic genes includes a transcription attenuation and two distinct translation control mechanisms. TRAP also regulates translation of trpP (yhaG), a single-gene operon that encodes a putative tryptophan transporter. Its translation initiation region contains triplet repeats typical of TRAP-regulated mRNAs. We found that regulation of trpP and pabA is unaltered in a rho mutant strain. Results from filter binding and gel mobility shift assays demonstrated that TRAP binds specifically to a segment of the trpP transcript that includes the untranslated leader and translation initiation region. While the affinities of TRAP for the trpP and pabA transcripts are similar, TRAP-mediated translation control of trpP is much more extensive than for pabA. RNA footprinting revealed that the trpP TRAP binding site consists of nine triplet repeats (five GAG, three UAG, and one AAG) that surround and overlap the trpP Shine-Dalgarno (S-D) sequence and translation start codon. Results from toeprint and RNA-directed cell-free translation experiments indicated that tryptophan-activated TRAP inhibits TrpP synthesis by preventing binding of a 30S ribosomal subunit. Taken together, our results establish that TRAP regulates translation of trpP by blocking ribosome binding. Thus, TRAP coordinately regulates tryptophan synthesis and transport by three distinct mechanisms: attenuation transcription of the trpEDCFBA operon, promoting formation of the trpE S-D blocking hairpin, and blocking ribosome binding to the pabA and trpP transcripts. PMID:14702295

  7. The location of protein S8 and surrounding elements of 16S rRNA in the 70S ribosome from combined use of directed hydroxyl radical probing and X-ray crystallography.

    Science.gov (United States)

    Lancaster, L; Culver, G M; Yusupova, G Z; Cate, J H; Yusupov, M M; Noller, H F

    2000-05-01

    Ribosomal protein S8, which is essential for the assembly of the central domain of 16S rRNA, is one of the most thoroughly studied RNA-binding proteins. To map its surrounding RNA in the ribosome, we carried out directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to nine different positions on the surface of protein S8 in 70S ribosomes. Hydroxyl radical-induced cleavage was observed near the classical S8-binding site in the 620 stem, and flanking the other S8-footprinted regions of the central domain at the three-helix junction near position 650 and the 825 and 860 stems. In addition, cleavage near the 5' terminus of 16S rRNA, in the 300 region of its 5' domain, and in the 1070 region of its 3'-major domain provide information about the proximity to S8 of RNA elements not directly involved in its binding. These data, along with previous footprinting and crosslinking results, allowed positioning of protein S8 and its surrounding RNA elements in a 7.8-A map of the Thermus thermophilus 70S ribosome. The resulting model is in close agreement with the extensive body of data from previous studies using protein-protein and protein-RNA crosslinking, chemical and enzymatic footprinting, and genetics.

  8. Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica.

    Science.gov (United States)

    Brewer, Matthew T; Agbedanu, Prince N; Zamanian, Mostafa; Day, Tim A; Carlson, Steve A

    2013-11-01

    Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.

  9. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance.

    Science.gov (United States)

    Villa, Laura; Feudi, Claudia; Fortini, Daniela; García-Fernández, Aurora; Carattoli, Alessandra

    2014-01-01

    Full genome sequences were determined for five Klebsiella pneumoniae strains belonging to the sequence type 512 (ST512) clone, producing KPC-3. Three strains were resistant to tigecycline, one showed an intermediate phenotype, and one was susceptible. Comparative analysis performed using the genome of the susceptible strain as a reference sequence identified genetic differences possibly associated with resistance to tigecycline. Results demonstrated that mutations in the ramR gene occurred in two of the three sequenced strains. Mutations in RamR were previously demonstrated to cause overexpression of the AcrAB-TolC efflux system and were implicated in tigecycline resistance in K. pneumoniae. The third strain showed a mutation located at the vertex of a very well conserved loop in the S10 ribosomal protein, which is located in close proximity to the tigecycline target site in the 30S ribosomal subunit. This mutation was previously shown to be associated with tetracycline resistance in Neisseria gonorrhoeae. A PCR-based approach was devised to amplify the potential resistance mechanisms identified by genomics and applied to two additional ST512 strains showing resistance to tigecycline, allowing us to identify mutations in the ramR gene.

  10. Viral IRES RNA structures and ribosome interactions

    OpenAIRE

    Kieft, Jeffrey S.

    2008-01-01

    In eukaryotes, protein synthesis initiates primarily by a mechanism that requires a modified nucleotide ‘cap’ on the mRNA and also proteins that recruit and position the ribosome. Many pathogenic viruses use an alternative, cap-independent mechanism that substitutes RNA structure for the cap and many proteins. The RNAs driving this process are called internal ribosome-entry sites (IRESs) and some are able to bind the ribosome directly using a specific 3D RNA structure. Recent structures of IR...

  11. Ribosome dynamics and the evolutionary history of ribosomes

    Science.gov (United States)

    Fox, George E.; Paci, Maxim; Tran, Quyen; Petrov, Anton S.; Williams, Loren D.

    2015-09-01

    The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.

  12. High efficacy of a 20 amino acid peptide of the acidic ribosomal protein P0 against the cattle tick, Rhipicephalus microplus.

    Science.gov (United States)

    Rodríguez-Mallon, Alina; Encinosa, Pedro E; Méndez-Pérez, Lídice; Bello, Yamil; Rodríguez Fernández, Rafmary; Garay, Hilda; Cabrales, Ania; Méndez, Luis; Borroto, Carlos; Estrada, Mario Pablo

    2015-06-01

    Current strategies to control cattle ticks use integrated control programs (ICP) that include vaccination. Reduction in the use of chemicals and in the cost of tick control, the delay or elimination of acaricide resistance and the decreasing of environmental pollution are the advantages of using these programs. This integrated program is potentially applicable to all genotypes of chemical resistant ticks. However, the problem here is to improve the efficacy of anti-tick vaccines. The P0 protein is a structural component of the ribosome of all organisms. We have identified an immunogenic region of ribosomal protein P0 from Rhipicephalus spp. ticks that is not very conserved compared to the orthologous protein in their hosts. A synthetic 20 amino acid peptide from this sequence was effective as a vaccine against Rhipicephalus sanguineus infestations in an immunization and challenge experiment using rabbits. In this paper, the same peptide used as vaccine against the cattle tick Rhipicephalus Boophilus microplus shows a significant diminution in the number of engorged females recovered, in the weight of females and the weight of egg masses. The number of eggs hatched was also significantly reduced for the vaccinated group, with an overall effectivity for the antigen pP0 of 96%. These results, together with the conserved sequence of the P0 peptide among ticks, suggest that this antigen could be a good broad spectrum vaccine candidate. It would be expected to be active against many species of ticks and thus has promise in an ICP for effective control of ticks and thereby to improve the efficiency and productivity of the livestock industry. PMID:25958782

  13. The DNA virus white spot syndrome virus uses an internal ribosome entry site for translation of the highly expressed nonstructural protein ICP35.

    Science.gov (United States)

    Kang, Shih-Ting; Wang, Han-Ching; Yang, Yi-Ting; Kou, Guang-Hsiung; Lo, Chu-Fang

    2013-12-01

    Although shrimp white spot syndrome virus (WSSV) is a large double-stranded DNA virus (∼300 kbp), it expresses many polycistronic mRNAs that are likely to use internal ribosome entry site (IRES) elements for translation. A polycistronic mRNA encodes the gene of the highly expressed nonstructural protein ICP35, and here we use a dual-luciferase assay to demonstrate that this protein is translated cap independently by an IRES element located in the 5' untranslated region of icp35. A deletion analysis of this region showed that IRES activity was due to stem-loops VII and VIII. A promoterless assay, a reverse transcription-PCR together with quantitative real-time PCR analysis, and a stable stem-loop insertion upstream of the Renilla luciferase open reading frame were used, respectively, to rule out the possibility that cryptic promoter activity, abnormal splicing, or read-through was contributing to the IRES activity. In addition, a Northern blot analysis was used to confirm that only a single bicistronic mRNA was expressed. The importance of ICP35 to viral replication was demonstrated in a double-stranded RNA (dsRNA) interference knockdown experiment in which the mortality of the icp35 dsRNA group was significantly reduced. Tunicamycin was used to show that the α subunit of eukaryotic initiation factor 2 is required for icp35 IRES activity. We also found that the intercalating drug quinacrine significantly inhibited icp35 IRES activity in vitro and reduced the mortality rate and viral copy number in WSSV-challenged shrimp. Lastly, in Sf9 insect cells, we found that knockdown of the gene for the Spodoptera frugiperda 40S ribosomal protein RPS10 decreased icp35 IRES-regulated firefly luciferase activity but had no effect on cap-dependent translation. PMID:24089551

  14. 5'UTR variants of ribosomal protein S19 transcript determine translational efficiency: implications for Diamond-Blackfan anemia and tissue variability.

    Directory of Open Access Journals (Sweden)

    Jitendra Badhai

    Full Text Available BACKGROUND: Diamond-Blackfan anemia (DBA is a lineage specific and congenital erythroblastopenia. The disease is associated with mutations in genes encoding ribosomal proteins resulting in perturbed ribosomal subunit biosynthesis. The RPS19 gene is mutated in approximately 25% of DBA patients and a variety of coding mutations have been described, all presumably leading to haploinsufficiency. A subset of patients carries rare polymorphic sequence variants within the 5'untranslated region (5'UTR of RPS19. The functional significance of these variants remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the distribution of transcriptional start sites (TSS for RPS19 mRNAs in testis and K562 cells. Twenty-nine novel RPS19 transcripts were identified with different 5'UTR length. Quantification of expressed w.t. 5'UTR variants revealed that a short 5'UTR correlates with high levels of RPS19. The total levels of RPS19 transcripts showed a broad variation between tissues. We also expressed three polymorphic RPS19 5'UTR variants identified in DBA patients. The sequence variants include two insertions (c.-147_-146insGCCA and c.-147_-146insAGCC and one deletion (c.-144_-141delTTTC. The three 5'UTR polymorphisms are associated with a 20-30% reduction in RPS19 protein levels when compared to the wild-type (w.t. 5'UTR of corresponding length. CONCLUSIONS: The RPS19 gene uses a broad range of TSS and a short 5'UTR is associated with increased levels of RPS19. Comparisons between tissues showed a broad variation in the total amount of RPS19 mRNA and in the distribution of TSS used. Furthermore, our results indicate that rare polymorphic 5'UTR variants reduce RPS19 protein levels with implications for Diamond-Blackfan anemia.

  15. Regulation of bacterial RecA protein function.

    Science.gov (United States)

    Cox, Michael M

    2007-01-01

    The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes. PMID:17364684

  16. Rho-modifying bacterial protein toxins from Photorhabdus species.

    Science.gov (United States)

    Jank, Thomas; Lang, Alexander E; Aktories, Klaus

    2016-06-15

    Photorhabdus bacteria live in symbiosis with entomopathogenic nematodes. The nematodes invade insect larvae, where they release the bacteria, which then produce toxins to kill the insects. Recently, the molecular mechanisms of some toxins from Photorhabdus luminescens and asymbiotica have been elucidated, showing that GTP-binding proteins of the Rho family are targets. The tripartite Tc toxin PTC5 from P. luminescens activates Rho proteins by ADP-ribosylation of a glutamine residue, which is involved in GTP hydrolysis, while PaTox from Photorhabdus asymbiotica inhibits the activity of GTPases by N-acetyl-glucosaminylation at tyrosine residues and activates Rho proteins indirectly by deamidation of heterotrimeric G proteins.

  17. Selection of random RNA fragments as method for searching for a site of regulation of translation of E. coli streptomycin mRNA by ribosomal protein S7.

    Science.gov (United States)

    Surdina, A V; Rassokhin, T I; Golovin, A V; Spiridonova, V A; Kraal, B; Kopylov, A M

    2008-06-01

    In E. coli cells ribosomal small subunit biogenesis is regulated by RNA-protein interactions involving protein S7. S7 initiates the subunit assembly interacting with 16S rRNA. During shift-down of rRNA synthesis level, free S7 inhibits self-translation by interacting with 96 nucleotides long specific region of streptomycin (str) mRNA between cistrons S12 and S7 (intercistron). Many bacteria do not have the extended intercistron challenging development of specific approaches for searching putative mRNA regulatory regions, which are able to interact with proteins. The paper describes application of SERF approach (Selection of Random RNA Fragments) to reveal regulatory regions of str mRNA. Set of random DNA fragments has been generated from str operon by random hydrolysis and then transcribed into RNA; the fragments being able to bind protein S7 (serfamers) have been selected by iterative rounds. S7 binds to single serfamer, 109 nucleotide long (RNA109), derived from the intercistron. After multiple copying and selection, the intercistronic mutant (RNA109) has been isolated; it has enhanced affinity to S7. RNA109 binds to the protein better than authentic intercistronic str mRNA; apparent dissociation constants are 26 +/- 5 and 60 +/- 8 nM, respectively. Location of S7 binding site on the mRNA, as well as putative mode of regulation of coupled translation of S12 and S7 cistrons have been hypothesized.

  18. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    International Nuclear Information System (INIS)

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription

  19. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Sunghan [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Shin, Yun-jeong [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Woo-Young [College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Koh, Hee-Jong, E-mail: heejkoh@snu.ac.kr [Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  20. Ribosome crystals in the oocyte of Gerris najas (Heteroptera).

    Science.gov (United States)

    Choi, W C; Nagl, W

    1977-01-01

    Oocytes of the pond skater, Gerris najas, display ribosome tetramers that are arranged in the form of sheets in the vicinity of the nucleus. This is the first finding of ribosome crystals in an insect and suggests that ribosome crystallization may be a common phenomenon of cells that are inactive in protein synthesis.

  1. BACTERIAL SOLUTE TRANSPORT PROTEINS IN THEIR LIPID ENVIRONMENT

    NARCIS (Netherlands)

    TVELD, GI; DRIESSEN, AJM; KONINGS, WN; Veld, Gerda in 't

    1993-01-01

    The cytoplasmic membrane of bacteria is a selective barrier that restricts entry and exit of solutes. Transport of solutes across this membrane is catalyzed by specific membrane proteins. Integral membrane proteins usually require specific lipids for optimal activity and are inhibited by other lipid

  2. Essential bacterial helicases that counteract the toxicity of recombination proteins

    OpenAIRE

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-01-01

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previo...

  3. Proteolytic activation of human pancreatitis associated protein is required for peptidoglycan binding and bacterial aggregation

    OpenAIRE

    Medveczky, Péter; Szmola, Richárd; Sahin-Tóth, Miklós

    2009-01-01

    Pancreatitis associated protein (PAP) is a 16 kDa lectin-like protein, which becomes robustly upregulated in the pancreatic juice during acute pancreatitis. Trypsin cleaves the N terminus of PAP, which in turn forms insoluble fibrils. PAP and its paralog the pancreatic stone protein induce bacterial aggregation and, more recently, PAP was shown to bind to the peptidoglycan of Gram positive bacteria and exert a direct bactericidal effect. However, the role of N-terminal processing in the antib...

  4. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering

    International Nuclear Information System (INIS)

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen (1H) for deuterium (2H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.)

  5. An overview of pre-ribosomal RNA processing in eukaryotes

    OpenAIRE

    Henras, Anthony K.; Plisson-Chastang, Célia; O'Donohue, Marie-Françoise; Chakraborty, Anirban; Gleizes, Pierre-Emmanuel

    2014-01-01

    Ribosomal RNAs are the most abundant and universal noncoding RNAs in living organisms. In eukaryotes, three of the four ribosomal RNAs forming the 40S and 60S subunits are borne by a long polycistronic pre-ribosomal RNA. A complex sequence of processing steps is required to gradually release the mature RNAs from this precursor, concomitant with the assembly of the 79 ribosomal proteins. A large set of trans-acting factors chaperone this process, including small nucleolar ribonucleoparticles. ...

  6. High-Throughput Screening of Bacterial Protein Localization

    OpenAIRE

    Werner, John N.; Gitai, Zemer

    2010-01-01

    The ever-increasing number of sequenced genomes and subsequent sequence-based analysis has provided tremendous insight into cellular processes; however, the ability to experimentally manipulate this genomic information in the laboratory requires the development of new high-throughput methods. To translate this genomic information into information on protein function, molecular and cell biological techniques are required. One strategy to gain insight into protein function is to observe where e...

  7. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  8. Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coli

    DEFF Research Database (Denmark)

    Egebjerg, J; Douthwaite, S R; Liljas, A;

    1990-01-01

    Ribonuclease and chemical probes were used to investigate the binding sites of ribosomal protein L11 and the pentameric complex L10.(L12)4 on Escherichia coli 23 S RNA. Protein complexes were formed with an RNA fragment constituting most of domains I and II or with 23 S RNA and they were investig......Ribonuclease and chemical probes were used to investigate the binding sites of ribosomal protein L11 and the pentameric complex L10.(L12)4 on Escherichia coli 23 S RNA. Protein complexes were formed with an RNA fragment constituting most of domains I and II or with 23 S RNA and they were...... data, were used in a computer graphics approach to build a partial RNA tertiary structural model. The model provides insight into the topography of the L11 binding site. It also provides a structural rationale for the mutually co-operative binding of protein L11 with the antibiotics thiostrepton...

  9. Ribosomal protein S6 phosphorylation and morphological changes in response to the tumour promoter 12-O-tetradecanoylphorbol 13-acetate in primary human tumour cells, established and transformed cell lines

    DEFF Research Database (Denmark)

    Rance, A J; Thönnes, M; Issinger, O G

    1985-01-01

    The phosphorylation of ribosomal protein S6 in fibroblasts, primary human tumour cells, established and SV40-transformed human cell lines was compared after the addition of 12-O-tetradecanoylphorbol 13-acetate (TPA). In fibroblasts and primary tumour cell cultures, stimulation of S6 phosphorylati...

  10. Mescaline-induced changes of brain-cortex ribosomes. Effect of mescaline on the stability of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Ghosh, J J

    1970-05-01

    1. During the action of mescaline sulphate on goat brain-cortex slices the ribosomal particles become susceptible to breakdown, releasing protein, RNA, acidsoluble nucleotides and ninhydrin-positive materials, resulting in loss of ribosomal enzyme activities. 2. Ribosomes of the mescaline-treated cortex slices undergo rapid degradation in the presence of trypsin and ribonuclease. 3. Mescaline does not alter the chemical and nucleotide compositions or the u.v.-absorption characteristics of ribosomal particles, however.

  11. Coexisting protist-bacterial community accelerates protein transformation in microcosm experiments

    Directory of Open Access Journals (Sweden)

    Ngo Vy Thao

    2014-12-01

    Full Text Available Proteins constitute the major portion of labile substances in the marine environment and are an important source of organic matter supporting marine ecosystems. However, previous studies have revealed that specific bacterial membrane proteins are refractory in the oceans. We here show by kinetic analyses of protease degradation activity using inactivated Pseudomonas aeruginosa (Pa cells as a proteinaceous substrate that bacterial proteases are insufficient to completely hydrolyze proteins, which may partially cause the protein accumulation in seawater. Protease activity was monitored simultaneously in 8 microcosms subjected to differing conditions. Some Pa proteins were retained for 30 days in the presence of bacteria without protists, whereas the Pa proteins were completely disappeared in the presence of both, indicating that these proteins were substantially incorporated into protist biomass. Our result suggests that protists play an important role in the transformation of bacterial proteins in seawater. Our experiments also imply that the functional/taxonomic diversity should be taken into account when considering decomposition activity in marine environments.

  12. Potential Natural Products for Alzheimer’s Disease: Targeted Search Using the Internal Ribosome Entry Site of Tau and Amyloid-β Precursor Protein

    Directory of Open Access Journals (Sweden)

    Yun-Chieh Tasi

    2015-04-01

    Full Text Available Overexpression of the amyloid precursor protein (APP and the hyperphosphorylation of the tau protein are vital in the understanding of the cause of Alzheimer’s disease (AD. As a consequence, regulation of the expression of both APP and tau proteins is one important approach in combating AD. The APP and tau proteins can be targeted at the levels of transcription, translation and protein structural integrity. This paper reports the utilization of a bi-cistronic vector containing either APP or tau internal ribosome entry site (IRES elements flanked by β-galactosidase gene (cap-dependent and secreted alkaline phosphatase (SEAP (cap-independent to discern the mechanism of action of memantine, an N-methyl-d-aspartate (NMDA receptor antagonist. Results indicate that memantine could reduce the activity of both the APP and tau IRES at a concentration of ~10 μM (monitored by SEAP activity without interfering with the cap-dependent translation as monitored by the β-galactosidase assay. Western blot analysis of the tau protein in neuroblastoma (N2A and rat hippocampal cells confirmed the halting of the expression of the tau proteins. We also employed this approach to identify a preparation named NB34, extracts of Boussingaultia baselloides (madeira-vine fermented with Lactobacillus spp., which can function similarly to memantine in both IRES of APP and Tau. The water maze test demonstrated that NB34 could improve the spatial memory of a high fat diet induced neurodegeneration in apolipoprotein E-knockout (ApoE−/− mice. These results revealed that the bi-cistronic vector provided a simple, and effective platform in screening and establishing the mechanistic action of potential compounds for the treatment and management of AD.

  13. Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals.

    Science.gov (United States)

    Kroczynska, Barbara; Kaur, Surinder; Katsoulidis, Efstratios; Majchrzak-Kita, Beata; Sassano, Antonella; Kozma, Sara C; Fish, Eleanor N; Platanias, Leonidas C

    2009-05-01

    Although the roles of Jak-Stat pathways in type I and II interferon (IFN)-dependent transcriptional regulation are well established, the precise mechanisms of mRNA translation for IFN-sensitive genes remain to be defined. We examined the effects of IFNs on the phosphorylation/activation of eukaryotic translation initiation factor 4B (eIF4B). Our data show that eIF4B is phosphorylated on Ser422 during treatment of sensitive cells with alpha IFN (IFN-alpha) or IFN-gamma. Such phosphorylation is regulated, in a cell type-specific manner, by either the p70 S6 kinase (S6K) or the p90 ribosomal protein S6K (RSK) and results in enhanced interaction of the protein with eIF3A (p170/eIF3A) and increased associated ATPase activity. Our data also demonstrate that IFN-inducible eIF4B activity and IFN-stimulated gene 15 protein (ISG15) or IFN-gamma-inducible chemokine CXCL-10 protein expression are diminished in S6k1/S6k2 double-knockout mouse embryonic fibroblasts. In addition, IFN-alpha-inducible ISG15 protein expression is blocked by eIF4B or eIF3A knockdown, establishing a requirement for these proteins in mRNA translation/protein expression by IFNs. Importantly, the generation of IFN-dependent growth inhibitory effects on primitive leukemic progenitors is dependent on activation of the S6K/eIF4B or RSK/eIF4B pathway. Taken together, our findings establish critical roles for S6K and RSK in the induction of IFN-dependent biological effects and define a key regulatory role for eIF4B as a common mediator and integrator of IFN-generated signals from these kinases. PMID:19289497

  14. Protein oxidation implicated as the primary determinant of bacterial radioresistance.

    Directory of Open Access Journals (Sweden)

    Michael J Daly

    2007-04-01

    Full Text Available In the hierarchy of cellular targets damaged by ionizing radiation (IR, classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

  15. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins.

    Directory of Open Access Journals (Sweden)

    Eran Bosis

    Full Text Available Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.

  16. Effect of Bacillus mucilaginosus on weathering of phosphorite and a preliminary analysis of bacterial proteins

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu; LIAN Bin; LIU Congqiang

    2008-01-01

    The authors investigated the effect of Bacillus mucilaginosus on weathering of phosphorite. Analysis of different proteins was of significance in exploring the molecular biological mechanism in the bacterial weathering process. The concrete methods are described as follows: Mineral powder was put into liquid culture medium and B. mucilaginosus was incubated in the medium. The control (group) had no mineral powder in the medium. The treatments and controls were cultured simultaneously under the same condition. In a few days, the supernatant was filtrated, the main cations (Ca2+, Mg2+, Na+, Mn2+, Al3+, Fe3+, K+) were measured by ICP-OES, and the contents of water soluble phosphorus (Pws) and silicon (Siws) were determined by colorimetry. The residual solid was weighed on the filter paper, followed by digestion with concentrated HNO3. The concentrations of the main cations and Pws, Siws in the digest liquid were measured by using the method mentioned above. After the supernatant was centrifuged, the precipitation was used to analyze the protein differences between the treatment groups and the control groups by 2-dimentional gel electrophoresis (2-DE). The experimental results showed that apatite and quartz were partially weathered, but kaolinite was dissolved completely. The population of bacteria increased when mineral powder was added in the liquid medium. Software analysis and comparison of the 2-DE pictures of bacterial proteins revealed 1134 visible protein spots in the treatment group, and 729 visible protein spots in the control group. To compare the bacterial protein expression contents of the treatment group with those of the control group, there were 496 different protein spots, including 214 protein spots which indicated that the protein contents increased, 75 protein spots were indicative of a decrease, and 207 proteins were newly synthesized. It is proposed that the increased bacterial contents may be related to some protein expression and activation

  17. Bacterial protein meal in diets for growing pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Kjos, N.P.;

    2007-01-01

    blocks according to age. One pig from each litter was fed one of the four experimental diets. Soya-bean meal was replaced with BPM on the basis of digestible protein, and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), corresponding to 0%, 17%, 35% and 52...

  18. Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark.

    Science.gov (United States)

    Zaidi, Sayyed K; Boyd, Joseph R; Grandy, Rodrigo A; Medina, Ricardo; Lian, Jane B; Stein, Gary S; Stein, Janet L

    2016-09-01

    Embryonic stem cells (ESCs) exhibit unrestricted and indefinite, but stringently controlled, proliferation, and can differentiate into any lineage in the body. In the current study, we test the hypothesis that expression of ribosomal RNA (rRNA) and ribosomal protein genes (RPGs) contribute to the ability of hESCs to proliferate indefinitely. Consistent with the accelerated growth rate of hESCs, we find that hESC lines H1 and H9 both exhibit significantly higher levels of rRNA when compared to a panel of normal and cancer human cell lines. Although many RPGs are expressed at levels that comparable to other human cell lines, a few RPGs also exhibit higher expression levels. In situ nuclear run-on assays reveal that both nucleoli in hESCs actively transcribe nascent rRNA. Employing genome-wide chromatin immunoprecipitation-deep sequencing and bioinformatics approaches, we discovered that, RPGs are dominantly marked by the activating H3K4me3 histone mark in the G1, M, and G2 phases of the cell cycle. Interestingly, the rDNA repeats are marked by the activating H3K4me3 only in the M phase, and repressive H3K27me3 histone mark in all three cell cycle phases. Bioinformatics analyses also reveal that Myc, a known regulator of cell growth and proliferation, occupies both the rRNA genes and RPGs. Functionally, down-regulation of Myc expression by siRNA results in a concomitant decrease in rRNA levels. Together, our results show that expression of rRNA, which is regulated by the Myc pluripotency transcription factor, and of RPGs in hESCs is associated with the activating H3K4me3 modification. J. Cell. Physiol. 231: 2007-2013, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755341

  19. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    Directory of Open Access Journals (Sweden)

    Yanbo Shi

    2010-01-01

    Full Text Available Ferric ion binding proteins (Fbps transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.

  20. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin

    Directory of Open Access Journals (Sweden)

    Fucini Paola

    2004-04-01

    Full Text Available Abstract Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this r

  1. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    OpenAIRE

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    International audience The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we st...

  2. Procalcitonin and C-reactive protein as markers of bacterial infection in patients with solid tumours

    DEFF Research Database (Denmark)

    Diness, Laura V; Maraldo, Maja V; Mortensen, Christiane E;

    2014-01-01

    infection. In this prospective study, we wanted to investigate the value of procalcitonin (PCT) compared with C-reactive protein (CRP) as an indicator of bacterial infection in adult patients with solid tumours. METHODS: A total of 41 patients with solid tumours admitted to hospital due to fever or clinical...

  3. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone;

    2003-01-01

    The surface of AISI 316 grade stainless steel (SS) was modified with a layer of poly(ethylene glycol) (PEG) (molecular weight 5000) with the aim of preventing protein adsorption and bacterial adhesion. Model SS substrates were first modified to introduce a very high density of reactive amine grou...

  4. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen...

  5. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    Science.gov (United States)

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  6. The helper-component protease transmission factor of tobacco etch potyvirus binds specifically to an aphid ribosomal protein homologous to the laminin receptor precursor.

    Science.gov (United States)

    Fernández-Calvino, Lourdes; Goytia, Elisa; López-Abella, Dionisio; Giner, Ana; Urizarna, María; Vilaplana, Lluisa; López-Moya, Juan José

    2010-11-01

    Potyviruses are plant pathogens transmitted by aphids in a non-persistent manner. During transmission, the virus-encoded factor helper-component protease (HCPro) is presumed to act as a molecular bridge, mediating the reversible retention of virions to uncharacterized binding sites in the vector mouthparts. Whilst the predicted interaction between HCPro and the coat protein (CP) of virions has been confirmed experimentally, the characterization of putative HCPro-specific receptors in aphids has remained elusive, with the exception of a report that described binding of HCPro of zucchini yellow mosaic virus to several cuticle proteins. To identify other aphid components that could play a role during transmission, this study used purified HCPro of tobacco etch virus (TEV) in far-Western blotting assays as bait to select interactors among proteins extracted from aphid heads. With this approach, new HCPro-interacting proteins were found, and several were identified after mass spectrometry analysis and searches in databases dedicated to aphid sequences. Among these interactors, a ribosomal protein S2 (RPS2) was chosen for further investigation due to its homology with the laminin receptor precursor, known to act as the receptor of several viruses. The specific interaction between RPS2 and TEV HCPro was confirmed after cloning and heterologous expression of the corresponding Myzus persicae gene. The possible involvement of RPS2 in the transmission process was further suggested by testing a variant of HCPro that was non-functional for transmission due to a mutation in the conserved KITC motif (EITC variant). This variant retained its ability to bind CP but failed to interact with RPS2. PMID:20631085

  7. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...hilpott DJ, Girardin SE. Mol Immunol. 2004 Nov;41(11):1099-108. (.png) (.svg) (.html) (.csml) Show The role ...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-lik

  8. A method for in vivo identification of bacterial small RNA-binding proteins.

    Science.gov (United States)

    Osborne, Jonathan; Djapgne, Louise; Tran, Bao Quoc; Goo, Young Ah; Oglesby-Sherrouse, Amanda G

    2014-12-01

    Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA "bait", and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA "bait" as compared to the PrrH cDNA "bait", suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins.

  9. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    Science.gov (United States)

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  10. History of the ribosome and the origin of translation

    Science.gov (United States)

    Petrov, Anton S.; Gulen, Burak; Norris, Ashlyn M.; Kovacs, Nicholas A.; Lanier, Kathryn A.; Fox, George E.; Harvey, Stephen C.; Wartell, Roger M.; Hud, Nicholas V.; Williams, Loren Dean

    2015-01-01

    We present a molecular-level model for the origin and evolution of the translation system, using a 3D comparative method. In this model, the ribosome evolved by accretion, recursively adding expansion segments, iteratively growing, subsuming, and freezing the rRNA. Functions of expansion segments in the ancestral ribosome are assigned by correspondence with their functions in the extant ribosome. The model explains the evolution of the large ribosomal subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic ribosomes evolved in six phases, sequentially acquiring capabilities for RNA folding, catalysis, subunit association, correlated evolution, decoding, energy-driven translocation, and surface proteinization. Two additional phases exclusive to eukaryotes led to tentacle-like rRNA expansions. In this model, ribosomal proteinization was a driving force for the broad adoption of proteins in other biological processes. The exit tunnel was clearly a central theme of all phases of ribosomal evolution and was continuously extended and rigidified. In the primitive noncoding ribosome, proto-mRNA and the small ribosomal subunit acted as cofactors, positioning the activated ends of tRNAs within the peptidyl transferase center. This association linked the evolution of the large and small ribosomal subunits, proto-mRNA, and tRNA. PMID:26621738

  11. A novel method for simultaneous production of two ribosome-inactivating proteins, α-MMC and MAP30, from Momordica charantia L.

    Directory of Open Access Journals (Sweden)

    Yao Meng

    Full Text Available Alpha-momorcharin (α-MMC and momordica anti-HIV protein (MAP30 from Momordica charantia L. have been confirmed to possess anti-tumor and anti-virus activities. Traditional purification methods of these two ribosome-inactivating proteins (RIPs were separate which was time consuming and cost effective as well as low efficient. In order to obtain sufficient samples for researches, a strategy combining ion-exchange and gel filtration chromatography was developed and optimized in this study. Using this novel purification method, averagely 1162 mg of α-MMC and 535 mg of MAP30 were obtained from 400 g of Momordica charantia L seeds. The homogeneities of them were assessed by electrophoresis analysis. Determination of molecular weights of α-MMC and MAP30 were 28.585 kDa and 29.094 kDa by MALDI-TOF/TOF and pI were 9.02 and 9.12, respectively. The single glycoproteins were identified by Periodate-Schiff's base (PAS and the saccharide content was tested to be 1.25% and 1.1% by anthrone-sulfuric acid method. Biological activities were evidenced by their ability to inhibit proliferation of lung adenocarcinoma A549 cell and to convert supercoiled plasmid pUC18 into relaxed forms. Finally, we also found that both two RIPs exhibited no superoxide dismutase (SOD activity.

  12. Ribosomal protein S7 regulates arsenite-induced GADD45α expression by attenuating MDM2-mediated GADD45α ubiquitination and degradation.

    Science.gov (United States)

    Gao, Ming; Li, Xiaoguang; Dong, Wen; Jin, Rui; Ma, Hanghang; Yang, Pingxun; Hu, Meiru; Li, Yi; Hao, Yi; Yuan, Shengtao; Huang, Junjian; Song, Lun

    2013-05-01

    The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7-MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress.

  13. Identification of neighboring protein pairs cross-linked with dimethyl 3,3'-dithiobispropionimidate in rat liver 40S ribosomal subunits.

    Science.gov (United States)

    Uchiumi, T; Terao, K; Ogata, K

    1981-07-01

    Rat liver 40S ribosomal subunits were treated with a bifunctional imidoester, dimethyl 3,3'-dithiobispropionimidate (DTP), and the neighboring protein pairs were identified. The cross-linked proteins were analyzed by acrylamide/SDS diagonal gel electrophoresis (Sommer & Traut (1974) Proc. Natl. Acad. Sci. U.S. 71, 3946-3950). The cross-linked components that fell off the diagonal upon adding 2-mercaptoethanol in the second dimension were labeled with 125I in the acrylamide gel and identified by two-dimensional acrylamide/urea gel electrophoresis, followed by radioautography. Considering these results and the molecular weights, we propose the following ten pairs, according to our numbering system (Terao & Ogata (1975) Biochim. Biophys. Acta 402, 219-229): S3-S5 (S3/S3a-S4), S3-S14 (S3/S3a-S14), S3-S17 (S3/S3a-S16), S5-S22 (S4-S23/S24), S10-S12 (S8-S11), S9-S16 (S9-S18), S9-S22 (S9-S23/S24), S6-S23 (S5-S25), S17-S21 (S16-S19), and S16-S26 (S18-S27). The designation according to the proposed uniform nomenclature (McConkey et al. (1979) Mol. Gen. Genet. 169, 1-6) are given in parentheses.

  14. Comparative Immunohistochemical Analysis of Ochratoxin A Tumourigenesis in Rats and Urinary Tract Carcinoma in Humans; Mechanistic Significance of p-S6 Ribosomal Protein Expression

    Directory of Open Access Journals (Sweden)

    Sarah Pinder

    2012-09-01

    Full Text Available Ochratoxin A (OTA is considered to be a possible human urinary tract carcinogen, based largely on a rat model, but no molecular genetic changes in the rat carcinomas have yet been defined. The phosphorylated-S6 ribosomal protein is a marker indicating activity of the mammalian target of rapamycin, which is a serine/threonine kinase with a key role in protein biosynthesis, cell proliferation, transcription, cellular metabolism and apoptosis, while being functionally deregulated in cancer. To assess p-S6 expression we performed immunohistochemistry on formalin-fixed and paraffin-embedded tumours and normal tissues. Marked intensity of p-S6 expression was observed in highly proliferative regions of rat renal carcinomas and a rare angiosarcoma, all of which were attributed to prolonged exposure to dietary OTA. Only very small OTA-generated renal adenomas were negative for p-S6. Examples of rat subcutaneous fibrosarcoma and testicular seminoma, as well as of normal renal tissue, showed no or very weak positive staining. In contrast to the animal model, human renal cell carcinoma, upper urinary tract transitional cell carcinoma from cases of Balkan endemic nephropathy, and a human angiosarcoma were negative for p-S6. The combined findings are reminiscent of constitutive changes in the rat tuberous sclerosis gene complex in the Eker strain correlated with renal neoplasms, Therefore rat renal carcinogenesis caused by OTA does not obviously mimic human urinary tract tumourigenesis.

  15. Crystallization and preliminary X-ray diffraction data analysis of stenodactylin, a highly toxic type 2 ribosome-inactivating protein from Adenia stenodactyla

    International Nuclear Information System (INIS)

    Stenodactylin is a type 2 RIP from the caudex of Adenia stenodactyla. Stenodactylin crystallization and preliminary X-ray diffraction data analysis are reported. Ribosome-inactivating proteins (RIPs) inhibit protein synthesis and induce cell death by removing a single adenine from a specific rRNA loop. They can be divided into two main groups: type 1 and type 2 RIPs. Type 1 RIPs are single-chain enzymes with N-glycosidase activity. Type 2 RIPs contain two chains (A and B) linked by a disulfide bond. The A chain has RIP enzymatic activity, whereas the B chain shows lectin activity and is able to bind to glycosylated receptors on the cell surface. Stenodactylin is a type 2 RIP from the caudex of Adenia stenodactyla from the Passifloraceae family that has been recently purified and characterized. It shows a strong enzymatic activity towards several substrates and is more cytotoxic than other toxins of the same type. Here, the crystallization and preliminary X-ray diffraction data analysis of stenodactylin are reported. This RIP forms crystals that diffract to high resolution (up to 2.15 Å). The best data set was obtained by merging data collected from two crystals. Stenodactylin crystals belonged to the centred monoclinic space group C2 and contained two molecules in the asymmetric unit

  16. Cotranscription of two genes necessary for ribosomal protein L11 methylation (prmA) and pantothenate transport (panF) in Escherichia coli K-12.

    Science.gov (United States)

    Vanet, A; Plumbridge, J A; Alix, J H

    1993-11-01

    Genetic complementation and enzyme assays have shown that the DNA region between panF, which encodes pantothenate permease, and orf1, the first gene of the fis operon, encodes prmA, the genetic determinant for the ribosomal protein L11 methyltransferase. Sequencing of this region identified one long open reading frame that encodes a protein of 31,830 Da and corresponds to the prmA gene. We found, both in vivo and in vitro, that prmA is expressed from promoters located upstream of panF and thus that the panF and prmA genes constitute a bifunctional operon. We located the major 3' end of prmA transcripts 90 nucleotides downstream of the stop codon of prmA in the DNA region upstream of the fis operon, a region implicated in the control of the expression of the fis operon. Although no promoter activity was detected immediately upstream of prmA, S1 mapping detected 5' ends of mRNA in this region, implying that some mRNA processing occurs within the bicistronic panF-prmA mRNA. PMID:8226664

  17. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    predictions were made in about 60% of the cases. This project has highlighted the difficulties and challenges in functional annotation and computational analysis of sequence data. It has provided possible solutions for creating reproducible pipelines for comparative genomics as well as constructed a number......In November 2013, there was around 21.000 different prokaryotic genomes sequenced and publicly available, and the number is growing daily with another 20.000 or more genomes expected to be sequenced and deposited by the end of 2014. An important part of the analysis of this data is the functional...... annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...

  18. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.

    Directory of Open Access Journals (Sweden)

    Andrea Procaccini

    Full Text Available Predictive understanding of the myriads of signal transduction pathways in a cell is an outstanding challenge of systems biology. Such pathways are primarily mediated by specific but transient protein-protein interactions, which are difficult to study experimentally. In this study, we dissect the specificity of protein-protein interactions governing two-component signaling (TCS systems ubiquitously used in bacteria. Exploiting the large number of sequenced bacterial genomes and an operon structure which packages many pairs of interacting TCS proteins together, we developed a computational approach to extract a molecular interaction code capturing the preferences of a small but critical number of directly interacting residue pairs. This code is found to reflect physical interaction mechanisms, with the strongest signal coming from charged amino acids. It is used to predict the specificity of TCS interaction: Our results compare favorably to most available experimental results, including the prediction of 7 (out of 8 known interaction partners of orphan signaling proteins in Caulobacter crescentus. Surveying among the available bacterial genomes, our results suggest 15∼25% of the TCS proteins could participate in out-of-operon "crosstalks". Additionally, we predict clusters of crosstalking candidates, expanding from the anecdotally known examples in model organisms. The tools and results presented here can be used to guide experimental studies towards a system-level understanding of two-component signaling.

  19. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and Kelp fly virus.

    Directory of Open Access Journals (Sweden)

    Steven M Valles

    Full Text Available Solenopsis invicta virus 3 (SINV-3 is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV, an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order.

  20. An internal ribosome entry site element directs the synthesis of the 80 kDa isoforms of protein 4.1R

    Directory of Open Access Journals (Sweden)

    Correas Isabel

    2008-12-01

    Full Text Available Abstract Background In red blood cells, protein 4.1 (4.1R is an 80 kDa protein that stabilizes the spectrin-actin network and anchors it to the plasma membrane through its FERM domain. While the expression pattern of 4.1R in mature red cells is relatively simple, a rather complex array of 4.1R protein isoforms varying in N-terminal extensions, internal sequences and subcellular locations has been identified in nucleated cells. Among these, 135 kDa and 80 kDa isoforms have different N-terminal extensions and are expressed either from AUG1- or AUG2-containing mRNAs, respectively. These two types of mRNAs, varying solely by presence/absence of 17 nucleotides (nt which contain the AUG1 codon, are produced by alternative splicing of the 4.1R pre-mRNA. It is unknown whether the 699 nt region comprised between AUG1 and AUG2, kept as a 5' untranslated region in AUG2-containing mRNAs, plays a role on 4.1R mRNA translation. Results By analyzing the in vitro expression of a panel of naturally occurring 4.1R cDNAs, we observed that all AUG1/AUG2-containing cDNAs gave rise to both long, 135 kDa, and short, 80 kDa, 4.1R isoforms. More importantly, similar results were also observed in cells transfected with this set of 4.1R cDNAs. Mutational studies indicated that the short isoforms were not proteolytic products of the long isoforms but products synthesized from AUG2. The presence of a cryptic promoter in the 4.1R cDNA sequence was also discounted. When a 583 nt sequence comprised between AUG1 and AUG2 was introduced into bicistronic vectors it directed protein expression from the second cistron. This was also the case when ribosome scanning was abolished by introduction of a stable hairpin at the 5' region of the first cistron. Deletion analysis of the 583 nt sequence indicated that nucleotides 170 to 368 are essential for expression of the second cistron. The polypyrimidine tract-binding protein bound to the 583 nt active sequence but not to an inactive 3

  1. Jun N-Terminal Protein Kinase Enhances Middle Ear Mucosal Proliferation during Bacterial Otitis Media▿

    Science.gov (United States)

    Furukawa, Masayuki; Ebmeyer, Jörg; Pak, Kwang; Austin, Darrell A.; Melhus, Åsa; Webster, Nicholas J. G.; Ryan, Allen F.

    2007-01-01

    Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but paralleled mucosal hyperplasia in this in vivo rat model. Nuclear JNK phosphorylation was observed in many cells of both the mucosal epithelium and stroma by immunohistochemistry. In an in vitro model of primary rat middle ear mucosal explants, bacterially induced mucosal growth was blocked by the Rac/Cdc42 inhibitor Clostridium difficile toxin B, the mixed-lineage kinase inhibitor CEP11004, and the JNK inhibitor SP600125. Finally, the JNK inhibitor SP600125 significantly inhibited mucosal hyperplasia during in vivo bacterial otitis media in guinea pigs. Inhibition of JNK in vivo resulted in a diminished proliferative response, as shown by a local decrease in proliferating cell nuclear antigen protein expression by immunohistochemistry. We conclude that activation of JNK is a critical pathway for bacterially induced mucosal hyperplasia during otitis media, influencing tissue proliferation. PMID:17325051

  2. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    OpenAIRE

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-01-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas ch...

  3. Excretion of purine base derivatives after intake of bacterial protein meal in pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, A.

    2007-01-01

    Bacterial protein meal has a high content ofprotein but also of RNA and DNA. Sixteen barrows were allocated to four diets containing increasing levels of bacterial protein meal (BPM), from weaning to 80 kg live weight, to evaluate whether the RNA and DNA contents of BPM influenced the retention...... of nitrogen. It was hypothesised that an increased intake of RNA and DNA would lead to an increased urinary excretion of purine base derivatives and increased plasma concentrations. Retention of nitrogen was unaffected by dietary content of BPM (P=0.08) and the urinary excretion of purine base derivatives...... increased with increasing dietary content of BPM. No differences in fasting plasma concentration of uric acid, xanthine and hypoxanthine were observed. It can therefore be concluded that increasing levels of dietary BPM maintained protein accretion and led to changes in excretion of purine detrivatices...

  4. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  5. The economics of ribosome biosynthesis in yeast.

    Science.gov (United States)

    Warner, J R

    1999-11-01

    In a rapidly growing yeast cell, 60% of total transcription is devoted to ribosomal RNA, and 50% of RNA polymerase II transcription and 90% of mRNA splicing are devoted to ribosomal proteins (RPs). Coordinate regulation of the approximately 150 rRNA genes and 137 RP genes that make such prodigious use of resources is essential for the economy of the cell. This is entrusted to a number of signal transduction pathways that can abruptly induce or silence the ribosomal genes, leading to major implications for the expression of other genes as well. PMID:10542411

  6. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;

    2009-01-01

    sites in two bacterial model organisms Bacillus subtilis and Escherichia coli. Interestingly, the analysis of these phosphorylation sites revealed that most of them are not characteristic for eukaryotic-type protein kinases, which explains the poor performance of eukaryotic data-trained phosphorylation....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  7. Human Mitochondrial Ribosomal Protein MRPL12 Interacts Directly with Mitochondrial RNA Polymerase to Modulate Mitochondrial Gene Expression*

    OpenAIRE

    Wang, Zhibo; Cotney, Justin; Shadel, Gerald S.

    2007-01-01

    The core human mitochondrial transcription machinery comprises a single subunit bacteriophage-related RNA polymerase, POLRMT, the high mobility group box DNA-binding protein h-mtTFA/TFAM, and two transcriptional co-activator proteins, h-mtTFB1 and h-mtTFB2 that also have rRNA methyltransferase activity. Recapitulation of specific initiation of transcription in vitro can be achieved by a complex of POLRMT, h-mtTFA, and either h-mtTFB1 or h-mtTFB2. However, the nature of mitochondrial transcrip...

  8. Nuclear-localized Calcineurin Homologous Protein CHP1 Interacts with Upstream Binding Factor and Inhibits Ribosomal RNA Synthesis*

    OpenAIRE

    Jiménez-Vidal, Maite; Srivastava, Jyoti; Putney, Luanna K; Barber, Diane L.

    2010-01-01

    Calcineurin homologous protein 1 (CHP1) is a widely expressed, 22-kDa myristoylated EF-hand Ca2+-binding protein that shares a high degree of similarity with the regulatory B subunit of calcineurin (65%) and with calmodulin (59%). CHP1 localizes to the plasma membrane, the Golgi apparatus, and the nucleus and functions to regulate trafficking of early secretory vesicles, activation of T cells, and expression and transport of the Na-H exchanger NHE1. Although CHP1 contains nuclear export signa...

  9. Ribosomal protein L10 is encoded in the mitochondrial genome of many land plants and green algae

    OpenAIRE

    Bonen Linda; Mower Jeffrey P

    2009-01-01

    Abstract Background The mitochondrial genomes of plants generally encode 30-40 identified protein-coding genes and a large number of lineage-specific ORFs. The lack of wide conservation for most ORFs suggests they are unlikely to be functional. However, an ORF, termed orf-bryo1, was recently found to be conserved among bryophytes suggesting that it might indeed encode a functional mitochondrial protein. Results From a broad survey of land plants, we have found that the orf-bryo1 gene is also ...

  10. Short hairpin RNA library-based functional screening identified ribosomal protein L31 that modulates prostate cancer cell growth via p53 pathway.

    Directory of Open Access Journals (Sweden)

    Yojiro Maruyama

    Full Text Available Androgen receptor is a primary transcription factor involved in the proliferation of prostate cancer cells. Thus, hormone therapy using antiandrogens, such as bicalutamide, is a first-line treatment for the disease. Although hormone therapy initially reduces the tumor burden, many patients eventually relapse, developing tumors with acquired endocrine resistance. Elucidation of the molecular mechanisms underlying endocrine resistance is therefore a fundamental issue for the understanding and development of alternative therapeutics for advanced prostate cancer. In the present study, we performed short hairpin RNA (shRNA-mediated functional screening to identify genes involved in bicalutamide-mediated effects on LNCaP prostate cancer cells. Among such candidate genes selected by screening using volcano plot analysis, ribosomal protein L31 (RPL31 was found to be essential for cell proliferation and cell-cycle progression in bicalutamide-resistant LNCaP (BicR cells, based on small interfering RNA (siRNA-mediated knockdown experiments. Of note, RPL31 mRNA is more abundantly expressed in BicR cells than in parental LNCaP cells, and clinical data from ONCOMINE and The Cancer Genome Altas showed that RPL31 is overexpressed in prostate carcinomas compared with benign prostate tissues. Intriguingly, protein levels of the tumor suppressor p53 and its targets, p21 and MDM2, were increased in LNCaP and BicR cells treated with RPL31 siRNA. We observed decreased degradation of p53 protein after RPL31 knockdown. Moreover, the suppression of growth and cell cycle upon RPL31 knockdown was partially recovered with p53 siRNA treatment. These results suggest that RPL31 is involved in bicalutamide-resistant growth of prostate cancer cells. The shRNA-mediated functional screen in this study provides new insight into the molecular mechanisms and therapeutic targets of advanced prostate cancer.

  11. Immunogenicity Analysis of a Novel Subunit Vaccine Candidate Molecule-Recombinant L7/L12 Ribosomal Protein of Brucella suis.

    Science.gov (United States)

    Du, Zhi-Qiang; Li, Xin; Wang, Jian-Ying

    2016-08-01

    Brucella was an intracellular parasite, which could infect special livestock and humans. After infected by Brucella, livestock's reproductive system could be affected and destroyed resulting in huge economic losses. More seriously, it could be contagious from livestock to humans. So far, there is no available vaccine which is safe enough for humans. On this point, subunit vaccine has become the new breakthrough of conquering brucellosis. In this study, Brucella rL7/L12-BLS fusion protein was used as an antigen to immunize rabbits to detect the immunogenicity. The results of antibody level testing assay of rabbit antiserum indicated rL7/L12-BLS fusion protein could elicit rabbits to produce high-level IgG. And gamma interferon (IFN-γ) concentrations in rabbit antiserum were obviously up-regulated in both the rL7/L12 group and rL7/L12-BLS group. Besides, the results of quantitative real-time PCR (qRT-PCR) showed the IFN-γ gene's expression levels of both the rL7/L12 group and rL7/L12-BLS group were obviously up-regulated. All these results suggested Brucella L7/L12 protein was an ideal subunit vaccine candidate and possessed good immunogenicity. And Brucella lumazine synthase (BLS) molecule was a favorable transport vector for antigenic protein. PMID:27075455

  12. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 40 S ribosomal subunit proteins Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and S29.

    Science.gov (United States)

    Collatz, E; Ulbrich, N; Tsurugi, K; Lightfoot, H N; MacKinlay, W; Lin, A; Wool, I G

    1977-12-25

    The proteins of the small subunit of rat liver ribosomes were separated into five main groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Twenty-one proteins (Sa, Sc, S3a, S3b, S5', S9, S10, S11, S12, S14, S15, S15', S16, S17, S18, S19, S20, S21, S26, S27', and S29) were isolated from three groups (A40, C40, and D40) by ion exchange chromatography on DEAE-cellulose, carboxymethylcellulose, and phosphocellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.1 to 11 mg. Six of the proteins (S5', S10, S11, S18, S19, and S27') had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.

  13. Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis.

    Science.gov (United States)

    Ramírez, Laura; Santos, Diego M; Souza, Ana P; Coelho, Eduardo A F; Barral, Aldina; Alonso, Carlos; Escutia, Marta R; Bonay, Pedro; de Oliveira, Camila I; Soto, Manuel

    2013-02-18

    Four new antigenic proteins located in Leishmania ribosomes have been characterized: S4, S6, L3 and L5. Recombinant versions of the four ribosomal proteins from Leishmania major were recognized by sera from human and canine patients suffering different clinical forms of leishmaniasis. The prophylactic properties of these proteins were first studied in the experimental model of cutaneous leishmaniasis caused by L. major inoculation into BALB/c mice. The administration of two of them, LmL3 or LmL5 combined with CpG-oligodeoxynucleotides (CpG-ODN) was able to protect BALB/c mice against L. major infection. Vaccinated mice showed smaller lesions and parasite burden compared to mice inoculated with vaccine diluent or vaccine adjuvant. Protection was correlated with an antigen-specific increased production of IFN-γ paralleled by a decrease of the antigen-specific IL-10 mediated response in protected mice relative to non-protected controls. Further, it was demonstrated that BALB/c mice vaccinated with recombinant LmL3 or LmL5 plus CpG-ODN were also protected against the development of cutaneous lesions following inoculation of L. braziliensis. Together, data presented here indicate that LmL3 or LmL5 ribosomal proteins combined with Th1 inducing adjuvants, may be relevant components of a vaccine against cutaneous leishmaniasis caused by distinct species.

  14. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways.

    Science.gov (United States)

    Wang, Ziliang; Hou, Jing; Lu, Lili; Qi, Zihao; Sun, Jianmin; Gao, Wen; Meng, Jiao; Wang, Yan; Sun, Huizhen; Gu, Hongyu; Xin, Yuhu; Guo, Xiaomao; Yang, Gong

    2013-01-01

    Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.

  15. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Ziliang Wang

    Full Text Available Small ribosomal protein subunit S7 (RPS7 has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221, ERK1/2 (Thr202/Tyr204, JNK1/2 (Thr183/Tyr185, and P38 (Thr180/Tyr182 were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.

  16. Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease.

    Science.gov (United States)

    Chopra, Rajan; Saini, Raman

    2014-12-01

    Blackgram (Vigna mungo (L.) Hepper), an important grain legume crop, is sensitive to many fungal pathogens including Corynespora cassiicola, the causal agent of corynespora leaf spot disease. In the present study, plasmid pGJ42 harboring neomycin phosphotransferase (nptII) a selectable marker gene, the barley antifungal genes chitinase (AAA56786) and ribosome-inactivating protein (RIP; AAA32951) were used for the transformation, to develop fungal resistance for the first time in blackgram. The presence and integration of transgene into the blackgram genome was confirmed by PCR and Southern analysis with an overall transformation frequency of 10.2 %. Kanamycin selection and PCR analysis of T0 progeny revealed the inheritance of transgene in Mendelian fashion (3:1). Transgenic plants (T1), evaluated for fungal resistance by in vitro antifungal assay, arrested the growth of C. cassiicola up to 25-40 % over the wild-type plants. In fungal bio-assay screening, the transgenic plants (T1) sprayed with C. cassiicola spores showed a delay in onset of disease along with their lesser extent in terms of average number of diseased leaves and reduced number and size of lesions. The percent disease protection among different transformed lines varies in the range of 27-47 % compare to control (untransformed) plants. These results demonstrate potentiality of chitinase and RIP from a heterologous source in developing fungal disease protection in blackgram and can be helpful in increasing the production of blackgram.

  17. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation

    Indian Academy of Sciences (India)

    Manish Sadarangani; J Claire Hoe; Katherine Makepeace; Peter Van Der Ley; Andrew J Pollard

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5′-CTCTT-3′ coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opagenes demonstrated variable rates of PV, between 6.4 ×10–4 and 6.9 ×10–3 per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r2=0.77, p=0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opagenes in UK disease isolates (315/463, 68.0%) were in the ‘on’ phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  18. Mapping the ribosomal protein S7 regulatory binding site on mRNA of the E. coli streptomycin operon.

    Science.gov (United States)

    Surdina, A V; Rassokhin, T I; Golovin, A V; Spiridonova, V A; Kopylov, A M

    2010-07-01

    In this work it is shown by deletion analysis that an intercistronic region (ICR) approximately 80 nucleotides in length is necessary for interaction with recombinant E. coli S7 protein (r6hEcoS7). A model is proposed for the interaction of S7 with two ICR sites-region of hairpin bifurcations and Shine-Dalgarno sequence of cistron S7. A de novo RNA binding site for heterologous S7 protein of Thermus thermophilus (r6hTthS7) was constructed by selection of a combinatorial RNA library based on E. coli ICR: it has only a single supposed protein recognition site in the region of bifurcation. The SERW technique was used for selection of two intercistronic RNA libraries in which five nucleotides of a double-stranded region, adjacent to the bifurcation, had the randomized sequence. One library contained an authentic AG (-82/-20) pair, while in the other this pair was replaced by AU. A serwamer capable of specific binding to r6hTthS7 was selected; it appeared to be the RNA68 mutant with eight nucleotide mutations. The serwamer binds to r6hTthS7 with the same affinity as homologous authentic ICR of str mRNA binds to r6hEcoS7; apparent dissociation constants are 89 +/- 43 and 50 +/- 24 nM, respectively.

  19. The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites

    International Nuclear Information System (INIS)

    The human embryonic-lethal abnormal vision (ELAV)-like protein, HuR, has been recently found to be involved in the regulation of protein synthesis. In this study we show that HuR participates in the translational control of the HIV-1 and HCV IRES elements. HuR functions as a repressor of HIV-1 IRES activity and acts as an activator of the HCV IRES. The effect of HuR was evaluated in three independent experimental systems, rabbit reticulocyte lysate, HeLa cells, and Xenopus laevis oocytes, using both overexpression and knockdown approaches. Furthermore, results suggest that HuR mediated regulation of HIV-1 and HCV IRESes does not require direct binding of the protein to the RNA nor does it need the nuclear translocation of the IRES-containing RNAs. Finally, we show that HuR has a negative impact on post-integration steps of the HIV-1 replication cycle. Thus, our observations yield novel insights into the role of HuR in the post-transcriptional regulation of HCV and HIV-1 gene expression.

  20. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross).