WorldWideScience

Sample records for bacterial proteins

  1. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  2. Bacterial ice crystal controlling proteins.

    Science.gov (United States)

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  3. Bacterial cell division proteins as antibiotic targets

    NARCIS (Netherlands)

    T. den Blaauwen; J.M. Andreu; O. Monasterio

    2014-01-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of protein

  4. Rho-modifying bacterial protein toxins.

    Science.gov (United States)

    Aktories, Klaus

    2015-12-01

    Rho proteins are targets of numerous bacterial protein toxins, which manipulate the GTP-binding proteins by covalent modifications, including ADP ribosylation, glycosylation, adenylylation, proteolytic cleavage and deamidation. Bacterial toxins are important virulence factors but are also potent and efficient pharmacological tools to study the physiological functions of their eukaryotic targets. Recent studies indicate that amazing variations exist in the molecular mechanisms by which toxins attack Rho proteins, which are discussed here.

  5. Recent advances in bacterial heme protein biochemistry

    OpenAIRE

    Mayfield, Jeffery A.; Dehner, Carolyn A.; Dubois, Jennifer L.

    2011-01-01

    Recent progress in genetics, fed by the burst in genome sequence data, has led to the identification of a host of novel bacterial heme proteins that are now being characterized in structural and mechanistic terms. The following short review highlights very recent work with bacterial heme proteins involved in the uptake, biosynthesis, degradation, and use of heme in respiration and sensing.

  6. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  7. Bacterial Ice Crystal Controlling Proteins

    OpenAIRE

    Lorv, Janet S. H.; Rose, David R; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. R...

  8. Ice nucleation protein as a bacterial surface display protein

    OpenAIRE

    Sarhan Mohammed A.A.

    2011-01-01

    Surface display technology can be defined as that phenotype (protein or peptide) which is linked to a genotype (DNA or RNA) through an appropriate anchoring motif. A bacterial surface display system is based on expressing recombinant proteins fused to sorting signals (anchoring motifs) that direct their incorporation on the cell surface.

  9. Fluorescent sensors based on bacterial fusion proteins

    Science.gov (United States)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  10. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  11. Bacterial protein toxins : tools to study mammalian molecular cell biology

    NARCIS (Netherlands)

    Wüthrich, I.W.

    2014-01-01

    Bacterial protein toxins are genetically encoded proteinaceous macromolecules that upon exposure causes perturbation of cellular metabolism in a susceptible host. A bacterial toxin can work at a distance from the site of infection, and has direct and quantifiable actions. Bacterial protein toxins ca

  12. Novel receptors for bacterial protein toxins.

    Science.gov (United States)

    Schmidt, Gudula; Papatheodorou, Panagiotis; Aktories, Klaus

    2015-02-01

    While bacterial effectors are often directly introduced into eukaryotic target cells by various types of injection machines, toxins enter the cytosol of host cells from endosomal compartments or after retrograde transport via Golgi from the ER. A first crucial step of toxin-host interaction is receptor binding. Using optimized protocols and new methods novel toxin receptors have been identified, including metalloprotease ADAM 10 for Staphylococcus aureus α-toxin, laminin receptor Lu/BCAM for Escherichia coli cytotoxic necrotizing factor CNF1, lipolysis stimulated lipoprotein receptor (LSR) for Clostridium difficile transferase CDT and low-density lipoprotein receptor-related protein (LRP) 1 for Clostridium perfringens TpeL toxin.

  13. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E;

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... lower. Hence, only a negative test is highly informative in a typical clinical setting. This, as well as the absence of analyses to show if CRP tests contribute independent diagnostic information, relatively to the information held in the traditionally used clinical and biochemical variables, makes...... receiver operating characteristic curve analyses (SROCs) to describe central tendencies and examine possible sources of inter-study variability in the results. We included data from 35 studies of both children and adults: 21 in which CRP had been measured in cerebrospinal fluid, 10 in which CRP had been...

  14. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  15. Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

    Directory of Open Access Journals (Sweden)

    Mary E. Marquart

    2013-01-01

    Full Text Available Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.

  16. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  17. Bacterial protein toxins in human cancers.

    Science.gov (United States)

    Rosadi, Francesca; Fiorentini, Carla; Fabbri, Alessia

    2016-02-01

    Many bacteria causing persistent infections produce toxins whose mechanisms of action indicate that they could have a role in carcinogenesis. Some toxins, like CDT and colibactin, directly attack the genome by damaging DNA whereas others, as for example CNF1, CagA and BFT, impinge on key eukaryotic processes, such as cellular signalling and cell death. These bacterial toxins, together with other less known toxins, mimic carcinogens and tumour promoters. The aim of this review is to fulfil an up-to-date analysis of toxins with carcinogenic potential that have been already correlated to human cancers. Bacterial toxins-induced carcinogenesis represents an emerging aspect in bacteriology, and its significance is increasingly recognized.

  18. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders;

    2007-01-01

    The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...

  19. Protein quality control in the bacterial periplasm.

    Science.gov (United States)

    Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

    2011-01-01

    Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

  20. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  1. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    OpenAIRE

    MacBeth, K J; Lee, C. A.

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase ...

  2. The Chaotic Structure of Bacterial Virulence Protein Sequences

    Directory of Open Access Journals (Sweden)

    Sevdanur Genc

    2015-01-01

    Full Text Available Bacterial virulence proteins, which have been class ified on structure of virulence, causes several diseases. For instance, Adhesins play an important role in th e host cells. They are inserted DNA sequences for a variety of virulence properties. Several important methods conducted for the prediction of bacterial virulence proteins for finding new drugs or vaccines. In this study, we propose a method for feature sele ction about classification of bacterial virulence protein. The features are constituted dir ectly from the amino acid sequence of a given protein. Amino acids form proteins, which are criti cal to life, and have many important functions in living cells. They occurring with diff erent physicochemical properties by a vector of 20 numerical values, and collected in AAIndex datab ases of known 544 indices. For all that, this approach have two steps. Firstly , the amino acid sequence of a given protein analysed with Lyapunov Exponents that they have a chaotic structure in accordance wi th the chaos theory. After that, if the results show chara cterization over the complete distribution in the phase space from the point of deterministic sys tem, it means related protein will show a chaotic structure. Empirical results revealed that generated feature v ectors give the best performance with chaotic structure of physicochemical features of amino acid s with Adhesins and non-Adhesins data sets.

  3. Monocyte chemotactic protein-1 gene polymorphism and spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Levent; Filik

    2010-01-01

    I read with great interest the article by Gbele et al published in issue 44 of World J Gastroenterol 2009.The results of their study indicate that-2518 Monocyte chemotactic protein-1(MCP-1)genotype AA is a risk factor for spontaneous bacterial peritonitis in patients with alcoholic cirrhosis.However,there are some items that need to be discussed.

  4. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  5. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    Science.gov (United States)

    MacBeth, K J; Lee, C A

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase lose their ability to enter cultured cells. In addition, a short-lived capacity to enter cells may be important during infection so that bacterial invasiveness is limited to certain times and host sites during pathogenesis. PMID:8454361

  6. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  7. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...... examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive...

  8. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.

    Science.gov (United States)

    Sau, S; Chattoraj, P; Ganguly, T; Chanda, P K; Mandal, N C

    2008-06-01

    Bacteriophages utilize host bacterial cellular machineries for their own reproduction and completion of life cycles. The early proteins that phage synthesize immediately after the entry of their genomes into bacterial cells participate in inhibiting host macromolecular biosynthesis, initiating phage-specific replication and synthesizing late proteins. Inhibition of synthesis of host macromolecules that eventually leads to cell death is generally performed by the physical and/or chemical modification of indispensable host proteins by early proteins. Interestingly, most modified bacterial proteins were shown to take part actively in phage-specific transcription and replication. Research on phages in last nine decades has demonstrated such lethal early proteins that interact with or chemically modify indispensable host proteins. Among the host proteins inhibited by lethal phage proteins, several are not inhibited by any chemical inhibitor available today. Under the context of widespread dissemination of antibiotic-resistant strains of pathogenic bacteria in recent years, the information of lethal phage proteins and cognate host proteins could be extremely invaluable as they may lead to the identification of novel antibacterial compounds. In this review, we summarize the current knowledge about some early phage proteins, their cognate host proteins and their mechanism of action and also describe how the above interacting proteins had been exploited in antibacterial drug discovery. PMID:18537683

  9. Automatic selection of representative proteins for bacterial phylogeny

    Directory of Open Access Journals (Sweden)

    Goldberg David

    2005-05-01

    Full Text Available Abstract Background Although there are now about 200 complete bacterial genomes in GenBank, deep bacterial phylogeny remains a difficult problem, due to confounding horizontal gene transfers and other phylogenetic "noise". Previous methods have relied primarily upon biological intuition or manual curation for choosing genomic sequences unlikely to be horizontally transferred, and have given inconsistent phylogenies with poor bootstrap confidence. Results We describe an algorithm that automatically picks "representative" protein families from entire genomes for use as phylogenetic characters. A representative protein family is one that, taken alone, gives an organismal distance matrix in good agreement with a distance matrix computed from all sufficiently conserved proteins. We then use maximum-likelihood methods to compute phylogenetic trees from a concatenation of representative sequences. We validate the use of representative proteins on a number of small phylogenetic questions with accepted answers. We then use our methodology to compute a robust and well-resolved phylogenetic tree for a diverse set of sequenced bacteria. The tree agrees closely with a recently published tree computed using manually curated proteins, and supports two proposed high-level clades: one containing Actinobacteria, Deinococcus, and Cyanobacteria ("Terrabacteria", and another containing Planctomycetes and Chlamydiales. Conclusion Representative proteins provide an effective solution to the problem of selecting phylogenetic characters.

  10. Protein-lipid interactions in the purple bacterial reaction centre.

    Science.gov (United States)

    Jones, Michael R; Fyfe, Paul K; Roszak, Aleksander W; Isaacs, Neil W; Cogdell, Richard J

    2002-10-11

    The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.

  11. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.;

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  12. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  13. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition.

    Science.gov (United States)

    Arenz, Stefan; Wilson, Daniel N

    2016-01-01

    Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria. PMID:27481773

  14. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  15. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  16. Bacterial Hydrolysis of Protein and Methylated Protein and Its Implications for Studies of Protein Degradation in Aquatic Systems

    OpenAIRE

    Keil, Richard G.; Kirchman, David L.

    1992-01-01

    Ribulose 1,5-bisphosphate carboxylase was radiolabelled by in vitro translation, resulting in uniformly labelled ribulose 1,5-bisphosphate carboxylase, and also by reductive methylation. We investigated the degradation of the two forms of radiolabelled protein by natural bacterial populations. Although total hydrolysis of uniformly labelled protein and methylated protein was nearly equal, percent assimilation, respiration, and release as low-molecular-weight material were different. Radioacti...

  17. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  18. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens.

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  19. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Science.gov (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato

    2012-01-01

    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  20. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  1. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. PMID:27561651

  2. Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

    OpenAIRE

    Ling, Losee L.; Xian, Jun; Ali, Syed; Geng, Bolin; Fan, Jun; Mills, Debra M.; Arvanites, Anthony C.; Orgueira, Hernan; Ashwell, Mark A.; Carmel, Gilles; Xiang, Yibin; Moir, Donald T.

    2004-01-01

    Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Esch...

  3. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  4. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    Science.gov (United States)

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  5. Imaging bacterial protein expression using genetically encoded sensors composed of RNA

    OpenAIRE

    Song, Wenjiao; Strack, Rita L.; Jaffrey, Samie R.

    2013-01-01

    We show that the difficulties in imaging the dynamics of protein expression in live bacterial cells can be overcome using fluorescent sensors based on Spinach, an RNA that activates the fluorescence of a small-molecule fluorophore. These RNAs selectively bind target proteins, and exhibit fluorescence increases that enable protein expression to be imaged in living cells. These sensors provide a general strategy to image protein expression in single bacteria in real-time.

  6. Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica.

    Science.gov (United States)

    Brewer, Matthew T; Agbedanu, Prince N; Zamanian, Mostafa; Day, Tim A; Carlson, Steve A

    2013-11-01

    Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.

  7. Regulation of bacterial RecA protein function.

    Science.gov (United States)

    Cox, Michael M

    2007-01-01

    The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes. PMID:17364684

  8. Rho-modifying bacterial protein toxins from Photorhabdus species.

    Science.gov (United States)

    Jank, Thomas; Lang, Alexander E; Aktories, Klaus

    2016-06-15

    Photorhabdus bacteria live in symbiosis with entomopathogenic nematodes. The nematodes invade insect larvae, where they release the bacteria, which then produce toxins to kill the insects. Recently, the molecular mechanisms of some toxins from Photorhabdus luminescens and asymbiotica have been elucidated, showing that GTP-binding proteins of the Rho family are targets. The tripartite Tc toxin PTC5 from P. luminescens activates Rho proteins by ADP-ribosylation of a glutamine residue, which is involved in GTP hydrolysis, while PaTox from Photorhabdus asymbiotica inhibits the activity of GTPases by N-acetyl-glucosaminylation at tyrosine residues and activates Rho proteins indirectly by deamidation of heterotrimeric G proteins.

  9. BACTERIAL SOLUTE TRANSPORT PROTEINS IN THEIR LIPID ENVIRONMENT

    NARCIS (Netherlands)

    TVELD, GI; DRIESSEN, AJM; KONINGS, WN; Veld, Gerda in 't

    1993-01-01

    The cytoplasmic membrane of bacteria is a selective barrier that restricts entry and exit of solutes. Transport of solutes across this membrane is catalyzed by specific membrane proteins. Integral membrane proteins usually require specific lipids for optimal activity and are inhibited by other lipid

  10. Essential bacterial helicases that counteract the toxicity of recombination proteins

    OpenAIRE

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-01-01

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previo...

  11. Proteolytic activation of human pancreatitis associated protein is required for peptidoglycan binding and bacterial aggregation

    OpenAIRE

    Medveczky, Péter; Szmola, Richárd; Sahin-Tóth, Miklós

    2009-01-01

    Pancreatitis associated protein (PAP) is a 16 kDa lectin-like protein, which becomes robustly upregulated in the pancreatic juice during acute pancreatitis. Trypsin cleaves the N terminus of PAP, which in turn forms insoluble fibrils. PAP and its paralog the pancreatic stone protein induce bacterial aggregation and, more recently, PAP was shown to bind to the peptidoglycan of Gram positive bacteria and exert a direct bactericidal effect. However, the role of N-terminal processing in the antib...

  12. High-Throughput Screening of Bacterial Protein Localization

    OpenAIRE

    Werner, John N.; Gitai, Zemer

    2010-01-01

    The ever-increasing number of sequenced genomes and subsequent sequence-based analysis has provided tremendous insight into cellular processes; however, the ability to experimentally manipulate this genomic information in the laboratory requires the development of new high-throughput methods. To translate this genomic information into information on protein function, molecular and cell biological techniques are required. One strategy to gain insight into protein function is to observe where e...

  13. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  14. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  15. Coexisting protist-bacterial community accelerates protein transformation in microcosm experiments

    Directory of Open Access Journals (Sweden)

    Ngo Vy Thao

    2014-12-01

    Full Text Available Proteins constitute the major portion of labile substances in the marine environment and are an important source of organic matter supporting marine ecosystems. However, previous studies have revealed that specific bacterial membrane proteins are refractory in the oceans. We here show by kinetic analyses of protease degradation activity using inactivated Pseudomonas aeruginosa (Pa cells as a proteinaceous substrate that bacterial proteases are insufficient to completely hydrolyze proteins, which may partially cause the protein accumulation in seawater. Protease activity was monitored simultaneously in 8 microcosms subjected to differing conditions. Some Pa proteins were retained for 30 days in the presence of bacteria without protists, whereas the Pa proteins were completely disappeared in the presence of both, indicating that these proteins were substantially incorporated into protist biomass. Our result suggests that protists play an important role in the transformation of bacterial proteins in seawater. Our experiments also imply that the functional/taxonomic diversity should be taken into account when considering decomposition activity in marine environments.

  16. Protein oxidation implicated as the primary determinant of bacterial radioresistance.

    Directory of Open Access Journals (Sweden)

    Michael J Daly

    2007-04-01

    Full Text Available In the hierarchy of cellular targets damaged by ionizing radiation (IR, classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

  17. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins.

    Directory of Open Access Journals (Sweden)

    Eran Bosis

    Full Text Available Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.

  18. Effect of Bacillus mucilaginosus on weathering of phosphorite and a preliminary analysis of bacterial proteins

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu; LIAN Bin; LIU Congqiang

    2008-01-01

    The authors investigated the effect of Bacillus mucilaginosus on weathering of phosphorite. Analysis of different proteins was of significance in exploring the molecular biological mechanism in the bacterial weathering process. The concrete methods are described as follows: Mineral powder was put into liquid culture medium and B. mucilaginosus was incubated in the medium. The control (group) had no mineral powder in the medium. The treatments and controls were cultured simultaneously under the same condition. In a few days, the supernatant was filtrated, the main cations (Ca2+, Mg2+, Na+, Mn2+, Al3+, Fe3+, K+) were measured by ICP-OES, and the contents of water soluble phosphorus (Pws) and silicon (Siws) were determined by colorimetry. The residual solid was weighed on the filter paper, followed by digestion with concentrated HNO3. The concentrations of the main cations and Pws, Siws in the digest liquid were measured by using the method mentioned above. After the supernatant was centrifuged, the precipitation was used to analyze the protein differences between the treatment groups and the control groups by 2-dimentional gel electrophoresis (2-DE). The experimental results showed that apatite and quartz were partially weathered, but kaolinite was dissolved completely. The population of bacteria increased when mineral powder was added in the liquid medium. Software analysis and comparison of the 2-DE pictures of bacterial proteins revealed 1134 visible protein spots in the treatment group, and 729 visible protein spots in the control group. To compare the bacterial protein expression contents of the treatment group with those of the control group, there were 496 different protein spots, including 214 protein spots which indicated that the protein contents increased, 75 protein spots were indicative of a decrease, and 207 proteins were newly synthesized. It is proposed that the increased bacterial contents may be related to some protein expression and activation

  19. Bacterial protein meal in diets for growing pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Kjos, N.P.;

    2007-01-01

    blocks according to age. One pig from each litter was fed one of the four experimental diets. Soya-bean meal was replaced with BPM on the basis of digestible protein, and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), corresponding to 0%, 17%, 35% and 52...

  20. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    Directory of Open Access Journals (Sweden)

    Yanbo Shi

    2010-01-01

    Full Text Available Ferric ion binding proteins (Fbps transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.

  1. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    OpenAIRE

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    International audience The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we st...

  2. Procalcitonin and C-reactive protein as markers of bacterial infection in patients with solid tumours

    DEFF Research Database (Denmark)

    Diness, Laura V; Maraldo, Maja V; Mortensen, Christiane E;

    2014-01-01

    infection. In this prospective study, we wanted to investigate the value of procalcitonin (PCT) compared with C-reactive protein (CRP) as an indicator of bacterial infection in adult patients with solid tumours. METHODS: A total of 41 patients with solid tumours admitted to hospital due to fever or clinical...

  3. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone;

    2003-01-01

    The surface of AISI 316 grade stainless steel (SS) was modified with a layer of poly(ethylene glycol) (PEG) (molecular weight 5000) with the aim of preventing protein adsorption and bacterial adhesion. Model SS substrates were first modified to introduce a very high density of reactive amine grou...

  4. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen...

  5. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    Science.gov (United States)

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  6. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...hilpott DJ, Girardin SE. Mol Immunol. 2004 Nov;41(11):1099-108. (.png) (.svg) (.html) (.csml) Show The role ...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-lik

  7. A method for in vivo identification of bacterial small RNA-binding proteins.

    Science.gov (United States)

    Osborne, Jonathan; Djapgne, Louise; Tran, Bao Quoc; Goo, Young Ah; Oglesby-Sherrouse, Amanda G

    2014-12-01

    Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA "bait", and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA "bait" as compared to the PrrH cDNA "bait", suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins.

  8. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    Science.gov (United States)

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  9. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    predictions were made in about 60% of the cases. This project has highlighted the difficulties and challenges in functional annotation and computational analysis of sequence data. It has provided possible solutions for creating reproducible pipelines for comparative genomics as well as constructed a number......In November 2013, there was around 21.000 different prokaryotic genomes sequenced and publicly available, and the number is growing daily with another 20.000 or more genomes expected to be sequenced and deposited by the end of 2014. An important part of the analysis of this data is the functional...... annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...

  10. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.

    Directory of Open Access Journals (Sweden)

    Andrea Procaccini

    Full Text Available Predictive understanding of the myriads of signal transduction pathways in a cell is an outstanding challenge of systems biology. Such pathways are primarily mediated by specific but transient protein-protein interactions, which are difficult to study experimentally. In this study, we dissect the specificity of protein-protein interactions governing two-component signaling (TCS systems ubiquitously used in bacteria. Exploiting the large number of sequenced bacterial genomes and an operon structure which packages many pairs of interacting TCS proteins together, we developed a computational approach to extract a molecular interaction code capturing the preferences of a small but critical number of directly interacting residue pairs. This code is found to reflect physical interaction mechanisms, with the strongest signal coming from charged amino acids. It is used to predict the specificity of TCS interaction: Our results compare favorably to most available experimental results, including the prediction of 7 (out of 8 known interaction partners of orphan signaling proteins in Caulobacter crescentus. Surveying among the available bacterial genomes, our results suggest 15∼25% of the TCS proteins could participate in out-of-operon "crosstalks". Additionally, we predict clusters of crosstalking candidates, expanding from the anecdotally known examples in model organisms. The tools and results presented here can be used to guide experimental studies towards a system-level understanding of two-component signaling.

  11. Jun N-Terminal Protein Kinase Enhances Middle Ear Mucosal Proliferation during Bacterial Otitis Media▿

    Science.gov (United States)

    Furukawa, Masayuki; Ebmeyer, Jörg; Pak, Kwang; Austin, Darrell A.; Melhus, Åsa; Webster, Nicholas J. G.; Ryan, Allen F.

    2007-01-01

    Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but paralleled mucosal hyperplasia in this in vivo rat model. Nuclear JNK phosphorylation was observed in many cells of both the mucosal epithelium and stroma by immunohistochemistry. In an in vitro model of primary rat middle ear mucosal explants, bacterially induced mucosal growth was blocked by the Rac/Cdc42 inhibitor Clostridium difficile toxin B, the mixed-lineage kinase inhibitor CEP11004, and the JNK inhibitor SP600125. Finally, the JNK inhibitor SP600125 significantly inhibited mucosal hyperplasia during in vivo bacterial otitis media in guinea pigs. Inhibition of JNK in vivo resulted in a diminished proliferative response, as shown by a local decrease in proliferating cell nuclear antigen protein expression by immunohistochemistry. We conclude that activation of JNK is a critical pathway for bacterially induced mucosal hyperplasia during otitis media, influencing tissue proliferation. PMID:17325051

  12. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    OpenAIRE

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-01-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas ch...

  13. Excretion of purine base derivatives after intake of bacterial protein meal in pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, A.

    2007-01-01

    Bacterial protein meal has a high content ofprotein but also of RNA and DNA. Sixteen barrows were allocated to four diets containing increasing levels of bacterial protein meal (BPM), from weaning to 80 kg live weight, to evaluate whether the RNA and DNA contents of BPM influenced the retention...... of nitrogen. It was hypothesised that an increased intake of RNA and DNA would lead to an increased urinary excretion of purine base derivatives and increased plasma concentrations. Retention of nitrogen was unaffected by dietary content of BPM (P=0.08) and the urinary excretion of purine base derivatives...... increased with increasing dietary content of BPM. No differences in fasting plasma concentration of uric acid, xanthine and hypoxanthine were observed. It can therefore be concluded that increasing levels of dietary BPM maintained protein accretion and led to changes in excretion of purine detrivatices...

  14. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  15. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;

    2009-01-01

    sites in two bacterial model organisms Bacillus subtilis and Escherichia coli. Interestingly, the analysis of these phosphorylation sites revealed that most of them are not characteristic for eukaryotic-type protein kinases, which explains the poor performance of eukaryotic data-trained phosphorylation....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  16. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation

    Indian Academy of Sciences (India)

    Manish Sadarangani; J Claire Hoe; Katherine Makepeace; Peter Van Der Ley; Andrew J Pollard

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5′-CTCTT-3′ coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opagenes demonstrated variable rates of PV, between 6.4 ×10–4 and 6.9 ×10–3 per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r2=0.77, p=0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opagenes in UK disease isolates (315/463, 68.0%) were in the ‘on’ phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  17. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross).

  18. [The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance].

    Science.gov (United States)

    Xie, Longxiang; Yu, Zhaoxiao; Guo, Siyao; Li, Ping; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-08-01

    The increasing antibiotic resistance is now threatening to take us back to a pre-antibiotic era. Bacteria have evolved diverse resistance mechanisms, on which in-depth research could help the development of new strategies to control antibiotic-resistant infections. Epigenetic alterations and protein post-translational modifications (PTMs) play important roles in multiple cellular processes such as metabolism, signal transduction, protein degradation, DNA replication regulation and stress response. Recent studies demonstrated that epigenetics and PTMs also play vital roles in bacterial antibiotic resistance. In this review, we summarize the regulatory roles of epigenetic factors including DNA methylation and regulatory RNAs as well as PTMs such as phosphorylation and succinylation in bacterial antibiotic resistance, which may provide innovative perspectives on selecting antibacterial targets and developing antibiotics. PMID:26266782

  19. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling.

    Science.gov (United States)

    Podgornaia, Anna I; Casino, Patricia; Marina, Alberto; Laub, Michael T

    2013-09-01

    Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, Escherichia coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes and a systematic mutagenesis study reveal how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions and protein evolution and for the design of novel protein interfaces. PMID:23954504

  20. In vitro estimation of rumen protein degradability using 35S to label the bacterial mass

    International Nuclear Information System (INIS)

    An experiment was carried out in order to simplify a previously developed 15N-method for in vitro estimation of rumen protein degradability. Casein (Cas), whole soybeans (Sb) heated at 120oC for 20 min (SbTherm) and sunflower (Sfl) were incubated at 39oC for 4 hours in a water bathshaker with the following media: McDougall's buffer, strained and enriched with particle associated bacteria rumen fluid (2:1), rapidly (maltose, sucrose, glucose) and more slowly (pectin, soluble starch) degradable carbohydrates with final concentration of 815 mg/100 ml and 21.7 μCi/100 ml of35S (from Na235SO4). After the incubation had been ceased, a bacterial fraction was isolated through differential centrifugation and specific activity of bacterial (Bac) and high speed total solids (TS) nitrogen was measured. The ratio was used to calculate bacterial mass in TS and through the Kjeldahl nitrogen concentration in TS - the net bacterial growth (against control vessels without protein). The level of ammonia-N in the supernate after blank correction was used to find the ammonia-N released from protein degradation. The data showed that the rate (and extend) of degradation for the Cas (as a standard protein) was lower compared to those obtained through the 15N-method but it was higher than the rate derived through another in vitro method. The Cas equivalent of the Sb was higher than the figure we found in a previous experiment with solvent extracted soybean meal suggesting that the 35S-method underestimated the degradability of the Cas. After being tested on a wider range of foodstuffs, the proposed 35S-method might be considered as an alternative procedure which is less laborous than the 15N-method. (author)

  1. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    OpenAIRE

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; David H Sherman; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduc...

  2. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins.

    Science.gov (United States)

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-12-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold with β-sandwich architecture. The structure suggests that Cj0090 may be involved in protein-protein interactions, consistent with a possible role for bacterial lipoproteins. PMID:22987763

  3. Recombinant expression and purification of "virus-like" bacterial encapsulin protein cages.

    Science.gov (United States)

    Rurup, W Frederik; Cornelissen, Jeroen J L M; Koay, Melissa S T

    2015-01-01

    Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules and organelles, the rate of migration can be used as a tool for purification. Here we describe a detailed protocol for the purification of recently discovered virus-like assemblies called bacterial encapsulins from Thermotoga maritima and Brevibacterium linens. PMID:25358773

  4. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  5. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells.

    Science.gov (United States)

    Bravo-Angel, A M; Gloeckler, V; Hohn, B; Tinland, B

    1999-09-01

    Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins. PMID:10482518

  6. Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae.

    Science.gov (United States)

    Antúnez, Karina; Anido, Matilde; Evans, Jay D; Zunino, Pablo

    2010-03-24

    American Foulbrood is a severe disease affecting larvae of honeybee Apis mellifera, causing significant decrease in the honeybee population, beekeeping industries and agricultural production. In spite of its importance, little is known about the virulence factors secreted by Paenibacillus larvae during larval infection. The aim of the present work was to perform a first approach to the identification and characterization of P. larvae secretome. P. larvae secreted proteins were analyzed by SDS-PAGE and identified by MALDI-TOF. Protein toxicity was evaluated using an experimental model based on feeding of A. mellifera larvae and immunogenicity was evaluated by Western blot, using an antiserum raised against cells and spores of P. larvae. Ten different proteins were identified among P. larvae secreted proteins, including proteins involved in transcription, metabolism, translation, cell envelope, transport, protein folding, degradation of polysaccharides and motility. Although most of these proteins are cytosolic, many of them have been previously detected in the extracellular medium of different Bacillus spp. cultures and have been related to virulence. The secreted proteins resulted highly toxic and immunogenic when larvae were exposed using an experimental model. This is the first description of proteins secreted by the honeybee pathogen P. larvae. This information may be relevant for the elucidation of bacterial pathogenesis mechanisms. PMID:19781868

  7. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  8. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    Science.gov (United States)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  9. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure.

    Science.gov (United States)

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-09-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (pp-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  10. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    OpenAIRE

    B.J. Tuasikal; I.W.T. Wibawan2; F.H. Pasaribu2; S. Estuningsih2

    2012-01-01

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of th...

  11. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  12. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  13. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    Science.gov (United States)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  14. Cyclic enterobacterial common antigen: Potential contaminant of bacterially expressed protein preparations

    International Nuclear Information System (INIS)

    We have previously reported the identification of the cyclic enterobacterial common antigen (ECACYC) polysaccharide in E. coli strains commonly used for heterologous protein expression (PJA Erbel et al., J. Bacteriol.185 (2003): 1995). Following this initial report, interactions among several NMR groups established that characteristic N-acetyl signals of ECACYC have been observed in 15N-1H HSQC spectra of samples of various bacterially-expressed proteins suggesting that this water-soluble carbohydrate is a common contaminant. We provide NMR spectroscopic tools to recognize ECACYC in protein samples, as well as several methods to remove this contaminant. Early recognition of ECA-based NMR signals will prevent time-consuming analyses of this copurifying carbohydrate

  15. Bacterial ortholog of mammalian translocator protein (TSPO with virulence regulating activity.

    Directory of Open Access Journals (Sweden)

    Annelise Chapalain

    Full Text Available The translocator protein (TSPO, previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5 M adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.

  16. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  17. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  18. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    Science.gov (United States)

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.

  19. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  20. Role of acute-phase proteins in interleukin-1-induced nonspecific resistance to bacterial infections in mice.

    OpenAIRE

    Vogels, M.T.E.; L. Cantoni; Carelli, M.; Sironi, M; Ghezzi, P; van der Meer, J. W M

    1993-01-01

    Treatment with a single low dose (80 to 800 ng) of interleukin-1 (IL-1) 24 h before a lethal bacterial challenge of granulocytopenic and normal mice enhances nonspecific resistance. Since IL-1 induces secretion of acute-phase proteins, liver proteins which possess several detoxifying effects, we investigated the role of these proteins in the IL-1-induced protection. Inhibition of liver protein synthesis with D-galactosamine (GALN) completely inhibited the IL-1-induced synthesis of acute-phase...

  1. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    OpenAIRE

    Lin Jin; Jong Hyun Ham; Rosemary Hage; Wanying Zhao; Jaricelis Soto-Hernández; Sang Yeol Lee; Seung-Mann Paek; Min Gab Kim; Charles Boone; Coplin, David L.; David Mackey

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, w...

  2. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein

    OpenAIRE

    Blair, Jimmy A.; Xu, Qingping; Childers, W. Seth; Mathews, Irimpan I.; Kern, Justin W.; Eckart, Michael; Deacon, Ashley M.; Shapiro, Lucy

    2013-01-01

    Vital to bacterial survival is the faithful propagation of cellular signals, and in Caulobacter crescentus ChpT is an essential mediator within the cell cycle circuit. ChpT functions as a histidine-containing phosphotransfer protein (HPt) that shuttles a phosphoryl group from the receiver domain of CckA, the upstream hybrid histidine kinase (HK), to one of two downstream response regulators (RRs)—CtrA or CpdR—that controls cell cycle progression. To understand how ChpT interacts with multiple...

  3. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    OpenAIRE

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC mutant strain which proved to be hypersensitive to cadmium. Both the human and bacterial MDR genes conferred cadmium resistance to E. coli up to 0.4 mM concentration. Protection was abolished by 10...

  4. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    Science.gov (United States)

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  5. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.

    Science.gov (United States)

    Gennaris, Alexandra; Ezraty, Benjamin; Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric

    2015-12-17

    The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.

  6. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms.

    Directory of Open Access Journals (Sweden)

    Carlos J Sanchez

    Full Text Available The Pneumococcal serine-rich repeat protein (PsrP is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10 on the surface of lung cells through amino acids 273-341 located in the Basic Region (BR domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (rBR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122-166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.

  7. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.;

    Introduction Silicone rubber is among the most biocompatible materials available, exhibiting low levels of extractables, absence of plasticizers and additives and fairly low activation of blood thrombogenesis components. However untreated silicone rubber does not efficiently resist protein...... by staining with crystal violet with the extent of biofilm formation determined from absorbance measurement of the extracted dye. Flow chamber assay: Measurements of bacterial colonization during prolonged growth in liquid flow were done using a flow chamber (modified version of FCS lc, Oligene, Germany......). Quantification was carried out by a similar method as described above, using crystal violet as a direct measure of the amount of adhering bacteria. Protein adsorption measurements: Gold plated QCMcrystals were spin coated with polystyrene (PS) to create a hydrophobic reference surface similar to silicone. PS...

  8. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets......, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver funtion were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended...... to increase (P = 0.07) with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters....

  9. Single-stranded DNA bound to bacterial cold-shock proteins: preliminary crystallographic and Raman analysis.

    Science.gov (United States)

    Bienert, Ralf; Zeeb, Markus; Dostál, Lubomir; Feske, Anette; Magg, Christine; Max, Klaas; Welfle, Heinz; Balbach, Jochen; Heinemann, Udo

    2004-04-01

    The cold-shock response has been described for several bacterial species. It is characterized by distinct changes in intracellular protein patterns whereby a set of cold-shock-inducible proteins become abundant. The major cold-shock proteins of Bacillus subtilis (Bs-CspB) and Bacillus caldolyticus (Bc-Csp) are small oligonucleotide/oligosaccharide-binding (OB) fold proteins that have been described as binding single-stranded nucleic acids. Bs-CspB (Mr = 7365) and Bc-Csp (Mr = 7333) were crystallized in the presence of the deoxyhexanucleotide (dT)6. Crystals of (dT)6 with Bs-CspB grew in the orthorhombic space group C222(1), with unit-cell parameters a = 49.0, b = 53.2, c = 77.0 A. Crystals with Bc-Csp grew in the primitive orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 74.3, b = 64.9, c = 31.2 A. These crystals diffract to maximal resolutions of 1.78 and 1.29 A, respectively. The presence of protein and DNA in the crystals was demonstrated by Raman spectroscopy.

  10. Reconstitution of nanomachine driving the assembly of proteins into bacterial outer membranes

    International Nuclear Information System (INIS)

    Over 9.5 million people die each year due to infectious diseases caused by pathogens. Many species of pathogenic bacteria require nanomachines acting like a molecular pump that shuttle key disease-causing molecules (proteins) from inside bacteria cells to the outside surface, priming the bacteria for infections. How such proteins are assembled remains an important question in biology. If we can inhibit the nanomachines function in transporting specific violence factors, it would disable the disease process. Therefore it is crucial to understand how the proteins are transported through the nanomachines from the periplasm to the extracellular space. Measuring the activity of the component parts of membrane-embedded nanomachines in solution is a major technological challenge. The translocation assembly module (the TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by Quartz Crystal Microbalance with Dissipation (QCM-D) and Magnetic Contrast Neutron Reflectrometry (MCNR). We show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  11. Motion of single MreB bacterial actin proteins in Caulobacter show treadmilling in vivo

    Science.gov (United States)

    Moerner, W. E.; Kim, Soyeon; Gitai, Zemer; Kinkhabwala, Anika; McAdams, Harley; Shapiro, Lucy

    2006-03-01

    Ensemble imaging of a bacterial actin homologue, the MreB protein, suggests that the MreB proteins form a dynamic filamentous spiral along the long axis of the cell in Caulobacter crescentus. MreB contracts and expands along the cell axis and plays an important role in cell shape and polarity maintenance, as well as chromosome segregation and translocation of the origin of replication during cell division. In this study we investigated the real-time polymerization of MreB in Caulobacter crescentus using single-molecule fluorescence imaging. With time-lapse imaging, polymerized MreB could be distinguished from cytoplasmic MreB monomers, because single monomeric MreB showed fast motion characteristic of Brownian diffusion, while single polymerized MreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer implies that treadmilling is the predominant mechanism in MreB filament formation. These single-molecule imaging experiments provide the first available information on the velocity of bacterial actin polymerization in a living cell.

  12. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver.

    Science.gov (United States)

    Kędziora, Anna; Krzyżewska, Eva; Dudek, Bartłomiej; Bugla-Płoskońska, Gabriela

    2016-01-01

    The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS) are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  13. Disordered patterns in clustered Protein Data Bank and in eukaryotic and bacterial proteomes.

    Directory of Open Access Journals (Sweden)

    Michail Yu Lobanov

    Full Text Available We have constructed the clustered Protein Data Bank and obtained clusters of chains of different identity inside each cluster, http://bioinfo.protres.ru/st_pdb/. We have compiled the largest database of disordered patterns (141 from the clustered PDB where identity between chains inside of a cluster is larger or equal to 75% (version of 28 June 2010 by using simple rules of selection. The results of these analyses would help to further our understanding of the physicochemical and structural determinants of intrinsically disordered regions that serve as molecular recognition elements. We have analyzed the occurrence of the selected patterns in 97 eukaryotic and in 26 bacterial proteomes. The disordered patterns appear more often in eukaryotic than in bacterial proteomes. The matrix of correlation coefficients between numbers of proteins where a disordered pattern from the library of 141 disordered patterns appears at least once in 9 kingdoms of eukaryota and 5 phyla of bacteria have been calculated. As a rule, the correlation coefficients are higher inside of the considered kingdom than between them. The patterns with the frequent occurrence in proteomes have low complexity (PPPPP, GGGGG, EEEED, HHHH, KKKKK, SSTSS, QQQQQP, and the type of patterns vary across different proteomes, http://bioinfo.protres.ru/fp/search_new_pattern.html.

  14. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    Science.gov (United States)

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  15. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection.

    Science.gov (United States)

    Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo

    2016-09-01

    Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. PMID:27458055

  16. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  17. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  18. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Science.gov (United States)

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L; Mackey, David

    2016-05-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  19. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  20. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins

    OpenAIRE

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-01-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold wit...

  1. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.

    Science.gov (United States)

    Robert, Francis; Brakier-Gingras, Léa

    2003-11-01

    In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.

  2. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

    Directory of Open Access Journals (Sweden)

    Shuaiqi Guo

    Full Text Available A novel role for antifreeze proteins (AFPs may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII and region IV (RIV, divide MpAFP into five distinct regions, all of which require mM Ca(2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2 server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.

  3. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  4. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  5. Molecular Characterization of Soybean Mosaic Virus NIa Protein and its Processing Event in Bacterial Expression

    Directory of Open Access Journals (Sweden)

    Bong K. Choi

    2006-01-01

    Full Text Available Soybean mosaic virus (SMV-CN18 is an Rsv resistance-breaking (RB isolate to overcome soybean resistance genes Rsv1, Rsv3 and Rsv4. The aim of this study was to characterize nuclear inclusion protein a (NIa protein of RB isolate at the molecular level and demonstrate its processing into genome-linked protein (VPg and NIa-Pro domains in Esherichia coli containing a bacterial expression pET vector inserted with NIa gene. The full-length of NIa gene was synthesized by reverse transcription-polymerase chain reaction (RT-PCR and its 1298 nucleotides (nt and 432 amino acids (aa were deduced. The nt and aa sequences of NIa gene of SMV-CN18 shared high identities with the corresponding sequences of the NIa gene of the known SMV isolates, suggesting that the NIa is a highly conserved protein. The NIa-Pro domain contains a highly conserved structural motif for proteolysis, while the VPg domain contains a nuclear localization signal (NLS, a putative NTP-binding site and cellular factor-binding sites. The phylogenetic tree revealed that less divergence of NIa protein exists among twelve SMV isolates, which can be supported by a low bootstrap value between clades. In addition, the full-length of NIa gene, amplified by RT-PCR, was ligated into pET-28b E. coli expression vector with an N-terminal His6-tag. Optimal conditions for expression were at 1mM treatment of IPTG at 25°C for 5 hr. The released protein from bacterial lysates remained soluble and proved the processing form of the NIa polyprotein. E. coli expression system shows the processed product of 29 kDa VPg in SDS-PAGE confirmed by western blot analysis in both crude extracts and purified elution products, using Ni2+-NTA resin. The present study indicates that the N-terminal region of NIa which is processed and expressed in bacteria.

  6. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films.

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R; Sleytr, U B; Toca-Herrera, José L

    2013-09-28

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (T(g)) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below T(g). The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm(2)), followed by PDLLA (0.034 μm(2)), and PLGA (0.039 μm(2)), and the largest size for PLCL (0.09 μm(2)). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (~1800 ng cm(-2)) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest T(g)). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  7. Effect of pH, salt and chemical rinses on bacterial attachment to extracellular matrix proteins.

    Science.gov (United States)

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark

    2013-06-01

    Microbial contamination of carcass surfaces occurs during slaughter and post-slaughter processing steps, therefore interventions are needed to enhance meat safety and quality. Although many studies have been done at the macro-level, little is known about specific processes that influence bacterial attachment to carcass surfaces, particularly the role of extracellular matrix (ECM) proteins. In the present study, the effect of pH and salt (NaCl, KCl and CaCl2) on attachment of Escherichia coli and Salmonella isolates to dominant ECM proteins: collagen I, fibronectin, collagen IV and laminin were assessed. Also, the effects of three chemical rinses commonly used in abattoirs (2% acetic acid, 2% lactic acid and 10% trisodium phosphate (TSP)) were tested. Within a pH range of 5-9, there was no significant effect on attachment to ECM proteins, whereas the effect of salt type and concentration varied depending on combination of strain and ECM protein. A concentration-dependant effect was observed with NaCl and KCl (0.1-0.85%) on attachment of E. coli M23Sr, but only to collagen I. One-tenth percent CaCl2 produced the highest level of attachment to ECM proteins for E. coli M23Sr and EC614. In contrast, higher concentrations of CaCl2 increased attachment of E. coli EC473 to collagen IV. Rinses containing TSP produced >95% reduction in attachment to all ECM proteins. These observations will assist in the design of targeted interventions to prevent or disrupt contamination of meat surfaces, thus improving meat safety and quality.

  8. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    current tools especially where the N-terminally anchored and the SPIase-cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%. LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial genomes. The results are stored in the database LocateP-DB http://www.cmbi.ru.nl/locatep-db1. Conclusion LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive bacteria currently available.

  9. Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

    Directory of Open Access Journals (Sweden)

    Daniel Y. Bargieri

    2011-01-01

    Full Text Available In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.

  10. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  11. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Jutta Messing

    2014-03-01

    Full Text Available Fruit extracts from black currants (Ribes nigrum L. are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2 was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. 125I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.

  12. Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori.

    Science.gov (United States)

    Messing, Jutta; Niehues, Michael; Shevtsova, Anna; Borén, Thomas; Hensel, Andreas

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects. PMID:24662083

  13. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  14. Acute phase proteins in serum and cerebrospinal fluid in the course of bacterial meningitis.

    Science.gov (United States)

    Paradowski, M; Lobos, M; Kuydowicz, J; Krakowiak, M; Kubasiewicz-Ujma, B

    1995-08-01

    We carried out estimations of the following acute phase proteins: C-reactive protein (CRP), alpha-1-antitrypsin (AAT), alpha-1-acid glycoprotein (AAG), alpha-2-ceruloplasmin (CER), and alpha-2-haptoglobin (HPT) in serum and in cerebrospinal fluid (CSF) in patients with bacterial meningitis (BM, n = 30) and viral meningitis (VM, n = 30). We have shown that determinations of concentrations of AAG and CRP in serum and CER in CSF are useful in differentiation between BM and VM. The diagnostic power of these three tests (the areas under their ROC curves equal 0.942, 0.929, and 0.931, respectively) is bigger, though statistically not significantly, than that of traditional parameters of BM in CSF, i.e., total protein concentration and white blood cell count. Determination of AAG, CRP, and AAT in serum is a valuable monitoring marker in the course of BM treatment. Convenience of serum sampling constitutes an advantage over traditional BM parameters in CSF. PMID:8521602

  15. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    Science.gov (United States)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  16. EXPRESSION OF BACTERIAL PROTEIN-A IN TOBACCO LEADS TO ENHANCED RESISTANCE TO STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Chaitali Roy

    2014-08-01

    Full Text Available Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms because it can be easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. As bacterial enzymes can be synthesized in tobacco, here we explore the possibility of in planta expression of staphylococcal protein-A(PA which is an antibody, an important group among biopharmaceuticals. In our study we have shown that the tobacco plants harboring PA gene could combat the crown gall infection and also effective in resisting abiotic stress conditions. Transgenic plants when subjected to interact with wild variety of Agrobacterium shows its enhanced capability to resist the gall formation. And when transgenic tobacco plants were grown in presence of 200mM NaCl and/or MG(Methylglyoxal solution, shows their increased tolerance towards salinity stress and high MG stress. So far transgenic tobacco plants are concerned, improvements in the expression of recombinant proteins and their recovery from tobacco may also enhance production and commercial use of this protein.

  17. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  18. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth.

    Science.gov (United States)

    Breton, Jonathan; Tennoune, Naouel; Lucas, Nicolas; Francois, Marie; Legrand, Romain; Jacquemot, Justine; Goichon, Alexis; Guérin, Charlène; Peltier, Johann; Pestel-Caron, Martine; Chan, Philippe; Vaudry, David; do Rego, Jean-Claude; Liénard, Fabienne; Pénicaud, Luc; Fioramonti, Xavier; Ebenezer, Ivor S; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2016-02-01

    The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern. PMID:26621107

  19. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  20. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating: Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P.F.; Currie, E.P.K.; Thies, J.C.; Mei, van der H.C.; Busscher, H.J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  1. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  2. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    Science.gov (United States)

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  3. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Directory of Open Access Journals (Sweden)

    Paweł Błażej

    Full Text Available Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  4. Third order nonlinear optical properties of stacked bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.X.; Laible, P.D. [Argonne National Lab., IL (United States). Chemistry Div.; Spano, F.C.; Manas, E.S. [Temple Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1997-09-01

    Enhancement of the nonresonant second order molecular hyperpolarizabilities {gamma} were observed in stacked macrocyclic molecular systems, previously in a {micro}-oxo silicon phthalocyanine (SiPcO) monomer, dimer and trimer series, and now in bacteriochlorophyll a (BChla) arrays of light harvesting (LH) proteins. Compared to monomeric BChla in a tetrahydrofuran (THF) solution, the <{gamma}> for each macrocycle was enhanced in naturally occurring stacked macrocyclic molecular systems in the bacterial photosynthetic LH proteins where BChla`s are arranged in tilted face-to-face arrays. In addition, the {gamma} enhancement is more significant in B875 of LH1 than in B850 in LH2. Theoretical modeling of the nonresonant {gamma} enhancement using simplified molecular orbitals for model SiPcO indicated that the energy level of the two photon state is crucial to the {gamma} enhancement when a two photon process is involved, whereas the charge transfer between the monomers is largely responsible when one photon near resonant process is involved. The calculated results can be extended to {gamma} enhancement in B875 and B850 arrays, suggesting that BChla in B875 are more strongly coupled than in B850. In addition, a 50--160 fold increase in <{gamma}> for the S{sub 1} excited state of relative to S{sub 0} of bacteriochlorophyll in vivo was observed which provides an alternative method for probing excited state dynamics and a potential application for molecular switching.

  5. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Directory of Open Access Journals (Sweden)

    Tauson Anne-Helene

    2007-11-01

    Full Text Available Abstract The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07 with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.

  6. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  7. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  8. Receptor interacting protein kinase-2 inhibition by CYLD impairs anti-bacterial immune responses in macrophages

    Directory of Open Access Journals (Sweden)

    Katharina eWex

    2016-01-01

    Full Text Available Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 (NOD2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2. RIPK2 mediates the activation of immune responses via the nuclear factor-κB (NF-κB and extracellular-signal regulated kinase (ERK pathways. Previously, it has been shown that RIPK2 activation dependens on its K63-ubiquitination by the E3 ligases pellino-3 and ITCH, whereas the deubiquitinating enzyme A20 counter-regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new interacting partner and inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm infected bone-marrow-derived macrophages (BMDM. CYLD-mediated K63-deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines (IL-6, IL-12, anti-listerial ROS and NO, and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD-deficiency with respect to the production of IL-6, NO, ROS and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2 dependent manner.The protective function of CYLD-deficiency was dependent on IFN-γ pre-stimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent STAT1 activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent anti-bacterial immune responses in macrophages.

  9. Purification and functional analysis of the recombinant protein isolated from E. coli by employing three different methods of bacterial lysis

    Directory of Open Access Journals (Sweden)

    MARIJA MOJSIN

    2005-07-01

    Full Text Available In this paper, the purification of the human recombinant protein expressed in E. coli using the GSTGene Fusion System, by applying various methods of bacterial lysis: sonication, freeze/thaw and beadbeating, is presented. The study was an attempt to compare the properties of the proteins obtained by the sonication method, recommended by manufacturers but inaccessible for many researchers, with those obtained using two other readily available lysis methods. The data show that all purified proteins were soluble and intact with the highest protein yield being obtained via the freeze/thaw method. The results of functional analysis indicate that the proteins purified using the sonication and freeze/thaw methods of lysis exhibited similar DNA binding affinity, while the protein purified by beadbeating was also functional but with a lower binding affinity. The conclusion of this study is that all three lysis methods could be successfully employed for protein purification.

  10. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution. PMID:23475937

  11. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  12. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  13. The use of C-reactive protein in predicting bacterial co-Infection in children with bronchiolitis

    Directory of Open Access Journals (Sweden)

    Mohamad Fares

    2011-03-01

    Full Text Available Background: Bronchiolitis is a potentially life-threatening respiratory illness commonly affecting children who are less than two years of age. Patients with viral lower respiratory tract infection are at risk for co-bacterial infection. Aim: The aim of our study was to evaluate the use of C-reactive protein (CRP in predicting bacterial co-infection in patients hospitalized for bronchiolitis and to correlate the results with the use of antibiotics. Patients and Methods: This is a prospective study that included patients diagnosed with bronchiolitis admitted to Makassed General Hospital in Beirut from October 2008 to April 2009. A tracheal aspirate culture was taken from all patients with bronchiolitis on admission to the hospital. Blood was drawn to test C-reactive protein level, white cell count, transaminases level, and blood sugar level. Results: Forty-nine patients were enrolled in the study and were divided into two groups. Group 1 included patients with positive tracheal aspirate culture and Group 2 included those with negative culture. All patients with a CRP level ≥2 mg/dL have had bacterial co-infection. White cell count, transaminases and blood sugar levels were not predictive for bacterial co-infection. The presence of bacterial co-infection increased the length of hospital stay in the first group by 2 days compared to those in the second group. Conclusion: Bacterial co-infection is frequent in infants with moderate to severe bronchiolitis and requires admission. Our data showed that a CRP level greater than 1.1 mg/dL raised suspicion for bacterial co-infection. Thus, a tracheal aspirate should be investigated microbiologically in all hospitalized patients in order to avoid unnecessary antimicrobial therapy and to shorten the duration of the hospital stay.

  14. Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Ahlstrøm, Øystein;

    2005-01-01

    The objective of this study was to estimate the effect of increasing the dietary content of bacterial protein meal (BPM) on energy and protein metabolism in growing mink kits. Sixteen male mink kits of the standard brown genotype were randomly fed one of four diets: A control (Diet III) and 60.......7% on Diet I to 26.6% on Diet IV, and oxidation of fat increased from 53.8% on Diet I to 63.5% Diet IV. In conclusion, protein and energy metabolism remained unaffected when up to 40% of DN was derived from BPM....

  15. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N-U;

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  16. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  17. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    Science.gov (United States)

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-08-31

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.

  18. Nucleotide and partner-protein control of bacterial replicative helicase structure and function.

    Science.gov (United States)

    Strycharska, Melania S; Arias-Palomo, Ernesto; Lyubimov, Artem Y; Erzberger, Jan P; O'Shea, Valerie L; Bustamante, Carlos J; Berger, James M

    2013-12-26

    Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors. PMID:24373746

  19. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [35S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  20. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    Science.gov (United States)

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  1. Surfactant protein D augments bacterial association but attenuates major histocompatibility complex class II presentation of bacterial antigens

    DEFF Research Database (Denmark)

    Hansen, Søren; Lo, Bernice; Evans, Kathy;

    2006-01-01

    Development of dementia, including Alzheimer's disease (AD), is associated with lipid dysregulation and inflammation. As the host defense lectin surfactant protein D (SP-D) has multiple effects in lipid homeostasis and inflammation, the correlation between SP-D concentrations and development of d.......06-1.92) in the highest quartile. SP-D concentration thus correlates to development of dementia as well as to augmented mortality....

  2. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  3. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    Directory of Open Access Journals (Sweden)

    David S Milner

    2014-04-01

    Full Text Available Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd GTP-binding are conserved. Deletion of mglA(Bd abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd interacted with a previously uncharacterised tetratricopeptide repeat (TPR domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.

  4. Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo

    Directory of Open Access Journals (Sweden)

    Laura A. Novotny

    2016-08-01

    Full Text Available The vast majority of chronic and recurrent bacterial diseases are attributed to the presence of a recalcitrant biofilm that contributes significantly to pathogenesis. As such, these diseases will require an innovative therapeutic approach. We targeted DNABII proteins, an integral component of extracellular DNA (eDNA which is universally found as part of the pathogenic biofilm matrix to develop a biofilm disrupting therapeutic. We show that a cocktail of monoclonal antibodies directed against specific epitopes of a DNABII protein is highly effective to disrupt diverse biofilms in vitro as well as resolve experimental infection in vivo, in both a chinchilla and murine model. Combining this monoclonal antibody cocktail with a traditional antibiotic to kill bacteria newly released from the biofilm due to the action of the antibody cocktail was highly effective. Our results strongly support these monoclonal antibodies as attractive candidates for lead optimization as a therapeutic for resolution of bacterial biofilm diseases.

  5. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates

    OpenAIRE

    Seras Franzoso, Joaquin; Peebo, Karl; Garcia Fruitós, Elena; Vázquez Gómez, Esther; Rinas, Ursula; Villaverde Corrales, Antonio

    2014-01-01

    Altres ajuts: We are indebted CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, Spain) for funding our research on inclusion bodies. Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with...

  6. Linkage of bacterial protein synthesis and presentation of MHC class I-restricted Listeria monocytogenes-derived antigenic peptides.

    Directory of Open Access Journals (Sweden)

    Silke Grauling-Halama

    Full Text Available The processing and MHC class I-restricted presentation of antigenic peptides derived from the p60 protein of the facultative intracellular bacterium Listeria monocytogenes is tightly linked to bacterial protein synthesis. We used non-linear regression analysis to fit a mathematical model of bacterial antigen processing to a published experimental data set showing the accumulation and decay of p60-derived antigenic peptides in L. monocytogenes-infected cells. Two alternative models equally describe the experimental data. The simulation accounting for a stable and a hypothetical rapidly degraded form of antigen predicts that the antigenic peptides p60 217-225 and p60 449-457 are derived from a putative instable form of p60 with an average intracellular half-life of approximately 3 minutes accounting for approximately 31% of all p60 molecules synthesized. The alternative model predicts that both antigenic peptides are processed from p60 degraded intracellularly with a half-life of 109 min and that antigen processing only occurs as long as bacterial protein synthesis is not inhibited. In order to decide between both models the intracellular accumulation of p60 in infected cells was studied experimentally and compared with model predictions. Inhibition of p60 degradation by the proteasome inhibitor epoxomicin revealed that during the first 3 h post infection approximately 30% of synthesized p60 molecules were degraded. This value is significantly lower than the approximately 50% degradation of p60 that would be expected in the presence of the predicted putative short-lived state of p60 and also fits precisely with the predictions of the alternative model, indicating that the tight connection of bacterial protein biosynthesis and antigen processing and presentation of L. monocyctogenes-derived antigenic peptides is not caused by the presence of a highly instable antigenic substrate.

  7. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains

    OpenAIRE

    Al Akeel, Raid; Al-Sheikh, Yazeed; Mateen, Ayesha; Syed, Rabbani; Janardhan, K.; V C Gupta

    2013-01-01

    A huge group of natural antimicrobial compounds are active against a large spectrum of bacterial strains causing infectious threat. The present study was conducted to investigate the crude extracts of antimicrobial protein and peptide efficacy from six medicinal plant seeds. Extraction was carried out in Sodium phosphate citrate buffer, and Sodium acetate buffer using different pH. Antimicrobial activities of these plants were determined by the microbiological technique using Agar well diffus...

  8. Unusual Heme Binding in the Bacterial Iron Response Regulator Protein (Irr): Spectral Characterization of Heme Binding to Heme Regulatory Motif

    OpenAIRE

    Ishikawa, Haruto; Nakagaki, Megumi; Bamba, Ai; Uchida, Takeshi; Hori, Hiroshi; O'Brian, Mark R.; Iwai, Kazuhiro; Ishimori, Koichiro

    2011-01-01

    We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single “heme-regulatory motif”, HRM, and plays a key role in the iron homeostasis of a nitrogen fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where 29Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside...

  9. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.

    Science.gov (United States)

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be

  10. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.

    Directory of Open Access Journals (Sweden)

    Alessandro Pandini

    Full Text Available Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM domains (amino-terminal (FliGN, middle (FliGM and FliGC as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6. FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM

  11. Bacterial beta-lactamase fragmentation complementation strategy can be used as a method for identifying interacting protein pairs.

    Science.gov (United States)

    Park, Jong-Hwa; Back, Jung Ho; Hahm, Soo Hyun; Shim, Hye-Young; Park, Min Ju; Ko, Sung Il; Han, Ye Sun

    2007-10-01

    We investigated the applicability of the TEM-1 beta- lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

  12. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  13. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  14. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    Science.gov (United States)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  15. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    International Nuclear Information System (INIS)

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic characteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD50) is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 - 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 - 0.05X (where Y = bands distance; X = MW standard protein); r2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis. (author)

  16. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted prot...

  17. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U;

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  18. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  19. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana.

    Science.gov (United States)

    Saur, Isabel M L; Kadota, Yasuhiro; Sklenar, Jan; Holton, Nicholas J; Smakowska, Elwira; Belkhadir, Youssef; Zipfel, Cyril; Rathjen, John P

    2016-03-22

    Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.

  20. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins.

    Science.gov (United States)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-12-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted proteins, they are frequently N-glycosylated. This hampers production in microbes as these hosts glycosylate proteins differently. The resulting products may therefore be immunogenic, unstable and show reduced efficacy. Recently, successful glycoengineering of microbes has demonstrated that it is possible to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae.

  1. The topology of the bacterial co-conserved protein network and its implications for predicting protein function

    Directory of Open Access Journals (Sweden)

    Leach Sonia M

    2008-06-01

    Full Text Available Abstract Background Protein-protein interactions networks are most often generated from physical protein-protein interaction data. Co-conservation, also known as phylogenetic profiles, is an alternative source of information for generating protein interaction networks. Co-conservation methods generate interaction networks among proteins that are gained or lost together through evolution. Co-conservation is a particularly useful technique in the compact bacteria genomes. Prior studies in yeast suggest that the topology of protein-protein interaction networks generated from physical interaction assays can offer important insight into protein function. Here, we hypothesize that in bacteria, the topology of protein interaction networks derived via co-conservation information could similarly improve methods for predicting protein function. Since the topology of bacteria co-conservation protein-protein interaction networks has not previously been studied in depth, we first perform such an analysis for co-conservation networks in E. coli K12. Next, we demonstrate one way in which network connectivity measures and global and local function distribution can be exploited to predict protein function for previously uncharacterized proteins. Results Our results showed, like most biological networks, our bacteria co-conserved protein-protein interaction networks had scale-free topologies. Our results indicated that some properties of the physical yeast interaction network hold in our bacteria co-conservation networks, such as high connectivity for essential proteins. However, the high connectivity among protein complexes in the yeast physical network was not seen in the co-conservation network which uses all bacteria as the reference set. We found that the distribution of node connectivity varied by functional category and could be informative for function prediction. By integrating of functional information from different annotation sources and using the

  2. The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane

    Directory of Open Access Journals (Sweden)

    Cacciotto Carla

    2010-08-01

    Full Text Available Abstract Background Mycoplasmas are the simplest bacteria capable of autonomous replication. Their evolution proceeded from gram-positive bacteria, with the loss of many biosynthetic pathways and of the cell wall. In this work, the liposoluble protein complement of Mycoplasma agalactiae, a minimal bacterial pathogen causing mastitis, polyarthritis, keratoconjunctivitis, and abortion in small ruminants, was subjected to systematic characterization in order to gain insights into its membrane proteome composition. Results The selective enrichment for M. agalactiae PG2T liposoluble proteins was accomplished by means of Triton X-114 fractionation. Liposoluble proteins were subjected to 2-D PAGE-MS, leading to the identification of 40 unique proteins and to the generation of a reference 2D map of the M. agalactiae liposoluble proteome. Liposoluble proteins from the type strain PG2 and two field isolates were then compared by means of 2D DIGE, revealing reproducible differences in protein expression among isolates. An in-depth analysis was then performed by GeLC-MS/MS in order to achieve a higher coverage of the liposoluble proteome. Using this approach, a total of 194 unique proteins were identified, corresponding to 26% of all M. agalactiae PG2T genes. A gene ontology analysis and classification for localization and function was also carried out on all protein identifications. Interestingly, the 11.5% of expressed membrane proteins derived from putative horizontal gene transfer events. Conclusions This study led to the in-depth systematic characterization of the M. agalactiae liposoluble protein component, providing useful insights into its membrane organization.

  3. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions

    Institute of Scientific and Technical Information of China (English)

    Carol L Fischer; Katherine S Walters; David R Drake; Deborah V Dawson; Derek R Blanchette; Kim A Brogden; Philip W Wertz

    2013-01-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria;however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  4. Antimicrobial proteins from snake venoms: direct bacterial damage and activation of innate immunity against Staphylococcus aureus skin infection.

    Science.gov (United States)

    Samy, R P; Stiles, B G; Gopalakrishnakone, P; Chow, V T K

    2011-01-01

    The innate immune system is the first line of defense against microbial diseases. Antimicrobial proteins produced by snake venoms have recently attracted significant attention due to their relevance to bacterial infection and potential development into new therapeutic agents. Staphylococcus aureus is one of the major human pathogens causing a variety of infections involving pneumonia, toxic shock syndrome, and skin lesions. With the recent emergence of methicillin (MRSA) and vancomycin (VRSA) resistance, S. aureus infection is a serious clinical problem that will have a grave socio-economic impact in the near future. Although S. aureus susceptibility to innate antimicrobial peptides has been reported recently, the protective effect of snake venom phospholipase A₂ (svPLA₂) proteins on the skin from S. aureus infection has been understudied. This review details the protective function of svPLA₂s derived from venoms against skin infections caused by S. aureus. We have demonstrated in vivo that local application of svPLA₂ provides complete clearance of S. aureus within 2 weeks after treatment compared to fusidic acid ointment (FAO). In vitro experiments also demonstrate that svPLA₂ proteins have inhibitory (bacteriostatic) and killing (bactericidal) effects on S. aureus in a dose-dependant manner. The mechanism of bacterial membrane damage and perturbation was clearly evidenced by electron microscopic studies. In summary, svPLA₂s from Viperidae and Elapidae snakes are novel molecules that can activate important mechanisms of innate immunity in animals to endow them with protection against skin infection caused by S. aureus.

  5. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo.

    Directory of Open Access Journals (Sweden)

    Larry J Bischof

    2008-10-01

    Full Text Available Pore-forming toxins (PFTs constitute the single largest class of proteinaceous bacterial virulence factors and are made by many of the most important bacterial pathogens. Host responses to these toxins are complex and poorly understood. We find that the endoplasmic reticulum unfolded protein response (UPR is activated upon exposure to PFTs both in Caenorhabditis elegans and in mammalian cells. Activation of the UPR is protective in vivo against PFTs since animals that lack either the ire-1-xbp-1 or the atf-6 arms of the UPR are more sensitive to PFT than wild-type animals. The UPR acts directly in the cells targeted by the PFT. Loss of the UPR leads to a normal response against unrelated toxins or a pathogenic bacterium, indicating its PFT-protective role is specific. The p38 mitogen-activated protein (MAPK kinase pathway has been previously shown to be important for cellular defenses against PFTs. We find here that the UPR is one of the key downstream targets of the p38 MAPK pathway in response to PFT since loss of a functional p38 MAPK pathway leads to a failure of PFT to properly activate the ire-1-xbp-1 arm of the UPR. The UPR-mediated activation and response to PFTs is distinct from the canonical UPR-mediated response to unfolded proteins both in terms of its activation and functional sensitivities. These data demonstrate that the UPR, a fundamental intracellular pathway, can operate in intrinsic cellular defenses against bacterial attack.

  6. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    Directory of Open Access Journals (Sweden)

    Isabella R Prokhorenko

    2009-03-01

    Full Text Available Isabella R Prokhorenko1, Svetlana V Zubova1, Alexandr Yu Ivanov2, Sergey V Grachev31Laboratory of Molecular Biomedicine, Institute of Basic Biological Problems; 2Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia; 3I.M. Sechenov’s Moscow Medical Academy, Moscow, Russia Abstract: Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Signifi cant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall.Keywords: lipopolysaccharide, Escherichia coli, chemotype, lysozyme, lactoferrin, colony-forming units

  7. Protein Modification: Bacterial Effectors Rewrite the Rules of Ubiquitylation.

    Science.gov (United States)

    Berk, Jason M; Hochstrasser, Mark

    2016-07-11

    A family of virulence factors from the bacterial pathogen Legionella pneumophila has been discovered to modify human Rab GTPases with ubiquitin. Surprisingly, this modification occurs via a non-canonical mechanism that uses nicotinamide adenine dinucleotide as a cofactor. PMID:27404243

  8. A LytM Domain Dictates the Localization of Proteins to the Mother Cell-Forespore Interface during Bacterial Endospore Formation▿ †

    OpenAIRE

    Meisner, Jeffrey; Moran, Charles P.

    2010-01-01

    A large number of proteins are known to reside at specific subcellular locations in bacterial cells. However, the molecular mechanisms by which many of these proteins are anchored at these locations remains unclear. During endospore formation in Bacillus subtilis, several integral membrane proteins are located specifically at the interface of the two adjacent cells of the developing sporangium, the mother cell and forespore. The mother cell membrane protein SpoIIIAH recognizes the cell-cell i...

  9. Effect of Bacterial Flora on Postimmunization Gastritis following Oral Vaccination of Mice with Helicobacter pylori Heat Shock Protein 60

    OpenAIRE

    Yamaguchi, Hiroyuki; Osaki, Takako; Taguchi, Haruhiko; Sato, Noriko; Toyoda, Atushi; Takahashi, Motomichi; Kai, Masanori; Nakata, Noboru; Komatsu, Akio; Atomi, Yutaka; Kamiya, Shigeru

    2003-01-01

    In order to assess the efficacy of oral Helicobacter pylori heat shock protein 60 (HSP60) as a vaccine, protection against H. pylori infection in specific-pathogen-free (SPF) C57BL/6 and germfree (GF) IQI mice was examined. Prophylactic oral vaccination of these two strains of mice with either H. pylori HSP60 or Escherichia coli GroEL inhibited H. pylori colonization by 90 to 95% at 3 weeks postinfection (p.i.). However, these mice were only partially protected because bacterial loads increas...

  10. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors

    International Nuclear Information System (INIS)

    A green fluorescent protein (GFP)-based bacterial biosensor Escherichia coli DH5α (pVLCD1) was developed based on the expression of gfp under the control of the cad promoter and the cadC gene of Staphylococcus aureus plasmid pI258. DH5α (pVLCD1) mainly responded to Cd(II), Pb(II), and Sb(III), the lowest detectable concentrations being 0.1 nmol L-1, 10 nmol L-1, and 0.1 nmol L-1, respectively, with 2 h exposure. The biosensor was field-tested to measure the relative bioavailability of the heavy metals in contaminated sediments and soil samples. The results showed that the majority of heavy metals remained adsorbed to soil particles: Cd(II)/Pb(II) was only partially available to the biosensor in soil-water extracts. Our results demonstrate that the GFP-based bacterial biosensor is useful and applicable in determining the bioavailability of heavy metals with high sensitivity in contaminated sediment and soil samples and suggests a potential for its inexpensive application in environmentally relevant sample tests. - Nonpathogenic GFP-based bacterial biosensor is applicable in determining the bioavailability of heavy metals in environmental samples

  11. NEW EMBO MEMBER’S REVIEW: Viral and bacterial proteins regulating apoptosis at the mitochondrial level

    OpenAIRE

    Boya, Patricia; Roques, Bernard,; Kroemer, Guido

    2001-01-01

    Mitochondrial membrane permeabilization (MMP) is a critical step of several apoptotic pathways. Some infectious intracellular pathogens can regulate (induce or inhibit) apoptosis of their host cells at the mitochondrial level, by targeting proteins to mitochondrial membranes that either induce or inhibit MMP. Pathogen-encoded mitochondrion-targeted proteins may or may not show amino acid sequence homology to Bcl-2-like proteins. Among the Bcl-2-unrelated, mitochondrion-targeted proteins, seve...

  12. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  13. Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses.

    Science.gov (United States)

    Sharma, Deepali; Ashaduzzaman, Md; Golabi, Mohsen; Shriwastav, Amritanshu; Bisetty, Krishna; Tiwari, Ashutosh

    2015-11-01

    Molecular imprinting generates robust, efficient, and highly mesoporous surfaces for biointeractions. Mechanistic interfacial interaction between the surface of core substrate and protein corona is crucial to understand the substantial microbial toxic responses at a nanoscale. In this study, we have focused on the mechanistic interactions between synthesized saponin imprinted zinc oxide nanohoneycombs (SIZnO NHs), average size 80-125 nm, surface area 20.27 m(2)/g, average pore density 0.23 pore/nm and number-average pore size 3.74 nm and proteins corona of bacteria. The produced SIZnO NHs as potential antifungal and antibacterial agents have been studied on Sclerotium rolfsii (S. rolfsii), Pythium debarynum (P. debarynum) and Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), respectively. SIZnO NHs exhibited the highest antibacterial (∼50%) and antifungal (∼40%) activity against Gram-negative bacteria (E. coli) and fungus (P. debarynum), respectively at concentration of 0.1 mol. Scanning electron spectroscopy (SEM) observation showed that the ZnO NHs ruptured the cell wall of bacteria and internalized into the cell. The molecular docking studies were carried out using binding proteins present in the gram negative bacteria (lipopolysaccharide and lipocalin Blc) and gram positive bacteria (Staphylococcal Protein A, SpA). It was envisaged that the proteins present in the bacterial cell wall were found to interact and adsorb on the surface of SIZnO NHs thereby blocking the active sites of the proteins used for cell wall synthesis. The binding affinity and interaction energies were higher in the case of binding proteins present in gram negative bacteria as compared to that of gram positive bacteria. In addition, a kinetic mathematical model (KMM) was developed in MATLAB to predict the internalization in the bacterial cellular uptake of the ZnO NHs for better understanding of their controlled toxicity. The results obtained from KMM exhibited a good

  14. Bacterial heme-transport proteins and their heme-coordination modes

    OpenAIRE

    Tong, Yong; Guo, Maolin

    2008-01-01

    Efficient iron acquisition is critical for an invading microbe’s survival and virulence. Most of the iron in mammals is incorporated into heme, which can be plundered by certain bacterial pathogens as a nutritional iron source. Utilization of exogenous heme by bacteria involves the binding of heme or hemoproteins to the cell surface receptors, followed by the transport of heme into cells. Once taken into the cytosol, heme is presented to heme oxygenases where the tetrapyrrole ring is cleaved ...

  15. Protein complexes in bacterial and yeast mitochondrial membranes differ in their sensitivity towards dissociation by SDS.

    Science.gov (United States)

    Gubbens, Jacob; Slijper, Monique; de Kruijff, Ben; de Kroon, Anton I P M

    2008-12-01

    Previously, a 2D gel electrophoresis approach was developed for the Escherichia coli inner membrane, which detects membrane protein complexes that are stable in sodium dodecyl sulfate (SDS) at room temperature, and dissociate under the influence of trifluoroethanol [R. E. Spelbrink et al., J. Biol. Chem. 280 (2005), 28742-8]. Here, the method was applied to the evolutionarily related mitochondrial inner membrane that was isolated from the yeast Saccharomyces cerevisiae. Surprisingly, only very few proteins were found to be dissociated by trifluoroethanol of which Lpd1p, a component of multiple protein complexes localized in the mitochondrial matrix, is the most prominent. Usage of either milder or more stringent conditions did not yield any additional proteins that were released by fluorinated alcohols. This strongly suggests that membrane protein complexes in yeast are less stable in SDS solution than their E. coli counterparts, which might be due to the overall reduced hydrophobicity of mitochondrial transmembrane proteins. PMID:18817900

  16. Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems.

    Science.gov (United States)

    Cambronne, Eric D; Roy, Craig R

    2006-08-01

    The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport. PMID:16734660

  17. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  18. A secretory system for bacterial production of high-profile protein targets

    OpenAIRE

    Kotzsch, Alexander; Vernet, Erik; Hammarström, Martin; Berthelsen, Jens; Weigelt, Johan; Gräslund, Susanne; Sundström, Michael

    2011-01-01

    Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To improve the usefulness of the E. coli expression platform we have investigated combinations of promoters and selected N-terminal fusion tags for the extracellular expression of human target proteins. A co...

  19. A model for the condensation of the bacterial chromosome by the partitioning protein ParB

    Science.gov (United States)

    Broedersz, Chase; Wingreen, Ned

    2013-03-01

    The molecular machinery responsible for faithful segregation of the chromosome in bacteria such as Caulobacter crescentus and Bacillus subtilis includes the ParABS a.k.a. Spo0J/Soj partitioning system. In Caulobacter, prior to division, hundreds of ParB proteins bind to the DNA near the origin of replication, and localize to one pole of the cell. Subsequently, the ParB-DNA complex is translocated to the far pole by the binding and retraction of the ParA spindle-like apparatus. Remarkably, the localization of ParB proteins to specific regions of the chromosome appears to be controlled by only a few centromeric parS binding sites. Although lateral interactions between DNA-bound ParB are likely to be important for their localization, the long-range order of ParB domains on the chromosome appears to be inconsistent with a picture in which protein-protein interactions are limited to neighboring DNA-bound proteins. We developed a coarse-grained Brownian dynamics model that allows for lateral and 3D protein-protein interactions among bound ParB proteins. Our model shows how such interactions can condense and organize the DNA spatially, and can control the localization and the long-range order of the DNA-bound proteins.

  20. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism

    Energy Technology Data Exchange (ETDEWEB)

    Stekhoven, Daniel J. [Univ. of Zurich (Switzerland); Omasits, Ulrich [Univ. of Zurich (Switzerland); ETH Zurich (Switzerland); Quebatte, Maxime [Univ. of Basel (Switzerland); Dehio, Christoph [Univ. of Basel (Switzerland); Ahrens, Christian H. [Univ. of Zurich (Switzerland)

    2014-03-01

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.

  1. A common theme in interaction of bacterial immunoglobulin-binding proteins with immunoglobulins illustrated in the equine system.

    Science.gov (United States)

    Lewis, Melanie J; Meehan, Mary; Owen, Peter; Woof, Jenny M

    2008-06-20

    The M protein of Streptococcus equi subsp. equi known as fibrinogen-binding protein (FgBP) is a cell wall-associated protein with antiphagocytic activity that binds IgG. Recombinant versions of the seven equine IgG subclasses were used to investigate the subclass specificity of FgBP. FgBP bound predominantly to equine IgG4 and IgG7, with little or no binding to the other subclasses. Competitive binding experiments revealed that FgBP could inhibit the binding of staphylococcal protein A and streptococcal protein G to both IgG4 and IgG7, implicating the Fc interdomain region in binding to FgBP. To identify which of the two IgG Fc domains contributed to the interaction with FgBP, we tested two human IgG1/IgA1 domain swap mutants and found that both domains are required for full binding, with the CH3 domain playing a critical role. The binding site for FgBP was further localized using recombinant equine IgG7 antibodies with single or double point mutations to residues lying at the CH2-CH3 interface. We found that interaction of FgBP with equine IgG4 and IgG7 was able to disrupt C1q binding and antibody-mediated activation of the classical complement pathway, demonstrating an effective means by which S. equi may evade the immune response. The mode of interaction of FgBP with IgG fits a common theme for bacterial Ig-binding proteins. Remarkably, for those interactions studied in detail, it emerges that all the Ig-binding proteins target the CH2-CH3 domain interface, regardless of specificity for IgG or IgA, streptococcal or staphylococcal origin, or host species (equine or human). PMID:18411272

  2. Comparative effects of dietary nucleoside-nucleotide mixture and its components on endotoxin induced bacterial translocation and small intestinal injury in protein deficient mice.

    OpenAIRE

    Adjei, A A; Yamauchi, K.; Chan, Y. C.; Konishi, M; Yamamoto, S.

    1996-01-01

    BACKGROUND--Nucleoside-nucleotide mixture has been shown to improve gut morphology and reduce the incidence of bacterial translocation in protein deficient mice. AIMS--To compare the reparative effect of nucleoside-nucleotide mixture and their individual components on maintenance of gut integrity and bacterial translocation based on their differential metabolism and utilisation. METHODS--ICR (CD-1) mice were randomised into eight groups of 10 animals each and fed 20% casein diet (control), pr...

  3. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon

    OpenAIRE

    Thangaraju, Muthusamy; Cresci, Gail A.; Liu, Kebin; Ananth, Sudha; Gnanaprakasam, Jaya P.; Browning, Darren D.; Mellinger, John D.; Smith, Sylvia B.; Digby, Gregory J.; Lambert, Nevin A.; Prasad, Puttur D.; Ganapathy, Vadivel

    2009-01-01

    Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate, but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor m...

  4. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits

    Directory of Open Access Journals (Sweden)

    Chang CH

    2015-04-01

    Full Text Available Chih-Hao Chang,1 Kuo-Chien Tsao,2,3 Han-Chung Hu,1,4 Chung-Chi Huang,1,4 Kuo-Chin Kao,1,4 Ning-Hung Chen,1,4 Cheng-Ta Yang,1,4 Ying-Huang Tsai,4,5 Meng-Jer Hsieh4,51Department of Pulmonary and Critical Care Medicine, Linkou Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Chang-Gung University College of Medicine, Taoyuan, Taiwan; 2Department of Laboratory Medicine, Linkou Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation; 3Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; 4Department of Respiratory Therapy, Chang-Gung University, Taoyuan, Taiwan; 5Department of Pulmonary and Critical Care Medicine, Chiayi Chang-Gung Memorial Hospital, Chang-Gung Medical Foundation, Puzi City, TaiwanBackground: Viral and bacterial infections are the most common causes of chronic obstructive pulmonary disease (COPD exacerbations. Whether serum inflammatory markers can differentiate bacterial from virus infection in patients with COPD exacerbation requiring emergency department (ED visits remains controversial.Methods: Viral culture and polymerase chain reaction (PCR were used to identify the viruses in the oropharynx of patients with COPD exacerbations. The bacteria were identified by the semiquantitative culture of the expectorated sputum. The peripheral blood white blood cell (WBC counts, serum C-reactive protein (CRP, procalcitonin (PCT, and clinical symptoms were compared among patients with different types of infections.Results: Viruses were isolated from 16 (22.2% of the 72 patients enrolled. The most commonly identified viruses were parainfluenza type 3, influenza A, and rhinovirus. A total of 30 (41.7% patients had positive bacterial cultures, with the most commonly found bacteria being Haemophilus influenzae and Haemophilus parainfluenzae. Five patients (6.9% had both positive sputum cultures and virus identification. The WBC, CRP, and PCT levels of the bacteria-positive and bacteria

  5. A novel human tectonin protein with multivalent beta-propeller folds interacts with ficolin and binds bacterial LPS.

    Directory of Open Access Journals (Sweden)

    Diana Hooi Ping Low

    Full Text Available BACKGROUND: Although the human genome database has been completed a decade ago, approximately 50% of the proteome remains hypothetical as their functions are unknown. The elucidation of the functions of these hypothetical proteins can lead to additional protein pathways and revelation of new cascades. However, many of these inferences are limited to proteins with substantial sequence similarity. Of particular interest here is the Tectonin domain-containing family of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have identified hTectonin, a hypothetical protein in the human genome database, as a distant ortholog of the limulus galactose binding protein (GBP. Phylogenetic analysis revealed strong evolutionary conservation of hTectonin homologues from parasite to human. By computational analysis, we showed that both the hTectonin and GBP form beta-propeller structures with multiple Tectonin domains, each containing beta-sheets of 4 strands per beta-sheet. hTectonin is present in the human leukocyte cDNA library and immune-related cell lines. It interacts with M-ficolin, a known human complement protein whose ancient homolog, carcinolectin (CL5, is the functional protein partner of GBP during infection. Yeast 2-hybrid assay showed that only the Tectonin domains of hTectonin recognize the fibrinogen-like domain of the M-ficolin. Surface plasmon resonance analysis showed real-time interaction between the Tectonin domains 6 & 11 and bacterial LPS, indicating that despite forming 2 beta-propellers with its different Tectonin domains, the hTectonin molecule could precisely employ domains 6 & 11 to recognise bacteria. CONCLUSIONS/SIGNIFICANCE: By virtue of a recent finding of another Tectonin protein, leukolectin, in the human leukocyte, and our structure-function analysis of the hypothetical hTectonin, we propose that Tectonin domains of proteins could play a vital role in innate immune defense, and that this function has been conserved over several

  6. Avoiding acidic region streaking in two-dimensional gel electrophoresis: Case study with two bacterial whole cell protein extracts

    Indian Academy of Sciences (India)

    Arnab Roy; Umesh Varshney; Debnath Pal

    2014-09-01

    Acidic region streaking (ARS) is one of the lacunae in two-dimensional gel electrophoresis (2DE) of bacterial proteome. This streaking is primarily caused by nucleic acid (NuA) contamination and poses major problem in the downstream processes like image analysis and protein identification. Although cleanup and nuclease digestion are practiced as remedial options, these strategies may incur loss in protein recovery and perform incomplete removal of NuA. As a result, ARS has remained a common observation across publications, including the recent ones. In this work, we demonstrate how ultrasound wave can be used to shear NuA in plain ice-cooled water, facilitating the elimination of ARS in the 2DE gels without the need for any additional sample cleanup tasks. In combination with a suitable buffer recipe, IEF program and frequent paper-wick changing approach, we are able to reproducibly demonstrate the production of clean 2DE gels with improved protein recovery and negligible or no ARS. We illustrate our procedure using whole cell protein extracts from two diverse organisms, Escherichia coli and Mycobacterium smegmatis. Our designed protocols are straightforward and expected to provide good 2DE gels without ARS, with comparable times and significantly lower cost.

  7. A secretory system for bacterial production of high-profile protein targets

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Vernet, Erik; Hammarström, Martin;

    2011-01-01

    Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To impr...

  8. Recombinant expression and purification of 'virus-like' bacterial encapsulin protein cages

    NARCIS (Netherlands)

    Rurup, W.F.; Cornelissen, J.J.L.M.; Koay, M.S.T.; Orner, Brendan P.

    2014-01-01

    Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules

  9. Studies on the Interaction of Riboflavin-5'-Phosphate with Protein with Special Attention to Bacterial Bioluminescence

    NARCIS (Netherlands)

    Gast, R.

    1978-01-01

    The central theme of this thesis is the interaction of FMN with proteins. For one of the proteins studied, the enzyme luciferase from bacteria, further investigations were done on the process of light emission.In chapter 2 and 3 studies are reported on the binding of FMN with relatively simple prote

  10. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette;

    2009-01-01

    infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented......The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other...... with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...

  11. Changes in the protein fraction of Merluccius bilinearis muscle under lactic acid bacterial fermentation using a Lactobacillus Acidophilus starter culture (ESP

    Directory of Open Access Journals (Sweden)

    Luis J. Elizondo

    2016-03-01

    Full Text Available The effect of lactic acid bacterial fermentation on the protein fraction of Merluccius bilinearis muscle was evaluated. The non-protein fraction increased progressively with corresponding decreases in the percentage protein (dry weight indicating proteolytic activity during fermentation. Significant increases in the percentages of the amino acids cystine, isoleucine, phenylalanine and tyrosine were observed after two months of fermentation. Percentages of arginine decreased significantly after one week and again after two months of fermentation.

  12. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands.

    Science.gov (United States)

    Niu, Mengya; Yu, Qianqian; Tian, Peng; Gao, Zhiyong; Wang, Dapeng; Shi, Xianming

    2015-01-01

    Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3' terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5' terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs. PMID:26733983

  13. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori.

    Science.gov (United States)

    Michielse, C B; Ram, A F J; Hooykaas, P J J; Hondel, C A M J J van den

    2004-05-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins in T-DNA transfer. This study revealed that inactivation of either of the regulatory proteins (VirA, VirG), any of the transport pore proteins (VirB), proteins involved in generation of the T-strand (VirD, VirC) or T-strand protection and targeting (VirE2) abolishes or severely reduces the formation of transformants. The results indicate that the Agrobacterium-mediated transformation of A. awamori requires an intact T-DNA machinery for efficient transformation; however, the plant host range factors, like VirE3, VirH, and VirF, are not important. PMID:15050546

  14. A Bacterial Virulence Protein Promotes Pathogenicity by Inhibiting the Bacterium's Own F1Fo ATP Synthase

    OpenAIRE

    Lee, Eun-Jin; Pontes, Mauricio H.; Groisman, Eduardo A.

    2013-01-01

    Several intracellular pathogens including Salmonella enterica and Mycobacterium tuberculosis require the virulence protein MgtC to survive within macrophages and to cause a lethal infection in mice. We now report that, unlike secreted virulence factors that target the host vacuolar ATPase to withstand phagosomal acidity, the MgtC protein acts on Salmonella's own F1Fo ATP synthase. This complex couples proton translocation to ATP synthesis/ hydrolysis and is required for virulence. We establis...

  15. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  16. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  17. The role of lipids in membrane insertion and translocation of bacterial proteins.

    Science.gov (United States)

    van Dalen, Annemieke; de Kruijff, Ben

    2004-11-11

    Phospholipids are essential building blocks of membranes and maintain the membrane permeability barrier of cells and organelles. They provide not only the bilayer matrix in which the functional membrane proteins reside, but they also can play direct roles in many essential cellular processes. In this review, we give an overview of the lipid involvement in protein translocation across and insertion into the Escherichia coli inner membrane. We describe the key and general roles that lipids play in these processes in conjunction with the protein components involved. We focus on the Sec-mediated insertion of leader peptidase. We describe as well the more direct roles that lipids play in insertion of the small coat proteins Pf3 and M13. Finally, we focus on the role of lipids in membrane assembly of oligomeric membrane proteins, using the potassium channel KcsA as model protein. In all cases, the anionic lipids and lipids with small headgroups play important roles in either determining the efficiency of the insertion and assembly process or contributing to the directionality of the insertion process. PMID:15546660

  18. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres.

    Science.gov (United States)

    Funnell, Barbara E

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs "spread," that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  19. Monitoring Dynamic Protein Expression in Single Living E. Coli. Bacterial Cells by Laser Tweezers Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Winhold, H; Corzett, M H; Ulloa, J M; Cosman, M; Balhorn, R; Huser, T

    2007-01-09

    Laser tweezers Raman spectroscopy (LTRS) is a novel, nondestructive, and label-free method that can be used to quantitatively measure changes in cellular activity in single living cells. Here, we demonstrate its use to monitor changes in a population of E. coli cells that occur during overexpression of a protein, the extracellular domain of myelin oligodendrocyte glycoprotein (MOG(1-120)) Raman spectra were acquired of individual E. coli cells suspended in solution and trapped by a single tightly focused laser beam. Overexpression of MOG(1-120) in transformed E. coli Rosetta-Gami (DE3)pLysS cells was induced by addition of isopropyl thiogalactoside (IPTG). Changes in the peak intensities of the Raman spectra from a population of cells were monitored and analyzed over a total duration of three hours. Data was also collected for concentrated purified MOG(1-120) protein in solution, and the spectra compared with that obtained for the MOG(1-120) expressing cells. Raman spectra of individual, living E. coli cells exhibit signatures due to DNA and protein molecular vibrations. Characteristic Raman markers associated with protein vibrations, such as 1257 cm{sup -1}, 1340 cm{sup -1}, 1453 cm{sup -1} and 1660 cm{sup -1}, are shown to increase as a function of time following the addition of IPTG. Comparison of these spectra and the spectra of purified MOG protein indicates that the changes are predominantly due to the induction of MOG protein expression. Protein expression was found to occur mostly within the second hour, with a 470% increase relative to the protein expressed in the first hour. A 230% relative increase between the second and third hour indicates that protein expression begins to level off within the third hour. It is demonstrated that LTRS has sufficient sensitivity for real-time, nondestructive, and quantitative monitoring of biological processes, such as protein expression, in single living cells. Such capabilities, which are not currently available in

  20. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.BEWLEY,M.C.

    2002-10-01

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of {approx}5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in ffolding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to

  1. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.; BEWLEY,M.C.

    2001-12-03

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of -5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in folding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to aggregation and

  2. Structural and functional similarity between the bacterial type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins.

    Directory of Open Access Journals (Sweden)

    Matthew D Shortridge

    Full Text Available BACKGROUND: Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function. METHODOLOGY/PRINCIPAL FINDINGS: The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS. A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI. CONCLUSIONS/SIGNIFICANCE: A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in

  3. Efficacy of coating activated carbon with milk proteins to prevent binding of bacterial cells from foods for PCR detection.

    Science.gov (United States)

    Opet, Nathan J; Levin, Robert E

    2013-08-01

    Foods contaminated with pathogens are common sources of illness. Currently, the most common and sensitive rapid detection method involves the PCR. However, food matrices are complex and contain inhibitors that limit the sensitivity of the PCR. The use of coated activated carbon can effectively facilitate the removal of PCR inhibitors without binding targeted bacterial cells from food samples. With the use of activated carbon coated with milk proteins, a cell recovery at pH 7.0 of 95.7%±2.0% was obtained, compared to control uncoated activated carbon, which yielded a cell recovery of only 1.1%±0.8%. In addition, the milk protein coated activated carbon was able to absorb similar amounts of soluble compounds as uncoated activated carbon, with the exception of bovine hemoglobin. This suggests that the use of milk proteins to coat activated carbon may therefore serve as a suitable replacement for bentonite in the coating of activated carbon, which has previously been used for the removal of PCR inhibitors from food.

  4. Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems?

    Science.gov (United States)

    Porro, Danilo; Gasser, Brigitte; Fossati, Tiziana; Maurer, Michael; Branduardi, Paola; Sauer, Michael; Mattanovich, Diethard

    2011-02-01

    Recombinant DNA (rDNA) technologies allow the production of a wide range of peptides, proteins and metabolites from naturally non-producing cells. Since human insulin was the first heterologous compound produced in a laboratory in 1977, rDNA technology has become one of the most important technologies developed in the 20th century. Recombinant protein and metabolites production is a multi-billion dollar market. The development of a new product begins with the choice of the cell factory. The final application of the compound dictates the main criteria that should be taken into consideration: (1) quality, (2) quantity, (3) yield and (4) space time yield of the desired product. Quantity and quality are the most predominant requirements that must be considered for the commercial production of a protein. Quantity and yield are the requirements for the production of a metabolite. Finally, space time yield is crucial for any production process. It therefore becomes clear why the perfect host does not exist yet, and why-despite important advances in rDNA applications in higher eukaryotic cells-microbial biodiversity continues to represent a potential source of attractive cell factories. In this review, we compare the advantages and limitations of the principal yeast and bacterial workhorse systems. PMID:21125266

  5. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm

    Science.gov (United States)

    El Khatib, Mariam; Martins, Alexandre; Bourgeois, Dominique; Colletier, Jacques-Philippe; Adam, Virgile

    2016-01-01

    Phototransformable fluorescent proteins are central to several nanoscopy approaches. As yet however, there is no available variant allowing super-resolution imaging in cell compartments that maintain oxidative conditions. Here, we report the rational design of two reversibly switchable fluorescent proteins able to fold and photoswitch in the bacterial periplasm, rsFolder and rsFolder2. rsFolder was designed by hybridisation of Superfolder-GFP with rsEGFP2, and inherited the fast folding properties of the former together with the rapid switching of the latter, but at the cost of a reduced switching contrast. Structural characterisation of the switching mechanisms of rsFolder and rsEGFP2 revealed different scenarios for chromophore cis-trans isomerisation and allowed designing rsFolder2, a variant of rsFolder that exhibits improved switching contrast and is amenable to RESOLFT nanoscopy. The rsFolders can be efficiently expressed in the E. coli periplasm, opening the door to the nanoscale investigation of proteins localised in hitherto non-observable cellular compartments. PMID:26732634

  6. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  7. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    Science.gov (United States)

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system. PMID:27045683

  8. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    Science.gov (United States)

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.

  9. Protecting the herd: the remarkable effectiveness of the bacterial meningitis polysaccharide-protein conjugate vaccines in altering transmission dynamics.

    Science.gov (United States)

    Stephens, David S

    2011-01-01

    Interrupting human-to-human transmission of the agents (Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae) of bacterial meningitis by new capsular polysaccharide-protein conjugate vaccines (PPCVs) has proven to be a remarkable (and unanticipated) contributor to vaccine effectiveness. Herd immunity accounts for ∼50% of the protection by meningococcal serogroup C PPCVs, pneumococcal PPCV7, and H. influenzae b PPCVs. Nasopharyngeal carriage can be reduced ≥75% for vaccine serotypes; the decrease in carriage is correlated with disease reduction in unvaccinated individuals, and the impact of herd immunity lasts for years. Based on these data, models for using herd immunity in vaccine-based prevention strategies are underway for control of meningitis in sub-Saharan Africa. Although the immunologic basis of herd immunity and impact on microbial biology need more study, protecting the unvaccinated by altering pathogen transmission dynamics is a powerful effect of PPCVs and increasingly important in vaccine introduction, implementation, and evaluation strategies.

  10. Activation of Neutrophils via IP3 Pathway Following Exposure to Demodex-Associated Bacterial Proteins.

    Science.gov (United States)

    McMahon, Fred; Banville, Nessa; Bergin, David A; Smedman, Christian; Paulie, Staffan; Reeves, Emer; Kavanagh, Kevin

    2016-02-01

    Rosacea is a chronic inflammatory condition that predominantly affects the skin of the face. Sera from rosacea patients display elevated reactivity to proteins from a bacterium (Bacillus oleronius) originally isolated from a Demodex mite from a rosacea patient suggesting a possible role for bacteria in the induction and persistence of this condition. This work investigated the ability of B. oleronius proteins to activate neutrophils and demonstrated activation via the IP3 pathway. Activated neutrophils displayed increased levels of IP1 production, F-actin formation, chemotaxis, and production of the pro-inflammatory cytokines IL-1β and IL-6 following stimulation by pure and crude B. oleronius protein preparations (2 μg/ml), respectively. In addition, neutrophils exposed to pure and crude B. oleronius proteins (2 μg/ml) demonstrated increased release of internally stored calcium (Ca(2+)), a hallmark of the IP3 pathway of neutrophil activation. Neutrophils play a significant role in the inflammation associated with rosacea, and this work demonstrates how B. oleronius proteins can induce neutrophil recruitment and activation. PMID:26433579

  11. BacHbpred: Support Vector Machine Methods for the Prediction of Bacterial Hemoglobin-Like Proteins.

    Science.gov (United States)

    Selvaraj, MuthuKrishnan; Puri, Munish; Dikshit, Kanak L; Lefevre, Christophe

    2016-01-01

    The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL) proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM) models were developed for predicting HbL proteins based upon amino acid composition (AC), dipeptide composition (DC), hybrid method (AC + DC), and position specific scoring matrix (PSSM). In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM) profiles. The average accuracy, standard deviation (SD), false positive rate (FPR), confusion matrix, and receiver operating characteristic (ROC) were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction. PMID:27034664

  12. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase

    Science.gov (United States)

    Bowman, William C.; Kranz, Robert G.

    1998-01-01

    A commonly accepted view of gene regulation in bacteria that has emerged over the last decade is that promoters are transcriptionally activated by one of two general mechanisms. The major type involves activator proteins that bind to DNA adjacent to where the RNA polymerase (RNAP) holoenzyme binds, usually assisting in recruitment of the RNAP to the promoter. This holoenzyme uses the housekeeping ς70 or a related factor, which directs the core RNAP to the promoter and assists in melting the DNA near the RNA start site. A second type of mechanism involves the alternative sigma factor (called ς54 or ςN) that directs RNAP to highly conserved promoters. In these cases, an activator protein with an ATPase function oligomerizes at tandem sites far upstream from the promoter. The nitrogen regulatory protein (NtrC) from enteric bacteria has been the model for this family of activators. Activation of the RNAP/ς54 holoenzyme to form the open complex is mediated by the activator, which is tethered upstream. Hence, this class of protein is sometimes called the enhancer binding protein family or the NtrC class. We describe here a third system that has properties of each of these two types. The NtrC enhancer binding protein from the photosynthetic bacterium, Rhodobacter capsulatus, is shown in vitro to activate the housekeeping RNAP/ς70 holoenzyme. Transcriptional activation by this NtrC requires ATP binding but not hydrolysis. Oligomerization at distant tandem binding sites on a supercoiled template is also necessary. Mechanistic and evolutionary questions of these systems are discussed. PMID:9637689

  13. Condensation and localization of the partitioning protein ParB on the bacterial chromosome

    OpenAIRE

    Broedersz, Chase P.; Wang, Xindan; Meir, Yigal; Loparo, Joseph J.; Rudner, David Z.; Wingreen, Ned S.

    2014-01-01

    The ParABS system is responsible for chromosome and plasmid segregation in many bacteria. A large, coherent ParB–DNA complex forms the partitioning module at the heart of this segregation machinery. Here we provide a simple theoretical model for interacting proteins on DNA to elucidate the structure of the ParB–DNA complex. We show that that both 3D bridging and 1D spreading interactions between DNA-bound ParB proteins are required to ensure the formation of a coherent protein–DNA complex. Th...

  14. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    OpenAIRE

    Luthey-Schulten Zaida; Roberts Elijah; Chen Ke

    2009-01-01

    Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene tr...

  15. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    Science.gov (United States)

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils. PMID:27109773

  16. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains.

    Science.gov (United States)

    Al Akeel, Raid; Al-Sheikh, Yazeed; Mateen, Ayesha; Syed, Rabbani; Janardhan, K; Gupta, V C

    2014-04-01

    A huge group of natural antimicrobial compounds are active against a large spectrum of bacterial strains causing infectious threat. The present study was conducted to investigate the crude extracts of antimicrobial protein and peptide efficacy from six medicinal plant seeds. Extraction was carried out in Sodium phosphate citrate buffer, and Sodium acetate buffer using different pH. Antimicrobial activities of these plants were determined by the microbiological technique using Agar well diffusion Assay. Extremely strong activity was observed in the seed extracts of Allium ascolinicum extracted in sodium phosphate citrate buffer at pH (5.8) against Proteus vulgaris, Escherichia coli and Staphylococcus aureus with zone of inhibition 17 mm, 17 mm and 15 mm and Rumex vesicarius at pH (7.6), Ammi majus at pH (6.8), Cichorium intybus at pH (7.4) and Cucumis sativus at pH (7.8) also showed better sensitivity against the bacterial strains with zone of inhibition ranges 16-10 mm and some of the strains were found to be resistant. Antibacterial activity pattern of different plant extracts prepared in sodium acetate buffer pH (6.5), among all the plant seed extracts used Foeniculum vulgare had shown good inhibition in all the bacterial strains used, with zone of inhibition ranges 11-12.5 mm, The extracts of C. intybus and C. sativus were found to be effective with zone of inhibition 11-6 mm and some of the strains were found to be resistant. Most of the strains found to have shown better sensitivity compared with the standard antibiotic Chloramphenicol (25 mcg). Our results showed that the plants used for our study are the richest source for antimicrobial proteins and peptides and they may be used for industrial extraction and isolation of antimicrobial compounds which may find a place in medicine industry as constituents of antibiotics. PMID:24600307

  17. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús;

    2011-01-01

    bacteria encoding the largest number of eukaryotic type kinases, the biological role of protein phosphorylation in this bacterium has not been extensively studied before. In this issue, the variations of the phosphoproteome of S. coelicolor were characterized. Most distinct Ser/Thr/Tyr phosphorylation...

  18. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  19. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori

    NARCIS (Netherlands)

    Michielse, C.B.; Ram, A.F.J.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den

    2004-01-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins

  20. The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Larsen, L.C.; Frøkiær, Hanne

    2003-01-01

    -culture homogenate induced immunoglobulin A in saliva but there was no systemic response. The antibodies from BP-fed mice cross-reacted with BP-culture homogenate revealing the presence of the same antigenic components in the two products despite the different oral immunogenicity. Thus, ingestion of BP induces...... a persistent mucosal and systemic immune response of which the systemic response can be avoided by ingesting a BP preparation free of whole cells. This indicates the importance of the non-particulate constitution of single-cell protein products intended for human or animal consumption....

  1. The protein's role in triplet energy transfer in bacterial reaction centers.

    Energy Technology Data Exchange (ETDEWEB)

    Laible, P. D.

    1998-08-14

    When photosynthetic organisms are subjected to high-light conditions in nature, electron transfer becomes blocked as the rate of conversion of light into charge-separated states in the reaction center (RC) exceeds the capacity of the soluble carriers involved in cyclic electron transfer. In that event, a well-characterized T{sub 0}-polarized triplet state {sup T}P, is formed on the primary donor, P, from the P{sup +}H{sub A}{sup {minus}} state (reviewed in [1]). In an aerobic or semi-aerobic environment, the major role of the carotenoid (C), also bound by the RC, is to quench {sup T}P prior to its sensitization of the {sup 1}{Delta}{sub g} singlet state of oxygen--a potentially damaging biological oxidant. The carotenoid performs this function efficiently in most bacterial RCs by rapidly accepting the triplet state from P and dissipating this excited-state energy into heat through internal conversion. The lowest-lying triplet states of P and the carotenoid are sufficiently different that {sup T}P can promote oxygen to its excited singlet state whereas {sup T}C can quench the {sup T}P state (reviewed in [2]).

  2. A Gram-Negative Bacterial Secreted Protein Types Prediction Method Based on PSI-BLAST Profile

    Science.gov (United States)

    2016-01-01

    Prediction of secreted protein types based solely on sequence data remains to be a challenging problem. In this study, we extract the long-range correlation information and linear correlation information from position-specific score matrix (PSSM). A total of 6800 features are extracted at 17 different gaps; then, 309 features are selected by a filter feature selection method based on the training set. To verify the performance of our method, jackknife and independent dataset tests are performed on the test set and the reported overall accuracies are 93.60% and 100%, respectively. Comparison of our results with the existing method shows that our method provides the favorable performance for secreted protein type prediction.

  3. Use of correspondence discriminant analysis to predict the subcellular location of bacterial proteins.

    Science.gov (United States)

    Perrière, Guy; Thioulouse, Jean

    2003-02-01

    Correspondence discriminant analysis (CDA) is a multivariate statistical method derived from discriminant analysis which can be used on contingency tables. We have used CDA to separate Gram negative bacteria proteins according to their subcellular location. The high resolution of the discrimination obtained makes this method a good tool to predict subcellular location when this information is not known. The main advantage of this technique is its simplicity. Indeed, by computing two linear formulae on amino acid composition, it is possible to classify a protein into one of the three classes of subcellular location we have defined. The CDA itself can be computed with the ADE-4 software package that can be downloaded, as well as the data set used in this study, from the Pôle Bio-Informatique Lyonnais (PBIL) server at http://pbil.univ-lyon1.fr.

  4. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    OpenAIRE

    Jutta Messing; Michael Niehues; Anna Shevtsova; Thomas Borén; Andreas Hensel

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with beta-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ...

  5. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase

    OpenAIRE

    Bowman, William C.; Kranz, Robert G.

    1998-01-01

    A commonly accepted view of gene regulation in bacteria that has emerged over the last decade is that promoters are transcriptionally activated by one of two general mechanisms. The major type involves activator proteins that bind to DNA adjacent to where the RNA polymerase (RNAP) holoenzyme binds, usually assisting in recruitment of the RNAP to the promoter. This holoenzyme uses the housekeeping ς70 or a related factor, which directs the core RNAP to the promoter and assists in melting the D...

  6. Development of novel protein-Ag nanocomposite for drug delivery and inactivation of bacterial applications.

    Science.gov (United States)

    Vimala, Kanikireddy; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Kanny, Krishnan

    2014-02-01

    The potential applications, in the biomedical fields, of curcumin loaded silver nanocomposite were studied by using bovine serum albumin (protein) and acrylamide. The design and development of silver nanoparticles with small size and adequate stability are very important, in addition to their applicability, particularly in bio-medicine. In this study, silver nanoparticles were prepared by chemical reduction method, employing sodium borohydride as the reducing agent for silver nanoparticles. The properties of the protein hydrogels formed were characterized via Fourier transform infrared spectroscopy and X-ray diffraction analyses. The size and its distribution, and formation of metal nanoparticles were confirmed by transmission electron microscopy indicating the diameter of the silver nanoparticles in the range of 3-8 nm. The thermal study of curcumin-silver nanocomposite hydrogels was determined by thermo-gravimetric analysis. In order to increase the antibacterial activity of theses inorganic nanomaterials, natural biological curcumin was incorporated into the protein hydrogel. The main emphasis in this investigation is to increase the antibacterial activity of the hydrogels by loading curcumin, for advanced medical application and as a model drug.

  7. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    International Nuclear Information System (INIS)

    Pulse-chase experiments with [3H]tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a 3H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi [3H]acylprotein and [3H]palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence

  8. Complex Role of the Mitochondrial Targeting Signal in the Function of Steroidogenic Acute Regulatory Protein Revealed by Bacterial Artificial Chromosome Transgenesis in Vivo

    OpenAIRE

    Sasaki, Goro; Ishii, Tomohiro; Jeyasuria, Pancharatnam; Jo, Youngah; Bahat, Assaf; Orly, Joseph; Hasegawa, Tomonobu; Parker, Keith L.

    2008-01-01

    The steroidogenic acute regulatory protein (StAR) stimulates the regulated production of steroid hormones in the adrenal cortex and gonads by facilitating the delivery of cholesterol to the inner mitochondrial membrane. To explore key aspects of StAR function within bona fide steroidogenic cells, we used a transgenic mouse model to explore the function of StAR proteins in vivo. We first validated this transgenic bacterial artificial chromosome reconstitution system by targeting enhanced green...

  9. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins.

    Science.gov (United States)

    Newman, Ruchi M; Salunkhe, Prabhakar; Godzik, Adam; Reed, John C

    2006-01-01

    Many important bacterial virulence factors act as mimics of mammalian proteins to subvert normal host cell processes. To identify bacterial protein mimics of components of the innate immune signaling pathway, we searched the bacterial genome database for proteins with homology to the Toll/interleukin-1 receptor (TIR) domain of the mammalian Toll-like receptors (TLRs) and their adaptor proteins. A previously uncharacterized gene, which we have named tlpA (for TIR-like protein A), was identified in the Salmonella enterica serovar Enteritidis genome that is predicted to encode a protein resembling mammalian TIR domains, We show that overexpression of TlpA in mammalian cells suppresses the ability of mammalian TIR-containing proteins TLR4, IL-1 receptor, and MyD88 to induce the transactivation and DNA-binding activities of NF-kappaB, a downstream target of the TIR signaling pathway. In addition, TlpA mimics the previously characterized Salmonella virulence factor SipB in its ability to induce activation of caspase-1 in a mammalian cell transfection model. Disruption of the chromosomal tlpA gene rendered a virulent serovar Enteritidis strain defective in intracellular survival and IL-1beta secretion in a cell culture infection model using human THP1 macrophages. Bacteria with disrupted tlpA also displayed reduced lethality in mice, further confirming an important role for this factor in pathogenesis. Taken together, our findings demonstrate that the bacterial TIR-like protein TlpA is a novel prokaryotic modulator of NF-kappaB activity and IL-1beta secretion that contributes to serovar Enteritidis virulence.

  10. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  11. Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.

    Directory of Open Access Journals (Sweden)

    Abraham Lin

    Full Text Available Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage, these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.

  12. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  13. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  14. Immunogenicity of bacterial-expressed recombinant Plasmodium knowlesi merozoite surface protein-142 (MSP-142)

    OpenAIRE

    Cheong, Fei Wen; Fong, Mun Yik; Lau, Yee Ling; Mahmud, Rohela

    2013-01-01

    Background Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential candidate for malaria vaccine. However, limited studies have focused on P. knowlesi MSP-142. Methods A ~42 kDa recombinant P. knowlesi MSP-142 (pkMSP-142) was expressed using an Escherichia coli system. The purified pkMSP-142 was evaluated with malaria and non-malaria human patient sera (n = 189) using Western blots and ELISA. The immunog...

  15. A Bacterial Biosensor for Oxidative Stress Using the Constitutively Expressed Redox-Sensitive Protein roGFP2

    Directory of Open Access Journals (Sweden)

    Carlos R. Arias-Barreiro

    2010-06-01

    Full Text Available A highly specific, high throughput-amenable bacterial biosensor for chemically induced cellular oxidation was developed using constitutively expressed redox-sensitive green fluorescent protein roGFP2 in E. coli (E. coli-roGFP2. Disulfide formation between two key cysteine residues of roGFP2 was assessed using a double-wavelength ratiometric approach. This study demonstrates that only a few minutes were required to detect oxidation using E. coli-roGFP2, in contrast to conventional bacterial oxidative stress sensors. Cellular oxidation induced by hydrogen peroxide, menadione, sodium selenite, zinc pyrithione, triphenyltin and naphthalene became detectable after 10 seconds and reached the maxima between 80 to 210 seconds, contrary to Cd2+, Cu2+, Pb2+, Zn2+ and sodium arsenite, which induced the oxidation maximum immediately. The lowest observable effect concentrations (in ppm were determined as 1.0 x 10−7 (arsenite, 1.0 x 10−4 (naphthalene, 1.0 x 10−4 (Cu2+, 3.8 x 10−4 (H2O2, 1.0 x 10−3 (Cd2+, 1.0 x 10−3 (Zn2+, 1.0 x 10−2 (menadione, 1.0 (triphenyltin, 1.56 (zinc pyrithione, 3.1 (selenite and 6.3 (Pb2+, respectively. Heavy metal-induced oxidation showed unclear response patterns, whereas concentration-dependent sigmoid curves were observed for other compounds. In vivo GSH content and in vitro roGFP2 oxidation assays together with E. coli-roGFP2 results suggest that roGFP2 is sensitive to redox potential change and thiol modification induced by environmental stressors. Based on redox-sensitive technology, E. coli-roGFP2 provides a fast comprehensive detection system for toxicants that induce cellular oxidation.

  16. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  17. TatE as a Regular Constituent of Bacterial Twin-arginine Protein Translocases.

    Science.gov (United States)

    Eimer, Ekaterina; Fröbel, Julia; Blümmel, Anne-Sophie; Müller, Matthias

    2015-12-01

    Twin-arginine translocation (Tat) systems mediate the transmembrane translocation of completely folded proteins that possess a conserved twin-arginine (RR) motif in their signal sequences. Many Tat systems consist of three essential membrane components named TatA, TatB, and TatC. It is not understood why some bacteria, in addition, constitutively express a functional paralog of TatA called TatE. Here we show, in live Escherichia coli cells, that, upon expression of a Tat substrate protein, fluorescently labeled TatE-GFP relocates from a rather uniform distribution in the plasma membrane into a number of discrete clusters. Clustering strictly required an intact RR signal peptide and the presence of the TatABC subunits, suggesting that TatE-GFP associates with functional Tat translocases. In support of this notion, site-specific photo cross-linking revealed interactions of TatE with TatA, TatB, and TatC. The same approach also disclosed a pronounced tendency of TatE and TatA to hetero-oligomerize. Under in vitro conditions, we found that TatE replaces TatA inefficiently. Our collective results are consistent with TatE being a regular constituent of the Tat translocase in E. coli.

  18. PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System

    Science.gov (United States)

    Veith, Paul D.; Butler, Catherine A.; Nor Muhammad, Nor A.; Chen, Yu-Yen; Slakeski, Nada; Peng, Benjamin; Zhang, Lianyi; Dashper, Stuart G.; Cross, Keith J.; Cleal, Steven M.; Moore, Caroline; Reynolds, Eric C.

    2016-01-01

    Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS. PMID:27711252

  19. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    heterologous overexpression of almost all OMPs should be feasible in E. coli and other Gram-negative bacterial model organisms. This is relevant especially for biotechnology applications, where recombinant OMPs are used e.g. for the development of vaccines. For the species in which the motif is significantly different, we identify the residues mainly responsible for this difference that can now be changed in heterologous expression experiments to yield functional proteins.

  20. Structural basis of response regulator inhibition by a bacterial anti-activator protein.

    Directory of Open Access Journals (Sweden)

    Melinda D Baker

    2011-12-01

    Full Text Available The complex interplay between the response regulator ComA, the anti-activator RapF, and the signaling peptide PhrF controls competence development in Bacillus subtilis. More specifically, ComA drives the expression of genetic competence genes, while RapF inhibits the interaction of ComA with its target promoters. The signaling peptide PhrF accumulates at high cell density and upregulates genetic competence by antagonizing the interaction of RapF and ComA. How RapF functions mechanistically to inhibit ComA activity and how PhrF in turn antagonizes the RapF-ComA interaction were unknown. Here we present the X-ray crystal structure of RapF in complex with the ComA DNA binding domain. Along with biochemical and genetic studies, the X-ray crystal structure reveals how RapF mechanistically regulates ComA function. Interestingly, we found that a RapF surface mimics DNA to block ComA binding to its target promoters. Furthermore, RapF is a monomer either alone or in complex with PhrF, and it undergoes a conformational change upon binding to PhrF, which likely causes the dissociation of ComA from the RapF-ComA complex. Finally, we compare the structure of RapF complexed with the ComA DNA binding domain and the structure of RapH complexed with Spo0F. This comparison reveals that RapF and RapH have strikingly similar overall structures, and that they have evolved different, non-overlapping surfaces to interact with diverse cellular targets. To our knowledge, the data presented here reveal the first atomic level insight into the inhibition of response regulator DNA binding by an anti-activator. Compounds that affect the interaction of Rap and Rap-like proteins with their target domains could serve to regulate medically and commercially important phenotypes in numerous Bacillus species, such as sporulation in B. anthracis and sporulation and the production of Cry protein endotoxin in B. thuringiensis.

  1. Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens.

    Science.gov (United States)

    Nagaraj, Satish; Senthil-Kumar, Muthappa; Ramu, Vemanna S; Wang, Keri; Mysore, Kirankumar S

    2015-01-01

    Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens. PMID:26779226

  2. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Sun

    2016-08-01

    Full Text Available Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii displayed no apparent flagella and motility, (iii was defective in the attachment to host cells and unable to form self-aggregation, (iv displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  3. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity.

    Science.gov (United States)

    Sun, Yuan-Yuan; Chi, Heng; Sun, Li

    2016-01-01

    Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA) as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i) exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii) displayed no apparent flagella and motility, (iii) was defective in the attachment to host cells and unable to form self-aggregation, (iv) displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity. PMID:27602029

  4. Phyloproteomic classification of unsequenced organisms by top-down identification of bacterial proteins using capLC-MS/MS on an Orbitrap.

    Science.gov (United States)

    Wynne, Colin; Edwards, Nathan J; Fenselau, Catherine

    2010-10-01

    Currently, most MS-based proteomic studies of bacteria and archea match experimental data to known amino acid sequences from the target organism. Top-down studies use a protein's molecular weight along with data gathered from MS/MS experiments to identify proteins by database matching. For Erwinia herbicola and Enterobacter cloacae, studied here, the necessary protein sequences are not available in protein sequence repositories. We apply top-down protein fragmentation, but match the experimental data with homologous proteins from related organisms with sequenced genomes, demonstrating considerable shared protein sequence between closely related bacteria. Using this homology-based approach, we are not only able to identify representative proteins, but are also able to place the two target bacteria in their correct phylogeny. Furthermore, we show that the unexpected mass delta between the experimental precursor and matched protein sequence can often be localized and characterized using accurate-mass precursor and fragment ion measurements. Finally, we demonstrate that proteins identified by top-down workflows provide strong experimental evidence for correct, missing, and misannotated bacterial protein sequences, not only in the analyzed organism, but also for homologous proteins in closely related species. PMID:20845332

  5. Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin.

    Science.gov (United States)

    Tishchenko, S V; Vassilieva, J M; Platonova, O B; Serganov, A A; Fomenkova, N P; Mudrik, E S; Piendl, W; Ehresmann, C; Ehresmann, B; Garber, M B

    2001-09-01

    The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.

  6. Serum level of C-reactive protein is not a parameter to determine the difference between viral and atypical bacterial infections.

    Science.gov (United States)

    Durán, Anyelo; González, Andrea; Delgado, Lineth; Mosquera, Jesús; Valero, Nereida

    2016-02-01

    C-reactive protein (CRP) is an acute-phase reactant that increases in the circulation in response to a variety of inflammatory stimuli. Elevated levels in serum during several infectious diseases have been reported. In this study, a highly sensitive CRP enzyme immunoassay was used to evaluate serum CRP values in patients with viral and atypical bacterial infections. Patients (n = 139) with different viral or atypical bacterial infections (systemic or respiratory) and healthy controls (n = 40) were tested for circulating CRP values. High levels of IgM antibodies against several viruses: Dengue virus (n = 36), Cytomegalovirus (n = 9), Epstein Barr virus (n = 17), Parvovirus B19 (n = 26), Herpes simplex 1 and 2 virus (n = 3) and Influenza A and B (n = 8) and against atypical bacteria: Legionella pneumophila (n = 15), Mycoplasma pneumoniae (n = 21) and Coxiella burnetii (n = 4) were found. High values of CRP in infected patients compared with controls (P < 0.001) were found; however, no significant differences between viral and atypical bacterial infections were found. Low levels of CRP in respiratory and Coxiella burnetii infections compared with exanthematic viral and other atypical bacterial infections were found. This study suggests that CRP values are useful to define viral and atypical bacterial infections compared with normal values, but, it is not useful to define type of infection. PMID:26241406

  7. Atomic Force Microscopy Characterization of Protein Fibrils Formed by the Amyloidogenic Region of the Bacterial Protein MinE on Mica and a Supported Lipid Bilayer.

    Directory of Open Access Journals (Sweden)

    Ya-Ling Chiang

    Full Text Available Amyloid fibrils play a crucial role in many human diseases and are found to function in a range of physiological processes from bacteria to human. They have also been gaining importance in nanotechnology applications. Understanding the mechanisms behind amyloid formation can help develop strategies towards the prevention of fibrillation processes or create new technological applications. It is thus essential to observe the structures of amyloids and their self-assembly processes at the nanometer-scale resolution under physiological conditions. In this work, we used highly force-sensitive frequency-modulation atomic force microscopy (FM-AFM to characterize the fibril structures formed by the N-terminal domain of a bacterial division protein MinE in solution. The approach enables us to investigate the fibril morphology and protofibril organization over time progression and in response to changes in ionic strength, molecular crowding, and upon association with different substrate surfaces. In addition to comparison of the fibril structure and behavior of MinE1-31 under varying conditions, the study also broadens our understanding of the versatile behavior of amyloid-substrate surface interactions.

  8. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    Science.gov (United States)

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  9. On the lipid-bacterial protein interaction studied by quartz crystal microbalance with dissipation, transmission electron microscopy and atomic force microscopy

    CERN Document Server

    Delcea, Mihaela; Pum, Dietmar; Sleytr, Uwe Bernd; Toca-Herrera, Jose Luis

    2009-01-01

    The interaction between the bacterial S-protein SbpA on different types of lipid membranes has been studied using atomic force microscopy, transmission electron microscopy, and quartz crystal microbalance with dissipation. On one hand, It has been found that the bacterial forms two dimensional nanocrystals on zwitterionic DOPC bilayers and negatively charged DMPG vesicles adsorbed on mica, on zwitterionic DPPC and charged DPPC/DMPG (1:1) monolayers adsorbed on carbon grids. On the other hand, SbpA protein adsorption took place on zwitterionic DOPC bilayers and DOPC/DOPS (4:1) bilayers, previously adsorbed on silicon supports. SbpA adsorption also took place on DPPC/DOPS (1:1) monolayers adsorbed on carbon grids. Finally, neither SbpA adsorption, nor recrystallization was observed on zwitterionic DMPC vesicles (previously adsorbed on polyelectrolyte multilayers), and on DPPC vesicles supported on silicon.

  10. Molecular cloning of the crr gene and evidence that it is the structural gene for IIIGlc, a phosphocarrier protein of the bacterial phosphotransferase system.

    OpenAIRE

    Meadow, N.D.; Saffen, D W; Dottin, R P; Roseman, S.

    1982-01-01

    Sugar substrates of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) normally prevent bacterial cells from utilizing sugars that are not substrates of this system (diauxic growth, "the glucose effect"). We have previously shown that this type of PTS-mediated repression can be completely reversed by a single mutation, designated crr. Two lines of evidence are presented in this report showing that crr is the structural gene for IIIGlc, one of the proteins of the PTS. First, homog...

  11. Growh performance, nitrogen balance and urinary purine derivatives in growing-furring mink (Mustela vison) fed bacterial protein produced from natural gas

    DEFF Research Database (Denmark)

    Ahlstrøm, Ø.; Tauson, Anne-Helene; Hellwing, Anne Louise Frydendahl;

    2006-01-01

    A bacterial protein meal (BPM), containing 70% crude protein and produced on natural gas, was evaluated versus fish meal as protein source for mink in the growing-furring period (June 29-November 26). BPM, rich in nucleic acids, accounted for 0 (control), 20 and 40% of dietary crude protein......, except for males on the 8% BPM diet. Balance experiments carried out with 18 and 28 weeks old males, revealed similar digestibility of main nutrients except for fat that were reduced with BPM inclusion. N-retentions were similar for the dietary groups. Daily excretion of urine was lower with the 8% BPM...... diet than with the other diets. Excretion of urinary purine derivativ es (allantoin, xanthine), decreased or was not consistently affected (hypoxanthine, uric acid) by the dietary level of BPM, indicating that nucleic acids from BPM were utilized in vivo. The skin characteristics and fur quality were...

  12. RNA Detection in Live Bacterial Cells Using Fluorescent Protein Complementation Triggered by Interaction of Two RNA Aptamers with Two RNA-Binding Peptides

    Directory of Open Access Journals (Sweden)

    Charles R. Cantor

    2011-03-01

    Full Text Available Many genetic and infectious diseases can be targeted at the RNA level as RNA is more accessible than DNA. We seek to develop new approaches for detection and tracking RNA in live cells, which is necessary for RNA-based diagnostics and therapy. We recently described a method for RNA visualization in live bacterial cells based on fluorescent protein complementation [1-3]. The RNA is tagged with an RNA aptamer that binds an RNA-binding protein with high affinity. This RNA-binding protein is expressed as two split fragments fused to the fragments of a split fluorescent protein. In the presence of RNA the fragments of the RNA-binding protein bind the aptamer and bring together the fragments of the fluorescent protein, which results in its re-assembly and fluorescence development [1-3]. Here we describe a new version of the RNA labeling method where fluorescent protein complementation is triggered by paired interactions of two different closely-positioned RNA aptamers with two different RNA-binding viral peptides. The new method, which has been developed in bacteria as a model system, uses a smaller ribonucleoprotein complementation complex, as compared with the method using split RNA-binding protein, and it can potentially be applied to a broad variety of RNA targets in both prokaryotic and eukaryotic cells. We also describe experiments exploring background fluorescence in these RNA detection systems and conditions that improve the signal-to-background ratio.

  13. In vitro antibacterial activity of venom protein isolated from sea snake Enhydrina schistosa against drug-resistant human pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Palani Damotharan; Anguchamy Veeruraj; Muthuvel Arumugam; Thangavel Balasubramanian

    2015-01-01

    Objective:To evaluate the antibacterial activity of sea snake (Enhydrina schistosa) venom protein against drug-resistant human pathogenic bacterial strains. Methods:The venom was collected by milking process from the live specimens of sea snake are using capillary tubes or glass plates. Venom was purified by ion exchange chromatography and it was tested for in-vitro antibacterial activity against 10 drug-resistant human pathogenic bacterial strains using the standard disc diffusion method. Results:The notable antibacterial activity was observed at 150 µg/mL concentration of purified venom and gave its minimum inhibitory concentrations values exhibited between 200-100 µg/mL against all the tested bacterial strains. The maximum zone of inhibition was observed at 16.4 mm against Salmonella boydii and the minimum activity was observed at 7.5 mm against Pseudomonas aeruginosa. After the sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis there were a clear single band was detected in the gel that corresponding to purified venom protein molecular weight of 44 kDa. Conclusions:These results suggested that the sea snake venom might be a feasible source for searching potential antibiotics agents against human pathogenic diseases.

  14. Three novel C1q domain containing proteins from the disk abalone Haliotis discus discus: Genomic organization and analysis of the transcriptional changes in response to bacterial pathogens.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Godahewa, G I; Park, Hae-Chul; Lee, Jehee

    2016-09-01

    The globular C1q (gC1q) domain containing proteins, commonly referred as C1q domain containing (C1qDC) proteins, are an essential family of proteins involved in various innate immune responses. In this study, three novel C1qDC proteins were identified from the disk abalone (Haliotis discus discus) transcriptome database and designated as AbC1qDC1, AbC1qDC2, and AbC1qDC3. The cDNA sequences of AbC1qDC1, AbC1qDC2, and AbC1qDC3 consisted of 807, 1305, and 660 bp open reading frames (ORFs) encoding 269, 435, and 220 amino acids (aa), respectively. Putative signal peptides and the N-terminal gC1q domain were identified in all three AbC1qDC proteins. An additional predicted motif region, known as the coiled coil region (CCR), was identified next to the signal sequence of AbC1qDC2. The genomic organization of the AbC1qDCs was determined using a bacterial artificial chromosome (BAC) library. It was found that the CDS of AbC1qDC1 was distributed among three exons, while the CDSs of AbC1qDC2 and AbC1qDC3 were distributed between two exons. Sequence analysis indicated that the AbC1qDC proteins shared muscle, and mantle tissues compare to the other tissues analyzed, using reverse transcription, followed by quantitative real-time PCR (qPCR) using SYBR Green, whereas AbC1qDC3 was predominantly expressed in gill tissues, followed by muscles and the hepatopancreas. The temporal expression of AbC1qDC transcripts in gills after bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and lipopolysaccharide stimulation indicated that AbC1qDCs can be strongly induced by both Gram-negative and Gram-positive bacterial species with different response profiles. The results of this study suggest that AbC1qDCs are involved in immune responses against invading bacterial pathogens. PMID:27417231

  15. DnaK as Antibiotic Target: Hot Spot Residues Analysis for Differential Inhibition of the Bacterial Protein in Comparison with the Human HSP70.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available DnaK, the bacterial homolog of human Hsp70, plays an important role in pathogens survival under stress conditions, like antibiotic therapies. This chaperone sequesters protein aggregates accumulated in bacteria during antibiotic treatment reducing the effect of the cure. Although different classes of DnaK inhibitors have been already designed, they present low specificity. DnaK is highly conserved in prokaryotes (identity 50-70%, which encourages the development of a unique inhibitor for many different bacterial strains. We used the DnaK of Acinetobacter baumannii as representative for our analysis, since it is one of the most important opportunistic human pathogens, exhibits a significant drug resistance and it has the ability to survive in hospital environments. The E.coli DnaK was also included in the analysis as reference structure due to its wide diffusion. Unfortunately, bacterial DnaK and human Hsp70 have an elevated sequence similarity. Therefore, we performed a differential analysis of DnaK and Hsp70 residues to identify hot spots in bacterial proteins that are not present in the human homolog, with the aim of characterizing the key pharmacological features necessary to design selective inhibitors for DnaK. Different conformations of DnaK and Hsp70 bound to known inhibitor-peptides for DnaK, and ineffective for Hsp70, have been analysed by molecular dynamics simulations to identify residues displaying stable and selective interactions with these peptides. Results achieved in this work show that there are some residues that can be used to build selective inhibitors for DnaK, which should be ineffective for the human Hsp70.

  16. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    Science.gov (United States)

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  17. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    Directory of Open Access Journals (Sweden)

    Tohru Minamino

    2016-03-01

    Full Text Available The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  18. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  19. Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2009-01-01

    Full Text Available Abstract Background The exported repetitive protein (erp gene encodes a secreted 36-kDa protein with a central domain containing several proline-glycine-leucine-threonine-serine (PGLTS repeats. It has been demonstrated that erp is a virulence-associated factor since the disruption of this gene impairs the growth of Mycobacterium bovis and Mycobacterium tuberculosis in mice. Results In order to elucidate the function of Erp we searched for Erp-binding proteins from M. tuberculosis by using a bacterial two-hybrid system. Our results indicate that Erp interacts specifically with two putative membrane proteins, Rv1417 and Rv2617c. Further analysis revealed that the latter two interact with each other, indicating that Rv1417, Rv2617c and Erp are connected through multiple interactions. While Rv1417 is disseminated in several Actinomycetales genera, orthologues of Rv2617c are exclusively present in members of the M. tuberculosis complex (MTC. The central and amino-terminal regions of Erp were determined to be involved in the interaction with Rv1417 and Rv2627c. Erp forms from Mycobacterium smegmatis and Mycobacterium leprae were not able to interact with Rv2617c in two-hybrid assays. Immunolocalization experiments showed that Rv1417 and Rv2617c are found on the cell membrane and Erp on the bacterial cell wall. Finally, comparative genomics and expression studies revealed a possible role of Rv1417 in riboflavin metabolism. Conclusion We identified interactive partners of Erp, an M. tuberculosis protein involved in virulence, which will be the focus of future investigation to decipher the function of the Erp family protein.

  20. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  1. Crystallization and preliminary X-ray analysis of the FliH–FliI complex responsible for bacterial flagellar type III protein export

    International Nuclear Information System (INIS)

    The FliH–FliI complex from the bacterial flagellar type III export apparatus has been expressed, purified and crystallized, and the crystals have been characterized by X-ray diffraction. The bacterial flagellar proteins are translocated into the central channel of the flagellum by a specific protein-export apparatus for self-assembly at the distal growing end. FliH and FliI are soluble components of the export apparatus and form an FliH2–FliI heterotrimer in the cytoplasm. FliI is an ATPase and the FliH2–FliI complex delivers export substrates from the cytoplasm to an export gate made up of six integral membrane proteins of the export apparatus. In this study, an FliHC fragment consisting of residues 99–235 was co-purified with FliI and the FliHC2–FliI complex was crystallized. Crystals were obtained using the hanging-drop vapour-diffusion technique with PEG 400 as a precipitant. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 133.7, b = 147.3, c = 164.2 Å, and diffracted to 3.0 Å resolution

  2. Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges.

    Science.gov (United States)

    Li, Jun; Zhang, Yuehuan; Liu, Ying; Zhang, Yang; Xiao, Shu; Yu, Ziniu

    2016-01-01

    Heat shock protein (HSP) 40 proteins are a family of molecular chaperones that bind to HSP70 through their J-domain and regulate the function of HSP70 by stimulating its adenosine triphosphatase activity. In the present study, a HSP40 homolog named PmHSP40 was cloned from the hemocytes of pearl oyster Pinctada martensii using EST and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of PmHSP40 was 1251 bp in length, which included a 5' untranslated region (UTR) of 75 bp, an open reading frame (ORF) of a 663 bp, and a 3' UTR of 513 bp. The deduced amino acid sequence of PmHSP40 contains a J domain in the N-terminus. In response to thermal and low salinity stress challenges, the expression of PmHSP40 in hemocytes and the gill were inducible in a time-dependent manner. After bacterial challenge, PmHSP40 transcripts in hemocytes increased and peaked at 6 h post injection. In the gill, PmHSP40 expression increased, similar to expression in hemocytes; however, transcript expression of PmHSP40 was significantly up-regulated at 12 h post injection. Furthermore, the transcripts of PmHSP70 showed similar kinetics as that of PmHSP40, with highest induction during thermal, low salinity stress and bacterial challenges. Altogether these results demonstrate that PmHSP40 is an inducible protein under thermal, low salinity and bacterial challenges, suggesting its involvement in both environmental and biological stresses, and in the innate immunity of the pearl oyster. PMID:26679110

  3. CCAAT/enhancer-binding protein δ facilitates bacterial dissemination during pneumococcal pneumonia in a platelet-activating factor receptor-dependent manner

    OpenAIRE

    Duitman, JanWillem; Schouten, Marcel; Groot, Angelique P.; Borensztajn, Keren S.; Daalhuisen, Joost B.; Florquin, Sandrine; van der Poll, Tom; Spek, C Arnold

    2012-01-01

    CCAAT/enhancer-binding protein δ (C/EBPδ) recently emerged as an essential player in the inflammatory response to bacterial infections. C/EBPδ levels increase rapidly after a proinflammatory stimulus, and increasing C/EBPδ levels seem to be indispensable for amplification of the inflammatory response. Here we aimed to elucidate the role of C/EBPδ in host defense in community-acquired pneumococcal pneumonia. We show that C/EBPδ−/− mice are relatively resistant to pneumococcal pneumonia, as ind...

  4. OppA of Listeria monocytogenes, an Oligopeptide-Binding Protein Required for Bacterial Growth at Low Temperature and Involved in Intracellular Survival

    OpenAIRE

    Borezee, Elise; Pellegrini, Elisabeth; Berche, Patrick

    2000-01-01

    We identified a new oligopeptide permease operon in the pathogen Listeria monocytogenes. This opp operon consists of five genes (oppA, oppB, oppC, oppD, and oppF) and displays the same genetic organization as those of several bacterial species. The first gene of this operon, oppA, encodes a 62-kDa protein sharing 33% identity with OppA of Bacillus subtilis and is expressed predominantly during exponential growth. The function of oppA was studied by constructing an oppA deletion mutant. The ph...

  5. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  6. An Inner Membrane Protein (Imp) of Xanthomonas oryzae pv. oryzicola Functions in Carbon Acquisition, EPS Production, Bacterial Motility and Virulence in Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Gong-you

    2014-01-01

    Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak, a devastating disease in rice-growing regions worldwide. A Tn5-insertion mutant in Xoc_3248, encoding an inner membrane protein (Imp), showed reduced virulence in rice. To explore the potential function of this gene in virulence, a deletion mutant R∆imp was constructed in the wild-type RS105. The R∆imp mutant was signiifcantly impaired for bacterial virulence and growth in planta. The mutation in imp made the pathogen insufifciently utilize glucose, fructose, mannose or pyruvate as a sole carbon source, leading to less extracellular polysaccharide (EPS) production and reduced motility. The deifciencies noted for the mutant were restored to wild-type levels when imp was introduced in trans. Transcription of imp was signiifcantly declined when hrpG and hrpX was mutated and the expression of hrpG and hrpX was also signiifcantly declined when imp was deleted. Cell sublocalization in planta showed Imp membrane-binding feature. These results suggest that Imp is a virulence factor with roles in the catabolism of sugars, EPS production, and bacterial motility.

  7. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    Science.gov (United States)

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  8. Use of in vivo-induced antigen technology (IVIAT for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens

    Directory of Open Access Journals (Sweden)

    Lu Chengping

    2009-09-01

    Full Text Available Abstract Background Streptococcus suis serotype 2 (SS2 is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT, an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection. Results Convalescent-phase sera from pigs infected with SS2 were pooled, adsorbed against in vitro antigens, and used to screen SS2 genomic expression libraries. Upon analysis of the identified proteins, we were able to assign a putative function to 40 of the 48 proteins. These included proteins implicated in cell envelope structure, regulation, molecule synthesis, substance and energy metabolism, transport, translation, and those with unknown functions. The in vivo-induced changes in the expression of 10 of these 40 genes were measured using real-time reverse transcription (RT-PCR, revealing that the expression of 6 of the 10 genes was upregulated in the in vivo condition. The strain distribution of these 10 genes was analyzed by PCR, and they were found in the most virulent SS2 strains. In addition, protein sequence alignments of the newly identified proteins demonstrate that three are putative virulence-associated proteins. Conclusion Collectively, our results suggest that these in vivo-induced or upregulated genes may contribute to SS2 disease development. We hypothesize that the identification of factors specifically induced or upregulated during SS2 infection will aid in our understanding of SS2 pathogenesis and may contribute to the control SS2 outbreaks. In addition, the proteins identified

  9. The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function

    International Nuclear Information System (INIS)

    The crystal structure of the BVU2987 gene product from B. vulgatus (UniProt A6L4L1) reveals that members of the new Pfam family PF11396 (domain of unknown function; DUF2874) are similar to β-lactamase inhibitor protein and YpmB. Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA-OmlA proteins and hence are likely to function as inhibitory proteins

  10. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes

    Directory of Open Access Journals (Sweden)

    Virginia eMercante

    2015-01-01

    Full Text Available Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765 that codes for a protein of unknown function (Y4yS. A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2 complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.

  11. Intramammary Immunization of Pregnant Mice with Staphylococcal Protein A Reduces the Post-Challenge Mammary Gland Bacterial Load but Not Pathology.

    Directory of Open Access Journals (Sweden)

    Jully Gogoi-Tiwari

    Full Text Available Protein A, encoded by the spa gene, is one of the major immune evading MSCRAMM of S. aureus, demonstrated to be prevalent in a significant percentage of clinical bovine mastitis isolates in Australia. Given its' reported significance in biofilm formation and the superior performance of S. aureus biofilm versus planktonic vaccine in the mouse mastitis model, it was of interest to determine the immunogenicity and protective potential of Protein A as a potential vaccine candidate against bovine mastitis using the mouse mastitis model. Pregnant Balb/c mice were immunised with Protein A emulsified in an alum-based adjuvant by subcutaneous (s/c or intramammary (i/mam routes. While humoral immune response of mice post-immunization were determined using indirect ELISA, cell-mediated immune response was assessed by estimation of interferon-gamma (IFN-γ produced by protein A-stimulated splenocyte supernatants. Protective potential of Protein A against experimental mastitis was determined by challenge of immunized versus sham-vaccinated mice by i/mam route, based upon manifestation of clinical symptoms, total bacterial load and histopathological damage to mammary glands. Significantly (p<0.05 higher levels of IgG1 isotype were produced in mice immunized by the s/c route. In contrast, significantly higher levels of the antibody isotype IgG2a were produced in mice immunized by the i/mam route (p<0.05. There was significant reduction (p<0.05 in bacterial loads of the mammary glands of mice immunized by Protein A regardless of the route of immunization, with medium level of clinical symptoms observed up to day 3 post-challenge. However, Protein A vaccine failed to protect immunized mice post-challenge with biofilm producing encapsulated S. aureus via i/mam route, regardless of the route of immunization, as measured by the level of mammary tissue damage. It was concluded that, Protein A in its' native state was apparently not a suitable candidate for inclusion

  12. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    Science.gov (United States)

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. PMID:27104583

  13. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    Science.gov (United States)

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016.

  14. Co-evolution of quaternary organization and novel RNA tertiary interactions revealed in the crystal structure of a bacterial protein-RNA toxin-antitoxin system.

    Science.gov (United States)

    Rao, Feng; Short, Francesca L; Voss, Jarrod E; Blower, Tim R; Orme, Anastasia L; Whittaker, Tom E; Luisi, Ben F; Salmond, George P C

    2015-10-30

    Genes encoding toxin-antitoxin (TA) systems are near ubiquitous in bacterial genomes and they play key roles in important aspects of bacterial physiology, including genomic stability, formation of persister cells under antibiotic stress, and resistance to phage infection. The CptIN locus from Eubacterium rectale is a member of the recently-discovered Type III class of TA systems, defined by a protein toxin suppressed by direct interaction with a structured RNA antitoxin. Here, we present the crystal structure of the CptIN protein-RNA complex to 2.2 Å resolution. The structure reveals a new heterotetrameric quaternary organization for the Type III TA class, and the RNA antitoxin bears a novel structural feature of an extended A-twist motif within the pseudoknot fold. The retention of a conserved ribonuclease active site as well as traits normally associated with TA systems, such as plasmid maintenance, implicates a wider functional role for Type III TA systems. We present evidence for the co-variation of the Type III component pair, highlighting a distinctive evolutionary process in which an enzyme and its substrate co-evolve.

  15. The DUF582 Proteins of Chlamydia trachomatis Bind to Components of the ESCRT Machinery, Which Is Dispensable for Bacterial Growth In vitro

    Science.gov (United States)

    Vromman, François; Perrinet, Stéphanie; Gehre, Lena; Subtil, Agathe

    2016-01-01

    Chlamydiae are Gram negative bacteria that develop exclusively inside eukaryotic host cells, within a membrane-bounded compartment. Members of the family Chlamydiaceae, such as Chlamydia trachomatis, are pathogenic species infecting vertebrates. They have a very reduced genome and exploit the capacities of their host for their own development, mainly through the secretion of proteins tailored to interfere with eukaryotic processes, called effector proteins. All Chlamydiaceae possess genes coding for four to five effectors that share a domain of unknown function (DUF582). Here we show that four of these effectors, which represent the conserved set in all Chlamydiaceae, accumulate in the infectious form of C. trachomatis, and are therefore likely involved in an early step of the developmental cycle. The fifth member of the family, CT621, is specific to C. trachomatis, and is secreted during the growth phase. Using a two-hybrid screen in yeast we identified an interaction between the host protein Hrs and the DUF582, which we confirmed by co-immunoprecipitations in co-transfected mammalian cells. Furthermore, we provide biochemical evidence that a second domain of one of the DUF582 proteins, CT619, binds the host protein Tsg101. Hrs and Tsg101 are both implicated in a well conserved machinery of the eukaryotic cell called the ESCRT machinery, which is involved in several cellular processes requiring membrane constriction. Using RNA interference targeting proteins implicated at different stages of ESCRT-driven processes, or inhibition by expression of a dominant negative mutant of VPS4, we demonstrated that this machinery was dispensable for bacterial entry, multiplication and differentiation into infectious progeny, and for uptake of glycogen into the parasitophorous vacuole. In light of these observations we discuss how the DUF582 proteins might target the ESCRT machinery during infection. PMID:27774439

  16. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein.

    Directory of Open Access Journals (Sweden)

    Laura A Novotny

    Full Text Available Cystic fibrosis (CF is the most common lethal inherited genetic disorder affection Caucasians. Even with medical advances, CF is life-shortening with patients typically surviving only to age 38. Infection of the CF lung by Burkholderia cenocepacia presents exceptional challenges to medical management of these patients as clinically this microbe is resistant to virtually all antibiotics, is highly transmissible and infection of CF patients with this microbe renders them ineligible for lung transplant, often the last lifesaving option. Here we have targeted two abundant components of the B. cenocepacia biofilm for immune intervention: extracellular DNA and DNABII proteins, the latter of which are bacterial nucleic acid binding proteins. Treatment of B. cenocepacia biofilms with antiserum directed at one of these DNABII proteins (integration host factor or IHF resulted in significant disruption of the biofilm. Moreover, when anti-IHF mediated destabilization of a B. cenocepacia biofilm was combined with exposure to traditional antibiotics, B. cenocepacia resident within the biofilm and thereby typically highly resistant to the action of antibiotics, were now rendered susceptible to killing. Pre-incubation of B. cenocepacia with anti-IHF serum prior to exposure to murine CF macrophages, which are normally unable to effectively degrade ingested B. cenocepacia, resulted in a statistically significant increase in killing of phagocytized B. cenocepacia. Collectively, these findings support further development of strategies that target DNABII proteins as a novel approach for treatment of CF patients, particularly those whose lungs are infected with B. cenocepacia.

  17. Ethanol extraction requirement for purification of protein labeled with [3H]leucine in aquatic bacterial production studies

    International Nuclear Information System (INIS)

    The trichloroacetic acid (TCA)-insoluble fraction of water column bacteria labeled with [3H]leucine contained an ethanol-soluble fraction accounting for up to 44% of the label. A component of the ethanol-soluble fraction is [3H]leucine. Labeled-protein purification requires an ethanol wash step. Cold TCA can replace hot TCA for precipitation of labeled proteins

  18. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2

    OpenAIRE

    Roy, Badal C.; Subramaniam, Dharmalingam; Ahmed, Ishfaq; Jala, Venkatakrishna R.; Hester, Christina; Greiner, K. Allen; Haribabu, Bodduluri; Anant, Shrikant; Umar, Shahid

    2014-01-01

    The Enhancer of Zeste Homolog-2 (EZH2) represses gene transcription through histone H3 lysine-27-trimethylation (H3K27me3). Citrobacter rodentium (CR) promotes crypt hyperplasia and tumorigenesis by aberrantly regulating Wnt/β-catenin signaling. We aimed at investigating EZH2’s role in epigenetically regulating Wnt/β-catenin signaling following bacterial infection. NIH:Swiss outbred and Apc Min/+ mice were infected with CR (108cfu); BLT1−/−ApcMin/+ mice, AOM/DSS-treated mice and de-identified...

  19. Studies on the Conformational Features of Neomycin-B and its Molecular Recognition by RNA and Bacterial Defense Proteins

    Science.gov (United States)

    Asensio, Juan Luis; Bastida, Agatha; Jiménez-Barbero, Jesús

    According to NMR and molecular dynamics simulations, the conformational behavior of natural aminoglycosides is characterized by a remarkable flexibility, with different conformations, even non-exo-anomeric ones, in fast exchange. Very probably, this feature allows the adaptation of these ligands to the spatial and electronic requirements of different receptors. The large diversity of structures adopted by aminoglycosides in the binding pocket of the different RNA receptors and the distinct enzymes involved in bacterial resistance are consistent with this view. This conformational diversity can, in certain favorable cases, be exploited in the design of new antibiotic derivatives not susceptible to enzymatic inactivation, by designing tailor-made conformationally locked aminoglycosides.

  20. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  1. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens

    OpenAIRE

    Molina Fernández, Antonio; Segura, Ana; García Olmedo, Francisco

    1993-01-01

    Four homogeneous proteins (Cw18, Cw20, Cw21, Cw22) were isolated from etiolated barley leaves by extraction of the insoluble pellet from a Tris-HCl (pH 7.5) homogenate with 1.5 M LiCl and fractionation by reverse-phase high-performance liquid chromatography. All 4 proteins inhibited growth of the pathogen Clavibacter michiganensis subsp. sepedonicus (EC50S = 1−3 × 10−7 M) and had closely related N-terminal amino acid sequences. The complete amino acid sequences of proteins Cw18 and Cw21 were ...

  2. Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine.

    Science.gov (United States)

    Forer, Nadav; Korman, Maayan; Elharar, Yifat; Vishkautzan, Marina; Gur, Eyal

    2013-12-17

    Proteasome-containing bacteria possess a tagging system that directs proteins to proteasomal degradation by conjugating them to a prokaryotic ubiquitin-like protein (Pup). A single ligating enzyme, PafA, is responsible for Pup conjugation to lysine side chains of protein substrates. As Pup is recognized by the regulatory subunit of the proteasome, Pup functions as a degradation tag. Pup presents overlapping regions for binding of the proteasome and PafA. It was, therefore, unclear whether Pup binding by the proteasome regulatory subunit, Mpa, and by PafA are mutually exclusive events. The work presented here provides evidence for the simultaneous interaction of Pup with both Mpa and PafA. Surprisingly, we found that PafA and Mpa can form a complex both in vitro and in vivo. Our results thus suggest that PafA and the proteasome can function as a modular machine for the tagging and degradation of cytoplasmic proteins. PMID:24228735

  3. Characterization and expression analysis of a peptidoglycan recognition protein gene, SmPGRP2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge.

    Science.gov (United States)

    Zhang, Linan; Gao, Chengbin; Liu, Fengqiao; Song, Lin; Su, Baofeng; Li, Chao

    2016-09-01

    Peptidoglycan recognition receptor proteins (PGRPs), a group of pattern recognition receptors (PRRs), can recognize peptidoglycan (PGN) of the bacteria cell wall and play an important role in host immune defense against pathogen infection. They are highly structurally conserved through evolution, but with different function in innate immunity between invertebrates and vertebrates. In teleost fish, several PGRPs have been characterized recently. They have both amidase activity and bactericidal activity and are involved in indirectly killing bacteria and regulating multiple signaling pathways. However, the knowledge of PGRPs in mucosal immunity of teleost fish is still limited. In this study, we identified a PGRPs gene (SmPGRP2) of turbot and investigated its expression patterns in mucosal tissues after challenge with Gram-positive bacteria Streptococcus iniae and Gram-negative bacteria Vibrio anguillarum. Phylogenetic analysis showed the strongest relationship of turbot PGRP to halibut, which was consistent with their phylogenetic relationships. In addition, SmPGRP2 was ubiquitously expressed in turbot tissues, and constitutive expression levels were higher in classical immune tissues (including liver, spleen, and head-kidney) than mucosal tissues (intestine, gill and skin). After bacterial challenge, the expression of SmPGRP2 was induced and showed a general trend of up-regulation in mucosal tissues, except in intestine following V. anguillarum infection. These different expression patterns varied depending on both pathogen and tissue type, suggesting its distinct roles in the host immune response to bacterial pathogen. PMID:27461422

  4. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

    Science.gov (United States)

    Feinauer, Christoph; Szurmant, Hendrik; Weigt, Martin; Pagnani, Andrea

    2016-01-01

    Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data. PMID:26882169

  5. Inter-Protein Sequence Co-Evolution Predicts Known Physical Interactions in Bacterial Ribosomes and the Trp Operon.

    Directory of Open Access Journals (Sweden)

    Christoph Feinauer

    Full Text Available Interaction between proteins is a fundamental mechanism that underlies virtually all biological processes. Many important interactions are conserved across a large variety of species. The need to maintain interaction leads to a high degree of co-evolution between residues in the interface between partner proteins. The inference of protein-protein interaction networks from the rapidly growing sequence databases is one of the most formidable tasks in systems biology today. We propose here a novel approach based on the Direct-Coupling Analysis of the co-evolution between inter-protein residue pairs. We use ribosomal and trp operon proteins as test cases: For the small resp. large ribosomal subunit our approach predicts protein-interaction partners at a true-positive rate of 70% resp. 90% within the first 10 predictions, with areas of 0.69 resp. 0.81 under the ROC curves for all predictions. In the trp operon, it assigns the two largest interaction scores to the only two interactions experimentally known. On the level of residue interactions we show that for both the small and the large ribosomal subunit our approach predicts interacting residues in the system with a true positive rate of 60% and 85% in the first 20 predictions. We use artificial data to show that the performance of our approach depends crucially on the size of the joint multiple sequence alignments and analyze how many sequences would be necessary for a perfect prediction if the sequences were sampled from the same model that we use for prediction. Given the performance of our approach on the test data we speculate that it can be used to detect new interactions, especially in the light of the rapid growth of available sequence data.

  6. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs.

    Directory of Open Access Journals (Sweden)

    Frances R Wadelin

    Full Text Available Preferentially expressed antigen in melanoma (PRAME has been described as a cancer-testis antigen and is associated with leukaemias and solid tumours. Here we show that PRAME gene transcription in leukaemic cell lines is rapidly induced by exposure of cells to bacterial PAMPs (pathogen associated molecular patterns in combination with type 2 interferon (IFNγ. Treatment of HL60 cells with lipopolysaccharide or peptidoglycan in combination with IFNγ resulted in a rapid and transient induction of PRAME transcription, and increased association of PRAME transcripts with polysomes. Moreover, treatment with PAMPs/IFNγ also modulated the subcellular localisation of PRAME proteins in HL60 and U937 cells, resulting in targeting of cytoplasmic PRAME to the Golgi. Affinity purification studies revealed that PRAME associates with Elongin B and Elongin C, components of Cullin E3 ubiquitin ligase complexes. This occurs via direct interaction of PRAME with Elongin C, and PRAME colocalises with Elongins in the Golgi after PAMP/IFNγ treatment. PRAME was also found to co-immunoprecipitate core histones, consistent with its partial localisation to the nucleus, and was found to bind directly to histone H3 in vitro. Thus, PRAME is upregulated by signalling pathways that are activated in response to infection/inflammation, and its product may have dual functions as a histone-binding protein, and in directing ubiquitylation of target proteins for processing in the Golgi.

  7. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  8. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790

  9. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice.

    Science.gov (United States)

    Taniguchi, Shiduku; Hosokawa-Shinonaga, Yumi; Tamaoki, Daisuke; Yamada, Shoko; Akimitsu, Kazuya; Gomi, Kenji

    2014-02-01

    Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice.

  10. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    Science.gov (United States)

    Habibi, Neda

    2014-05-01

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  11. High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2

    Science.gov (United States)

    Swain, Monalisa; Slomiany, Mark G.; Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-IR). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1–6; 22–31 kDa) that via high affinity binding to the IGFs (KD ~ 300–700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in E. coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP. PMID:20541521

  12. Neisserial Opa Protein-CEACAM Interactions: Competition for Receptors as a Means of Bacterial Invasion and Pathogenesis.

    Science.gov (United States)

    Martin, Jennifer N; Ball, Louise M; Solomon, Tsega L; Dewald, Alison H; Criss, Alison K; Columbus, Linda

    2016-08-01

    Carcino-embryonic antigen-like cellular adhesion molecules (CEACAMs), members of the immunoglobulin superfamily, are responsible for cell-cell interactions and cellular signaling events. Extracellular interactions with CEACAMs have the potential to induce phagocytosis, as is the case with pathogenic Neisseria bacteria. Pathogenic Neisseria species express opacity-associated (Opa) proteins, which interact with a subset of CEACAMs on human cells, and initiate the engulfment of the bacterium. We demonstrate that recombinant Opa proteins reconstituted into liposomes retain the ability to recognize and interact with CEACAMs in vitro but do not maintain receptor specificity compared to that of Opa proteins natively expressed by Neisseria gonorrhoeae. We report that two Opa proteins interact with CEACAMs with nanomolar affinity, and we hypothesize that this high affinity is necessary to compete with the native CEACAM homo- and heterotypic interactions in the host. Understanding the mechanisms of Opa protein-receptor recognition and engulfment enhances our understanding of Neisserial pathogenesis. Additionally, these mechanisms provide insight into how human cells that are typically nonphagocytic can utilize CEACAM receptors to internalize exogenous matter, with implications for the targeted delivery of therapeutics and development of imaging agents. PMID:27442026

  13. Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein

    DEFF Research Database (Denmark)

    Christophersen, C. T.; Petersen, Anne; Licht, Tine Rask;

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic...... cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate......-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse...

  14. Charge recombination kinetics and protein dynamics in wild type and carotenoid-less bacterial reaction centers: studies in trehalose glasses.

    Science.gov (United States)

    Francia, Francesco; Malferrari, Marco; Sacquin-Mora, Sophie; Venturoli, Giovanni

    2009-07-30

    The coupling between electron transfer and protein dynamics has been investigated in reaction centers (RCs) from the wild type (wt) and the carotenoid-less strain R26 of the photosynthetic bacterium Rhodobacter sphaeroides. Recombination kinetics between the primary photoreduced quinone acceptor (QA-) and photoxidized donor (P+) have been analyzed at room temperature in RCs incorporated into glassy trehalose matrices of different water/sugar ratios. As previously found in R26 RCs, also in the wt RC, upon matrix dehydration, P+QA- recombination accelerates and becomes broadly distributed, reflecting the inhibition of protein relaxation from the dark-adapted to the light-adapted conformation and the hindrance of interconversion between conformational substates. While in wet trehalose matrices (down to approximately one water per trehalose molecule) P+QA- recombination kinetics are essentially coincident in wt and R26 RCs, more extensive dehydration leads to two-times faster and more distributed kinetics in the carotenoid-containing RC, indicating a stronger inhibition of the internal protein dynamics in the wt RC. Coarse-grained Brownian dynamics simulations performed on the two RC structures reveal a markedly larger flexibility of the R26 RC, showing that a rigid core of residues, close to the quinone acceptors, is specifically softened in the absence of the carotenoid. These experimental and computational results concur to indicate that removal of the carotenoid molecule has long-range effects on protein dynamics and that the structural/dynamical coupling between the protein and the glassy matrix depends strongly upon the local mechanical properties of the protein interior. The data also suggest that the conformational change stabilizing P+QA- is localized around the QA binding pocket.

  15. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  16. [Purification and cloning of an antifungal protein from the rice diseases controlling bacterial strain Paenibacillus polymyxa WY110].

    Science.gov (United States)

    Yao, Wu-Lan; Wang, Yun-Shan; Han, Ji-Gang; Li, Lu-Bin; Song, Wei

    2004-09-01

    Paenibacillus polymyxa WY110, a plant growth-promoting bacteria strain isolated from rice rhizosphere could suppress the growth of various plant pathogens effectively. With (NH4)2SO4 fractional precipitation, DEAE-Sephadex A-50 chromatography and Sephacryl S-200 chromatography followed by tracks of fraction antagonistic assay and SDS-PAGE, an antifungal protein P2 with in vitro anti-Pyricularia oxyzae activity was isolated and purified. It was showed with antagonistic activity on PDA plates that the growth of Pyricularia oryzae was inhibited by 1.5 microg of P2 protein effectively. N-terminal amino acid residues analysis showed 24 amino acid sequence: H2N-Ala-Asn-Val-Phe-Trp-Glu-Pro-Leu-Ser-Tyr-Tyr-Asn-Pro-Ser-Thr-Trp-Gln-Lys-Ala-Asp-Gly-Tyr-Ser-Asn-. Using this amino acid sequence as a target, the similarity of P2 protein was searched with BlastP program on Internet. It was showed a high homology between the P2 protein and the precursors of beta-1, 3-1, 4-glucanases from Bacillus. The beta-1, 3-1, 4-glucanase activity of P2 protein was identified with the specific substrate lichenan. According to the N-terminal partial sequence of P2 protein and the C-terminal conserved sequence of beta-1, 3-1, 4-glucanase, the primers for both terminals were synthesized. Using the genomic DNA of WY110 as the template, the full-length sequence of the gene encoding P2 was amplified by high fidelity PCR, then cloned into pMD18-T vecter. Sequence analysis showed the 72 nucleotide sequence on 5'-end matched with the known 24 amino acid sequence on N-terminal of P2 protein. The sequence (GenBank Accession Number: AF284449) was 636 bp in length encoding 212 amino acids. Comparing with a beta-1, 3-1, 4-glucanase gene (gluB) from Paenibacillus polymyxa, the sequence homology for nucleotides and deduced amino acids were 84% and 88.7% respectively. The cloning of the gene encoding P2 protein would be a new potential objective gene for plant gene engineering. PMID:15493136

  17. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2004-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells w...

  18. A novel bacterial Water Hypersensitivity-like protein shows in vivo protection against cold and freeze damage.

    Science.gov (United States)

    Anderson, Dominique; Ferreras, Eloy; Trindade, Marla; Cowan, Don

    2015-08-01

    Metagenomic library screening, by functional or sequence analysis, has become an established method for the identification of novel genes and gene products, including genetic elements implicated in microbial stress response and adaptation. We have identified, using a sequence-based approach, a fosmid clone from an Antarctic desert soil metagenome library containing a novel gene which codes for a protein homologous to a Water Hypersensitivity domain (WHy). The WHy domain is typically found as a component of specific LEA (Late Embryogenesis Abundant) proteins, particularly the LEA-14 (LEA-8) variants, which occur widely in plants, nematodes, bacteria and archaea and which are typically induced by exposure to stress conditions. The novel WHy-like protein (165 amino acid, 18.6 kDa) exhibits a largely invariant NPN motif at the N-terminus and has high sequence identity to genes identified in Pseudomonas genomes. Expression of this protein in Escherichia coli significantly protected the recombinant host against cold and freeze stress. PMID:26187747

  19. Identification of polyvalent protective immunogens from outer membrane proteins in Vibrio parahaemolyticus to protect fish against bacterial infection.

    Science.gov (United States)

    Peng, Bo; Ye, Jin-Zhou; Han, Yi; Zeng, Li; Zhang, Jian-Ying; Li, Hui

    2016-07-01

    Vaccination is one of the most effective and economic way to prevent infectious diseases in aquaculture. The development of effective vaccines, however, is still limited, especially for polyvalent vaccines, which are against multiple species. With this regard, identification of polyvalent protective immunogens, serving as polyvalent vaccines, became a key step in vaccine development. In the current study, 17 outer membrane proteins from Vibrio parahaemolyticus were identified as immunogens. Further, four of the 17 proteins including VP2309, VP0887, VPA0548 and VP1019 were characterized as efficiently protective immunogens against V. parahaemolyticus' infection through passive and active immunizations in zebrafish. Importantly, these four proteins showed cross-protective capability against infections by Aeromonas hydrophila or/and Pseudomonas fluorescens, which shared similar epitopes with V. parahaemolyticus in homology of these proteins. Further investigation showed that the expression level of the four protective immunogens elevated in response to fish plasma in a dose-dependent manner. These results indicate that the four protective immunogens are polyvalent vaccine candidates in aquaculture. PMID:27071519

  20. Species-specificity of the BamA component of the bacterial outer membrane protein-assembly machinery.

    Directory of Open Access Journals (Sweden)

    Elena B Volokhina

    Full Text Available The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded β-barrel conformation of the membrane-embedded domain of BamA.

  1. Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins.

    OpenAIRE

    Jacob-Dubuisson, F; Heuser, J.; Dodson, K.; Normark, S; Hultgren, S.

    1993-01-01

    Uropathogenic Escherichia coli produce heteropolymeric surface fibers called P pili, which present an adhesin at their tip that specifically recognizes globoside receptors on the host uroepithelium. The initial attachment step is thought to be essential for pathogenesis. P pili are composite fibers consisting of a thin tip fibrillum joined end to end to a rigid helical rod. Here we show that the ordered assembly of these structures requires the activity of two proteins that are minor componen...

  2. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2

    OpenAIRE

    Molina Fernández, Antonio; García Olmedo, Francisco

    1997-01-01

    Purified lipid transfer protein LTP2 from barley applied on tobacco leaves eliminated symptoms caused by infiltration of Pseudomonas syringae pv. tabaci 153. Growth of the pathogen in leaves of transgenic tobacco plants was retarded when compared with non-transformed controls. The percentage of inoculation points that showed necrotic lesions was greatly reduced in transgenic tobacco 17–38% versus 78%) and the average size of these lesions was 61–81% that of control. The average total lesion a...

  3. Protective effects of a bacterially expressed NIF-KGF fusion protein against bleomycin-induced acute lung injury in mice.

    Science.gov (United States)

    Li, Xinping; Li, Shengli; Zhang, Miaotao; Li, Xiukun; Zhang, Xiaoming; Zhang, Wenlong; Li, Chuanghong

    2010-08-01

    Current evidence suggests that the keratinocyte growth factor (KGF) and the polymorphonuclear leukocyte may play key roles in the development of lung fibrosis. Here we describe the construction, expression, purification, and identification of a novel NIF (neutrophil inhibitory factor)-KGF mutant fusion protein (NKM). The fusion gene was ligated via a flexible octapeptide hinge and expressed as an insoluble protein in Escherichia coli BL21 (DE3). The fusion protein retained the activities of KGF and NIF, as it inhibited both fibroblast proliferation and leukocyte adhesion. Next, the effects of NKM on bleomycin-induced lung fibrosis in mice were examined. The mice were divided into the following four groups: (i) saline group; (ii) bleomycin group (instilled with 5 mg/kg bleomycin intratracheally); (iii) bleomycin plus dexamethasone (Dex) group (Dex was given intraperitoneally (i.p.) at 1 mg/kg/day 2 days prior to bleomycin instillation and daily after bleomycin instillation until the end of the treatment); and (iv) bleomycin plus NKM group (NKM was given i.p. at 2 mg/kg/day using the same protocol as the Dex group). NKM significantly improved the survival rates of mice exposed to bleomycin. The marked morphological changes and increased hydroxyproline levels resulted from the instillation of bleomycin (on Day 17) in the lungs were significantly inhibited by NKM. These results revealed that NKM can attenuate bleomycin-induced lung fibrosis, suggesting that NKM could be used to prevent bleomycin-induced lung damage or other interstitial pulmonary fibrosis.

  4. Structure of a Bacterial Virus DNA-Injection Protein Complex Reveals a Decameric Assembly with a Constricted Molecular Channel.

    Directory of Open Access Journals (Sweden)

    Haiyan Zhao

    Full Text Available The multi-layered cell envelope structure of Gram-negative bacteria represents significant physical and chemical barriers for short-tailed phages to inject phage DNA into the host cytoplasm. Here we show that a DNA-injection protein of bacteriophage Sf6, gp12, forms a 465-kDa, decameric assembly in vitro. The electron microscopic structure of the gp12 assembly shows a ~150-Å, mushroom-like architecture consisting of a crown domain and a tube-like domain, which embraces a 25-Å-wide channel that could precisely accommodate dsDNA. The constricted channel suggests that gp12 mediates rapid, uni-directional injection of phage DNA into host cells by providing a molecular conduit for DNA translocation. The assembly exhibits a 10-fold symmetry, which may be a common feature among DNA-injection proteins of P22-like phages and may suggest a symmetry mismatch with respect to the 6-fold symmetric phage tail. The gp12 monomer is highly flexible in solution, supporting a mechanism for translocation of the protein through the conduit of the phage tail toward the host cell envelope, where it assembles into a DNA-injection device.

  5. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes.

    Science.gov (United States)

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H-ThnA4-ThnA3-ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  6. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes

    Science.gov (United States)

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H–ThnA4–ThnA3–ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H–ThnA4–ThnA3–ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  7. Agrobacterium tumefaciens and A. rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus.

    Science.gov (United States)

    Ream, Walt

    2009-07-01

    Agrobacterium tumefaciens and A. rhizogenes transport single-stranded DNA (ssDNA; T-strands) and virulence proteins into plant cells through a type IV secretion system. DNA transfer initiates when VirD2 nicks border sequences in the tumour-inducing plasmid, attaches to the 5' end, and pilots T-strands into plant cells. Agrobacterium tumefaciens translocates ssDNA-binding protein VirE2 into plant cells where it targets T-strands into the nucleus. Some A. rhizogenes strains lack VirE2 but transfer T-strands efficiently due to the GALLS gene, which complements an A. tumefaciens virE2 mutant. VirE2 and full-length GALLS (GALLS-FL) contain nuclear localization sequences that target these proteins to the plant cell nucleus. VirE2 binds cooperatively to T-strands allowing it to move ssDNA without ATP hydrolysis. Unlike VirE2, GALLS-FL contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. VirE2 may accumulate in the nucleus and pull T-strands into the nucleus using the force generated by cooperative DNA binding. GALLS-FL accumulates inside the nucleus where its predicted ATP-dependent strand transferase may pull T-strands into the nucleus. These different mechanisms for nuclear import of T-strands may affect the efficiency and quality of transgenic events in plant biotechnology applications. PMID:21255274

  8. Plasmid-encoded tetracycline efflux pump protein alters bacterial stress responses and ecological fitness of Acinetobacter oleivorans.

    Directory of Open Access Journals (Sweden)

    Hyerim Hong

    Full Text Available Acquisition of the extracellular tetracycline (TC resistance plasmid pAST2 affected host gene expression and phenotype in the oil-degrading soil bacterium, Acinetobacter oleivorans DR1. Whole-transcriptome profiling of DR1 cells harboring pAST2 revealed that all the plasmid genes were highly expressed under TC conditions, and the expression levels of many host chromosomal genes were modulated by the presence of pAST2. The host energy burden imposed by replication of pAST2 led to (i lowered ATP concentrations, (ii downregulated expression of many genes involved in cellular growth, and (iii reduced growth rate. Interestingly, some phenotypes were restored by deleting the plasmid-encoded efflux pump gene tetH, suggesting that the membrane integrity changes resulting from the incorporation of efflux pump proteins also resulted in altered host response under the tested conditions. Alteration of membrane integrity by tetH deletion was shown by measuring permeability of fluorescent probe and membrane hydrophobicity. The presence of the plasmid conferred peroxide and superoxide resistance to cells, but only peroxide resistance was diminished by tetH gene deletion, suggesting that the plasmid-encoded membrane-bound efflux pump protein provided peroxide resistance. The downregulation of fimbriae-related genes presumably led to reduced swimming motility, but this phenotype was recovered by tetH gene deletion. Our data suggest that not only the plasmid replication burden, but also its encoded efflux pump protein altered host chromosomal gene expression and phenotype, which also alters the ecological fitness of the host in the environment.

  9. The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth

    Directory of Open Access Journals (Sweden)

    Nano Francis E

    2007-01-01

    Full Text Available Abstract Background Francisella tularensis is a gram negative, facultative intracellular bacterium that is the etiological agent of tularemia. F. novicida is closely related to F. tularensis but has low virulence for humans while being highly virulent in mice. IglA is a 21 kDa protein encoded by a gene that is part of an iglABCD operon located on the Francisella pathogenicity island (FPI. Results Bioinformatics analysis of the FPI suggests that IglA and IglB are components of a newly described type VI secretion system. In this study, we showed that IglA regulation is controlled by the global regulators MglA and MglB. During intracellular growth IglA production reaches a maximum at about 10 hours post infection. Biochemical fractionation showed that IglA is a soluble cytoplasmic protein and immunoprecipitation experiments demonstrate that it interacts with the downstream-encoded IglB. When the iglB gene was disrupted IglA could not be detected in cell extracts of F. novicida, although IglC could be detected. We further demonstrated that IglA is needed for intracellular growth of F. novicida. A non-polar iglA deletion mutant was defective for growth in mouse macrophage-like cells, and in cis complementation largely restored the wild type macrophage growth phenotype. Conclusion The results of this study demonstrate that IglA and IglB are interacting cytoplasmic proteins that are required for intramacrophage growth. The significance of the interaction may be to secrete effector molecules that affect host cell processes.

  10. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins.

    OpenAIRE

    Strebel, K; De Beck, E.; K Strohmaier; Schaller, H

    1986-01-01

    Defined segments of the cloned foot-and-mouth disease virus genome corresponding to all parts of the coding region were expressed in Escherichia coli as fusions to the N-terminal part of the MS2-polymerase gene under the control of the inducible lambda PL promoter. All constructs yielded large amounts of proteins, which were purified and used to raise sequence-specific antisera in rabbits. These antisera were used to identify the corresponding viral gene products in 35S-labeled extracts from ...

  11. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  12. Molecular characterization of Indian isolate of peanut mottle virus and immunodiagnosis using bacterial expressed core capsid protein

    OpenAIRE

    Soumya, K.; Yogita, M.; Prasanthi, Y.; K.Anitha; Kishor, P. B. Kavi; Jain, R. K.; Mandal, Bikash

    2014-01-01

    Peanut mottle virus (PeMoV), a seed borne potyvirus was recorded in India in 1978, however the virus was not characterized at molecular level. In the present study, an isolate of PeMoV infecting peanut in southern India was characterized based on host reactions and coat protein (CP) gene sequence, which revealed that the Indian isolate was very close to a peanut isolate reported from Israel and distinct from pea isolate reported from USA. The core region of CP gene that contained majority of ...

  13. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat. PMID:23918959

  14. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  15. Function of FlhB, a membrane protein implicated in the bacterial flagellar type III secretion system.

    Science.gov (United States)

    Meshcheryakov, Vladimir A; Barker, Clive S; Kostyukova, Alla S; Samatey, Fadel A

    2013-01-01

    The membrane protein FlhB is a highly conserved component of the flagellar secretion system, and it plays an active role in the regulation of protein export. In this study conserved properties of FlhB that are important for its function were investigated. Replacing the flhB gene (or part of the gene) in Salmonella typhimurium with the flhB gene of the distantly related bacterium Aquifex aeolicus greatly reduces motility. However, motility can be restored to some extent by spontaneous mutations in the part of flhB gene coding for the cytoplasmic domain of Aquifex FlhB. Structural analysis suggests that these mutations destabilize the structure. The secondary structure and stability of the mutated cytoplasmic fragments of FlhB have been studied by circular dichroism spectroscopy. The results suggest that conformational flexibility could be important for FlhB function. An extragenic suppressor mutation in the fliS gene, which decreases the affinity of FliS to FliC, partially restores motility of the FlhB substitution mutants. PMID:23874605

  16. Function of FlhB, a membrane protein implicated in the bacterial flagellar type III secretion system.

    Directory of Open Access Journals (Sweden)

    Vladimir A Meshcheryakov

    Full Text Available The membrane protein FlhB is a highly conserved component of the flagellar secretion system, and it plays an active role in the regulation of protein export. In this study conserved properties of FlhB that are important for its function were investigated. Replacing the flhB gene (or part of the gene in Salmonella typhimurium with the flhB gene of the distantly related bacterium Aquifex aeolicus greatly reduces motility. However, motility can be restored to some extent by spontaneous mutations in the part of flhB gene coding for the cytoplasmic domain of Aquifex FlhB. Structural analysis suggests that these mutations destabilize the structure. The secondary structure and stability of the mutated cytoplasmic fragments of FlhB have been studied by circular dichroism spectroscopy. The results suggest that conformational flexibility could be important for FlhB function. An extragenic suppressor mutation in the fliS gene, which decreases the affinity of FliS to FliC, partially restores motility of the FlhB substitution mutants.

  17. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins.

    Science.gov (United States)

    Rismondo, Jeanine; Cleverley, Robert M; Lane, Harriet V; Großhennig, Stephanie; Steglich, Anne; Möller, Lars; Mannala, Gopala Krishna; Hain, Torsten; Lewis, Richard J; Halbedel, Sven

    2016-03-01

    Each bacterium has to co-ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram-positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi-functional penicillin-binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food-borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials. PMID:26575090

  18. Molecular characterization of Indian isolate of peanut mottle virus and immunodiagnosis using bacterial expressed core capsid protein.

    Science.gov (United States)

    Soumya, K; Yogita, M; Prasanthi, Y; Anitha, K; Kishor, P B Kavi; Jain, R K; Mandal, Bikash

    2014-01-01

    Peanut mottle virus (PeMoV), a seed borne potyvirus was recorded in India in 1978, however the virus was not characterized at molecular level. In the present study, an isolate of PeMoV infecting peanut in southern India was characterized based on host reactions and coat protein (CP) gene sequence, which revealed that the Indian isolate was very close to a peanut isolate reported from Israel and distinct from pea isolate reported from USA. The core region of CP gene that contained majority of the predicted epitopes was successfully expressed (1.75 mg/l) in Escherichia coli as a 22 kDa protein. A high titer polyclonal antibody (PAb) to the expressed core CP was produced, which efficiently detected PeMoV. The antiserum was useful in specific detection of PeMoV as it showed negligible cross reactivity with the other potyviruses e.g., peanut stripe virus, potato virus Y, papaya ringspot virus and onion yellow dwarf virus. The PAb was validated in ELISA using 1,169 field and greenhouse samples of peanut which showed 1.85-26.3 % incidence of PeMoV in peanut seed multiplication field during 2011-2012. This is the first report of immunodiagnosis of PeMoV with a PAb to recombinant core CP of PeMoV. PMID:25674600

  19. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, Maciej; Morin, Sebastien; Sass, Hans-Juergen [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland); Kebbel, Fabian [University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum (Switzerland); Grzesiek, Stephan, E-mail: stephan.grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2013-01-15

    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ({sup 2}H/{sup 15}N/{sup 13}C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected {alpha}-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1{beta} were assessed by surface plasmon resonance yielding K{sub D} values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  20. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection.

    Science.gov (United States)

    Kim, Nak Hyun; Lee, Dong Hyuk; Choi, Du Seok; Hwang, Byung Kook

    2015-12-01

    Carbohydrate-binding proteins, commonly referred to as lectins or agglutinins, function in defense responses to microbial pathogens. Pepper (Capsicum annuum) GNA-related lectin and PAN-domain protein gene CaGLP1 was isolated and functionally characterized from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaGLP1 contained an amine-terminus prokaryotic membrane lipoprotein lipid attachment site, a Galanthus nivalis agglutinin (GNA)-related lectin domain responsible for the recognition of high-mannose N-glycans, and a carboxyl-terminus PAN/apple domain. RNA gel blot and immunoblot analyses determined that CaGLP1 was strongly induced in pepper by compatible and incompatible Xcv infection. CaGLP1 protein localized primarily to the plasma membrane and exhibited mannose-binding specificity. CaGLP1-silenced pepper plants were more susceptible to compatible or incompatible Xcv infection compared with that of non-silenced control plants. CaGLP1 silencing in pepper leaves did not accumulate H2O2 and induce cell death during incompatible Xcv infection. Defense-related CaDEF1 (defensin) gene expression was significantly reduced in CaGLP1-silenced pepper plants. CaGLP1-overexpression in Arabidopsis thaliana enhanced resistance to Pseudomonas syringae pv. tomato. Defense-related AtPDF1.2 expression was elevated in CaGLP1-overexpression lines. Together, these results suggest that CaGLP1 is required for plant cell death and defense responses through the reactive oxygen species burst and downstream defense-related gene expression in response to bacterial pathogen challenge.

  1. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks.

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    Full Text Available We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome.

  2. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks.

    Science.gov (United States)

    Costes, Audrey; Lecointe, François; McGovern, Stephen; Quevillon-Cheruel, Sophie; Polard, Patrice

    2010-01-01

    We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter)) as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter) interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter) deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter) acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome. PMID:21170359

  3. Feed consumption, growth and growth efficiency of rainbow trout (Oncorhynchus mykiss (Walbaum)) fed on diets containing a bacterial single-cell protein.

    Science.gov (United States)

    Perera, W M; Carter, C G; Houlihan, D F

    1995-04-01

    The aim of the present study was to compare the nutritive value of bacterial single-cell protein (BSCP) with that of fishmeal in rainbow trout (Oncorhynchus mykiss (Walbaum)). Four diets were formulated to contain a total of 458 g crude protein/kg of which 0% was from BSCP in diet 1 (BSCP-0), 25% in diet 2 (BSCP-25), 62.5% in diet 3 (BSCP-62.5) and 100% in diet 4 (BSCP-100); the remainder of the protein was from fishmeal. There were two studies: in study 1, duplicate groups of twenty-five fish were fed on one of the four experimental diets at the rate of 20 g/kg body weight per d for 132 d. Feed consumption rates of individual fish were measured using radiography and the overall apparent absorption efficiency for N in each group was measured over a 2-week period. In study 2, N intake, consumption, absorption and accretion were measured for each fish under controlled environmental conditions (12 h: 12 h light-dark regime; 14 degrees). Higher dietary levels of BSCP resulted in significantly higher feed consumption rates but reduced N absorption efficiency and growth rates. However, a diet containing 25% BSCP (75% fishmeal) did not significantly influence growth rates, feed consumption and absorption efficiency compared with a 100% fishmeal diet. The N growth efficiencies were highest in fish fed on the diet containing the highest level of fishmeal and significantly decreased with increasing BSCP content. Construction of N budgets demonstrated that the reduction in growth in fish eating an increasingly larger proportion of BSCP was due to a decrease in N absorption and an increase in the excretion of urea.

  4. Protein and DNA technologies for functional expression of membrane-associated cytochromes P450 in bacterial cell factories

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario

    , metabolic engineering and protein engineering to provide new solutions to the P450 expression bottleneck in bacteria. The work primarily focuses on developing a fluorescence high-throughput platform to easily assess proper folding and expression levels of plant cytochromes P450. The platform has been...... designed to fit in metabolic engineering and structural biology applications. Furthermore in this thesis a systematic engineering rationale is proposed to improve P450 expression. For this, anew set of N-terminal tags has been developed in order to provide a streamlined optimization scheme for P450......450 engineering guidelines and serves as platform to improve performance of microbial cells, thereby boosting recombinant production of complex plant P450-derived biochemicals. The knowledge generated, could guide future reconstruction of functional plant metabolic pathways leading to high valuable...

  5. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins

    International Nuclear Information System (INIS)

    Defined segments of the cloned foot-and-mouth disease virus genome corresponding to all parts of the coding region were expressed in Escherichia coli as fusions to the N-terminal part of the MS2-polymerase gene under the control of the inducible λPL promoter. All constructs yielded large amounts of proteins, which were purified and used to raise sequence-specific antisera in rabbits. These antisera were used to identify the corresponding viral gene products in 35S-labeled extracts from foot-and-mouth disease virus-infected BHK cells. This allowed us to locate unequivocally all mature foot-and-mouth disease virus gene products in the nucleotide sequence, to identify precursor-product relationships, and to detect several foot-and mouth disease virus gene products not previously identified in vivo or in vitro

  6. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  7. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp

    Science.gov (United States)

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (Pcanal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases. PMID:27442266

  8. Monoclonal antibodies against accumulation-associated protein affect EPS biosynthesis and enhance bacterial accumulation of Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Jian Hu

    Full Text Available Because there is no effective antibiotic to eradicate Staphylococcus epidermidis biofilm infections that lead to the failure of medical device implantations, the development of anti-biofilm vaccines is necessary. Biofilm formation by S. epidermidis requires accumulation-associated protein (Aap that contains sequence repeats known as G5 domains, which are responsible for the Zn(2+-dependent dimerization of Aap to mediate intercellular adhesion. Antibodies against Aap have been reported to inhibit biofilm accumulation. In the present study, three monoclonal antibodies (MAbs against the Aap C-terminal single B-repeat construct followed by the 79-aa half repeat (AapBrpt1.5 were generated. MAb(18B6 inhibited biofilm formation by S. epidermidis RP62A to 60% of the maximum, while MAb(25C11 and MAb(20B9 enhanced biofilm accumulation. All three MAbs aggregated the planktonic bacteria to form visible cell clusters. Epitope mapping revealed that the epitope of MAb(18B6, which recognizes an identical area within AapBrpt constructs from S. epidermidis RP62A, was not shared by MAb(25C11 and MAb(20B9. Furthermore, all three MAbs were found to affect both Aap expression and extracellular polymeric substance (EPS, including extracellular DNA and PIA biosynthesis in S. epidermidis and enhance the cell accumulation. These findings contribute to a better understanding of staphylococcal biofilm formation and will help to develop epitope-peptide vaccines against staphylococcal infections.

  9. Program PROTEUS for adding hydrogens to a protein structure and electrostatic field across carotenoids in light harvesting complexes and reaction centers from bacterial sources

    Science.gov (United States)

    Lipovaca, Samir

    The hydrogen construction method presented in the program PROTEUS treats hydrogens depending on their torsional degrees of freedom. The positions of hydrogens with restricted torsional degrees of freedom are completely determined by the heavy atoms positions in the structure. The hydroxyl and water hydrogens are the only hydrogens that PROTEUS accepts as movable hydrogens (having rotational degrees of freedom). Their positions are determined by the interactions with neighboring atoms. PROTEUS interaction energy corresponds to a view that the hydrogen bond is affected, besides electrostatic effects and steric constraints of neighboring groups, by an inherent energy barrier that opposes free rotation of the hydroxyl hydrogen. For the water hydrogens that barrier is zero. The hydroxyl and water hydrogens are minimized within a short distance using the Threshold Accepting (TA) energy minimization method. PROTEUS can provide reasonable positions of movable hydrogens and a good initial protein structure for further investigations. We applied the program PROTEUS to place hydrogens in several resolved three-dimensional crystal structures of light harvesting complexes (LHCs) and reaction centers (RCs) from bacterial sources. Using program DelPhi we calculated the local electrostatic field across carotenoid generated by the protein's charges. In each structure we identified amino acids responsible for the field. Much of the field is generated by the charged residues. There are different ways that a RC or LHC uses charged residues. A nearby dipole consisting of the charged residues which are ionized in the physiological pH range (like Arg-Asp), is often used. Clusters of charged residues or scattered isolated charged residues around the carotenoid molecule also contribute. The polarizable field is not necessarily along the carotenoid molecule principal axis. For soluble LHCs the contribution of polar residues to the field cannot be neglected. Our calculations indicate an

  10. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  11. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  12. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  13. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Science.gov (United States)

    Milano, Teresa

    2016-01-01

    The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH) architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average) that is homologous to fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes like aspartate aminotransferase (AAT). These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs). Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups. PMID:27446613

  14. Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins.

    Science.gov (United States)

    Noy, Dror; Dutton, P Leslie

    2006-02-21

    We introduce LH1beta24, a minimal 24 amino acid polypeptide that binds and assembles bacteriochlorophylls (BChls) in micelles of octyl beta-glucoside (OG) into complexes with spectral properties that resemble those of B820, a universal intermediate in the assembly of native purple bacterial light-harvesting complexes (LHs). LH1beta24 was designed by a survey of sequences and crystal structures of bacterial LH proteins from different organisms combined with currently available information from in vitro reconstitution studies and genetically modified LHs in vivo. We took as a template for the design sphbeta31, a truncated 31 amino acid analogue of the native beta-apoprotein from the core LH complex of Rhodobacter sphaeroides. This peptide self-assembles with BChls to form B820 and, upon cooling and lowering OG concentration, forms red-shifted B850 spectral species that are considered analogous to native LH complexes. We find that LH1beta24 self-assembles with BChl in OG to form homodimeric B820-type subunits comprising two LH1beta24 and two BChl molecules per subunit. We demonstrate, by modeling the structure using the highly homologous structure of LH2 from Rhodospirillum molischianum, that it has the minimal size for BChl binding. Additionally, we have compared the self-assembly of sphbeta31 and LH1beta24 with BChls and discovered that the association enthalpies and entropies of both species are similar to those measured for native LH1 from Rhodospirillum rubrum. However, sphbeta31 readily aggregates into intermediate higher oligomeric species and further to form B850 species; moreover, the assembly process of these oligomers is not reversible, and they are apparently large nonspecific BChl-peptide coaggregates rather than well-defined nativelike LH complexes. Similar aggregates were observed during LH1beta24 assembly, but these were formed less readily and required lower temperatures than sphbeta31. In view of these results, we reevaluate previous in vitro

  15. Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells.

    Directory of Open Access Journals (Sweden)

    Mohan E Tulapurkar

    Full Text Available Sepsis, a devastating and often lethal complication of severe infection, is characterized by fever and dysregulated inflammation. While infections activate the inflammatory response in part through Toll-like receptors (TLRs, fever can partially activate the heat shock response with generation of heat shock proteins (HSPs. Since extracellular HSPs, especially HSP70 (eHSP70, are proinflammatory TLR agonists, we investigated how exposure to the TLR4 agonist, bacterial lipopolysaccharide (LPS and febrile range hyperthermia (FRH; 39.5°C modify HSP70 expression and extracellular release. Using differentiated THP1 cells, we found that concurrent exposure to FRH and LPS as well as TLR2 and TLR3 agonists synergized to activate expression of inducible HSP72 (HSPA1A mRNA and protein via a p38 MAP kinase-requiring mechanism. Treatment with LPS for 6 h stimulated eHSP70 release; levels of eHSP70 released at 39.5°C were higher than at 37°C roughly paralleling the increase in intracellular HSP72 in the 39.5°C cells. By contrast, 6 h exposure to FRH in the absence of LPS failed to promote eHSP70 release. Release of eHSP70 by LPS-treated THP1 cells was inhibited by glibenclamide, but not brefeldin, indicating that eHSP70 secretion occurred via a non-classical protein secretory mechanism. Analysis of eHSP70 levels in exosomes and exosome-depleted culture supernatants from LPS-treated THP1 cells using ELISA demonstrated similar eHSP70 levels in unfractionated and exosome-depleted culture supernatants, indicating that LPS-stimulated eHSP70 release did not occur via the exosome pathway. Immunoblot analysis of the exosome fraction of culture supernatants from these cells showed constitutive HSC70 (HSPA8 to be the predominant HSP70 family member present in exosomes. In summary, we have shown that LPS stimulates macrophages to secrete inducible HSP72 via a non-classical non-exosomal pathway while synergizing with FRH exposure to increase both intracellular and

  16. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food

    Science.gov (United States)

    The most common mechanism involved in bacterial programmed cell death or apoptosis is through toxin-antitoxin (TA) modules, which exist in many bacterial species. An experimental procedure or method that provides novel insights into the molecular basis for the development of engineered/synthetic pr...

  17. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  18. Cloning, bacterial expression and biological characterization of recombinant human granulocyte chemotactic protein-2 and differential expression of granulocyte chemotactic protein-2 and epithelial cell-derived neutrophil activating peptide-78 mRNAs.

    Science.gov (United States)

    Froyen, G; Proost, P; Ronsse, I; Mitera, T; Haelens, A; Wuyts, A; Opdenakker, G; Van Damme, J; Billiau, A

    1997-02-01

    Human osteosarcoma cells secrete a novel C-X-C chemokine called granulocyte chemotactic protein-2 (GCP-2), which was previously identified by amino acid sequencing of the purified natural protein. In order to understand the role of this new protein in inflammatory reactions, we cloned GCP-2 DNA sequences to generate recombinant protein and specific DNA probes and primers. By means of PCR on cloned cDNA of osteosarcoma cells induced by interleukin-1 beta and fibroblasts induced by lipopolysaccharide plus dsRNA, the complete coding domain of GCP-2 was isolated. This sequence was cloned into the bacterial expression vector pHEN1 and, after induction, GCP-2 was secreted into the periplasm of Escherichia coli. Recombinant GCP-2 (rGCP-2) was purified and characterized by SDS/PAGE as a monomeric 6.5-kDa protein and by amino-terminal sequencing. The chemoattractive potency of GCP-2 for neutrophilic granulocytes was about 10-times less than that of interleukin-8 and the minimal effective dose was 10 ng/ml. However, at optimal dose (100 ng/ml) the maximal chemotactic response was comparable with that of interleukin-8. Both characteristics correspond with those of natural GCP-2. In addition, intracellular calcium release in neutrophils by recombinant GCP-2 was achieved with as little as 10 ng/ml. Quantitation studies using reverse transcriptase and the polymerase chain reaction revealed higher GCP-2 mRNA production in normal fibroblasts than in tumor cells. When compared with epithelial-cell-derived neutrophil-activating peptide-78 (ENA-78) mRNA, the GCP-2 mRNA levels were higher in all cell lines tested. In addition, GCP-2 and ENA-78 expression seem to be differentially regulated in that phorbol ester and lipopolysaccharide have opposing effects on their mRNA induction in diploid fibroblasts and epithelial cells, respectively. Interleukin-1 was demonstrated to be a general inducer for both chemokines, while interferon-gamma down-regulates their mRNA expression. The

  19. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages.

    Science.gov (United States)

    Hensel, M; Shea, J E; Waterman, S R; Mundy, R; Nikolaus, T; Banks, G; Vazquez-Torres, A; Gleeson, C; Fang, F C; Holden, D W

    1998-10-01

    The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI-2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying nonpolar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence defect. These phenotypes were reflected in the ability of mutant strains to grow within a variety of macrophage cell types: strains carrying mutations in sseA, sseB or sseC failed to accumulate, whereas the growth rates of strains carrying mutations in sseE, sseF or sseG were only modestly reduced. These data suggest that, in vivo, one of the functions of the SPI-2 secretion system is to enable intracellular bacterial proliferation.

  20. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  1. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  2. Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5.

    Science.gov (United States)

    Yamaguchi, Kenichi; Prieto, Susana; Beligni, María Verónica; Haynes, Paul A; McDonald, W Hayes; Yates, John R; Mayfield, Stephen P

    2002-11-01

    To understand how chloroplast mRNAs are translated into functional proteins, a detailed understanding of all of the components of chloroplast translation is needed. To this end, we performed a proteomic analysis of the plastid ribosomal proteins in the small subunit of the chloroplast ribosome from the green alga Chlamydomonas reinhardtii. Twenty proteins were identified, including orthologs of Escherichia coli S1, S2, S3, S4, S5, S6, S7, S9, S10, S12, S13, S14, S15, S16, S17, S18, S19, S20, and S21 and a homolog of spinach plastid-specific ribosomal protein-3 (PSRP-3). In addition, a novel S1 domain-containing protein, PSRP-7, was identified. Among the identified proteins, S2 (57 kD), S3 (76 kD), and S5 (84 kD) are prominently larger than their E. coli or spinach counterparts, containing N-terminal extensions (S2 and S5) or insertion sequence (S3). Structural predictions based on the crystal structure of the bacterial 30S subunit suggest that the additional domains of S2, S3, and S5 are located adjacent to each other on the solvent side near the binding site of the S1 protein. These additional domains may interact with the S1 protein and PSRP-7 to function in aspects of mRNA recognition and translation initiation that are unique to the Chlamydomonas chloroplast.

  3. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    Science.gov (United States)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  4. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  5. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  6. Bacterial chemoreceptors and chemoeffectors.

    Science.gov (United States)

    Bi, Shuangyu; Lai, Luhua

    2015-02-01

    Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.

  7. Clinico-pathological Responses of Calves Associated with Infection of Pasteurella multocida Type B and the Bacterial Lipopolysaccharide and Outer Membrane Protein Immunogens

    Directory of Open Access Journals (Sweden)

    Faez Firdaus Jesse Abdullah

    2013-10-01

    Full Text Available The current study aims to investigate the Clinico-pathological responses of calves associated with the infections of Pasteurella multocida type B and the bacterial lipopolysaccharide and outer membrane protein immunogens. Alterations in the behavior of animals and pathological lesions observed following innate or experimental infections usually divulge extensive and detrimental changes in the clinical signs, organs and tissues of the animals afflicted with the disease. These alterations are imperative for Veterinary evaluation of herd health. Eight clinically healthy, non-pregnant and non-lactating Brangus cross heifers weighing 150±50 kg were used in the study. The heifers (n = 8 were divided into 4 groups of 2 calves per group. The control calves in group 1 were inoculated intramuscularly with 10 mL of sterile Phosphate Buffered Saline (PBS. Calves in group 2 were inoculated intramuscularly with 10 mL of 1012 colony forming unit (cfu of wild-type P. multocida and calves in group 3 were inoculated intravenously with 10 mL of LPS broth extract. Calves in group 4 were inoculated intramuscularly with 10 mL of OMP broth extract. All animals were observed for 48 h for clinical signs, changes in behavior and mortality pattern, including the time of death. The results divulged significant differences in the Clinico-pathological alterations. Calves inoculated with whole cell P. multocida type B: 2 showed a significant (p<0.05 increased in rectal temperature. The affected calves showed significant severe dullness (p<0.000 and significant rumen hypomotility (p<0.000 was also exhibited. The calves showed signs of hypersalivation at 14 h. There is no significant difference (p = 0.240 in pulmonary oedema in the Calves of group 2 compared to control group 1. Calves of group 4 also showed no significant difference in pulmonary oedema (p = 0.612 compared to control group 1. Calves of group 3 showed significantly moderate pulmonary oedema (p<0.000. All the

  8. Combined prime-boost vaccination against tick-borne encephalitis (TBE using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    Directory of Open Access Journals (Sweden)

    Zakharova LG

    2005-08-01

    Full Text Available Abstract Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines.

  9. Bacterial disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008377 Effective expression and immunogenicity analysis of HIV-1 HXB2 subtype Tat protein deleted the cysteine-rich region in E. coli. CHEN Lu(陈璐), et al. Dept Microbiol, 2nd Milit Med Univ, Shanghai 200433.Chin J Microbiol 2008;28(5):404-409. Objective Deleting the cysteine-rich region (22-37 amino acids) of HIV-1 HXB2 Tat protein(whole length is 101 amino acids) to improve its stability and expression level in E.

  10. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  11. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  12. Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis.

    Science.gov (United States)

    Crawford, Matthew A; Lowe, David E; Fisher, Debra J; Stibitz, Scott; Plaut, Roger D; Beaber, John W; Zemansky, Jason; Mehrad, Borna; Glomski, Ian J; Strieter, Robert M; Hughes, Molly A

    2011-10-11

    Chemokines are a family of chemotactic cytokines that function in host defense by orchestrating cellular movement during infection. In addition to this function, many chemokines have also been found to mediate the direct killing of a range of pathogenic microorganisms through an as-yet-undefined mechanism. As an understanding of the molecular mechanism and microbial targets of chemokine-mediated antimicrobial activity is likely to lead to the identification of unique, broad-spectrum therapeutic targets for effectively treating infection, we sought to investigate the mechanism by which the chemokine CXCL10 mediates bactericidal activity against the Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax. Here, we report that disruption of the gene ftsX, which encodes the transmembrane domain of a putative ATP-binding cassette transporter, affords resistance to CXCL10-mediated antimicrobial effects against vegetative B. anthracis bacilli. Furthermore, we demonstrate that in the absence of FtsX, CXCL10 is unable to localize to its presumed site of action at the bacterial cell membrane, suggesting that chemokines interact with specific, identifiable bacterial components to mediate direct microbial killing. These findings provide unique insight into the mechanism of CXCL10-mediated bactericidal activity and establish, to our knowledge, the first description of a bacterial component critically involved in the ability of host chemokines to target and kill a bacterial pathogen. These observations also support the notion of chemokine-mediated antimicrobial activity as an important foundation for the development of innovative therapeutic strategies for treating infections caused by pathogenic, potentially multidrug-resistant microorganisms.

  13. A Self-Excisable Infectious Bacterial Artificial Chromosome Clone of Varicella-Zoster Virus Allows Analysis of the Essential Tegument Protein Encoded by ORF9▿

    OpenAIRE

    Tischer, B. Karsten; Kaufer, Benedikt B; Sommer, Marvin; Wussow, Felix; Ann M Arvin; Osterrieder, Nikolaus

    2007-01-01

    In order to facilitate the generation of mutant viruses of varicella-zoster virus (VZV), the agent causing varicella (chicken pox) and herpes zoster (shingles), we generated a full-length infectious bacterial artificial chromosome (BAC) clone of the P-Oka strain. First, mini-F sequences were inserted into a preexisting VZV cosmid, and the SuperCos replicon was removed. Subsequently, mini-F-containing recombinant virus was generated from overlapping cosmid clones, and full-length VZV DNA recov...

  14. Cloning and molecular characterization of the murine macrophage "68-kDa" protein kinase C substrate and its regulation by bacterial lipopolysaccharide.

    OpenAIRE

    Seykora, J T; Ravetch, J V; Aderem, A

    1991-01-01

    We have isolated and characterized a cDNA clone encoding the murine macrophage 68-kDa protein kinase C substrate, which is homologous to the 80- to 87-kDa protein identified by the acronym MARCKS (myristoylated alanine-rich C kinase substrate). The murine MARCKS cDNA clone encodes an acidic protein of 309 amino acids with a calculated molecular weight of 29,661. Transfection of the murine MARCKS gene into TK-L fibroblasts produced a myristoylated protein kinase C substrate that migrated on SD...

  15. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  16. Bacterial Microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Kerfeld, Cheryl A.; Heinhorst, Sabine; Cannon, Gordon C.

    2010-06-05

    Bacterialmicrocompartments (BMCs) are organelles composed entirely of protein. They promote specific metabolic processes by encapsulatingand colocalizing enzymes with their substrates and cofactors, by protecting vulnerable enzymes in a defined microenvironment, and bysequestering toxic or volatile intermediates. Prototypes of the BMCsare the carboxysomes of autotrophic bacteria. However, structures of similarpolyhedral shape are being discovered in an ever-increasing number of heterotrophic bacteria, where they participate in the utilization ofspecialty carbon and energy sources.Comparative genomics reveals that the potential for this type of compartmentalization is widespread acrossbacterial phyla and suggests that genetic modules encoding BMCs are frequently laterally transferred among bacteria. The diverse functionsof these BMCs suggest that they contribute to metabolic innovation in bacteria in a broad range of environments.

  17. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: Synthesis and spectroscopic characterization of zincite-coated Fe2O3 nanoparticles

    Science.gov (United States)

    Habibi, Neda

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR).

  18. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    Science.gov (United States)

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p Brevibacterium antiquum strain VKM Ac-2118 (AY243344), with 98-99% sequence identity. This species is also a member of the phylum Actinobacteria and was originally isolated from Siberian permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample. PMID:25843055

  19. 自噬蛋白NDP52与细菌感染的研究进展%Research Advances in Autophagy Protein NDP52 and Bacterial Infection

    Institute of Scientific and Technical Information of China (English)

    王芬芬; 张吉翔

    2012-01-01

    自噬(autophagy)是哺乳动物清除入侵细菌的主要途径,可保卫宿主细胞免受细菌的损伤.核点蛋白52(nuclear dot protein 52,NDP52)——核点家族成员之一,是除p62/SQSTM1和NBR1 等之外最新发现的自噬关键蛋白.它连接自噬体表面的微管相关蛋白1轻链3(microtubule associated protein l light chain 3,LC3),将披上“泛素大衣”的病原菌(如沙门氏菌和化脓性链球菌)递送至自噬体内加以清除.这一发现有助于人们深入了解自噬抵抗病原微生物感染的具体分子机制,为预防和治疗细菌感染提供了新靶点.%Autophagy is an important pathway to eliminate intracellular bacteria in mammals and defend the host cell from bacteria damage. In addition to p62/SQSTMl and NBR1, NDP52 (nuclear dot protein 52)—one of the members of nuclear dots, is a novel autophagy related protein has been found. NDP52 is an adaptor protein that binds to both ubiquitinated bacteria (such as Salmonella and Streptococcus pyogenes) and LC3 (microtubule associated protein 1 light chain 3), and then delivers these invaders into autophagosomes. This finding helps further understand the specific molecular mechanism of autophagy resisting pathogens infection, and provides a new target for the prevention and treatment of bacteria infection.

  20. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin.

    Science.gov (United States)

    Saxena, Rahul; Vasudevan, Sona; Patil, Digvijay; Ashoura, Norah; Grimwade, Julia E; Crooke, Elliott

    2015-01-01

    DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC) to a replication efficient pre-replication complex (pre-RC) at the E. coli chromosomal origin of replication (oriC). PMID:26610483

  1. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin

    Directory of Open Access Journals (Sweden)

    Rahul Saxena

    2015-11-01

    Full Text Available DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC to a replication efficient pre-replication complex (pre-RC at the E. coli chromosomal origin of replication (oriC.

  2. Structural biology of bacterial RNA polymerase.

    Science.gov (United States)

    Murakami, Katsuhiko S

    2015-05-11

    Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477-42485), an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP). In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank), describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  3. Structural Biology of Bacterial RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Katsuhiko S. Murakami

    2015-05-01

    Full Text Available Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477–42485, an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP. In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank, describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  4. Modeling of the dynamic pole-to-pole oscillations of the min proteins in bacterial cell division: The effect of an external field

    CERN Document Server

    Modchang, C; Triampo, W; Ngamsaad, W; Nuttawut, N; Tang, I M; Lenbury, Y; Modchang, Charin; Kanthang, Paisan; Triampo, Wannapong; Ngamsaad, Waipot; Nuttawut, Narin; Lenbury, Yongwimol

    2004-01-01

    One of the most important steps in the developmental process of the bacteria cell at the cellular level is the determination of the middle of the cell and the proper placement of the septum, these being essential to the division of the cell. In E. coli, this step depends on the proteins MinC, MinD, and MinE. Exposure to a constant electric field may cause the bacteria cell division mechanism to change, resulting in an abnormal cytokinesis. To see the effects of an external field e.g., an electric or magnetic field on this process, we have solved a set of deterministic reaction diffusion equations, which incorporate the influence of an electric field. We have found some changes in the dynamics of the oscillations of the min proteins from pole to pole. The numerical results show some interesting effects, which are qualitatively in good agreement with some experimental results.

  5. Affinity chromatography—dependent selection (ACDS) of genomic DNA fragments bound specifically to bacterial synthesized Myc/Myn proteins

    Institute of Scientific and Technical Information of China (English)

    SHICAN; PEIWANG; 等

    1995-01-01

    This paper describes an approach to seek for mouse c-Myc/Myn proteins-bound specific sequences among genomic DNA.cDNA fragment of myn gene was obtained through RT-PCR technique from RNA of NIH3T3 cells.DNA fragments encoding BR/HLH/LZ structure of Myc and Myn proteins were cloned in frame into pGEX-2T vector respectively.Fusion GST-Myc and GST-Myn synthesized in E.coli hosts showed affinity to CACGTG E-box DNA and subsequently interacted with genomic fragments prepared through whole-genome-PCR.A PCR-assisted procedure which combines protein-DNA interaction and affinity chromatography was designed to enrich Myc/Myn bound DNA.At least two genomic DNA fragments obtained exhibit specifical binding capacity to Myc/Myn complex but not to GST alone.Significance of the work and of the technique itself as well asidentification of the DNAs are discussed.

  6. Bacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Sreerupa Challa

    2011-01-01

    Full Text Available Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O1 BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E. coli LT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH, or the nontoxic pseudomonas exotoxin A (ntPE was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.

  7. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  8. Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola

    Indian Academy of Sciences (India)

    Xiaojing Wu; Tingquan Wu; Juying Long; Qian Yin; Yong Zhang; Lei Chen; Ruoxue Liu; Tongchun Gao; Hansong Dong

    2007-09-01

    Harpin proteins from plant pathogenic bacteria can stimulate hypersensitive cell death (HCD), drought tolerance, defence responses against pathogens and insects in plants, as well as enhance plant growth. Recently, we identified nine functional fragments of HpaGXooc, a harpin protein from Xanthomonas oryzae pv. oryzicola, the pathogen that causes bacterial leaf streak in rice. Fragments HpaG1–94, HpaG10–42, and HpaG62–138, which contain the HpaGXooc regions of the amino acid sequence as indicated by the number spans, exceed the parent protein in promoting growth, pathogen defence and HCD in plants. Here we report improved productivity and biochemical properties of green tea (Camellia sinensis) in response to the fragments tested in comparison with HpaGXooc and an inactive protein control. Field tests suggested that the four proteins markedly increased the growth and yield of green tea, and increased the leaf content of tea catechols, a group of compounds that have relevance in the prevention and treatment of human diseases. In particular, HpaG1–94 was more active than HpaGXooc in expediting the growth of juvenile buds and leaves used as green tea material and increased the catechol content of processed teas. When tea shrubs were treated with HpaHXooc and HpaG1–94 compared with a control, green tea yields were over 55% and 39% greater, and leaf catechols were increased by more than 64% and 72%, respectively. The expression of three homologues of the expansin genes, which regulate plant cell growth, and the CsCHS gene encoding a tea chalcone synthase, which critically regulates the biosynthesis of catechols, were induced in germinal leaves of tea plants following treatment with HpaG1–94 or HpaGXooc. Higher levels of gene expression were induced by the application of HpaG1–94 than HpaGXooc. Our results suggest that the harpin protein, especially the functional fragment HpaG1–94, can be used to effectively increase the yield and improve the biochemical

  9. Connecting the dots between bacterial biofilms and ice cream

    Science.gov (United States)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  10. Connecting the dots between bacterial biofilms and ice cream.

    Science.gov (United States)

    Stanley-Wall, Nicola R; MacPhee, Cait E

    2015-01-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream. PMID:26685107

  11. Investigations of combinations of mutations in the jellyfish green fluorescent protein (GFP) that afford brighter fluorescence, and use of a version (VisGreen) in plant, bacterial, and animal cells.

    Science.gov (United States)

    Teerawanichpan, Prapapan; Hoffman, Travis; Ashe, Paula; Datla, Raju; Selvaraj, Gopalan

    2007-09-01

    Among the GFPs used for imaging green fluorescence, the Emerald version has been considered the best GFP to use but there is no formal report on its construction or the relevance of the amino acid (aa) substitutions in it relative to the commonly used GFPs. Here, we have shown that a version of Emerald makes Escherichia coli host cells visibly green even under dim room light conditions. Exploiting this feature, we have determined for the first time whether the changes in the structure of Emerald protein brought about by the aa substitutions are all indeed essential for brightness. F64L and S72A accompanying the classical S65T substitution on the chromophore-bearing helix are essential. Two amino acid changes, one on the surface (N149K) of the beta barrel that encases the helix and the other (I167T) near the chromophore enhance the visible green colour individually and additively when present together. The other two substitutions, M153T (on the surface) and H231L (on the surface), do not contribute to the visible green phenotype, even though in earlier studies M153T has been reported to enhance GFP fluorescence. The GFP version with F64L-S65T-S72A-N149K-I167T is referred to as VisGreen. We found VisGreen and Emerald to be indistinguishable in their quantum yield, molar extinction coefficient, folding efficiency, or photosensitivity. VisGreen rendered bacterial, plant, and animal cells highly fluorescent. Interestingly, N149K in the above combination was not essential to render bacterial cells highly fluorescent. PMID:17658219

  12. Sterile-α- and Armadillo Motif-Containing Protein Inhibits the TRIF-Dependent Downregulation of Signal Regulatory Protein α To Interfere with Intracellular Bacterial Elimination in Burkholderia pseudomallei-Infected Mouse Macrophages

    OpenAIRE

    Baral, Pankaj; Utaisincharoen, Pongsak

    2013-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-type B. pseudomallei inhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators o...

  13. Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca2+-dependent protein kinase suggests a link between Ca2+ signalling and anaplerotic pathway control in developing castor oil seeds.

    Science.gov (United States)

    Hill, Allyson T; Ying, Sheng; Plaxton, William C

    2014-02-15

    The aim of the present study was to characterize the native protein kinase [BTPC (bacterial-type phosphoenolpyruvate carboxylase)-K (BTPC Ser451 kinase)] that in vivo phosphorylates Ser451 of the BTPC subunits of an unusual Class-2 PEP (phosphoenolpyruvate) carboxylase hetero-octameric complex of developing COS (castor oil seeds). COS BTPC-K was highly purified by PEG fractionation and hydrophobic size-exclusion anion-exchange and affinity chromatographies. BTPC-K phosphorylated BTPC strictly at Ser451 (Km=1.0 μM; pH optimum=7.3), a conserved target residue occurring within an intrinsically disordered region, as well as the protein histone III-S (Km=1.7 μM), but not a COS plant-type PEP carboxylase or sucrose synthase or α-casein. Its activity was Ca2+- (K0.5=2.7 μM) and ATP- (Km=6.6 μM) dependent, and markedly inhibited by trifluoperazine, 3-phosphoglycerate and PEP, but insensitive to calmodulin or 14-3-3 proteins. BTPC-K exhibited a native molecular mass of ~63 kDa and was soluble rather than membrane-bound. Inactivation and reactivation occurred upon BTPC-K's incubation with GSSG and then DTT respectively. Ser451 phosphorylation by BTPC-K inhibited BTPC activity by ~50% when assayed under suboptimal conditions (pH 7.3, 1 mM PEP and 10 mM L-malate). Our collective results indicate a possible link between cytosolic Ca2+ signalling and anaplerotic flux control in developing COS.

  14. Kinetics of H+ ion binding by the P+QA-state of bacterial photosynthetic reaction centers: rate limitation within the protein.

    Science.gov (United States)

    Maróti, P; Wraight, C A

    1997-01-01

    The kinetics of flash-induced H+ ion binding by isolated reaction centers (RCs) of Rhodobacter sphaeroides, strain R-26, were measured, using pH indicators and conductimetry, in the presence of terbutryn to block electron transfer between the primary and secondary quinones (QA and QB), and in the absence of exogenous electron donors to the oxidized primary donor, P+, i.e., the P+QA-state. Under these conditions, proton binding by RCs is to the protein rather than to any of the cofactors. After light activation to form P+QA-, the kinetics of proton binding were monoexponential at all pH values studied. At neutral pH, the apparent bimolecular rate constant was close to the diffusional limit for proton transfer in aqueous solution (approximately 10(11) M-1 s-1), but increased significantly in the alkaline pH range (e.g., 2 x 10(13) M-1 s-1 at pH 10). The average slope of the pH dependence was -0.4 instead of -1.0, as might be expected for a H+ diffusion-controlled process. High activation energy (0.54 eV at pH 8.0) and weak viscosity dependence showed that H+ ion uptake by RCs is not limited by diffusion. The salt dependence of the H+ ion binding rate and the pK values of the protonatable amino acid residues of the reaction center implicated surface charge influences, and Gouy-Chapman theory provided a workable description of the ionic effects as arising from modulation of the pH at the surface of the RC. Incubation in D2O caused small increases in the pKs of the protonatable groups and a small, pH (pD)-dependent slowing of the binding rate. The salt, pH, temperature, viscosity, and D2O dependences of the proton uptake by RCs in the P+QA- state were accounted for by three considerations: 1) parallel pathways of H+ delivery to the RC, contributing to the observed (net) H+ disappearance; 2) rate limitation of the protonation of target groups within the protein by conformational dynamics; and 3) electrostatic influences of charged groups in the protein, via the surface p

  15. Kinetics of H+ ion binding by the P+QA-state of bacterial photosynthetic reaction centers: rate limitation within the protein.

    Science.gov (United States)

    Maróti, P; Wraight, C A

    1997-07-01

    The kinetics of flash-induced H+ ion binding by isolated reaction centers (RCs) of Rhodobacter sphaeroides, strain R-26, were measured, using pH indicators and conductimetry, in the presence of terbutryn to block electron transfer between the primary and secondary quinones (QA and QB), and in the absence of exogenous electron donors to the oxidized primary donor, P+, i.e., the P+QA-state. Under these conditions, proton binding by RCs is to the protein rather than to any of the cofactors. After light activation to form P+QA-, the kinetics of proton binding were monoexponential at all pH values studied. At neutral pH, the apparent bimolecular rate constant was close to the diffusional limit for proton transfer in aqueous solution (approximately 10(11) M-1 s-1), but increased significantly in the alkaline pH range (e.g., 2 x 10(13) M-1 s-1 at pH 10). The average slope of the pH dependence was -0.4 instead of -1.0, as might be expected for a H+ diffusion-controlled process. High activation energy (0.54 eV at pH 8.0) and weak viscosity dependence showed that H+ ion uptake by RCs is not limited by diffusion. The salt dependence of the H+ ion binding rate and the pK values of the protonatable amino acid residues of the reaction center implicated surface charge influences, and Gouy-Chapman theory provided a workable description of the ionic effects as arising from modulation of the pH at the surface of the RC. Incubation in D2O caused small increases in the pKs of the protonatable groups and a small, pH (pD)-dependent slowing of the binding rate. The salt, pH, temperature, viscosity, and D2O dependences of the proton uptake by RCs in the P+QA- state were accounted for by three considerations: 1) parallel pathways of H+ delivery to the RC, contributing to the observed (net) H+ disappearance; 2) rate limitation of the protonation of target groups within the protein by conformational dynamics; and 3) electrostatic influences of charged groups in the protein, via the surface pH.

  16. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  17. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available Regulated cell polarity is central to many cellular processes. We investigated the mechanisms that govern the rapid switching of cell polarity (reversals during motility of the bacterium Myxococcus xanthus. Cellular reversals are mediated by pole-to-pole oscillations of motility proteins and the frequency of the oscillations is under the control of the Frz chemosensory system. However, the molecular mechanism that creates dynamic polarity remained to be characterized. In this work, we establish that polarization is regulated by the GTP cycle of a Ras-like GTPase, MglA. We initially sought an MglA regulator and purified a protein, MglB, which was found to activate GTP hydrolysis by MglA. Using live fluorescence microscopy, we show that MglA and MglB localize at opposite poles and oscillate oppositely when cells reverse. In absence of MglB, MglA-YFP accumulates at the lagging cell end, leading to a strikingly aberrant reversal cycle. Spatial control of MglA is achieved through the GAP activity of MglB because an MglA mutant that cannot hydrolyze GTP accumulates at the lagging cell end, despite the presence of MglB. Genetic and cell biological studies show that the MglA-GTP cycle controls dynamic polarity and the reversal switch. The study supports a model wherein a chemosensory signal transduction system (Frz activates reversals by relieving a spatial inhibition at the back pole of the cells: reversals are allowed by Frz-activated switching of MglB to the opposite pole, allowing MglA-GTP to accumulate at the back of the cells and create the polarity switch. In summary, our results provide insight into how bacteria regulate their polarity dynamically, revealing unsuspected conserved regulations with eukaryots.

  18. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用%The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance

    Institute of Scientific and Technical Information of China (English)

    谢龙祥; 于召箫; 郭思瑶; 李萍; Abualgasim Elgaili Abdall; 谢建平

    2015-01-01

    The increasing antibiotic resistance is now threatening to take us back to a pre-antibiotic era. Bacteria have evolved diverse resistance mechanisms, on which in-depth research could help the development of new strate-gies to control antibiotic-resistant infections. Epigenetic alterations and protein post-translational modifications (PTMs) play important roles in multiple cellular processes such as metabolism, signal transduction, protein degrada-tion, DNA replication regulation and stress response. Recent studies demonstrated that epigenetics and PTMs also play vital roles in bacterial antibiotic resistance. In this review, we summarize the regulatory roles of epigenetic fac-tors including DNA methylation and regulatory RNAs as well as PTMs such as phosphorylation and succinylation in bacterial antibiotic resistance, which may provide innovative perspectives on selecting antibacterial targets and developing antibiotics.%日益严重的细菌耐药性有可能使人类重回前抗生素时代。细菌的耐药机理多样,深入研究细菌的耐药性形成机理有助于开发控制耐药细菌感染的新措施。表观遗传和蛋白质翻译后修饰在细胞代谢、信号转导、蛋白质降解、调控DNA复制、应激反应等方面都具有重要作用。近年来研究表明表观遗传和蛋白质翻译后修饰在细菌耐药中也扮演着重要的角色。本文总结了DNA甲基化、调控型RNAs等表观遗传因素和磷酸化、琥珀酰基化等蛋白质翻译后修饰因素在细菌耐药性中的调控作用,以期为抗生素靶标选择和抗生素开发设计提供新思路。

  19. Bovine immunoglobulin/protein isolate binds pro-inflammatory bacterial compounds and prevents immune activation in an intestinal co-culture model.

    Science.gov (United States)

    Detzel, Christopher J; Horgan, Alan; Henderson, Abigail L; Petschow, Bryon W; Warner, Christopher D; Maas, Kenneth J; Weaver, Eric M

    2015-01-01

    Intestinal barrier dysfunction is associated with chronic gastrointestinal tract inflammation and diseases such as IBD and IBS. Serum-derived bovine immunoglobulin/protein isolate (SBI) is a specially formulated protein preparation (>90%) for oral administration. The composition of SBI is greater than 60% immunoglobulin including contributions from IgG, IgA, and IgM. Immunoglobulin within the lumen of the gut has been recognized to have anti-inflammatory properties and is involved in maintaining gut homeostasis. The binding of common intestinal antigens (LPS and Lipid A) and the ligand Pam3CSK4, by IgG, IgA, and IgM in SBI was shown using a modified ELISA technique. Each of these antigens stimulated IL-8 and TNF-α cytokine production by THP-1 monocytes. Immune exclusion occurred as SBI (≤50 mg/mL) bound free antigen in a dose dependent manner that inhibited cytokine production by THP-1 monocytes in response to 10 ng/mL LPS or 200 ng/mL Lipid A. Conversely, Pam3CSK4 stimulation of THP-1 monocytes was unaffected by SBI/antigen binding. A co-culture model of the intestinal epithelium consisted of a C2BBe1 monolayer separating an apical compartment from a basal compartment containing THP-1 monocytes. The C2BBe1 monolayer was permeabilized with dimethyl palmitoyl ammonio propanesulfonate (PPS) to simulate a damaged epithelial barrier. Results indicate that Pam3CSK4 was able to translocate across the PPS-damaged C2BBe1 monolayer. However, binding of Pam3CSK4 by immunoglobulins in SBI prevented Pam3CSK4 translocation across the damaged C2BBe1 barrier. These results demonstrated steric exclusion of antigen by SBI which prevented apical to basal translocation of antigen due to changes in the physical properties of Pam3CSK4, most likely as a result of immunoglobulin binding. This study demonstrates that immunoglobulins in SBI can reduce antigen-associated inflammation through immune and steric exclusion mechanisms and furthers the mechanistic understanding of how SBI

  20. Bacterial chromosome organization and segregation.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  1. Liposomal co-entrapment of CD40mAb induces enhanced IgG responses against bacterial polysaccharide and protein.

    Directory of Open Access Journals (Sweden)

    Caterina Hatzifoti

    Full Text Available BACKGROUND: Antibody against CD40 is effective in enhancing immune responses to vaccines when chemically conjugated to the vaccine antigen. Unfortunately the requirement for chemical conjugation presents some difficulties in vaccine production and quality control which are compounded when multivalent vaccines are required. We explore here an alternative to chemical conjugation, involving the co-encapsulation of CD40 antibody and antigens in liposomal vehicles. METHODOLOGY/PRINCIPAL FINDINGS: Anti-mouse CD40 mAb or isotype control mAb were co-entrapped individually in cationic liposomal vehicles with pneumococcal polysaccharides or diphtheria and tetanus toxoids. Retention of CD40 binding activity upon liposomal entrapment was assessed by ELISA and flow cytometry. After subcutaneous immunization of BALB/c female mice, anti-polysaccharide and DT/TT responses were measured by ELISA. Simple co-encapsulation of CD40 antibody allowed for the retention of CD40 binding on the liposome surface, and also produced vaccines with enhanced imunogenicity. Antibody responses against both co-entrapped protein in the form of tetanus toxoid, and Streptococcus pneumoniae capsular polysaccharide, were enhanced by co-encapsulation with CD40 antibody. Surprisingly, liposomal encapsulation also appeared to decrease the toxicity of high doses of CD40 antibody as assessed by the degree of splenomegaly induced. CONCLUSIONS/SIGNIFICANCE: Liposomal co-encapsulation with CD40 antibody may represent a practical means of producing more immunogenic multivalent vaccines and inducing IgG responses against polysaccharides without the need for conjugation.

  2. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  3. Structural studies of a bacterial tRNA(HIS guanylyltransferase (Thg1-like protein, with nucleotide in the activation and nucleotidyl transfer sites.

    Directory of Open Access Journals (Sweden)

    Samantha J Hyde

    Full Text Available All nucleotide polymerases and transferases catalyze nucleotide addition in a 5' to 3' direction. In contrast, tRNA(His guanylyltransferase (Thg1 enzymes catalyze the unusual reverse addition (3' to 5' of nucleotides to polynucleotide substrates. In eukaryotes, Thg1 enzymes use the 3'-5' addition activity to add G-1 to the 5'-end of tRNA(His, a modification required for efficient aminoacylation of the tRNA by the histidyl-tRNA synthetase. Thg1-like proteins (TLPs are found in Archaea, Bacteria, and mitochondria and are biochemically distinct from their eukaryotic Thg1 counterparts TLPs catalyze 5'-end repair of truncated tRNAs and act on a broad range of tRNA substrates instead of exhibiting strict specificity for tRNA(His. Taken together, these data suggest that TLPs function in distinct biological pathways from the tRNA(His maturation pathway, perhaps in tRNA quality control. Here we present the first crystal structure of a TLP, from the gram-positive soil bacterium Bacillus thuringiensis (BtTLP. The enzyme is a tetramer like human THG1, with which it shares substantial structural similarity. Catalysis of the 3'-5' reaction with 5'-monophosphorylated tRNA necessitates first an activation step, generating a 5'-adenylylated intermediate prior to a second nucleotidyl transfer step, in which a nucleotide is transferred to the tRNA 5'-end. Consistent with earlier characterization of human THG1, we observed distinct binding sites for the nucleotides involved in these two steps of activation and nucleotidyl transfer. A BtTLP complex with GTP reveals new interactions with the GTP nucleotide in the activation site that were not evident from the previously solved structure. Moreover, the BtTLP-ATP structure allows direct observation of ATP in the activation site for the first time. The BtTLP structural data, combined with kinetic analysis of selected variants, provide new insight into the role of key residues in the activation step.

  4. Positioning of bacterial chemoreceptors.

    Science.gov (United States)

    Jones, Christopher W; Armitage, Judith P

    2015-05-01

    For optimum growth, bacteria must adapt to their environment, and one way that many species do this is by moving towards favourable conditions. To do so requires mechanisms to both physically drive movement and provide directionality to this movement. The pathways that control this directionality comprise chemoreceptors, which, along with an adaptor protein (CheW) and kinase (CheA), form large hexagonal arrays. These arrays can be formed around transmembrane receptors, resulting in arrays embedded in the inner membrane, or they can comprise soluble receptors, forming arrays in the cytoplasm. Across bacterial species, chemoreceptor arrays (both transmembrane and soluble) are localised to a variety of positions within the cell; some species with multiple arrays demonstrate this variety within individual cells. In many cases, the positioning pattern of the arrays is linked to the need for segregation of arrays between daughter cells on division, ensuring the production of chemotactically competent progeny. Multiple mechanisms have evolved to drive this segregation, including stochastic self-assembly, cellular landmarks, and the utilisation of ParA homologues. The variety of mechanisms highlights the importance of chemotaxis to motile species.

  5. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    OpenAIRE

    Paula Blanco; Sara Hernando-Amado; Jose Antonio Reales-Calderon; Fernando Corona; Felipe Lira; Manuel Alcalde-Rico; Alejandra Bernardini; Maria Blanca Sanchez; Jose Luis Martinez

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of ant...

  6. Jellyfish modulate bacterial dynamic and community structure.

    Directory of Open Access Journals (Sweden)

    Tinkara Tinta

    Full Text Available Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  7. 拟核结合蛋白与细菌基因的表达调控%Nucleoid-associated Proteins and Their Roles in the Regulation of Bacterial Gene Expression

    Institute of Scientific and Technical Information of China (English)

    樊祥宇; 王洪海; 谢建平

    2011-01-01

    拟核结合蛋白是细菌遗传物质组织和基因表达调控的关键.细茵基因组压缩为致密的拟核必需有拟核结合蛋白的支撑.拟核结合蛋白、DNA超螺旋和大分子簇在拟核的结构形成中起到重要作用,其中拟核结合蛋白最重要.拟核结合蛋白还影响细茵DNA的复制、重组、转录和修复等多个重要生理过程.作为全局调控因子,拟核结合蛋白是调控细菌适应环境变化所需基因表达的关键.本文总结拟核结合蛋白的结构、功能和调控,特别是其在致病与非致病分枝杆菌中的差别,为寻找新药物靶标提供线索.%One hallmark of bacterial genome is the compact structure called the nucleoid. However, this dense structure poses special challenges for bacteria. The formation of this compressed structure and disentanglement upon particular gene expression requires multiple factors, such as molecular crowding,DNA supercoils and nucleoid-associated proteins (NAP). NAPs are believed to be the most important factors underlying above intricate process. There are many molecules belonging to NAPs, which associate with the chromosomal DNA and facilitate the latter to fold into a compact structure by bridging, bending or wrapping DNA. NAPs are versatile. They also involved in a plethora essential biological processes, such as transcription, DNA repair, DNA recombination and DNA replication. As a global regulator, NAP is pivotal in coordinating the bacterial gene expression to adapt to the environmental fluctuation. The fundamental structure, function and regulation of NAPs are summarized in this paper with particular emphasis on the NAPs difference between pathogenic and nonpathogenic mycobacteria. The prospect of employing these differences to find novel drug targets against tuberculosis is also discussed.

  8. Lessons from Anaplasma phagocytophilum: Chromatin Remodeling by Bacterial Effectors

    OpenAIRE

    Rennoll-Bankert, Kristen E.; Dumler, J. Stephen

    2012-01-01

    Bacterial pathogens can alter global host gene expression via histone modifications and chromatin remodeling in order to subvert host responses, including those involved with innate immunity, allowing for bacterial survival. Shigella flexneri, Listeria monocytogenes, Chlamydia trachomatis, and Anaplasma phagocytophilum express effector proteins that modify host histones and chromatin structure. A. phagocytophilum modulates granulocyte respiratory burst in part by dampening transcription of se...

  9. Validation of EIA sampling methods - bacterial and biochemical analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sheelu, G.; LokaBharathi, P.A.; Nair, S.; Raghukumar, C.; Mohandass, C.

    the Indian Experiment (INDEX) during September 1996 and June-Sept. 1997. Analysis were done for lipid, protein and carbohydrates, which comprise the labile organic matter (LOM), total organic carbon (TOC) and total bacterial counts (TC). Of the 5 variables...

  10. Unexpected versatility in bacterial riboswitches.

    Science.gov (United States)

    Mellin, J R; Cossart, Pascale

    2015-03-01

    Bacterial riboswitches are elements present in the 5'-untranslated regions (UTRs) of mRNA molecules that bind to ligands and regulate the expression of downstream genes. Riboswitches typically regulate the expression of protein-coding genes. However, mechanisms of riboswitch-mediated regulation have recently been shown to be more diverse than originally thought, with reports showing that riboswitches can regulate the expression of noncoding RNAs and control the access of proteins, such as transcription termination factor Rho and RNase E, to a nascent RNA. Riboswitches are also increasingly used in biotechnology, with advances in the engineering of synthetic riboswitches and the development of riboswitch-based sensors. In this review we address the emerging roles and mechanisms of riboswitch-mediated regulation in natura and recent progress in the development of riboswitch-based technology. PMID:25708284

  11. Bacterial tactic responses.

    Science.gov (United States)

    Armitage, J P

    1999-01-01

    Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a

  12. The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis.

    Science.gov (United States)

    Pasquevich, Karina A; García Samartino, Clara; Coria, Lorena M; Estein, Silvia M; Zwerdling, Astrid; Ibañez, Andrés E; Barrionuevo, Paula; Oliveira, Fernanda Souza de; Carvalho, Natalia Barbosa; Borkowski, Julia; Oliveira, Sergio Costa; Warzecha, Heribert; Giambartolomei, Guillermo H; Cassataro, Juliana

    2010-05-01

    Knowing the inherent stimulatory properties of the lipid moiety of bacterial lipoproteins, we first hypothesized that Brucella abortus outer membrane protein (Omp)16 lipoprotein would be able to elicit a protective immune response without the need of external adjuvants. In this study, we demonstrate that Omp16 administered by the i.p. route confers significant protection against B. abortus infection and that the protective response evoked is independent of the protein lipidation. To date, Omp16 is the first Brucella protein that without the requirement of external adjuvants is able to induce similar protection levels to the control live vaccine S19. Moreover, the protein portion of Omp16 (unlipidated Omp16 [U-Omp16]) elicits a protective response when administered by the oral route. Either systemic or oral immunization with U-Omp16 elicits a Th1-specific response. These abilities of U-Omp16 indicate that it is endowed with self-adjuvanting properties. The adjuvanticity of U-Omp16 could be explained, at least in part, by its capacity to activate dendritic cells in vivo. U-Omp16 is also able to stimulate dendritic cells and macrophages in vitro. The latter property and its ability to induce a protective Th1 immune response against B. abortus infection have been found to be TLR4 dependent. The facts that U-Omp16 is an oral protective Ag and possesses a mucosal self-adjuvanting property led us to develop a plant-made vaccine expressing U-Omp16. Our results indicate that plant-expressed recombinant U-Omp16 is able to confer protective immunity, when given orally, indicating that a plant-based oral vaccine expressing U-Omp16 could be a valuable approach to controlling this disease. PMID:20351187

  13. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    NARCIS (Netherlands)

    S. Zindel (Stephan); W.E. Kaman (Wendy); S. Fröls (Sabrina); F. Pfeifer (Felicitas); A. Peters (Annette); J.P. Hays (John); H.-L. Fuchsbauer (Hans-Lothar)

    2013-01-01

    textabstractA novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus ant

  14. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  15. Bacterial microcompartments and the modular construction of microbial metabolism.

    Science.gov (United States)

    Kerfeld, Cheryl A; Erbilgin, Onur

    2015-01-01

    Bacterial microcompartments (BMCs) are protein-bound organelles predicted to be present across 23 bacterial phyla. BMCs facilitate carbon fixation as well as the aerobic and anaerobic catabolism of a variety of organic compounds. These functions have been linked to ecological nutrient cycling, symbiosis, pathogenesis, and cardiovascular disease. Within bacterial cells, BMCs are metabolic modules that can be further dissociated into their constituent structural and functional protein domains. Viewing BMCs as genetic, structural, functional, and evolutionary modules provides a framework for understanding both BMC-mediated metabolism and for adapting their architectures for applications in synthetic biology.

  16. Identification of proteins interacting with the circadian clock protein PER1 in tumors using bacterial two-hybrid system technique%细菌双杂交筛选肿瘤细胞中与人生物钟蛋白PER1相互作用的蛋白

    Institute of Scientific and Technical Information of China (English)

    张宇; 姚有林; 蒋思远; 卢亦路; 刘运强; 陶大昌; 张思仲; 马用信

    2015-01-01

    Objective To identify protein-protein interaction partners of PER1 (period circadian protein homolog 1),key component of the molecular oscillation system of the circadian rhythm in tumors using bacterial two-hybrid system technique.Methods Human cervical carcinoma cell Hela library was adopted.Recombinant bait plasmid pBT-PER1 and pTRG cDNA plasmid library were cotransformed into the two-hybrid system reporter strain cultured in a special selective medium.Target clones were screened.After isolating the positive clones,the target clones were sequenced and analyzed.Results Fourteen protein coding genes were identified,4 of which were found to contain whole coding regions of genes,which included optic atrophy 3 protein (OPA3) associated with mitochondrial dynamics and homo sapiens cutA divalent cation tolerance homolog of E.coli (CUTA) associated with copper metabolism.There were also cellular events related proteins and proteins which are involved in biochemical reaction and signal transduction-related proteins.Conclusion Identification of potential interacting proteins with PER1 in tumors may provide us new insights into the functions of the circadian clock protein PER1 during tumorigenesis.%目的 筛选肿瘤细胞中与生物钟分子振荡系统的重要组成部分PER1蛋白(period circadian protein homolog 1)相互作用的蛋白质分子,为生物钟基因在肿瘤发生发展过程中的功能研究提供条件.方法 应用细菌双杂交技术与人宫颈癌Hela细胞cDNA文库,以pBT为载体,构建pBT-PER1融合表达诱饵质粒,与pTRG连接的人宫颈癌Hela细胞cDNA文库质粒共转化双杂交系统报告菌株,利用培养基的特殊选择性,筛选出阳性克隆并测序分析.结果 筛选出14个蛋白编码基因,其中4个包含完整的蛋白编码序列,包括与线粒体动力学相关的OPA3蛋白,与铜代谢相关的CUTA蛋白,与细胞运动、定位等细胞事件相关的蛋白,与物质合成、代谢等生物化学反应相关

  17. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  18. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  19. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  20. Mesoscopic modeling of bacterial flagellar microhydrodynamics.

    Science.gov (United States)

    Gebremichael, Yeshitila; Ayton, Gary S; Voth, Gregory A

    2006-11-15

    A particle-based hybrid method of elastic network model and smooth-particle hydrodynamics has been employed to describe the propulsion of bacterial flagella in a viscous hydrodynamic environment. The method explicitly models the two aspects of bacterial propulsion that involve flagellar flexibility and long-range hydrodynamic interaction of low-Reynolds-number flow. The model further incorporates the molecular organization of the flagellar filament at a coarse-grained level in terms of the 11 protofilaments. Each of these protofilaments is represented by a collection of material points that represent the flagellin proteins. A computational model of a single flexible helical segment representing the filament of a bacterial flagellum is presented. The propulsive dynamics and the flow fields generated by the motion of the model filament are examined. The nature of flagellar deformation and the influence of hydrodynamics in determining the shape of deformations are examined based on the helical filament.

  1. Spatial complexity and control of a bacterial cell cycle

    OpenAIRE

    Collier, Justine; Shapiro, Lucy

    2007-01-01

    A major breakthrough in understanding the bacterial cell cycle is the discovery that bacteria exhibit a high degree of intracellular organization. Chromosomal loci and many protein complexes are positioned at particular subcellular sites. In this review, we examine recently discovered control mechanisms that make use of dynamically localized protein complexes to orchestrate the Caulobacter crescentus cell cycle. Protein localization, notably of signal transduction proteins, chromosome partiti...

  2. Bacterial coinfections in children with viral wheezing.

    Science.gov (United States)

    Lehtinen, P; Jartti, T; Virkki, R; Vuorinen, T; Leinonen, M; Peltola, V; Ruohola, A; Ruuskanen, O

    2006-07-01

    Bacterial coinfections occur in respiratory viral infections, but the attack rates and the clinical profile are not clear. The aim of this study was to determine bacterial coinfections in children hospitalized for acute expiratory wheezing with defined viral etiology. A total of 220 children aged 3 months to 16 years were investigated. The viral etiology of wheezing was confirmed by viral culture, antigen detection, serologic investigation, and/or PCR. Specific antibodies to common respiratory bacteria were measured from acute and convalescent serum samples. All children were examined clinically for acute otitis media, and subgroups of children were examined radiologically for sinusitis and pneumonia. Rhinovirus (32%), respiratory syncytial virus (31%), and enteroviruses (31%) were the most common causative viruses. Serologic evidence of bacterial coinfection was found in 18% of the children. Streptococcus pneumoniae (8%) and Mycoplasma pneumoniae (5%) were the most common causative bacteria. Acute otitis media was diagnosed in 44% of the children. Chest radiographs showed alveolar infiltrates in 10%, and paranasal radiographs and clinical signs showed sinusitis in 17% of the older children studied. Leukocyte counts and serum C-reactive protein levels were low in a great majority of patients. Viral lower respiratory tract infection in children is often associated with bacterial-type upper respiratory tract infections. However, coexisting bacterial lower respiratory tract infections that induce systemic inflammatory response are seldom detected.

  3. Bioinformatic Comparison of Bacterial Secretomes

    Institute of Scientific and Technical Information of China (English)

    Catharine Song; Aseem Kumar; Mazen Saleh

    2009-01-01

    The rapid increasing number of completed bacterial genomes provides a good op-portunity to compare their proteomes. This study was undertaken to specifically compare and contrast their secretomes-the fraction of the proteome with pre-dicted N-terminal signal sequences, both type Ⅰ and type Ⅱ. A total of 176 theoreti-cal bacterial proteomes were examined using the ExProt program. Compared with the Gram-positives, the Gram-negative bacteria were found, on average, to con-tain a larger number of potential Sec-dependent sequences. In the Gram-negative bacteria but not in the others, there was a positive correlation between proteome size and secretome size, while there was no correlation between secretome size and pathogenicity. Within the Gram-negative bacteria, intracellular pathogens were found to have the smallest secretomes. However, the secretomes of certain bacte-ria did not fit into the observed pattern. Specifically, the secretome of Borrelia burgdoferi has an unusually large number of putative lipoproteins, and the signal peptides of mycoplasmas show closer sequence similarity to those of the Gram-negative bacteria. Our analysis also suggests that even for a theoretical minimal genome of 300 open reading frames, a fraction of this gene pool (up to a maximum of 20%) may code for proteins with Sec-dependent signal sequences.

  4. Influence of Klebsiella pneumoniae CRP protein on bacterial adhesion and virulence in vitro%肺炎克雷伯菌转录调控子CRP对菌株粘附能力及细胞活性的影响

    Institute of Scientific and Technical Information of China (English)

    谭斌; 白群华; 罗美; 杨世亚; 薛健; 周锡鹏; 李迎丽; 邱景富

    2014-01-01

    Objective To analyze the adhesion and cell virulence of Klebsiella pneumonia wild type (WT) strain,complemented strain c-Δcrp (cAMP receptor protein) and mutant strain Δcrp,in order to investigate crp gene on the adhesion and cell toxicity of Klebsiella pneumonia.Methods After infection of A549 cells by Klebsiella pneumonia WT strain,c-Δcrp strain and Δcrp strain,the cells were lysed and the bacteria were quantified by plating appropriate dilutions on Luria-Bertani agar plates.LDH release was detected to estimate cell activity.Infection time and MOI were optimized.Results The adhesion ability of Klebsiella pneumonia WT (logCFU =5.145) and c-Δcrp strain (logCFU =4.915) was higher than that of Δcrp strain (logCFU =4.122) (P =0.004).The optimal conditions to determinate the LDH release included infected cells incubation for 8 h at 37 ℃,the developing time for 10 min in dark,and 1:10 dilution of the supernatant for test.The virulence of WT strain (70.69%) was significantly higher than that of Δcrp strain (19.54%) (P=0.001).Conclusion Knocking-out of crp gene causes obvious decrease of cellular toxicity and adhesion,comparing with the WT strain and c-Δcrp strain.Klebsiella pneumonia CRP protein positively regulates bacterial virulence and adhesion.%目的 分析肺炎克雷伯菌临床分离株WT(wild type)、回补株(c-Δcrp)和突变株(Δcrp)对人肺癌上皮细胞A549细胞的粘附能力及细胞活性的影响.方法 肺炎克雷伯菌WT株、c-Δcrp株和Δcrp株感染人肺癌上皮细胞A549,经裂解液裂解后平板计数计算粘附的菌量.LDH释放法检测细菌对细胞的毒性,优化感染时间和感染指数.结果 WT株及c-Δcrp株粘附的菌量分别为logCFU=5.145和logCFU=4.915,均高于Δcrp株(logCFU=4.122),差异有统计学意义(F=8.366,P=0.004).以MOI=1 000(细菌∶细胞=1000)的菌量感染靶细胞,37℃孵育8h,加底物液避光显色10 min,离心所得上清稀释10倍进行测定为最佳反应条件.WT

  5. Bacterial ice nucleation: significance and molecular basis.

    Science.gov (United States)

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation.

  6. Bacterial ice nucleation: significance and molecular basis.

    Science.gov (United States)

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation. PMID:8224607

  7. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. PMID:23808339

  8. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  9. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.; Butcher, Rebecca E.; Kan, Wan-Ting; Bird, Catherina H.; Ung, Kheng; Browne, Kylie A.; Baran, Katherine; Bashtannyk-Puhalovich, Tanya A.; Faux, Noel G.; Wong, Wilson; Porter, Corrine J.; Pike, Robert N.; Ellisdon, Andrew M.; Pearce, Mary C.; Bottomley, Stephen P.; Emsley, Jonas; Smith, A. Ian; Rossjohn, Jamie; Hartland, Elizabeth L.; Voskoboinik, Ilia; Trapani, Joseph A.; Bird, Phillip I.; Dunstone, Michelle A.; Whisstock, James C. (PMCI-A); (Monash); (Nottingham)

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.

  10. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  11. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  12. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  13. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  14. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  15. Modeling intraocular bacterial infections.

    Science.gov (United States)

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  16. The Carboxysome and Other Bacterial Microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Kerfeld, Cheryl A.; Greenleaf, William B.; Kinney, James N.

    2010-06-23

    - Carboxysomes are part of the carbon concentrating mechanism in cyanobacteria and chemoautotrophs. - Carboxysomes are a subclass of bacterial microcompartments (BMCs); BMCs can encapsulate a range of metabolic processes. - Like some viral particles, the carboxysome can be modeled as an icosahedron-in its case, having 4,000-5,000 hexameric shell subunits and 12 surface pentamers to generate curvature. - The threefold axis of symmetry of the CsoS1D protein in carboxysomes forms a pore that can open and close, allowing for selective diffusion. - Genetic modules encoding BMC shell proteins and the enzymes that they encapsulate are horizontally transferable, suggesting they enable bacteria to adapt to diverse environments.

  17. Hijacking mitochondria: bacterial toxins that modulate mitochondrial function.

    Science.gov (United States)

    Jiang, Jhih-Hang; Tong, Janette; Gabriel, Kipros

    2012-05-01

    Bacterial infection has enormous global social and economic impacts stemming from effects on human health and agriculture. Although there are still many unanswered questions, decades of research has uncovered many of the pathogenic mechanisms at play. It is now clear that bacterial pathogens produce a plethora of proteins known as "toxins" and "effectors" that target a variety of physiological host processes during the course of infection. One of the targets of host targeted bacterial toxins and effectors are the mitochondria. The mitochondrial organelles are major players in many biological functions, including energy conversion to ATP and cell death pathways, which inherently makes them targets for bacterial proteins. We present a summary of the toxins targeted to mitochondria and for those that have been studied in finer detail, we also summarize what we know about the mechanisms of targeting and finally their action at the organelle.

  18. Wzy-dependent bacterial capsules as potential drug targets.

    Science.gov (United States)

    Ericsson, Daniel J; Standish, Alistair; Kobe, Bostjan; Morona, Renato

    2012-10-01

    The bacterial capsule is a recognized virulence factor in pathogenic bacteria. It likely works as an antiphagocytic barrier by minimizing complement deposition on the bacterial surface. With the continual rise of bacterial pathogens resistant to multiple antibiotics, there is an increasing need for novel drugs. In the Wzy-dependent pathway, the biosynthesis of capsular polysaccharide (CPS) is regulated by a phosphoregulatory system, whose main components consist of bacterial-tyrosine kinases (BY-kinases) and their cognate phosphatases. The ability to regulate capsule biosynthesis has been shown to be vital for pathogenicity, because different stages of infection require a shift in capsule thickness, making the phosphoregulatory proteins suitable as drug targets. Here, we review the role of regulatory proteins focusing on Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli and discuss their suitability as targets in structure-based drug design.

  19. C-反应蛋白检测在小儿细菌性肺炎及支原体肺炎中的应用%Detection of C-reactive protein applied in diagnosis of children with bacterial pneumonia and mycoplasma pneumonia

    Institute of Scientific and Technical Information of China (English)

    贺箭飞

    2012-01-01

    目的 对比分析C反应蛋白检测在小儿细菌性肺炎和支原体肺炎的诊断价值.方法 选取148例肺炎患儿及同期进行健康体检的150例健康小儿作为研究对象,对所有受试者进行C-反应蛋白、肺炎支原体、血常规检测,对148例肺炎患儿治疗前后进行C-反应蛋白水平检测,比较健康小儿、支原体肺炎患儿、细菌性肺炎患儿的C-反应蛋白水平,比较细菌性肺炎患儿与支原体肺炎患儿治疗前后的C-反应蛋白水平,比较C-反应蛋白对不同类型肺炎患儿的阳性检测率,综合评价C-反应蛋白在肺炎患儿诊断鉴别中的价值.结果 健康患儿、肺炎支原体患儿、细菌性肺炎患儿的C反应蛋白分别为(3.58±0.79)、(14.82±3.69)、(68.54±28.31)mg/L;组间比较,肺炎组患儿明显高于健康组患儿(P<0.05),而细菌性肺炎组患儿明显高于支原体肺炎组患儿(P<0.05);细菌性肺炎患儿C-反应蛋白的阳性率为93.3%、支原体肺炎患儿为45.6%,患儿经治疗后,C-反应蛋白均明显下降,上述指标组间比较及治疗前后比较,差异均有统计学意义(P<0.05).结论 C-反应蛋白检测可作为鉴别细菌性肺炎和支原体肺炎的有效手段,有助于临床医师采取相应的治疗方法及早治疗患儿,以免耽误病情.%OBJECTIVE To compare and analyze the C-reactive protein detection for the diagnosis of the children with bacterial pneumonia and mycoplasma pneumonia. METHODS A total of 148 children with pneumonia and 150 healthy children were chosen as the research subjects. All subjects were taken with the C-reactive protein, Mycoplasma pneumoniae. and blood testing. The levels of C-reactive protein of 148 cases of pneumonia children were tested before and after the treatment. The C-reactive protein levels of the healthy children, the children with mycoplasma pneumonia, and the children with bacterial pneumonia were compared. The C-reactive protein levels of the children

  20. Bacterial Colony Optimization

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2012-01-01

    Full Text Available This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO. BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism is developed to simplify the bacterial optimization, which is spread over the whole optimization process. However, the other behaviors such as elimination, reproduction, and migration are implemented only when the given conditions are satisfied. Two types of interactive communication schemas: individuals exchange schema and group exchange schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12 benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems are performed, and the performances of the proposed algorithms are compared with five recent evolutionary algorithms to demonstrate the superiority of BCO.

  1. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  2. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  3. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  4. Bacterial Colony Optimization

    OpenAIRE

    Ben Niu; Hong Wang

    2012-01-01

    This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli) lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO). BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism i...

  5. Isolation of biologically active nanomaterial (inclusion bodies from bacterial cells

    Directory of Open Access Journals (Sweden)

    Peternel Špela

    2010-09-01

    Full Text Available Abstract Background In recent years bacterial inclusion bodies (IBs were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  6. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh;

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA....... Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation....... Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity...

  7. Procalcitonin in sepsis and bacterial infections

    Directory of Open Access Journals (Sweden)

    Abhijit Chaudhury

    2013-10-01

    Full Text Available The differentiation of sepsis and systemic bacterial infections from other causes of systemic inflammatory response is crucial from the therapeutic point of view. The clinical signs and symptoms are non-specific and traditional biomarkers like white cell count, erythrocyte sedimentation rate and C-reactive protein are not sufficiently sensitive or specific to guide therapeutic decisions. Procalcitonin (PCT is considered a reliable marker for the diagnosis and prognosis of moderate to severe bacterial infections, and it has also been evaluated to guide the clinicians in the rational usage of antibiotics. This review describes the diagnostic and prognostic role of PCT as a biomarker in various clinical settings along with the laboratory aspects and its usefulness in risk stratification and antibiotic stewardship.

  8. Immunization of newborns with bacterial conjugate vaccines.

    Science.gov (United States)

    van den Biggelaar, Anita H J; Pomat, William S

    2013-05-17

    Bacterial conjugate vaccines are based on the principle of coupling immunogenic bacterial capsular polysaccharides to a carrier protein to facilitate the induction of memory T-cell responses. Following the success of Haemophilus influenzae type b conjugate vaccines in the 1980s, conjugate vaccines for Streptococcus pneumoniae and Neisseria meningitidis infections were developed and proven to be effective in protecting children against invasive disease. In this review, the use of conjugate vaccines in human newborns is discussed. Neonatal Haemophilus influenzae type b and pneumococcal conjugate vaccination schedules have been trialed and proven to be safe, with the majority of studies demonstrating no evidence for the induction of immune tolerance. Whether their neonatal administration also results in an earlier induction of clinical protection in the first 2-3 critical months of life is still to be demonstrated. PMID:22728221

  9. C-反应蛋白检测在小儿细菌性肺炎与支原体肺炎中的临床比较%Clinical value of detection of C-reaction protein in diagnosis of pediatric bacterial pneumonia and Mycoplasma pneumonia:a comparative study

    Institute of Scientific and Technical Information of China (English)

    石丰月

    2013-01-01

    OBJECTIVE To study the clinical value of C-reactie protein (CRP) detection in diagnosis of the pediatric bacterial pneumonia and the Mycoplasma pneumonia so as to guide the diagnosis of infantile pneumonia.METHODS The children with bacterial pneumonia (the bacterial pneumonia group) and the children with Mycoplasma pneumonia (the Mycoplasma pneumonia group),who were treated in the pediatrics department from Sep 2010 to Sep 2012,were enrolled in the study,the healthy children receiving the medical examination (the control group)were also selected,with 80 cases in each group,then the change of CRP level was determined.RESULTS The CRP level of the control group was (3.24 ±0.45)mg/L,the bacterial pneumonia group before treatment (44.03±5.83) mg/L,the bacterial pneumonia group 3 days after the treatment (15.12±6.21) mg/L,the Mycoplasma pneumonia group before treatment (13.97±4.96) mg/L,the Mycoplasma pneumonia group 3 days after the treatment (5.29 ± 2.33) mg/L,the CRP level of the bacterial pneumonia group and the Mycoplasma pneumonia group before the treatment was significantly higher than that of the control group (P<0.05),the CRP level of the bacterial pneumonia group was higher than that of the Mycoplasma pneumonia group (P<0.05),the CRP level of the bacterial pneumonia group 3 days after treatment was higher than that of the Mycoplasma pneumonia group (P<0.05),the difference in the CRP level before and after the treatment between the bacterial pneumonia group and the Mycoplasma pneumonia group was statistically significant (P< 0.05).The positive rates of the CRP of the bacterial pneumonia group were 100.00% before the treatment and 52.50% 3 days after the treatment,which were respectively 66.25 % and 21.25 % in the Mycoplasma pneumonia group,the difference in the positive rate before and after the treatment between the bacterial pneumonia group and the Mycoplasmapneumonia group was statistically significant (P<0.05).CONCLUSION The positive

  10. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  11. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination. PMID:27349114

  12. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Directory of Open Access Journals (Sweden)

    Paula Blanco

    2016-02-01

    Full Text Available Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  13. Cerebrospinal fluid ferritin in children with viral and bacterial meningitis.

    Science.gov (United States)

    Rezaei, M; Mamishi, S; Mahmoudi, S; Pourakbari, B; Khotaei, G; Daneshjou, K; Hashemi, N

    2013-01-01

    Despite the fact that the prognosis of bacterial meningitis has been improved by the influence of antibiotics, this disease is still one of the significant causes of morbidity and mortality in children. Rapid differentiation between bacterial and aseptic meningitis, and the need for immediate antibiotic treatment in the former, is crucial in the prognosis of these patients. Ferritin is one of the most sensitive biochemical markers investigated in cerebrospinal fluid (CSF) for the early diagnosis of bacterial meningitis. The present study aims to evaluate the diagnostic capability of CSF ferritin in differentiating bacterial and viral meningitis in the paediatric setting. A cross-sectional study was carried out in the referral Children's Medical Center Hospital, Tehran, during 2008 and 2009. According to the inclusion criteria, CSF samples from 42 patients with suspected meningitis were obtained and divided into two meningitis groups, bacterial (n = 18) and viral (n = 24). Ferritin and other routine determinants (i.e., leucocytes, protein and glucose) were compared between the two groups. Ferritin concentration in the bacterial meningitis group was 106.39 +/- 86.96 ng/dL, which was considerably higher than in the viral meningitis group (10.17 +/- 14.09, P meningitis group and showed a positive correlation with CSF ferritin. In conclusion, this study suggests that CSF ferritin concentration is an accurate test for the early differentiation of bacterial and aseptic meningitis; however, further investigation on a larger cohort of patients is required to confirm this finding.

  14. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it. PMID:27092296

  15. Positively regulated bacterial expression systems.

    Science.gov (United States)

    Brautaset, Trygve; Lale, Rahmi; Valla, Svein

    2009-01-01

    Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high-level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC-XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (L-arabinose, L-rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone-related compounds, ε-caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC-XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/P(BAD), RhaR-RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.

  16. Rheumatoid arthritis and bacterial infections

    Directory of Open Access Journals (Sweden)

    N L Prokopjeva

    2008-01-01

    Full Text Available To study features of bacterial infections course in pts with rheumatoid arthritis (RA and changes of laboratory measures after focus of infection sanation. Material and methods. 46 pts with definite rheumatoid arthritis were examined at the time of comorbid infection (Cl detection and after infection focus sanation. Bacteriological test with evaluation of flora sensitivity to antibiotics by disco-diffusion method was performed at baseline and after the course of antibacterial therapy to assess its efficacy. Hemogram, serum fibrinogen, rheumatoid factor, circulating immune complexes (CIC, C-reactive protein levels were assessed. Serum interleukin (IL 1(3, IL6 and neopterin concentrations were examined by immune-enzyme assay in a part of pts. Typical clinical features of Cl were present in only 28 (60,9% pts. 13 (28,3% pts had fever, 12 (26,0% — leukocytosis, 15 (32,6% — changes of leucocyte populations. Some laboratory measures (thrombocytes, fibrinogen, CIC, neopterin levels significantly decreased (p<0,05 after infection focus sanation without correction of disease modifying therapy. Cl quite often develop as asymptomatic processes most often in pts with high activity and can induce disturbances promoting appearance of endothelial dysfunction, atherothrombosis and reduction of life duration. So timely detection and proper sanation of infection focuses should be performed in pts with RA

  17. Study on immunopathogenic effect of bacterial protein antigen and the cytolytic toxin antigen of vibrio vulnificus in BALB / c Mice%创伤弧菌菌体抗原及溶细胞毒素蛋白抗原对BALB/c小鼠的免疫病理研究

    Institute of Scientific and Technical Information of China (English)

    王贵明; 钟碧玲; 陈艳宇; 李亦明; 申洪

    2012-01-01

    目的 观察创伤弧菌菌体抗原及溶细胞毒素蛋白抗原对Vv感染小鼠的免疫保护作用,以期为Vv防治提供实验数据.方法 制作创伤弧菌菌体抗原及溶细胞毒素蛋白抗原,免疫BALB/c小鼠后观察免疫状态改变及其对Vv感染小鼠的免疫保护效应.结果 免疫后小鼠实验组CD19+B淋巴细胞百分比高于对照组,并产生相应特异性抗体,效价最高达1∶25600,创伤弧菌攻击实验实验组小鼠存活率为100%,显著高于对照组的13.33%.结论 创伤弧菌菌体抗原及溶细胞毒素蛋白抗原主动免疫能产生特异性抗体,能够有效对抗创伤弧菌感染,并明显提高小鼠的存活率.%Objective To investigate whether Vibrio vulnificus bacterial protein antigen and the cytolytic toxin antigen can induce the effective immune protection against Vibrio vulnificus infection.Methods BALB/c mice were immunized with bacterial cytolytic toxin antigen protein antigen of Vibrio vulnificus to evaluate its ability to stimulate immune response.The protective efficacy of immunized mice was evaluated by active immunization and intraperitoneal challenge with V.vulnificus in mice.Results The immunized mice produced higher percentage of CD19+ B lymphocytes and high level specific antibodies (titers up to 1∶25600).All immunized mice survived from lethal challenge with V.vulnificus,while only 13.33% of mice in control group survived at the end of challenged experiment.Conclusions The bacterial protein antigen and cytolytic toxin antigen of Vibrio vulnificus are capable of inducing specific antibody response in mice to confer effective protection against lethal challenge with V.vulnificus.

  18. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  19. Combined scanning transmission X-ray and electron microscopy for the characterization of bacterial endospores

    OpenAIRE

    Jamroskovic, Jan; Shao, Paul P.; Suvorova Buffat, Elena; Barak, Imrich; Bernier-Latmani, Rizlan

    2014-01-01

    Endospores (also referred to as bacterial spores) are bacterial structures formed by several bacterial species of the phylum Firmicutes. Spores form as a response to environmental stress. These structures exhibit remarkable resistance to harsh environmental conditions such as exposure to heat, desiccation, and chemical oxidants. The spores include several layers of protein and peptidoglycan that surround a core harboring DNA as well as high concentrations of calcium and dipicolinic acid (DPA)...

  20. Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections

    OpenAIRE

    Liu, Zhuoming; Petersen, Robert; Devireddy, L.

    2013-01-01

    Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens whose siderophores would normally be chelated by 24p3. Specific granule deficiency (...

  1. Antimicrobials for bacterial bioterrorism agents.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  2. A field study of ovine bacterial meningoencephalitis.

    Science.gov (United States)

    Scott, P R; Sargison, N D; Penny, C D; Pirie, R S

    1994-08-13

    Bacterial meningoencephalitis most commonly affected lambs two to four weeks old (median three weeks, range three days to six months) with clinical signs of episcleral congestion, lack of suck reflex, weakness, altered gait and depression extending to stupor, but hyperaesthesia to auditory and tactile stimuli. Opisthotonos was observed during the agonal stages of the disease. Analysis of lumbosacral cerebrospinal fluid revealed a highly significant increase in protein concentration (P sheep, control measures should ensure an adequate transfer of passive antibody, repeated treatments of the navel, and hygienic conditions in the lambing and rearing environments. PMID:7985344

  3. Solving the mysteries of the bacterial cell – application of novel techniques in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Magdalena Donczew

    2011-01-01

    Full Text Available We have reviewed how the development of fluorescent markers, triggered by the discovery of green fluorescence protein and its other color variants leading to the establishment of methods for studies of protein interactions with application of fluorescent proteins, affected the view of bacterial cell organization. Application of the new microscopic methods allowed localization of proteins and chromosomal regions, and observation of their migration in real time. These studies revealed the spatial organization of bacterial cells which includes specific subcellular localization of proteins, the presence of dynamic cytoskeletal structures, orchestrated and active segregation of chromosomes, and spatiotemporal gene regulation.

  4. [Small intestine bacterial overgrowth].

    Science.gov (United States)

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  5. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  6. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  7. System-level design of bacterial cell cycle control

    OpenAIRE

    McAdams, Harley H.; Shapiro, Lucy

    2009-01-01

    Understanding of the cell cycle control logic in Caulobacter has progressed to the point where we now have an integrated view of the operation of an entire bacterial cell cycle system functioning as a state machine. Oscillating levels of a few temporally-controlled master regulator proteins in a cyclical circuit drive cell cycle progression. To a striking degree, the cell cycle regulation is a whole cell phenomenon. Phospho-signaling proteins and proteases dynamically deployed to specific loc...

  8. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.;

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...

  9. Capsule shields the function of short bacterial adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Dalsgaard, D.; Klemm, Per

    2004-01-01

    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can...

  10. Protein-protein fusion catalyzed by sortase A.

    Science.gov (United States)

    Levary, David A; Parthasarathy, Ranganath; Boder, Eric T; Ackerman, Margaret E

    2011-04-06

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  11. Protein-protein fusion catalyzed by sortase A.

    Directory of Open Access Journals (Sweden)

    David A Levary

    Full Text Available Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  12. Procalcitonin,C-reactive protein and interleukin-6 in differential diagnosis of gram-positive and gram-negative bacterial bloodstream infections%降钙素原及 C-反应蛋白与白细胞介素-6鉴别细菌血流感染的研究

    Institute of Scientific and Technical Information of China (English)

    谢尹晶; 兰亚婷; 徐舒敏; 陈文燕; 陈运霞; 杨继勇; 王成彬

    2015-01-01

    目的:探讨C‐反应蛋白(CRP)、降钙素原(PCT)和白细胞介素‐6(IL‐6)鉴别临床革兰阳性菌和革兰阴性菌血流感染的作用,以期更好地辅助临床早期鉴别诊断。方法选取2012年1月-2013年1月医院连续两次血培养阳性的细菌性血流感染患者223例,其中革兰阳性菌血流感染组共102例,革兰阴性菌血流感染组共121例,健康对照组100名,在血培养标本采集当天收集血液标本,检测各组的血清中 CRP、PCT 和 IL‐6浓度,采用Mann‐Whitney U检验比较3个指标在3组间的差异,用受试者工作特征曲线(ROC曲线)分析各指标鉴别革兰阳性菌和革兰阴性菌血流感染的作用。结果血流感染患者的CRP、PCT 和IL‐6浓度均较健康对照组明显升高(P<0.05),CRP、PCT和IL‐6中位数对照组分别为0.50 mg/dl、0.09 ng/ml、2.10 pg/ml;革兰阳性菌血流感染组分别为4.70 mg/dl、1.37 ng/ml、47.58 pg/ml;革兰阴性菌血流感染组分别为7.56 mg/dl、3.93 ng/ml、276.20 pg/ml;CRP和PCT的ROC曲线下面积在革兰阳性菌血流感染组(0.889和0.894)与革兰阴性菌血流感染组(0.963和9.952)之间差异无统计学意义,IL‐6的ROC曲线下面积在革兰阴性菌感染组(0.967)明显高于革兰阳性菌血流感染组(0.804)(P<0.05)。结论 CRP和PCT在革兰阳性菌和革兰阴性菌血流感染之间无差异,IL‐6在革兰阴性菌血流感染的升高水平明显高于革兰阳性菌。%OBJECTIVE To discuss the value of C‐reactive protein (CRP) ,procalcitonin (PCT ) and interleukin‐6 (IL‐6) in differential diagnosis of patients with bloodstream infections caused by gram‐positive and gram‐negative bacteria so as to better facilitate early clinical differential diagnosis .METHODS Totally 223 patients with blood‐stream infections whose two consecutive blood culture results

  13. Tissue protein nitration and peripheral blood endotoxin activity are indicative of the severity of systemic organ compromise in naturally-occurring clinical cases of bacterial mastitis in Holstein dairy cows

    Science.gov (United States)

    The objective of this survey study was to determine a relationship between the intensity of tissue protein tyrosine nitration measured in samples of mammary gland, liver, pancreas and lung compared to estimated blood endotoxin (LPS) activity. Blood was collected from nine multiparous Holstein cows...

  14. 细菌多糖结合疫苗载体蛋白的免疫原性干扰作用%Immune interference of carrier proteins in bacterial glycoconjugate vaccines

    Institute of Scientific and Technical Information of China (English)

    陈琼

    2013-01-01

    细菌多糖蛋白结合疫苗(b型流感嗜血杆菌、脑膜炎奈瑟菌和肺炎链球菌多糖结合疫苗)普遍用于2岁以下婴幼儿免疫.目前该类疫苗广泛使用的蛋白载体有破伤风类毒素(tetanus toxoid,TT)、白喉类毒素(diphtheria toxoid,DT)、CRM197(白喉毒素的一种突变体)和未分型流感嗜血杆菌蛋白D(nontypeable haemophilus influenzae protein D,PD).本文就目前这类疫苗免疫接种中载体特异的T辅助细胞刺激作用、载体诱导的表位抑制作用(carrier-inducedepitopic suppression,CIES)和旁观者干扰效应进行初步探讨.%The development of polysaccharide-protein conjugate vaccines has been instrumental in preventing potentially fatal disease due to Haemophilus influenzae (Hib),Neisseria meningitidis and Streptococcus pneumonioe in infants at ages of less than 2 years.The widely used carrier proteins include tetanus toxoid (TT),diphtheria toxoid (DT),diphtheria toxoid variant CRM197 protein and nontypeable Haemophilus influenzae protein D (PD).The mechanisms of interference on responses to conjugate vaccines,including carrier-specific enhancement of T-cell help,carrier-induced-epitopic suppression (CIES) and bystander interference,are reviewed in this paper.

  15. Steps in the bacterial flagellar motor.

    Directory of Open Access Journals (Sweden)

    Thierry Mora

    2009-10-01

    Full Text Available The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines.

  16. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond

    OpenAIRE

    Zückert, Wolfram R.

    2014-01-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., grampositive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep pro...

  17. Characterization and structure of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning without the usually fused oxidase domain (MnmC1).

    Science.gov (United States)

    Kitamura, Aya; Nishimoto, Madoka; Sengoku, Toru; Shibata, Rie; Jäger, Gunilla; Björk, Glenn R; Grosjean, Henri; Yokoyama, Shigeyuki; Bessho, Yoshitaka

    2012-12-21

    Post-transcriptional modifications of the wobble uridine (U34) of tRNAs play a critical role in reading NNA/G codons belonging to split codon boxes. In a subset of Escherichia coli tRNA, this wobble uridine is modified to 5-methylaminomethyluridine (mnm(5)U34) through sequential enzymatic reactions. Uridine 34 is first converted to 5-carboxymethylaminomethyluridine (cmnm(5)U34) by the MnmE-MnmG enzyme complex. The cmnm(5)U34 is further modified to mnm(5)U by the bifunctional MnmC protein. In the first reaction, the FAD-dependent oxidase domain (MnmC1) converts cmnm(5)U into 5-aminomethyluridine (nm(5)U34), and this reaction is immediately followed by the methylation of the free amino group into mnm(5)U34 by the S-adenosylmethionine-dependent domain (MnmC2). Aquifex aeolicus lacks a bifunctional MnmC protein fusion and instead encodes the Rossmann-fold protein DUF752, which is homologous to the methyltransferase MnmC2 domain of Escherichia coli MnmC (26% identity). Here, we determined the crystal structure of the A. aeolicus DUF752 protein at 2.5 Å resolution, which revealed that it catalyzes the S-adenosylmethionine-dependent methylation of nm(5)U in vitro, to form mnm(5)U34 in tRNA. We also showed that naturally occurring tRNA from A. aeolicus contains the 5-mnm group attached to the C5 atom of U34. Taken together, these results support the recent proposal of an alternative MnmC1-independent shortcut pathway for producing mnm(5)U34 in tRNAs. PMID:23091054

  18. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  19. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  20. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    Science.gov (United States)

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria. PMID:26901800

  1. Changes in rhizosphere bacterial gene expression following glyphosate treatment.

    Science.gov (United States)

    Newman, Molli M; Lorenz, Nicola; Hoilett, Nigel; Lee, Nathan R; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-05-15

    In commercial agriculture, populations and interactions of rhizosphere microflora are potentially affected by the use of specific agrichemicals, possibly by affecting gene expression in these organisms. To investigate this, we examined changes in bacterial gene expression within the rhizosphere of glyphosate-tolerant corn (Zea mays) and soybean (Glycine max) in response to long-term glyphosate (PowerMAX™, Monsanto Company, MO, USA) treatment. A long-term glyphosate application study was carried out using rhizoboxes under greenhouse conditions with soil previously having no history of glyphosate exposure. Rhizosphere soil was collected from the rhizoboxes after four growing periods. Soil microbial community composition was analyzed using microbial phospholipid fatty acid (PLFA) analysis. Total RNA was extracted from rhizosphere soil, and samples were analyzed using RNA-Seq analysis. A total of 20-28 million bacterial sequences were obtained for each sample. Transcript abundance was compared between control and glyphosate-treated samples using edgeR. Overall rhizosphere bacterial metatranscriptomes were dominated by transcripts related to RNA and carbohydrate metabolism. We identified 67 differentially expressed bacterial transcripts from the rhizosphere. Transcripts downregulated following glyphosate treatment involved carbohydrate and amino acid metabolism, and upregulated transcripts involved protein metabolism and respiration. Additionally, bacterial transcripts involving nutrients, including iron, nitrogen, phosphorus, and potassium, were also affected by long-term glyphosate application. Overall, most bacterial and all fungal PLFA biomarkers decreased after glyphosate treatment compared to the control. These results demonstrate that long-term glyphosate use can affect rhizosphere bacterial activities and potentially shift bacterial community composition favoring more glyphosate-tolerant bacteria.

  2. Impairment of the bacterial biofilm stability by triclosan.

    Directory of Open Access Journals (Sweden)

    Helen V Lubarsky

    Full Text Available The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition--isolated from sediments of the Eden Estuary (Scotland, UK--on non-cohesive glass beads (<63 µm and exposed to a range of triclosan concentrations (control, 2-100 µg L(-1 was monitored over time by Magnetic Particle Induction (MagPI. In parallel, bacterial cell numbers, division rate, community composition (DGGE and EPS (extracellular polymeric substances: carbohydrates and proteins secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  3. Decorating microbes : surface display of proteins on Escherichia coli

    NARCIS (Netherlands)

    van Bloois, Edwin; Winter, Remko T.; Kolmar, Harald; Fraaije, Marco W.

    2011-01-01

    Bacterial surface display entails the presentation of recombinant proteins or peptides on the surface of bacterial cells. Escherichia coil is the most frequently used bacterial host for surface display and, as such, a variety of E. coil display systems have been described that primarily promote the

  4. Channel-forming bacterial toxins in biosensing and macromolecule delivery.

    Science.gov (United States)

    Gurnev, Philip A; Nestorovich, Ekaterina M

    2014-08-21

    To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.

  5. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    Directory of Open Access Journals (Sweden)

    Philip A. Gurnev

    2014-08-01

    Full Text Available To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on “Intracellular Traffic and Transport of Bacterial Protein Toxins”, reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their “second life” in a variety of developing medical and technological applications.

  6. Unraveling Plant Responses to Bacterial Pathogens through Proteomics

    Directory of Open Access Journals (Sweden)

    Tamara Zimaro

    2011-01-01

    Full Text Available Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.

  7. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  8. Bacterial inosine 5'-monophosphate dehydrogenase ("IMPDH") DNA as a dominant selectable marker in mammals and other eukaryotes

    Science.gov (United States)

    Huberman, Eliezer; Baccam, Mekhine J.

    2007-02-27

    The present invention relates to a nucleic acid sequence and its corresponding protein sequence useful as a dominant selectable marker in eukaryotes. More specifically the invention relates to a nucleic acid encoding a bacterial IMPDH gene that has been engineered into a eukaryotic expression vectors, thereby permitting bacterial IMPDH expression in mammalian cells. Bacterial IMPDH expression confers resistance to MPA which can be used as dominant selectable marker in eukaryotes including mammals. The invention also relates to expression vectors and cells that express the bacterial IMPDH gene as well as gene therapies and protein synthesis.

  9. Newer systems for bacterial resistances to toxic heavy metals.

    OpenAIRE

    Silver, S; Ji, G.

    1994-01-01

    Bacterial plasmids contain specific genes for resistances to toxic heavy metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, and Zn2+. Recent progress with plasmid copper-resistance systems in Escherichia coli and Pseudomonas syringae show a system of four gene products, an inner membrane protein (PcoD), an outer membrane protein (PcoB), and two periplasmic Cu(2+)-binding proteins (PcoA and PcoC). Synthesis of this system is governed by two regulator...

  10. Bacterial Communities: Interactions to Scale

    Science.gov (United States)

    Stubbendieck, Reed M.; Vargas-Bautista, Carol; Straight, Paul D.

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  11. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  12. Meningitis bacteriana Bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Ana Teresa Alvarado Guevara

    2006-03-01

    causales son virales lo cual conlleva a las diferentes sub-clasificaciones. También en ciertos casos puede ser ocasionada por hongos, bacterias atípicas, micobacterias y parásitos.In Costa Rica the bacterial meningitis had turn into a high-priority subject in which to monitoring epidemiologist. It had been talked about in the last months, to dice an increase in the attention is published of this subject, due to this phenomenon it becomes necessary to make a revision of topic. Meningitis is an inflammation of leptomeninges and colonization of the subarachnoid cerebrospinal fluid (LCR due to different agents, which produces meningeal symptoms (ex. migraine, neck rigidity, and photophobia and pleocytosis in LCR. De pending on the variables to take into account is possible to group it in different classifications, taking into account the time of evolution are possible to be divided in acute or chronic, to first with few hours or days of beginning of the symptoms, whereas the chronicle also presents a silence course but of the disease of approximately 4 weeks of instauration. There is a difference according to its etiologic agent; they can be infectious and non-infectious. Examples of common non-infectious causes include medications (ex, nonsteroidal anti-inflammatory drugs, and antibiotics and carcinomatosis. A classification exists as well according to the causal agent. The acute bacterial meningitis remarks a bacterial origin of the syndrome, which characterizes by the by an acute onset of meningeal symptoms and neutrophilic pleocytosis. Each one of the bacteriological agents, parasitic or fungus finishes by characterizing the different presentations of the clinical features (ex, meningocóccica meningitis, Cryptococcus meningitis. Finally, there is also the aseptic meningitis, denominated in this form because it’s nonpyogenic cellular response caused by many types of agents. The patients show an acute beginning of symptoms, fever and lymphocytic pleocytosis. After

  13. The Application of White Blood Cel s (WBC) and C-reactive Protein Joint Detection in the Diagnosis of Pediatric Bacterial Infection Disease%C反应蛋白和白细胞(WBC)联合检测在儿科细菌性感染疾病诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    林华峰; 杜豪伟

    2013-01-01

    目的:探讨C反应蛋白(CRP)和白细胞(WBC)联合检测在儿科各种细菌感染疾病诊断中的应用。方法选择102例细菌性感染患儿和75例无感染性疾病患儿进行CRP和白细胞(WBC)联合检测。结果感染组CRP、WBC阳性率较无感染性疾病明显增高,差异有统计学意义(P<0.05);感染组CRP阳性率较WBC阳性率明显高,差异有统计学意义(P<0.05)。结论 CRP和WBC的联合检测对儿科各种感染性疾病的早期诊断和有效监察治疗效果,及合理使用抗生素和判断预后方面有一定意义。%Objective To evaluate the role of c-reactive protein (CRP) and white blood cells (WBC) detection in the diagnosis of pediatric bacterial infection disease. Methods Choose 102 cases of children with bacterial infection and 75 cases of children with infectious disease for CRP and white blood cells (WBC) joint detection. Results CRP, WBC infection group were significantly higher, less infectious diseases, the difference was statistically significant (P<0.05);infection group of CRP positive rate compared with the positive ratio in the WBC is high, the difference was statistically significant (P<0.05). Conclusion Joint detection of CRP and WBC in pediatric infectious diseases early diagnosis and effective supervision of all kinds of effect, and has certain significance to reasonable use of antibiotics and prognosis.

  14. Bacterial Culture of Neonatal Sepsis

    OpenAIRE

    AH Movahedian; R Moniri; Z Mosayebi

    2006-01-01

    Neonatal bacterial sepsis is one of the major cause of morbidity and mortality in neonates. This retrospective study was performed to determine the incidence of bacterial sepsis with focus on Gram negative organisms in neonates admitted at Beheshti Hospital in Kashan, during a 3-yr period, from September 2002 to September 2005. Blood culture was performed on all neonates with risk factors or signs of suggestive sepsis. Blood samples were cultured using brain heart infusion (BHI) broth accordi...

  15. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  16. Bacterial Alkaloids Prevent Amoebal Predation.

    Science.gov (United States)

    Klapper, Martin; Götze, Sebastian; Barnett, Robert; Willing, Karsten; Stallforth, Pierre

    2016-07-25

    Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae. PMID:27294402

  17. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  18. Bacterial genome reengineering.

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E

    2011-01-01

    The web application PrimerPair at ecogene.org generates large sets of paired DNA sequences surrounding- all protein and RNA genes of Escherichia coli K-12. Many DNA fragments, which these primers amplify, can be used to implement a genome reengineering strategy using complementary in vitro cloning and in vivo recombineering. The integration of a primer design tool with a model organism database increases the level of quality control. Computer-assisted design of gene primer pairs relies upon having highly accurate genomic DNA sequence information that exactly matches the DNA of the cells being used in the laboratory to ensure predictable DNA hybridizations. It is equally crucial to have confidence that the predicted start codons define the locations of genes accurately. Annotations in the EcoGene database are queried by PrimerPair to eliminate pseudogenes, IS elements, and other problematic genes before the design process starts. These projects progressively familiarize users with the EcoGene content, scope, and application interfaces that are useful for genome reengineering projects. The first protocol leads to the design of a pair of primer sequences that were used to clone and express a single gene. The N-terminal protein sequence was experimentally verified and the protein was detected in the periplasm. This is followed by instructions to design PCR primer pairs for cloning gene fragments encoding 50 periplasmic proteins without their signal peptides. The design process begins with the user simply designating one pair of forward and reverse primer endpoint positions relative to all start and stop codon positions. The gene name, genomic coordinates, and primer DNA sequences are reported to the user. When making chromosomal deletions, the integrity of the provisional primer design is checked to see whether it will generate any unwanted double deletions with adjacent genes. The bad designs are recalculated and replacement primers are provided alongside the

  19. Synthesis and Characterization of Protein-Conjugated Silver Nanoparticles/Silver Salt Loaded Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Film for Prevention of Bacterial Infections and Potential Use in Bone Tissue Engineering Applications

    Science.gov (United States)

    Bakare, Rotimi Ayotunde

    Failure of orthopedic implants due to bacterial infection has been a major concern in bone tissue engineering. To this end, we have formulated a potential orthopedic implant made of naturally occurring biodegradable polymer, i.e. poly (3-hydroxylbutyrate-co-3-hydroxylvalerate) (PHBV), modified with BSA conjugated silver nanoparticles and or silver chloride. Upon release of Ag NPs and or Ag+ in the implant region, can promote aseptic environment by inhibition of bacteria growth and also support/maintain bone cell adhesion, growth, and proliferation. For formulating nanoparticles loaded PHBV scaffold, we exploit specific interaction between bovine serum albumin (BSA) of BSA capped silver nanoparticles and collagen of collagen immobilized PHBV scaffold. Therefore, the first part of this study dealt with synthesis and characterization of collagen immobilized PHBV film for loading of BSA stabilized silver (Ag/BSA) nanoparticles. Two different approaches were used to immobilize collagen on macroporous PHBV film. First approach uses thermal radical copolymerization with 2-hydroxyethylmethacrylate (HEMA), while the second approach uses aminolysis to functionalize macroporous PHBV film. Using collagen crosslinker, type I collagen was covalently grafted to formulate collagen immobilized PHEMA-g-PHBV and collagen immobilized NH2-PHBV films, respectively. Spectroscopic (FTIR, XPS), physical (SEM), and thermal (TGA) techniques were used to characterize the functionalized PHBV films. The Ag/BSA nanoparticles were then loaded on collagen immobilized PHBV films and untreated PHBV films. The concentration of nanoparticles loaded on PHBV film was determined by atomic absorption spectrometry and fluorescence spectroscopy. The amount of nanoparticles loaded on collagen immobilized PHBV film was found to be significantly greater than that on untreated PHBV film. The amount of Ag/BSA nanoparticles loaded on collagen immobilized PHBV film was found to depend on the concentration of Ag

  20. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.