WorldWideScience

Sample records for bacterial protein antigens

  1. Cyclic enterobacterial common antigen: Potential contaminant of bacterially expressed protein preparations

    International Nuclear Information System (INIS)

    We have previously reported the identification of the cyclic enterobacterial common antigen (ECACYC) polysaccharide in E. coli strains commonly used for heterologous protein expression (PJA Erbel et al., J. Bacteriol.185 (2003): 1995). Following this initial report, interactions among several NMR groups established that characteristic N-acetyl signals of ECACYC have been observed in 15N-1H HSQC spectra of samples of various bacterially-expressed proteins suggesting that this water-soluble carbohydrate is a common contaminant. We provide NMR spectroscopic tools to recognize ECACYC in protein samples, as well as several methods to remove this contaminant. Early recognition of ECA-based NMR signals will prevent time-consuming analyses of this copurifying carbohydrate

  2. Linkage of bacterial protein synthesis and presentation of MHC class I-restricted Listeria monocytogenes-derived antigenic peptides.

    Directory of Open Access Journals (Sweden)

    Silke Grauling-Halama

    Full Text Available The processing and MHC class I-restricted presentation of antigenic peptides derived from the p60 protein of the facultative intracellular bacterium Listeria monocytogenes is tightly linked to bacterial protein synthesis. We used non-linear regression analysis to fit a mathematical model of bacterial antigen processing to a published experimental data set showing the accumulation and decay of p60-derived antigenic peptides in L. monocytogenes-infected cells. Two alternative models equally describe the experimental data. The simulation accounting for a stable and a hypothetical rapidly degraded form of antigen predicts that the antigenic peptides p60 217-225 and p60 449-457 are derived from a putative instable form of p60 with an average intracellular half-life of approximately 3 minutes accounting for approximately 31% of all p60 molecules synthesized. The alternative model predicts that both antigenic peptides are processed from p60 degraded intracellularly with a half-life of 109 min and that antigen processing only occurs as long as bacterial protein synthesis is not inhibited. In order to decide between both models the intracellular accumulation of p60 in infected cells was studied experimentally and compared with model predictions. Inhibition of p60 degradation by the proteasome inhibitor epoxomicin revealed that during the first 3 h post infection approximately 30% of synthesized p60 molecules were degraded. This value is significantly lower than the approximately 50% degradation of p60 that would be expected in the presence of the predicted putative short-lived state of p60 and also fits precisely with the predictions of the alternative model, indicating that the tight connection of bacterial protein biosynthesis and antigen processing and presentation of L. monocyctogenes-derived antigenic peptides is not caused by the presence of a highly instable antigenic substrate.

  3. Use of in vivo-induced antigen technology (IVIAT for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens

    Directory of Open Access Journals (Sweden)

    Lu Chengping

    2009-09-01

    Full Text Available Abstract Background Streptococcus suis serotype 2 (SS2 is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT, an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection. Results Convalescent-phase sera from pigs infected with SS2 were pooled, adsorbed against in vitro antigens, and used to screen SS2 genomic expression libraries. Upon analysis of the identified proteins, we were able to assign a putative function to 40 of the 48 proteins. These included proteins implicated in cell envelope structure, regulation, molecule synthesis, substance and energy metabolism, transport, translation, and those with unknown functions. The in vivo-induced changes in the expression of 10 of these 40 genes were measured using real-time reverse transcription (RT-PCR, revealing that the expression of 6 of the 10 genes was upregulated in the in vivo condition. The strain distribution of these 10 genes was analyzed by PCR, and they were found in the most virulent SS2 strains. In addition, protein sequence alignments of the newly identified proteins demonstrate that three are putative virulence-associated proteins. Conclusion Collectively, our results suggest that these in vivo-induced or upregulated genes may contribute to SS2 disease development. We hypothesize that the identification of factors specifically induced or upregulated during SS2 infection will aid in our understanding of SS2 pathogenesis and may contribute to the control SS2 outbreaks. In addition, the proteins identified

  4. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    Science.gov (United States)

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system. PMID:27045683

  5. Relationship between antigen concentration and bacterial load in Pacific salmon with bacterial kidney disease.

    Science.gov (United States)

    Hamel, Owen S; Anderson, James J

    2002-08-29

    Using data collected to test spawning female Pacific salmon (Oncorhynchus kisutch and O. tshawytscha for the presence and severity of bacterial kidney disease (BKD), a mathematical model of the relationship between bacterial load and antigen concentration in tissues and ovarian fluid is developed. Renibacterium salmoninarum, the causative agent of BKD, secretes large amounts of a 57 kDa protein ('p57'), its major soluble antigen, which eventually breaks down or is otherwise removed from free circulation. Bacterial load and soluble antigen concentration in tissues are strong indicators of fish health, while in ovarian fluid they are predictors of the success of offspring. Model results indicate either an exponentially increasing antigen removal rate or an exponentially decreasing per-bacterium antigen secretion rate with increasing antigen concentration. Possible mechanisms underlying the observed relationship include a nonlinear increasing autolytic rate of the 'p57' antigen and a bacterium-antigen interaction threshold which prevents bacterial antigen secretion. PMID:12363089

  6. Surfactant protein D augments bacterial association but attenuates major histocompatibility complex class II presentation of bacterial antigens

    DEFF Research Database (Denmark)

    Hansen, Søren; Lo, Bernice; Evans, Kathy;

    2006-01-01

    Development of dementia, including Alzheimer's disease (AD), is associated with lipid dysregulation and inflammation. As the host defense lectin surfactant protein D (SP-D) has multiple effects in lipid homeostasis and inflammation, the correlation between SP-D concentrations and development of d...

  7. Antigenicity and Immunogenicity of Plasmodium vivax Merozoite Surface Protein-3

    OpenAIRE

    Amanda R Bitencourt; Elaine C Vicentin; Jimenez, Maria C.; Ricardo Ricci; Leite, Juliana A.; Fabio T Costa; Luis C Ferreira; Bruce Russell; François Nosten; Laurent Rénia; Galinski, Mary R.; Barnwell, John W.; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated...

  8. Bacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Sreerupa Challa

    2011-01-01

    Full Text Available Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O1 BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E. coli LT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH, or the nontoxic pseudomonas exotoxin A (ntPE was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.

  9. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by...

  10. Purification of antibodies to bacterial antigens by an immunoadsorbent and a method to quantify their reaction with insoluble bacterial targets

    International Nuclear Information System (INIS)

    A combination of procedures was employed to develop a radioimmunoassay which quantified the binding of antibodies to antigens of either intact Propionibacterium acnes or to antigens of insoluble extracts derived from the bacteria. Reactive antibody populations were purified by use of bacterial immunoadsorbents which were prepared by coupling P. acnes to diethylaminoethyl cellulose. Binding of antibodies was detected with [125I]staphylococcal protein A ([125I]SpA) and optimal conditions for the assay defined by varying the amounts of antibodies, bacterial antigenic targets and [125I]SpA. In antibody excess, 100% of available [125I]SpA was bound by the target-antibody complexes. However, when antibody concentration was limiting, a linear relationship was demonstrated between per cent specific binding of[125I]SpA and antibodies bound to bacterial targets. These results were achieved only with immunoadsorbent-purified antibody populations and not with hyperimmune sera or IgG. The radioimmunoassay detected subtle antigenic differences and similarities between P. acnes, P. acnes extracts and a variety of unrelated microorganisms. (Auth.)

  11. Identification of antigenic proteins of the nosocomial pathogen Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL. After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens

  12. Antigenic properties of avian hepatitis E virus capsid protein.

    Science.gov (United States)

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail. PMID:26340899

  13. Self-Adjuvanting Bacterial Vectors Expressing Pre-Erythrocytic Antigens Induce Sterile Protection against Malaria

    Directory of Open Access Journals (Sweden)

    Elke eBergmann-Leitner

    2013-07-01

    Full Text Available Genetically inactivated, Gram-negative bacteria that express malaria vaccine candidates represent a promising novel self-adjuvanting vaccine approach. Antigens expressed on particulate bacterial carriers not only target directly to antigen-presenting cells but also provide a strong danger signal thus circumventing the requirement for potent extraneous adjuvants. E. coli expressing malarial antigens resulted in the induction of either Th1 or Th2 biased responses that were dependent on both antigen and sub-cellular localization. Some of these constructs induced higher quality humoral responses compared to recombinant protein and most importantly they were able to induce sterile protection against sporozoite challenge in a murine model of malaria. In light of these encouraging results, two major Plasmodium falciparum pre-erythrocytic malaria vaccine targets, the Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS fused to the Maltose-binding protein in the periplasmic space and the Circumsporozoite Protein (CSP fused to the Outer membrane protein A in the outer membrane were expressed in a clinically relevant, attenuated Shigella strain (Shigella flexneri 2a. This type of live attenuated vector has previously undergone clinical investigations as a vaccine against shigellosis. Using this novel delivery platform for malaria, we find that vaccination with the whole organism represents an effective vaccination alternative that induces protective efficacy against sporozoite challenge. Shigella GeMI-Vax expressing malaria targets warrant further evaluation to determine their full potential as a dual disease, multivalent, self-adjuvanting vaccine system, against both shigellosis and malaria.

  14. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    Science.gov (United States)

    Bitencourt, Amanda R; Vicentin, Elaine C; Jimenez, Maria C; Ricci, Ricardo; Leite, Juliana A; Costa, Fabio T; Ferreira, Luis C; Russell, Bruce; Nosten, François; Rénia, Laurent; Galinski, Mary R; Barnwell, John W; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential. PMID:23457498

  15. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    Directory of Open Access Journals (Sweden)

    Amanda R Bitencourt

    Full Text Available A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3 as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2% and at least 1 recombinant protein representing PvMSP-3β (79.1%. In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin. Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential.

  16. A Novel Treponema pallidum Antigen, TP0136, Is an Outer Membrane Protein That Binds Human Fibronectin▿

    OpenAIRE

    Brinkman, Mary Beth; McGill, Melanie A.; Pettersson, Jonas; Rogers, Arthur; Matějková, Petra; Šmajs, David; Weinstock, George M.; Norris, Steven J; Palzkill, Timothy

    2008-01-01

    The antigenicity, structural location, and function of the predicted lipoprotein TP0136 of Treponema pallidum subsp. pallidum were investigated based on previous screening studies indicating that anti-TP0136 antibodies are present in the sera of syphilis patients and experimentally infected rabbits. Recombinant TP0136 (rTP0136) protein was purified and shown to be strongly antigenic during human and experimental rabbit infection. The TP0136 protein was exposed on the surface of the bacterial ...

  17. Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations.

    Science.gov (United States)

    Canales, Mario; Labruna, Marcelo B; Soares, João F; Prudencio, Carlos R; de la Fuente, José

    2009-12-01

    The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that the recombinant chimeric protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region for presentation on the Escherichia coli membrane was protective against R. microplus infestations in rabbits. This system provides a novel and simple approach for the production of tick protective antigens by surface display of antigenic protein chimera on live E. coli and suggests the possibility of using recombinant bacterial membrane fractions for vaccination against cattle tick infestations. PMID:19835826

  18. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    Science.gov (United States)

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  19. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    OpenAIRE

    B.J. Tuasikal; I.W.T. Wibawan2; F.H. Pasaribu2; S. Estuningsih2

    2012-01-01

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of th...

  20. Lipid motif of a bacterial antigen mediates immune responses via TLR2 signaling.

    Directory of Open Access Journals (Sweden)

    Amit A Lugade

    Full Text Available The cross-talk between the innate and the adaptive immune system is facilitated by the initial interaction of antigen with dendritic cells. As DCs express a large array of TLRs, evidence has accumulated that engagement of these molecules contributes to the activation of adaptive immunity. We have evaluated the immunostimulatory role of the highly-conserved outer membrane lipoprotein P6 from non-typeable Haemophilus influenzae (NTHI to determine whether the presence of the lipid motif plays a critical role on its immunogenicity. We undertook a systematic analysis of the role that the lipid motif plays in the activation of DCs and the subsequent stimulation of antigen-specific T and B cells. To facilitate our studies, recombinant P6 protein that lacked the lipid motif was generated. Mice immunized with non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of the lipid motif on P6 was also required for proliferation and cytokine secretion by antigen-specific T cells. Upregulation of T cell costimulatory molecules was abrogated in DCs exposed to non-lipidated rP6 and in TLR2(-/- DCs exposed to native P6, thereby resulting in diminished adaptive immune responses. Absence of either the lipid motif on the antigen or TLR2 expression resulted in diminished cytokine production from stimulated DCs. Collectively, our data suggest that the lipid motif of the lipoprotein antigen is essential for triggering TLR2 signaling and effective stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid motif on activating both innate and adaptive immune responses to an otherwise poorly immunogenic protein antigen.

  1. Bacterial cell division proteins as antibiotic targets

    NARCIS (Netherlands)

    T. den Blaauwen; J.M. Andreu; O. Monasterio

    2014-01-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of protein

  2. Recent advances in bacterial heme protein biochemistry

    OpenAIRE

    Mayfield, Jeffery A.; Dehner, Carolyn A.; Dubois, Jennifer L.

    2011-01-01

    Recent progress in genetics, fed by the burst in genome sequence data, has led to the identification of a host of novel bacterial heme proteins that are now being characterized in structural and mechanistic terms. The following short review highlights very recent work with bacterial heme proteins involved in the uptake, biosynthesis, degradation, and use of heme in respiration and sensing.

  3. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens.

    Science.gov (United States)

    Almazán, Consuelo; Moreno-Cantú, Orlando; Moreno-Cid, Juan A; Galindo, Ruth C; Canales, Mario; Villar, Margarita; de la Fuente, José

    2012-01-01

    Vaccines containing the Rhipicephalus (Boophilus) microplus BM86 and BM95 antigens protect cattle against tick infestations. Tick subolesin (SUB), elongation factor 1a (EF1a) and ubiquitin (UBQ) are new candidate protective antigens for the control of cattle tick infestations. Previous studies showed that R. microplus BM95 immunogenic peptides fused to the Anaplasma marginale major surface protein (MSP) 1a N-terminal region (BM95-MSP1a) for presentation on the Escherichia coli membrane were protective against R. microplus infestations in rabbits. In this study, we extended these results by expressing SUB-MSP1a, EF1a-MSP1a and UBQ-MSP1a fusion proteins on the E. coli membrane using this system and demonstrating that bacterial membranes containing the chimeric proteins BM95-MSP1a and SUB-MSP1a were protective (>60% vaccine efficacy) against experimental R. microplus and Rhipicephalus annulatus infestations in cattle. This system provides a novel, simple and cost-effective approach for the production of tick protective antigens by surface display of antigenic protein chimera on the E. coli membrane and demonstrates the possibility of using recombinant bacterial membrane fractions in vaccine preparations to protect cattle against tick infestations. PMID:22085549

  4. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis.

    Science.gov (United States)

    Cortina, María E; Balzano, Rodrigo E; Rey Serantes, Diego A; Caillava, Ana J; Elena, Sebastián; Ferreira, A C; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2016-06-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans. PMID:26984975

  5. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei.

    Directory of Open Access Journals (Sweden)

    Mariaelena Caboni

    2015-03-01

    Full Text Available Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg of the lipopolysaccharide (LPS plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.

  6. CD4+ T Cells and Toll-Like Receptors Recognize Salmonella Antigens Expressed in Bacterial Surface Organelles

    OpenAIRE

    Bergman, Molly A.; Cummings, Lisa A.; Barrett, Sara L. Rassoulian; Smith, Kelly D.; Lara, J. Cano; Aderem, Alan; Cookson, Brad T.

    2005-01-01

    A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysacc...

  7. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  8. Synthetic peptides with antigenic specificity for bacterial toxins.

    Science.gov (United States)

    Sela, M; Arnon, R; Jacob, C O

    1986-01-01

    The attachment of a diphtheria toxin-specific synthetic antigenic determinant and a synthetic adjuvant to a synthetic polymeric carrier led to production of a totally synthetic macromolecule which provoked protective antibodies against diphtheria when administered in aqueous solution. When peptides related to the B subunit of cholera toxin were synthesized and attached to tetanus toxoid, antibodies produced against the conjugate reacted in some but not all cases with intact cholera toxin and (especially with peptide CTP 3, residues 50-64) neutralized toxin reactivity, as tested by permeability in rabbit skin, fluid accumulation in ligated small intestinal loops and adenylate cyclase activation. Polymerization of the peptide without any external carrier, or conjugation with the dipalmityl lysine group, had as good an effect in enhancing the immune response as its attachment to tetanus toxoid. Prior exposure to the carrier suppressed the immune response to the epitope attached to it, whereas prior exposure to the synthetic peptide had a good priming effect when the intact toxin was given; when two different peptides were attached to the same carrier, both were expressed. Antisera against peptide CTP 3 were highly cross-reactive with the heat-labile toxin of Escherichia coli and neutralized it to the same extent as cholera toxin, which is not surprising in view of the great homology between the two proteins. A synthetic oligonucleotide coding for CTP 3 has been used to express the peptide in a form suitable for immunization. It led to a priming effect against the intact cholera toxin. PMID:2426052

  9. Mapping Epitopes on a Protein Antigen by the Proteolysis of Antigen-Antibody Complexes

    Science.gov (United States)

    Jemmerson, Ronald; Paterson, Yvonne

    1986-05-01

    A monoclonal antibody bound to a protein antigen decreases the rate of proteolytic cleavage of the antigen, having the greatest effect on those regions involved in antibody contact. Thus, an epitope can be identified by the ability of the antibody to protect one region of the antigen more than others from proteolysis. By means of this approach, two distinct epitopes, both conformationally well-ordered, were characterized on horse cytochrome c.

  10. 'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens.

    Science.gov (United States)

    Palmer, Guy H; Bankhead, Troy; Lukehart, Sheila A

    2009-12-01

    Pathogens persist in immunocompetent mammalian hosts using various strategies, including evasion of immune effectors by antigenic variation. Among highly antigenically variant bacteria, gene conversion is used to generate novel expressed variants from otherwise silent donor sequences. Recombination using oligonucleotide segments from multiple donors is a combinatorial mechanism that tremendously expands the variant repertoire, allowing thousands of variants to be generated from a relatively small donor pool. Three bacterial pathogens, each encoded by a small genome (Treponema pallidum TprK and Anaplasma marginale Msp2 expression sites and donors are chromosomally encoded. Both T. pallidum and A. marginale generate antigenic variants in vivo in individual hosts and studies at the population level reveal marked strain diversity in the variant repertoire that may underlie pathogen strain structure and the capacity for re-infection and heterologous strain superinfection. Here, we review gene conversion in bacterial antigenic variation and discuss the short- and long-term selective pressures that shape the variant repertoire. PMID:19709057

  11. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    DEFF Research Database (Denmark)

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber; Christensen, Dennis; Foged, Camilla

    2013-01-01

    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...

  12. ANTIGENICITY OF COW'S MILK PROTEINS IN TWO ANIMAL MODELS

    OpenAIRE

    T.R. Neyestani; M. Djalali M. I'ezeshki

    2000-01-01

    Antigenicity of proteins found in cow's milk is age dependent. This is primarily due to infants possessing a more permeable intestinal wall than that in adults. Thus infants may acquire cow's milk allergy during their first year of life. While milk antigen specific IgE may cause allergy in susceptible subjects, there is some evidence indicating that milk antigen specific IgG may play some role in chronic disease development. The puropose of this study was to determine the antigenicity of cow'...

  13. Subdominant antigens in bacterial vaccines: Am779 is subdominant in the anaplasma marginale outer membrane vaccine but does not associate with protective immunity

    Science.gov (United States)

    Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and p...

  14. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in...... healthy mice ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic...

  15. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens

    Directory of Open Access Journals (Sweden)

    Janet Foley

    2015-01-01

    Full Text Available Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck; selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability; and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts.

  16. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E;

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...

  17. Engineered fluorescent proteins illuminate the bacterial periplasm

    Directory of Open Access Journals (Sweden)

    Thorben Dammeyer

    2012-10-01

    Full Text Available The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP, remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat pathway, but actively fold in the periplasm following general secretory pathway (Sec and signal recognition particle (SRP mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  18. Ice nucleation protein as a bacterial surface display protein

    OpenAIRE

    Sarhan Mohammed A.A.

    2011-01-01

    Surface display technology can be defined as that phenotype (protein or peptide) which is linked to a genotype (DNA or RNA) through an appropriate anchoring motif. A bacterial surface display system is based on expressing recombinant proteins fused to sorting signals (anchoring motifs) that direct their incorporation on the cell surface.

  19. Bacterial antigen expression is an important component in inducing an immune response to orally administered Salmonella-delivered DNA vaccines.

    Directory of Open Access Journals (Sweden)

    Michelle E Gahan

    Full Text Available BACKGROUND: The use of Salmonella to deliver heterologous antigens from DNA vaccines is a well-accepted extension of the success of oral Salmonella vaccines in animal models. Attenuated S. typhimurium and S. typhi strains are safe and efficacious, and their use to deliver DNA vaccines combines the advantages of both vaccine approaches, while complementing the limitations of each technology. An important aspect of the basic biology of the Salmonella/DNA vaccine platform is the relative contributions of prokaryotic and eukaryotic expression in production of the vaccine antigen. Gene expression in DNA vaccines is commonly under the control of the eukaryotic cytomegalovirus (CMV promoter. The aim of this study was to identify and disable putative bacterial promoters within the CMV promoter and evaluate the immunogenicity of the resulting DNA vaccine delivered orally by S. typhimurium. METHODOLOGY/PRINCIPAL FINDINGS: The results reported here clearly demonstrate the presence of bacterial promoters within the CMV promoter. These promoters have homology to the bacterial consensus sequence and functional activity. To disable prokaryotic expression from the CMV promoter a series of genetic manipulations were performed to remove the two major bacterial promoters and add a bacteria transcription terminator downstream of the CMV promoter. S. typhimurium was used to immunise BALB/c mice orally with a DNA vaccine encoding the C-fragment of tetanus toxin (TT under control of the original or the modified CMV promoter. Although both promoters functioned equally well in eukaryotic cells, as indicated by equivalent immune responses following intramuscular delivery, only the original CMV promoter was able to induce an anti-TT specific response following oral delivery by S. typhimurium. CONCLUSIONS: These findings suggest that prokaryotic expression of the antigen and co-delivery of this protein by Salmonella are at least partially responsible for the successful

  20. Antigenic constituents of basic proteins from human brain

    Science.gov (United States)

    Rajam, P. C.; Bogoch, S.; Rushworth, Mary A.; Forrester, P. C.

    1966-01-01

    1. A minimum of three distinct basic proteins have been chromatographically separated from a neutral, low ionic strength extract of human grey matter, using a discontinuous eluant series. 2. These chromatographic subfractions have been characterized by gradient elution chromatography and each subfraction analysed for distinct antigenic characteristics. 3. Evidence was adduced for the presence of a minimum of three distinct basic protein antigens, all of which may be specific to human brain but not to human liver. None of them appear to be human serum proteins. ImagesFIG. 2FIG. 3 PMID:4958738

  1. ANTIGENICITY OF COWS MILK PROTEINS IN TWO ANIMAL MODELS

    OpenAIRE

    Djalali, M; T.R. Neyestani; M. Iezeshki

    2000-01-01

    Antigenicity of proteins found in cow's milk is age dependent. This is primarily due to infants possessing a more permeable intestinal wall than that in adults. Thus infants may acquire cow's milk allergy during their first year of life. While milk antigen specific IgE may cause allergy in susceptible subjects, there is some evidence indicating that milk antigen specific IgG may play some role in chronic disease development. The puropose of this study was to determine the antigenici...

  2. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    2010-01-01

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based del

  3. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  4. Fluorescent sensors based on bacterial fusion proteins

    Science.gov (United States)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  5. Antigen receptor signaling: integration of protein tyrosine kinase functions.

    Science.gov (United States)

    Tamir, I; Cambier, J C

    1998-09-17

    Antigen receptors on T and B cells function to transduce signals leading to a variety of biologic responses minimally including antigen receptor editing, apoptotic death, developmental progression, cell activation, proliferation and survival. The response to antigen depends upon antigen affinity and valence, involvement of coreceptors in signaling and differentiative stage of the responding cell. The requirement that these receptors integrate signals that drive an array of responses may explain their evolved structural complexity. Antigen receptors are composed of multiple subunits compartmentalized to provide antigen recognition and signal transduction function. In lieu of on-board enzymatic activity these receptors rely on associated Protein Tyrosine Kinases (PTKs) for their signaling function. By aggregating the receptors, and hence their appended PTKs, antigens induce PTK transphosphorylation, activating them to phosphorylate the receptor within conserved motifs termed Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) found in transducer subunits. The tyrosyl phosphorylated ITAMs then interact with Src Homology 2 (SH2) domains within the PTKs leading to their further activation. As receptor phosphorylation is amplified, other effectors, such as Shc, dock by virtue of SH2 binding, and serve, in-turn, as substrates for these PTKs. This sequence of events not only provides a signal amplification mechanism by combining multiple consecutive steps with positive feedback, but also allows for signal diversification by differential recruitment of effectors that provide access to distinct parallel downstream signaling pathways. The subject of antigen receptor signaling has been recently reviewed in depth (DeFranco, 1997; Kurosaki, 1997). Here we discuss the biochemical basis of antigen receptor signal transduction, using the B cell receptor (BCR) as a paradigm, with specific emphasis on the involved PTKs. We review several specific mechanisms by which responses

  6. ANTIGENICITY OF COW'S MILK PROTEINS IN TWO ANIMAL MODELS

    Directory of Open Access Journals (Sweden)

    T.R. Neyestani

    2000-08-01

    Full Text Available Antigenicity of proteins found in cow's milk is age dependent. This is primarily due to infants possessing a more permeable intestinal wall than that in adults. Thus infants may acquire cow's milk allergy during their first year of life. While milk antigen specific IgE may cause allergy in susceptible subjects, there is some evidence indicating that milk antigen specific IgG may play some role in chronic disease development. The puropose of this study was to determine the antigenicity of cow's milk proteins in two animal models and to recommend the more sensitivie one, as an evaluation tool, to assess the antigenicity of a poteintial hypoallergenic formula. A crude extract of cow's milk was injected either to young male rabbits or BALB/C mice in four doses. Pure standard proteins of cow's milk were also injected to separate groups of animals to use their anti sera in later stages. The polyclonal pooled serum was then used to evaluate the antigenicity of the extract by indirect enzyme-linked immunossorbeni assay (LEISA. and Western blotting. Both the rabbit and BALB/C murine mode! demonstrated strong ELISA titres against casein and BSA proteins. However, the rabbit model also had a high antibody response against beta-lactoglobulin (/Mg. The lowest antibody response was found against alpha-kictalbumin («-la in both animal models and no response against immunoglobulins (Igs in either model. In Western blotting, rabbit antiserum showed four bands («-la, /Mg, caseins and BSA compared to two bands (caseins and BSA for mouse antiserum. Considering the allergenicity of these proteins in genetically prone subjects, it may be wise to exclude food sources of caseins as well as major whey proteins (BSA, from the diet of infants with a family history of atopy during the first year of life. The rabbit hyperimmunization model was more sensitive than the murine mode! in detecting antibodies against milk proteins. Thus, the rabbii model should be employed when

  7. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  8. Seasonal Evaluation of Antigenic Bacterial Infections Among Working Class in the Inner City of Houston

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2004-01-01

    Full Text Available This paper evaluates the monthly, quarterly, and seasonal variation of antigenic bacterial infections among the working class in the inner city of Houston using the Wellcogen Rapid Test methods. One of the aims was to demonstrate how this method could be used effectively in screening patients at risk and preventing the spread of antigenic bacteria such as Streptococcus pneumoniae, Haemophilus influenzae b, Streptococcus (Strep b, and Neisseria meningitidis (mainly group c and b. A total of 2,837 patients were screened for bacterial infections; 908 (32% were male and 1,929 (68% were female. The age range was between 2 and 70 years. Of the total group, 356 (12.5% patients were positive; 203 (57% were female while 153 (43% were male (male/female ratio of 1:1.3. Medically underserved and immune suppressed populations are the most affected by these bacterial infections. Blacks are the most affected (48% compared to Native Americans (1%, but children under 10 years of age have the highest incidence. This research showed, in addition, that the Wellcogen Rapid Tests are effective (356 cases identified for a rapid screening of infectious bacteria. Explanation for these results was probably due to poor living conditions, poor hygiene, and viral immune suppression in adults and immature immune systems in neonates and children under 10 years of age.

  9. Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis.

    Science.gov (United States)

    Murphy, Timothy F; Kirkham, Charmaine; Johnson, Antoinette; Brauer, Aimee L; Koszelak-Rosenblum, Mary; Malkowski, Michael G

    2016-07-19

    Moraxella catarrhalis causes otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). A vaccine to prevent M. catarrhalis infections would have an enormous impact globally in preventing morbidity caused by M. catarrhalis in these populations. Using a genome mining approach we have identified a sulfate binding protein, CysP, of an ATP binding cassette (ABC) transporter system as a novel candidate vaccine antigen. CysP expresses epitopes on the bacterial surface and is highly conserved among strains. Immunization with CysP induces potentially protective immune responses in a murine pulmonary clearance model. In view of these features that indicate CysP is a promising vaccine antigen, we conducted further studies to elucidate its function. These studies demonstrated that CysP binds sulfate and thiosulfate ions, plays a nutritional role for the organism and functions in intracellular survival of M. catarrhalis in human respiratory epithelial cells. The observations that CysP has features of a vaccine antigen and also plays an important role in growth and survival of the organism indicate that CysP is an excellent candidate vaccine antigen to prevent M. catarrhalis otitis media and infections in adults with COPD. PMID:27265455

  10. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...... the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in....... Moreover, antibody reactivity was found towards the native quaternary structure of glycinin. Conclusions: Mice ingesting soy protein generate an antibody response with reactivity towards glycinin and beta-conglycinin. Antibody reactivity found towards the native quaternary structure of glycinin indicates...

  11. Antigen

    Science.gov (United States)

    An antigen is any substance that causes your immune system to produce antibodies against it. This means your immune ... and is trying to fight it off. An antigen may be a substance from the environment, such ...

  12. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    B.J. Tuasikal

    2012-08-01

    Full Text Available A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder vaccine in ruminant. The study aims to determine the Molecular Weight (MW bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic caharacteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD50 is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 – 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 – 0.05X (where Y = bands distance; X = MW standard protein; r2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis

  13. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    International Nuclear Information System (INIS)

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic characteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD50) is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 - 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 - 0.05X (where Y = bands distance; X = MW standard protein); r2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis. (author)

  14. Quantitating protein synthesis, degradation, and endogenous antigen processing.

    Science.gov (United States)

    Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W

    2003-03-01

    Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate. PMID:12648452

  15. Bacterial antigen induced release of soluble vascular endothelial growth factor (VEGF) and VEGFR1 before and after surgery

    DEFF Research Database (Denmark)

    Svendsen, Mads N; Lykke, J; Werther, Kim;

    2005-01-01

    -induced release of sVEGF and sVEGFR1 from whole blood in vitro. MATERIAL AND METHODS: Sixty-one patients with abdominal diseases undergoing five different surgical procedures were included in the study. Blood samples were drawn from patients before and after the operation. White blood cells and platelets were......OBJECTIVE: The influence of surgery on release of soluble vascular endothelial growth factor (sVEGF) and the soluble inhibitory receptor (sVEGFR1) is unknown. The effect of major and minor surgery on variations in sVEGF and sVEGFR1 concentrations in vivo was studied, and on bacterial antigen...... counted, and plasma sVEGF and sVEGFR1 were determined. Whole blood from each blood sample was stimulated in vitro with bacteria-derived antigens (lipopolysaccharides or protein A) and sVEGF and sVEGFR1 levels were subsequently determined in the supernatants. RESULTS: Neither sVEGF nor sVEGFR1...

  16. How to Make a Non-Antigenic Protein (Auto) Antigenic: Molecular Complementarity Alters Antigen Processing and Activates Adaptive-Innate Immunity Synergy.

    Science.gov (United States)

    Root-Bernstein, Robert

    2015-01-01

    Evidence is reviewed that complementary proteins and peptides form complexes with increased antigenicity and/or autoimmunogenicity. Five case studies are highlighted: 1) diphtheria toxin-antitoxin (antibody), which induces immunity to the normally non-antigenic toxin, and autoimmune neuritis; 2) tryptophan peptide of myelin basic protein and muramyl dipeptide ("adjuvant peptide"), which form a complex that induces experimental allergic encephalomyelitis; 3) an insulin and glucagon complex that is far more antigenic than either component individually; 4) various causes of experimental autoimmune myocarditis such as C protein in combination with its antibody, or coxsackie B virus in combination with the coxsackie and adenovirus receptor; 5) influenza A virus haemagglutinin with the outer membrane protein of the Haemophilus influenzae, which increases antigenicity. Several mechanisms cooperate to alter immunogenicity. Complexation alters antigen processing, protecting the components against proteolysis, altering fragmentation and presenting novel antigens to the immune system. Complementary antigens induce complementary adaptive immune responses (complementary antibodies and/or T cell receptors) that produce circulating immune complexes (CIC). CIC stimulate innate immunity. Concurrently, complementary antigens stimulate multiple Toll-like receptors that synergize to over-produce cytokines, which further stimulate adaptive immunity. Thus innate and adaptive immunity form a positive feedback loop. If components of the complex mimic a host protein, then autoimmunity may result. Enhanced antigenicity for production of improved vaccines and/or therapeutic autoimmunity (e.g., against cancer cells) might be achieved by using information from antibody or TCR recognition sites to complement an antigen; by panning for complements in randomized peptide libraries; or using antisense peptide strategies to design complements. PMID:26179268

  17. Identification of a peptide binding protein that plays a role in antigen presentation.

    OpenAIRE

    Lakey, E K; Margoliash, E.; Pierce, S K

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface ...

  18. Comparison of major protein antigens and protein profiles of Treponema pallidum and Treponema pertenue.

    OpenAIRE

    Thornburg, R W; Baseman, J B

    1983-01-01

    The protein profiles of Treponema pallidum and Treponema pertenue, the causative agents of syphilis and yaws, respectively, were compared by one- and two-dimensional gel electrophoresis. One-dimensional gels showed essentially no differences in the protein patterns of these treponemes. On two-dimensional gels most radiolabeled protein species were shared; however, variations were noticed in several minor protein species. Antigenic comparison by radioimmunoprecipitation and Western blotting al...

  19. Bacterial Protein N-Glycosylation: New Perspectives and Applications*

    OpenAIRE

    Nothaft, Harald; Szymanski, Christine M.

    2013-01-01

    Protein glycosylation is widespread throughout all three domains of life. Bacterial protein N-glycosylation and its application to engineering recombinant glycoproteins continue to be actively studied. Here, we focus on advances made in the last 2 years, including the characterization of novel bacterial N-glycosylation pathways, examination of pathway enzymes and evolution, biological roles of protein modification in the native host, and exploitation of the N-glycosylation pathways to create ...

  20. Automated Image Analysis for Determination of Antibody Titers Against Occupational Bacterial Antigens Using Indirect Immunofluorescence.

    Science.gov (United States)

    Brauner, Paul; Jäckel, Udo

    2016-06-01

    Employees who are exposed to high concentrations of microorganisms in bioaerosols frequently suffer from respiratory disorders. However, etiology and in particular potential roles of microorganisms in pathogenesis still need to be elucidated. Thus, determination of employees' antibody titers against specific occupational microbial antigens may lead to identification of potentially harmful species. Since indirect immunofluorescence (IIF) is easy to implement, we used this technique to analyze immunoreactions in human sera. In order to address disadvantageous inter-observer variations as well as the absence of quantifiable fluorescence data in conventional titer determination by eye, we specifically developed a software tool for automated image analysis. The 'Fluorolyzer' software is able to reliably quantify fluorescence intensities of antibody-bound bacterial cells on digital images. Subsequently, fluorescence values of single cells have been used to calculate non-discrete IgG titers. We tested this approach on multiple bacterial workplace isolates and determined titers in sera from 20 volunteers. Furthermore, we compared image-based results with the conventional manual readout and found significant correlation as well as statistically confirmed reproducibility. In conclusion, we successfully employed 'Fluorolyzer' for determination of titers against various bacterial species and demonstrated its applicability as a useful tool for reliable and efficient analysis of immune response toward occupational exposure to bioaerosols. PMID:27026659

  1. Antigenic characterization of dimorphic surface protein in Mycobacterium tuberculosis.

    Science.gov (United States)

    Matsuba, Takashi; Siddiqi, Umme Ruman; Hattori, Toshio; Nakajima, Chie; Fujii, Jun; Suzuki, Yasuhiko

    2016-05-01

    The Mycobacterium tuberculosis Rv0679c protein is a surface protein that contributes to host cell invasion. We previously showed that a single nucleotide transition of the Rv0679c gene leads to a single amino acid substitution from asparagine to lysine at codon 142 in the Beijing genotype family. In this study, we examined the immunological effect of this substitution. Several recombinant proteins were expressed in Escherichia coli and Mycobacterium smegmatis and characterized with antisera and two monoclonal antibodies named 5D4-C2 and 8G10-H2. A significant reduction of antibody binding was detected by enzyme-linked immunosorbent assay (ELISA) and western blot analysis in the Lys142-type protein. This reduction of 8G10-H2 binding was more significant, with the disappearance of a signal in the proteins expressed by recombinant mycobacteria in western blot analysis. In addition, epitope mapping analysis of the recombinant proteins showed a linear epitope by 5D4-C2 and a discontinuous epitope by 8G10-H2. The antibody recognizing the conformational epitope detected only mycobacterial Asn142-type recombinant protein. Our results suggest that a single amino acid substitution of Rv0679c has potency for antigenic change in Beijing genotype strains. PMID:27190237

  2. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  3. AgdbNet – antigen sequence database software for bacterial typing

    Directory of Open Access Journals (Sweden)

    Maiden Martin CJ

    2006-06-01

    Full Text Available Abstract Background Bacterial typing schemes based on the sequences of genes encoding surface antigens require databases that provide a uniform, curated, and widely accepted nomenclature of the variants identified. Due to the differences in typing schemes, imposed by the diversity of genes targeted, creating these databases has typically required the writing of one-off code to link the database to a web interface. Here we describe agdbNet, widely applicable web database software that facilitates simultaneous BLAST querying of multiple loci using either nucleotide or peptide sequences. Results Databases are described by XML files that are parsed by a Perl CGI script. Each database can have any number of loci, which may be defined by nucleotide and/or peptide sequences. The software is currently in use on at least five public databases for the typing of Neisseria meningitidis, Campylobacter jejuni and Streptococcus equi and can be set up to query internal isolate tables or suitably-configured external isolate databases, such as those used for multilocus sequence typing. The style of the resulting website can be fully configured by modifying stylesheets and through the use of customised header and footer files that surround the output of the script. Conclusion The software provides a rapid means of setting up customised Internet antigen sequence databases. The flexible configuration options enable typing schemes with differing requirements to be accommodated.

  4. Analysis of protective antigen peptide binding motifs using bacterial display technology

    Science.gov (United States)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  5. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...... has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...

  6. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Directory of Open Access Journals (Sweden)

    Jake E Lowry

    Full Text Available Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA. All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence

  7. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Science.gov (United States)

    Lowry, Jake E; Isaak, Dale D; Leonhardt, Jack A; Vernati, Giulia; Pate, Jessie C; Andrews, Gerard P

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of

  8. BLANNOTATOR: enhanced homology-based function prediction of bacterial proteins

    Directory of Open Access Journals (Sweden)

    Kankainen Matti

    2012-02-01

    Full Text Available Abstract Background Automated function prediction has played a central role in determining the biological functions of bacterial proteins. Typically, protein function annotation relies on homology, and function is inferred from other proteins with similar sequences. This approach has become popular in bacterial genomics because it is one of the few methods that is practical for large datasets and because it does not require additional functional genomics experiments. However, the existing solutions produce erroneous predictions in many cases, especially when query sequences have low levels of identity with the annotated source protein. This problem has created a pressing need for improvements in homology-based annotation. Results We present an automated method for the functional annotation of bacterial protein sequences. Based on sequence similarity searches, BLANNOTATOR accurately annotates query sequences with one-line summary descriptions of protein function. It groups sequences identified by BLAST into subsets according to their annotation and bases its prediction on a set of sequences with consistent functional information. We show the results of BLANNOTATOR's performance in sets of bacterial proteins with known functions. We simulated the annotation process for 3090 SWISS-PROT proteins using a database in its state preceding the functional characterisation of the query protein. For this dataset, our method outperformed the five others that we tested, and the improved performance was maintained even in the absence of highly related sequence hits. We further demonstrate the value of our tool by analysing the putative proteome of Lactobacillus crispatus strain ST1. Conclusions BLANNOTATOR is an accurate method for bacterial protein function prediction. It is practical for genome-scale data and does not require pre-existing sequence clustering; thus, this method suits the needs of bacterial genome and metagenome researchers. The method and a

  9. Formaldehyde treatment of proteins can constrain presentation to T cells by limiting antigen processing.

    OpenAIRE

    Di Tommaso, A; De Magistris, M T; Bugnoli, M.; Marsili, I; Rappuoli, R; Abrignani, S.

    1994-01-01

    Proteins to be used as vaccines are frequently treated with formaldehyde, although little is known about the effects of this treatment on protein antigenicity. To investigate the effect of formaldehyde treatment on antigen recognition by T cells, we compared the in vitro T-cell response to proteins that have been formaldehyde treated with the response to untreated proteins. We found that peripheral blood mononuclear cells from individuals vaccinated with three formaldehyde-treated proteins (p...

  10. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine.

    Science.gov (United States)

    Ma, Jimei; Xu, Jinmei; Guan, Lingyu; Hu, Tianjian; Liu, Qin; Xiao, Jingfan; Zhang, Yuanxing

    2014-07-01

    It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications. PMID:24746937

  11. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.; Sleytr, U.B.; Cuvillier, N.; Kjær, K.; Howes, P.B.; Lösche, M.

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer str...

  12. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  13. Protein quality control in the bacterial periplasm.

    Science.gov (United States)

    Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

    2011-01-01

    Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

  14. Immunological characterization of a recombinant 27-kilodalton antigenic protein from Paracoccidioides brasiliensis.

    OpenAIRE

    Ortiz, B L; Garcia, A. M.; A. Restrepo; McEwen, J. G.

    1996-01-01

    We report the expression in Escherichia coli of a 27-kDa antigenic protein from Paracoccidioides brasiliensis. When analyzed by immunoblotting, this recombinant antigenic protein was recognized by antibodies present in the sera of 40 of the 44 paracoccidioidomycosis patients studied. No cross-reactions were observed with sera from patients with other mycoses (histoplasmosis, aspergillosis, cryptococcosis, sporotrichosis, and chromoblastomycosis) or with tuberculosis.

  15. Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein

    OpenAIRE

    Dyson, N; Bernards, R.A.; Friend, S H; Gooding, L R; Hassel, J.A.; Major, E O; Pipas, J M; Vandyke, T; Harlow, E

    1990-01-01

    Stable protein complexes between the large T antigens of mouse, monkey, baboon, or human polyomaviruses and the retinoblastoma protein were detected by an in vitro coimmunoprecipitation assay. All of the large T antigens tested were able to bind to both human and mouse retinoblastoma polypeptides, showing that these interactions have been conserved during evolution.

  16. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  17. Cell Wall-Associated Protein Antigens of Streptococcus salivarius: Purification, Properties, and Function in Adherence

    Science.gov (United States)

    Weerkamp, Anton H.; Jacobs, Ton

    1982-01-01

    Three cell wall-associated protein antigens (antigens b, c, and d) were isolated from mutanolysin-solubilized cell walls of Streptococcus salivarius HB and purified to apparent homogeneity by a combination of ion-exchange chromatography, gel filtration, and immunoadsorption chromatography. Antigens b and c were also isolated from culture supernatants. Antigen b consisted of more than 80% protein and had an apparent molecular weight as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 320,000. Antigen c consisted of 57% protein, about 30% neutral sugar, and about 13% amino sugar, and its glycoprotein nature was confirmed by specific staining techniques. During sodium dodecyl sulfate-polyacrylamide gel electrophoresis antigen c resolved into two or more bands, depending on the source or the isolation procedure, in the molecular weight range from 220,000 to 280,000. Antigen d consisted of 95% protein and was observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as two bands with molecular weights of 129,000 and 121,000. Under nondenaturing conditions all three antigens had molecular weights in the range from 1 × 106 to 3 × 106 as determined by gel filtration. The amino acid compositions of antigens b, c, and d were characterized by low amounts of basic amino acids and relatively high levels of nonpolar amino acids. Among oral streptococcal species antigens b and c were virtually restricted to strains of S. salivarius and most often to serotype I strains. Antigen b was recognized as the factor that mediates coaggregation of S. salivarius with Veillonella strains. The purified protein retained its biological activity. Antigen c could be linked to functions relating to adhesion of the streptococci to host tissues on the basis of its absence in mutant strains and blocking by specific antisera. The purified molecule had no detectable biological activity. Antigen d could not be linked to an established adhesion function. Images

  18. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  19. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    OpenAIRE

    MacBeth, K J; Lee, C. A.

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase ...

  20. Aromatic-dependent salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them.

    Science.gov (United States)

    Stocker, B A

    2000-09-29

    The development of live bacterial vaccines is reviewed, in particular aromatic-dependent Salmonella, either for protection against the corresponding infections (including typhoid fever) or as carrier-presenter of antigens of unrelated pathogens or of DNA specifying them. Aromatic-dependent Salmonella live vaccines are also compared with BCG and Ty21a and the recent records of exceptional situations are discussed in which aroA (deletion) strains of Salmonella typhimurium cause progressive disease in mice. PMID:11000459

  1. The Chaotic Structure of Bacterial Virulence Protein Sequences

    Directory of Open Access Journals (Sweden)

    Sevdanur Genc

    2015-01-01

    Full Text Available Bacterial virulence proteins, which have been class ified on structure of virulence, causes several diseases. For instance, Adhesins play an important role in th e host cells. They are inserted DNA sequences for a variety of virulence properties. Several important methods conducted for the prediction of bacterial virulence proteins for finding new drugs or vaccines. In this study, we propose a method for feature sele ction about classification of bacterial virulence protein. The features are constituted dir ectly from the amino acid sequence of a given protein. Amino acids form proteins, which are criti cal to life, and have many important functions in living cells. They occurring with diff erent physicochemical properties by a vector of 20 numerical values, and collected in AAIndex datab ases of known 544 indices. For all that, this approach have two steps. Firstly , the amino acid sequence of a given protein analysed with Lyapunov Exponents that they have a chaotic structure in accordance wi th the chaos theory. After that, if the results show chara cterization over the complete distribution in the phase space from the point of deterministic sys tem, it means related protein will show a chaotic structure. Empirical results revealed that generated feature v ectors give the best performance with chaotic structure of physicochemical features of amino acid s with Adhesins and non-Adhesins data sets.

  2. Recombinant Major Antigenic Protein 2 of Ehrlichia canis: a Potential Diagnostic Tool

    OpenAIRE

    Alleman, A. Rick; McSherry, Leo J.; Barbet, Anthony F.; Breitschwerdt, Edward B.; Sorenson, Heather L.; Bowie, Michael V.; Bélanger, Myriam

    2001-01-01

    The major antigenic protein 2 (MAP2) of Ehrlichia canis was cloned and expressed. The recombinant protein was characterized and tested in an enzyme-linked immunosorbent assay (ELISA) format for potential application in the serodiagnosis of canine monocytic ehrlichiosis. The recombinant protein, which contained a C-terminal polyhistidine tag, had a molecular mass of approximately 26 kDa. The antigen was clearly identified by Western immunoblotting using antihistidine antibody and immune serum ...

  3. Identification of ligands for bacterial sensor proteins.

    Science.gov (United States)

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Rico-Jiménez, Miriam; Martín-Mora, David; López-Farfán, Diana; Reyes-Darias, José Antonio; Matilla, Miguel A; Ortega, Álvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria. PMID:26511375

  4. Bacterial Microcompartment Organelles: Protein Shell Structure and Evolution

    OpenAIRE

    Yeates, Todd O; Crowley, Christopher S.; Tanaka, Shiho

    2010-01-01

    Some bacteria contain organelles or microcompartments consisting of a large virion-like protein shell encapsulating sequentially acting enzymes. These organized microcompartments serve to enhance or protect key metabolic pathways inside the cell. The variety of bacterial microcompartments provide diverse metabolic functions, ranging from CO2 fixation to the degradation of small organic molecules. Yet they share an evolutionarily related shell, which is defined by a conserved protein domain th...

  5. Early secretory antigenic target protein-6/culture filtrate protein-10 fusion protein-specific Th1 and Th2 response and its diagnostic value in tuberculous pleural effusion

    Institute of Scientific and Technical Information of China (English)

    戈启萍

    2013-01-01

    Objective To detect the Th1 and Th2 cell percentage in pleural effusion mononuclear cells (PEMCs) stimulated by early secretory antigenic target protein-6 (ESAT-6) /culture filtrate protein-10 (CFP-10) fusion protein (E/C) with flow cytometry (FCM) ,and to explore the local antigen specific Th1 and Th2 response and

  6. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [35S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO4/PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  7. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...

  8. An efficient fusion protein system for expression ofBacillus anthracis protective antigen as immunogenic and diagnostic antigen

    Institute of Scientific and Technical Information of China (English)

    Vahid Bagheri; Hossein Motamedi; Masoud Reza Seifiabad Shapouri

    2010-01-01

    Objective:To produce high quantities of recombinant protective antigen (rPA) for human vaccine and diagnosis.Methods: ThePAgene was amplified byPCR with pXO1 plasmid as template. ThePCR product was cloned into pMAL-c2X vector using theBamHI andSalI restriction enzymes. The recombinant plasmid was transformed intoEscherichia coliDH5α strain and then screened for transformation. The expression of protective antigen was analyzed bySDS-PAGE and Western blotting after isopropyl β-D-thiogalactopyranoside(IPTG) induction.Results:The full-length PA gene (2.2kb) was cloned into pMAL vector system. The recombinant vector was confirmed by restriction enzyme andPCRanalysis. The expression of cytoplasmic maltose-binding protein-protective (MBP-P) antigen fusion protein was detected bySDS-PAGE and Western blotting, and obtained a125 kDa protein band, which was similar to expected size of fusion protein.Conclusions: This expression system can be used in the high production of rPA. After purification and immunization studies, the purified rPA may be used in the development of the human recombinant anthrax vaccine and also in diagnosis of anthrax disease.

  9. Bacterial characterization using protein profiling in a microchip separations platform.

    Science.gov (United States)

    Pizarro, Shelly A; Lane, Pamela; Lane, Todd W; Cruz, Evelyn; Haroldsen, Brent; VanderNoot, Victoria A

    2007-12-01

    A rapid microanalytical protein-based approach to bacterial characterization is presented. Chip gel electrophoresis (CGE) coupled with LIF detection was used to analyze lysates from different bacterial cell lines to obtain signature profiles of the soluble protein composition. The study includes Escherichia coli, Bacillus subtilis, and Bacillus anthracis (Delta Sterne strain) vegetative cells as well as endospores formed from the latter two species as model organisms to demonstrate the method. A unified protein preparation protocol was developed for both cell types to streamline the benchtop process and aid future automation. Cells and spores were lysed and proteins solubilized using a combination of thermal and chemical lysis methods. Reducing agents, necessary to solubilize spore proteins, were eliminated using a small-scale rapid size-exclusion chromatography step to eliminate interference with down-stream protein labeling. This approach was found to be compatible with nonspore cells (i.e., vegetative cells) as well, not adversely impacting the protein signatures. Data are presented demonstrating distinct CGE protein signatures for our model organisms, suggesting the potential for discrimination of organisms on the basis of empirical protein patterns. The goal of this work is to develop a fast and field-portable method for characterizing bacteria via their proteomes. PMID:18008300

  10. Identification of beta-subunit of bacterial RNA-polymerase--a non-species-specific bacterial protein--as target of antibodies in primary biliary cirrhosis.

    Science.gov (United States)

    Roesler, Kai-Wolfgang; Schmider, Wolfgang; Kist, Manfred; Batsford, Stephen; Schiltz, Emile; Oelke, Mathias; Tuczek, Anja; Dettenborn, Therese; Behringer, Dirk; Kreisel, Wolfgang

    2003-03-01

    Several observations suggest that bacteria induce autoimmunity in primary biliary cirrhosis (PBC). Since no PBC-specific bacterial species could be identified, it can be speculated that the triggers are non-species-specific bacterial proteins. This hypothesis would imply that several or even all bacterial species can trigger PBC. Therefore, we investigated whether PBC exhibits immune reactions to non-species-specific bacterial antigens. Yersinia enterocolitica O3 was screened for the presence of proteins that were labeled by immunoblotting using PBC sera. We focused our investigations on a 160-kDa protein, which was further enriched and characterized by partial N-terminal amino acid sequencing. The prevalence of antibodies to this protein was determined by immunoblotting in a variety of diseases. The 160-kDa protein was identified as the beta-subunit of bacterial RNA-polymerase, a highly conserved bacterial protein with a very high degree of sequence identity among all bacterial species. Antibodies to the beta-subunit of bacterial RNA polymerase were specific for this protein. Until now no mammalian protein could be found that cross-reacts with these antibodies. The prevalence of antibodies to the beta-subunit of bacterial RNA polymerase (ARPA) using the protein from Yersinia enterocolitica O3 (serum dilution 1:1000) was: healthy controls (HC, N = 101) 7.9%, primary biliary cirrhosis (PBC, N = 61) 32.8%, autoimmune hepatitis type 1 (AIH, N = 46) 26.1%, alcoholic liver cirrhosis (ALC, N = 44) 9.1%, Crohn's disease (CD, N = 38) 7.9%, ulcerative colitis (UC, N = 24) 8.3%, primary sclerosing cholangitis + UC (PSC/UC, N = 11) 0%, acute yersiniosis (Yers, N = 36) 19.4%, acute infection with Campylobacter jejuni (Camp, N = 10) 0%, acute Q-fever (QF, N = 16) 6.25%, chronic hepatitis C (HCV, N = 39) 7.7%, c-ANCA-positive vasculitis (Vasc, N = 40) 15%, systemic lupus erythematosus (SLE, N = 28) 10.7%, and malaria tropica (MT, N = 24) 16.7%. There was no significant

  11. Visualization of Pseudomonas aeruginosa O antigens by using a protein A-dextran-colloidal gold conjugate with both immunoglobulin G and immunoglobulin M monoclonal antibodies.

    OpenAIRE

    Lam, J S; Lam, M. Y.; MacDonald, L A; Hancock, R E

    1987-01-01

    Two lipopolysaccharide O-antigen-specific monoclonal antibodies, MA1-8 (an immunoglobulin G1 [IgG1]) and MF15-4 (an IgM), were used to localize the O antigen of the lipopolysaccharide of Pseudomonas aeruginosa PAO1. A protein A-dextran-gold conjugate with an average particle diameter of 12.5 nm was used to label bacterial cells treated with MA1-8, while a second antibody (goat anti-mouse IgM) was required before the same probe could interact with cells treated with the IgM antibody MF15-4. Bo...

  12. Immunization with purified protein antigens from Streptococcus mutans against dental caries in rhesus monkeys.

    OpenAIRE

    Lehner, T; Russell, M W; Caldwell, J.; Smith, R.

    1981-01-01

    Protein antigens I, I/II, II, and III were prepared from Streptococcus mutans (serotype c). Their immunogenicities and protective effects against dental caries were investigated in 40 rhesus monkeys kept entirely on a human-type diet, containing about 15% sucrose. Antigens I, I/II and, to a lesser extent, antigen II induced significant reductions in dental caries, as compared with sham-immunized monkeys. This was achieved with 1 or 2 doses of antigen, the first of which was administered with ...

  13. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    Science.gov (United States)

    MacBeth, K J; Lee, C A

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase lose their ability to enter cultured cells. In addition, a short-lived capacity to enter cells may be important during infection so that bacterial invasiveness is limited to certain times and host sites during pathogenesis. PMID:8454361

  14. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  15. DEMONSTRATION OF MULTIPLE ANTIGENIC DETERMINANTS ON 'MYCOPLASMA PNEUMONIAE' ATTACHMENT PROTEIN BY MONOCLONAL ANTIBODIES

    Science.gov (United States)

    Distinct multiple antigenic determinants of the attachment protein of Mycoplasma pneumoniae have been identified by limited proteolytic cleavage using specific monoclonal antibodies. Western blots prepared from the gels containing the cleaved fragments were probed with antiserum ...

  16. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  17. Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells

    OpenAIRE

    Dougan, Stephanie K.; Salas, Azucena; Rava, Paul; Agyemang, Amma; Kaser, Arthur; Morrison, Jamin; Khurana, Archana; Kronenberg, Mitchell; Johnson, Caroline; Exley, Mark; Hussain, M. Mahmood; Blumberg, Richard S.

    2005-01-01

    Microsomal triglyceride transfer protein (MTP), an endoplasmic reticulum (ER) chaperone that loads lipids onto apolipoprotein B, also regulates CD1d presentation of glycolipid antigens in the liver and intestine. We show MTP RNA and protein in antigen-presenting cells (APCs) by reverse transcription–polymerase chain reaction and by immunoblotting of mouse liver mononuclear cells and mouse and human B cell lines. Functional MTP, demonstrated by specific triglyceride transfer activity, is prese...

  18. Expression of hepatitis A virus cDNA in Escherichia coli: antigenic VP1 recombinant protein.

    OpenAIRE

    Ostermayr, R; von der Helm, K; Gauss-Müller, V; Winnacker, E L; Deinhardt, F.

    1987-01-01

    The genome of hepatitis A virus (HAV) was reverse transcribed into cDNA and molecularly cloned. cDNA clones coding for the capsid protein VP1 that carries the major HAV antigen were cloned into the expression vector pUR290 and expressed in Escherichia coli. The recombinant fusion protein reacted in an immunoblot with rabbit anti-HAV serum, suggesting that it possesses HAV antigenicity.

  19. Plant bioreactors for the antigenic hook-associated flgK protein expression

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2014-01-01

    Full Text Available Plants engineered with genes encoding for the antigenic proteins of various microorganisms have shown to correctly express the proteins that elicit the production of antibodies in mammalian hosts. In livestock, plant-based vaccines could represent an innovative strategy for oral vaccination, especially to prevent infection by enteric pathogens. The aim of this study was to evaluate tobacco plants as a seedspecific expression system for the production of the flgK flagellar hook-associated protein from a wild type Salmonella typhimurium strain, as a model of an edible vaccine. The flgK gene is the principal component of bacterial flagella and is recognised as virulence factor by the innate immune system. It was isolated from the Salmonella typhimurium strain by PCR. The encoding sequence of flgK was transferred into a pBI binary vector, under control of soybean basic 7S globulin promoter for the seed-specific. Plant transformation was carried out using recombinant EHA 105 Agrobacterium tumefaciens. A transgenic population was obtained made up of independently kanamycin-resistant transgenic plants, which had a similar morphological appearance to the wild-type plants. Molecular analyses of seeds confirmed the integration of the gene and the average expression level of flgK was estimated to be about 0.6 mg per gram of seeds, corresponding to 0.33% of the total amount of soluble protein in tobacco seeds. This study showed that the foreign flgK gene could be stably incorporated into the tobacco plant genome by transcription through the nuclear apparatus of the plant, and that these genes are inherited by the next generation.

  20. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  1. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.

    Science.gov (United States)

    Sau, S; Chattoraj, P; Ganguly, T; Chanda, P K; Mandal, N C

    2008-06-01

    Bacteriophages utilize host bacterial cellular machineries for their own reproduction and completion of life cycles. The early proteins that phage synthesize immediately after the entry of their genomes into bacterial cells participate in inhibiting host macromolecular biosynthesis, initiating phage-specific replication and synthesizing late proteins. Inhibition of synthesis of host macromolecules that eventually leads to cell death is generally performed by the physical and/or chemical modification of indispensable host proteins by early proteins. Interestingly, most modified bacterial proteins were shown to take part actively in phage-specific transcription and replication. Research on phages in last nine decades has demonstrated such lethal early proteins that interact with or chemically modify indispensable host proteins. Among the host proteins inhibited by lethal phage proteins, several are not inhibited by any chemical inhibitor available today. Under the context of widespread dissemination of antibiotic-resistant strains of pathogenic bacteria in recent years, the information of lethal phage proteins and cognate host proteins could be extremely invaluable as they may lead to the identification of novel antibacterial compounds. In this review, we summarize the current knowledge about some early phage proteins, their cognate host proteins and their mechanism of action and also describe how the above interacting proteins had been exploited in antibacterial drug discovery. PMID:18537683

  2. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders;

    2007-01-01

    The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...... containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein...... turnover rate was measured by means of the end-product method using [15N]glycine as tracer and urinary nitrogen as end-product. In minks, protein flux, synthesis, and breakdown increased significantly with increasing dietary BPM. In pigs, diet had no observed effect on protein turnover rate. The intake...

  3. Function, structure, and mechanism in bacterial photosensory LOV proteins

    OpenAIRE

    Herrou, Julien; Crosson, Sean

    2011-01-01

    LOV domains are protein photosensors conserved in bacteria, archaea, plants and fungi that detect blue light via a flavin cofactor. In the bacterial kingdom, LOV domains are present in both chemotrophic and phototrophic species, where they are found N-terminally of signaling and regulatory domains such as sensor histidine kinases, diguanylate cyclases/phosphodiesterases, DNA-binding domains, and σ factor regulators. In this review, we describe the current state of knowledge on the function of...

  4. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting for protein antigen analysis

    International Nuclear Information System (INIS)

    Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) has now become a standard tool in most laboratories for protein analysis and purification. Several SDS-PAGE systems have been described but the most widely used one is the discontinuous buffer system introduced for disc gel electrophoresis. Western blotting or the process of transfer of the electrophoretically separated proteins onto immobilizing matrices such as nitrocellulose membrane is an extension of SDS-PAGE system and provides, on the nitrocellulose blot, an identical copy of the electrophoretic separation pattern of the proteins present in the gels. The immobilized proteins can be further reacted with an appropriate probe such as antibody for identification of its corresponding antigen. The protein antigen/antibody complex is then detected by using radioactively labelled or enzyme-linked second antibody probe. The technique is very useful for analysis and characterization of complex protein antigens using immune sera from several sources or vice versa. The protocol given presented here illustrates such a separation by which complex protein antigens of blood stages of Plasmodium vivax obtained from blood of patients with vivax malaria are fractionated by SDS-PAGE and treated with immune sera from patients with acute vivax malaria and the antigen/antibody complex formed are detected by 125I-labelled anti-human immunoglobulins. 5 refs, 2 figs

  5. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    Science.gov (United States)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  6. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms.

    Directory of Open Access Journals (Sweden)

    Carlos J Sanchez

    Full Text Available The Pneumococcal serine-rich repeat protein (PsrP is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10 on the surface of lung cells through amino acids 273-341 located in the Basic Region (BR domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (rBR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122-166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.

  7. Near-infrared fluorescent proteins engineered from bacterial phytochromes.

    Science.gov (United States)

    Shcherbakova, Daria M; Baloban, Mikhail; Verkhusha, Vladislav V

    2015-08-01

    Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies. PMID:26115447

  8. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene;

    2014-01-01

    The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...... attractive interaction with the zwitterionic liposomes. In contrast, the net cationic lysozyme showed very little interaction with either types of liposome. Adsorption of α-lactalbumin altered its tertiary structure, affected lipid membrane packing below and above the phase transition temperature, and...... way vaccine antigens are presented to antigen-presenting cells, and may play an important role for the efficacy of the vaccine-induced immune response. These studies thus exemplify the importance of characterizing the molecular interactions between the vaccine antigen and adjuvant along with...

  9. Co-administration of non-carrier nanoparticles boosts antigen immune response without requiring protein conjugation.

    Science.gov (United States)

    Wibowo, Nani; Chuan, Yap P; Seth, Arjun; Cordoba, Yoann; Lua, Linda H L; Middelberg, Anton P J

    2014-06-17

    Nanotechnology promises a revolution in medicine including through new vaccine approaches. The use of nanoparticles in vaccination has, to date, focused on attaching antigen directly to or within nanoparticle structures to enhance antigen uptake by immune cells. Here we question whether antigen incorporation with the nanoparticle is actually necessary to boost vaccine effectiveness. We show that the immunogenicity of a sub-unit protein antigen was significantly boosted by formulation with silica nanoparticles even without specific conjugation of antigen to the nanoparticle. We further show that this effect was observed only for virus-sized nanoparticles (50 nm) but not for larger (1,000 nm) particles, demonstrating a pronounced effect of nanoparticle size. This non-attachment approach has potential to radically simplify the development and application of nanoparticle-based formulations, leading to safer and simpler nanoparticle applications in vaccine development. PMID:24793947

  10. [Elaboration of new adjuvant lipid-saponin complex and its use at experimental immunization by bacterial antigen].

    Science.gov (United States)

    Tsybul'skiĭ, A V; Sanina, N M; Li, I A; Popov, A M; Kostetskiĭ, E Ia; Portniagina, O Iu; Shnyrov, V L

    2007-01-01

    Results of experiments on modification of immunostimulating complexes (ISCOM's) matrix by the replacement of the phospholipid for the glycolipid (monogalactosyldiacylglycerol) from sea macrophytes, and saponin QuillA to triterpene glycoside of cucumarioside A2-2 from Cucumaria japonica are shown. The resultant complexes include the morphological structures of two types: ISCOM-like structures with the characteristic morphology and sizes and also the tubular structures with diameter of approximately 40 nm and length of 150-400 nm. We have named these structures as TI-complexes. These TI-complexes exhibit considerably lower toxicity than ISCOM. They may include an amphiphilic protein antigen and provide immunoadjuvant effect during experimental vaccination. Under conditions of experimental immunization of mice by a weak immunogen--(subunit membrane pore protein from Y. pseudotuberculosis), TI-complexes with antigen provided stronger humoral immune response to antigen than the complexes of porin with classical ISCOM, liposomes and Freund's adjuvant. Thus, it's shown the prospect of the use of TI-complexes as a new type of adjuvant carriers for antigens. PMID:17722580

  11. Changes in the antigenic and molecular structure of γ-irradiated bacterial lipopolysaccharide (LPS)

    International Nuclear Information System (INIS)

    Ionization radiation is known to alter the biological properties of LPS. The author treated a highly purified LPS from E. coli in aqueous medium with 60Co-radiation. The changes in the antigenic and molecular structure of LPS were studied in double immunodiffusion/immunoelectrophoresis (rabbit antiserum) and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Untreated LPS revealed two major antigenic components and, due to varying lengths of the O-polysaccharide side chain, a series of homopolymers (SDS-PAGE). High doses of γ-radiation destroyed all antigenic reactivities and all stainable bands on SDS-PAGE. However, lower doses of radiation were selective. Disappearance of the more radiation-sensitive, electrophoretically fast-migrating antigenic component paralleled elimination of the long O-side chain containing molecules. The relatively radiation-resistant, less anodic second antigenic component cross-reacted with LPS of another E. coli strain and corresponded to LPS molecules composed of R-core and lipid A (SDS-PAGE). These findings explain the in vivo loss of antibody protection from shock before non-specific resistance with γ-irradiation of LPS

  12. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Science.gov (United States)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  13. Screening and Identification of Antigenic Proteins from the Hard Tick Dermacentor silvarum (Acari: Ixodidae).

    Science.gov (United States)

    Zhang, Tiantian; Cui, Xuejiao; Zhang, Jincheng; Wang, Hui; Wu, Meng; Zeng, Hua; Cao, Yuanyuan; Liu, Jingze; Hu, Yonghong

    2015-12-01

    In order to explore tick proteins as potential targets for further developing vaccine against ticks, the total proteins of unfed female Dermacentor silvarum were screened with anti-D. silvarum serum produced from rabbits. The results of western blot showed that 3 antigenic proteins of about 100, 68, and 52 kDa were detected by polyclonal antibodies, which means that they probably have immunogenicity. Then, unfed female tick proteins were separated by 12% SDS-PAGE, and target proteins (100, 68, and 52 kDa) were cut and analyzed by LC-MS/MS, respectively. The comparative results of peptide sequences showed that they might be vitellogenin (Vg), heat shock protein 60 (Hsp60), and fructose-1, 6-bisphosphate aldolase (FBA), respectively. These data will lay the foundation for the further validation of antigenic proteins to prevent infestation and diseases transmitted by D. silvarum. PMID:26797451

  14. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition.

    Science.gov (United States)

    Arenz, Stefan; Wilson, Daniel N

    2016-01-01

    Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria. PMID:27481773

  15. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    Science.gov (United States)

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane. PMID:27095709

  16. Specific Nongluten Proteins of Wheat Are Novel Target Antigens in Celiac Disease Humoral Response

    OpenAIRE

    Huebener, Sina; Tanaka, Charlene K.; Uhde, Melanie; Zone, John J.; Vensel, William H.; Kasarda, Donald D.; Beams, Leilani; Briani, Chiara; Green, Peter H.R.; Altenbach, Susan B; Alaedini, Armin

    2014-01-01

    While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar...

  17. The Secondary Structure of Heated Whey Protein and Its Hydrolysates Antigenicity

    Institute of Scientific and Technical Information of China (English)

    PANGZhi-hua; ZHU Jun; WU Wei-jing; WANG Fang; RENFa-zheng; ZHANG Lu-daa; GUOHui-yuan

    2011-01-01

    Fourier transform infrared spectroscopy (FFIR) and circular dichroism (CD) were used to investigate the conformational changes of heated whey protein (WP) and the corresponding changes in the hydrolysates immunoreactivity were determined by competitive enzyme-linked immunosorbent assay (ELISA).Results showed that the contents of α- helix and β-sheet of WP did not decrease much under mild heating conditions and the antigenicity was relatively high; when the heating intensity increased (70 ℃ for 25 min or 75 ℃ for 20 min),the content of α- helix and β-sheet decreased to the minimum,so was the antigenicity; However,when the WP was heated at even higher temperature and for a longer time,the β-sheet associated with protein aggregation begun to increase and the antigenicity increased correspondingly.It was concluded that the conformations of heated WP and the antigenicity of its hydrolysates are related and the optimum structure for decreasing the hydrolysates antigeniity is the least content of α-helix and β-sheet.Establishing the elationship between the WP secondary structure and WP hydrolysates antigenicity is significant to supply the reference for antigenicity reduction by enzymolysis.

  18. A novel cancer testis antigen protein phosphates gamma 2

    International Nuclear Information System (INIS)

    A novel cancer-testis antigen PP1a2, which is a serine/threonine phosphatase and known to regulate sperm motility and sperm maturation during spermeogenesis. Here we have identified PP1a2 as a cancer biomarker in Cervical (C33, Hela), Prostate (PC3, DU145) and Ovarian (PA1) cancer cell lines. PP1a2 expression was also found in Human Embryonic Kidney (HEK 293) cell lines. As a result PP1a2 was found to be a marker of germ cells, cancerous cells as well as embryonic cells. This invention led to the theory that aberrant expression of germline genes in cancer reflects the activation of the silenced gametogenic programme in somatic cells, and that this programmatic acquisition is one of the driving forces of tumorigenesis. (author)

  19. Immunocapture and Identification of Cell Membrane Protein Antigenic Targets of Serum Autoantibodies*

    Science.gov (United States)

    Littleton, Edward; Dreger, Mathias; Palace, Jackie; Vincent, Angela

    2009-01-01

    There is increasing interest in the role of antibodies targeting specific membrane proteins in neurological and other diseases. The target(s) of these pathogenic antibodies is known in a few diseases, usually when candidate cell surface proteins have been tested. Approaches for identifying new antigens have mainly resulted in the identification of antibodies to intracellular proteins, which are often very useful as diagnostic markers for disease but unlikely to be directly involved in disease pathogenesis because they are not accessible to circulating antibodies. To identify cell surface antigens, we developed a “conformational membrane antigen isolation and identification” strategy. First, a cell line is identified that reacts with patient sera but not with control sera. Second, intact cells are exposed to sera to allow the binding of presumptive autoantibodies to their cell surface targets. After washing off non-bound serum components, the cells are lysed, and immune complexes are precipitated. Third, the bound surface antigen is identified by mass spectrometry. As a model system we used a muscle cell line, TE671, that endogenously expresses muscle-specific tyrosine receptor kinase (MuSK) and sera or plasmas from patients with a subtype of the autoimmune disease myasthenia gravis in which patients have autoantibodies against MuSK. MuSK was robustly detected as the only membrane protein in immunoprecipitates from all three patient samples tested and not from the three MuSK antibody-negative control samples processed in parallel. Of note, however, there were many intracellular proteins found in the immunoprecipitates from both patients and controls, suggesting that these were nonspecifically immunoprecipitated from cell extracts. The conformational membrane antigen isolation and identification technique should be of value for the detection of highly relevant antigenic targets in the growing number of suspected antibody-mediated autoimmune disorders. The

  20. Production of polyclonal antibodies against protein antigens purified by electroelution from SDS-polyacrylamide gel

    OpenAIRE

    sprotocols

    2015-01-01

    This protocol describes the purification of insoluble or moderately soluble proteins using an electro-separation system for elution from SDS-polyacrylamide gel and the use of the purified proteins for the production of polyclonal antibodies. The proteins to be purified must be highly expressed in bacterial cells and visible in polyacrylamide gels following Coomassie Blue staining. The gel should not be stained because non-stained proteins are electroelueted much faster than fixed and stained ...

  1. Expression and characterization of hepatitis C virus core protein fused to hepatitis B virus core antigen

    Institute of Scientific and Technical Information of China (English)

    杨莉; 王春林; 汪垣; 李光地

    1999-01-01

    Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d

  2. Speciifc T-cell Responses to CFP10, an Secreted Antigens of Mycobacterium Tuberculosis Protein, in Chinese hIV Positive Individuals

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Objective To construct prokaryotic expression vector of CFP-10 gene, and obtain recombinant protein, and the recombinant CFP-10 protein was taken as stimulus to detect speciifc T cell responses, to set up a method to faciliate to detect potential TB infection in China. Methods CFP-10 was cloned into inducible prokaryotic expression vector pET-32a (+) and transfected into E. coli BL21 (DE3). After IPTG induction, the product were veriifed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot hybridization were carried out to verify the antigenicity;the recombinant CFP-10 protein was taken as stimulus to detect speciifc T cell responses in HIV (+) persons with or without clinical manifestation of TB diseases, and HIV (-) controls with or without TB diseases. Results The CFP-10 recombinant protein exsited in the form of inclusion body and accounted for 94%in total bacterial protein of E. coli and the molecular weight is 31 kD;Western blot conifrmed the recombinant proteins had high antigenicity;our in-house ELISpot-IFN-γassay with recombinant antigen derived from CFP-10 proteins showed significant higher frequencies in TB patients with or without HIV infection than that in the healthy controls and only HIV (+) group. Conclusions The recombinant CFP-10 genes can be expressed successfully in prokaryotic expression system of E. coli and recombinant proteins with high antigenicity were obtained, which will set foundation for further study on their immunogenicity and bioinformatics. Our results proved that it is indeed true that some HIV positive patient have high frequencies of TB specific T cell responses, which maybe a clue to find latent TB infection in this population.

  3. Screening and characterization of early diagnostic antigens in excretory-secretory proteins from Trichinella spiralis intestinal infective larvae by immunoproteomics.

    Science.gov (United States)

    Liu, Ruo Dan; Jiang, Peng; Wen, Hui; Duan, Jiang Yang; Wang, Li Ang; Li, Jie Feng; Liu, Chun Ying; Sun, Ge Ge; Wang, Zhong Quan; Cui, Jing

    2016-02-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae are the most commonly used diagnostic antigens for trichinellosis, but specific IgG antibodies were not detected in early stage of infection. The aim of this study was to identify early diagnostic antigens from ES proteins of intestinal infective larvae (IIL), the first invasive stage of T. spiralis. Six bands (92, 52, 45, 35, 32, and 29 kDa) of IIL ES proteins were recognized by infection sera in Western blotting as early as 10 days post infection. Total of 54 T. spiralis proteins in six bands were identified by shotgun LC-MS/MS, 30 proteins were annotated, and 27 had hydrolase activity. Several proteins (serine protease, putative trypsin, deoxyribonuclease II family protein, etc.) could be considered as the potential early diagnostic antigens for trichinellosis. Our study provides new insights for screening early diagnostic antigens from intestinal worms of T. spiralis. PMID:26468148

  4. Sperm protein 17 is an oncofetal antigen: a lesson from a murine model.

    Science.gov (United States)

    Arnaboldi, F; Menon, A; Menegola, E; Di Renzo, F; Mirandola, L; Grizzi, F; Figueroa, J A; Cobos, E; Jenkins, M; Barajon, I; Chiriva-Internati, Maurizio

    2014-10-01

    Sperm protein 17 (Sp17) was originally identified in the flagellum of spermatozoa and subsequently included in the subfamily of tumor-associated antigens known as cancer-testes antigens (CTA). Sp17 has been associated with the motility and migratory capacity in tumor cells, representing a link between gene expression patterns in germinal and tumor cells of different histological origins. Here we review the relevance of Sp17 expression in the mouse embryo and cancerous tissues, and present additional data demonstrating Sp17 complex expression pattern in this murine model. The expression of Sp17 in embryonic as well as adult neoplastic cells, but not normal tissues, suggests this protein should be considered an "oncofetal antigen." Further investigations are necessary to elucidate the mechanisms and functional significance of Sp17 aberrant expression in human adult cells and its implication in the pathobiology of cancer. PMID:24811209

  5. Group B streptococcal Ibc protein antigen: distribution of two determinants in wild-type strains of common serotypes.

    OpenAIRE

    Johnson, D R; Ferrieri, P

    1984-01-01

    Studies were carried out on the distribution of the Ibc protein antigenic marker in wild-type strains of group B streptococci of diverse serotypes isolated from epidemiological studies. Rabbits were immunized with group B streptococcal strain H36B, a prototype Ib strain, to produce antibody to the Ibc protein antigens. One antiserum (no. 970) contained antibody only against the trypsin-sensitive (TS) portion of the Ibc antigen. A second antiserum (no. 973), however, contained antibody to both...

  6. [Antigenic relationship between nucleocapsid proteins of phyto- and zoorhabdoviruses].

    Science.gov (United States)

    Maksymenko, L O; Parkhomenko, N I; Didenko, L F; Diachenko, N S; Olevyns'ka, Z M

    2005-01-01

    The methods of electrophoresis in PAAG and immunological method were used for comparative analysis of structural proteins of phytorhabdovirus of potato curly dwarf (PCDV) and zoorhabdoviruses-vesicular stomatitis virus (VSV) and fixed rabies Virus (RV). Molecular weight of viral proteins was determined by the method of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The proteins with molecular weight 45-51 kD, are probably, the major component of the viral nucleocapsid. Nucleocapsid protein 45 kD RV virus was isolated by the method of preparative electrophoresis and then the monospecific serum was obtained. The Ouchterlony and immunoblotting method were used to show, that nucleocapsid proteins with molecular weights 51 and 45 kD both of phytorhabdovirus PCDV and zoorhabdoviruses VSV and RV are serologically related. The obtained data may be used in biotechnology as the basis for creation of a new class of diagnostic preparations with the purpose to detect RV virus using proteins of curly potato dwarf virus and may be also used in serological tests to reveal viruses of Rhabdoviridae family in various eukaryotic objects. PMID:16018215

  7. Bacterial protein meal in diets for growing pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Kjos, N.P.;

    2007-01-01

    This experiment investigated the effects of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism of pigs from weaning to a live weight of 80 kg. FOur litters with four castrated male pigs in each litter were used. The litters were divided into two...... blocks according to age. One pig from each litter was fed one of the four experimental diets. Soya-bean meal was replaced with BPM on the basis of digestible protein, and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), corresponding to 0%, 17%, 35% and 52...... by inclusion level of BPM. Retention of energy was 620 (BP0), 696 (BP5), 613 (BP10) and 664 kJ/kg0.75 per day (BP15), the differences among diets being non-significant. The N-free respiratory quotient was similar on all diets. It was concluded that the overall protein and energy metabolism in growing pigs were...

  8. Entamoeba histolytica antigenic protein detected in pus aspirates from patients with amoebic liver abscess.

    Science.gov (United States)

    Othman, Nurulhasanah; Mohamed, Zeehaida; Yahya, Maya Mazuwin; Leow, Voon Meng; Lim, Boon Huat; Noordin, Rahmah

    2013-08-01

    Entamoeba histolytica is a causative agent of amoebic liver abscess (ALA) and is endemic in many underdeveloped countries. We investigated antigenic E. histolytica proteins in liver abscess aspirates using proteomics approach. Pus samples were first tested by real-time PCR to confirm the presence of E. histolytica DNA and the corresponding serum samples tested for E. histolytica-specific IgG by a commercial ELISA. Proteins were extracted from three and one pool(s) of pus samples from ALA and PLA (pyogenic liver abscess) patients respectively, followed by analysis using isoelectric focussing, SDS-PAGE and Western blot. Unpurified pooled serum samples from infected hamsters and pooled human amoebic-specific IgG were used as primary antibodies. The antigenic protein band was excised from the gel, digested and analysed by MALDI-TOF/TOF and LC-MS/MS. The results using both primary antibodies showed an antigenic protein band of ∼14kDa. Based on the mass spectrum analysis, putative tyrosine kinase is the most probable identification of the antigenic band. PMID:23680184

  9. Immunoassay using 125I- or enzyme-labeled protein A and antigen-coated tubes

    International Nuclear Information System (INIS)

    Antigen-coated plastic tubes were used with 125I- or enzyme-labeled stapylococcal protein A in a general immunoassay method for antigens and haptens. Protein A reacts with immunoglobulin G(IgG) regardless of antibody specificity at sites distal to the antigen combining site and does not inhibit the immune reaction. It therefore serves as a general tracer and its use eliminates the need to purify and to label individual components for each assay. Macromolecular antigens were bound to polystyrene or polypropylene tubes by direct passive absorption. Haptens with free carboxyl groups were bound covalently to poly-L-lysine and these conjugates passively absorbed to the tube surface. Optimal assay conditions were established for the quantitative determination of immunoglobulins and the folate derivatives, methotrexate and 5-methyltetrahydrofolate, using 125I-labeled protein A or protein A labeled with alkaline phosphatase. The method has been used to estimate levels of IgG, IgA, Igm, and IgE in serum in volumes up to 1 ml

  10. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  11. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice.

    Science.gov (United States)

    Permyakova, Natalia V; Zagorskaya, Alla A; Belavin, Pavel A; Uvarova, Elena A; Nosareva, Olesya V; Nesterov, Andrey E; Novikovskaya, Anna A; Zav'yalov, Evgeniy L; Moshkin, Mikhail P; Deineko, Elena V

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells. PMID:25949997

  12. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    Directory of Open Access Journals (Sweden)

    Natalia V. Permyakova

    2015-01-01

    Full Text Available Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L. genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  13. In Silico Design of a Chimeric Protein Containing Antigenic Fragments of Helicobacter pylori; A Bioinformatic Approach

    Science.gov (United States)

    Mohammad, Nazanin; Karsabet, Mehrnaz Taghipour; Amani, Jafar; Ardjmand, Abolfazl; Zadeh, Mohsen Razavi; Gholi, Mohammad Khalifeh; Saffari, Mahmood; Ghasemi, Amir

    2016-01-01

    Helicobacter pylori is a global health problem which has encouraged scientists to find new ways to diagnose, immunize and eradicate the H. pylori infection. In silico studies are a promising approach to design new chimeric antigen having the immunogenic potential of several antigens. In order to obtain such benefit in H. pylori vaccine study, a chimeric gene containing four fragments of FliD sequence (1-600 bp), UreB (327-334 bp),VacA (744-805 bp) and CagL(51-100 bp) which have a high density of B- and T-cell epitopes was designed. The secondary and tertiary structures of the chimeric protein and other properties such as stability, solubility and antigenicity were analyzed. The in silico results showed that after optimizing for the purpose of expression in Escherichia coli BL21, the solubility and antigenicity of the construct fragments were highly retained. Most regions of the chimeric protein were found to have a high antigenic propensity and surface accessibility. These results would be useful in animal model application and accounted for the development of an epitope-based vaccine against the H. pylori. PMID:27335622

  14. Bacterial Hydrolysis of Protein and Methylated Protein and Its Implications for Studies of Protein Degradation in Aquatic Systems

    OpenAIRE

    Keil, Richard G.; Kirchman, David L.

    1992-01-01

    Ribulose 1,5-bisphosphate carboxylase was radiolabelled by in vitro translation, resulting in uniformly labelled ribulose 1,5-bisphosphate carboxylase, and also by reductive methylation. We investigated the degradation of the two forms of radiolabelled protein by natural bacterial populations. Although total hydrolysis of uniformly labelled protein and methylated protein was nearly equal, percent assimilation, respiration, and release as low-molecular-weight material were different. Radioacti...

  15. Overexpression and Enzymatic Assessment of Antigenic Fragments of Hyaluronidase Recombinant Protein From Streptococcus pyogenes

    OpenAIRE

    Sadoogh Abbasian, Shabnam; Ghaznavi Rad, Ehsanollah; Akbari, Neda; Zolfaghari, Mohammad Reza; Pakzad, Iraj; ABTAHI, Hamid

    2014-01-01

    Background: Hyaluronidase catalyzes the hydrolysis of hyaluronan polymers to N-acetyl-D-glucosamine and D-glucuronic acid. This enzyme is a dimer of identical subunits. Hyaluronidase has different pharmaceutical and medical applications. Previously, we produced a recombinant hyaluronidase antigenic fragment of Streptococcus pyogenes. Objectives: This study aimed to improve the protein production and purity of hyaluronidase recombinant protein from S. pyogenes. In addition, the enzymatic activ...

  16. Antigen capture ELISA for the heat shock protein (hsp60) of Chlamydia trachomatis.

    OpenAIRE

    Horner, P J; Ali, M.; Parker, D.; Weber, J. N.; Taylor-Robinson, D.; McClure, M O

    1996-01-01

    AIMS: To develop an indirect ELISA using the heat shock protein (hsp60) of Chlamydia trachomatis as antigen. METHODS: The hsp60 gene was amplified by PCR, expressed in the vector pDEV-107 and transformed into Escherichia coli. The recombinant protein, expressed as a beta-galactosidase fusion product, was captured onto a solid phase using a monoclonal antibody directed against beta-galactosidase. Following incubation with goat anti-human antibody conjugated to peroxidase and colour development...

  17. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  18. Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins

    OpenAIRE

    Zhou, Dapeng; Cantu, Carlos; Sagiv, Yuval; Schrantz, Nicolas; Kulkarni, Ashok B.; Qi, Xiaoyang; Mahuran, Don J.; Carlos R Morales; Grabowski, Gregory A.; Benlagha, Kamel; Savage, Paul; Bendelac, Albert; Teyton, Luc

    2003-01-01

    It is now established that CD1 molecules present lipid antigens to T cells, although it is not clear how the exchange of lipids between membrane compartments and the CD1 binding groove is assisted. We report that mice deficient in prosaposin, the precursor to a family of endosomal lipid transfer proteins (LTP), exhibit specific defects in CD1d-mediated antigen presentation and lack Vα14 NKT cells. In vitro, saposins extracted monomeric lipids from membranes and from CD1, thereby promoting the...

  19. [Immunotherapy by polyvalent bacterial antigen (Broncasma Berna) in the prevention of pneumonia in the elderly].

    Science.gov (United States)

    Suzuki, K; Yamamoto, K; Adachi, S; Yamamoto, T

    1989-03-01

    Pneumonia in the elderly often occurs repeatedly, and the mortality rate from pneumonia continues to remain high today despite the usual use of antibacterial chemotherapy. Therefore, we conducted immunotherapy using a polyvalent bacterial vaccine (broncasma Berna). We treated 54 elderly patients with Broncasma Berna, containing chief bacterial pathogens responsible for pneumonia in the elderly. Clinical results obtained during 2 years were compared with those of 18 subjects not treated with Broncasma Berna. The survival rate was 64.8% for the group treated with Broncasma Berna and 50% for the group not treated. The frequency of contraction of pneumonia decreased significantly in the group treated. Clinical efficacy was obtained in 63% of the group treated to prevent pneumonia. The death rate from pneumonia was 17.6% for the group treated and 44.4% for the group not treated. Immunologically, reinforcement in humoral and cellular immunities was indicated by immunoglobulin values, positive tuberculin skin tests, and an increase in lymphocyte stimulation index values for Broncasma Berna. Significant pathogens in sputum disappeared or decreased in 6 (54.6%) out of 11 patients. Side effects such as pain or redness at the site of injection were observed in 6 patients. From the above results, it may be concluded that Broncasma Berna can be considered to be effective as a long-term immunoprophylactic agent in the prevention of pneumonia in the elderly. PMID:2504831

  20. Indirect 125I-labeled protein A assay for monoclonal antibodies to cell surface antigens

    International Nuclear Information System (INIS)

    An assay for detection of monoclonal hybridoma antibodies against cell surface antigens is described. Samples of spent medium from the hybridoma cultures are incubated in microtest wells with cells, either as adherent monolayers or in suspension. Antibodies bound to surface antigens are detected by successive incubations with rabbit anti-immunoglobulin serum and 125I-labeled protein A from Staphylococcus aureus, followed by autoradiography of the microtest plate or scintillation counting of the individual wells. Particular advantages of this assay for screening hybridomas are: (1) commercially available reagents are used, (2) antibodies of any species and of any immunoglobulin class or subclass can be detected, and (3) large numbers of samples can be screened rapidly and inexpensively. The assay has been used to select hybridomas producing monoclonal antibodies to surface antigens of human melanomas and mouse sarcomas. (Auth.)

  1. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  2. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-01-01

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well. PMID:27084079

  3. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response.

    Science.gov (United States)

    Huebener, Sina; Tanaka, Charlene K; Uhde, Melanie; Zone, John J; Vensel, William H; Kasarda, Donald D; Beams, Leilani; Briani, Chiara; Green, Peter H R; Altenbach, Susan B; Alaedini, Armin

    2015-01-01

    While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat. PMID:25329597

  4. Natural Killer Cells and Helicobacter pylori Infection: Bacterial Antigens and Interleukin-12 Act Synergistically To Induce Gamma Interferon Production

    Science.gov (United States)

    Yun, Cheol H.; Lundgren, Anna; Azem, Josef; Sjöling, Åsa; Holmgren, Jan; Svennerholm, Ann-Mari; Lundin, B. Samuel

    2005-01-01

    Helicobacter pylori is known to induce a local immune response, which is characterized by activation of lymphocytes and the production of IFN-γ in the stomach mucosa. Since not only T cells, but also natural killer (NK) cells, are potent producers of gamma interferon (IFN-γ), we investigated whether NK cells play a role in the immune response to H. pylori infection. Our results showed that NK cells were present in both the gastric and duodenal mucosae but that H. pylori infection did not affect the infiltration of NK cells into the gastrointestinal area. Furthermore, we could show that NK cells could be activated directly by H. pylori antigens, as H. pylori bacteria, as well as lysate from H. pylori, induced the secretion of IFN-γ by NK cells. NK cells were also activated without direct contact when separated from the bacteria by an epithelial cell layer, indicating that the activation of NK cells by H. pylori can also occur in vivo, in the infected stomach mucosa. Moreover, the production of IFN-γ by NK cells was greatly enhanced when a small amount of interleukin-12 (IL-12) was added, and this synergistic effect was associated with increased expression of the IL-12 receptor β2. It was further evident that bacterial lysate alone was sufficient to induce the activation of cytotoxicity-related molecules. In conclusion, we demonstrated that NK cells are present in the gastroduodenal mucosa of humans and that NK cells produce high levels of IFN-γ when stimulated with a combination of H. pylori antigen and IL-12. We propose that NK cells play an active role in the local immune response to H. pylori infection. PMID:15731046

  5. Determinants of antigenicity and specificity in immune response for protein sequences

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2011-06-01

    Full Text Available Abstract Background Target specific antibodies are pivotal for the design of vaccines, immunodiagnostic tests, studies on proteomics for cancer biomarker discovery, identification of protein-DNA and other interactions, and small and large biochemical assays. Therefore, it is important to understand the properties of protein sequences that are important for antigenicity and to identify small peptide epitopes and large regions in the linear sequence of the proteins whose utilization result in specific antibodies. Results Our analysis using protein properties suggested that sequence composition combined with evolutionary information and predicted secondary structure, as well as solvent accessibility is sufficient to predict successful peptide epitopes. The antigenicity and the specificity in immune response were also found to depend on the epitope length. We trained the B-Cell Epitope Oracle (BEOracle, a support vector machine (SVM classifier, for the identification of continuous B-Cell epitopes with these protein properties as learning features. The BEOracle achieved an F1-measure of 81.37% on a large validation set. The BEOracle classifier outperformed the classical methods based on propensity and sophisticated methods like BCPred and Bepipred for B-Cell epitope prediction. The BEOracle classifier also identified peptides for the ChIP-grade antibodies from the modENCODE/ENCODE projects with 96.88% accuracy. High BEOracle score for peptides showed some correlation with the antibody intensity on Immunofluorescence studies done on fly embryos. Finally, a second SVM classifier, the B-Cell Region Oracle (BROracle was trained with the BEOracle scores as features to predict the performance of antibodies generated with large protein regions with high accuracy. The BROracle classifier achieved accuracies of 75.26-63.88% on a validation set with immunofluorescence, immunohistochemistry, protein arrays and western blot results from Protein Atlas database

  6. Seroreactivity to new Mycobacterium leprae protein antigens in different leprosy-endemic regions in Brazil

    OpenAIRE

    Emerith Mayra Hungria; Regiane Morillas Oliveira; Ana Lúcia Osório Maroclo de Souza; Maurício Barcelos Costa; Vânia Nieto Brito de Souza; Eliane Aparecida Silva; Fátima Regina Vilani Moreno; Maria Esther Salles Nogueira; Maria Renata Sales Nogueira Costa; Sônia Maria Usó Ruiz Silva; Samira Bührer-Sékula; Reed, Steven G.; Duthie, Malcolm S.; Mariane Martins Araújo Stefani

    2012-01-01

    New Mycobacterium leprae protein antigens can contribute to improved serologic tests for leprosy diagnosis/classification and multidrug therapy (MDT) monitoring. This study describes seroreactivity to M. leprae proteins among participants from three highly endemic leprosy areas in Brazil: central-western Goiânia/Goiás (GO) (n = 225), Rondonópolis/Mato Grosso (MT) (n = 764) and northern Prata Village/Pará (PA) (n = 93). ELISA was performed to detect IgG to proteins (92f, 46f, leprosy IDRI diag...

  7. Tandem repeat recombinant proteins as potential antigens for the sero-diagnosis of Schistosoma mansoni infection.

    Science.gov (United States)

    Kalenda, Yombo Dan Justin; Kato, Kentaro; Goto, Yasuyuki; Fujii, Yoshito; Hamano, Shinjiro

    2015-12-01

    The diagnosis of schistosome infection, followed by effective treatment and/or mass drug administration, is crucial to reduce the disease burden. Suitable diagnostic tests and field-applicable tools are required to sustain schistosomiasis control programs. We therefore assessed the potential of tandem repeat (TR) proteins for sero-diagnosis of Schistosoma mansoni infection using an experimental mouse model. TR genes in the genome of S. mansoni were searched in silico and 7 candidates, named SmTR1, 3, 8, 9, 10, 11 and 15, were selected. Total RNA was extracted from S. mansoni adult worms and eggs. Target TR genes were amplified, cloned, and the proteins were expressed in Escherichia coli competent cells. Female BALB/c mice were infected with 100 S. mansoni cercariae and sera were collected each week post-infection for 18 weeks. The levels of IgG antibodies to SmTR antigens were compared to those to soluble egg antigen (SEA) and to soluble worm antigen preparation (SWAP). Sera of infected mice reacted to all the antigens whereas those of naïve mice did not. IgG responses to SmTR1, 3, 9 and 10 were detected at the early stage of infection. Interestingly, antibodies reacting to SmTR3, 9, 10 and 15 dramatically decreased 4 weeks after treatment with praziquantel, while those against SEA and SWAP remained elevated. Our study suggests that TR proteins, especially SmTR10, may be suitable antigens for sero-diagnosis of infection by S. mansoni and are potential markers for monitoring and surveillance of schistosomiasis, including re-infection after treatment with praziquantel. PMID:26148816

  8. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens.

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  9. Evidence that mycoplasmas, gram-negative bacteria, and certain gram-positive bacteria share a similar protein antigen.

    OpenAIRE

    Sasaki, T.

    1991-01-01

    It was demonstrated that mycoplasmas, gram-negative bacteria, and certain gram-positive bacteria share a similar protein antigen with a molecular weight ranging from 42,000 to 48,000. Western blotting (immunoblotting) with an antibody specific to a 43-kDa membrane protein of Mycoplasma fermentans showed the existence of this protein antigen in all Mycoplasma spp. tested (14 species), Acholeplasma laidlawii (1 strain), and gram-negative bacteria (8 species) but only in Staphylococcus aureus of...

  10. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  11. Immunoblot observation of antigenic protein fractions in Paragonimus westermani reacting with human patients sera.

    Science.gov (United States)

    Kim, Sung Hwan; Kong, Yoon; Kim, Suk Il; Kang, Shin Yong; Cho, Seung Yull

    1988-12-01

    In order to observe the antigenic fractions in saline extract of adult Paragonimus westermani, proteins in the crude extract were separated by sodium dodecyl sulfate-polyacylamide gel electrophoresis (SDS-PAGE) in reducing conditions. The separated protein fractions were transferred to nitrocellulose paper on which 20 sera from human paragonimiasis were reacted and immunoblotted. Out of 15 stained protein bands in SDS-PAGE, 7 reacted with the sera. Of 14 reacted bands, 30 kilodalton(kDa) band was the most frequently reacted (95%) and was a strong antigen. Protein bands of 23 and 46 kDa were also strong antigens. Bands of over 150 kDa, 120 kDa, 92 kDa, 86 kDa, 74 kDa, 62 kDa, 51 kDa, 32 kDa, 28 kDa, 16.5 kDa and 15.5 kDa were also reactive but their frequencies of the reaction were variable. PMID:12811037

  12. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong; Orr, Galya; Xiong, Yijia; Squier, Thomas; Rorrer, Gregory L.; Roesijadi, Guritno

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively bound the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.

  13. Changes in the repertoire of natural antibodies caused by immunization with bacterial antigens

    DEFF Research Database (Denmark)

    Shilova, N V; Navakouski, M J; Huflejt, M; Kuehn, A; Grunow, R; Blixt, Klas Ola; Bovin, N V

    2011-01-01

    The repertoire of natural anti-glycan antibodies in naïve chickens and in chickens immunized with bacteria Burkholderia mallei, Burkholderia pseudomallei, and Francisella tularensis as well as with peptides from an outer membrane protein of B. pseudomallei was studied. A relatively restricted...

  14. Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Hasman, Henrik; Schembri, Mark; Klemm, Per

    2002-01-01

    the outer membrane and secretion through the cell envelope is contained within the protein itself. Ag43 consists of two subunits (alpha and beta), where the beta-subunit forms an integral outer membrane translocator to which the alpha-subunit is noncovalently attached. The simplicity of the Ag43...

  15. Abnormal expressions of proliferating cell nuclear antigen and P27 protein in brain glioma

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Both proliferating cell nuclear antigen and P27 protein are important factors to regulate cell cycle. While, the combination of them can provide exactly objective markers to evaluate prognosis of patients with brain glioma needs to be further studied based on pathological level.OBJECTIVE: To observe the expressions of proliferating cell nuclear antigen and P27 protein in both injured and normal brain glioma tissues and analyze the effect of them on onset and development of brain glioma.DESIGN: Case contrast observation.SETTING: Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University.PARTICIPANTS: A total of 63 patients with brain glioma were selected from Department of Neurosurgery,the Second Affiliated Hospital of Xi'an Jiaotong University from July 1996 to June 2000. There were 38 males and 25 females and their ages ranged from 23 to 71 years. Based on pathological classification and grading standards of brain glioma, patients were divided into grade Ⅰ - tⅡ (n =30) and grade Ⅲ - Ⅳ (n =33). All cases received one operation but no radiotherapy and chemiotherapy before operation. Sample tissues were collected from tumor parenchyma. Non-neoplastic brain tissues were collected from another 12 non-tumor subjects who received craniocerebral trauma infra-decompression and regarded as the control group. There were 10 males and 2 females and their ages ranged from 16 to 54 years. The experiment had got confirmed consent from local ethic committee and the collection was provided confirmed consent from patients and their relatives. All samples were restained with HE staining so as to diagnose as the brain glioma.While, all patients with brain glioma received radiotherapy after operation and their survival periods were followed up.METHODS: Primary lesion wax of brain glioma was cut into serial sections and stained with S-P immunohistochemical staining. Brown substance which was observed in tumor nucleus was regarded as the

  16. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2......% (D2), 4% D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3-7, 10-14, 17-21, 23-27, and 30-34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with troups of 6 chickens...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  17. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    Directory of Open Access Journals (Sweden)

    Jonathan J Hansen

    Full Text Available BACKGROUND: Inflammatory bowel diseases (IBD may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta. Healthy, germ-free HLA-B27 transgenic (Tg rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation. METHODS: Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene. RESULTS: B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats. CONCLUSIONS: B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to

  18. Transcriptional Regulation of the Borrelia burgdorferi Antigenically Variable VlsE Surface Protein

    OpenAIRE

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P.; Norris, Steven J; Stevenson, Brian

    2006-01-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that...

  19. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins

    OpenAIRE

    Aguilar, Roberto M.; Talamantes, Frank J.; Bustamante, Juan J.; Muñoz, Jesus; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2009-01-01

    The membrane-bound rat growth hormone receptor (GH-R) and an alternatively spliced isoform, the soluble rat GH binding protein (GH-BP), are comprised of identical N-terminal GH binding domains, however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent multiple antigen peptide (MAP) dendrimer with four identical branches of a C-ter...

  20. Demonstration of antigenic variation among rabies virus isolates by using monoclonal antibodies to nucleocapsid proteins.

    OpenAIRE

    Smith, J S; Reid-Sanden, F L; Roumillat, L. F.; Trimarchi, C; Clark, K; Baer, G M; Winkler, W G

    1986-01-01

    Rabies virus isolates from terrestrial animals in six areas of the United States were examined with a panel of monoclonal antibodies to nucleocapsid proteins. Characteristic differences in immunofluorescence reactions permitted the formation of four antigenically distinct reaction groups from the 231 isolates tested. The geographic distribution of these groups corresponded well with separate rabies enzootic areas recognized by surveillance of sylvatic rabies in the United States. Distinctive ...

  1. Rapid Expression of Mycobacterium avium subsp. paratuberculosis Recombinant Proteins for Antigen Discovery▿

    OpenAIRE

    Li, Lingling; Munir, Shirin; Bannantine, John P.; Sreevatsan, Srinand; Kanjilal, Sagarika; Kapur, Vivek

    2006-01-01

    Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease, a chronic granulomatous enteritis of ruminants and other species. Detection of infection in animals is hampered by the lack of sensitive and specific diagnostic assays. We describe here an approach that utilizes translationally active PCR fragments for the rapid in vitro transcription and translation of recombinant proteins for antigen discovery in M. avium subsp. paratuberculosis. The investigations showed...

  2. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus;

    2014-01-01

    microsomal triglyceride transfer protein (MTP), which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen...

  3. Human defined antigenic region on the nucleoprotein of Crimean-Congo hemorrhagic fever virus identified using truncated proteins and a bioinformatics approach.

    Science.gov (United States)

    Burt, F J; Samudzi, R R; Randall, C; Pieters, D; Vermeulen, J; Knox, C M

    2013-11-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne viral zoonosis widely distributed in Africa, Asia and eastern Europe. In this study, amino acid sequence data for the CCHFV nucleoprotein (NP) was used to identify potential linear epitopic regions which were subsequently included in the design of large and small truncated recombinant NP antigens and peptide libraries. Two truncated recombinant CCHFV NP antigens were prepared based on results of prediction studies to include epitopic regions and exclude hydrophobic regions that could influence protein expression and solubility. Serum samples were collected from acute and convalescent patients. An IgG antibody response was detected in 16/16 samples tested using the large recombinant NP-based ELISA and in 2/16 using the small recombinant NP-based ELISA. A total of 60 peptides covering predicted epitopic regions of the NP were synthesized and peptide NRGGDENPRGPVSR at amino acid position 182-195, reacted with 13/16 human serum samples. In summary, functional assays are required to determine the biological activity of predicted epitopes for development of peptide based assays for antibody detection. Bacterially expressed complete NP antigens have previously been shown to be useful tools for antibody detection. Truncation of the antigen to remove the hydrophobic C terminus had no impact on the ability of the antigen to detect IgG antibody in human sera. The results indicate that the region from amino acids 123 to 396 includes a highly antigenic region of the NP with application in development of antibody detection assays. PMID:23933073

  4. A Strategy for Searching Antigenic Regions in the SARS-CoV Spike Protein

    Institute of Scientific and Technical Information of China (English)

    Yan Ren; Cuiqi Zhou; Jingqiang Wang; Jianning Yin; Ningzhi Xu; Siqi Liu; Zhengfeng Zhou; Jinxiu Liu; Liang Lin; Shuting Li; Hao Wang; Ji Xia; Zhe Zhao; Jie Wen

    2003-01-01

    In the face of the worldwide threat of severe acute respiratory syndrome (SARS)to human life, some of the most urgent challenges are to develop fast and accurate analytical methods for early diagnosis of this disease as well as to create a safe anti-viral vaccine for prevention. To these ends, we investigated the antigenicity of the spike protein (S protein), a major structural protein in the SARS-coronavirus (SARS-CoV). Based upon the theoretical analysis for hydrophobicity of the S protein, 18 peptides were synthesized. Using Enzyme-Linked Immunosorbent Assay (ELISA), these peptides were screened in the sera from SARS patients. According to these results, two fragments of the S gene were amplified by PCR and cloned into pET-32a. Both S fragments were expressed in the BL-21 strain and further purified with an affinity chromatography. These recombinant S fragments were confirmed to have positive cross-reactions with SARS sera, either by Western blot or by ELISA. Our results demonstrated that the potential epitope regions were located at Codons 469-882 in the S protein, and one epitope site was located at Codons 599-620. Identification of antigenic regions in the SARS-CoV S protein may be important for the functional studies of this virus or the development of clinical diagnosis.

  5. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  6. Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity.

    Science.gov (United States)

    Jones, Sarah; Asokanathan, Catpagavalli; Kmiec, Dorota; Irvine, June; Fleck, Roland; Xing, Dorothy; Moore, Barry; Parton, Roger; Coote, John

    2014-07-16

    Protein-coated microcrystals (PCMCs) were investigated as potential vaccine formulations for a range of model antigens. Presentation of antigens as PCMCs increased the antigen-specific IgG responses for all antigens tested, compared to soluble antigens. When compared to conventional aluminium-adjuvanted formulations, PCMCs modified with calcium phosphate (CaP) showed enhanced antigen-specific IgG responses and a decreased antigen-specific IgG1:IgG2a ratio, indicating the induction of a more balanced Th1/Th2 response. The rate of antigen release from CaP PCMCs, in vitro, decreased strongly with increasing CaP loading but their immunogenicity in vivo was not significantly different, suggesting the adjuvanticity was not due to a depot effect. Notably, it was found that CaP modification enhanced the phagocytosis of fluorescent antigen-PCMC particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen or soluble PCMCs. Thus, CaP PCMCs may provide an alternative to conventional aluminium-based acellular vaccines to provide a more balanced Th1/Th2 immune response. PMID:24120484

  7. Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery.

    Science.gov (United States)

    Bae, Hae-Duck; Lee, Joohyun; Jin, Xing-Hai; Lee, Kyunglim

    2016-09-01

    Nasal vaccination offers a promising alternative to intramuscular (i.m.) vaccination because it can induce both mucosal and systemic immunity. However, its major drawback is poor absorption of large antigens in the nasal epithelium. Protein transduction domains (PTDs), also called cell-penetrating peptides, have been proposed as vehicles for nasal delivery of therapeutic peptides and proteins. Here, we evaluated the potential of a mutant PTD derived from translationally controlled tumor protein (designated TCTP-PTD 13) as an antigen carrier for nasal vaccines. We first compared the l- and d-forms of TCTP-PTD 13 isomers (l- or d-TCTP-PTD 13) as antigen carriers. Studies in mice demonstrated that nasally administered mixtures of the model antigen ovalbumin (OVA) and d-TCTP-PTD 13 induced higher plasma IgG titers and secretory IgA levels in nasal washes than nasally administered OVA alone, OVA/l-TCTP-PTD 13, or i.m.-injected OVA. Plasma IgG subclass responses (IgG1 and IgG2a) of mice nasally administered OVA/d-TCTP-PTD 13 showed that the predominant IgG subclass was IgG1, indicating a Th2-biased immune response. We also used synthetic CpG oligonucleotides (CpG) as a Th1 immune response-inducing adjuvant. Nasally administered CpG plus OVA/d-TCTP-PTD 13 was superior in eliciting systemic and mucosal immune responses compared to those induced by nasally administered OVA/d-TCTP-PTD 13. Furthermore, the OVA/CpG/d-TCTP-PTD 13 combination skewed IgG1 and IgG2a profiles of humoral immune responses toward a Th1 profile. These findings suggest that TCTP-derived PTD is a suitable vehicle to efficiently carry antigens and to induce more powerful antigen-specific immune responses and a more balanced Th1/Th2 response when combined with a DNA adjuvant. PMID:27454469

  8. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

    OpenAIRE

    Berens, Shawn J.; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the comp...

  9. Tritium (3H) radiolabeling of protein A and antibody to high specific activity: Application to cell surface antigen radioimmunoassays

    International Nuclear Information System (INIS)

    Staphylococcal protein A and several different immunoglobulins have been radiolabeled to high specific activities (> 106 cpm/μg) by reductive methylation with tritiated (3H) sodium borohydride. The proteins retain excellent functional and antigenic properties. The utility of these reagents in a variety of assays for cell surface antigens is illustrated. The results indicate that this radiolabeling procedure may become the method of choice for many cell surface and solution immunoassays. (Auth.)

  10. Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

    OpenAIRE

    Ling, Losee L.; Xian, Jun; Ali, Syed; Geng, Bolin; Fan, Jun; Mills, Debra M.; Arvanites, Anthony C.; Orgueira, Hernan; Ashwell, Mark A.; Carmel, Gilles; Xiang, Yibin; Moir, Donald T.

    2004-01-01

    Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Esch...

  11. Effects of Malnutrition on Children's Immunity to Bacterial Antigens in Northern Senegal

    Science.gov (United States)

    Gaayeb, Lobna; Sarr, Jean B.; Cames, Cecile; Pinçon, Claire; Hanon, Jean-Baptiste; Ndiath, Mamadou O.; Seck, Modou; Herbert, Fabien; Sagna, Andre B.; Schacht, Anne-Marie; Remoue, Franck; Riveau, Gilles; Hermann, Emmanuel

    2014-01-01

    To evaluate immunity to vaccine-preventable diseases according to nutritional status, a longitudinal study was conducted in Senegalese children ages 1–9 years old. A linear regression analysis predicted that weight for age was positively associated with immunoglobulin G (IgG) response to tetanus toxoid in children born during the rainy season or at the beginning of the dry season. A relationship between village, time of visits, and levels of antibodies to tetanus showed that environmental factors played a role in modulating humoral immunity to tetanus vaccine over time. Moreover, a whole-blood stimulation assay highlighted that the production of interferon-γ (IFN-γ) in response to tetanus toxoid was compromised in stunted children. However, the absence of cytokine modulation in response to Mycobacterium tuberculosis-purified protein derivatives and phytohemagglutinin suggests that the overall ability to produce IFN-γ was preserved in stunted children. Therefore, these results show that nutritional status can specifically alter the efficacy of long-lasting immunity to tetanus. PMID:24445198

  12. Human seminal proteinase and prostate-specific antigen are the same protein

    Indian Academy of Sciences (India)

    Abdul Waheed; Md Imtaiyaz Hassan; Robert L Van Etten; Faizan Ahmad

    2008-06-01

    Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and compared. Both are glycoproteins of 32–34 kDa with protease activities. Based on some physicochemical, enzymatic and immunological properties, it is concluded that these proteins are in fact identical. The protein exhibits properties similar to kallikrein-like serine protease, trypsin, chymotrypsin and thiol acid protease. Tests of the activity of the enzyme against some potential natural and synthetic substrates showed that bovine serum albumin was more readily hydrolysed than casein. The results of this study should be useful in purifying and assaying this protein. Based on published studies and the present results, the broad proteolytic specificity of human seminal proteinase suggests a role for this protein in several physiological functions.

  13. Immobilization of viral antigens on filter paper for a [125I] staphylococcal protein A immunoassay

    International Nuclear Information System (INIS)

    A new technique is described for the rapid detection and quantitation of herpes simplex virus (HSV) antigens and antiviral antibodies. It involves immobilization of HSV antigens on filter paper discs and subsequent analysis by 125I-labelled staphylococcal protein A (SPA) radioimmunoassay. A specially designed 96-well filtration device is employed which serves both as an incubation chamber and as a filtration manifold. It is rapid, simple, sensitive and specific, and requires only small volumes of antiserum and few target cells. The results may be readily and objectively quantitated. This technique permits the simultaneous assay of a large number of specimens in less than 1h. Its sensitivity is considerably greater than that of other currently used immunologic techniques, and it is amenable to automation. These characteristics suggest that this [125 I]SPA immunofiltration technique may be applicable to the rapid diagnosis of viral infections. (Auth.)

  14. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  15. Monitoring antigenic protein integrity during glycoconjugate vaccine synthesis using capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Tengattini, Sara; Domínguez-Vega, Elena; Temporini, Caterina; Terreni, Marco; Somsen, Govert W

    2016-09-01

    A capillary electrophoresis-mass spectrometry (CE-MS) method was developed for the characterization and integrity assessment of the Mycobacterium tuberculosis (MTB) antigens TB10.4 and Ag85B and their chemically produced glycoconjugates, which are glycovaccine candidates against tuberculosis (TB). In order to prevent protein adsorption to the inner capillary wall and to achieve efficient separation of the antigen proteoforms, a polyionic multilayer coating of polybrene-dextran sulfate-polybrene (PB-DS-PB) was used in combination with 1.5 M acetic acid as background electrolyte (BGE). Coupling of CE to high-resolution time-of-flight MS was achieved by a coaxial interface employing a sheath liquid of isopropanol-water (50:50, v/v) containing 0.1 % formic acid. The MTB antigens were exposed to experimental conditions used for chemical glycosylation (but no activated saccharide was added) in order to investigate their stability during glycovaccine production. CE-MS analysis revealed the presence of several closely related degradation products, including truncated, oxidized and conformational variants, which were assigned by accurate mass. Analysis of synthesized mannose conjugates of TB10.4 and Ag85B allowed the determination of the glycoform composition of the neo-glycoproteins next to the characterization of degradation products which were shown to be partly glycoconjugated. Moreover, the selectivity of CE-MS allowed specific detection of deamidated species (protein mass change of 1.0 Da only), indicating that chemical glycosylation increased susceptibility to deamidation. Overall, the results show that CE-MS represents a useful analytical tool for the detailed characterization and optimization of neo-glycoconjugate products. Graphical Abstract Flowchart illustrating Mycobacterium tuberculosis (MTB) antigen glycosylation, glycoconjugate variant and degradation product separation by capillary electrophoresis (CE) and their characterization by intact mass

  16. Conformational Heterogeneity in Antibody-Protein Antigen Recognition IMPLICATIONS FOR HIGH AFFINITY PROTEIN COMPLEX FORMATION

    Czech Academy of Sciences Publication Activity Database

    Addis, P. W.; Hall, c. J.; Bruton, S.; Veverka, Václav; Wilkinson, I. C.; Muskett, F. W.; Renshaw, P. S.; Prosser, C. E.; Carrington, B.; Lawson, A. D. G.; Griffin, R.; Taylor, R. J.; Waters, L. C.; Henry, A. J.; Carr, M. D.

    2014-01-01

    Roč. 289, č. 10 (2014), s. 7200-7210. ISSN 0021-9258 Institutional support: RVO:61388963 Keywords : NMR * antibody * protein-protein interaction * protein conformation Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  17. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  18. Seroreactivity to new Mycobacterium leprae protein antigens in different leprosy-endemic regions in Brazil

    Directory of Open Access Journals (Sweden)

    Emerith Mayra Hungria

    2012-12-01

    Full Text Available New Mycobacterium leprae protein antigens can contribute to improved serologic tests for leprosy diagnosis/classification and multidrug therapy (MDT monitoring. This study describes seroreactivity to M. leprae proteins among participants from three highly endemic leprosy areas in Brazil: central-western Goiânia/Goiás (GO (n = 225, Rondonópolis/Mato Grosso (MT (n = 764 and northern Prata Village/Pará (PA (n = 93. ELISA was performed to detect IgG to proteins (92f, 46f, leprosy IDRI diagnostic-1, ML0405, ML1213 and IgM to phenolic glycolipid-I (PGL-I. Multibacillary (MB leprosy had positive rates for PGL-I that were similar to those for proteins; however, some anti-PGL-I-negative subjects were positive for proteins, suggesting that adding protein antigen to PGL-I can enhance the sensitivity of MB leprosy detection. In MT, different degrees of seroreactivity were observed and ranked for MB, former patients after MDT, paucibacillary (PB leprosy, household contact (HHC and endemic control (EC groups. The seroreactivity of PB patients was low in GO and MT. HHCs from different endemic sites had similar IgG antibody responses to proteins. 46f and 92f were not recognised by most tuberculosis patients, ECs or HHCs within GO, an area with high BCG vaccination coverage. Low positivity in EC and HHC was observed in PA and MT. Our results provide evidence for the development of an improved serologic test that could be widely applicable for MB leprosy testing in Brazil.

  19. Transcriptional abundance is not the single force driving the evolution of bacterial proteins

    OpenAIRE

    Wei, Wen; Zhang, Tao; Lin, Dan; Yang, Zu-Jun; Guo, Feng-Biao

    2013-01-01

    Background Despite rapid progress in understanding the mechanisms that shape the evolution of proteins, the relative importance of various factors remain to be elucidated. In this study, we have assessed the effects of 16 different biological features on the evolutionary rates (ERs) of protein-coding sequences in bacterial genomes. Results Our analysis of 18 bacterial species revealed new correlations between ERs and constraining factors. Previous studies have suggested that transcriptional a...

  20. Expression and refolding of the protective antigen of Bacillus anthracis: A model for high-throughput screening of antigenic recombinant protein refolding.

    Science.gov (United States)

    Pavan, María Elisa; Pavan, Esteban Enrique; Cairó, Fabián Martín; Pettinari, María Julia

    2016-01-01

    Bacillus anthracis protective antigen (PA) is a well known and relevant immunogenic protein that is the basis for both anthrax vaccines and diagnostic methods. Properly folded antigenic PA is necessary for these applications. In this study a high level of PA was obtained in recombinant Escherichia coli. The protein was initially accumulated in inclusion bodies, which facilitated its efficient purification by simple washing steps; however, it could not be recognized by specific antibodies. Refolding conditions were subsequently analyzed in a high-throughput manner that enabled nearly a hundred different conditions to be tested simultaneously. The recovery of the ability of PA to be recognized by antibodies was screened by dot blot using a coefficient that provided a measure of properly refolded protein levels with a high degree of discrimination. The best refolding conditions resulted in a tenfold increase in the intensity of the dot blot compared to the control. The only refolding additive that consistently yielded good results was L-arginine. The statistical analysis identified both cooperative and negative interactions between the different refolding additives. The high-throughput approach described in this study that enabled overproduction, purification and refolding of PA in a simple and straightforward manner, can be potentially useful for the rapid screening of adequate refolding conditions for other overexpressed antigenic proteins. PMID:26777581

  1. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.

    Science.gov (United States)

    Chen, Chao; Cui, Zhenling; Song, Xiangfei; Liu, Ya-Jun; Cui, Qiu; Feng, Yingang

    2016-03-01

    Cellulosomes are multi-enzyme complexes assembled by cellulases and hemicellulases through dockerin-cohesin interactions, which are the most efficient system for the degradation of lignocellulosic resources in nature. Recent genomic analysis of a cellulosome-producing anaerobe Clostridium clariflavum DSM 19732 revealed that two expansin-like proteins, Clocl_1298 and Clocl_1862, contain a dockerin module, which suggests that they are components of the cellulosome. Bacterial expansin-like proteins do not have hydrolytic activities, but can facilitate the degradation of cellulosic biomass via synergistic effects with cellulases. In this study, the synergistic effect of the expansin-like proteins with both native and designer cellulosomes was investigated. The free expansin-like proteins, including expansin-like domains of Clocl_1298 and Clocl_1862, as well as a well-studied bacterial expansin-like protein BsEXLX1 from Bacillus subtilis, promoted the cellulose degradation by native cellulosomes, indicating the cellulosomal expansin-like proteins have the synergistic function. When they were integrated into a trivalent designer cellulosome, the synergistic effect was further amplified. The sequence and structure analyses indicated that these cellulosomal expansin-like proteins share the conserved functional mechanism with other bacterial expansin-like proteins. These results indicated that non-catalytic expansin-like proteins in the cellulosome can enhance the activity of the cellulosome in lignocellulose degradation. The involvement of functional expansin-like proteins in the cellulosome also implies new physiological functions of bacterial expansin-like proteins and cellulosomes. PMID:26521249

  2. Cloning, expression, and antigenic characterization of recombinant protein of Mycoplasma gallisepticum expressed in Escherichia coli.

    Science.gov (United States)

    Rocha, T S; Tramuta, C; Catania, S; Matucci, A; Giuffrida, M G; Baro, C; Profiti, M; Bertolotti, L; Rosati, S

    2015-04-01

    Mycoplasma gallisepticum (MG) is a member of the most important avian mycoplasmas, causing chronic respiratory disease in chickens and leading to important economic losses in the poultry industry. Recombinant technology represents a strategic approach used to achieve highly reliable and specific diagnostic tests in veterinary diseases control: in particular this aspect is crucial for confirming mycoplasma infection and for maintaining mycoplasma-free breeder flocks. In this study, we identified a component of the pyruvate dehydrogenase dihydrolipoamide acetyltransferase (i.e., E2) protein by 2-dimensional electrophoresis (2-DE), characterized it in immunoblotting assays, and analyzed its recombinant (r-E2) in a rec-ELISA test. For full-length protein expression in Escherichia coli (EC) a point mutation was introduced. A rabbit antiserum produced against r-E2 was tested in a Western Blot using different samples of Mycoplasma species. The results showed the applicability of site-directed mutagenesis, with a good yield of the r-E2 after purification. Also, anti-E2 serum reacted with all the tested MG strains showing no cross reaction with other mycoplasmas. The developed E2 ELISA test was capable of detecting MG antibodies in the sera examined. Those results demonstrate the antigenic stability of the E2 protein which could represent a recombinant antigen with potential diagnostic applications. PMID:25667423

  3. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  4. Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules

    OpenAIRE

    Kaser, Arthur; Hava, David L.; Dougan, Stephanie K.; Chen, Zhangguo; Zeissig, Sebastian; Brenner, Michael B.; Blumberg, Richard S.

    2008-01-01

    Lipid antigens are presented to T cells by the non-polymorphic MHC class I-related CD1 molecules. Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum (ER)-resident chaperone that has been shown to lipidate the group 2 CD1 molecule CD1d and thus to regulate its function. We now report that MTP also regulates the function of group 1 CD1 molecules CD1a, CD1b, and CD1c. Pharmacological inhibition of MTP in monocyte-derived dendritic cells and lymphoblastoid B cell lines tra...

  5. Salmonella enterica Serotype Typhimurium Fimbrial Proteins Serve as Antigens during Infection of Mice

    OpenAIRE

    Humphries, Andrea; DeRidder, Sandra; Bäumler, Andreas J.

    2005-01-01

    The Salmonella enterica serotype Typhimurium genome contains 13 operons with homology to fimbrial gene sequences. Here we investigated the role of 11 serotype Typhimurium fimbrial proteins, including FimA, AgfA (CsgA), BcfA, StbA, SthA, LpfA, PefA, StdA, StcA, StiA, and StfA, as antigens during the infection of genetically resistant mice (CBA). Upon the growth of serotype Typhimurium in standard laboratory broth culture, only the expression of FimA could be detected by Western blot analysis. ...

  6. Humoral and cellular immune responses to glucose regulated protein 78 - a novel Leishmania donovani antigen

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Ismail, Ahmed; Gaafar, Ameera;

    2002-01-01

    The recently cloned glucose regulated protein 78 (GRP78) of Leishmania donovani has been suggested as a new and promising Leishmania vaccine candidate. We assessed antibody and T-cell reactivity to GRP78 in an enzyme-linked immunosorbent assay (ELISA) and in lymphoproliferative assays. Serological...... evaluation of plasma samples obtained in Sudan revealed that 89% of patients with visceral leishmaniasis (VL), 78% with post kala-azar dermal leishmaniasis (PKDL), and 85% with cutaneous leishmaniasis (CL) had antibody reactivity to this Leishmania antigen. Plasma from healthy Sudanese individuals living...

  7. Enhancement by ampicillin of antibody responses induced by a protein antigen and a DNA vaccine carried by live-attenuated Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Woo, P C; Tsoi, H W; Leung, H C; Wong, L P; Wong, S S; Chan, E; Yuen, K Y

    2000-07-01

    Live-attenuated Salmonella species are effective carriers of microbial antigens and DNA vaccines. In a mouse model, the immunoglobulin M (IgM) and total antibody levels directed toward the lipopolysaccharide of Salmonella enterica serovar Typhi were significantly enhanced at day 21 after oral immunization with live-attenuated serovar Typhi (strain Ty21a) when ampicillin was concomitantly administered (P Ty21a-stimulated lymphocyte proliferation indices for the ampicillin group at day 21 were significantly higher than those for the normal saline (NS) group (P Ty21a per well, respectively). The 50% lethal doses for mice from the ampicillin and NS groups immunized with Ty21a with pBR322 after wild-type serovar Typhi challenge on day 24 were 3.4 x 10(7) and 5.0 x 10(6) CFU, respectively. The fecal bacterial counts for the ampicillin group at days 1, 3, and 5 were significantly lower than those for the NS group (P Ty21a in a larger number of mice from the ampicillin group than from the NS group. Furthermore, the IgG2a levels directed toward tetanus toxoid were significantly enhanced at days 7 and 21 after oral immunization with Ty21a that carried the fragment c of tetanus toxoid when ampicillin was concomitantly administered (P Ty21a that carried the DNA vaccine that encodes hepatitis B surface antigen when ampicillin was concomitantly administered. The present observation may improve the efficacy of the protein antigens and DNA vaccines carried in live-attenuated bacteria, and further experiments should be carried out to determine the best antibiotics and dosage regimen to be used, as well as the best carrier system for individual protein antigens and DNA vaccines. PMID:10882658

  8. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G;

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...

  9. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition......Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of...... biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this...

  10. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    Science.gov (United States)

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  11. The RFA regulatory sequence-binding protein in the promoter of prostate-specific antigen gene

    Institute of Scientific and Technical Information of China (English)

    CHEN; Weiwen; (陈蔚文); ZHANG; Jianye; (张建业); Charles; Y; F; Young; ZHANG; Lianying; (张莲英); CHEN; Liucun; (陈留存); ZHAO; Jian; (赵健)

    2003-01-01

    To assure what sequence associated with the androgen regulation, a 15 bp region at the upstream of the ARE of prostate-specific antigen (PSA) promoter, termed RFA, was found indispensable for androgen receptor (AR)-mediated transactivation of PSA promoter. In transfection and CAT assays, some nucleotides substitution in RFA could significantly decrease the androgen inducibility for PSA promoter. The in vitro DNA binding assay demonstrated that RFA bound specifically with some non-receptor protein factors in prostate cell nucleus, but the mutant type of RFA lost this ability, so RFA might be a novel accessory cis-element. The RFA-binding proteins were isolated and purified by affinity chromatography using RFA probes. SDS-PAGE and preliminary protein identification showed these proteins possessed sequence high homology with multifunctional protein heterogeneous nuclear ribonucleoprotein A1, A2 (hnRNP A1, A2). RFA-binding proteins possibly cooperate with AR-mediated transactivation for PSA promoter as coactivator. The study results will facilitate further understanding the mechanism and tissue specificity of PSA promoter.

  12. Neurofibromatosis type 2 tumor suppressor protein, NF2, induces proteasome-mediated degradation of JC virus T-antigen in human glioblastoma.

    Directory of Open Access Journals (Sweden)

    Sarah Beltrami

    Full Text Available Neurofibromatosis type 2 protein (NF2 has been shown to act as tumor suppressor primarily through its functions as a cytoskeletal scaffold. However, NF2 can also be found in the nucleus, where its role is less clear. Previously, our group has identified JC virus (JCV tumor antigen (T-antigen as a nuclear binding partner for NF2 in tumors derived from JCV T-antigen transgenic mice. The association of NF2 with T-antigen in neuronal origin tumors suggests a potential role for NF2 in regulating the expression of the JCV T-antigen. Here, we report that NF2 suppresses T-antigen protein expression in U-87 MG human glioblastoma cells, which subsequently reduces T-antigen-mediated regulation of the JCV promoter. When T-antigen mRNA was quantified, it was determined that increasing expression of NF2 correlated with an accumulation of T-antigen mRNA; however, a decrease in T-antigen at the protein level was observed. NF2 was found to promote degradation of ubiquitin bound T-antigen protein via a proteasome dependent pathway concomitant with the accumulation of the JCV early mRNA encoding T-antigen. The interaction between T-antigen and NF2 maps to the FERM domain of NF2, which has been shown previously to be responsible for its tumor suppressor activity. Co-immunoprecipitation assays revealed a ternary complex among NF2, T-antigen, and the tumor suppressor protein, p53 within a glioblastoma cell line. Further, these proteins were detected in various degrees in patient tumor tissue, suggesting that these associations may occur in vivo. Collectively, these results demonstrate that NF2 negatively regulates JCV T-antigen expression by proteasome-mediated degradation, and suggest a novel role for NF2 as a suppressor of JCV T-antigen-induced cell cycle regulation.

  13. Imaging bacterial protein expression using genetically encoded sensors composed of RNA

    OpenAIRE

    Song, Wenjiao; Strack, Rita L.; Jaffrey, Samie R.

    2013-01-01

    We show that the difficulties in imaging the dynamics of protein expression in live bacterial cells can be overcome using fluorescent sensors based on Spinach, an RNA that activates the fluorescence of a small-molecule fluorophore. These RNAs selectively bind target proteins, and exhibit fluorescence increases that enable protein expression to be imaged in living cells. These sensors provide a general strategy to image protein expression in single bacteria in real-time.

  14. Presence in bovine fetal serum of the protein antigenically related to p65-tumor associated antigen: Its isolation and polyclonal antibody production

    International Nuclear Information System (INIS)

    Monoclonal antibodies raised to the 65-kDa tumor-associated protein (p65) isolated from a human breast cancer cell line have been used to detect an antigenically related protein (p65-like) present in fetal bovine serum (FBS) by Western blot analysis. We have isolated protein from FBS by electro-focusing (IEF) on native gels followed by electrophoresis in 12.5% polyacrylamide gel containing 0.1% SDS (SDS-PAGE). Immunostaining with anti-p65 monoclonal antibody of fetal bovine serum fractions separated by electrophoresis on cellulose acetate membrane revealed that the p65-like protein had a location similar to one of γ-globulin. This protein migrates as a single bad upon electrophoresis in SDS-PAGE and had four isoforms which migrate as two doublets with pI's of approximately 5.0 and 5.3. (author)

  15. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites

    OpenAIRE

    Michal Sima; Blanka Ferencova; Alon Warburg; Iva Rohousova; Petr Volf

    2016-01-01

    Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replaceme...

  16. Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G

    Science.gov (United States)

    Taniguchi, Tomoya; Hirowatari, Anna; Ikeda, Takeshi; Fukuyama, Masataka; Amemiya, Yoshiteru; Kuroda, Akio; Yokoyama, Shin

    2016-04-01

    Biosensors using ring resonators with silicon nitride (SiN) slot waveguides have been fabricated. The temperature coefficient of the resonance wavelength of the SiN resonator is 0.006 nm/°C, which is one order of magnitude smaller than that of Si. The sensitivity of the biosensor has been improved by using slot waveguide together with Si-binding protein (designated as Si-tag), which bonds to SiN or SiO2 surface, as an anchoring molecule to immobilize bioreceptors on the SiN rings in an oriented manner. Furthermore, the protein G, which strongly bonds to many kinds of mammalian antibodies only by mixing the antibody solution, is used to efficiently immobilize the antigen on the sensor surface. By means of these devises the sensitivity of the biosensor has been improved by factor of 10-100 compared with that of normal Si ring resonator sensors without slot. Then the detection of prostate specific antigen (PSA) with the sensitivity of ~1×10-8 g/ml, which is the concentration of strongly suspicious for the prostate cancer, has been achieved.

  17. Transfer of protein antigens into milk after intravenous injection into lactating mice

    International Nuclear Information System (INIS)

    We investigated the transfer of bovine serum 125I-albumin (125I-BSA), bovine 125I-gamma-globulin (125I-BGG), 125I-ovalbumin (125I-OVA), and 125I-beta-lactoglobulin (125I-BLG) from the blood into the milk of lactating mice. Equal amounts (by weight) of the radiolabeled proteins were injected intravenously into mice 1 wk postpartum. Total radioactivity, trichloroacetic acid-precipitable radioactivity, and specifically immunoprecipitable radioactivity were measured in serum, mammary gland homogenate, and milk. Clearance of immunoreactive OVA (iOVA) and iBLG from the circulation was more rapid than iBSA and iBGG. The radioactivity in mammary tissue associated with BSA and BGG was greater than 70% immunoprecipitable throughout the 4-h test interval; 125I-OVA and 125I-BLG were less than 12% precipitable 1 and 4 h after injection. In milk obtained at 4 h, there was an approximately 10-fold greater accumulation of iBSA or iBGG than of iOVA or iBLG. These experiments demonstrate that protein antigens differ in their ability to transfer from maternal circulation into milk. The transfer into milk appeared to be in proportion to persistence of the antigens in the maternal circulation

  18. A 125I-protein A-binding assay detecting antibodies to cell surface antigens

    International Nuclear Information System (INIS)

    A 125I-protein A-binding assay detecting antibodies to cell surface antigens on human blood cells was developed and evaluated using sera from multitransfused nonleukemic patients sensitized against HLA antigens. The binding assay was found to be reproducible and more sensitive than conventional HLA testing. Seven patients with acute myelogenous leukemia and two patients with acute lymphoblastic leukemia successfully treated by chemotherapy were than investigated. Sera from seven of the patients studied in partial or complete remission demonstrated significant binding to autochthonous leukemic cells obtained from bone marrow or peripheral blood. In two cases sera taken during the leukemic stage demonstrated the most pronounced binding to the patients' own leukemic cells. Sera from four patients with demonstrable significant binding to autochthonous leukemic cells failed to bind to autochthonous remission cells when both types of target cells were tested in parallel. Differences in serum concentrations of IgG, IgA, and IgM were not the cause of the demonstrated increased binding of leukemic sera to autochthonous target cells. We propose that the 125I-protein A-binding assay presented in this paper detects antibodies reacting selectively with acute leukemia cells. (orig.)

  19. Comparison of protein and DNA synthesis assays of guinea pig spleen lymphocytes after stimulation with influenza virus antigen and phytohemagglutinin

    International Nuclear Information System (INIS)

    Two in vitro methods for the demonstration of cell-mediated immune response are compared: Protein and DNA synthesis for detection of in vitro influenza virus antigen- and mitogen-induced lymphocyte stimulation. Guinea pig spleen lymphocytes sensitized with influenza virus antigen were tested in a microadaptation of the lymphocyte transformation test using 14C- or 3H-leucine and 3H-thymidine. As a positive control for T-cell stimulation phytohemagglutinin (PHA)-induced lymphocyte stimulation was measured. The following results were obtained: 1. Kinetics of the incorporation of 14C-leucine and 3H-thymidine in lymphocytes incubated with optimal and suboptimal PHA-doses respectively are quantitatively similar but different in time. 2. The results of the protein and DNA synthesis stimulation assays were correlated against influenza virus antigens. 3. The administration of influenza virus antigens in complete Freund's adjuvant induced a more intensive cell-mediated reaction than injections of antigens in aqueous suspensions, but the results of both methods of cell-mediated immune response (CMI) were correlated. 4. The optimal CMI under the experimental cinditions described is induced by an administration of 30 to 50 μg virus protein per animal and by a combined intramuscular - intraperitoneal immunization procedure. 5. The measurement of the early stimulation of protein synthesis in the protein synthesis stimulation test is substantially more rapid than for the classical lymphocyte transformation test. (author)

  20. EXPRESSION OF P53 PROTEIN AND PROLIFERATING CELL NUCLEAR ANTIGEN IN HUMAN GESTATION TROPHOBLASTIC DISEASE

    Institute of Scientific and Technical Information of China (English)

    黄铁军; 王志忠; 方光光; 刘志恒

    2004-01-01

    Objective: To study the relationship between p53 protein, proliferating cell nuclear antigen (PCNA) expression and benign or malignant gestational trophoblastic disease (MGTD). Methods: The histotomic sections of 48 patients with gestational trophoblastic disease and 24 patients of normal chorionic villi were stained using immunohistochemistry. The monoclonal antibodies were used to determine p53 protein and PCNA. Results: The frequency of p53 and PCNA positive expression were significantly different among the chorionic villi of normal pregnancy, hydratidiform mole (HM) and MGTD. But neither p53 nor PCNA has any relation with the clinical staging or metastasis of MGTD. Conclusion: Both P53 and PCNA are valuable in diagnosis of human gestational trophoblastic disease.

  1. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping;

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the environm......Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the...... environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required for...

  2. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping;

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the environm......Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the...... environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required for...

  3. The diagnostic value of c-reactive protein estimation in differentiating bacterial from viral meningitis

    International Nuclear Information System (INIS)

    Objective: To evaluate the efficacy of serum and CSF C-reactive protein (C-rp) in differentiating bacterial from viral meningitis. Design: An observational, respective hospital-based study. Place and duration of study: It was conducted at the Department of Medicine and Department of Pediatrics, Shaikh Zayed Postgraduate Medical Institute Lahore, Over a Period of one year between march, 1999 and March, 2000. Subject and Methods: A randomized group of thirty patients, who presented with clinical features, suggestive of meningitis, were included in the study. C-reactive protein determinations were performed by latex agglutination method on the serum and cerebrospinal fluid (CSF) of these patients. Results: In the present study, c-reactive protein was found to be a more sensitive test for differentiating bacterial from non-bacterial meningitis on initial examination than the usual conventional methods used to diagnose bacterial meningitis. CSF C-reactive protein had a greater sensitivity (92% as compared to serum C-reactive protein (71%). Conclusion: C-reactive protein determination in CSF was found to be a useful indicator of bacterial meningitis that can be used to distinguish it from viral meningitis. (author)

  4. Interactions That Drive Sec-Dependent Bacterial Protein Transport†

    OpenAIRE

    Rusch, Sharyn L.; Kendall, Debra A.

    2007-01-01

    Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported v...

  5. Hypervariable antigenic region 1 of classical swine fever virus E2 protein impacts antibody neutralization.

    Science.gov (United States)

    Liao, Xun; Wang, Zuohuan; Cao, Tong; Tong, Chao; Geng, Shichao; Gu, Yuanxing; Zhou, Yingshan; Li, Xiaoliang; Fang, Weihuan

    2016-07-19

    Envelope glycoprotein E2 of classical swine fever virus (CSFV) is the major antigen that induces neutralizing antibodies and confers protection against CSFV infection. There are three hypervariable antigenic regions (HAR1, HAR2 and HAR3) of E2 that are different between the group 1 vaccine C-strain and group 2 clinical isolates. This study was aimed to characterize the antigenic epitope region recognized by monoclonal antibody 4F4 (mAb-4F4) that is present in the group 2 field isolate HZ1-08, but not in the C-strain, and examine its impact on neutralization titers when antisera from different recombinant viruses were cross-examined. Indirect ELISA with C-strain E2-based chimeric proteins carrying the three HAR regions showed that the mAb-4F4 bound to HAR1 from HZ1-08 E2, but not to HAR2 or HAR3, indicating that the specific epitope is located in the HAR1 region. Of the 6 major residues differences between C-strain and field isolates, Glu713 in the HAR1 region of strain HZ1-08 is critical for mAb-4F4 binding either at the recombinant protein level or using intact recombinant viruses carrying single mutations. C-strain-based recombinant viruses carrying the most antigenic part of E2 or HAR1 from strain HZ1-08 remained non-pathogenic to pigs and induced good antibody responses. By cross-neutralization assay, we observed that the anti-C-strain serum lost most of its neutralization capacity to RecC-HZ-E2 and QZ-14 (subgroup 2.1d field isolate in 2014), and vice versa. More importantly, the RecC-HAR1 virus remained competent in neutralizing ReC-HZ-E2 and QZ-14 strains without compromising the neutralization capability to the recombinant C-strain. Thus, we propose that chimeric C-strain carrying the HAR1 region of field isolates is a good vaccine candidate for classical swine fever. PMID:27317266

  6. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface.

    Science.gov (United States)

    Montanaro, Jacqueline; Inic-Kanada, Aleksandra; Ladurner, Angela; Stein, Elisabeth; Belij, Sandra; Bintner, Nora; Schlacher, Simone; Schuerer, Nadine; Mayr, Ulrike Beate; Lubitz, Werner; Leisch, Nikolaus; Barisani-Asenbauer, Talin

    2015-01-01

    To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs) as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN), whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results are an important step in constructing a delivery system based on a nonliving probiotic that is suitable for use in ocular surface diseases pairing immunomodulation and targeted delivery. PMID:26229437

  7. Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates

    Directory of Open Access Journals (Sweden)

    Eisen Damon P

    2006-07-01

    Full Text Available Abstract Background As malaria becomes increasingly drug resistant and more costly to treat, there is increasing urgency to develop effective vaccines. In comparison to other stages of the malaria lifecycle, sexual stage antigens are under less immune selection pressure and hence are likely to have limited antigenic diversity. Methods Clinical isolates from a wide range of geographical regions were collected. Direct sequencing of PCR products was then used to determine the extent of polymorphisms for the novel Plasmodium falciparum sexual stage antigen von Willebrand Factor A domain-related Protein (PfWARP. These isolates were also used to confirm the extent of diversity of sexual stage antigen Pfs28. Results PfWARP was shown to have non-synonymous substitutions at 3 positions and Pfs28 was confirmed to have a single non-synonymous substitution as previously described. Conclusion This study demonstrates the limited antigenic diversity of two prospective P. falciparum sexual stage antigens, PfWARP and Pfs28. This provides further encouragement for the proceeding with vaccine trials based on these antigens.

  8. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    Science.gov (United States)

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  9. Visualizing translocation and localization of bacterial type III effector proteins using a genetically encoded reporter system

    OpenAIRE

    Gawthorne, Jayde A.; Audry, Laurent; McQuitty, Claire; Dean, Paul; Christie, John M.; Enninga, Jost; Andrew J. Roe

    2016-01-01

    Bacterial Type Three Secretion System (T3SS) effector proteins are critical determinants of infection for many animal and plant pathogens. However, monitoring of the translocation and delivery of these important virulence determinants has proved to be technically challenging. Here, we used a genetically engineered LOV (light-oxygen-voltage) sensing domain derivative to monitor the expression, translocation and localization of bacterial T3SS effectors. We found the Escherichia coli O157:H7 bac...

  10. Mesothelioma: profile of keratin proteins and carcinoembryonic antigen: an immunoperoxidase study of 20 cases and comparison with pulmonary adenocarcinomas.

    OpenAIRE

    Corson, J M; Pinkus, G. S.

    1982-01-01

    The distribution of keratin proteins and carcinoembryonic antigen (CEA) in 20 diffuse pleural malignant mesotheliomas and 20 adenocarcinomas of the lung was determined with the use of an indirect immunoperoxidase method. Keratin proteins were identified in all of the mesotheliomas, with strong staining observed in 17 of the cases. Tumor cells of various histologic types (tubular, papillary, solid, and spindle) revealed staining for keratin proteins. A variety of staining patterns were observe...

  11. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    Directory of Open Access Journals (Sweden)

    Michal Sima

    2016-03-01

    Full Text Available Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs using salivary gland homogenates (SGHs as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species.Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera.Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  12. The Structural Characterization and Antigenicity of the S Protein of SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Jingxiang Li; Zhao Xu; Wei Tong; Wei Wei; Qingrun Zhang; Shengbin Li; Wei Li; Hongyan Li; Yudong Li; Wei Dong; Jian Wang; Chunqing Luo; Shengli Bi; Huanming Yang; Yajun Deng; Yujun Han; Lin Tang; Jing Wang; Jia Ji; Jia Ye; Fanbo Jiang

    2003-01-01

    The corona-like spikes or peplomers on the surface of the virion under electronicmicroscope are the most striking features of coronaviruses. The S (spike) proteinis the largest structural protein, with 1,255 amino acids, in the viral genome. Itsstructure can be divided into three regions: a long N-terminal region in the exte-rior, a characteristic transmembrane (TM) region, and a short C-terminus in theinterior of a virion. We detected fifteen substitutions of nucleotides by comparisonswith the seventeen published SARS-CoV genome sequences, eight (53.3%) of whichare non-synonymous mutations leading to amino acid alternations with predictedphysiochemical changes. The possible antigenic determinants of the S protein arepredicted, and the result is confirmed by ELISA (enzyme-linked immunosorbentassay) with synthesized peptides. Another profound finding is that three disulfidebonds are defined at the C-terminus with the N-terminus of the E (envelope) pro-tein, based on the typical sequence and positions, thus establishing the structuralconnection with these two important structural proteins, if confirmed. Phyloge-netic analysis reveals several conserved regions that might be potent drug targets.

  13. Cell proliferation-associated nuclear antigen defined by antibody Ki-67: a new kind of cell cycle-maintaining proteins

    International Nuclear Information System (INIS)

    A decade of studies on the human nuclear antigen defined by monoclonal antibody Ki-67 (the 'Ki-67 proteins') has made it abundantly clear that this structure is strictly associated with human cell proliferation and the expression of this protein can be used to access the growth fraction of a given cell population. Until recently the Ki-67 protein was described as a nonhistone protein that is highly susceptible to protease treatment. We have isolated and sequenced cDNAs encoding for this antigen and found two isoforms of the full length cDNA of 11.5 and 12.5 kb, respectively, sequence and structure of which are thus far unique. The gene encoding the Ki-67 protein is organized in 15 exons and is localized on chromosome 10. The center of this gene is formed by an extraordinary 6845 bp exon containing 16 successively repeated homologous segments of 366 bp ('Ki-67 repeats'), each containing a highly conserved new motif of 66 bp ('Ki-67 motif'). The deduced peptide sequence of this central exon possesses 10 ProGluSerThr (PEST) motifs which are associated with high turnover proteins such as other cell cycle-related proteins, oncogenes and transcription factors, etc. Like the latter proteins the Ki-67 antigen plays a pivotal role in maintaining cell proliferation because Ki-67 protein antisense oligonucleotides significantly inhibit 3H-thymidine incorporation in permanent human tumor cell lines in a dose-dependent manner. (author). 30 refs, 2 figs

  14. Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus.

    Science.gov (United States)

    Yu, Tian-Fei; Li, Ming; Yan, Bing; Shao, Shu-Li; Fan, Xing-Dong; Wang, Jia; Wang, Dan-Na

    2016-08-01

    Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection. PMID:27154558

  15. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines.

    Science.gov (United States)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel ('nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination. PMID:20562880

  16. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites.

    Science.gov (United States)

    Kumar, Kota Arun; Sano, Gen-ichiro; Boscardin, Silvia; Nussenzweig, Ruth S; Nussenzweig, Michel C; Zavala, Fidel; Nussenzweig, Victor

    2006-12-14

    Malaria infection starts when mosquitoes inject sporozoites into the skin. The parasites enter the blood stream and make their way to the liver where they develop into the exo-erythrocytic forms (EEFs). Immunization with irradiated sporozoites (IrSp) leads to robust protection against malaria infection in rodents, monkeys and humans by eliciting antibodies to circumsporozoite protein (CS) that inhibit sporozoite infectivity, and T cells that destroy the EEFs. To study the role of non-CS antigens in protection, we produced CS transgenic mice that were tolerant to CS T-cell epitopes. Here we show that in the absence of T-cell-dependent immune responses to CS, protection induced by immunization with two doses of IrSp was greatly reduced. Thus, although hundreds of other Plasmodium genes are expressed in sporozoites and EEFs, CS is a dominant protective antigen. Nevertheless, sterile immunity could be obtained by immunization of CS transgenics with three doses of IrSp. PMID:17151604

  17. Proteolytic activation of human pancreatitis associated protein is required for peptidoglycan binding and bacterial aggregation

    OpenAIRE

    Medveczky, Péter; Szmola, Richárd; Sahin-Tóth, Miklós

    2009-01-01

    Pancreatitis associated protein (PAP) is a 16 kDa lectin-like protein, which becomes robustly upregulated in the pancreatic juice during acute pancreatitis. Trypsin cleaves the N terminus of PAP, which in turn forms insoluble fibrils. PAP and its paralog the pancreatic stone protein induce bacterial aggregation and, more recently, PAP was shown to bind to the peptidoglycan of Gram positive bacteria and exert a direct bactericidal effect. However, the role of N-terminal processing in the antib...

  18. Essential bacterial helicases that counteract the toxicity of recombination proteins

    OpenAIRE

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-01-01

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previo...

  19. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.;

    1999-01-01

    -filled cavities near its center. The protein volume fraction reaches maxima of >60% in two horizontal sections of the S-layer, close to the lipid monolayer and close to the free subphase. In between it drops to similar to 20%. Four S-layer protein monomers are located within the unit cell of a square lattice with...

  20. BACTERIAL SOLUTE TRANSPORT PROTEINS IN THEIR LIPID ENVIRONMENT

    NARCIS (Netherlands)

    TVELD, GI; DRIESSEN, AJM; KONINGS, WN; Veld, Gerda in 't

    1993-01-01

    The cytoplasmic membrane of bacteria is a selective barrier that restricts entry and exit of solutes. Transport of solutes across this membrane is catalyzed by specific membrane proteins. Integral membrane proteins usually require specific lipids for optimal activity and are inhibited by other lipid

  1. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    Science.gov (United States)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  2. Enzyme-linked immunosorbent assay for a soluble antigen of Renibacterium salmoninarum, the causative agent for salmonid bacterial kidney disease

    Science.gov (United States)

    Pascho, R.J.; Mulcahy, D.

    1987-01-01

    A double-antibody enzyme-linked immunosorbent assay (ELISA) for detection of a soluble fraction of Renibacterium salmoninarum was developed from components extracted from the supernatant of an R. salmoninarum broth culture. The Costar® Serocluster™ EIA microplate gave the highest absorbance and signal-to-noise ratios among seven types tested. Including Tween 80 in the wash buffer resulted in higher absorbances than Tween 20 when antigen was present. Background absorbance did not increase when Tween 80 was added to the wash buffer, but did when Tween 80 replaced Tween 20 in antigen and conjugate diluents. Adsorption of coating antibody peaked within 4 h at 37 °C and 16 h at 4 °C. Antigen attachment to antibody-coated microplate wells depended more on incubation temperature than duration; we adopted a 3-h incubation at 25 °C. Conjugate incubation for longer than 1 h at 37 °C or 3 h at 25 °C resulted in unacceptable background levels. No cross-reactions resulted from heat-extracted antigens of 10 other species of bacteria. The optimized ELISA is a 6-h test that enables detection of levels of soluble antigen as low as 2–20 ng.

  3. Identification of a nonstructural DNA-binding protein (DBP as an antigen with diagnostic potential for human adenovirus.

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available BACKGROUND: Human adenoviruses (HAdVs have been implicated as important agents in a wide range of human illnesses. To date, 58 distinct HAdV serotypes have been identified and can be grouped into six species. For the immunological diagnosis of adenoviruses, the hexon protein, a structural protein, has been used. The potential of other HAdV proteins has not been fully addressed. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a nonstructural antigenic protein, the DNA binding protein (DBP of human adenovirus 5 and 35 (Ad5, Ad35 - was identified using immunoproteomic technology. The expression of Ad5 and Ad35 DBP in insect cells could be detected by rhesus monkey serum antibodies and healthy adult human serum positive for Ad5 and Ad35. Recombinant DBPs elicited high titer antibodies in mice. Their conserved domain displayed immunological cross-reactions with heterologous DBP antibodies in Western blot assays. DBP-IgM ELISA showed higher sensitivity adenovirus IgM detection than the commercial Adenovirus IgM Human ELISA Kit. A Western blot method developed based on Ad5 DBP was highly consistent with (χ(2 = 44.9, P<0.01 the Western blot assay for the hexon protein in the detection of IgG, but proved even more sensitive. CONCLUSIONS/SIGNIFICANCE: The HAdV nonstructural protein DBP is an antigenic protein that could serve as an alternative common antigen for adenovirus diagnosis.

  4. Development of an ELISA based on the baculovirus-expressed capsid protein of porcine circovirus type 2 as antigen.

    Science.gov (United States)

    Liu, Changming; Ihara, Takeshi; Nunoya, Tetsuo; Ueda, Susumu

    2004-03-01

    The genome of porcine circovirus type 2 (PCV2) contains two major open reading frames, which have been shown to encode the virus capsid and replication-associated proteins. The capsid protein is a major structural protein of the virus; it can be a suitable target antigen for detecting PCV2-specific antibodies to monitor PCV2 infection. To produce the antigen, the capsid protein coding sequence was cloned into a baculovirus transfer vector, and a recombinant capsid (rC) protein of PCV2 was expressed as a combined fusion protein in frame with a C-terminal peptide of six histidines. The affinity-purified rC protein was used as coating antigen to develop an ELISA for detecting the virus-specific antibodies in swine sera. The rC protein-based ELISA (rcELISA) was evaluated by examining a panel of 49 PCV2-positive and 49 PCV2-negative swine sera. In comparative experiments of immunoperoxidase monolayer assay (IPMA) using 102 field sera, there was 89.2% coincidence between data obtained by the rcELISA and IPMA. The rcELISA achieved 88.5% specificity and 89.4% sensitivity for detection of PCV2 antibody in the field sera. The assay showed no cross-reactivity with antibodies to PCV type 1, porcine reproductive and respiratory syndrome virus and porcine parvovirus. The results suggest that the rcELISA is suitable for routine serodiagnosis and epidemiological surveys of PCV2-associated diseases. PMID:15107550

  5. Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR expression by flow cytometry

    Directory of Open Access Journals (Sweden)

    Zheng Zhili

    2012-02-01

    Full Text Available Abstract Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymphocytes (PBL with CARs directed against a variety of tumor associated antigens. Despite the improvements in the design of CARs and expansion of the number of target antigens, there is no universal flow cytometric method available to detect the expression of CARs on the surface of transduced lymphocytes. Methods Currently anti-fragment antigen binding (Fab conjugates are most widely used to determine the expression of CARs on gene-modified lymphocytes by flow cytometry. The limitations of these reagents are that many of them are not commercially available, generally they are polyclonal antibodies and often the results are inconsistent. In an effort to develop a simple universal flow cytometric method to detect the expression of CARs, we employed protein L to determine the expression of CARs on transduced lymphocytes. Protein L is an immunoglobulin (Ig-binding protein that binds to the variable light chains (kappa chain of Ig without interfering with antigen binding site. Protein L binds to most classes of Ig and also binds to single-chain antibody fragments (scFv and Fab fragments. Results We used CARs derived from both human and murine antibodies to validate this novel protein L based flow cytometric method and the results correlated well with other established methods. Activated human PBLs were transduced with retroviral vectors expressing two human antibody based CARs (anti-EGFRvIII, and anti-VEGFR2, two murine antibody derived CARs (anti-CSPG4, and anti

  6. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  7. Construction, Expression and Characterization of a Chimeric Protein Targeting Carcinoembryonic Antigen in Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    LI Yang; HUA Shu-cheng; MA Cheng-yuan; YU Zhen-xiang; XU Li-jun; LI Dan; SUN Li-li; LI Xiao; PENG Li-ping

    2011-01-01

    The carcinoembryonic antigen(CEA) is an oncofetal glycoprotein known as an important clinical tumor marker and is overexpressed in several types of tumors, including colorectal and lung carcinomas. We constructed a chimeric protein that exhibits both specific binding and immune stimulating activities, by fusing staphylococcal enterotoxin A(SEA) to the C-terminus of an anti-CEA single-chain disulfide-stabilized Fv(scdsFv) antibody (single-chain-C-terminus/SEA, SC-C/SEA). The SC-C/SEA protein was expressed in Escherichia coli(E. coli), refolded, and purified on an immobilized Ni2+ affinity chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and Western blot analysis reveal that the target protein was expressed sufficiently. We used immunofluorescence assays to demonstrate that SC-C/SEA could bind specifically to human lung carcinoma cells(A549), but almost human uterine cervix cells(HeLa). We also used the L-lactate dehydrogenase(LDH) release assay to show that SC-C/SEA elicits a strong A549 tumor-specific cytotoxic T lymphocyte(CTL) response in vitro. The results suggest that SC-C/SEA shows specific activity against CEA-positive cells and has potential application in CEA-targeted cancer immunotherapy.

  8. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  9. Detection of proteins antigenically related to Bothrops asper myotoxin in crotaline snake venoms.

    Science.gov (United States)

    Lomonte, B; Moreno, E; Gutiérrez, J M

    1987-01-01

    The presence of components antigenically related to Bothrops asper myotoxin was investigated by Western blotting and immunoelectrophoretic techniques. B. asper myotoxin is a non-glycosylated monomeric phospholipase A with a molecular weight by SDS-PAGE of 16,000 and isoelectric point of pH 9.8-10.0. Results showed that proteins in the venoms of B. nummifer, B. godmani, B. schlegelii, B. picadoi, and Agkistrodon bilineatus were recognized by monospecific antibodies to B. asper myotoxin raised in rabbit and sheep. Western blotting indicated that cross-reacting proteins have a molecular weight of 16,000, with the exception of that of B. picadoi, which is of 24,000 mol. wt. However, immunoelectrophoresis indicated that these components are highly heterogeneous in charge, ranging from basic to acidic proteins. The cross-reacting component(s) present in newborn B. asper venom has a different charge from that of the 'adult-type'. Venoms from newborn specimens showed an additional cross-reacting band of 18,000 mol. wt. Myotoxin is an abundant component in adult B. asper venom. Myotoxin-antimyotoxin complexes had different electrophoretic mobilities in rocket immunoelectrophoresis depending upon the species in which monospecific immune sera were produced. PMID:2448918

  10. Tartrate/tripolyphosphate as co-crosslinker for water soluble chitosan used in protein antigens encapsulation.

    Science.gov (United States)

    Srivastava, Gopal; Walke, Shilratna; Dhavale, Dilip; Gade, Wasudeo; Doshi, Jignesh; Kumar, Rakesh; Ravetkar, Satish; Doshi, Pooja

    2016-10-01

    In drug delivery research, several toxic chemical crosslinkers and non-toxic ionic crosslinkers have been exploited for the synthesis of microparticles from acetic acid soluble chitosan. This paper hypothesized the implementation of sodium potassium tartrate (SPT) as an alternative crosslinker for sodium tripolyphosphate (TPP) and SPT/TPP co-crosslinkers for synthesis of the microparticles using water soluble chitosan (WSC) for encapsulation of Bovine serum albumin (BSA) as a model protein, and Tetanus toxoid (TT) as a model vaccine. The crosslinking was confirmed by FT-IR, SEM with EDS. The XRD entailed molecular dispersion of proteins and thermal analysis confirmed the higher stability of STP/TPP co-crosslinked formulations. The resultant microparticles were exhibiting crosslinking degree (52-67%), entrapment efficiency (72-80%), particle size (0.3-1.7μm), zeta potential (+24 to 46mV) and mucoadhesion (41-68%). The superiority of SPT over TPP was confirmed by higher crosslinking degree and entrapment efficiency. However, co-crosslinking were advantageous in higher regression values for Langmuir adsorption isotherm, slower swelling tendency and extended 30days controlled in-vitro release study. TT release obeyed the Quasi-Fickian diffusion mechanism for single and cocrosslinked formulations. Overall, in crosslinking of chitosan as biological macromolecules, STP/TPP may be alternative for single ionic crosslinked formulations for protein antigen delivery. PMID:27246374

  11. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  12. Antigenic and sequence diversity in gonococcal transferrin-binding protein A.

    Science.gov (United States)

    Cornelissen, C N; Anderson, J E; Boulton, I C; Sparling, P F

    2000-08-01

    Neisseria gonorrhoeae is a gram-negative pathogen that is capable of satisfying its iron requirement with human iron-binding proteins such as transferrin and lactoferrin. Transferrin-iron utilization involves specific binding of human transferrin at the cell surface to what is believed to be a complex of two iron-regulated, transferrin-binding proteins, TbpA and TbpB. The genes encoding these proteins have been cloned and sequenced from a number of pathogenic, gram-negative bacteria. In the current study, we sequenced four additional tbpA genes from other N. gonorrhoeae strains to begin to assess the sequence diversity among gonococci. We compared these sequences to those from other pathogenic bacteria to identify conserved regions that might be important for the structure and function of these receptors. We generated polyclonal mouse sera against synthetic peptides deduced from the TbpA sequence from gonococcal strain FA19. Most of these synthetic peptides were predicted to correspond to surface-exposed regions of TbpA. We found that, while most reacted with denatured TbpA in Western blots, only one antipeptide serum reacted with native TbpA in the context of intact gonococci, consistent with surface exposure of the peptide to which this serum was raised. In addition, we evaluated a panel of gonococcal strains for antigenic diversity using these antipeptide sera. PMID:10899879

  13. High-Throughput Screening of Bacterial Protein Localization

    OpenAIRE

    Werner, John N.; Gitai, Zemer

    2010-01-01

    The ever-increasing number of sequenced genomes and subsequent sequence-based analysis has provided tremendous insight into cellular processes; however, the ability to experimentally manipulate this genomic information in the laboratory requires the development of new high-throughput methods. To translate this genomic information into information on protein function, molecular and cell biological techniques are required. One strategy to gain insight into protein function is to observe where e...

  14. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  15. Identification of antigenic proteins associated with trichloroethylene-induced autoimmune disease by serological proteome analysis

    International Nuclear Information System (INIS)

    Although many studies indicated that trichloroethylene (TCE) could induce autoimmune diseases and some protein adducts were detected, the proteins were not identified and mechanisms remain unknown. To screen and identify autoantigens which might be involved in TCE-induced autoimmune diseases, three groups of sera were collected from healthy donors (I), patients suffering from TCE-induced exfoliative dermatitis (ED) (II), and the healed ones (III). Serological proteome analysis (SERPA) was performed with total proteins of TCE-treated L-02 liver cells as antigen sources and immunoglobins of the above sera as probes. Highly immunogenic spots (2-fold or above increase compared with group I) in group II and III were submitted to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem mass spectrometry sequencing. Western blot analysis was followed using commercial antibodies and individual serum. Six proteins were identified. Among them, Enoyl Coenzyme A hydratase peroxisoma 1 and lactate dehydrogenase B only showed stronger immunogenicity for group II sera, while Purine nucleoside phosphorylase, ribosomal protein P0 and proteasome activator subunit1 isoform1 also showed stronger immunogenicity for group III sera. Noteworthy, NM23 reacted only with group II sera. Western blot analysis of NM23 expression indicated that all of the individual serum of group II showed immune activity, which confirmed the validity of SERPA result. These findings revealed that there exist autoantibodies in group II and III sera. Besides, autoantibodies of the two stages of disease course were different. These autoantigens might serve as biomarkers to elucidate mechanisms underlying TCE toxicity and are helpful for diagnosis, therapy and prognosis of TCE-induced autoimmune diseases.

  16. A bacterial two-hybrid system that utilizes Gateway cloning for rapid screening of protein-protein interactions.

    Science.gov (United States)

    Karna, S L Rajasekhar; Zogaj, Xhavit; Barker, Jeffrey R; Seshu, Janakiram; Dove, Simon L; Klose, Karl E

    2010-11-01

    Comprehensive clone sets representing the entire genome now exist for a large number of organisms. The Gateway entry clone sets are a particularly useful means to study gene function, given the ease of introduction into any Gateway-suitable destination vector. We have adapted a bacterial two-hybrid system for use with Gateway entry clone sets, such that potential interactions between proteins encoded within these clone sets can be determined by new destination vectors. We show that utilizing the Gateway clone sets for Francisella tularensis and Vibrio cholerae, known interactions between F. tularensis IglA and IglB and V. cholerae VipA and VipB could be confirmed with these destination vectors. Moreover, the introduction of unique tags into each vector allowed for visualization of the expressed hybrid proteins via Western immunoblot. This Gateway-suitable bacterial two-hybrid system provides a new tool for rapid screening of protein-protein interactions. PMID:21091448

  17. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins.

    Directory of Open Access Journals (Sweden)

    Eran Bosis

    Full Text Available Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.

  18. Distribution of a protein antigenically related to the major anaerobically induced gonococcal outer membrane protein among other Neisseria species.

    Science.gov (United States)

    Hoehn, G T; Clark, V L

    1990-12-01

    The Pan 1 protein of Neisseria gonorrhoeae is a novel 54-kDa outer membrane protein expressed only when gonococci are grown in the absence of oxygen. It is a major antigen recognized by sera from patients with gonococcal infection. We raised mouse monospecific polyclonal antiserum to gel-purified Pan 1 from gonococcal strain F62. The antiserum was broadly cross-reactive among gonococcal strains; all strains tested reacted in immunoblot analysis proportionate to the amount of Pan 1 visible in silver-stained sodium dodecyl sulfate (SDS)-polyacrylamide gels. In immunoblot experiments, N. lactamica and N. cinerea reacted very strongly to the anti-Pan 1 antiserum, whereas N. sicca, N. flava, and N. mucosa did not react at all. The other commensals tested, N. subflava and N. perflava, exhibited only a minor reaction. These results correlated with the apparent amount of Pan 1 seen on SDS-polyacrylamide gels of outer membranes. SDS-polyacrylamide gel analysis of six meningococcal strains revealed no visible anaerobically induced outer membrane proteins, and the subsequent immunoblots showed only slight or no reaction to the anti-Pan 1 antibody. In the four meningococcal strains that did react slightly with the antiserum, a Pan 1-like protein was seen only in anaerobically grown cells. Thus, meningococci did not express Pan 1 at levels comparable to that found in gonococci; however, when Pan 1 was expressed in meningococcal strains, it was oxygen regulated. This is the first example of a protein found in the gonococcal outer membrane that, under identical growth conditions, is not expressed at similar levels in the meningococcus. PMID:2123827

  19. A New Gene Family (ariel) Encodes Asparagine-Rich Entamoeba histolytica Antigens, Which Resemble the Amebic Vaccine Candidate Serine-Rich E. histolytica Protein

    OpenAIRE

    Mai, Zhiming; Samuelson, John

    1998-01-01

    A family of genes, called ariel, are named for and encode asparagine-rich Entamoeba histolytica antigens containing 2 to 16 octapeptide repeats. Ariel proteins, which are constitutively expressed by trophozoites, belong to a large antigen family that includes the serine-rich E. histolytica protein (SREHP), an amebic vaccine candidate.

  20. Challenge with innate and protein antigens induces CCR7 expression by microglia in vitro and in vivo

    NARCIS (Netherlands)

    Dijkstra, I. M.; de Haas, A. H.; Brouwer, N.; Boddeke, H. W. G. M.; Biber, K.

    2006-01-01

    Since activated microglia are able to phagocytose damaged cells and subsequently express major histocompatibility complex class II (MHC-II) and co-stimulatory proteins, they are considered to function as antigen presenting cells (APCs) in the central nervous system. The maturation and migratory pote

  1. Expression, biosynthesis and release of preadipocyte factor-1/ delta-like protein/fetal antigen-1 in pancreatic -cells

    DEFF Research Database (Denmark)

    Friedrichsen, B N; Carlsson, C; Møldrup, A;

    2003-01-01

    Preadipocyte factor-1 (Pref-1)/delta-like protein/fetal antigen-1 (FA1) is a member of the epidermal growth factor-like family. It is widely expressed in embryonic tissues, whereas in adults it is confined to the adrenal gland, the anterior pituitary, the endocrine pancreas, the testis and the...

  2. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface

    Directory of Open Access Journals (Sweden)

    Montanaro J

    2015-07-01

    Full Text Available Jacqueline Montanaro,1 Aleksandra Inic-Kanada,1 Angela Ladurner,1 Elisabeth Stein,1 Sandra Belij,1 Nora Bintner,1 Simone Schlacher,1 Nadine Schuerer,1 Ulrike Beate Mayr,2 Werner Lubitz,2 Nikolaus Leisch,3 Talin Barisani-Asenbauer11Laura Bassi Centres of Expertise, OCUVAC – Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria; 2BIRD-C GmbH & Co KG, Kritzendorf, Austria; 3Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, AustriaAbstract: To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN, whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results

  3. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing.

    Science.gov (United States)

    Romao, Susana; Gasser, Nathalie; Becker, Andrea C; Guhl, Bruno; Bajagic, Milica; Vanoaica, Danusia; Ziegler, Urs; Roesler, Joachim; Dengjel, Jörn; Reichenbach, Janine; Münz, Christian

    2013-12-01

    Antigen preservation for presentation is a hallmark of potent antigen-presenting cells. In this paper, we report that in human macrophages and dendritic cells, a subset of phagosomes gets coated with Atg8/LC3, a component of the molecular machinery of macroautophagy, and maintains phagocytosed antigens for prolonged presentation on major histocompatibility complex class II molecules. These Atg8/LC3-positive phagosomes are formed around the antigen with TLR2 agonists and require reactive oxygen species production by NOX2 for their generation. A deficiency in the NOX2-dependent formation of these antigen storage phagosomes could contribute to compromise antifungal immune control in chronic granulomatous disease patients. PMID:24322427

  4. Identification of Dominant Immunogenic Bacteria and Bacterial Proteins in Periodontitis

    DEFF Research Database (Denmark)

    Agerbæk, Mette Rylev; Haubek, Dorte; Birkelund, Svend;

    Marginal periodontitis is considered an infectious disease that triggers host inflammatory responses resulting in destruction of the periodontium. A complex biofilm of bacteria is associated with periodontitis. Some species have been identified as putative pathogens such as Porphyromonas gingivalis...... (P.g) and Actinobacillus actinomycetemcomitans (A.a), but the identity of dominate immunogens of these bacteria is poorly elucidated. The aim of the study was to identify dominant immunogenic proteins of P.g and A.a in patients suffering from chronic and aggressive periodontitis by proteomic analysis...... will be able to identify immunodominant proteins and potentially important virulence factors of putative periodontal pathogens....

  5. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  6. Elevated IgG levels against specific bacterial antigens in obese patients with diabetes and in mice with diet-induced obesity and glucose intolerance.

    Science.gov (United States)

    Mohammed, Nadeem; Tang, Lihua; Jahangiri, Anisa; de Villiers, Willem; Eckhardt, Erik

    2012-09-01

    High fat diets increase the risk for insulin resistance by promoting inflammation. The cause of inflammation is unclear, but germfree mouse studies have implicated commensal gut bacteria. We tested whether diet-induced obesity, diabetes, and inflammation are associated with anti-bacterial IgG. Blood from lean and obese healthy volunteers or obese patients with diabetes were analyzed by ELISA for IgG against extracts of potentially pathogenic and pro-biotic strains of Escherichia coli (LF-82 and Nissle), Bacteroides thetaiotaomicron, and Lactobacillus acidophilus, and for circulating tumor necrosis factor α (TNFα). C57Bl/6 mice were fed low- or high-fat diets (10% or 60% kcal from fat) for 10 weeks and tested for anti-bacterial IgG, bodyweight, fasting glucose, and inflammation. Obese diabetic patients had significantly more IgG against extracts of E. coli LF-82 compared with lean controls, whereas IgG against extracts of the other bacteria was unchanged. Circulating TNFα was elevated and correlated with IgG against the LF-82 extract. Mice fed high-fat diets had increased fasting glucose levels, elevated TNFα and neutrophils, and significantly more IgG against the LF-82 extracts. Diabetes in obesity is characterized by increased IgG against specific bacterial antigens. Specific commensal bacteria may mediate inflammatory effects of high-fat diets. PMID:22424821

  7. A Peptide Mimicking a Region in Proliferating Cell Nuclear Antigen Specific to Key Protein Interactions Is Cytotoxic to Breast Cancer

    OpenAIRE

    Smith, Shanna J.; Gu, Long; Phipps, Elizabeth A.; Lacey E Dobrolecki; Mabrey, Karla S.; Gulley, Pattie; Dillehay, Kelsey L; Dong, Zhongyun; Fields, Gregg B.; Chen, Yun-Ru; Ann, David; Hickey, Robert J.; Malkas, Linda H.

    2015-01-01

    Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has imp...

  8. Prediction of Bacterial Virulent Proteins with Composition Moment Vector Feature Encoding Method

    Directory of Open Access Journals (Sweden)

    Gök Murat

    2016-01-01

    Full Text Available Prediction of bacterial virulent proteins is critical for vaccine development and understanding of virulence mechanisms in pathogens. For this purpose, a number of feature encoding methods based on sequences and evolutionary information of a given protein have been proposed and applied with some classifier algorithms so far. In this paper, we performed composition moment vector (CMV, which includes information about both composition and position of amino acid in the protein sequence to predict bacterial virulent proteins. The tests were validated in three different independent datasets. Experimental results show that CMV feature encoding method leads to better classification performance in terms of accuracy, sensitivity, f-measure and the Matthews correlation coefficient (MCC scores on diverse classifiers.

  9. Polyacrylamide Slab Gel Electrophoresis of Soluble Proteins for Studies of Bacterial Floras

    OpenAIRE

    Moore, W. E. C.; Hash, D E; Holdeman, Lillian V.; Cato, Elizabeth P.

    1980-01-01

    A polyacrylamide slab gel electrophoresis procedure was used to compare cellular proteins from bacterial isolates of gingival crevice floras. Isolates with identical protein patterns consistently were shown to be members of the same species. When used to screen isolates, the procedure reduced total analytical time and expense without sacrificing accuracy, and it provided additional verification of the identity of strains characterized by conventional phenotypic tests.

  10. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    OpenAIRE

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    International audience The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we st...

  11. Procalcitonin and C-reactive protein as markers of bacterial infection in patients with solid tumours

    DEFF Research Database (Denmark)

    Diness, Laura V; Maraldo, Maja V; Mortensen, Christiane E;

    2014-01-01

    infection. In this prospective study, we wanted to investigate the value of procalcitonin (PCT) compared with C-reactive protein (CRP) as an indicator of bacterial infection in adult patients with solid tumours. METHODS: A total of 41 patients with solid tumours admitted to hospital due to fever or clinical...

  12. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    Directory of Open Access Journals (Sweden)

    Yanbo Shi

    2010-01-01

    Full Text Available Ferric ion binding proteins (Fbps transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.

  13. Detection of virus and cellular-determined antigens in situ using [125I]protein A and autoradiography

    International Nuclear Information System (INIS)

    The present paper describes the use of [125I]Protein A, isolated from Staphylococcus aureus, in detecting antigen-antibody complexes by autoradiography on single cells. The method is relatively quick, reproducibile, potentially more sensitive than immunofluorescence, and should be useful in combination with conventional radioimmuno-assays. The authors have used it to detect the cellular expression of IgM, kappa, lambda, and β2-micro globulin, as well as the expression of Epstein-Barr Virus (EBV) associated antigens expressed in human lymphoblastoid cell lines. (Auth.)

  14. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    Directory of Open Access Journals (Sweden)

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  15. Intracellular proteins of feline immunodeficiency virus and their antigenic relationship with equine infectious anaemia virus proteins.

    Science.gov (United States)

    Egberink, H F; Ederveen, J; Montelaro, R C; Pedersen, N C; Horzinek, M C; Koolen, M J

    1990-03-01

    Feline immunodeficiency virus (FIV) grown in cat lymphocyte and thymocyte cultures was labelled with L-[35S]methionine or [3H]glucosamine and virus-coded proteins were identified using immunoprecipitation. Polypeptides with apparent Mr values of 15K, 24K, 43K, 50K, 120K and 160K were detected. An additional polypeptide of 10K was detected by Western blot analysis. The two highest Mr species sometimes appeared as one band, of which only the 120K polypeptide was glycosylated. In the presence of tunicamycin gp120 was no longer detectable and a non-glycosylated precursor of 75K was found instead. Pulse-chase experiments suggested that the smaller polypeptides p24 and p15 are cleavage products of both p160 and p50. Western blot analysis using a rabbit serum directed against p26 of equine infectious anaemia virus (EIAV) and an anti-EIAV horse serum from a field case of infection revealed a cross-reactivity with p24 of FIV. Cat sera collected late after experimental FIV infection recognized p26 of EIAV, indicating a reciprocal cross-reactivity. PMID:1690264

  16. Bacterial Antigen Expression Is an Important Component in Inducing an Immune Response to Orally Administered Salmonella-Delivered DNA Vaccines

    OpenAIRE

    Gahan, Michelle E.; Webster, Diane E.; Wesselingh, Steven L.; Richard A. Strugnell; Yang, Ji

    2009-01-01

    Background The use of Salmonella to deliver heterologous antigens from DNA vaccines is a well-accepted extension of the success of oral Salmonella vaccines in animal models. Attenuated S. typhimurium and S. typhi strains are safe and efficacious, and their use to deliver DNA vaccines combines the advantages of both vaccine approaches, while complementing the limitations of each technology. An important aspect of the basic biology of the Salmonella/DNA vaccine platform is the relative contribu...

  17. Evaluation by enzyme-linked immunosorbent assay (ELISA) of Renibacterium salmoninarum bacterins affected by persistence of bacterial antigens

    Science.gov (United States)

    Pascho, R.J.; Goodrich, T.D.; McKibben, C.L.

    1997-01-01

    Rainbow trout Oncorhynchus mykiss were injected intraperitoneally with a bacterin containing killed Renibacterium salmoninarum cells delivered alone or in an oil-based adjuvant. We evaluated the relative abilities of the batterins to prevent the initiation or progression of infection in fish challenged by waterborne exposure to R. salmoninarum. Sixty-one days after vaccination, fish were held for 24 h in water containing either no bacteria or approximately 1.7 x 103, 1.7 x 105, or 5.3 x 106 live R. salmoninarum cells/mL. An enzyme-linked immunosorbent assay (ELISA) was used to monitor changes in the levels of R. salmoninarum antigen in live fish before and after the immersion challenges. High levels of R. salmoninarum antigens were detected by ELISA in kidney-spleen tissue homogenates from vaccinated fish immediately before the challenges. Levels of those antigens remained high in the tissues of unchallenged fish throughout the study. We found that the ELISA used in this study may be unsuitable for evaluating the efficacy of batterins because it did not distinguish antigens produced by the challenge bacteria during an infection from those of the bacterins. Groups of control and vaccinated fish also were injected with either 1.7 x 104 or 1.7 x 106 R. salmoninarum cells and served as R. salmoninarum virulence controls. Relative survival among the various subgroups in the injection challenge suggests that adverse effects might have been associated with the adjuvant used in this study. The lowest survival at both injection challenge levels was among fish vaccinated with bacteria in adjuvant.

  18. Evaluation of multiple antigenic peptides based on the Chikungunya E2 protein for improved serological diagnosis of infection.

    Science.gov (United States)

    Bhatnagar, Santwana; Kumar, Pradeep; Mohan, Teena; Verma, Priyanka; Parida, M M; Hoti, S L; Rao, D N

    2015-03-01

    In recent years, Chikungunya virus (CHIKV) reemerged and numerous outbreaks were reported all over the world. After screening CHIKV-positive sera, we had already reported many dominant epitopes within the envelope E2 protein of CHIKV. In the present study, we aimed at developing a highly sensitive immunodiagnostic assay for CHIKV based on a multiple antigenic peptide (MAP) approach using selective epitopes of the E2 protein. MAPs in four different E2 peptide combinations were screened with CHIKV-positive sera. The MAPs reacted with all CHIKV-positive sera and no reactivity was seen with healthy or dengue-positive sera. Our results indicate that MAP 1 seems to be an alternate antigen to full-length protein E2 for immunodiagnosis of CHIKV infections with high sensitivity and specificity. PMID:25412351

  19. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    Science.gov (United States)

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  20. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2014-07-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  1. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

    LENUS (Irish Health Repository)

    Rosberg-Cody, Eva

    2011-02-17

    Abstract Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  2. Local and systemic immune responses induced by a recombinant chimeric protein containing Mycoplasma hyopneumoniae antigens fused to the B subunit of Escherichia coli heat-labile enterotoxin LTB.

    Science.gov (United States)

    Marchioro, Silvana Beutinger; Fisch, Andressa; Gomes, Charles K; Jorge, Sérgio; Galli, Vanessa; Haesebrouck, Freddy; Maes, Dominiek; Dellagostin, Odir; Conceição, Fabricio R

    2014-09-17

    A multi-antigen chimera composed of three antigens of Mycoplasma hyopneumoniae (R1, P42, and NrdF) and the mucosal adjuvant Escherichia coli heat-labile enterotoxin B subunit (LTB) was constructed, and its antigenic and immunogenic properties were evaluated in mice and pigs. In addition, we compared the effect of the fusion and co-administration of these proteins in mice. Antibodies against each subunit recognized the chimeric protein. Intranasal and intramuscular immunization of mice with the chimeric protein significantly increased IgG and IgA levels in the serum and tracheobronchial lavages, respectively, against some of the antigens present in the chimeric. Swine immunized with the chimeric protein developed an immune response against all M. hyopneumoniae antigens present in the fusion with a statistically significant difference (Phyopneumoniae infection. PMID:25091529

  3. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine;

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of...... studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild...

  4. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    OpenAIRE

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-01-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas ch...

  5. Excretion of purine base derivatives after intake of bacterial protein meal in pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, A.

    2007-01-01

    Bacterial protein meal has a high content ofprotein but also of RNA and DNA. Sixteen barrows were allocated to four diets containing increasing levels of bacterial protein meal (BPM), from weaning to 80 kg live weight, to evaluate whether the RNA and DNA contents of BPM influenced the retention...... of nitrogen. It was hypothesised that an increased intake of RNA and DNA would lead to an increased urinary excretion of purine base derivatives and increased plasma concentrations. Retention of nitrogen was unaffected by dietary content of BPM (P=0.08) and the urinary excretion of purine base derivatives...... increased with increasing dietary content of BPM. No differences in fasting plasma concentration of uric acid, xanthine and hypoxanthine were observed. It can therefore be concluded that increasing levels of dietary BPM maintained protein accretion and led to changes in excretion of purine detrivatices...

  6. Effect of sulfur analogue of lysine on bacterial protein biosynthesis

    International Nuclear Information System (INIS)

    S-(beta-Aminoethyl)-L-cysteine, a sulfur analogue of lysine inhibited strongly growth of Escherichia coli A-19, and weakly that of Corynebacterium sp. isolated from soil, but did not inhibit growth of Aerobacter aerogenes. In Corynebacterium sp. the inhibitory effect was markedly enhanced in the presence of L-threonine. The inhibition of growth by S-(beta-aminoethyl)-L-cysteine was rapidly reversed by the addition of L-lysine. S-(beta-Aminoethyl)-L-cysteine inhibited protein synthesis and the activity of lysyl-tRNA synthetase from E. coli and A. aerogenes. All the other lysine analogues tested inhibited the activity of enzyme, but S-(beta-aminoethyl)-L-cysteine derivatives, S-(beta-N-acetyl-aminoethyl)-L-cysteine and S-(beta-aminoethyl)-alpha-N-acetyl-L-cysteine were not effective. (auth.)

  7. Flexibility in targeting and insertion during bacterial membrane protein biogenesis

    International Nuclear Information System (INIS)

    The biogenesis of Escherichia coli inner membrane proteins (IMPs) is assisted by targeting and insertion factors such as the signal recognition particle (SRP), the Sec-translocon and YidC with translocation of (large) periplasmic domains energized by SecA and the proton motive force (pmf). The use of these factors and forces is probably primarily determined by specific structural features of an IMP. To analyze these features we have engineered a set of model IMPs based on endogenous E. coli IMPs known to follow distinct targeting and insertion pathways. The modified model IMPs were analyzed for altered routing using an in vivo protease mapping approach. The data suggest a facultative use of different combinations of factors

  8. Molecular cloning and characterization of a gene encoding a 13.1 kDa antigenic protein of Naegleria fowleri.

    Science.gov (United States)

    Shin, H J; Cho, M S; Jung, S U; Kim, H I; Park, S; Kim, H J; Im, K I

    2001-01-01

    An antigen-related gene was cloned from a cDNA expression library of Naegleria fowleri by immunoscreening with sera obtained from mice that were either immunized with an amoebic lysate or infected with trophozoites. The coding nucleotide sequence of the cloned gene consisted of 357 bases that were translated into 119 amino acids. This gene was designated as nfa1. The predicted amino acid sequence of Nfa1 protein has two potential glycosylation and three potential phosphorylation sites, and its predicted secondary structure consists of four helices and three corners. The deduced amino acid sequence of Nfa1 protein shares 43% identity with the myohemerythrin (myoHr) protein from a marine annelid, Nereis diversicolor, including 100% identity in conserved regions and iron-binding residues. A phylogenetic tree constructed from amino acid sequences placed the N. fowleri Nfa1 protein outside of a cluster of myoHr proteins from eight invertebrates. A purified recombinant protein that migrated as a 13.1 kDa species in SDS-PAGE was produced. This recombinant protein exhibited a strong immunoreactivity with infected, immune, and anti-Nfal sera. In addition, an anti-Nfa1 serum reacted with an amoeba lysate in immunoblotting analysis. The present nfal gene encoding the myoHr-like protein is the first myoHr gene cloned from protozoa, and the Nfal antigen may be useful in diagnostic studies PMID:11831780

  9. In silico design, cloning and high level expression of L7/L12-TOmp31 fusion protein of Brucella antigens

    OpenAIRE

    Golshani, Maryam; Rafati, Sima; Jahanian-Najafabadi, Ali; Nejati-Moheimani, Mehdi; Siadat, Seyed Davar; Shahcheraghi, Fereshteh; Bouzari, Saeid

    2015-01-01

    Globally, Brucella melitensis and B. abortus are the most common cause of human brucellosis. The outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens which are considered as potential vaccine candidates. We aimed to design the fusion protein from Brucella L7/L12 and truncated Omp31proteins, in silico, clone the fusion in pET28a vector, and express it in Escherichia coli host. Two possible fusion forms, L7/L12-TOmp31 and ...

  10. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function.

    Science.gov (United States)

    Shen, Chih-Lung; Liu, Cheng-Der; You, Ren-In; Ching, Yung-Hao; Liang, Jun; Ke, Liangru; Chen, Ya-Lin; Chen, Hong-Chi; Hsu, Hao-Jen; Liou, Je-Wen; Kieff, Elliott; Peng, Chih-Wen

    2016-02-23

    Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection. PMID:26858444

  11. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs.

    Directory of Open Access Journals (Sweden)

    Frances R Wadelin

    Full Text Available Preferentially expressed antigen in melanoma (PRAME has been described as a cancer-testis antigen and is associated with leukaemias and solid tumours. Here we show that PRAME gene transcription in leukaemic cell lines is rapidly induced by exposure of cells to bacterial PAMPs (pathogen associated molecular patterns in combination with type 2 interferon (IFNγ. Treatment of HL60 cells with lipopolysaccharide or peptidoglycan in combination with IFNγ resulted in a rapid and transient induction of PRAME transcription, and increased association of PRAME transcripts with polysomes. Moreover, treatment with PAMPs/IFNγ also modulated the subcellular localisation of PRAME proteins in HL60 and U937 cells, resulting in targeting of cytoplasmic PRAME to the Golgi. Affinity purification studies revealed that PRAME associates with Elongin B and Elongin C, components of Cullin E3 ubiquitin ligase complexes. This occurs via direct interaction of PRAME with Elongin C, and PRAME colocalises with Elongins in the Golgi after PAMP/IFNγ treatment. PRAME was also found to co-immunoprecipitate core histones, consistent with its partial localisation to the nucleus, and was found to bind directly to histone H3 in vitro. Thus, PRAME is upregulated by signalling pathways that are activated in response to infection/inflammation, and its product may have dual functions as a histone-binding protein, and in directing ubiquitylation of target proteins for processing in the Golgi.

  12. Human teratomas express differentiated neural antigens. An immunohistochemical study with anti-neurofilament, anti-glial filament, and anti-myelin basic protein monoclonal antibodies.

    OpenAIRE

    Trojanowski, J Q.; Hickey, W. F.

    1984-01-01

    Monoclonal antibodies specific for neurofilament proteins, glial filament protein, or myelin basic protein were used with immunohistochemistry for evaluation of a series of 14 human benign and malignant teratomas for the presence of these neural specific antigens. The results indicate that human teratomas can express all of these neural antigens, reflecting the presence of differentiated neurons, astrocytes, and oligodendroglia, respectively. Although the tumors were selected because neural t...

  13. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection.

    Directory of Open Access Journals (Sweden)

    Camila T França

    2016-05-01

    Full Text Available Elimination of Plasmodium vivax malaria would be greatly facilitated by the development of an effective vaccine. A comprehensive and systematic characterization of antibodies to P. vivax antigens in exposed populations is useful in guiding rational vaccine design.In this study, we investigated antibodies to a large library of P. vivax entire ectodomain merozoite proteins in 2 Asia-Pacific populations, analysing the relationship of antibody levels with markers of current and cumulative malaria exposure, and socioeconomic and clinical indicators. 29 antigenic targets of natural immunity were identified. Of these, 12 highly-immunogenic proteins were strongly associated with age and thus cumulative lifetime exposure in Solomon Islanders (P<0.001-0.027. A subset of 6 proteins, selected on the basis of immunogenicity and expression levels, were used to examine antibody levels in plasma samples from a population of young Papua New Guinean children with well-characterized individual differences in exposure. This analysis identified a strong association between reduced risk of clinical disease and antibody levels to P12, P41, and a novel hypothetical protein that has not previously been studied, PVX_081550 (IRR 0.46-0.74; P<0.001-0.041.These data emphasize the benefits of an unbiased screening approach in identifying novel vaccine candidate antigens. Functional studies are now required to establish whether PVX_081550 is a key component of the naturally-acquired protective immune response, a biomarker of immune status, or both.

  14. Severe Fever with Thrombocytopenia Syndrome Virus Antigen Detection Using Monoclonal Antibodies to the Nucleocapsid Protein

    Science.gov (United States)

    Fukuma, Aiko; Fukushi, Shuetsu; Yoshikawa, Tomoki; Tani, Hideki; Taniguchi, Satoshi; Kurosu, Takeshi; Egawa, Kazutaka; Suda, Yuto; Singh, Harpal; Nomachi, Taro; Gokuden, Mutsuyo; Ando, Katsuyuki; Kida, Kouji; Kan, Miki; Kato, Nobuyuki; Yoshikawa, Akira; Kitamoto, Hiroaki; Sato, Yuko; Suzuki, Tadaki; Hasegawa, Hideki; Morikawa, Shigeru; Shimojima, Masayuki; Saijo, Masayuki

    2016-01-01

    Background Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease with a high case fatality rate, and is caused by the SFTS virus (SFTSV). SFTS is endemic to China, South Korea, and Japan. The viral RNA level in sera of patients with SFTS is known to be strongly associated with outcomes. Virological SFTS diagnosis with high sensitivity and specificity are required in disease endemic areas. Methodology/Principal Findings We generated novel monoclonal antibodies (MAbs) against the SFTSV nucleocapsid (N) protein and developed a sandwich antigen (Ag)-capture enzyme-linked immunosorbent assay (ELISA) for the detection of N protein of SFTSV using MAb and polyclonal antibody as capture and detection antibodies, respectively. The Ag-capture system was capable of detecting at least 350–1220 TCID50/100 μl/well from the culture supernatants of various SFTSV strains. The efficacy of the Ag-capture ELISA in SFTS diagnosis was evaluated using serum samples collected from patients suspected of having SFTS in Japan. All 24 serum samples (100%) containing high copy numbers of viral RNA (>105 copies/ml) showed a positive reaction in the Ag-capture ELISA, whereas 12 out of 15 serum samples (80%) containing low copy numbers of viral RNA (<105 copies/ml) showed a negative reaction in the Ag-capture ELISA. Among these Ag-capture ELISA-negative 12 samples, 9 (75%) were positive for IgG antibodies against SFTSV. Conclusions The newly developed Ag-capture ELISA is useful for SFTS diagnosis in acute phase patients with high levels of viremia. PMID:27045364

  15. Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Franziska Hempel

    Full Text Available Microalgae are thought to offer great potential as expression system for various industrial, therapeutic and diagnostic recombinant proteins as they combine high growth rates with all benefits of eukaryotic expression systems. Moreover, microalgae exhibit a phototrophic lifestyle like land plants, hence protein expression is fuelled by photosynthesis, which is CO(2-neutral and involves only low production costs. So far, however, research on algal bioreactors for recombinant protein expression is very rare calling for further investigations in this highly promising field. In this study, we present data on the expression of a monoclonal human IgG antibody against the Hepatitis B surface protein and the respective antigen in the diatom Phaeodactylum tricornutum. Antibodies are fully-assembled and functional and accumulate to 8.7% of total soluble protein, which complies with 21 mg antibody per gram algal dry weight. The Hepatitis B surface protein is functional as well and is recognized by algae-produced and commercial antibodies.

  16. Definition of a physiologic aging autoantigen by using synthetic peptides of membrane protein band 3: localization of the active antigenic sites.

    Science.gov (United States)

    Kay, M M; Marchalonis, J J; Hughes, J; Watanabe, K; Schluter, S F

    1990-08-01

    Senescent cell antigen (SCA), an aging antigen, is a protein that appears on old cells and marks them for removal by the immune system in mammals. It is derived from band 3, a ubiquitous membrane transport protein found in diverse cell types and tissues. We have used synthetic peptides to identify aging antigenic sites on band 3, using a competitive inhibition assay and immunoblotting with IgG directed against the aging antigen on old cells. Results indicate that: (i) the active antigenic sites of the aging antigen reside on membrane protein band 3 residues that are extracellular regions implicated in anion transport (residues 538-554 and 788-827); (ii) a putative ankyrin-binding-region peptide is not involved in SCA activity; and (iii) carbohydrate moieties are not required for the antigenicity or recognition of SCA because synthetic peptides alone abolish binding of senescent cell IgG to erythrocytes. One of the putative transport sites that contributes to the aging antigen is located toward the carboxyl terminus. A model of band 3 is presented. Localization of the active antigenic site on the band 3 molecule facilitates definition of the molecular changes occurring during aging that initiate molecular as well as cellular degeneration. PMID:1696010

  17. V-antigen homologs in pathogenic gram-negative bacteria.

    Science.gov (United States)

    Sawa, Teiji; Katoh, Hideya; Yasumoto, Hiroaki

    2014-05-01

    Gram-negative bacteria cause many types of infections in animals from fish and shrimps to humans. Bacteria use Type III secretion systems (TTSSs) to translocate their toxins directly into eukaryotic cells. The V-antigen is a multifunctional protein required for the TTSS in Yersinia and Pseudomonas aeruginosa. V-antigen vaccines and anti-V-antigen antisera confer protection against Yersinia or P. aeruginosa infections in animal models. The V-antigen forms a pentameric cap structure at the tip of the Type III secretory needle; this structure, which has evolved from the bacterial flagellar cap structure, is indispensable for toxin translocation. Various pathogenic gram-negative bacteria such as Photorhabdus luminescens, Vibrio spp., and Aeromonas spp. encode homologs of the V-antigen. Because the V-antigens of pathogenic gram-negative bacteria play a key role in toxin translocation, they are potential therapeutic targets for combatting bacterial virulence. In the USA and Europe, these vaccines and specific antibodies against V-antigens are in clinical trials investigating the treatment of Yersinia or P. aeruginosa infections. Pathogenic gram-negative bacteria are of great interest because of their ability to infect fish and shrimp farms, their potential for exploitation in biological terrorism attacks, and their ability to cause opportunistic infections in humans. Thus, elucidation of the roles of the V-antigen in the TTSS and mechanisms by which these functions can be blocked is critical to facilitating the development of improved anti-V-antigen strategies. PMID:24641673

  18. The use of fed batch approaches to maximise yields in bacterial fermentation and protein expression

    International Nuclear Information System (INIS)

    A fermentation facility for the scale up of bacterial and yeast fermentations has been set up at the University of Queensland under the auspices of the ARC Special Research Centre for Functional and Applied Genomics. A major application is the production of recombinant proteins for determination of tertiary structures by X-ray crystallography or nuclear magnetic resonance. For this purpose, large amounts of protein arc needed and the yield from a single fermentation run is crucial to success within constrained laboratory budgets. To achieve maximal yields we are optimising fed batch approaches in bacterial fermentation. Fed batch offers many advantages over batch cultures. Coupled with the ability to monitor online the internal conditions of the fermentation including pH and dissolved oxygen and stirrer cascading functions it is possible to ensure that the nutritional environment of the microorganism is optimised for its growth and or for optimal protein expression. The poster will describe some of our experience in setting up fed batch fermentations and successful applications of fed batches to increasing protein yield. It will also outline services that are available to academic groups outside the University of Queensland For structure determination and functional studies, the production of radiolabelled proteins can also be an advantage. We will describe initial experiments aimed at coupling the principles of fed batch fermentation to the introduction of carbon or nitrogen isotopes into the recombinant protein

  19. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation

    Indian Academy of Sciences (India)

    Manish Sadarangani; J Claire Hoe; Katherine Makepeace; Peter Van Der Ley; Andrew J Pollard

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5′-CTCTT-3′ coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opagenes demonstrated variable rates of PV, between 6.4 ×10–4 and 6.9 ×10–3 per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r2=0.77, p=0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opagenes in UK disease isolates (315/463, 68.0%) were in the ‘on’ phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  20. Development of a sandwich Dot-ELISA for detecting bovine viral diarrhea virus antigen with E2 recombinant protein

    Institute of Scientific and Technical Information of China (English)

    Yuelan ZHAO; Yuzhu ZUO; Lei ZHANG; Jinghui FAN; Hanchun YANG; Jianhua QIN

    2009-01-01

    The IgG antibodies of rabbit anti-E2 protein of the bovine viral diarrhea virus were prepared by a general method from high efficiency serum immunized by E2 recombinant protein antigen expressed in E. coli prokaryotic expression system and were labeled to make enzymelabeled antibody with the method of NaIO4. A sandwich Dot enzyme-linked immunosorbent assay (Dot-ELISA) for the detection of BVDV was developed. The optimal reaction conditions of Dot-ELISAwere determined. The results show that optimal coating antibody was 300 μg·mL-1, the working concentration of HRP-labeled antibody was 1:50. The optimal blocking reagent and time were 5% bovine serum and 45 rain. The minimum detection of the content of antigen reached 1.35μg·mL-1. Compared with the routine IDEXX ELISA test kit with the whole virus, its specificity, sensitivity and coincidence rate were 90.48%, 96.55% and 95.24%, respectively. Compared with the sandwich Dot-ELISA with the negative staining electron microscope and RT-PCR, the coincidence rates were 90.9% and 93.1%, respectively. In addition, Bovine viral diarrhea virus (BVDV) antigen of 178 samples collected from cow farms in the Hebei Province, China, were detected by the developed Dot-ELISA and the IDEXX BVDV antigen Test Kit simultaneously, BVDV antigen positive rate was 39.89%-41.01%. The result of detecting clinical samples demonstrated that the established method showed its specificity, sensitivity and repeatability, whereas the results were easily interpreted without an ELISA reader.

  1. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine;

    2012-01-01

    response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-¿ release, and antibody induction. Gal...... abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells....

  2. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins.

    Science.gov (United States)

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-12-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold with β-sandwich architecture. The structure suggests that Cj0090 may be involved in protein-protein interactions, consistent with a possible role for bacterial lipoproteins. PMID:22987763

  3. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    OpenAIRE

    Cashman Kathleen A; Ferro Philip J; Sampey Darryl B; Goba Augustine; Fair Joseph N; Matschiner Alex; Branco Luis M; Schoepp Randal J; Tesh Robert B; Bausch Daniel G; Garry Robert F; Guttieri Mary C

    2008-01-01

    Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV) proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP), glycoprotein 1 (GP1), and glycoprotein 2 (GP2). Results Full-length NP and the ...

  4. In vitro estimation of rumen protein degradability using 35S to label the bacterial mass

    International Nuclear Information System (INIS)

    An experiment was carried out in order to simplify a previously developed 15N-method for in vitro estimation of rumen protein degradability. Casein (Cas), whole soybeans (Sb) heated at 120oC for 20 min (SbTherm) and sunflower (Sfl) were incubated at 39oC for 4 hours in a water bathshaker with the following media: McDougall's buffer, strained and enriched with particle associated bacteria rumen fluid (2:1), rapidly (maltose, sucrose, glucose) and more slowly (pectin, soluble starch) degradable carbohydrates with final concentration of 815 mg/100 ml and 21.7 μCi/100 ml of35S (from Na235SO4). After the incubation had been ceased, a bacterial fraction was isolated through differential centrifugation and specific activity of bacterial (Bac) and high speed total solids (TS) nitrogen was measured. The ratio was used to calculate bacterial mass in TS and through the Kjeldahl nitrogen concentration in TS - the net bacterial growth (against control vessels without protein). The level of ammonia-N in the supernate after blank correction was used to find the ammonia-N released from protein degradation. The data showed that the rate (and extend) of degradation for the Cas (as a standard protein) was lower compared to those obtained through the 15N-method but it was higher than the rate derived through another in vitro method. The Cas equivalent of the Sb was higher than the figure we found in a previous experiment with solvent extracted soybean meal suggesting that the 35S-method underestimated the degradability of the Cas. After being tested on a wider range of foodstuffs, the proposed 35S-method might be considered as an alternative procedure which is less laborous than the 15N-method. (author)

  5. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    OpenAIRE

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; David H Sherman; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduc...

  6. Dependence of Bacterial Protein Adhesins on Toll-Like Receptors for Proinflammatory Cytokine Induction

    OpenAIRE

    Hajishengallis, George; Martin, Michael; Sojar, Hakimuddin T.; Sharma, Ashu; Schifferle, Robert E.; DeNardin, Ernesto; Russell, Michael W.; Genco, Robert J.

    2002-01-01

    Toll-like receptors (TLRs) are important signal transducers that mediate inflammatory reactions induced by microbes through pattern recognition of virulence molecules such as lipopolysaccharide (LPS) and lipoproteins. We investigated whether proinflammatory cytokine responses induced by certain bacterial protein adhesins may also depend on TLRs. In differentiated THP-1 mononuclear cells stimulated by LPS-free recombinant fimbrillin (rFimA) from Porphyromonas gingivalis, cytokine release was a...

  7. Slow Onset Inhibition of Bacterial β-Ketoacyl-acyl Carrier Protein Synthases by Thiolactomycin*

    OpenAIRE

    Machutta, Carl A.; Bommineni, Gopal R.; Luckner, Sylvia R.; Kapilashrami, Kanishk; Ruzsicska, Bela; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J.

    2009-01-01

    Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the β-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in...

  8. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling.

    Science.gov (United States)

    Podgornaia, Anna I; Casino, Patricia; Marina, Alberto; Laub, Michael T

    2013-09-01

    Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, Escherichia coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes and a systematic mutagenesis study reveal how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions and protein evolution and for the design of novel protein interfaces. PMID:23954504

  9. Engineered hepatitis B virus surface antigen L protein particles for in vivo active targeting of splenic dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsuo H

    2012-07-01

    Full Text Available Hidenori Matsuo,1 Nobuo Yoshimoto,1 Masumi Iijima,1 Tomoaki Niimi,1 Joohee Jung,2,3 Seong-Yun Jeong,3 Eun Kyung Choi,3,4 Tomomitsu Sewaki,5 Takeshi Arakawa,6,7 Shun’ichi Kuroda11Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; 2College of Pharmacy, Duksung Women’s University, Seoul, South Korea; 3Institute for Innovative Cancer Research, ASAN Medical Center, Seoul, South Korea; 4Department of Radiation Oncology, University of Ulsan College of Medicine, Seoul, South Korea; 5GenoLac BL Corporation, Okinawa, Japan; 6COMB, Tropical Biosphere Research Center, 7Graduate School of Medicine, University of the Ryukyus, Okinawa, JapanAbstract: Dendritic cells (DCs are key regulators of adaptive T-cell responses. By capturing exogenous antigens and presenting antigen-derived peptides via major histocompatibility complex molecules to naïve T cells, DCs induce antigen-specific immune responses in vivo. In order to induce effective host immune responses, active delivery of exogenous antigens to DCs is considered important for future vaccine development. We recently generated bionanocapsules (BNCs consisting of hepatitis B virus surface antigens that mediate stringent in vivo cell targeting and efficient endosomal escape, and after the fusion with liposomes (LP containing therapeutic materials, the BNC-LP complexes deliver them to human liver-derived tissues in vivo. BNCs were further modified to present the immunoglobulin G (IgG Fc-interacting domain (Z domain derived from Staphylococcus aureus protein A in tandem. When mixed with IgGs, modified BNCs (ZZ-BNCs displayed the IgG Fv regions outwardly for efficient binding to antigens in an oriented-immobilization manner. Due to the affinity of the displayed IgGs, the IgG-ZZ-BNC complexes accumulated in specific cells and tissues in vitro and in vivo. After mixing ZZ-BNCs with antibodies against DCs, we used immunocytochemistry to examine which antibodies delivered ZZ-BNCs to

  10. Plasmodium falciparum: assay of antigens and antibodies by means of a solid phase radioimmunoassay with radioiodinated staphylococcal protein A

    International Nuclear Information System (INIS)

    Human red blood cells (RBC) infected in vitro with Plasmodium falciparum were employed to prepare several types of antigens (sonicated, infected RBC and purified, sonicated merozoites and schizonts). These antigens, as well as control preparations derived from non-infected RBC, were used to coat plastic tubes, which were subsequently tested for capacity to bind anti-P. falciparum antibodies. Binding was detected by means of radio-iodinated staphylococcus protein A. Sera from patients with recent disease or patients who had a history of P. falciparum infection gave strong binding, while sera of normal individuals had only a low binding activity. Some of the antibodies in the positive sera were directed against RBC, since they could bind to tubes coated with normal RBC antigens and could be removed by absorption with RBC. The specificity of the P. falciparum antibodies was confirmed by inhibition tests: preparations derived from infected blood but not from normal blood inhibited the binding activity of the positive sera, to antigen coated tubes. (author)

  11. A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell Responses In Vivo

    Directory of Open Access Journals (Sweden)

    Laura Arribillaga

    2013-01-01

    Full Text Available The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA, an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC, are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer.

  12. A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo.

    Science.gov (United States)

    Arribillaga, Laura; Durantez, Maika; Lozano, Teresa; Rudilla, Francesc; Rehberger, Federico; Casares, Noelia; Villanueva, Lorea; Martinez, Marta; Gorraiz, Marta; Borrás-Cuesta, Francisco; Sarobe, Pablo; Prieto, Jesús; Lasarte, Juan José

    2013-01-01

    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10(-14) mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF- κβ by TLR4-expressing cells, as well as the production of TNF- α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer. PMID:24093105

  13. Mass-sensing BioCD Protein Array towards Clinical Application: Prostate Specific Antigen Detection in Patient Sera

    CERN Document Server

    Wang, Xuefeng; Nolte, David D; Ratliff, Timothy L

    2009-01-01

    Mass-sensing biosensor arrays for protein detection require no fluorophores or enzyme labels. However, few mass biosensor protein arrays have demonstrated successful application in high background samples, such as serum. In this paper, we test the BioCD as a mass biosensor based on optical interferometry of antibodies covalently attached through Schiff-base reduction. We use the BioCD to detect prostate specific antigen (PSA, a biomarker of prostate cancer) in patient sera in a 96-well anti-PSA microarray. We have attained a 4 ng/ml detection limit in full serum and have measured PSA concentrations in three patient sera.

  14. Expression and Purification of Neurotoxin-Associated Protein HA-33/A from Clostridium botulinum and Evaluation of Its Antigenicity

    OpenAIRE

    Sayadmanesh, Ali; Ebrahimi, Firouz; Hajizade, Abbas; Rostamian, Mosayeb; Keshavarz, Hani

    2013-01-01

    Background: Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expressed and purified, and subsequently its antigenicity in mice was studied. Methods: Initially, ha-33...

  15. The J Domain of Simian Virus 40 Large T Antigen Is Required To Functionally Inactivate RB Family Proteins

    OpenAIRE

    Zalvide, Juan; Stubdal, Hilde; DeCaprio, James A.

    1998-01-01

    Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We ha...

  16. Recombinant expression and purification of "virus-like" bacterial encapsulin protein cages.

    Science.gov (United States)

    Rurup, W Frederik; Cornelissen, Jeroen J L M; Koay, Melissa S T

    2015-01-01

    Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules and organelles, the rate of migration can be used as a tool for purification. Here we describe a detailed protocol for the purification of recently discovered virus-like assemblies called bacterial encapsulins from Thermotoga maritima and Brevibacterium linens. PMID:25358773

  17. Identification of a Streptococcus agalactiae protein antigen associated with bovine mastitis isolates.

    OpenAIRE

    Wanger, A R; Dunny, G. M.

    1987-01-01

    Immunoblotting was used to analyze the immune response of cows to Streptococcus agalactiae. Antibody from the milk of cows immunized (via the superficial inguinal lymph node) with formalinized S. agalactiae cells or from the milk of cows with S. agalactiae mastitis reacted strongly with a group of high-molecular-weight proteinaceous antigens. The two most predominant antigenic polypeptides in this group had apparent molecular weights of 97,000 and 104,000. Because the data indicated that thes...

  18. Identification of in vivo induced protein antigens of Salmonella enterica serovar Typhi during human infection

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During infectious disease episodes, pathogens express distinct subsets of virulence factors which allow them to adapt to different environments. Hence, genes that are expressed or upregulated in vivo are implicated in pathogenesis. We used in vivo induced antigen technology (IVIAT) to identify antigens which are expressed during infection with Salmonella enterica serovar Typhi. We identified 7 in vivo induced (IVI) antigens, which included BcfD (a fimbrial structural subunit), GrxC (a glutaredoxin 3), SapB (an ABC-type transport system), T3663 (an ABC-type uncharacterized transport system), T3816 (a putative rhodanese-related sulfurtransferase), T1497 (a probable TonB-dependent receptor) and T3689 (unknown function). Of the 7 identified antigens, 5 antigens had no cross-immunoreactivity in adsorbed control sera from healthy subjects. These 5 included BcfD, GrxC, SapB, T3663 and T3689. Antigens identified in this study are potential targets for drug and vaccine development and may be utilized as diagnostic agents.

  19. Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae.

    Science.gov (United States)

    Antúnez, Karina; Anido, Matilde; Evans, Jay D; Zunino, Pablo

    2010-03-24

    American Foulbrood is a severe disease affecting larvae of honeybee Apis mellifera, causing significant decrease in the honeybee population, beekeeping industries and agricultural production. In spite of its importance, little is known about the virulence factors secreted by Paenibacillus larvae during larval infection. The aim of the present work was to perform a first approach to the identification and characterization of P. larvae secretome. P. larvae secreted proteins were analyzed by SDS-PAGE and identified by MALDI-TOF. Protein toxicity was evaluated using an experimental model based on feeding of A. mellifera larvae and immunogenicity was evaluated by Western blot, using an antiserum raised against cells and spores of P. larvae. Ten different proteins were identified among P. larvae secreted proteins, including proteins involved in transcription, metabolism, translation, cell envelope, transport, protein folding, degradation of polysaccharides and motility. Although most of these proteins are cytosolic, many of them have been previously detected in the extracellular medium of different Bacillus spp. cultures and have been related to virulence. The secreted proteins resulted highly toxic and immunogenic when larvae were exposed using an experimental model. This is the first description of proteins secreted by the honeybee pathogen P. larvae. This information may be relevant for the elucidation of bacterial pathogenesis mechanisms. PMID:19781868

  20. The role of bacterial antizyme: From an inhibitory protein to AtoC transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Kyriakidis Dimitrios A

    2004-06-01

    Full Text Available Abstract This review considers the role of bacterial antizyme in the regulation of polyamine biosynthesis and gives new perspectives on the involvement of antizyme in other significant cellular mechanisms. Antizyme is a protein molecule induced by the end product of the enzymic reaction that it inhibits, in a non-competitive manner. The bacterial ornithine decarboxylase is regulated by nucleotides, phosphorylation and antizyme. The inhibition of ornithine decarboxylase by antizyme can be relieved to different degrees by DNA or by a variety of synthetic nucleic acid polymers, attributed to a specific interaction between nucleic acid and antizyme. Recently, this interplay between bacterial antizyme and nucleic acid was determined by discerning an additional function to antizyme that proved to be the atoC gene product, encoding the response regulator of the bacterial two-component system AtoS-AtoC. The gene located just upstream of atoC encodes the sensor kinase, named AtoS, that modulates AtoC activity. AtoC regulates expression of atoDAEB operon which is involved in short-chain fatty acid metabolism. Antizyme is thus referred to as AtoC, functioning both as a post-translational and transcriptional regulator. Also, the AtoS-AtoC signal transduction system in E. coli has a positive regulatory role on poly-(R-3-hydroxybutyrate biosynthesis. The properties and gene structural similarities of antizymes from different organisms were compared. It was revealed that conserved domains are present mostly in the C-domain of all antizymes. BLAST analysis of the E. coli antizyme protein (AtoC showed similarities around 69–58% among proteobacteria, g-proteobacteria, enterobacteria and the thermophilic bacterium Thermus thermophilus. A working hypothesis is proposed for the metabolic role of antizyme (AtoC describing the significant biological implications of this protein molecule. Whether antizymes exist to other enzymes in different tissues, meeting the

  1. Application of In Vivo Induced Antigen Technology (IVIAT) to Bacillus anthracis

    OpenAIRE

    Peppercorn, Amanda; Young, John S; Drysdale, Melissa; Baresch, Andrea; Bikowski, Margaret V.; Ashford, David A.; Quinn, Conrad P.; Handfield, Martin; Hillman, Jeffrey D.; Lyons, C. Rick; Koehler, Theresa M.; Sonenshein, Abraham L.; Rollins, Sean McKenzie; Calderwood, Stephen Beaven; Ryan, Edward Thomas

    2008-01-01

    In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase Nar...

  2. Cloning, protein expression and display of synthetic multi-epitope mycobacterial antigens on Salmonella typhi Ty21a cell surface.

    Science.gov (United States)

    Sarhan, Mohammed A A; Musa, Mustaffa; Zainuddin, Zainul F

    2011-09-01

    Expressing proteins of interest as fusion to proteins of bacterial envelope is a powerful technique for biotechnological and medical applications. The synthetic gene (VacII) encoding for T-cell epitopes of selected genes of Mycobacterium tuberculosis namely, ESAT6, MTP40, 38 kDa, and MPT64 was fused with N- terminus of Pseudomonas syringae ice nucleation protein (INP) outer membrane protein. The fused genes were cloned into a bacterial expression vector pKK223-3. The recombinant protein was purified by Ni-NAT column. VacII gene was displayed on the cell surface of Salmonella typhi Ty21a using N-terminal region of ice nucleation proteins (INP) as an anchoring motif. Glycine method confirmed that VacII was anchored on the cell surface. Western blot analysis further identified the synthesis of INP derivatives containing the N-terminal domain INP- VacII fusion protein of the expected size (52 kDa). PMID:21941936

  3. Prediction of antigenic sites on ALS1 and HWP1 protein sequences in vaginal isolated C. albicans of using bioinformatics analysis

    Directory of Open Access Journals (Sweden)

    Mona Pakdel

    2015-04-01

    Full Text Available Background and Aim: The ability to predict antigenic sites on proteins is of major importance for medication. The aim of this study was to predict the antigenic sites on Agglutin in Like Sequence (ALS1 and Hyphal Wall Protein Sequences (HWP1 in Candida albicans isolated of vaginal infections using Physico-Chemical Profiles server. Materials and Methods: 7 isolates were obtained from women with vaginal infection which were collected from various medical centers of Tehran in 2011 and 2012. At the first,DNA was extracted  by Phenol-Chloroform method. Multiplex PCR was performed by using specific primers. In order to do bioinformatic studies, the genes were sequenced and then translated. Antigenic sites of protein sequences were identified by Physico-Chemical Profiles program. Results: The results showed that the presence of two genes als1 and hwp1 in isolates. In ALS1 and HWP1, respectively 2 and 1 antigenic site with the most antigenicity were identified. Conclusions: According to previous studies, Serine and Threonine phosphorylation is an important mechanism in pathogenesis of ALS1 and HWP1 proteins. Results in this study showed that serine and threonine are the most amino acids in the antigenic sites with high antigenicity property.

  4. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria.

    Science.gov (United States)

    Ban, L; Scaloni, A; D'Ambrosio, C; Zhang, L; Yahn, Y; Pelosi, P

    2003-02-01

    Analysis of soluble proteins from different body parts of Locusta migratoria revealed a fast-migrating component in native electrophoresis, unique to antennae of both sexes. N-terminal sequence analysis and cloning identified this protein as a member of the insect odorant-binding proteins, carrying a well-conserved six-cysteine motif. Mass spectrometry analysis confirmed the occurrence of two distinct polypeptide species determined by nucleotide sequencing and demonstrated that the cysteine residues are paired in an interlocked fashion. The protein was expressed in a bacterial system with yields of about 10 mg/l of culture, mostly present as inclusion bodies. However, this recombinant product was solubilized after disulfide reduction. Air oxidation yielded a species with all disulfides spontaneously formed as in the native counterpart. Both native and recombinant proteins migrated as a dimer in gel filtration chromatography. Ligand binding was measured, using N-phenyl-1-naphthylamine as the fluorescent probe; the affinity of other ligands was measured in competitive binding assays. The protein exhibited great resistance to thermal denaturation even following prolonged treatment at 100 degrees C. A structural model for this dimeric species was generated on the basis of its sequence homology with Bombyx mori pheromone-binding protein, whose three-dimensional structure has been resolved as an unbound species and in complex with its physiological ligand. This is the first report of an odorant-binding protein identified and characterized from Orthoptera. PMID:12678502

  5. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    Science.gov (United States)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  6. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure.

    Science.gov (United States)

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-09-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (pp-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  7. RHAMM (CD168 Is Overexpressed at the Protein Level and May Constitute an Immunogenic Antigen in Advanced Prostate Cancer Disease

    Directory of Open Access Journals (Sweden)

    Kilian M. Gust

    2009-09-01

    Full Text Available Localized prostate cancer (CaP can be cured using several strategies. However, the need to identify active substances in advanced tumor stages is tremendous, as the outcome in such cases is still disappointing. One approach is to deliver human tumor antigen-targeted therapy, which is recognized by T cells or antibodies. We used data mining of the Cancer Immunome Database (CID, which comprises potential immunologic targets identified by serological screening of expression libraries. Candidate antigens were screened by DNA microarrays. Genes were then validated at the protein level by tissue microarrays, representing various stages of CaP disease. Of 43 targets identified by CID, 10 showed an overexpression on the complementary DNA array in CaP metastases. The RHAMM (CD168 gene, earlier identified by our group as an immunogenic antigen in acute and chronic leukemia, also showed highly significant overexpression in CaP metastases compared with localized disease and benign prostatic hyperplasia. At the protein level, RHAMM was highest in metastatic tissue samples and significantly higher in neoplastic localized disease compared with benign tissue. High RHAMM expression was associated with clinical parameters known to be linked to better clinical outcome. Patients with high RHAMM expression in the primaries had a significantly lower risk of biochemical failure. The number of viable cells in cell cultures was reduced in blocking experiments using hormone-sensitive and hormone-insensitive metastatic CaP cell lines. Acknowledging the proven immunogenic effects of RHAMM in leukemia, this antigen is intriguing as a therapeutic target in far-advanced CaP.

  8. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  9. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection

    Science.gov (United States)

    França, Camila T.; Hostetler, Jessica B.; Sharma, Sumana; White, Michael T.; Lin, Enmoore; Kiniboro, Benson; Waltmann, Andreea; Darcy, Andrew W.; Li Wai Suen, Connie S. N.; Siba, Peter; King, Christopher L.; Rayner, Julian C.; Fairhurst, Rick M.; Mueller, Ivo

    2016-01-01

    Background Elimination of Plasmodium vivax malaria would be greatly facilitated by the development of an effective vaccine. A comprehensive and systematic characterization of antibodies to P. vivax antigens in exposed populations is useful in guiding rational vaccine design. Methodology/Principal Findings In this study, we investigated antibodies to a large library of P. vivax entire ectodomain merozoite proteins in 2 Asia-Pacific populations, analysing the relationship of antibody levels with markers of current and cumulative malaria exposure, and socioeconomic and clinical indicators. 29 antigenic targets of natural immunity were identified. Of these, 12 highly-immunogenic proteins were strongly associated with age and thus cumulative lifetime exposure in Solomon Islanders (P<0.001–0.027). A subset of 6 proteins, selected on the basis of immunogenicity and expression levels, were used to examine antibody levels in plasma samples from a population of young Papua New Guinean children with well-characterized individual differences in exposure. This analysis identified a strong association between reduced risk of clinical disease and antibody levels to P12, P41, and a novel hypothetical protein that has not previously been studied, PVX_081550 (IRR 0.46–0.74; P<0.001–0.041). Conclusion/Significance These data emphasize the benefits of an unbiased screening approach in identifying novel vaccine candidate antigens. Functional studies are now required to establish whether PVX_081550 is a key component of the naturally-acquired protective immune response, a biomarker of immune status, or both. PMID:27182597

  10. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

    Science.gov (United States)

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI—TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae. PMID:26484314

  11. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    Science.gov (United States)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  12. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition.

    Science.gov (United States)

    Luo, Ting; Krüger, Thomas; Knüpfer, Uwe; Kasper, Lydia; Wielsch, Natalie; Hube, Bernhard; Kortgen, Andreas; Bauer, Michael; Giamarellos-Bourboulis, Evangelos J; Dimopoulos, George; Brakhage, Axel A; Kniemeyer, Olaf

    2016-08-01

    During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera. PMID:27386892

  13. Bacterial Ortholog of Mammalian Translocator Protein (TSPO) with Virulence Regulating Activity

    Science.gov (United States)

    Chapalain, Annelise; Chevalier, Sylvie; Orange, Nicole; Murillo, Laurence; Papadopoulos, Vassilios; Feuilloley, Marc G. J.

    2009-01-01

    The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10−5 M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies. PMID:19564920

  14. Bacterial ortholog of mammalian translocator protein (TSPO with virulence regulating activity.

    Directory of Open Access Journals (Sweden)

    Annelise Chapalain

    Full Text Available The translocator protein (TSPO, previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5 M adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.

  15. Bacterial ortholog of mammalian translocator protein (TSPO) with virulence regulating activity.

    Science.gov (United States)

    Chapalain, Annelise; Chevalier, Sylvie; Orange, Nicole; Murillo, Laurence; Papadopoulos, Vassilios; Feuilloley, Marc G J

    2009-01-01

    The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5) M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies. PMID:19564920

  16. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  17. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens

    OpenAIRE

    Daniels, Calvin C.; Rogers, P. David; Shelton, Chasity M.

    2016-01-01

    This review describes development of currently available pneumococcal vaccines, provides summary tables of current pneumococcal vaccine recommendations in children and adults, and describes new potential vaccine antigens in the pipeline. Streptococcus pneumoniae, the bacteria responsible for pneumonia, otitis media, meningitis and bacteremia, remains a cause of morbidity and mortality in both children and adults. Introductions of unconjugated and conjugated pneumococcal polysaccharide vaccine...

  18. Viability of adhered bacterial cells: tracking MinD protein oscillations

    Science.gov (United States)

    Barrett, Matt; Colville, Keegan; Schultz-Nielsen, Chris; Jericho, Manfred; Dutcher, John

    2010-03-01

    To study bacterial cells using atomic force microscopy, it is necessary to immobilize the cells on a substrate. Because bacterial cells and common substrates such as glass and mica have a net negative charge, positively charged polymers such as poly-L-lysine (PLL) and polyethyleneimine (PEI) are commonly used as adhesion layers. However, the use of adhesion polymers could stress the cell and even render it inviable. Viable E. coli cells use oscillations of Min proteins along the axis of the rod-shaped cells to ensure accurate cell division. By tagging MinD proteins with GFP, oscillations can be observed using fluorescence microscopy. For a healthy cell in an ideal environment, the oscillation period is measured to be ˜40 s. Prior experiments have shown that PLL increases the oscillation period significantly (up to 80%). In the present study, we have used epifluorescence and total internal reflection fluorescence (TIRF) to track MinD protein oscillations in E. coli bacteria adhered to a variety of positively charged polymers on mica as a function of polymer surface coverage.

  19. Development and evaluation of an immunochromatographic strip for rapid detection of capsid protein antigen p27 of avian leukosis virus.

    Science.gov (United States)

    Qian, Kun; Liang, You-zhi; Yin, Li-ping; Shao, Hong-xia; Ye, Jian-qiang; Qin, Ai-jian

    2015-09-01

    A rapid immunochromatographic strip for detecting capsid protein antigen p27 of avian leukosis virus was successfully developed based on two high-affinity monoclonal antibodies. The test strip could detect not only 600pg purified recombinant p27 protein but also quantified avian leukosis virus as low as 70 TCID50, which has comparative sensitivity to the commercial enzyme-linked immunosorbent assay (ELISA) kit. For the evaluation of this test strip, 1100 samples consisting of cloacal swabs, meconium collected from the earliest stool of one day old chicken and virus isolates were assessed both by the strip and by the commercial ELISA kit. The agreement between these two tests was 93.91%, 93.42% and 100%, respectively. The sensitivity and specificity of the strip were also calculated by using the ELISA kit as the standard. This immunochromatographic strip provides advantages of rapid and simple detection of capsid protein antigen p27 of avian leukosis virus, which could be applied as an on-site testing assay and used for control and eradication programs of avian leukosis disease. PMID:25977186

  20. Role of acute-phase proteins in interleukin-1-induced nonspecific resistance to bacterial infections in mice.

    OpenAIRE

    Vogels, M.T.E.; L. Cantoni; Carelli, M.; Sironi, M; Ghezzi, P; van der Meer, J. W M

    1993-01-01

    Treatment with a single low dose (80 to 800 ng) of interleukin-1 (IL-1) 24 h before a lethal bacterial challenge of granulocytopenic and normal mice enhances nonspecific resistance. Since IL-1 induces secretion of acute-phase proteins, liver proteins which possess several detoxifying effects, we investigated the role of these proteins in the IL-1-induced protection. Inhibition of liver protein synthesis with D-galactosamine (GALN) completely inhibited the IL-1-induced synthesis of acute-phase...

  1. Protein and Antigen Diversity in the Vesicular Fluid of Taenia Solium Cysticerci Dissected from Naturally Infected Pigs

    Directory of Open Access Journals (Sweden)

    Marcela Esquivel-Velázquez, Carlos Larralde, Julio Morales, Pedro Ostoa-Saloma

    2011-01-01

    Full Text Available Cysticercosis caused by Taenia solium is a health threat for humans and pigs living in developing countries, for which there is neither a flawless immunodiagnostic test nor a totally effective vaccine. Suspecting of individual diversity of hosts and parasites as possible sources of the variations of the parasite loads among cysticercotic animals and of the limited success of such immunological applications as well as, we explored and measured both in nine cases of naturally acquired porcine cysticercosis. For this purpose, 2-Dimensional IgG immunoblots were performed by reacting the sera of each cysticercotic pig with the antigens contained in the vesicular fluid (VF of their own cysticerci. We found an unexpectedly large diversity among the proteins and antigens contained in each of the nine VFs. Also diverse were the serum IgG antibody responses of the nine pigs, as none of their 2D- immunoblot images exhibited the same number of spots and resembled each other in only 6.3% to 65.3% of their features. So large an individual immunological diversity of the cysticercal antigens and of the infected pigs´ IgG antibody response should be taken into account in the design of immunological tools for diagnosis and prevention of cysticercosis and should also be considered as a possibly significant source of diversity in Taenia solium´s infectiveness and pathogenicity.

  2. Cloning and Expression of Mitochondrial Heat Shock Protein 70 of Trypanosoma congolense and Potential Use as a Diagnostic Antigen

    OpenAIRE

    Bannai, Hiroshi; Sakurai, Tatsuya; Inoue, Noboru; Sugimoto, Chihiro; Igarashi, Ikuo

    2003-01-01

    The ability to use mitochondrial heat shock protein 70 (MTP) of Trypanosoma congolense as a diagnostic antigen was examined. One cDNA clone was obtained by immunoscreening of a T. congolense procyclic form (PCF) cDNA library with monoclonal antibody (MAb) 10F9. The cDNA clone contained an open reading frame of 1,977 bp encoding a polypeptide consisting of 659 amino acids. Southern blotting analysis indicated that there were at least three copies of the MTP gene in the haploid genome. Interfer...

  3. Recombinant Heat Shock Protein 70 in Combination with Radiotherapy as a Source of Tumor Antigens to Improve Dendritic Cell Immunotherapy

    OpenAIRE

    Kwan-HwaChi; Shih-JenLiu

    2012-01-01

    Local radiotherapy (RT) plus intratumoral dendritic cell (DC) injection can mediate immunological response. We hypothesized that co-injection of exogenous recombinant heat shock protein 70 (rHsp70) in combination with RT-DC could be as effective as co-injection of HSP-peptide for evoking specific immune response. rHsp70-prostate-specific antigen (rHSP70C'-PSA) and alpha-fetoprotein (rHSP70C'-AFP) were used to compare specific response. Growth inhibition of the tumor and the systemic anti-tumo...

  4. Recombinant heat shock protein 70 in combination with radiotherapy as a source of tumor antigens to improve dendritic cell immunotherapy

    OpenAIRE

    Wang, Yu-Shan; Liu, Shih-Jen; Huang, Su-Chen; Chang, Chao-Chun; Huang, Yi-Chun; Fong, Weng-Lam; Chi, Mau-Shin; Chi, Kwan-Hwa

    2012-01-01

    Local radiotherapy (RT) plus intratumoral dendritic cell (DC) injection can mediate immunological response. We hypothesized that co-injection of exogenous recombinant heat shock protein 70 (rHsp70) in combination with RT-DC could be as effective as co-injection of HSP-peptide for evoking specific immune response. rHsp70-prostate-specific antigen (rHSP70C′-PSA) and α-fetoprotein (rHSP70C′-AFP) were used to compare specific response. Growth inhibition of the tumor and the systemic anti-tumor im...

  5. Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation.

    OpenAIRE

    Zalvide, J; DeCaprio, J A

    1995-01-01

    Simian virus 40 large T-antigen (TAg) transformation is thought to be mediated, at least in part, by binding to and modulating the function of certain cellular proteins, including the retinoblastoma tumor suppressor gene product, pRb. TAg can disrupt the inhibitory complexes formed by pRb with the oncogenic transcription factor E2F, and this mechanism has been suggested to be important for TAg-mediated transformation. Residues 102 to 114 of TAg (including the LXCXE motif) are required for bin...

  6. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.;

    2015-01-01

    variable regions, where all variants bind HLA. These regions, although variable, can thus be considered stable in terms of HLA binding and represent valuable vaccine targets. Results: We applied this method to predict CD8+ T-cell targets in influenza A H7N9 hemagglutinin and significantly increased the...... number of potential vaccine targets compared to the number of targets discovered using the traditional approach where low-frequency peptides are excluded. Conclusions: We developed a webserver with an intuitive visualization scheme for summarizing the T cell-based antigenic potential of any given protein...

  7. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella.

    OpenAIRE

    Wu, J Y; Newton, S; Judd, A; Stocker, B; Robinson, W S

    1989-01-01

    A nonvirulent Salmonella dublin flagellin-negative, aromatic-dependent live vaccine strain has been used to express hepatitis B virus surface antigen epitopes in an immunogenic form. The envelope proteins of the virion are encoded by the S gene, which contains the pre-S1, pre-S2, and S coding regions. Synthetic oligonucleotides corresponding to amino acid residues S-(122-137) and pre-S2-(120-145) were inserted in-frame into the hypervariable region of a cloned Salmonella flagellin gene, and t...

  8. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    OpenAIRE

    Lin Jin; Jong Hyun Ham; Rosemary Hage; Wanying Zhao; Jaricelis Soto-Hernández; Sang Yeol Lee; Seung-Mann Paek; Min Gab Kim; Charles Boone; Coplin, David L.; David Mackey

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, w...

  9. Structural and functional characterization of the bacterial ferrous homeostasis protein FeoA

    OpenAIRE

    Vieira, Vanessa Cristina de Carvalho

    2012-01-01

    O objectivo deste trabalho intitulado ““Structural and functional characterization of the bacterial ferrous homeostasis protein FeoA” consistiu na determinação da estrutura e função da proteína FeoA da bacteria E.coli. A principal via bacteriana de entrada do ferro ferroso é através do sistema Feo que deriva das palavras inglesas ferrous iron transport. O ferro é um elemento essencial para a maioria dos organismos participando em vias metabólicas essenciais. Os sistemas de importação ...

  10. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein

    OpenAIRE

    Blair, Jimmy A.; Xu, Qingping; Childers, W. Seth; Mathews, Irimpan I.; Kern, Justin W.; Eckart, Michael; Deacon, Ashley M.; Shapiro, Lucy

    2013-01-01

    Vital to bacterial survival is the faithful propagation of cellular signals, and in Caulobacter crescentus ChpT is an essential mediator within the cell cycle circuit. ChpT functions as a histidine-containing phosphotransfer protein (HPt) that shuttles a phosphoryl group from the receiver domain of CckA, the upstream hybrid histidine kinase (HK), to one of two downstream response regulators (RRs)—CtrA or CpdR—that controls cell cycle progression. To understand how ChpT interacts with multiple...

  11. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    OpenAIRE

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC mutant strain which proved to be hypersensitive to cadmium. Both the human and bacterial MDR genes conferred cadmium resistance to E. coli up to 0.4 mM concentration. Protection was abolished by 10...

  12. Murine malignant cells synthesize a 19,000-dalton protein that is physicochemically and antigenically related to the immunosuppressive retroviral protein, P15E.

    Science.gov (United States)

    Cianciolo, G J; Lostrom, M E; Tam, M; Snyderman, R

    1983-09-01

    Murine tumors contain low molecular weight factors that inhibit macrophage accumulation at inflammatory foci. Certain oncogenic murine leukemia viruses contain similar inhibitory activity and the active component of the retroviruses was shown to be the envelope protein P15E. A number of murine malignant and nonmalignant cell lines, as well as primary tumors, have now been examined to determine whether production of retroviral P15E or a related protein is characteristic of neoplastic cells. Tumor lines examined included the Hep 129 hepatocarcinoma, BP8 fibrosarcoma, RL1 lymphoma, and three variants of the B16 melanoma. Tumor lines were virus negative by electron microscopy. Nonmalignant cells examined included ST0, 3T3/BALB, and 3T3/L1 fibroblasts and unstimulated, as well as mitogen-stimulated murine splenocytes. Cells were pulse-labeled with [35S]methionine, proteins immunoprecipitated with two monoclonal antibodies to P15E and analyzed by SDS-PAGE and gel fluorography. All tumor lines synthesized a approximately 19,000-dalton protein that co-migrated with retroviral P15E on SDS-PAGE. None of the nonmalignant cells synthesized this protein. Two-dimensional gel electrophoresis of the proteins precipitated from two B16 melanoma lines by monoclonal anti-P15E showed them to be physicochemically similar to P15E from Rauscher leukemia virus. A competition ELISA assay for P15E was developed and confirmed the results obtained by metabolic labeling and demonstrated P15E-related antigens in the tumor cell lines and also in the ascites fluid of mice injected with Hep 129 cells. More importantly, P15E antigens were expressed in both a spontaneous mammary adenocarcinoma and in a primary methylcholanthrene-induced fibrosarcoma. Nonmalignant tissues from animals bearing these tumors contained no detectable P15E antigen. Extracts from the primary fibrosarcomas, when injected into the thighs of mice, inhibited the intraperitoneal accumulation of inflammatory macrophages. The

  13. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    Science.gov (United States)

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  14. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses.

    Science.gov (United States)

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre; Biffar, Lucia; Hammer, Sabine E; Kvisgaard, Lise K; Larsen, Lars E; Stewart, Graham R; Somavarapu, Satyanarayana; Steinbach, Falko; Graham, Simon P

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress toward market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralizing antibodies, it has been proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely related (subtype 1) or divergent (subtype 3) PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5), and to a lesser extent, the matrix (M) protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by coexpression of TNF-α and mobilization of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved among strains of both PRRSV genotypes. Thus, M and NSP5 represent attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development. PMID:26909080

  15. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems.

    Science.gov (United States)

    Gottschamel, Johanna; Lössl, Andreas; Ruf, Stephanie; Wang, Yanliang; Skaugen, Morten; Bock, Ralph; Clarke, Jihong Liu

    2016-07-01

    Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression. PMID:27116001

  16. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  17. A method to identify protein antigens of Dermanyssus gallinae for the protection of birds from poultry mites.

    Science.gov (United States)

    Makert, Gustavo R; Vorbrüggen, Susanne; Krautwald-Junghanns, Maria-Elisabeth; Voss, Matthias; Sohn, Kai; Buschmann, Tilo; Ulbert, Sebastian

    2016-07-01

    The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae. PMID:27026505

  18. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets....... The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg......, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver funtion were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended...

  19. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.;

    Introduction Silicone rubber is among the most biocompatible materials available, exhibiting low levels of extractables, absence of plasticizers and additives and fairly low activation of blood thrombogenesis components. However untreated silicone rubber does not efficiently resist protein...... with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...... the measurement of both initial adhesion of clinically isolated bacteria on silicone and subsequent biofilm formation during prolonged growth under liquid flow. The extend of adsorption of relevant proteins to the surfaces was also investigated using quartz crystal microbalance with dissipation (QCM...

  20. Merkel Cell Polyomavirus Small T Antigen Targets the NEMO Adaptor Protein To Disrupt Inflammatory Signaling

    OpenAIRE

    Griffiths, David A.; Abdul-Sada, Hussein; Knight, Laura M.; Jackson, Brian R.; Richards, Kathryn; Prescott, Emma L.; Peach, A. Howard S.; Blair, G. Eric; MacDonald, Andrew; Whitehouse, Adrian

    2013-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST)...

  1. Reconstitution of nanomachine driving the assembly of proteins into bacterial outer membranes

    International Nuclear Information System (INIS)

    Over 9.5 million people die each year due to infectious diseases caused by pathogens. Many species of pathogenic bacteria require nanomachines acting like a molecular pump that shuttle key disease-causing molecules (proteins) from inside bacteria cells to the outside surface, priming the bacteria for infections. How such proteins are assembled remains an important question in biology. If we can inhibit the nanomachines function in transporting specific violence factors, it would disable the disease process. Therefore it is crucial to understand how the proteins are transported through the nanomachines from the periplasm to the extracellular space. Measuring the activity of the component parts of membrane-embedded nanomachines in solution is a major technological challenge. The translocation assembly module (the TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by Quartz Crystal Microbalance with Dissipation (QCM-D) and Magnetic Contrast Neutron Reflectrometry (MCNR). We show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  2. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    International Nuclear Information System (INIS)

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women

  3. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  4. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    Science.gov (United States)

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-02-23

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant. PMID:26753184

  5. Analysis of the complexity of the multimeric structure of factor VIII related antigen/von Willebrand protein using a modified electrophoretic technique.

    OpenAIRE

    Enayat, M S; Hill, F G

    1983-01-01

    A method for multimeric analysis of factor VIII related antigen/von Willebrand protein is described. By modifying an existing method the technique has been simplified and optimised so that the different molecular forms of factor VIII related antigen and their triplet structure can be visualised. Clear differences can be seen between patterns in normals and type IIA von Willebrand's disease variants in that the latter lack high and intermediate multimers and also have a different configuration...

  6. Selection of protective antigens in Lawsonia intracellularis by reverse vaccinology

    DEFF Research Database (Denmark)

    Vadekær, Dorte Fink; Lundegaard, Claus; Riber, Ulla;

    Lawsonia intracellularis is a bacterial pathogen that infects intestinal epithelial cells in pigs. This causes proliferative enteropathy, which is characterized by diarrhea and reduced growth, and L. intracellularis infection is one of the main reasons for antibiotic treatment of production pigs in...... protection against L. intracellularis. To this end, a reverse vaccinology approach was applied: the entire L. intracellularis genome encoding 1340 proteins was screened in silico using bioinformatics tools to identify potential protein antigens. Advanced software algorithms predicted 150 secreted and outer...

  7. Antigenicity, cross-reactivity and surface exposure of the Neisseria meningitidis 37 kDa protein (Fbp).

    Science.gov (United States)

    Gómez, J A; Agra, C; Ferrón, L; Powell, N; Pintor, M; Criado, M T; Ferreirós, C M

    1996-10-01

    The 37 kDa iron-repressible protein, Fbp, was purified from two Neisseria meningitidis strains by metal-affinity chromatography and used to obtain mouse monospecific polyclonal immune sera. Dot-blot, immunoblotting and whole cell ELISA results demonstrate that the Fbp is present in all 16 N. meningitidis and four commensal Neisseria species tested, is highly antigenic in mouse when injected in pure form, and shows intra- and inter-species antigenic homogeneity, anti-Fbp antibodies being fully cross-reactive using the techniques mentioned. We also found that Fbp molecules (or parts of them) are surface exposed, in disagreement with the proposed exclusively periplasmic localization, although anti-Fbp antibodies seem unable to block iron uptake or to induce complement-mediated killing of the meningococci. Taken along with the high immunogenicity of the purified protein and the complete cross-reactivity of the antibodies elicited, this suggests that the protective effect of the purified Fbp must be further studied to evaluate its inclusion in future vaccine trials. PMID:9004443

  8. Tumor-specific immunotherapy of murine bladder cancer with butanol-extracted antigens and ethylchlorformate polymerized tumor protein.

    Science.gov (United States)

    Rochester, M G; Sarosdy, M F; Pickett, S H; Stogdill, B J; Lamm, D L

    1988-09-01

    Successful treatment of superficial bladder cancer using nonspecific immunotherapy with Bacillus Calmette-Guerin (BCG) has been well documented. Investigation of two potential tumor-specific immunotherapeutic agents using a murine transitional-cell carcinoma model (MBT-2) is reported. The survival of mice immunized with tumor proteins obtained by treating tumor cells with either 1-butanol or ethylchlorformate was compared to the survival of animals immunized with BCG. Long-term immunity conferred by each of these agents was also assessed. Significant protection by both agents was noted in all treatment groups compared to controls. Long-term immunity was also found to result from treatment with both investigational agents as well as with BCG. Butanol-extracted antigens and ethylchlorformate polymerized tumor protein may be useful as immunotherapeutic alternatives to BCG. PMID:3411695

  9. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection.

    Science.gov (United States)

    Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo

    2016-09-01

    Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. PMID:27458055

  10. Detergent pretreatment of solid phase globular proteins in ELISA`s. Enhanced antigenicity and subsequent sensitivity. Final report, September 1989-September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, G.C.; Bouhmadouche, M.; Williamson, M.L.

    1994-10-01

    Methods for pretreatment and rejuvenation of preimmobilized globular proteins used in immunodiagnostics were investigated using reagents routinely used in ELISA`s. Rabbit and goat gamma globulins, functioning as antigens, and antibodies on non-covalent, and covalent solid surfaces, were monitored for detergent mediated desorption, denaturation, non-specific binding and altered antigenicity. The results from fourteen commercially supplied polyvinyl- and polystyrene-derivatized microtiter plates coated with antibody or antigenic lgG were compared with commercial microtiter diagnostic plates with preimmobilized lgG. Wash solutions had no effect on immobilized gamma globulins when the solid phase protein functioned as an antibody on covalent or noncovalent surfaces. In addition to tween 20 removing up to 50% of noncovalently bound protein additional binding sites are apparently exposed on solid phase antigens, evident by an increase in signal, which cannot be explained by nonspecific binding. However, no increase in signal was evident when antigen was preimmobilized covalently. The role of between 20 and other reagent components in ELISA-based assays are explored. The screening of noncovalent preimmobilized antigen coated surfaces prior to use for deteraent mediated enhancement is suggested.

  11. Crossroads between Bacterial and Mammalian Glycosyltransferases

    Science.gov (United States)

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  12. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins

    OpenAIRE

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-01-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold wit...

  13. The use of C-reactive protein in predicting bacterial co-Infection in children with bronchiolitis

    OpenAIRE

    Mohamad Fares; Sawsan Mourad; Mariam Rajab; Nahida Rifai

    2011-01-01

    Background: Bronchiolitis is a potentially life-threatening respiratory illness commonly affecting children who are less than two years of age. Patients with viral lower respiratory tract infection are at risk for co-bacterial infection. Aim: The aim of our study was to evaluate the use of C-reactive protein (CRP) in predicting bacterial co-infection in patients hospitalized for bronchiolitis and to correlate the results with the use of antibiotics. Patients and Methods: This is a prospective...

  14. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

    Science.gov (United States)

    Berens, Shawn J.; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the complete msa-2 locus was characterized from 12 Australian B. bovis strains and isolates, including two vaccine strains and eight vaccine breakthrough isolates, and compared to the loci in previously and newly characterized American strains. In contrast to American strains, the msa-2 loci of all Australian strains and isolates examined contain, in addition to msa-2c, only a solitary gene (designated msa-2a/b) closely related to American strain msa-2a and msa-2b. Nevertheless, the proteins encoded by these genes are quite diverse both between and within geographic regions and harbor evidence of genetic exchange among other VMSA family members, including msa-1. Moreover, all but one of the Australian breakthrough isolate MSA-2a/b proteins is markedly different from the vaccine strain from which immune escape occurred, consistent with their role in strain-specific protective immunity. The densest distribution of polymorphisms occurs in a hypervariable region (HVR) within the carboxy third of the molecule that is highly proline rich. Variation in length and content of the HVR is primarily attributable to differences in the order and number of degenerate nucleotide repeats encoding three motifs of unknown function. PMID:16239512

  15. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b.

    Science.gov (United States)

    Stevenson, P; Williams, P; Griffiths, E

    1992-06-01

    There is now considerable evidence to show that in the Neisseria and Haemophilus species, membrane receptors specific for either transferrin or lactoferrin are involved in the acquisition of iron from these glycoproteins. In Neisseria meningitidis, the transferrin receptor appears to consist of two proteins, one of which (TBP 1) has an M(r) of 95,000 and the other of which (TBP 2) has an M(r) ranging from 68,000 to 85,000, depending on the strain; TBP 2 binds transferrin after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting, but TBP 1 does not do so. The relative contributions of these two proteins to the binding reaction observed with intact cells and to iron uptake are presently unknown. However, they are being considered as potential components of a group B meningococcal vaccine. Analogous higher- and lower-molecular-weight proteins associated with transferrin binding have been found in N. gonorrhoeae and Haemophilus influenzae. Previous work with polyclonal antibodies raised in mice with whole cells of iron-restricted N. meningitidis showed that the meningococcal TBP 2 exhibits considerable antigenic heterogeneity. Here, we report that antiserum against purified TBP 2 from one strain of N. meningitidis cross-reacts on immunoblotting with the TBP 2 of all meningococcal isolates examined, as well as with the TBP 2 of N. gonorrhoeae. This antiserum also cross-reacted with the TBP 2 of several strains of H. influenzae type b, thus showing the presence of common antigenic domains among these functionally equivalent proteins in different pathogens; no cross-reaction was detected with a purified sample of the human transferrin receptor. PMID:1587606

  16. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  17. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  18. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Science.gov (United States)

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L; Mackey, David

    2016-05-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  19. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  20. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    Science.gov (United States)

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L.; Mackey, David

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  1. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. PMID:27030586

  2. Immune responses of a chimaeric protein vaccine containing Mycoplasma hyopneumoniae antigens and LTB against experimental M. hyopneumoniae infection in pigs.

    Science.gov (United States)

    Marchioro, Silvana B; Sácristan, Rubén Del Pozo; Michiels, Annelies; Haesebrouck, Freddy; Conceição, Fabricio R; Dellagostin, Odir A; Maes, Dominiek

    2014-08-01

    A recombinant chimaeric protein containing three Mycoplasma hyopneumoniae antigens (C-terminal portion of P97, heat shock protein P42, and NrdF) fused to an adjuvant, the B subunit of heat-labile enterotoxin of Escherichia coli (LTB), was used to immunize pigs against enzootic pneumonia. The systemic and local immune responses, as well as the efficacy of the chimaeric protein in inducing protection against experimental M. hyopneumoniae infection were evaluated. In total, 60 male piglets, purchased from a M. hyopneumoniae-free herd, at 4 weeks of age were randomly allocated to six different experimental groups of 10 animals each: recombinant chimaeric protein by intramuscular (IM) (1) or intranasal (IN) (2) administration, commercial bacterin by IM administration (3), and the adjuvant LTB by IM (4, control group A) or IN (5, control group B) administration. All groups were immunized at 24 and 38 days of age and challenged at 52 days of age. The sixth group that was not challenged was used as the negative control (IN [n=5] or IM [n=5] administration of the LTB adjuvant). Compared with the non-challenged group, administration of the chimaeric protein induced significant (Phyopneumoniae infection in pigs. This lack of effectiveness points towards the need for further studies to improve the efficacy of this subunit-based vaccine approach. PMID:24909331

  3. Two Proteins Form a Heteromeric Bacterial Self-Recognition Complex in Which Variable Subdomains Determine Allele-Restricted Binding

    OpenAIRE

    Cardarelli, Lia; Saak, Christina; Gibbs, Karine A

    2015-01-01

    ABSTRACT Self- versus nonself-recognition in bacteria has been described recently through genetic analyses in multiple systems; however, understanding of the biochemical properties and mechanisms of recognition-determinant proteins remains limited. Here we extend the molecular and biochemical understanding of two recognition-determinant proteins in bacteria. We have found that a heterotypic complex is formed between two bacterial self-recognition proteins, IdsD and IdsE, the genes of which ha...

  4. Identification of multiple physicochemical and structural properties associated with soluble expression of eukaryotic proteins in cell-free bacterial extracts

    OpenAIRE

    AlexanderA.Tokmakov

    2014-01-01

    Bacterial extracts are widely used to synthesize recombinant proteins. Vast data volumes have been accumulated in cell-free expression databases, covering a whole range of existing proteins. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with protein solubility and aggregation. In the present paper, an approach to identify the multiple physicochemical and structural properties of amino acid sequences associated with soluble expressio...

  5. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes.

    Science.gov (United States)

    Stepanenko, Olesya V; Baloban, Mikhail; Bublikov, Grigory S; Shcherbakova, Daria M; Stepanenko, Olga V; Turoverov, Konstantin K; Kuznetsova, Irina M; Verkhusha, Vladislav V

    2016-01-01

    Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs. PMID:26725513

  6. Relationship between protein C antigen and anticoagulant activity during oral anticoagulation and in selected disease states.

    OpenAIRE

    Vigano D'Angelo, S; Comp, P C; Esmon, C T; D'Angelo, A.

    1986-01-01

    Protein C is a natural vitamin K-dependent plasma anticoagulant, deficiencies of which have been found in patients with recurrent thrombosis and warfarin-induced skin necrosis. To appreciate more fully the role of protein C in disease states and during oral anticoagulation, a new functional assay for protein C involving adsorption of plasma protein C on a Ca+2-dependent monoclonal antibody, elution, quantitative activation, and assessment of plasma anticoagulant activity, has been developed. ...

  7. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

    Directory of Open Access Journals (Sweden)

    Shuaiqi Guo

    Full Text Available A novel role for antifreeze proteins (AFPs may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII and region IV (RIV, divide MpAFP into five distinct regions, all of which require mM Ca(2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2 server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.

  8. Papaya ringspot virus coat protein gene for antigen presentation Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Chatchen, S.; Juříček, Miloslav; Rueda, P.; Kertbundit, Sunee

    2006-01-01

    Roč. 39, č. 1 (2006), s. 16-21. ISSN 1225-8687 Grant ostatní: Thai Research Fund(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : antigen presentation * canine parvo virus * epitope * papaya ringspot virus Subject RIV: EF - Botanics Impact factor: 1.465, year: 2006 http://www.jbmb.or.kr/view_article.php3?cont=jbmb&kid=174&mid=3&pid=3

  9. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  10. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  11. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells.

    Science.gov (United States)

    Rancan, Fiorenza; Amselgruber, Sarah; Hadam, Sabrina; Munier, Sevérine; Pavot, Vincent; Verrier, Bernard; Hackbarth, Steffen; Combadiere, Behazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-02-28

    Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination. PMID:24384300

  12. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    current tools especially where the N-terminally anchored and the SPIase-cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%. LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial genomes. The results are stored in the database LocateP-DB http://www.cmbi.ru.nl/locatep-db1. Conclusion LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive bacteria currently available.

  13. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  14. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep.

    Science.gov (United States)

    De Rose, R; McKenna, R V; Cobon, G; Tennent, J; Zakrzewski, H; Gale, K; Wood, P R; Scheerlinck, J P; Willadsen, P

    1999-11-30

    Vaccination of sheep with a plasmid bearing the full length gene for the tick antigen Bm86 either alone or co-administered with plasmid carrying the ovine genes for the cytokines, granulocyte and macrophage colony stimulating factor (GM-CSF) or interleukin (IL)-1beta induced a relatively low level of protection against subsequent tick infestation. This tick damage reached statistical significance only for the groups which were vaccinated with plasmid encoding for Bm86, co-administered with plasmid encoding for ovine GM-CSF. Antibody titres measured against Bm86 were also low in all groups injected with the Bm86 DNA vaccine. Antibody production and anti-tick effect were significantly less than that achieved by two vaccinations with recombinant Bm86 protein. In all cases only a low level of antigen-specific stimulation of peripheral blood lymphocytes was recorded, as measured either by the incorporation of tritiated thymidine or the release of IFN-gamma. Injection of DNA encoding for Bm86, either alone or with co-administered cytokine genes, did however prime for a strong subsequent antibody response following a single injection of recombinant Bm86 protein in adjuvant. Antibody production nevertheless appeared to be slightly less effective than following two vaccinations with recombinant protein. The persistence of antibody following vaccination was the same regardless of the method of primary sensitization. In all cases the half-life of the antibody response was approximately 40-50 days indicating that, in contrast to results reported in mice, DNA vaccination in sheep did not result in sustained antibody production. PMID:10587297

  15. Evaluation of the antigenicity of hydrolyzed cow's milk protein formulas using the mouse basophil activation test.

    Science.gov (United States)

    Iwamoto, Hiroshi; Matsubara, Takeshi; Nakazato, Yuki; Namba, Kazuyoshi; Takeda, Yasuhiro

    2016-02-01

    Hypoallergenic infant formulas are widely used for infants with cow's milk allergy. The aim of this study was to assess the utility of the mouse basophil activation test (BAT) in the evaluation of residual antigenicity in these formulas. Whole blood samples derived from β-lactoglobulin- or casein-immunized mice were incubated with one of the following formulas: conventional, partially hydrolyzed, or extensively hydrolyzed. Basophilic activation was analyzed by flow cytometry using an IgE-dependent activation marker CD200R1 and an IgG-dependent activation marker CD200R3. Systemic anaphylaxis was induced by i.v. injection of milk formula and results were compared. Conventional formula induced pronounced changes in CD200R1 and CD200R3 expression on basophils, whereas extensively hydrolyzed formulas did not elicit any changes in these markers. Similarly, challenge with conventional formula induced anaphylaxis, whereas extensively hydrolyzed formulas did not induce anaphylaxis. Although the partially hydrolyzed formula also induced basophilic activation and systemic anaphylaxis, the magnitude of these effects was smaller than that observed with the conventional formula. Compared to CD200R1, the observed trend in CD200R3 expression resembled the results obtained from systemic anaphylaxis test more closely. These findings show that mouse BAT, in particular using CD200R3, is highly useful for the evaluation of antigenicity of milk formulas. PMID:26626100

  16. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  17. Determination of the genus-specific antigens in outer membrane proteins from the strains of Leptospira interrogans and Leptospira biflexa with different virulence

    Institute of Scientific and Technical Information of China (English)

    罗依惠; 严杰; 毛亚飞; 李淑萍

    2004-01-01

    Objective: To determine the existence of genus-specific antigens in outer membrane proteins (OMPs) of leptospira with different virulence. Methods: Microscope agglutination test (MAT) was applied to detect the agglutination between commercial rabbit antiserum against leptospiral genus-specific TR/Patoc I antigen and 17 strains of Leptospira interrongans belonging to 15 serogroups and 2 strains of Leptospira biflexa belonging to 2 serogroups. The outer envelopes (OEs) of L.interrogans serogroup Icterohaemorrhagiae serovar lai strain lai (56601) with strong virulence and serogroup Pomona serovar pomona strain Luo (56608) with low virulence, and L.biflexa serogroup Semaranga serovar patoc strain Patoc I without virulence were prepared by using the method reported in Auran et al.(1972). OMPs in the OEs were obtained by treatment with sodium deoxycholate. SDS-PAGE and western blot were used for analyzing the features of the OMPs on electrophoretic pattern and the immunoreactivity to the antiserum against TR/Patoc I antigen, respectively. Results: All the tested strains belonging to different leptospiral serogroups agglutinated to the antiserum against leptospiral genus-specific TR/Patoc I antigen with agglutination titers ranging from 1:256-1:512. A similar SDS-PAGE pattern of the OMPs from the three strains of leptospira with different virulence was shown and the molecular weight of a major protein fragment in the OMPs was found to be approximately 60 KDa. A positive protein fragment with approximately 32 KDa confirmed by Western blot, was able to react with the antiserum against leptospiral genus-specific TR/Patoc I antigen, and was found in each the OMPs of the three stains of leptospira. Conclusion: There are genus-specific antigens on the surface of L.interrogans and L.biflexa. The OMP with molecular weight of 32 KDa may be one of the genus-specific protein antigens of leptospira.

  18. Determination of the genus-specific antigens in outer membrane proteins from the strains of Leptospira interrogans and Leptospira biflexa with different virulence

    Institute of Scientific and Technical Information of China (English)

    罗依惠; 严杰; 毛亚飞; 李淑萍

    2004-01-01

    Objective:To determine the existence of genus-specific antigens in outer membrane proteins (OMPs) of leptospira with different virulence. Methods: Microscope agglutination test (MAT) was applied to detect the agglutination between commercial rabbit antiserum against leptospiral genus-specific TR/Patoc I antigen and 17 strains of Leptospira interrongans belonging to 15 serogroups and 2 strains of Leptospira biflexa belonging to 2 serogroups.The outer envelopes (OEs) of L.interrogans serogroup Icterohaemorrhagiae serovar lai strain lai (56601) with strong virulence and serogroup Pomona serovar pomona strain Luo (56608) with low virulence,and L.biflexa serogroup Semaranga serovar patoc strain Patoc I without virulence were prepared by using the method reported in Auran et al.(1972).OMPs in the OEs were obtained by treatment with sodium deoxycholate. SDS-PAGE and western blot were used for analyzing the features of the OMPs on electrophoretic pattern and the immunoreactivity to the antiserum against TR/Patoc I antigen, respectively. Results:All the tested strains belonging to different leptospiral serogroups agglutinated to the antiserum against leptospiral genus-specific TR/Patoc I antigen with agglutination titers ranging from 1:256-1:512. A similar SDS-PAGE pattern of the OMPs from the three strains of leptospira with different virulence was shown and the molecular weight of a major protein fragment in the OMPs was found to be approximately 60 KDa.A positive protein fragment with approximately 32 KDa confirmed by Western blot,was able to react with the antiserum against leptospiral genus-specific TR/Patoc I antigen, and was found in each the OMPs of the three stains of leptospira.Conclusion: There are genus-specific antigens on the surface of L.interrogans and L.biflexa. The OMP with molecular weight of 32 KDa may be one of the genus-specific protein antigens of leptospira.

  19. A single Ala139-to-Glu substitution in the Renibacterium salmoninarum virulence-associated protein p57 results in antigenic variation and is associated with enhanced p57 binding to chinook salmon leukocytes.

    Science.gov (United States)

    Wiens, Gregory D; Pascho, Ron; Winton, James R

    2002-08-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5' and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1 and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala(139)-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57. PMID:12147498

  20. Hydrolysis with Cucurbita ficifolia serine protease reduces antigenic response to bovine whey protein concentrate and αs-casein.

    Science.gov (United States)

    Babij, Konrad; Bajzert, Joanna; Dąbrowska, Anna; Szołtysik, Marek; Zambrowicz, Aleksandra; Lubec, Gert; Stefaniak, Tadeusz; Willak-Janc, Ewa; Chrzanowska, Józefa

    2015-11-01

    In the present study the effect of hydrolysis with non-commercial Cucurbita ficifolia serine protease on a reduction of the IgE and IgG binding capacity of whey protein concentrate and αs-casein was investigated. The intensity of the protein degradation was analyzed by the degree of hydrolysis, the free amino groups content and RP-HPLC. The ability to bind the antibodies by native proteins and their hydrolysates was determined using a competitive ELISA test. Deep hydrolysis contributed to a significant reduction of immunoreactive epitopes present in WPC. In the case of IgE and IgG present in the serum pool of children with CMA, the lowest binding capacity was detected in the 24 h WPC hydrolysate, where the inhibition of the reaction with native WPC was ≤23 and ≤60 %, respectively. The analysis of the IgG reactivity in the antiserum of the immunized goat showed that the lowest antibody binding capacity was exhibited also by 24 h WPC hydrolysate at a concentration of 1000 μg/ml where the inhibition of the reaction with nWPC was ≤47 %. One-hour hydrolysis of α-casein was sufficient to significant reduction of the protein antigenicity, while the longer time (5 h) of hydrolysis probably lead to the appearance of new epitopes reactive with polyclonal. PMID:26036686

  1. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  2. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  3. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Jutta Messing

    2014-03-01

    Full Text Available Fruit extracts from black currants (Ribes nigrum L. are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2 was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. 125I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.

  4. Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori.

    Science.gov (United States)

    Messing, Jutta; Niehues, Michael; Shevtsova, Anna; Borén, Thomas; Hensel, Andreas

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects. PMID:24662083

  5. Bacterial ghosts provided with antigens

    NARCIS (Netherlands)

    Leenhouts Cornelis, Johannes; Ramasamy, Ranjan; Steen, Anton; Kok, Jan; Buist, Girbe; Kuipers, Oscar

    2003-01-01

    Methods for improving binding of a proteinaceous substance to cell-wall material of a Gram-positive bacterium are disclosed. The proteinaceous substance includes an AcmA cell-wall binding domain, homolog or functional derivative thereof. The method includes treating the cell-wall material with a sol

  6. Topographic study of the ADP/ATP transport protein. Localization of ADP and atractyloside fixation sites. Identification of the antigenic domains

    International Nuclear Information System (INIS)

    The objectives of this research thesis were: to determine the intramolecular localisation of binding sites of atractyloside and adenine-nucleotides; to determine whether antibodies obtained against the ADP/ATP carrier protein and isolated from beef heart mitochondria possess a reactivity specific to the organ or the species, where antigenic determinants are localized and whether there is conservation of the antigenic structure from one species to the other; to study how to follow and interpret conformational changes of the protein under the effect of ADP and inhibitors (carboxy-atractyloside or bongkrekic acid), and where the SH group unmasked by ADP and bongkrekic acid is localized

  7. Application of 125I-labelled soluble proteins in the histoautoradiographic detection of antigen and antibodies in the spleen of rabbits during primary immune response

    International Nuclear Information System (INIS)

    An autoradiographic method for detecting soluble antigen (chicken serum albumin, CSA) and specific antibodies in the spleen of rabbits during a primary immune response is described. The method consists of incubating sections from the spleen with 125I-labelled IgG2 anti CSA (for demonstration of antigen) or with 125I-labelled antigen (for demonstration of specific antibodies). This treatment of histological sections combines the advantages and principles of the immunofluorescence technique with the possibility of evaluating the exact localization of the proteins by light microscopy in preparations stained with haematoxylin or methyl green-pyronin. The sensitivity of detection is very high: both antigen and antibodies could be demonstrated in the spleen follicles for as long as 42 days after the primary intravenous injection

  8. Involvement of T- and B-lymphocytes in the immune response to the protein exotoxin and the lipopolysaccharide antigens of Vibrio cholerae

    International Nuclear Information System (INIS)

    The immune response at the level of individual immunocytes to the somatic lipopolysaccharide antigen derived from whole Vibrio cholerae and to the purified protein exotoxin from this organism were studied in terms of the role of T- and B-lymphocytes. By adoptive cell transfer studies with irradiated recipient mice, it was shown that normal spleen cells from normal syngeneic mice could readily transfer the capability of responding to both types of cholera antigens. However, when the spleen cells were depleted of T-cells with anti-theta serum and complement, antibody responsiveness to the LPS antigen, but not the exotoxin, could be achieved in recipients. Furthermore, by appropriate transfer of either bone marrow, thymus, or thymus-marrow cell mixtures to irradiated mice, it was shown that the response to the cholera somatic antigen was relatively independent of thymus cells, whereas the response to exotoxin required ''helper'' T-cells

  9. Improved serodiagnosis of hepatitis C virus infection with synthetic peptide antigen from capsid protein.

    OpenAIRE

    Hosein, B; Fang, C T; Popovsky, M A; J. Ye; Zhang, M; WANG, C. Y.

    1991-01-01

    Cloning and expression of hepatitis C virus have allowed the development of immunoassays to detect hepatitis C virus infection. However, currently available recombinant fusion protein C100-3 assays, based on a nonstructural protein of the virus, are limited in sensitivity, particularly for detecting acute infection. In this report seroconversion panels showed that an assay based on synthetic peptides, derived from immunodominant regions of both capsid and nonstructural proteins, accelerated h...

  10. The Structure Analysis and Antigenicity Study of the N Protein of SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Jingqiang Wang; Haipan Zeng; Yongwu Hu; Xiangjun Tian; Xuehai Tan; Ningzhi Xu; Changqing Zeng; Jian Wang; Shengli Bi; Huanming Yang; Jia Ji; Jia Ye; Xiaoqian Zhao; Jie Wen; Wei Li; Jianfei Hu; Dawei Li; Min Sun

    2003-01-01

    The Coronaviridae family is characterized by a nucleocapsid that is composed of thegenome RNA molecule in combination with the nucleoprotein (N protein) withina virion. The most striking physiochemical feature of the N protein of SARS-CoVis that it is a typical basic protein with a high predicted pI and high hydrophilicity,which is consistent with its function of binding to the ribophosphate backbone ofthe RNA molecule. The predicted high extent of phosphorylation of the N proteinon multiple candidate phosphorylation sites demonstrates that it would be relatedto important functions, such as RNA-binding and localization to the nucleolus ofhost cells. Subsequent study shows that there is an SR-rich region in the N proteinand this region might be involved in the protein-protein interaction. The abundantantigenic sites predicted in the N protein, as well as experimental evidence withsynthesized polypeptides, indicate that the N protein is one of the major antigensof the SARS-CoV. Compared with other viral structural proteins, the low variationrate of the N protein with regards to its size suggests its importance to the survivalof the virus.

  11. Acute phase proteins in serum and cerebrospinal fluid in the course of bacterial meningitis.

    Science.gov (United States)

    Paradowski, M; Lobos, M; Kuydowicz, J; Krakowiak, M; Kubasiewicz-Ujma, B

    1995-08-01

    We carried out estimations of the following acute phase proteins: C-reactive protein (CRP), alpha-1-antitrypsin (AAT), alpha-1-acid glycoprotein (AAG), alpha-2-ceruloplasmin (CER), and alpha-2-haptoglobin (HPT) in serum and in cerebrospinal fluid (CSF) in patients with bacterial meningitis (BM, n = 30) and viral meningitis (VM, n = 30). We have shown that determinations of concentrations of AAG and CRP in serum and CER in CSF are useful in differentiation between BM and VM. The diagnostic power of these three tests (the areas under their ROC curves equal 0.942, 0.929, and 0.931, respectively) is bigger, though statistically not significantly, than that of traditional parameters of BM in CSF, i.e., total protein concentration and white blood cell count. Determination of AAG, CRP, and AAT in serum is a valuable monitoring marker in the course of BM treatment. Convenience of serum sampling constitutes an advantage over traditional BM parameters in CSF. PMID:8521602

  12. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P99mTc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P99mTc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99mTc-labelled unpurified immunoglobulin. (orig.)

  13. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    Science.gov (United States)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  14. Structure of the Bacterial Cytoskeleton Protein Bactofilin by NMR Chemical Shifts and Sequence Variation.

    Science.gov (United States)

    Kassem, Maher M; Wang, Yong; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2016-06-01

    Bactofilins constitute a recently discovered class of bacterial proteins that form cytoskeletal filaments. They share a highly conserved domain (DUF583) of which the structure remains unknown, in part due to the large size and noncrystalline nature of the filaments. Here, we describe the atomic structure of a bactofilin domain from Caulobacter crescentus. To determine the structure, we developed an approach that combines a biophysical model for proteins with recently obtained solid-state NMR spectroscopy data and amino acid contacts predicted from a detailed analysis of the evolutionary history of bactofilins. Our structure reveals a triangular β-helical (solenoid) conformation with conserved residues forming the tightly packed core and polar residues lining the surface. The repetitive structure explains the presence of internal repeats as well as strongly conserved positions, and is reminiscent of other fibrillar proteins. Our work provides a structural basis for future studies of bactofilin biology and for designing molecules that target them, as well as a starting point for determining the organization of the entire bactofilin filament. Finally, our approach presents new avenues for determining structures that are difficult to obtain by traditional means. PMID:27276252

  15. EXPRESSION OF BACTERIAL PROTEIN-A IN TOBACCO LEADS TO ENHANCED RESISTANCE TO STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Chaitali Roy

    2014-08-01

    Full Text Available Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms because it can be easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. As bacterial enzymes can be synthesized in tobacco, here we explore the possibility of in planta expression of staphylococcal protein-A(PA which is an antibody, an important group among biopharmaceuticals. In our study we have shown that the tobacco plants harboring PA gene could combat the crown gall infection and also effective in resisting abiotic stress conditions. Transgenic plants when subjected to interact with wild variety of Agrobacterium shows its enhanced capability to resist the gall formation. And when transgenic tobacco plants were grown in presence of 200mM NaCl and/or MG(Methylglyoxal solution, shows their increased tolerance towards salinity stress and high MG stress. So far transgenic tobacco plants are concerned, improvements in the expression of recombinant proteins and their recovery from tobacco may also enhance production and commercial use of this protein.

  16. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    Science.gov (United States)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-02-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes (IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon (IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  17. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    Science.gov (United States)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  18. Evaluation of Urinary Nuclear Matrix Protein-22 as Tumor Marker Versus Tissue Polypeptide Specific Antigen in Bilharzial and Bladder Cancer

    International Nuclear Information System (INIS)

    Urinary nuclear matrix protein-22 (NMP-22) and tissue polypeptide specific antigen (TPS) were determined as potential marker for early detection of bladder tumors in patients with high risk (Bilharzial-patients), monitoring and follow up bladder cancer patients. The objective was to determine sensitivity and specificity of markers for bilharzial and cancer lesions. The levels of two parameters were determined pre and post operation. A total of 110 individuals, 20 healthy, 20 bilharzial patients and 70 bladder cancer patients with confirmed diagnosis were investigated. Urine samples were assayed for NMP-22 and TPS test kits. Some bladder cancer patients were selected to follow up. NMP-22 showed highly significant increase (P,0.001) more than TPS (P<0.01) in bladder cancer patients when compared with bilharzial and control group. Overall sensitivity is 7.8% for TPS and 98.5% for NMP-22

  19. Identification of three new type-specific antigen epitopes in the capsid protein of porcine circovirus type 1.

    Science.gov (United States)

    Huang, Liping; Lu, Yuehua; Wei, Yanwu; Guo, Longjun; Liu, Changming

    2012-07-01

    Porcine circovirus type 1 (PCV1) has been identified as a contaminant of porcine kidney cell line (PK-15). Serological evidence and genetic studies have suggested that PCV1 is widespread in domestic pigs. In this study, monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were generated against a recombinant PCV1 Cap protein (PCV1-Cap), which was expressed using the baculovirus system. PEPSCAN analysis was used to identify epitopes on the PCV1-Cap with mAbs and pAbs. Three linear B-cell epitopes, including residues (85)GGTNPLP(91), (162)FTPKPELDKTIDWFHPNNK(180) and (219)YVQFREFILKDPLNK(233), specific for PCV1-Cap, were finely defined. These results will facilitate future investigations into antigenic differences and differential diagnosis between PCV1 and PCV2. PMID:22437253

  20. Dependence of Bacterial Protein Adhesins on Toll-Like Receptors for Proinflammatory Cytokine Induction

    Science.gov (United States)

    Hajishengallis, George; Martin, Michael; Sojar, Hakimuddin T.; Sharma, Ashu; Schifferle, Robert E.; DeNardin, Ernesto; Russell, Michael W.; Genco, Robert J.

    2002-01-01

    Toll-like receptors (TLRs) are important signal transducers that mediate inflammatory reactions induced by microbes through pattern recognition of virulence molecules such as lipopolysaccharide (LPS) and lipoproteins. We investigated whether proinflammatory cytokine responses induced by certain bacterial protein adhesins may also depend on TLRs. In differentiated THP-1 mononuclear cells stimulated by LPS-free recombinant fimbrillin (rFimA) from Porphyromonas gingivalis, cytokine release was abrogated by monoclonal antibodies (MAbs) to CD14 and TLR4 but not to TLR2. Similar experiments using anti-β2 integrin MAbs suggested that β2 integrins (CD11/CD18) also play a role in cytokine induction by rFimA or native fimbriae. Minor fimbriae (distinct from the fimA-encoded major fimbriae) of P. gingivalis induced proinflammatory cytokine release in a CD14- and TLR2-dependent mode. Cytokine induction by BspA, a leucine-rich repeat protein from Bacteroides forsythus, depended heavily on CD14 and TLR2. We also found that the ability of the streptococcal protein AgI/II to stimulate cytokine release depended partially on CD14 and TLR4, and the AgI/II segment that possibly interacts with these receptors was identified as its N-terminal saliva-binding region. When THP-1 cells were exposed to rFimA for 24 h, surface expression of CD14 and CD18 was decreased and the cells became hyporesponsive to cytokine induction by a second challenge with rFimA. However, tolerance induction was abolished when the THP-1 cells were pretreated with rFimA in the presence of either anti-CD14 MAb or anti-TLR4 MAb. Induction of cross-tolerance between rFimA and LPS correlated with downregulation of the pattern recognition receptors involved. Our data suggest that the CD14-TLR2/4 system is involved in cytokine production and tolerance induction upon interaction with certain proinflammatory bacterial protein adhesins. PMID:11874886

  1. SEPPA 2.0—more refined server to predict spatial epitope considering species of immune host and subcellular localization of protein antigen

    Science.gov (United States)

    Qi, Tao; Qiu, Tianyi; Zhang, Qingchen; Tang, Kailin; Fan, Yangyang; Qiu, Jingxuan; Wu, Dingfeng; Zhang, Wei; Chen, Yanan; Gao, Jun; Zhu, Ruixin; Cao, Zhiwei

    2014-01-01

    Spatial Epitope Prediction server for Protein Antigens (SEPPA) has received lots of feedback since being published in 2009. In this improved version, relative ASA preference of unit patch and consolidated amino acid index were added as further classification parameters in addition to unit-triangle propensity and clustering coefficient which were previously reported. Then logistic regression model was adopted instead of the previous simple additive one. Most importantly, subcellular localization of protein antigen and species of immune host were fully taken account to improve prediction. The result shows that AUC of 0.745 (5-fold cross-validation) is almost the baseline performance with no differentiation like all the other tools. Specifying subcellular localization of protein antigen and species of immune host will generally push the AUC up. Secretory protein immunized to mouse can push AUC to 0.823. In this version, the false positive rate has been largely decreased as well. As the first method which has considered the subcellular localization of protein antigen and species of immune host, SEPPA 2.0 shows obvious advantages over the other popular servers like SEPPA, PEPITO, DiscoTope-2, B-pred, Bpredictor and Epitopia in supporting more specific biological needs. SEPPA 2.0 can be accessed at http://badd.tongji.edu.cn/seppa/. Batch query is also supported. PMID:24838566

  2. Analysis of adenovirus transforming proteins from early regions 1A and 1B with antisera to inducible fusion antigens produced in Escherichia coli.

    OpenAIRE

    Spindler, K R; Rosser, D S; Berk, A J

    1984-01-01

    Plasmid vectors were constructed which expressed three adenovirus tumor antigens fused to a portion of the trpE protein of Escherichia coli. Insertion of adenovirus type 2 DNA from early region 1A (E1A) into such a plasmid led to a fusion protein which contained the C-terminal 266 amino acids of the 289-amino acid protein encoded by the viral 13S mRNA. Similarly, insertion of adenovirus type 5 DNA corresponding to the E1B 55- and 21-kilodalton proteins led to production of fusion proteins con...

  3. Expression and antigenicity characterization for truncated capsid protein of porcine circovirus type 2

    OpenAIRE

    Lou, Zhongzi; Li, Xuerui; Li, Zhiyong; Yin, Xiangping; Li, Baoyu; Lan, Xi; Yang, Bin; Zhang, Yun; Liu, Jixing

    2011-01-01

    Three pairs of specific primers were designed to amplify F2-1, F2-2, and XF2-2 truncated capsid protein genes of porcine circovirus type 2 (PCV-2). Amplified sequences were subcloned to pET-32a(+) vectors and expressed in Rosetta (DE3) Escherichia coli by induction of isopropy-β-D-thiogalactoside (IPTG). All of the fusion proteins had positive reactions to PCV-2 antiserum and His-XF2-2 showed the best reactivity. Proteins were used to immunize BALB/c mice to produce monoclonal antibodies (mAb...

  4. The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins.

    Science.gov (United States)

    Coppotelli, Giuseppe; Mughal, Nouman; Callegari, Simone; Sompallae, Ramakrishna; Caja, Laia; Luijsterburg, Martijn S; Dantuma, Nico P; Moustakas, Aristidis; Masucci, Maria G

    2013-03-01

    Viral proteins reprogram their host cells by hijacking regulatory components of protein networks. Here we describe a novel property of the Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA1) that may underlie the capacity of the virus to promote a global remodeling of chromatin architecture and cellular transcription. We found that the expression of EBNA1 in transfected human and mouse cells is associated with decreased prevalence of heterochromatin foci, enhanced accessibility of cellular DNA to micrococcal nuclease digestion and decreased average length of nucleosome repeats, suggesting de-protection of the nucleosome linker regions. This is a direct effect of EBNA1 because targeting the viral protein to heterochromatin promotes large-scale chromatin decondensation with slow kinetics and independent of the recruitment of adenosine triphosphate-dependent chromatin remodelers. The remodeling function is mediated by a bipartite Gly-Arg rich domain of EBNA1 that resembles the AT-hook of High Mobility Group A (HMGA) architectural transcription factors. Similar to HMGAs, EBNA1 is highly mobile in interphase nuclei and promotes the mobility of linker histone H1, which counteracts chromatin condensation and alters the transcription of numerous cellular genes. Thus, by regulating chromatin compaction, EBNA1 may reset cellular transcription during infection and prime the infected cells for malignant transformation. PMID:23358825

  5. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    Energy Technology Data Exchange (ETDEWEB)

    Welling, M. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Feitsma, H.I.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Calame, W. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Ensing, G.J. (Mallinckrodt Medical, Petten (Netherlands)); Goedemans, W. (Mallinckrodt Medical, Petten (Netherlands)); Pauwels, E.K.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands))

    1994-10-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P<0.03) higher for the purified than for the unpurified immunoglobulin. For the in vivo study, mice were infected in the thigh muscle with Staph. aureus or K. pneumoniae. After 18 h 0.1 mg of technetium-99m labelled polyclonal immunoglobulin or [sup 99m]Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P<0.03) for protein charge-purified polyclonal immunoglobulin than for unpurified polyclonal human immunoglobulin. Already within 1 h the infected tissues could be detected by the purified immunoglobulin. It is concluded that [sup 99m]Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than [sup 99m]Tc-labelled unpurified immunoglobulin. (orig.)

  6. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  7. Synthesis of human parainfluenza virus 2 nucleocapsid protein in yeast as nucleocapsid-like particles and investigation of its antigenic structure.

    Science.gov (United States)

    Bulavaitė, Aistė; Lasickienė, Rita; Vaitiekaitė, Aušra; Sasnauskas, Kęstutis; Žvirblienė, Aurelija

    2016-05-01

    The aim of this study was to investigate the suitability of yeast Saccharomyces cerevisiae expression system for the production of human parainfluenza virus type 2 (HPIV2) nucleocapsid (N) protein in the form of nucleocapsid-like particles (NLPs) and to characterize its antigenic structure. The gene encoding HPIV2 N amino acid (aa) sequence RefSeq NP_598401.1 was cloned into the galactose-inducible S. cerevisiae expression vector and its high-level expression was achieved. However, this recombinant HPIV2 N protein did not form NLPs. The PCR mutagenesis was carried out to change the encoded aa residues to the ones conserved across HPIV2 isolates. Synthesis of the modified proteins in yeast demonstrated that the single aa substitution NP_598401.1:p.D331V was sufficient for the self-assembly of NLPs. The significance of certain aa residues in this position was confirmed by analysing HPIV2 N protein structure models. To characterize the antigenic structure of NLP-forming HPIV2 N protein, a panel of monoclonal antibodies (MAbs) was generated. The majority of the MAbs raised against the recombinant NLPs recognized HPIV2-infected cells suggesting the antigenic similarity between the recombinant and virus-derived HPIV2 N protein. Fine epitope mapping revealed the C-terminal part (aa 386-504) as the main antigenic region of the HPIV2 N protein. In conclusion, the current study provides new data on the impact of HPIV2 N protein sequence variants on the NLP self-assembly and demonstrates an efficient production of recombinant HPIV2 N protein in the form of NLPs. PMID:26821928

  8. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    Science.gov (United States)

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  9. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Directory of Open Access Journals (Sweden)

    Paweł Błażej

    Full Text Available Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  10. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Directory of Open Access Journals (Sweden)

    Tauson Anne-Helene

    2007-11-01

    Full Text Available Abstract The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07 with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.

  11. Prediction on Antigenic Epitope Characteristics of Bt Cry2Ab Protein in Transgenic Crops

    Institute of Scientific and Technical Information of China (English)

    Jierong GAO; Ying HE; Zehong ZOU; Ailin TAO; Yuncan AI

    2012-01-01

    Abstract [Objective] This study aimed to predict the structural characteristics of Bt Cry2Ab protein in transgenic crops with bioinformatic analysis to provide the theoreti- cal clues for design of antibody Cry2Ab. [Method] The amino acid sequence of Cry2Ab protein was searched from NCBI database. The B cell epitopes were pre- dicted with DNAStar. The binding affinity between Cry2Ab protein and MHC-II molecules was analyzed with NetMHCII 2.2 Server to predict the T cell epitopes. [Result] Prediction result suggested the potential B cell epitope of Cry2Ab locating in the region of 208-215. Analysis of the binding affinity between Cry2Ab and MHC-II molecules suggested the regions of 177-185, 299-307 and 255-263 were the po- tential T cell epitopes. Human with HLA-DRB10101 alleles and HLA-DRB10701 al- leles were more sensitive to Cry2Ab protein. [Conclusion] This study facilitates to un- derstand the structural characteristics of Cry2Ab protein and provides a new clue to improve the assessment method for potential allergenicity of genetically modified food.

  12. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  13. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  14. Purification and functional analysis of the recombinant protein isolated from E. coli by employing three different methods of bacterial lysis

    Directory of Open Access Journals (Sweden)

    MARIJA MOJSIN

    2005-07-01

    Full Text Available In this paper, the purification of the human recombinant protein expressed in E. coli using the GSTGene Fusion System, by applying various methods of bacterial lysis: sonication, freeze/thaw and beadbeating, is presented. The study was an attempt to compare the properties of the proteins obtained by the sonication method, recommended by manufacturers but inaccessible for many researchers, with those obtained using two other readily available lysis methods. The data show that all purified proteins were soluble and intact with the highest protein yield being obtained via the freeze/thaw method. The results of functional analysis indicate that the proteins purified using the sonication and freeze/thaw methods of lysis exhibited similar DNA binding affinity, while the protein purified by beadbeating was also functional but with a lower binding affinity. The conclusion of this study is that all three lysis methods could be successfully employed for protein purification.

  15. Synthesis of Phospholipid-Protein Conjugates as New Antigens for Autoimmune Antibodies

    Directory of Open Access Journals (Sweden)

    Arindam Maity

    2015-06-01

    Full Text Available Copper(I-catalyzed azide-alkyne cycloaddition, or CuAAC click chemistry, is an efficient method for bioconjugation aiming at chemical and biological applications. Herein, we demonstrate how the CuAAC method can provide novel phospholipid-protein conjugates with a high potential for the diagnostics and therapy of autoimmune conditions. In doing this, we, for the first time, covalently bind via 1,2,3-triazole linker biologically complementary molecules, namely phosphoethanol amine with human β2-glycoprotein I and prothrombin. The resulting phospholipid-protein conjugates show high binding affinity and specificity for the autoimmune antibodies against autoimmune complexes. Thus, the development of this work might become a milestone in further diagnostics and therapy of autoimmune diseases that involve the production of autoantibodies against the aforementioned phospholipids and proteins, such as antiphospholipid syndrome and systemic lupus erythematosus.

  16. Reverse Line Blot Assay for Direct Identification of Seven Streptococcus agalactiae Major Surface Protein Antigen Genes

    OpenAIRE

    Zhao, Zuotao; Kong, Fanrong; Gilbert, Gwendolyn L.

    2006-01-01

    We developed a multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB) to detect the genes encoding members of the family of variable surface-localized proteins of Streptococcus agalactiae (group B streptococcus [GBS]), namely, Bca (Cα), Rib, Epsilon (Epsilon/Alp1/Alp5), Alp2, Alp3, and Alp4, and the immunoglobulin A binding protein, Bac (Cβ). We used the assay to identify these genes in a collection of well-characterized GBS isolates and reference strains. The results showed tha...

  17. The use of C-reactive protein in predicting bacterial co-Infection in children with bronchiolitis

    Directory of Open Access Journals (Sweden)

    Mohamad Fares

    2011-03-01

    Full Text Available Background: Bronchiolitis is a potentially life-threatening respiratory illness commonly affecting children who are less than two years of age. Patients with viral lower respiratory tract infection are at risk for co-bacterial infection. Aim: The aim of our study was to evaluate the use of C-reactive protein (CRP in predicting bacterial co-infection in patients hospitalized for bronchiolitis and to correlate the results with the use of antibiotics. Patients and Methods: This is a prospective study that included patients diagnosed with bronchiolitis admitted to Makassed General Hospital in Beirut from October 2008 to April 2009. A tracheal aspirate culture was taken from all patients with bronchiolitis on admission to the hospital. Blood was drawn to test C-reactive protein level, white cell count, transaminases level, and blood sugar level. Results: Forty-nine patients were enrolled in the study and were divided into two groups. Group 1 included patients with positive tracheal aspirate culture and Group 2 included those with negative culture. All patients with a CRP level ≥2 mg/dL have had bacterial co-infection. White cell count, transaminases and blood sugar levels were not predictive for bacterial co-infection. The presence of bacterial co-infection increased the length of hospital stay in the first group by 2 days compared to those in the second group. Conclusion: Bacterial co-infection is frequent in infants with moderate to severe bronchiolitis and requires admission. Our data showed that a CRP level greater than 1.1 mg/dL raised suspicion for bacterial co-infection. Thus, a tracheal aspirate should be investigated microbiologically in all hospitalized patients in order to avoid unnecessary antimicrobial therapy and to shorten the duration of the hospital stay.

  18. Human cytotoxic T cells stimulated by antigen on dendritic cells recognize the N, SH, F, M, 22K, and 1b proteins of respiratory syncytial virus.

    OpenAIRE

    Cherrie, A H; Anderson, K.; Wertz, G W; Openshaw, P. J.

    1992-01-01

    We examined the human cytotoxic T-cell repertoire of nine adults to 9 of the 10 proteins of respiratory syncytial (RS) virus. Peripheral blood mononuclear cells from normal adults were stimulated with RS virus in vitro. The resulting polyclonal cultures were tested for lysis of B-lymphoblastoid cell lines infected with recombinant vaccinia viruses expressing each of nine individual RS virus proteins. The use of peripheral blood dendritic cells to present antigen gave more easily reproducible ...

  19. Use of bacterial expression cloning to define the amino acid sequences of antigenic determinants on the G2 glycoprotein of Rift Valley fever virus.

    OpenAIRE

    K. Keegan; Collett, M S

    1986-01-01

    Four distinct antigenic determinants along the G2 glycoprotein encoded by the M segment RNA of the Phlebovirus Rift Valley fever virus were localized. These epitopes were defined by four monoclonal antibodies, three of which were capable of neutralizing virus infectivity; one was nonneutralizing. Immunoprecipitation by these monoclonal antibodies of either denatured or native antigen characterized the epitopes as having linear or higher order structure. Molecular cloning of G2 glycoprotein-co...

  20. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  1. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj;

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium ...

  2. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response

    Science.gov (United States)

    Background: Celiac disease is an immune-mediated enteropathy that is generally understood to be triggered by the ingestion of gluten proteins of wheat and related cereals. The skin manifestation of the condition is known as dermatitis herpetiformis. Antibody response to native and deamidated seque...

  3. Pre-erythrocytic stage malaria parasites: non-circumsporozoite protein antigens.

    OpenAIRE

    Hollingdale, M R; Aikawa, M.; Chen, G. X.; J.F. Meis; Sakhuja, K.; Sina, B.; Zhu, J. D.

    1990-01-01

    A series of non-circumsporozoite proteins found in pre-erythrocytic parasites are being developed as putative vaccine candidates. It is anticipated that these will be useful in addition to, rather than instead of, the CS (circumsporozoite) vaccines. It is likely that a greater understanding of the basic biology of malaria parasite-host relationships will lead to development of improved malarial vaccines.

  4. Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins

    Science.gov (United States)

    Classical swine fever virus (CSFV) harbors three envelope glycoproteins (E(rns), E1 and E2). Previous studies have demonstrated that removal of specific glycosylation sites within these proteins yielded attenuated and immunogenic CSFV mutants. Here we analyzed the effects of lack of glycosylation of...

  5. Targeting hepatitis B virus antigens to dendritic cells by heat shock protein to improve DNA vaccine potency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a control DNA vaccine were generated. Mice were immunized with these different construct. Immune responses were measured 2 wk after a second immunization by a T cell response assay, CTL cytotoxicity assay, and an antibody assay in C57BL/6 and BALB/c mice. CT26-HBeAg tumor cell challenge test in vivo was performed in BALB/c mice to monitor anti-tumor immune responses.RESULTS: In the mice immunized with pCMV-HBe-HSP DNA, superior CTL activity to target HBV-positive target cells was observed in comparison with mice immunized with pCMV-HBeAg (44% ± 5% vs 30% ± 6% in E: T > 50:1, P < 0.05). ELISPOT assays showed a stronger T-cell response from mice immunized with pCMV-HBe-HSP than that from pCMV-HBeAg immunized animals when stimulated either with MHC class Ⅰ or class Ⅱ epitopes derived from HBeAg (74% ± 9% vs 31% ± 6%, P < 0.01). ELISA assays revealed an enhanced HBeAg antibody response from mice immunized with pCMV-HBe-HSP than from those immunized with pCMV-HBeAg. The lowest tumor incidence and the slowest tumor growth were observed in mice immunized with pCMV-HBe-HSP when challenged with CT26-HBeAg.CONCLUSION: The results of this study demonstrate a broad enhancement of antigen-specific CD4+ helper,CD8+ cytotoxic T-cell, and B-cell responses by a novel DNA vaccination strategy. They also proved a stronger antigen-specific immune memory, which may be superior to currently described HBV DNA vaccination strategies for the treatment of chronic HBV infection.

  6. Identification of Leishmania proteins preferentially released in infected cells using change mediated antigen technology (CMAT.

    Directory of Open Access Journals (Sweden)

    Peter E Kima

    Full Text Available Although Leishmania parasites have been shown to modulate their host cell's responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus.

  7. Genetic and antigenic characterization of recombinant nucleocapsid proteins derived from canine coronavirus and canine respiratory coronavirus in China.

    Science.gov (United States)

    Lu, Shuai; Chen, Yingzhu; Qin, Kun; Zhou, Jianfang; Lou, Yongliang; Tan, Wenjie

    2016-06-01

    To characterize the antigenicity of nucleocapsid proteins (NP) derived from canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) in China, the N genes of CCoV (CCoV-BJ70) and CRCoV (CRCoV-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs (rNPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCoV-BJ70 and CRCoV-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that rNPs of CCoV and CRCoV were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the rNP from CRCoV could cross-react with mice antisera against human coronavirus (HCoV-229E, NL63, OC43, HKU1), while rNP of CCoV had cross-reactivity with only anti-sera against viruses belonging to the same group (HCoV-229E and NL63). In summary, CCoV and CRCoV rNPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed. PMID:27084706

  8. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  9. Microassay using radioiodinated protein A from Staphylococcus aureus for antibodies bound to cell surface antigens of adherent tumor cells

    International Nuclear Information System (INIS)

    A new microassay which utilizes radioiodinated staphylococcal protein A (SpA) to detect antibodies bound to cell surface antigens (CSA) was developed for monolayers of viable cultured tumor cells. Optimal detection of bound antibodies occurred at 37degC with incubation periods of one hour each for antiserum and 131I-SpA. Labelling target cells with 125I-iododeoxyuridine facilitated expression of results relative to tumor cell number or protein concentration. Quantitation of antibody depended on CSA (tumor cells) and 131I-SpA being in excess of antibody; under these conditions, 0.25 ng of cell surface bound antibody could be detected readily. Initial studies utilized cultured human neuroblastoma and lung adenocarcinoma cells and human and rabbit antisera. Some antibodies in human serum which bound to CSA were removed by absorption with glutaraldehyde-insolubilized fetal calf serum (FSC) suggesting that FCS or FCS-like determinants can be CSA. Rabbit antisera, after extensive absorption, bound to cultured neuroblastoma and lung adenocarcinoma cells in a cell type specific pattern. These experiments demonstrated the value of this assay in quantitating anti-CSA antibodies and in serological analysis of tumor CSA

  10. Comparative evaluation of recombinant LigB protein and heat-killed antigen-based latex agglutination test with microscopic agglutination test for diagnosis of bovine leptospirosis.

    Science.gov (United States)

    Nagalingam, Mohandoss; Thirumalesh, Sushma Rahim Assadi; Kalleshamurthy, Triveni; Niharika, Nakkala; Balamurugan, Vinayagamurthy; Shome, Rajeswari; Sengupta, Pinaki Prasad; Shome, Bibek Ranjan; Prabhudas, Krishnamsetty; Rahman, Habibur

    2015-10-01

    This study aimed to develop latex agglutination test (LAT) using recombinant leptospiral immunoglobulin-like protein (LigB) (rLigB) antigen and compare its diagnostic efficacy with LAT using conventional heat-killed leptospiral antigen and microscopic agglutination test (MAT) in diagnosing bovine leptospirosis. The PCR-amplified 1053-bp ligB gene sequences from Leptospira borgpetersenii Hardjo serovar were cloned in pET 32 (a) vector at EcoRI and NotI sites and expressed in BL21 E. coli cells as fusion protein with thioredoxin (-57 kDa) and characterized by SDS-PAGE and immunoblot. Out of 390 serum samples [cattle (n = 214), buffaloes (n = 176)] subjected to MAT, 115 samples showed reciprocal titre≥100 up to 1600 against one or more serovars. For recombinant LigB protein/antigen-based LAT, agglutination was observed in the positive sample, while no agglutination was observed in the negative sample. Similarly, heat-killed leptospiral antigen was prepared from and used in LAT for comparison with MAT. A two-sided contingency table was used for analysis of LAT using both the antigens separately against MAT for 390 serum samples. The sensitivity, specificity and positive and negative predictive values of recombinant LigB LAT were found to be 75.65, 91.27, 78.38 and 89.96 %, respectively, and that of heat-killed antigen-based LAT were 72.17, 89.82, 74.77 and 88.53 %, respectively, in comparison with MAT. This developed test will be an alternative/complementary to the existing battery of diagnostic assays/tests for specific detection of pathogenic Leptospira infection in bovine population. PMID:26065562

  11. Wild-type, but not mutant, human p53 proteins inhibit the replication activities of simian virus 40 large tumor antigen.

    OpenAIRE

    Friedman, P N; Kern, S. E.; Vogelstein, B; Prives, C

    1990-01-01

    Murine p53 blocks many of the replication activities of simian virus 40 (SV40) large tumor antigen (T antigen) in vitro. As murine cells do not replicate SV40 DNA, it was of interest to determine how p53 from permissive human cells functions. Recombinant baculoviruses encoding either the wild-type form of human p53 or a mutant p53 cloned from a human tumor cell line were constructed, and p53 proteins were purified from infected insect cells. Surprisingly, we found that wild-type human p53 was...

  12. Potential Impact of Seasonal Malaria Chemoprevention on the Acquisition of Antibodies Against Glutamate-Rich Protein and Apical Membrane Antigen 1 in Children Living in Southern Senegal

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Sylla, Khadime; Sow, Doudou;

    2015-01-01

    -pyrimethamine (SP) combined with amodiaquine (AQ) is a promising strategy to control malaria morbidity in areas of highly seasonal malaria transmission. However, a concern is whether SMC can delay the natural acquisition of immunity toward malaria parasites in areas with intense SMC delivery. To investigate this......, total IgG antibody (Ab) responses to Plasmodium falciparum antigens glutamate-rich protein R0 (GLURP-R0) and apical membrane antigen 1 (AMA-1) were measured by enzyme-linked immunosorbent assay in Senegalese children under the age of 10 years in 2010 living in Saraya and Velingara districts (with SMC...

  13. Cloned alpha and beta C-protein antigens of group B streptococci elicit protective immunity.

    OpenAIRE

    Michel, J L; Madoff, L C; Kling, D E; Kasper, D L; Ausubel, F M

    1991-01-01

    Streptococcus agalactiae (group B streptococci [GBS]) is the leading cause of neonatal sepsis and meningitis in the United States. The surface-associated C proteins of GBS play a role in immunity, but their number, size, structure, function, and virulence properties have not been well characterized. A recombinant library of DNA fragments from GBS strain A909 (type Ia/C) was prepared in the plasmid pUX12, a specially constructed Escherichia coli expression vector. The library was screened with...

  14. Virulence-associated trimeric autotransporters of Haemophilus parasuis are antigenic proteins expressed in vivo

    OpenAIRE

    Olvera, Alex; Pina, Sonia; Pérez-Simó, Marta; Oliveira, Simone; Bensaid, Albert

    2010-01-01

    International audience Glässer's disease is a re-emerging swine disease characterized by a severe septicaemia. Vaccination has been widely used to control the disease, although there is a lack of extended cross-protection. Trimeric autotransporters, a family of surface exposed proteins implicated in host-pathogen interactions, are good vaccine candidates. Members of this family have been described in Haemophilus parasuis and designated as virulence-associated trimeric autotransporters (Vta...

  15. Effects of enzymatic hydrolysis of buckwheat protein on antigenicity and allergenicity

    OpenAIRE

    Sung, Dong-Eun; Lee, Jeongok; Han, Youngshin; Shon, Dong-Hwa; Ahn, Kangmo; Oh, Sangsuk; Do, Jeong-Ryong

    2014-01-01

    BACKGROUND/OBJECTIVES Due to its beneficial health effects, use of buckwheat has shown a continuous increase, and concerns regarding the allergic property of buckwheat have also increased. This study was conducted for evaluation of the hydrolytic effects of seven commercial proteases on buckwheat allergens and its allergenicity. MATERIALS/METHODS Extracted buckwheat protein was hydrolyzed by seven proteolytic enzymes at individual optimum temperature and pH for four hours. Analysis was then p...

  16. Role of alpha-crystallin, early-secreted antigenic target 6-kDa protein and culture filtrate protein 10 as novel diagnostic markers in osteoarticular tuberculosis

    Directory of Open Access Journals (Sweden)

    Nazia Rizvi

    2016-07-01

    Full Text Available Osteoarticular tuberculosis constitutes about 3% of all tuberculosis cases. Early and accurate diagnosis of tuberculosis is a challenging problem especially in the case of osteoarticular tuberculosis owing to the lower number of bacilli. However, an accurate and timely diagnosis of the disease results in an improved efficacy of the given treatment. Besides the limitations of conventional methods, nowadays molecular diagnostic techniques have emerged as a major breakthrough for the early diagnosis of tuberculosis with high sensitivity and specificity. Alpha-crystallin is a dominantly expressed protein responsible for the long viability of the pathogen during the latent phase under certain stress conditions such as hypoxia and nitric oxide stress. Two other proteins—early secreted antigenic target-6 and culture filtrate protein-10—show high expression in the active infective phase of Mycobacterium tuberculosis. In this article, we focus on the different proteins expressed dominantly in latent/active tuberculosis, and which may be further used as prognostic biomarkers for diagnosing tuberculosis, both in latent and active phases.

  17. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  18. Serum Concentrations of Antibodies against Outer Membrane Protein P6, Protein D, and T- and B-Cell Combined Antigenic Epitopes of Nontypeable Haemophilus influenzae in Children and Adults of Different Ages.

    Science.gov (United States)

    Hua, Chun-Zhen; Hu, Wei-Lin; Shang, Shi-Qiang; Li, Jian-Ping; Hong, Li-Quan; Yan, Jie

    2016-02-01

    Nontypeable Haemophilus influenzae (NTHi) is one of the most common etiologies of acute otitis media, rhinosinusitis, and pneumonia. Outer membrane proteins (OMPs) are the main focus in new vaccine development against NTHi, as the H. influenzae type b (Hib) vaccine does not cover noncapsulated NTHi. The OMPs P6 and protein D are the most promising candidate antigens for an NTHi vaccine, and low antibody levels against them in serum may be correlated with infection caused by NTHi. In the current study, we measured the antibody titers against P6, protein D, and their T- and B-cell combined peptide epitopes in healthy individuals of different ages. We found that children B-cell combined antigenic epitopes. Antibody titers increased at ages 1 to 6 months, peaked at 7 months to 3 years, and remained high at 4 to 6 years. The antibody titers started to decrease after 6 years and were the lowest in the 21- to 30-year group. The geometric mean titers (GMTs) of T- and B-cell combined antigenic epitopes in P6 and protein D were positively correlated with those of the protein antigens. Among 12 peptides tested, P6-61, P6-123, and protein D-167 epitopes were better recognized than others in human serum. These findings might contribute to the development of an effective serotype-independent vaccine for H. influenzae. PMID:26677200

  19. Comprehensive Mapping Antigenic Epitopes of NS1 Protein of Japanese Encephalitis Virus with Monoclonal Antibodies.

    Science.gov (United States)

    Hua, Rong-Hong; Liu, Li-Ke; Chen, Zhen-Shi; Li, Ye-Nan; Bu, Zhi-Gao

    2013-01-01

    Japanese encephalitis virus (JEV) non-structural protein 1 (NS1) contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA), five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues (5)AIDITRK(11), (72)RDELNVL(78), (251)KSKHNRREGY(260), (269)DENGIVLD(276), and (341)DETTLVRS(348). Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays. PMID:23825668

  20. Comprehensive Mapping Antigenic Epitopes of NS1 Protein of Japanese Encephalitis Virus with Monoclonal Antibodies.

    Directory of Open Access Journals (Sweden)

    Rong-Hong Hua

    Full Text Available Japanese encephalitis virus (JEV non-structural protein 1 (NS1 contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA, five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues (5AIDITRK(11, (72RDELNVL(78, (251KSKHNRREGY(260, (269DENGIVLD(276, and (341DETTLVRS(348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.

  1. Production of soluble recombinant proteins with Kell, Duffy and Lutheran blood group antigen activity, and their use in screening human sera for Kell, Duffy and Lutheran antibodies.

    Science.gov (United States)

    Ridgwell, K; Dixey, J; Scott, M L

    2007-10-01

    The aim of this study was to show that soluble recombinant (sr) proteins can mimic blood group antigens and be used to screen human sera for blood-group-specific antibodies. The blood of all pregnant women and pretransfusion patients should be screened for blood-group-specific antibodies to identify and monitor pregnancies at risk of haemolytic disease of the foetus and newborn (HDFN), and to prevent haemolytic transfusion reactions. Current antibody screening and identification methods use human red blood cell panels, which can complicate antibody identification if more than one antibody specificity is present. COS-7 cells were transfected to produce sr forms of the extracellular domains of the red blood cell membrane proteins that express Kell, Duffy or Lutheran blood group antigens. These sr proteins were used to screen for and identify anti-Kell, anti-Duffy or anti-Lutheran blood-group-specific allo-antibodies in human sera by haemagglutination inhibition and in solid-phase enzyme-linked immunosorbent assays (ELISAs). There is a positive correlation (correlation coefficient 0.605, P value 0.002) between antibody titre by standard indirect antiglobulin test (IAT) and signal intensity in the ELISA test. This work shows that sr proteins can mimic blood group antigens and react with human allogeneic antibodies, and that such proteins could be used to develop solid-phase, high-throughput blood group antibody screening and identification platforms. PMID:17725551

  2. Nucleotide and partner-protein control of bacterial replicative helicase structure and function.

    Science.gov (United States)

    Strycharska, Melania S; Arias-Palomo, Ernesto; Lyubimov, Artem Y; Erzberger, Jan P; O'Shea, Valerie L; Bustamante, Carlos J; Berger, James M

    2013-12-26

    Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors. PMID:24373746

  3. Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction

    Science.gov (United States)

    Narasimhan, Diwahar; Woods, James H; Sunahara, Roger K

    2012-01-01

    Cocaine is highly addictive and there are no pharmacotherapeutic drugs available to treat acute cocaine toxicity or chronic abuse. Antagonizing an inhibitor such as cocaine using a small molecule has proven difficult. The alternative approach is to modify cocaine’s pharmacokinetic properties by sequestering or hydrolyzing it in serum and limiting access to its sites of action. We took advantage of a bacterial esterase (CocE) that has evolved to hydrolyze cocaine and have developed it as a therapeutic that rapidly and specifically clears cocaine from the subject. Native enzyme was unstable at 37°C, thus limiting CocE’s potential. Innovative computational methods based on the protein’s structure helped elucidate its mechanism of destabilization. Novel protein engineering methodologies were applied to substantially improve its stability in vitro and in vivo. These improvements rendered CocE as a powerful and efficacious therapeutic to treat cocaine intoxication and lead the way towards developing a therapy for addiction. PMID:22300094

  4. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    Science.gov (United States)

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  5. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [35S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  6. Improving Antigenicity of the Recombinant Hepatitis C Virus Core Protein via Random Mutagenesis

    OpenAIRE

    Chen-Ji Huang; Hwei-Ling Peng; Chih-Yu Cheng

    2011-01-01

    In order to enhance the sensitivity of diagnosis, a recombinant clone containing domain I of HCV core (amino acid residues 1 to 123) was subjected to random mutagenesis. Five mutants with higher sensitivity were obtained by colony screening of 616 mutants using reverse ELISA. Sequence analysis of these mutants revealed alterations focusing on W84, P95, P110, or V129. The inclusion bodies of these recombinant proteins overexpressed in E. coli BL21(DE3) were subsequently dissolved using 6 M ure...

  7. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hjerrild, L.; Gjermansen, Morten;

    2004-01-01

    consists of two moieties: a transporter, the beta-module, and a passenger domain, the alpha-module. Here we have employed various molecular approaches to probe structure/function aspects of Ag43. An entire family of Ag43 variants was identified. The gene encoding Ag43 (flu) was cloned from a diverse range......-recognition process. Based on its similarity to other related proteins, we predict the passenger, Ag43(alpha), domain primarily to consist of an extended beta-helix structure in which numerous repeats or rungs are stacked in parallel orientation in an extended cylindrical formation. Finally, we found that in spite of...

  8. Structure and antigenic properties of the tip-located P pilus proteins of uropathogenic Escherichia coli.

    OpenAIRE

    Lund, B; Lindberg, F; Normark, S

    1988-01-01

    Pyelonephritogenic Escherichia coli frequently expresses pili which bind to Gal alpha (1-4)Gal receptors present on the uroepithelium. Binding of these pili is mediated by a pilus-associated adhesin, PapG, and not by the major subunit which constitutes the bulk of the pilus structure. The adhesin and two pilinlike proteins, PapE and PapF, are present in only a few copies each at the pilus tip. Surface exposure of both PapF and PapG is required to achieve receptor-specific binding. The nucleot...

  9. Participation of ezrin in bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-09-01

    Full Text Available Abstract Background Trophoblast giant (TG cells are involved in systematic removal of bacterial pathogens from the maternal-fetal interface of the placenta. In particular, TG cells have the ability to take up extracellular antigens by active phagocytosis induced by interferon-gamma (IFN-gamma. We previously reported that heat shock cognate protein 70 (Hsc70 present on the surface of TG cells mediated the uptake of Brucella abortus. However, the mechanism of bacterial uptake by TG cells is not completely understood. Here we identified ezrin, a member of ezrin-radixin-moesin (ERM protein family, as a molecule associated with Hsc70. Methods Mouse TG cells were employed in all experiments, and B. abortus was used as the bacterial antigen. Confirmation of the binding capacity of ERM protein was assessed by pull-down assay and ELISA using recombinant Hsc70 and ERM proteins. Ezrin was depleted using siRNA and the depletion examined by immunoblotting or immunofluorescence staining. Results The expression level of ezrin was higher in TG cells than in trophoblast stem (TS cells, and ezrin knockdown TG cells showed a reduction in bacterial uptake ability. Although tyrosine phosphorylation of ezrin was not related to bacterial uptake activity, localization of Hsc70 on the membrane was affected by the depletion of ezrin in TG cells. Conclusion Ezrin associates with Hsc70 that locates on the membrane of TG cells and participates in the bacterial uptake by TG cells.

  10. Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR) expression by flow cytometry

    OpenAIRE

    Zheng Zhili; Chinnasamy Nachimuthu; Morgan Richard A

    2012-01-01

    Abstract Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymp...

  11. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  12. Immunological study of the outer membrane proteins of Vibrio harveyi: insights that link immunoprotectivity to interference with bacterial infection.

    Science.gov (United States)

    Yu, Lan-ping; Hu, Yong-hua; Sun, Bo-guang; Sun, Li

    2013-10-01

    Vibrio harveyi is a bacterial pathogen that affects marine vertebrates and invertebrates. In this study, we identified 13 outer membrane proteins (OMPs) from a pathogenic V. harveyi strain and analyzed their immunological properties. In vivo immunogenicity analysis showed that antibodies specific to recombinant proteins of the 13 OMPs were detected in the antiserum of V. harveyi-infected rat. When used as subunit vaccines to immunize Japanese flounder (Paralichthys olivaceus), all OMPs were able to elicit specific serum antibody production in the vaccinated fish; however, only two OMPs (OMP173 and OMP214) induced high levels (>70%) of relative percent survival. Pre-incubation of V. harveyi with the antisera of protective OMPs significantly impaired bacterial infectivity against peripheral blood leukocytes (PBL), whereas the antisera of non-protective OMPs had no apparent effect on infection. OMP173 antibodies could bind whole V. harveyi cells and exhibit bactericidal effect in a complement-dependent manner. Passive immunization showed that fish received OMP173 antiserum before being infected with V. harveyi exhibited significantly reduced mortality rate and lower bacterial loads in liver, spleen, and kidney. Finally, treatment of FG cells with OMP173 prior to V. harveyi infection protected the cells from bacterial invasion to a significant extent. Take together, these results indicate that two of the examined OMPs induce protective immunity through production of specific antibodies that block bacterial invasion, and that one OMP is likely to be involved in host cell interaction during the infection process. Thus, the immunoprotectivity of the OMPs is probably associated with functional participations of the OMPs in bacterial infection. PMID:23932987

  13. Serological diagnosis of pneumococcal infection in children with pneumonia using protein antigens: A study of cut-offs with positive and negative controls.

    Science.gov (United States)

    Andrade, Dafne Carvalho; Borges, Igor Carmo; Ivaska, Lauri; Peltola, Ville; Meinke, Andreas; Barral, Aldina; Käyhty, Helena; Ruuskanen, Olli; Nascimento-Carvalho, Cristiana Maria

    2016-06-01

    The etiological diagnosis of infection by Streptococcus pneumoniae in children is difficult, and the use of indirect techniques is frequently warranted. We aimed to study the use of pneumococcal proteins for the serological diagnosis of pneumococcal infection in children with pneumonia. We analyzed paired serum samples from 13 Brazilian children with invasive pneumococcal pneumonia (positive control group) and 23 Finnish children with viral pharyngitis (negative control group), all aged pharyngitis were evaluated for oropharyngeal colonization, and none of them carried S. pneumoniae. We used a multiplex bead-based assay with eight proteins: Ply, CbpA, PspA1 and 2, PcpA, PhtD, StkP and PcsB. The optimal cut-off for increase in antibody level for the diagnosis of pneumococcal infection was determined for each antigen by ROC curve analysis. The positive control group had a significantly higher rate of ≥2-fold rise in antibody levels against all pneumococcal proteins, except Ply, compared to the negative controls. The cut-off of ≥2-fold increase in antibody levels was accurate for pneumococcal infection diagnosis for all investigated antigens. However, there was a substantial increase in the accuracy of the test with a cut-off of ≥1.52-fold rise in antibody levels for PcpA. When using the investigated protein antigens for the diagnosis of pneumococcal infection, the detection of response against at least one antigen was highly sensitive (92.31%) and specific (91.30%). The use of serology with pneumococcal proteins is a promising method for the diagnosis of pneumococcal infection in children with pneumonia. The use of a ≥2-fold increase cut-off is adequate for most pneumococcal proteins. PMID:26928648

  14. A protein-conjugate approach to develop a monoclonal antibody-based antigen detection test for the diagnosis of human brucellosis.

    Directory of Open Access Journals (Sweden)

    Kailash P Patra

    2014-06-01

    Full Text Available Human brucellosis is most commonly diagnosed by serology based on agglutination of fixed Brucella abortus as antigen. Nucleic acid amplification techniques have not proven capable of reproducibly and sensitively demonstrating the presence of Brucella DNA in clinical specimens. We sought to optimize a monoclonal antibody-based assay to detect Brucella melitensis lipopolysaccharide in blood by conjugating B. melitensis LPS to keyhole limpet hemocyanin, an immunogenic protein carrier to maximize IgG affinity of monoclonal antibodies. A panel of specific of monoclonal antibodies was obtained that recognized both B. melitensis and B. abortus lipopolysaccharide epitopes. An antigen capture assay was developed that detected B. melitensis in the blood of experimentally infected mice and, in a pilot study, in naturally infected Peruvian subjects. As a proof of principle, a majority (7/10 of the patients with positive blood cultures had B. melitensis lipopolysaccharide detected in the initial blood specimen obtained. One of 10 patients with relapsed brucellosis and negative blood culture had a positive serum antigen test. No seronegative/blood culture negative patients had a positive serum antigen test. Analysis of the pair of monoclonal antibodies (2D1, 2E8 used in the capture ELISA for potential cross-reactivity in the detection of lipopolysaccharides of E. coli O157:H7 and Yersinia enterocolitica O9 showed specificity for Brucella lipopolysaccharide. This new approach to develop antigen-detection monoclonal antibodies against a T cell-independent polysaccharide antigen based on immunogenic protein conjugation may lead to the production of improved rapid point-of-care-deployable assays for the diagnosis of brucellosis and other infectious diseases.

  15. Visualizing the Translocation and Localization of Bacterial Type III Effector Proteins by Using a Genetically Encoded Reporter System.

    Science.gov (United States)

    Gawthorne, Jayde A; Audry, Laurent; McQuitty, Claire; Dean, Paul; Christie, John M; Enninga, Jost; Roe, Andrew J

    2016-05-01

    Bacterial type III secretion system (T3SS) effector proteins are critical determinants of infection for many animal and plant pathogens. However, monitoring of the translocation and delivery of these important virulence determinants has proved to be technically challenging. Here, we used a genetically engineered LOV (light-oxygen-voltage) sensing domain derivative to monitor the expression, translocation, and localization of bacterial T3SS effectors. We found theEscherichia coliO157:H7 bacterial effector fusion Tir-LOV was functional following its translocation and localized to the host cell membrane in discrete foci, demonstrating that LOV-based reporters can be used to visualize the effector translocation with minimal manipulation and interference. Further evidence for the versatility of the reporter was demonstrated by fusing LOV to the C terminus of theShigella flexnerieffector IpaB. IpaB-LOV localized preferentially at bacterial poles before translocation. We observed the rapid translocation of IpaB-LOV in a T3SS-dependent manner into host cells, where it localized at the bacterial entry site within membrane ruffles. PMID:26921426

  16. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    International Nuclear Information System (INIS)

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46–103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 °C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit

  17. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  18. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    International Nuclear Information System (INIS)

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance

  19. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress.

    Science.gov (United States)

    Pirlot, Céline; Thiry, Marc; Trussart, Charlotte; Di Valentin, Emmanuel; Piette, Jacques; Habraken, Yvette

    2016-04-01

    Melanoma antigen D2 (MAGE-D2) is recognized as a cancer diagnostic marker; however, it has poorly characterized functions. Here, we established its intracellular localization and shuttling during cell cycle progression and in response to cellular stress. In normal conditions, MAGE-D2 is present in the cytoplasm, nucleoplasm, and nucleoli. Within the latter, MAGE-D2 is mostly found in the granular and the dense fibrillar components, and it interacts with nucleolin. Transfection of MAGE-D2 deletion mutants demonstrated that Δ203-254 leads to confinement of MAGE-D2 to the cytoplasm, while Δ248-254 prevents its accumulation in nucleoli but still allows its presence in the nucleoplasm. Consequently, this short sequence belongs to a nucleolar localization signal. MAGE-D2 deletion does not alter the nucleolar organization or rRNA levels. However, its intracellular localization varies with the cell cycle in a different kinetic than nucleolin. After genotoxic and nucleolar stresses, MAGE-D2 is excluded from nucleoli and concentrates in the nucleoplasm. We demonstrated that its camptothecin-related delocalization results from two distinct events: a rapid nucleolar release and a slower phospho-ERK-dependent cytoplasm to nucleoplasm translocation, which results from an increased flux from the cytoplasm to nucleoplasm. In conclusion, MAGE-D2 is a dynamic protein whose shuttling properties could suggest a role in cell cycle regulation. PMID:26705694

  20. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    Directory of Open Access Journals (Sweden)

    David S Milner

    2014-04-01

    Full Text Available Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd GTP-binding are conserved. Deletion of mglA(Bd abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd interacted with a previously uncharacterised tetratricopeptide repeat (TPR domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.

  1. Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster.

    Science.gov (United States)

    Aussignargues, Clément; Pandelia, Maria-Eirini; Sutter, Markus; Plegaria, Jefferson S; Zarzycki, Jan; Turmo, Aiko; Huang, Jingcheng; Ducat, Daniel C; Hegg, Eric L; Gibney, Brian R; Kerfeld, Cheryl A

    2016-04-27

    Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of -370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells. PMID:26704697

  2. Factor IX antigen by a rapid staphylococcal protein A-membrane binding radioimmunoassay: results in haemophilia B patients and carriers and in fetal samples

    International Nuclear Information System (INIS)

    Staphylococcal protein A-membranes have been used with isolated, radiolabelled factor IX and specific rabbit antisera for modification of a radioimmunoassay. The current method is a rapid 4h procedure and dilution curves of plasma parallel those of isolated, unlabelled protein. Non-specific binding is 5%; the assay readily detects concentrations as low as 0.6 u/dl. Carrier detection of haemophilia B was improved and/or confirmed by the demonstration of factor IX antigen in excess of clotting activity in nine of 15 women tested from pedigrees in which the affected members had excess circulating antigen. Of 15 new haemophilia B pedigrees examined, 13 had antigen levels which were in two-fold or greater excess over their clotting activities; all but three were considerably below normal, however. To diagnose haemophilia B in newborns at risk, levels in three cord blood samples were tested; two were positive and the third was normal. Six fetal blood samples were assayed and contained from 4 to 20u/dl factor IX antigen; levels correlated with fetal age. (author)

  3. A Peptide mimicking a region in proliferating cell nuclear antigen specific to key protein interactions is cytotoxic to breast cancer.

    Science.gov (United States)

    Smith, Shanna J; Gu, Long; Phipps, Elizabeth A; Dobrolecki, Lacey E; Mabrey, Karla S; Gulley, Pattie; Dillehay, Kelsey L; Dong, Zhongyun; Fields, Gregg B; Chen, Yun-Ru; Ann, David; Hickey, Robert J; Malkas, Linda H

    2015-02-01

    Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has implications for targeted breast cancer therapy. In the present communication, we characterize a novel peptide (caPeptide) that has been synthesized to mimic the sequence identified as critical to the cancer-associated isoform of PCNA. This peptide is delivered into cells using a nine-arginine linking mechanism, and the resulting peptide (R9-cc-caPeptide) exhibits cytotoxicity in a triple-negative breast cancer cell line, MDA-MB-436, while having less of an effect on the normal counterparts (MCF10A and primary breast epithelial cells). The novel peptide was then evaluated for cytotoxicity using various in vivo techniques, including ATP activity assays, flow cytometry, and clonogenetic assays. This cytotoxicity has been observed in other breast cancer cell lines (MCF7 and HCC1937) and other forms of cancer (pancreatic and lymphoma). R9-cc-caPeptide has also been shown to block the association of PCNA with chromatin. Alanine scanning of the peptide sequence, combined with preliminary in silico modeling, gives insight to the disruptive ability and the molecular mechanism of action of the therapeutic peptide in vivo. PMID:25480843

  4. P48 Major Surface Antigen of Mycoplasma agalactiae Is Homologous to a malp Product of Mycoplasma fermentans and Belongs to a Selected Family of Bacterial Lipoproteins

    OpenAIRE

    Rosati, Sergio; Pozzi, Sarah; Robino, Patrizia; Montinaro, Barbara; Conti, Amedeo; Fadda, Manlio; Pittau, Marco

    1999-01-01

    A major surface antigenic lipoprotein of Mycoplasma agalactiae, promptly recognized by the host's immune system, was characterized. The mature product, P48, showed significant similarity and shared conserved amino acid motifs with lipoproteins or predicted lipoproteins from Mycoplasma fermentans, Mycoplasma hyorhinis, relapsing fever Borrelia spp., Bacillus subtilis, and Treponema pallidum.

  5. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates

    OpenAIRE

    Seras Franzoso, Joaquin; Peebo, Karl; Garcia Fruitós, Elena; Vázquez Gómez, Esther; Rinas, Ursula; Villaverde Corrales, Antonio

    2014-01-01

    Altres ajuts: We are indebted CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, Spain) for funding our research on inclusion bodies. Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with...

  6. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins

    OpenAIRE

    Metpally, Raghu Prasad Rao; Reddy, Boojala Vijay B.

    2009-01-01

    Background Cold adapted or psychrophilic organisms grow at low temperatures, where most of other organisms cannot grow. This adaptation requires a vast array of sequence, structural and physiological adjustments. To understand the molecular basis of cold adaptation of proteins, we analyzed proteomes of psychrophilic and mesophilic bacterial species and compared the differences in amino acid composition and substitution patterns to investigate their likely association with growth temperatures....

  7. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains

    OpenAIRE

    Al Akeel, Raid; Al-Sheikh, Yazeed; Mateen, Ayesha; Syed, Rabbani; Janardhan, K.; V C Gupta

    2013-01-01

    A huge group of natural antimicrobial compounds are active against a large spectrum of bacterial strains causing infectious threat. The present study was conducted to investigate the crude extracts of antimicrobial protein and peptide efficacy from six medicinal plant seeds. Extraction was carried out in Sodium phosphate citrate buffer, and Sodium acetate buffer using different pH. Antimicrobial activities of these plants were determined by the microbiological technique using Agar well diffus...

  8. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    OpenAIRE

    Yinglong Su; Xiong Zheng; Yinguang Chen; Mu Li; Kun Liu

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total n...

  9. Memory cell generation ablated by soluble protein antigen by means of effects on T- and B-lymphocyte compartments.

    Science.gov (United States)

    Karvelas, M; Nossal, G J

    1992-04-01

    rendered tolerant by this manipulation. The results argue for a major T-cell component in the process whereby soluble protein antigens ablate affinity maturation and memory cell generation. PMID:1348366

  10. A stable live bacterial vaccine.

    Science.gov (United States)

    Kunda, Nitesh K; Wafula, Denis; Tram, Meilinn; Wu, Terry H; Muttil, Pavan

    2016-06-01

    Formulating vaccines into a dry form enhances its thermal stability. This is critical to prevent administering damaged and ineffective vaccines, and to reduce its final cost. A number of vaccines in the market as well as those being evaluated in the clinical setting are in a dry solid state; yet none of these vaccines have achieved long-term stability at high temperatures. We used spray-drying to formulate a recombinant live attenuated Listeria monocytogenes (Lm; expressing Francisella tularensis immune protective antigen pathogenicity island protein IglC) bacterial vaccine into a thermostable dry powder using various sugars and an amino acid. Lm powder vaccine showed minimal loss in viability when stored for more than a year at ambient room temperature (∼23°C) or for 180days at 40°C. High temperature viability was achieved by maintaining an inert atmosphere in the storage container and removing oxygen free radicals that damage bacterial membranes. Further, in vitro antigenicity was confirmed by infecting a dendritic cell line with cultures derived from spray dried Lm and detection of an intracellularly expressed protective antigen. A combination of stabilizing excipients, a cost effective one-step drying process, and appropriate storage conditions could provide a viable option for producing, storing and transporting heat-sensitive vaccines, especially in regions of the world that require them the most. PMID:27020530

  11. Unusual Heme Binding in the Bacterial Iron Response Regulator Protein (Irr): Spectral Characterization of Heme Binding to Heme Regulatory Motif

    OpenAIRE

    Ishikawa, Haruto; Nakagaki, Megumi; Bamba, Ai; Uchida, Takeshi; Hori, Hiroshi; O'Brian, Mark R.; Iwai, Kazuhiro; Ishimori, Koichiro

    2011-01-01

    We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single “heme-regulatory motif”, HRM, and plays a key role in the iron homeostasis of a nitrogen fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where 29Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside...

  12. Vaccination of Goats with 31 kDa and 32 kDa Schistosoma japonicum Antigens by DNA Priming and Protein Boosting

    Institute of Scientific and Technical Information of China (English)

    Lianfei Tang; Zhijun Zhou; Yuxiao Chen; Yonghui Luo; Linqian Wang; Liyu Chen; Fushen Huang; Xianfang Zeng; Xinyuan Yi

    2007-01-01

    Two Schistosoma japonicum vaccine candidate antigens Sj 31 and Sj 32, which have shown particular promise to induce protective immunity in mice, were used to immunize goats by using a DNA priming-protein boosting strategy in present work. DNA vaccine formulations of the two antigens (VRSj31 and VRSj32) were produced and injected intramuscularly twice at a 2-week interval and then recombinant proteins (rSj31 and rSj32) together with Freund Complete Adjuvant (FCA) were used to boost the goats. The experiment was repeated in different batche cercariae. A strong anamnestic antibody response was induced after boost. A significant reduction of liver egg counts and miracidial hatching was showed in both experiments. Significant protections against challenge infection were elicited with 31.6% of percentage reduction for worm recovery in the second experiment and 20.9% in the first experiment, respectively.

  13. Frequencies of the expression of main protein antigens from Helicobacter pylori isolates and production of specific serum antibodies in infected patients

    OpenAIRE

    Yan, Jie; Mao, Ya-Fei; Shao, Zhe-Xin

    2005-01-01

    AIM: To investigate the frequencies of the expression of main protein antigens of Helicobacter pylori (H pylori) isolates, such as UreB, VacA, CagA1, HpaA, NapA, FlaA and FlaB and the production of specific antibodies in sera from H pylori-infected patients, and to understand the correlations among the different clinical types of chronic gastritis and peptic ulcer and the infection and virulence of H pylori.

  14. Kinetics of Dengue Non-Structural Protein 1 Antigen and IgM and IgA Antibodies in Capillary Blood Samples from Confirmed Dengue Patients

    OpenAIRE

    Matheus, Séverine; Pham, Thai Binh; Labeau, Bhetty; Huong, Vu Thi Que; Lacoste, Vincent; Deparis, Xavier; Marechal, Vincent

    2014-01-01

    Large-scale epidemiological surveillance of dengue in the field and dengue patient management require simple methods for sample collection, storage, and transportation as well as effective diagnostic tools. We evaluated the kinetics of three biological markers of dengue infection—non-structural protein 1 (NS1) antigen, immunoglobulin M (IgM), and IgA—in sequential capillary blood samples collected from fingertips of confirmed dengue patients. The overall sensitivities and specificities of the...

  15. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    OpenAIRE

    Susanne H. Hodgson; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Thomas W Rampling; Biswas, Sumi; Ian D Poulton; Miura, Kazutoyo; Douglas, Alexander D.; Alanine, Daniel GW; Illingworth, Joseph J.; de Cassan, Simone C.; ZHU, DAMING; Nicosia, Alfredo; Long, Carole A.

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovir...

  16. Oral Immunization with Recombinant Mycobacterium smegmatis Expressing the Outer Membrane Protein 26-Kilodalton Antigen Confers Prophylactic Protection against Helicobacter pylori Infection ▿ †

    OpenAIRE

    Lü, Lin; Zeng, Han-qing; Wang, Pi-Long; Shen, Wei; Xiang, Ting-xiu; Mei, Zhe-chuan

    2011-01-01

    Helicobacter pylori infection is prevalent worldwide and results in chronic gastritis, which may lead to gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. We have previously reported that oral immunization with recombinant Mycobacterium smegmatis expressing the H. pylori outer membrane protein 26-kilodalton (Omp26) antigen affords therapeutic protection against H. pylori infection in mice. In the present study, we investigated the prophylactic effects of this vaccine cand...

  17. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    Science.gov (United States)

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  18. Induction of protective T-helper 1 immune responses against Echinococcus granulosus in mice by a multi-T-cell epitope antigen based on five proteins

    Directory of Open Access Journals (Sweden)

    Majid Esmaelizad

    2013-06-01

    Full Text Available In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3 were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST. The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL, but interleukin (IL-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6% was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.

  19. Comparing Prothrombin induced by vitamin K absence-II (PIVKA-II) with the oncofetal proteins Glypican-3, Alpha feto protein and Carcinoembryonic antigen in diagnosing hepatocellular carcinoma among Egyptian patients

    OpenAIRE

    Iman A. Abd El Gawad; Mossallam, Ghada I.; Noha H. Radwan; Elzawahry, Heba M; Niveen M. Elhifnawy

    2014-01-01

    Background: Hepatocellular carcinoma (HCC) is usually asymptomatic in the early stage and does not show elevated alpha-feto protein (AFP). AFP shows 60–80% sensitivity in diagnosing HCC. Glypican3 (GPC-3) is an oncofetal protein that is only detected in HCC cells but not in benign liver tissues, while Carcinoembryonic antigen (CEA) is expressed in various neoplasms including HCC. Although, it is not specific for HCC. Prothrombin induced by vitamin K absence-II (PIVKA-II) is an abnormal ...

  20. A single Alal 39-to-Glu substitution in the Renibacterium salmoninarum virulence-associated protein p57 results in antigenic variation and is associated with enhanced p57 binding to Chinook salmon leukocytes

    Science.gov (United States)

    Wiens, Gregory D.; Pascho, Ron; Winton, James R.

    2002-01-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5′ and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala139-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57.

  1. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.

    Directory of Open Access Journals (Sweden)

    Monique van Velzen

    2013-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection results in lifelong chronic infection of trigeminal ganglion (TG neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

  2. Functional Cooperation of Epstein-Barr Virus Nuclear Antigen 2 and the Survival Motor Neuron Protein in Transactivation of the Viral LMP1 Promoter

    OpenAIRE

    Voss, Marc D.; Hille, Annette; Barth, Stephanie; Spurk, Andreas; Hennrich, Frank; Holzer, Daniela; Mueller-Lantzsch, Nikolaus; Kremmer, Elisabeth; Grässer, Friedrich A.

    2001-01-01

    Epstein-Barr virus nuclear antigen 2 (EBNA2) is essential for viral transformation of B cells and transactivates cellular and viral target genes by binding RBPJκ tethered to cognate promoter elements. EBNA2 interacts with the DEAD-box protein DP103 (DDX20/Gemin3), which in turn is complexed to the survival motor neuron (SMN) protein. SMN is implicated in RNA processing, but a role in transcriptional regulation has also been suggested. Here, we show that DP103 and SMN are complexed in B cells ...

  3. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen.

    OpenAIRE

    Stubdal, H; Zalvide, J; Campbell, K S; Schweitzer, C; Roberts, T.M.; DeCaprio, J A

    1997-01-01

    Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previously shown that the N terminus and the LXCXE domain of TAg cooperate to alter the phosphorylation state of p130 and p107. Here, we demonstrate that...

  4. A tumor necrosis factor α- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase δ and proliferating cell nuclear antigen

    OpenAIRE

    He, Hua; Tan, Cheng-Keat; Downey, Kathleen M.; So, Antero G.

    2001-01-01

    A cDNA encoding a protein of 36 kDa, polymerase delta-interacting protein 1 (PDIP1), that interacts with the small subunit (p50) of DNA polymerase δ (pol δ) was identified in a two-hybrid screen of a HepG2 cDNA library by using p50 as bait. The interaction of PDIP1 with p50 was confirmed by pull-down assays, and a similar assay was used to demonstrate that PDIP1 interacts directly with the proliferating cell nuclear antigen (PCNA). PCNA and p50 bound to PDIP1 simultaneously, and PDIP1 stimula...

  5. Antigenic Properties and Diagnostic Potential of Baculovirus-Expressed Infectious Bursal Disease Virus Proteins VPX and VP3

    OpenAIRE

    Martínez-Torrecuadrada, Jorge L.; Lázaro, Beatriz; Rodriguez, José F; Casal, J. Ignacio

    2000-01-01

    The routine technique for detecting antibodies specific to infectious bursal disease virus (IBDV) is a serological evaluation by enzyme-linked immunosorbent assay (ELISA) with preparations of whole virions as the antigens. To avoid using complete virus in the standard technique, we have developed two new antigens through the expression of the VPX and VP3 genes in insect cells. VPX and especially VP3 were expressed at high levels in insect cells and simple to purify. The immunogenicity of both...

  6. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    Science.gov (United States)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  7. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    Science.gov (United States)

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-10-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification.

  8. Antigens in human glioblastomas and meningiomas: Search for tumour and onco-foetal antigens. Estimation of S-100 and GFA protein

    DEFF Research Database (Denmark)

    Dittmann, L; Axelsen, N H; Norgaard-Pedersen, B;

    1977-01-01

    (glia specific); monospecific anti-GFA (glial fibrillary acidic protein), (astroglia specific); polyspecific anti-foetal brain (12-16th week of gestation); a polyspecific anti-glioblastoma antiserum, absorbed with insolubilized serum, haemolysate and normal brain extract; polyspecific anti...

  9. Identification of distant co-evolving residues in antigen 85C from Mycobacterium tuberculosis using statistical coupling analysis of the esterase family proteins.

    Science.gov (United States)

    Baths, Veeky; Roy, Utpal

    2011-05-01

    A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originating at one site in a protein propagate reliably to affect distant functional sites. The general principles of protein structure that underlie this process remain unknown. Statistical coupling analysis (SCA) is a statistical technique that uses evolutionary data of a protein family to measure correlation between distant functional sites and suggests allosteric communication. In proteins, very distant and small interactions between collections of amino acids provide the communication which can be important for signaling process. In this paper, we present the SCA of protein alignment of the esterase family (pfam ID: PF00756) containing the sequence of antigen 85C secreted by Mycobacterium tuberculosis to identify a subset of interacting residues. Clustering analysis of the pairwise correlation highlighted seven important residue positions in the esterase family alignments. These residues were then mapped on the crystal structure of antigen 85C (PDB ID: 1DQZ). The mapping revealed correlation between 3 distant residues (Asp38, Leu123 and Met125) and suggests allosteric communication between them. This information can be used for a new drug against this fatal disease. PMID:23554685

  10. Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Vivian T Martins

    Full Text Available BACKGROUND: The present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1, previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene family, attempting to select a new candidate antigen for specific serodiagnosis, as well as to compose a vaccine against VL. METHODOLOGY/PRINCIPAL FINDINGS: The LiHyp1 DNA sequence was cloned; the recombinant protein (rLiHyp1 was purified and evaluated for its antigenicity and immunogenicity. The rLiHyp1 protein was recognized by antibodies from sera of asymptomatic and symptomatic animals with canine visceral leishmaniasis (CVL, but presented no cross-reactivity with sera of dogs vaccinated with Leish-Tec, a Brazilian commercial vaccine; with Chagas' disease or healthy animals. In addition, the immunogenicity and protective efficacy of rLiHyp1 plus saponin was evaluated in BALB/c mice challenged subcutaneously with virulent L. infantum promastigotes. rLiHyp1 plus saponin vaccinated mice showed a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with the recombinant protein. Immunized and infected mice, as compared to the control groups (saline and saponin, showed significant reductions in the number of parasites found in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, produced mainly by CD4 T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 response could also be observed. CONCLUSIONS/SIGNIFICANCE: The present study showed that this Leishmania oxygenase amastigote-specific protein can be used for a more sensitive and specific serodiagnosis of asymptomatic and symptomatic CVL and, when combined with a Th1-type adjuvant, can also be employ as a candidate antigen to develop vaccines against VL.

  11. Bacterial S-layer protein coupling to lipids: x-ray reflectivity and grazing incidence diffraction studies.

    Science.gov (United States)

    Weygand, M; Wetzer, B; Pum, D; Sleytr, U B; Cuvillier, N; Kjaer, K; Howes, P B; Lösche, M

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows that the phosphatidylethanolamine headgroups must reorient toward the surface normal to accommodate such changes. In terms of the protein structure (which is as yet unknown in three dimensions), the electron density profile reveals a thickness lz approximately 90 A of the recrystallized S-layer and shows water-filled cavities near its center. The protein volume fraction reaches maxima of >60% in two horizontal sections of the S-layer, close to the lipid monolayer and close to the free subphase. In between it drops to approximately 20%. Four S-layer protein monomers are located within the unit cell of a square lattice with a spacing of approximately 131 A. PMID:9876158

  12. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  13. PAS-1, a protein affinity purified from Ascaris suum worms, maintains the ability to modulate the immune response to a bystander antigen.

    Science.gov (United States)

    Oshiro, Telma M; Enobe, Cristina S; Araújo, Cláudia A; Macedo, Mahasti S; Macedo-Soares, Maria Fernanda

    2006-04-01

    Helminth infections and parasite components have potent immunomodulatory effects on a host's immune system. In the present study, we investigated the effect of PAS-1, a protein component of Ascaris suum adult worms recognized by a monoclonal antibody (MAIP-1), on humoral and cell-mediated responses to a bystander antigen (ovalbumin [OVA]). MAIP-1 recognized only one of the three polypeptide chains of PAS-1, but neutralized the suppressive effect of the whole worm extract on OVA-specific antibody production. PAS-1 inhibited antibody production against a T-cell-dependent, but not a T-cell-independent, antigen in a dose-dependent way. IgM, IgG1, IgG2b, and also IgE and anaphylactic IgG1 levels were downregulated. In addition, PAS-1 inhibited OVA-specific delayed type hypersensitivity reactions in the footpad of mice, showing a potent immunosuppressive activity on both Th1 and Th2 responses that seems to be mediated by the induction of large amounts of IL-10 and IL-4. Indeed, PAS-1-specific spleen cells secreted sevenfold more IL-10 and threefold more IL-4 than OVA-specific cells in response to in vitro restimulation with the respective antigens. In conclusion, we showed that PAS-1, a single protein component from A. suum, maintains all its immunosuppressive properties. PMID:16519731

  14. Vaccination with Brucella abortus Recombinant In Vivo-Induced Antigens Reduces Bacterial Load and Promotes Clearance in a Mouse Model for Infection

    OpenAIRE

    Jake E Lowry; Isaak, Dale D.; Leonhardt, Jack A.; Giulia Vernati; Jessie C Pate; Andrews, Gerard P.

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for ...

  15. Neisserial Opa Protein-CEACAM Interactions: Competition for Receptors as a Means of Bacterial Invasion and Pathogenesis.

    Science.gov (United States)

    Martin, Jennifer N; Ball, Louise M; Solomon, Tsega L; Dewald, Alison H; Criss, Alison K; Columbus, Linda

    2016-08-01

    Carcino-embryonic antigen-like cellular adhesion molecules (CEACAMs), members of the immunoglobulin superfamily, are responsible for cell-cell interactions and cellular signaling events. Extracellular interactions with CEACAMs have the potential to induce phagocytosis, as is the case with pathogenic Neisseria bacteria. Pathogenic Neisseria species express opacity-associated (Opa) proteins, which interact with a subset of CEACAMs on human cells, and initiate the engulfment of the bacterium. We demonstrate that recombinant Opa proteins reconstituted into liposomes retain the ability to recognize and interact with CEACAMs in vitro but do not maintain receptor specificity compared to that of Opa proteins natively expressed by Neisseria gonorrhoeae. We report that two Opa proteins interact with CEACAMs with nanomolar affinity, and we hypothesize that this high affinity is necessary to compete with the native CEACAM homo- and heterotypic interactions in the host. Understanding the mechanisms of Opa protein-receptor recognition and engulfment enhances our understanding of Neisserial pathogenesis. Additionally, these mechanisms provide insight into how human cells that are typically nonphagocytic can utilize CEACAM receptors to internalize exogenous matter, with implications for the targeted delivery of therapeutics and development of imaging agents. PMID:27442026

  16. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    Science.gov (United States)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  17. B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F;

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective...... immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme......-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two...

  18. Chronic pneumonia in calves after experimental infection with Mycoplasma bovis strain 1067: Characterization of lung pathology, persistence of variable surface protein antigens and local immune response

    Directory of Open Access Journals (Sweden)

    Hermeyer Kathrin

    2012-02-01

    Full Text Available Abstract Background Mycoplasma bovis is associated with pneumonia in calves characterized by the development of chronic caseonecrotic lesions with the agent persisting within the lesion. The purposes of this study were to characterize the morphology of lung lesions, examine the presence of M. bovis variable surface protein (Vsp antigens and study the local immune responses in calves after infection with M. bovis strain 1067. Methods Lung tissue samples from eight calves euthanased three weeks after experimental infection with M. bovis were examined by bacteriology and pathology. Lung lesions were evaluated by immunohistochemical (IHC staining for wide spectrum cytokeratin and for M. bovis Vsp antigens and pMB67 antigen. IHC identification and quantitative evaluation of CD4+ and CD8+ T lymphocytes and immunoglobulin (IgG1, IgG2, IgM, IgA-containing plasma cells was performed. Additionally, expression of major histocompatibility complex class II (MHC class II was studied by IHC. Results Suppurative pneumonic lesions were found in all calves. In two calves with caseonecrotic pneumonia, necrotic foci were surrounded by epithelial cells resembling bronchial or bronchiolar epithelium. In all calves, M. bovis Vsp antigens were constantly present in the cytoplasm of macrophages and were also present extracellularly at the periphery of necrotic foci. There was a considerable increase in numbers of IgG1- and IgG2-positive plasma cells among which IgG1-containing plasma cells clearly predominated. Statistical evaluation of the numbers of CD4+ and CD8+ T cells, however, did not reveal statistically significant differences between inoculated and control calves. In M. bovis infected calves, hyperplasia of bronchus-associated lymphoid tissue (BALT was characterized by strong MHC class II expression of lymphoid cells, but only few of the macrophages demarcating the caseonecrotic foci were positive for MHC class II. Conclusions The results from this study show

  19. Common antigens of streptococcal and non-streptococcal oral bacteria: immunochemical studies of extracellular and cell-wall-associated antigens from Streptococcus sanguis, Streptococcus mutans, Lactobacillus salivarius, and Actinomyces viscosus.

    Science.gov (United States)

    Schöller, M; Klein, J P; Frank, R M

    1981-01-01

    Soluble extracellular antigens (ESA) were prepared from the culture supernatant of exponential growing cells of Streptococcus sanguis OMZ 9 by a combination of ammonium sulfate precipitation and chromatography on a Bio-Gel P6 column. Soluble cell wall antigens (WEA) were obtained from the bacterial pellet by extraction with 1 M phosphate buffer (pH 6). Antisera against whole cells of S. sanguis and S. mutans of different serotypes, 10% trichloroacetic extracts of bacterial cell walls, dextran, ESA, and WEA were prepared by injecting the different antigens several times in rabbits. ESA and WEA were prepared from a representative strain of Bratthall's seven serological groups, Lactobacillus salivarius, and Actinomyces viscosus. All sera showed various agglutinin titers against heat-killed cells, and titers were generally higher with homologous cells. The comparison of the different antigens using agar gel diffusion and immunoelectrophoresis showed the presence of extracellular common antigens in both ESA and WEA between the different strains. Absorption of anti-ESA sera with WEA, and anti-WEA sera with ESA, showed the existence of a specific antigen common to all bacteria in each fraction. Enzymatic treatment of the antigen before immunodiffusion demonstrated the protein nature of the two antigens present in ESA and WEA. Images PMID:6783541

  20. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted prot...... to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae.......The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted...... proteins, they are frequently N-glycosylated. This hampers production in microbes as these hosts glycosylate proteins differently. The resulting products may therefore be immunogenic, unstable and show reduced efficacy. Recently, successful glycoengineering of microbes has demonstrated that it is possible...