WorldWideScience

Sample records for bacterial protein antigens

  1. Cyclic enterobacterial common antigen: Potential contaminant of bacterially expressed protein preparations

    International Nuclear Information System (INIS)

    We have previously reported the identification of the cyclic enterobacterial common antigen (ECACYC) polysaccharide in E. coli strains commonly used for heterologous protein expression (PJA Erbel et al., J. Bacteriol.185 (2003): 1995). Following this initial report, interactions among several NMR groups established that characteristic N-acetyl signals of ECACYC have been observed in 15N-1H HSQC spectra of samples of various bacterially-expressed proteins suggesting that this water-soluble carbohydrate is a common contaminant. We provide NMR spectroscopic tools to recognize ECACYC in protein samples, as well as several methods to remove this contaminant. Early recognition of ECA-based NMR signals will prevent time-consuming analyses of this copurifying carbohydrate

  2. Linkage of bacterial protein synthesis and presentation of MHC class I-restricted Listeria monocytogenes-derived antigenic peptides.

    Directory of Open Access Journals (Sweden)

    Silke Grauling-Halama

    Full Text Available The processing and MHC class I-restricted presentation of antigenic peptides derived from the p60 protein of the facultative intracellular bacterium Listeria monocytogenes is tightly linked to bacterial protein synthesis. We used non-linear regression analysis to fit a mathematical model of bacterial antigen processing to a published experimental data set showing the accumulation and decay of p60-derived antigenic peptides in L. monocytogenes-infected cells. Two alternative models equally describe the experimental data. The simulation accounting for a stable and a hypothetical rapidly degraded form of antigen predicts that the antigenic peptides p60 217-225 and p60 449-457 are derived from a putative instable form of p60 with an average intracellular half-life of approximately 3 minutes accounting for approximately 31% of all p60 molecules synthesized. The alternative model predicts that both antigenic peptides are processed from p60 degraded intracellularly with a half-life of 109 min and that antigen processing only occurs as long as bacterial protein synthesis is not inhibited. In order to decide between both models the intracellular accumulation of p60 in infected cells was studied experimentally and compared with model predictions. Inhibition of p60 degradation by the proteasome inhibitor epoxomicin revealed that during the first 3 h post infection approximately 30% of synthesized p60 molecules were degraded. This value is significantly lower than the approximately 50% degradation of p60 that would be expected in the presence of the predicted putative short-lived state of p60 and also fits precisely with the predictions of the alternative model, indicating that the tight connection of bacterial protein biosynthesis and antigen processing and presentation of L. monocyctogenes-derived antigenic peptides is not caused by the presence of a highly instable antigenic substrate.

  3. Use of in vivo-induced antigen technology (IVIAT for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens

    Directory of Open Access Journals (Sweden)

    Lu Chengping

    2009-09-01

    Full Text Available Abstract Background Streptococcus suis serotype 2 (SS2 is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT, an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection. Results Convalescent-phase sera from pigs infected with SS2 were pooled, adsorbed against in vitro antigens, and used to screen SS2 genomic expression libraries. Upon analysis of the identified proteins, we were able to assign a putative function to 40 of the 48 proteins. These included proteins implicated in cell envelope structure, regulation, molecule synthesis, substance and energy metabolism, transport, translation, and those with unknown functions. The in vivo-induced changes in the expression of 10 of these 40 genes were measured using real-time reverse transcription (RT-PCR, revealing that the expression of 6 of the 10 genes was upregulated in the in vivo condition. The strain distribution of these 10 genes was analyzed by PCR, and they were found in the most virulent SS2 strains. In addition, protein sequence alignments of the newly identified proteins demonstrate that three are putative virulence-associated proteins. Conclusion Collectively, our results suggest that these in vivo-induced or upregulated genes may contribute to SS2 disease development. We hypothesize that the identification of factors specifically induced or upregulated during SS2 infection will aid in our understanding of SS2 pathogenesis and may contribute to the control SS2 outbreaks. In addition, the proteins identified

  4. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions.

    Science.gov (United States)

    Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie

    2016-07-27

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system. PMID:27045683

  5. Surfactant protein D augments bacterial association but attenuates major histocompatibility complex class II presentation of bacterial antigens

    DEFF Research Database (Denmark)

    Hansen, Søren; Lo, Bernice; Evans, Kathy;

    2006-01-01

    Development of dementia, including Alzheimer's disease (AD), is associated with lipid dysregulation and inflammation. As the host defense lectin surfactant protein D (SP-D) has multiple effects in lipid homeostasis and inflammation, the correlation between SP-D concentrations and development of d.......06-1.92) in the highest quartile. SP-D concentration thus correlates to development of dementia as well as to augmented mortality....

  6. Antigenicity and Immunogenicity of Plasmodium vivax Merozoite Surface Protein-3

    OpenAIRE

    Amanda R Bitencourt; Elaine C Vicentin; Jimenez, Maria C.; Ricardo Ricci; Leite, Juliana A.; Fabio T Costa; Luis C Ferreira; Bruce Russell; François Nosten; Laurent Rénia; Galinski, Mary R.; Barnwell, John W.; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated...

  7. Bacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Sreerupa Challa

    2011-01-01

    Full Text Available Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O1 BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E. coli LT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH, or the nontoxic pseudomonas exotoxin A (ntPE was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.

  8. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  9. Study on immunopathogenic effect of bacterial protein antigen and the cytolytic toxin antigen of vibrio vulnificus in BALB / c Mice%创伤弧菌菌体抗原及溶细胞毒素蛋白抗原对BALB/c小鼠的免疫病理研究

    Institute of Scientific and Technical Information of China (English)

    王贵明; 钟碧玲; 陈艳宇; 李亦明; 申洪

    2012-01-01

    目的 观察创伤弧菌菌体抗原及溶细胞毒素蛋白抗原对Vv感染小鼠的免疫保护作用,以期为Vv防治提供实验数据.方法 制作创伤弧菌菌体抗原及溶细胞毒素蛋白抗原,免疫BALB/c小鼠后观察免疫状态改变及其对Vv感染小鼠的免疫保护效应.结果 免疫后小鼠实验组CD19+B淋巴细胞百分比高于对照组,并产生相应特异性抗体,效价最高达1∶25600,创伤弧菌攻击实验实验组小鼠存活率为100%,显著高于对照组的13.33%.结论 创伤弧菌菌体抗原及溶细胞毒素蛋白抗原主动免疫能产生特异性抗体,能够有效对抗创伤弧菌感染,并明显提高小鼠的存活率.%Objective To investigate whether Vibrio vulnificus bacterial protein antigen and the cytolytic toxin antigen can induce the effective immune protection against Vibrio vulnificus infection.Methods BALB/c mice were immunized with bacterial cytolytic toxin antigen protein antigen of Vibrio vulnificus to evaluate its ability to stimulate immune response.The protective efficacy of immunized mice was evaluated by active immunization and intraperitoneal challenge with V.vulnificus in mice.Results The immunized mice produced higher percentage of CD19+ B lymphocytes and high level specific antibodies (titers up to 1∶25600).All immunized mice survived from lethal challenge with V.vulnificus,while only 13.33% of mice in control group survived at the end of challenged experiment.Conclusions The bacterial protein antigen and cytolytic toxin antigen of Vibrio vulnificus are capable of inducing specific antibody response in mice to confer effective protection against lethal challenge with V.vulnificus.

  10. Bacterial ice crystal controlling proteins.

    Science.gov (United States)

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  11. Identification of antigenic proteins of the nosocomial pathogen Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL. After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens

  12. Identification of Antigenic Proteins of the Nosocomial Pathogen Klebsiella pneumoniae

    Science.gov (United States)

    Hoppe, Sebastian; Bier, Frank F.; von Nickisch-Rosenegk, Markus

    2014-01-01

    The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL). After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens and their linear

  13. Antigenic properties of avian hepatitis E virus capsid protein.

    Science.gov (United States)

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail. PMID:26340899

  14. Self-Adjuvanting Bacterial Vectors Expressing Pre-Erythrocytic Antigens Induce Sterile Protection against Malaria

    Directory of Open Access Journals (Sweden)

    Elke eBergmann-Leitner

    2013-07-01

    Full Text Available Genetically inactivated, Gram-negative bacteria that express malaria vaccine candidates represent a promising novel self-adjuvanting vaccine approach. Antigens expressed on particulate bacterial carriers not only target directly to antigen-presenting cells but also provide a strong danger signal thus circumventing the requirement for potent extraneous adjuvants. E. coli expressing malarial antigens resulted in the induction of either Th1 or Th2 biased responses that were dependent on both antigen and sub-cellular localization. Some of these constructs induced higher quality humoral responses compared to recombinant protein and most importantly they were able to induce sterile protection against sporozoite challenge in a murine model of malaria. In light of these encouraging results, two major Plasmodium falciparum pre-erythrocytic malaria vaccine targets, the Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS fused to the Maltose-binding protein in the periplasmic space and the Circumsporozoite Protein (CSP fused to the Outer membrane protein A in the outer membrane were expressed in a clinically relevant, attenuated Shigella strain (Shigella flexneri 2a. This type of live attenuated vector has previously undergone clinical investigations as a vaccine against shigellosis. Using this novel delivery platform for malaria, we find that vaccination with the whole organism represents an effective vaccination alternative that induces protective efficacy against sporozoite challenge. Shigella GeMI-Vax expressing malaria targets warrant further evaluation to determine their full potential as a dual disease, multivalent, self-adjuvanting vaccine system, against both shigellosis and malaria.

  15. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    Science.gov (United States)

    Bitencourt, Amanda R; Vicentin, Elaine C; Jimenez, Maria C; Ricci, Ricardo; Leite, Juliana A; Costa, Fabio T; Ferreira, Luis C; Russell, Bruce; Nosten, François; Rénia, Laurent; Galinski, Mary R; Barnwell, John W; Rodrigues, Mauricio M; Soares, Irene S

    2013-01-01

    A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential. PMID:23457498

  16. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3.

    Directory of Open Access Journals (Sweden)

    Amanda R Bitencourt

    Full Text Available A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3 as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2% and at least 1 recombinant protein representing PvMSP-3β (79.1%. In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin. Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential.

  17. A Novel Treponema pallidum Antigen, TP0136, Is an Outer Membrane Protein That Binds Human Fibronectin▿

    OpenAIRE

    Brinkman, Mary Beth; McGill, Melanie A.; Pettersson, Jonas; Rogers, Arthur; Matějková, Petra; Šmajs, David; Weinstock, George M.; Norris, Steven J; Palzkill, Timothy

    2008-01-01

    The antigenicity, structural location, and function of the predicted lipoprotein TP0136 of Treponema pallidum subsp. pallidum were investigated based on previous screening studies indicating that anti-TP0136 antibodies are present in the sera of syphilis patients and experimentally infected rabbits. Recombinant TP0136 (rTP0136) protein was purified and shown to be strongly antigenic during human and experimental rabbit infection. The TP0136 protein was exposed on the surface of the bacterial ...

  18. Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations.

    Science.gov (United States)

    Canales, Mario; Labruna, Marcelo B; Soares, João F; Prudencio, Carlos R; de la Fuente, José

    2009-12-01

    The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that the recombinant chimeric protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region for presentation on the Escherichia coli membrane was protective against R. microplus infestations in rabbits. This system provides a novel and simple approach for the production of tick protective antigens by surface display of antigenic protein chimera on live E. coli and suggests the possibility of using recombinant bacterial membrane fractions for vaccination against cattle tick infestations. PMID:19835826

  19. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    Science.gov (United States)

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  20. Lipid motif of a bacterial antigen mediates immune responses via TLR2 signaling.

    Directory of Open Access Journals (Sweden)

    Amit A Lugade

    Full Text Available The cross-talk between the innate and the adaptive immune system is facilitated by the initial interaction of antigen with dendritic cells. As DCs express a large array of TLRs, evidence has accumulated that engagement of these molecules contributes to the activation of adaptive immunity. We have evaluated the immunostimulatory role of the highly-conserved outer membrane lipoprotein P6 from non-typeable Haemophilus influenzae (NTHI to determine whether the presence of the lipid motif plays a critical role on its immunogenicity. We undertook a systematic analysis of the role that the lipid motif plays in the activation of DCs and the subsequent stimulation of antigen-specific T and B cells. To facilitate our studies, recombinant P6 protein that lacked the lipid motif was generated. Mice immunized with non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of the lipid motif on P6 was also required for proliferation and cytokine secretion by antigen-specific T cells. Upregulation of T cell costimulatory molecules was abrogated in DCs exposed to non-lipidated rP6 and in TLR2(-/- DCs exposed to native P6, thereby resulting in diminished adaptive immune responses. Absence of either the lipid motif on the antigen or TLR2 expression resulted in diminished cytokine production from stimulated DCs. Collectively, our data suggest that the lipid motif of the lipoprotein antigen is essential for triggering TLR2 signaling and effective stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid motif on activating both innate and adaptive immune responses to an otherwise poorly immunogenic protein antigen.

  1. Bacterial surface antigen-specific monoclonal antibodies used to detect beer spoilage pediococci.

    Science.gov (United States)

    Whiting, M S; Ingledew, W M; Lee, S Y; Ziola, B

    1999-08-01

    Fourteen monoclonal antibodies (Mabs) were isolated that react with surface antigens of Pediococcus beer spoilage organisms, including P. damnosus, P. pentosaceous, P. acidilactici, and unspeciated isolates. Immunoblotting, enzyme immunoassays (EIAs) of protease- and neuraminidase-treated surface antigen extracts, carbohydrate competition EIAs, and cardiolipin EIAs were used to characterize the bacterial antigens involved in Mab binding. Antigen stability in situ was tested by protease treatment or surface antigen extraction of washed bacteria. In most cases, the Mabs bind to Pediococcus surface antigens that appear to be covalently bound cell wall polymers resistant to alteration or removal from the bacterial surface. These bacterial surface antigen reactive Mabs show good potential for rapid, sensitive, and specific immunoassay detection of Pediococcus beer spoilage organisms.

  2. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    OpenAIRE

    B.J. Tuasikal; I.W.T. Wibawan2; F.H. Pasaribu2; S. Estuningsih2

    2012-01-01

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of th...

  3. Bacterial cell division proteins as antibiotic targets

    NARCIS (Netherlands)

    T. den Blaauwen; J.M. Andreu; O. Monasterio

    2014-01-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of protein

  4. Rho-modifying bacterial protein toxins.

    Science.gov (United States)

    Aktories, Klaus

    2015-12-01

    Rho proteins are targets of numerous bacterial protein toxins, which manipulate the GTP-binding proteins by covalent modifications, including ADP ribosylation, glycosylation, adenylylation, proteolytic cleavage and deamidation. Bacterial toxins are important virulence factors but are also potent and efficient pharmacological tools to study the physiological functions of their eukaryotic targets. Recent studies indicate that amazing variations exist in the molecular mechanisms by which toxins attack Rho proteins, which are discussed here.

  5. Recent advances in bacterial heme protein biochemistry

    OpenAIRE

    Mayfield, Jeffery A.; Dehner, Carolyn A.; Dubois, Jennifer L.

    2011-01-01

    Recent progress in genetics, fed by the burst in genome sequence data, has led to the identification of a host of novel bacterial heme proteins that are now being characterized in structural and mechanistic terms. The following short review highlights very recent work with bacterial heme proteins involved in the uptake, biosynthesis, degradation, and use of heme in respiration and sensing.

  6. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens.

    Science.gov (United States)

    Almazán, Consuelo; Moreno-Cantú, Orlando; Moreno-Cid, Juan A; Galindo, Ruth C; Canales, Mario; Villar, Margarita; de la Fuente, José

    2012-01-01

    Vaccines containing the Rhipicephalus (Boophilus) microplus BM86 and BM95 antigens protect cattle against tick infestations. Tick subolesin (SUB), elongation factor 1a (EF1a) and ubiquitin (UBQ) are new candidate protective antigens for the control of cattle tick infestations. Previous studies showed that R. microplus BM95 immunogenic peptides fused to the Anaplasma marginale major surface protein (MSP) 1a N-terminal region (BM95-MSP1a) for presentation on the Escherichia coli membrane were protective against R. microplus infestations in rabbits. In this study, we extended these results by expressing SUB-MSP1a, EF1a-MSP1a and UBQ-MSP1a fusion proteins on the E. coli membrane using this system and demonstrating that bacterial membranes containing the chimeric proteins BM95-MSP1a and SUB-MSP1a were protective (>60% vaccine efficacy) against experimental R. microplus and Rhipicephalus annulatus infestations in cattle. This system provides a novel, simple and cost-effective approach for the production of tick protective antigens by surface display of antigenic protein chimera on the E. coli membrane and demonstrates the possibility of using recombinant bacterial membrane fractions in vaccine preparations to protect cattle against tick infestations. PMID:22085549

  7. Protein antigen delivery by gene gun-mediated epidermal antigen incorporation (EAI).

    Science.gov (United States)

    Scheiblhofer, Sandra; Ritter, Uwe; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The gene gun technology can not only be employed for efficient transfer of gene vaccines into upper layers of the skin, but also for application of protein antigens. As a tissue rich in professional antigen presenting cells, the skin represents an attractive target for immunizations. In this chapter we present a method for delivery of the model antigen ovalbumin into the skin of mice termed epidermal antigen incorporation and describe in detail how antigen-specific proliferation in draining lymph nodes can be followed by flow cytometry.

  8. CD4+ T Cells and Toll-Like Receptors Recognize Salmonella Antigens Expressed in Bacterial Surface Organelles

    OpenAIRE

    Bergman, Molly A.; Cummings, Lisa A.; Barrett, Sara L. Rassoulian; Smith, Kelly D.; Lara, J. Cano; Aderem, Alan; Cookson, Brad T.

    2005-01-01

    A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysacc...

  9. Tresyl-Based Conjugation of Protein Antigen to Lipid Nanoparticles Increases Antigen Immunogencity

    Science.gov (United States)

    Jain, Anekant; Yan, Weili; Miller, Keith R.; O'Carra, Ronan; Woodward, Jerold G.; Mumper, Russell J.

    2010-01-01

    The present studies were aimed at investigating the engineering of NPs with protein-conjugated-surfactant at their surface. In order to increase the immunogenicity of a protein antigen, Brij 78 was functionalized by tresyl chloride and then further reacted with the primary amine of the model proteins ovalbumin (OVA) or horseradish peroxide (HRP). The reaction yielded Brij 78-OVA and Brij 78-HRP conjugates which were then used directly to form NP-OVA or NP-HRP using a one-step warm oil-in-water microemulsion precursor method with emulsifying wax as the oil phase, and Brij 78 and the Brij 78-OVA or Brij 78-HRP conjugate as surfactants. Similarly, Brij 700 was conjugated to HIV p24 antigen to yield Brij 700-p24 conjugate. The utility of these NPs for enhancing the immune responses to protein-based vaccines was evaluated in vivo using ovalbumin (OVA) as model protein and p24 as a relevant HIV antigen. In separate in vivo studies, female BALB/c mice were immunized by subcutaneous (s.c.) injection with NP-OVA and NP-p24 formulations along with several control formulations. These results suggested that with multiple antigens, covalent attachment of the antigen to the NP significantly enhanced antigen-specific immune responses. This facile covalent conjugation and incorporation method may be utilized to further incorporate other protein antigens, even multiple antigens, into an enhanced vaccine delivery system. PMID:20837122

  10. Tresyl-based conjugation of protein antigen to lipid nanoparticles increases antigen immunogenicity.

    Science.gov (United States)

    Jain, Anekant; Yan, Weili; Miller, Keith R; O'Carra, Ronan; Woodward, Jerold G; Mumper, Russell J

    2010-11-30

    The present studies were aimed at investigating the engineering of NPs with protein-conjugated-surfactant at their surface. In order to increase the immunogenicity of a protein antigen, Brij 78 was functionalized by tresyl chloride and then further reacted with the primary amine of the model proteins ovalbumin (OVA) or horseradish peroxide (HRP). The reaction yielded Brij 78-OVA and Brij 78-HRP conjugates which were then used directly to form NP-OVA or NP-HRP using a one-step warm oil-in-water microemulsion precursor method with emulsifying wax as the oil phase, and Brij 78 and the Brij 78-OVA or Brij 78-HRP conjugate as surfactants. Similarly, Brij 700 was conjugated to HIV p24 antigen to yield Brij 700-p24 conjugate. The utility of these NPs for enhancing the immune responses to protein-based vaccines was evaluated in vivo using ovalbumin (OVA) as model protein and p24 as a relevant HIV antigen. In separate in vivo studies, female BALB/c mice were immunized by subcutaneous (s.c.) injection with NP-OVA and NP-p24 formulations along with several control formulations. These results suggested that with multiple antigens, covalent attachment of the antigen to the NP significantly enhanced antigen-specific immune responses. This facile covalent conjugation and incorporation method may be utilized to further incorporate other protein antigens, even multiple antigens, into an enhanced vaccine delivery system. PMID:20837122

  11. Synthetic peptides with antigenic specificity for bacterial toxins.

    Science.gov (United States)

    Sela, M; Arnon, R; Jacob, C O

    1986-01-01

    The attachment of a diphtheria toxin-specific synthetic antigenic determinant and a synthetic adjuvant to a synthetic polymeric carrier led to production of a totally synthetic macromolecule which provoked protective antibodies against diphtheria when administered in aqueous solution. When peptides related to the B subunit of cholera toxin were synthesized and attached to tetanus toxoid, antibodies produced against the conjugate reacted in some but not all cases with intact cholera toxin and (especially with peptide CTP 3, residues 50-64) neutralized toxin reactivity, as tested by permeability in rabbit skin, fluid accumulation in ligated small intestinal loops and adenylate cyclase activation. Polymerization of the peptide without any external carrier, or conjugation with the dipalmityl lysine group, had as good an effect in enhancing the immune response as its attachment to tetanus toxoid. Prior exposure to the carrier suppressed the immune response to the epitope attached to it, whereas prior exposure to the synthetic peptide had a good priming effect when the intact toxin was given; when two different peptides were attached to the same carrier, both were expressed. Antisera against peptide CTP 3 were highly cross-reactive with the heat-labile toxin of Escherichia coli and neutralized it to the same extent as cholera toxin, which is not surprising in view of the great homology between the two proteins. A synthetic oligonucleotide coding for CTP 3 has been used to express the peptide in a form suitable for immunization. It led to a priming effect against the intact cholera toxin. PMID:2426052

  12. Mapping Epitopes on a Protein Antigen by the Proteolysis of Antigen-Antibody Complexes

    Science.gov (United States)

    Jemmerson, Ronald; Paterson, Yvonne

    1986-05-01

    A monoclonal antibody bound to a protein antigen decreases the rate of proteolytic cleavage of the antigen, having the greatest effect on those regions involved in antibody contact. Thus, an epitope can be identified by the ability of the antibody to protect one region of the antigen more than others from proteolysis. By means of this approach, two distinct epitopes, both conformationally well-ordered, were characterized on horse cytochrome c.

  13. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  14. Bacterial Ice Crystal Controlling Proteins

    OpenAIRE

    Lorv, Janet S. H.; Rose, David R; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. R...

  15. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  16. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    DEFF Research Database (Denmark)

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber;

    2013-01-01

    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...

  17. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens

    Science.gov (United States)

    Foley, Janet

    2015-01-01

    Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts. PMID:26288700

  18. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2.

    Directory of Open Access Journals (Sweden)

    Christopher A MacRaild

    Full Text Available Merozoite surface protein 2 (MSP2 of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27 using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.

  19. Conformational Dynamics and Antigenicity in the Disordered Malaria Antigen Merozoite Surface Protein 2

    Science.gov (United States)

    Andrew, Dean; Krishnarjuna, Bankala; Nováček, Jiří; Žídek, Lukáš; Sklenář, Vladimír; Richards, Jack S.; Beeson, James G.; Anders, Robin F.; Norton, Raymond S.

    2015-01-01

    Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design. PMID:25742002

  20. Ice nucleation protein as a bacterial surface display protein

    OpenAIRE

    Sarhan Mohammed A.A.

    2011-01-01

    Surface display technology can be defined as that phenotype (protein or peptide) which is linked to a genotype (DNA or RNA) through an appropriate anchoring motif. A bacterial surface display system is based on expressing recombinant proteins fused to sorting signals (anchoring motifs) that direct their incorporation on the cell surface.

  1. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    2010-01-01

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based del

  2. Antigen receptor signaling: integration of protein tyrosine kinase functions.

    Science.gov (United States)

    Tamir, I; Cambier, J C

    1998-09-17

    Antigen receptors on T and B cells function to transduce signals leading to a variety of biologic responses minimally including antigen receptor editing, apoptotic death, developmental progression, cell activation, proliferation and survival. The response to antigen depends upon antigen affinity and valence, involvement of coreceptors in signaling and differentiative stage of the responding cell. The requirement that these receptors integrate signals that drive an array of responses may explain their evolved structural complexity. Antigen receptors are composed of multiple subunits compartmentalized to provide antigen recognition and signal transduction function. In lieu of on-board enzymatic activity these receptors rely on associated Protein Tyrosine Kinases (PTKs) for their signaling function. By aggregating the receptors, and hence their appended PTKs, antigens induce PTK transphosphorylation, activating them to phosphorylate the receptor within conserved motifs termed Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) found in transducer subunits. The tyrosyl phosphorylated ITAMs then interact with Src Homology 2 (SH2) domains within the PTKs leading to their further activation. As receptor phosphorylation is amplified, other effectors, such as Shc, dock by virtue of SH2 binding, and serve, in-turn, as substrates for these PTKs. This sequence of events not only provides a signal amplification mechanism by combining multiple consecutive steps with positive feedback, but also allows for signal diversification by differential recruitment of effectors that provide access to distinct parallel downstream signaling pathways. The subject of antigen receptor signaling has been recently reviewed in depth (DeFranco, 1997; Kurosaki, 1997). Here we discuss the biochemical basis of antigen receptor signal transduction, using the B cell receptor (BCR) as a paradigm, with specific emphasis on the involved PTKs. We review several specific mechanisms by which responses

  3. Fluorescent sensors based on bacterial fusion proteins

    Science.gov (United States)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  4. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  5. Tresyl-Based Conjugation of Protein Antigen to Lipid Nanoparticles Increases Antigen Immunogencity

    OpenAIRE

    Jain, Anekant; Yan, Weili; Keith R Miller; O'Carra, Ronan; Woodward, Jerold G.; Russell J Mumper

    2010-01-01

    The present studies were aimed at investigating the engineering of NPs with protein-conjugated-surfactant at their surface. In order to increase the immunogenicity of a protein antigen, Brij 78 was functionalized by tresyl chloride and then further reacted with the primary amine of the model proteins ovalbumin (OVA) or horseradish peroxide (HRP). The reaction yielded Brij 78-OVA and Brij 78-HRP conjugates which were then used directly to form NP-OVA or NP-HRP using a one-step warm oil-in-wate...

  6. ANTIGENICITY OF COW'S MILK PROTEINS IN TWO ANIMAL MODELS

    Directory of Open Access Journals (Sweden)

    T.R. Neyestani

    2000-08-01

    Full Text Available Antigenicity of proteins found in cow's milk is age dependent. This is primarily due to infants possessing a more permeable intestinal wall than that in adults. Thus infants may acquire cow's milk allergy during their first year of life. While milk antigen specific IgE may cause allergy in susceptible subjects, there is some evidence indicating that milk antigen specific IgG may play some role in chronic disease development. The puropose of this study was to determine the antigenicity of cow's milk proteins in two animal models and to recommend the more sensitivie one, as an evaluation tool, to assess the antigenicity of a poteintial hypoallergenic formula. A crude extract of cow's milk was injected either to young male rabbits or BALB/C mice in four doses. Pure standard proteins of cow's milk were also injected to separate groups of animals to use their anti sera in later stages. The polyclonal pooled serum was then used to evaluate the antigenicity of the extract by indirect enzyme-linked immunossorbeni assay (LEISA. and Western blotting. Both the rabbit and BALB/C murine mode! demonstrated strong ELISA titres against casein and BSA proteins. However, the rabbit model also had a high antibody response against beta-lactoglobulin (/Mg. The lowest antibody response was found against alpha-kictalbumin («-la in both animal models and no response against immunoglobulins (Igs in either model. In Western blotting, rabbit antiserum showed four bands («-la, /Mg, caseins and BSA compared to two bands (caseins and BSA for mouse antiserum. Considering the allergenicity of these proteins in genetically prone subjects, it may be wise to exclude food sources of caseins as well as major whey proteins (BSA, from the diet of infants with a family history of atopy during the first year of life. The rabbit hyperimmunization model was more sensitive than the murine mode! in detecting antibodies against milk proteins. Thus, the rabbii model should be employed when

  7. Bacterial protein toxins : tools to study mammalian molecular cell biology

    NARCIS (Netherlands)

    Wüthrich, I.W.

    2014-01-01

    Bacterial protein toxins are genetically encoded proteinaceous macromolecules that upon exposure causes perturbation of cellular metabolism in a susceptible host. A bacterial toxin can work at a distance from the site of infection, and has direct and quantifiable actions. Bacterial protein toxins ca

  8. Novel receptors for bacterial protein toxins.

    Science.gov (United States)

    Schmidt, Gudula; Papatheodorou, Panagiotis; Aktories, Klaus

    2015-02-01

    While bacterial effectors are often directly introduced into eukaryotic target cells by various types of injection machines, toxins enter the cytosol of host cells from endosomal compartments or after retrograde transport via Golgi from the ER. A first crucial step of toxin-host interaction is receptor binding. Using optimized protocols and new methods novel toxin receptors have been identified, including metalloprotease ADAM 10 for Staphylococcus aureus α-toxin, laminin receptor Lu/BCAM for Escherichia coli cytotoxic necrotizing factor CNF1, lipolysis stimulated lipoprotein receptor (LSR) for Clostridium difficile transferase CDT and low-density lipoprotein receptor-related protein (LRP) 1 for Clostridium perfringens TpeL toxin.

  9. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  10. Seasonal Evaluation of Antigenic Bacterial Infections Among Working Class in the Inner City of Houston

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2004-01-01

    Full Text Available This paper evaluates the monthly, quarterly, and seasonal variation of antigenic bacterial infections among the working class in the inner city of Houston using the Wellcogen Rapid Test methods. One of the aims was to demonstrate how this method could be used effectively in screening patients at risk and preventing the spread of antigenic bacteria such as Streptococcus pneumoniae, Haemophilus influenzae b, Streptococcus (Strep b, and Neisseria meningitidis (mainly group c and b. A total of 2,837 patients were screened for bacterial infections; 908 (32% were male and 1,929 (68% were female. The age range was between 2 and 70 years. Of the total group, 356 (12.5% patients were positive; 203 (57% were female while 153 (43% were male (male/female ratio of 1:1.3. Medically underserved and immune suppressed populations are the most affected by these bacterial infections. Blacks are the most affected (48% compared to Native Americans (1%, but children under 10 years of age have the highest incidence. This research showed, in addition, that the Wellcogen Rapid Tests are effective (356 cases identified for a rapid screening of infectious bacteria. Explanation for these results was probably due to poor living conditions, poor hygiene, and viral immune suppression in adults and immature immune systems in neonates and children under 10 years of age.

  11. Antigenic proteins of Helicobacter pylori of potential diagnostic value.

    Science.gov (United States)

    Khalilpour, Akbar; Santhanam, Amutha; Wei, Lee Chun; Saadatnia, Geita; Velusamy, Nagarajan; Osman, Sabariah; Mohamad, Ahmad Munir; Noordin, Rahmah

    2013-01-01

    Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (≥ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture- positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/ TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline- 5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.

  12. Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis.

    Science.gov (United States)

    Murphy, Timothy F; Kirkham, Charmaine; Johnson, Antoinette; Brauer, Aimee L; Koszelak-Rosenblum, Mary; Malkowski, Michael G

    2016-07-19

    Moraxella catarrhalis causes otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease (COPD). A vaccine to prevent M. catarrhalis infections would have an enormous impact globally in preventing morbidity caused by M. catarrhalis in these populations. Using a genome mining approach we have identified a sulfate binding protein, CysP, of an ATP binding cassette (ABC) transporter system as a novel candidate vaccine antigen. CysP expresses epitopes on the bacterial surface and is highly conserved among strains. Immunization with CysP induces potentially protective immune responses in a murine pulmonary clearance model. In view of these features that indicate CysP is a promising vaccine antigen, we conducted further studies to elucidate its function. These studies demonstrated that CysP binds sulfate and thiosulfate ions, plays a nutritional role for the organism and functions in intracellular survival of M. catarrhalis in human respiratory epithelial cells. The observations that CysP has features of a vaccine antigen and also plays an important role in growth and survival of the organism indicate that CysP is an excellent candidate vaccine antigen to prevent M. catarrhalis otitis media and infections in adults with COPD. PMID:27265455

  13. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E;

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... lower. Hence, only a negative test is highly informative in a typical clinical setting. This, as well as the absence of analyses to show if CRP tests contribute independent diagnostic information, relatively to the information held in the traditionally used clinical and biochemical variables, makes...... receiver operating characteristic curve analyses (SROCs) to describe central tendencies and examine possible sources of inter-study variability in the results. We included data from 35 studies of both children and adults: 21 in which CRP had been measured in cerebrospinal fluid, 10 in which CRP had been...

  14. An improved haemolytic plaque assay for the detection of cells secreting antibody to bacterial antigens

    DEFF Research Database (Denmark)

    Barington, T; Heilmann, C

    1992-01-01

    Recent advances in the development of conjugate polysaccharide vaccines for human use have stimulated interest in the use of assays detecting antibody-secreting cells (AbSC) with specificity for bacterial antigens. Here we present improved haemolytic plaque-forming cell (PFC) assays detecting Ab......SC with specificity for tetanus and diphtheria toxoid as well as for Haemophilus influenzae type b and pneumococcal capsular polysaccharides. These assays were found to be less time consuming, more economical and yielded 1.9-3.4-fold higher plaque numbers than traditional Jerne-type PFC assays. In the case of anti...

  15. Quantitating protein synthesis, degradation, and endogenous antigen processing.

    Science.gov (United States)

    Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W

    2003-03-01

    Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate. PMID:12648452

  16. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    Science.gov (United States)

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion.

  17. Expression of Lewisb blood group antigen in Helicobacterpylori does not interfere with bacterial adhesion property

    Institute of Scientific and Technical Information of China (English)

    Peng-Yuan Zheng; Jiesong Hua; Han-Chung Ng; Khay-Guan Yeoh; Ho Bow

    2003-01-01

    AIM: The finding that some Helicobacterpyloristrains expressLewis b (Leb) blood group antigen casts a doubt on the roleof Leb of human gastric epithelium being a receptor for-H.pylori. The aim of this study was to determine if expressionof Leb in H. Pyloriinterferes with bacterial adhesion property.METHODS: Bacterial adhesion to immobilized Leb onmicrotitre plate was performed in 63-H. Pyloristrains obtainedfrom Singapore using in vitro adherence assay. Expression ofLewis blood group antigens was determined by ELISA assay.RESULTS: Among 63 H. Pyloristrains, 28 expressed Lebantigen. In vitro adhesion assay showed that 78.6 % (22/28) of Leb-positive and 74.3 % (26/35) of Leb-negative-H.pyloriisolates were positive for adhesion to immobilized Lebcoated on microtitre plate (P=0.772). In addition, blockingof H. Pylori Leb by prior incubation with anti-Leb monoclonalantibody did not alter thebinding of the bacteria to solid-phase coated Leb.CONCLUSION: The present study suggests that expressionof Leb in H. Pyloridoes not interfere with the bacterialadhesion property. This result supports the notion that Lebpresent on human gastric epithelial cells is capable of beinga receptor for H.pylori.

  18. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene;

    2014-01-01

    The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...

  19. Goodpasture Antigen-binding Protein (GPBP) Directs Myofibril Formation

    Science.gov (United States)

    Revert-Ros, Francisco; López-Pascual, Ernesto; Granero-Moltó, Froilán; Macías, Jesús; Breyer, Richard; Zent, Roy; Hudson, Billy G.; Saadeddin, Anas; Revert, Fernando; Blasco, Raül; Navarro, Carmen; Burks, Deborah; Saus, Juan

    2011-01-01

    Goodpasture antigen-binding protein-1 (GPBP-1) is an exportable non-conventional Ser/Thr kinase that regulates glomerular basement membrane collagen organization. Here we provide evidence that GPBP-1 accumulates in the cytoplasm of differentiating mouse myoblasts prior to myosin synthesis. Myoblasts deficient in GPBP-1 display defective myofibril formation, whereas myofibrils assemble with enhanced efficiency in those overexpressing GPBP-1. We also show that GPBP-1 targets the previously unidentified GIP130 (GPBP-interacting protein of 130 kDa), which binds to myosin and promotes its myofibrillar assembly. This report reveals that GPBP-1 directs myofibril formation, an observation that expands its reported role in supramolecular organization of structural proteins to the intracellular compartment. PMID:21832087

  20. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    International Nuclear Information System (INIS)

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic characteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD50) is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 - 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 - 0.05X (where Y = bands distance; X = MW standard protein); r2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis. (author)

  1. Antigenic characterization of dimorphic surface protein in Mycobacterium tuberculosis.

    Science.gov (United States)

    Matsuba, Takashi; Siddiqi, Umme Ruman; Hattori, Toshio; Nakajima, Chie; Fujii, Jun; Suzuki, Yasuhiko

    2016-05-01

    The Mycobacterium tuberculosis Rv0679c protein is a surface protein that contributes to host cell invasion. We previously showed that a single nucleotide transition of the Rv0679c gene leads to a single amino acid substitution from asparagine to lysine at codon 142 in the Beijing genotype family. In this study, we examined the immunological effect of this substitution. Several recombinant proteins were expressed in Escherichia coli and Mycobacterium smegmatis and characterized with antisera and two monoclonal antibodies named 5D4-C2 and 8G10-H2. A significant reduction of antibody binding was detected by enzyme-linked immunosorbent assay (ELISA) and western blot analysis in the Lys142-type protein. This reduction of 8G10-H2 binding was more significant, with the disappearance of a signal in the proteins expressed by recombinant mycobacteria in western blot analysis. In addition, epitope mapping analysis of the recombinant proteins showed a linear epitope by 5D4-C2 and a discontinuous epitope by 8G10-H2. The antibody recognizing the conformational epitope detected only mycobacterial Asn142-type recombinant protein. Our results suggest that a single amino acid substitution of Rv0679c has potency for antigenic change in Beijing genotype strains. PMID:27190237

  2. Haloarchaeal gas vesicle nanoparticles displaying Salmonella SopB antigen reduce bacterial burden when administered with live attenuated bacteria.

    Science.gov (United States)

    DasSarma, Priya; Negi, Vidya Devi; Balakrishnan, Arjun; Karan, Ram; Barnes, Susan; Ekulona, Folasade; Chakravortty, Dipshikha; DasSarma, Shiladitya

    2014-07-31

    Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3'-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ΔpmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-γ, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases.

  3. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  4. Bacterial antigen induced release of soluble vascular endothelial growth factor (VEGF) and VEGFR1 before and after surgery

    DEFF Research Database (Denmark)

    Svendsen, Mads N; Lykke, J; Werther, Kim;

    2005-01-01

    OBJECTIVE: The influence of surgery on release of soluble vascular endothelial growth factor (sVEGF) and the soluble inhibitory receptor (sVEGFR1) is unknown. The effect of major and minor surgery on variations in sVEGF and sVEGFR1 concentrations in vivo was studied, and on bacterial antigen...... concentrations in plasma changed during surgery. In vitro stimulation of blood samples with bacteria-derived antigens resulted in a significant increase in sVEGF (p ... significantly with neutrophil cell counts (0.53 surgery. In vitro bacterial stimulation led to increased release of sVEGF, which...

  5. Preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens and their use for bacterial detection.

    Science.gov (United States)

    Dykman, Lev A; Staroverov, Sergei A; Guliy, Olga I; Ignatov, Oleg V; Fomin, Alexander S; Vidyasheva, Irina V; Karavaeva, Olga A; Bunin, Viktor D; Burygin, Gennady L

    2012-01-01

    This article reports the first preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens by using a combinatorial phage library of sheep antibodies. The prepared phage antibodies were used for the first time for lipopolysaccharide and flagellin detection by dot assay, electro-optical analysis of cell suspensions, and transmission electron microscopy. Interaction of A. brasilense Sp245 with antilipopolysaccharide and antiflagellin phage-displayed miniantibodies caused the magnitude of the electro-optical signal to change considerably. The electro-optical results were in good agreement with the electron microscopic data. This is the first reported possibility of employing phage-displayed miniantibodies in bacterial detection aided by electro-optical analysis of cell suspensions.

  6. Convergent evolution among immunoglobulin G-binding bacterial proteins.

    OpenAIRE

    Frick, I M; Wikström, M.; Forsén, S.; Drakenberg, T; Gomi, H.; Sjöbring, U; Björck, L

    1992-01-01

    Protein G, a bacterial cell-wall protein with high affinity for the constant region of IgG (IgGFc) antibodies, contains homologous repeats responsible for the interaction with IgGFc. A synthetic peptide corresponding to an 11-amino acid-long sequence in the COOH-terminal region of the repeats was found to bind to IgGFc and block the interaction with protein G. Moreover, two other IgGFc-binding bacterial proteins (proteins A and H), which do not contain any sequences homologous to the peptide,...

  7. Formaldehyde treatment of proteins can constrain presentation to T cells by limiting antigen processing.

    OpenAIRE

    Di Tommaso, A; De Magistris, M T; Bugnoli, M.; Marsili, I; Rappuoli, R; Abrignani, S.

    1994-01-01

    Proteins to be used as vaccines are frequently treated with formaldehyde, although little is known about the effects of this treatment on protein antigenicity. To investigate the effect of formaldehyde treatment on antigen recognition by T cells, we compared the in vitro T-cell response to proteins that have been formaldehyde treated with the response to untreated proteins. We found that peripheral blood mononuclear cells from individuals vaccinated with three formaldehyde-treated proteins (p...

  8. Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability

    Science.gov (United States)

    Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P.; Takeda, Makoto

    2016-01-01

    Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564

  9. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Directory of Open Access Journals (Sweden)

    Jake E Lowry

    Full Text Available Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA. All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence

  10. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Science.gov (United States)

    Lowry, Jake E; Isaak, Dale D; Leonhardt, Jack A; Vernati, Giulia; Pate, Jessie C; Andrews, Gerard P

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of

  11. Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

    Directory of Open Access Journals (Sweden)

    Mary E. Marquart

    2013-01-01

    Full Text Available Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.

  12. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  13. Immunological characterization of a recombinant 27-kilodalton antigenic protein from Paracoccidioides brasiliensis.

    OpenAIRE

    Ortiz, B L; Garcia, A. M.; A. Restrepo; McEwen, J. G.

    1996-01-01

    We report the expression in Escherichia coli of a 27-kDa antigenic protein from Paracoccidioides brasiliensis. When analyzed by immunoblotting, this recombinant antigenic protein was recognized by antibodies present in the sera of 40 of the 44 paracoccidioidomycosis patients studied. No cross-reactions were observed with sera from patients with other mycoses (histoplasmosis, aspergillosis, cryptococcosis, sporotrichosis, and chromoblastomycosis) or with tuberculosis.

  14. Jun N-Terminal Protein Kinase Enhances Middle Ear Mucosal Proliferation during Bacterial Otitis Media▿

    Science.gov (United States)

    Furukawa, Masayuki; Ebmeyer, Jörg; Pak, Kwang; Austin, Darrell A.; Melhus, Åsa; Webster, Nicholas J. G.; Ryan, Allen F.

    2007-01-01

    Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but paralleled mucosal hyperplasia in this in vivo rat model. Nuclear JNK phosphorylation was observed in many cells of both the mucosal epithelium and stroma by immunohistochemistry. In an in vitro model of primary rat middle ear mucosal explants, bacterially induced mucosal growth was blocked by the Rac/Cdc42 inhibitor Clostridium difficile toxin B, the mixed-lineage kinase inhibitor CEP11004, and the JNK inhibitor SP600125. Finally, the JNK inhibitor SP600125 significantly inhibited mucosal hyperplasia during in vivo bacterial otitis media in guinea pigs. Inhibition of JNK in vivo resulted in a diminished proliferative response, as shown by a local decrease in proliferating cell nuclear antigen protein expression by immunohistochemistry. We conclude that activation of JNK is a critical pathway for bacterially induced mucosal hyperplasia during otitis media, influencing tissue proliferation. PMID:17325051

  15. Cell Wall-Associated Protein Antigens of Streptococcus salivarius: Purification, Properties, and Function in Adherence

    Science.gov (United States)

    Weerkamp, Anton H.; Jacobs, Ton

    1982-01-01

    Three cell wall-associated protein antigens (antigens b, c, and d) were isolated from mutanolysin-solubilized cell walls of Streptococcus salivarius HB and purified to apparent homogeneity by a combination of ion-exchange chromatography, gel filtration, and immunoadsorption chromatography. Antigens b and c were also isolated from culture supernatants. Antigen b consisted of more than 80% protein and had an apparent molecular weight as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 320,000. Antigen c consisted of 57% protein, about 30% neutral sugar, and about 13% amino sugar, and its glycoprotein nature was confirmed by specific staining techniques. During sodium dodecyl sulfate-polyacrylamide gel electrophoresis antigen c resolved into two or more bands, depending on the source or the isolation procedure, in the molecular weight range from 220,000 to 280,000. Antigen d consisted of 95% protein and was observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as two bands with molecular weights of 129,000 and 121,000. Under nondenaturing conditions all three antigens had molecular weights in the range from 1 × 106 to 3 × 106 as determined by gel filtration. The amino acid compositions of antigens b, c, and d were characterized by low amounts of basic amino acids and relatively high levels of nonpolar amino acids. Among oral streptococcal species antigens b and c were virtually restricted to strains of S. salivarius and most often to serotype I strains. Antigen b was recognized as the factor that mediates coaggregation of S. salivarius with Veillonella strains. The purified protein retained its biological activity. Antigen c could be linked to functions relating to adhesion of the streptococci to host tissues on the basis of its absence in mutant strains and blocking by specific antisera. The purified molecule had no detectable biological activity. Antigen d could not be linked to an established adhesion function. Images

  16. Bacterial protein toxins in human cancers.

    Science.gov (United States)

    Rosadi, Francesca; Fiorentini, Carla; Fabbri, Alessia

    2016-02-01

    Many bacteria causing persistent infections produce toxins whose mechanisms of action indicate that they could have a role in carcinogenesis. Some toxins, like CDT and colibactin, directly attack the genome by damaging DNA whereas others, as for example CNF1, CagA and BFT, impinge on key eukaryotic processes, such as cellular signalling and cell death. These bacterial toxins, together with other less known toxins, mimic carcinogens and tumour promoters. The aim of this review is to fulfil an up-to-date analysis of toxins with carcinogenic potential that have been already correlated to human cancers. Bacterial toxins-induced carcinogenesis represents an emerging aspect in bacteriology, and its significance is increasingly recognized.

  17. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders;

    2007-01-01

    The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...

  18. Protein quality control in the bacterial periplasm.

    Science.gov (United States)

    Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

    2011-01-01

    Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

  19. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  20. Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

    Directory of Open Access Journals (Sweden)

    Daniel Y. Bargieri

    2011-01-01

    Full Text Available In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.

  1. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  2. Identification of Antigenic Proteins from Lichtheimia corymbifera for Farmer’s Lung Disease Diagnosis

    Science.gov (United States)

    Rognon, Bénédicte; Barrera, Coralie; Monod, Michel; Valot, Benoit; Roussel, Sandrine; Quadroni, Manfredo; Jouneau, Stephane; Court-Fortune, Isabelle; Caillaud, Denis; Fellrath, Jean-Marc; Dalphin, Jean-Charles; Reboux, Gabriel; Millon, Laurence

    2016-01-01

    The use of recombinant antigens has been shown to improve both the sensitivity and the standardization of the serological diagnosis of Farmer’s lung disease (FLD). The aim of this study was to complete the panel of recombinant antigens available for FLD serodiagnosis with antigens of Lichtheimia corymbifera, known to be involved in FLD. L. corymbifera proteins were thus separated by 2D electrophoresis and subjected to western blotting with sera from 7 patients with FLD and 9 healthy exposed controls (HEC). FLD-associated immunoreactive proteins were identified by mass spectrometry based on a protein database specifically created for this study and subsequently produced as recombinant antigens. The ability of recombinant antigens to discriminate patients with FLD from controls was assessed by ELISA performed with sera from FLD patients (n = 41) and controls (n = 43) recruited from five university hospital pneumology departments of France and Switzerland. Forty-one FLD-associated immunoreactive proteins from L. corymbifera were identified. Six of them were produced as recombinant antigens. With a sensitivity and specificity of 81.4 and 77.3% respectively, dihydrolipoyl dehydrogenase was the most effective antigen for discriminating FLD patients from HEC. ELISA performed with the putative proteasome subunit alpha type as an antigen was especially specific (88.6%) and could thus be used for FLD confirmation. The production of recombinant antigens from L. corymbifera represents an additional step towards the development of a standardized ELISA kit for FLD diagnosis. PMID:27490813

  3. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    OpenAIRE

    MacBeth, K J; Lee, C. A.

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase ...

  4. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  5. An efficient fusion protein system for expression ofBacillus anthracis protective antigen as immunogenic and diagnostic antigen

    Institute of Scientific and Technical Information of China (English)

    Vahid Bagheri; Hossein Motamedi; Masoud Reza Seifiabad Shapouri

    2010-01-01

    Objective:To produce high quantities of recombinant protective antigen (rPA) for human vaccine and diagnosis.Methods: ThePAgene was amplified byPCR with pXO1 plasmid as template. ThePCR product was cloned into pMAL-c2X vector using theBamHI andSalI restriction enzymes. The recombinant plasmid was transformed intoEscherichia coliDH5α strain and then screened for transformation. The expression of protective antigen was analyzed bySDS-PAGE and Western blotting after isopropyl β-D-thiogalactopyranoside(IPTG) induction.Results:The full-length PA gene (2.2kb) was cloned into pMAL vector system. The recombinant vector was confirmed by restriction enzyme andPCRanalysis. The expression of cytoplasmic maltose-binding protein-protective (MBP-P) antigen fusion protein was detected bySDS-PAGE and Western blotting, and obtained a125 kDa protein band, which was similar to expected size of fusion protein.Conclusions: This expression system can be used in the high production of rPA. After purification and immunization studies, the purified rPA may be used in the development of the human recombinant anthrax vaccine and also in diagnosis of anthrax disease.

  6. Early secretory antigenic target protein-6/culture filtrate protein-10 fusion protein-specific Th1 and Th2 response and its diagnostic value in tuberculous pleural effusion

    Institute of Scientific and Technical Information of China (English)

    戈启萍

    2013-01-01

    Objective To detect the Th1 and Th2 cell percentage in pleural effusion mononuclear cells (PEMCs) stimulated by early secretory antigenic target protein-6 (ESAT-6) /culture filtrate protein-10 (CFP-10) fusion protein (E/C) with flow cytometry (FCM) ,and to explore the local antigen specific Th1 and Th2 response and

  7. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...

  8. The Chaotic Structure of Bacterial Virulence Protein Sequences

    Directory of Open Access Journals (Sweden)

    Sevdanur Genc

    2015-01-01

    Full Text Available Bacterial virulence proteins, which have been class ified on structure of virulence, causes several diseases. For instance, Adhesins play an important role in th e host cells. They are inserted DNA sequences for a variety of virulence properties. Several important methods conducted for the prediction of bacterial virulence proteins for finding new drugs or vaccines. In this study, we propose a method for feature sele ction about classification of bacterial virulence protein. The features are constituted dir ectly from the amino acid sequence of a given protein. Amino acids form proteins, which are criti cal to life, and have many important functions in living cells. They occurring with diff erent physicochemical properties by a vector of 20 numerical values, and collected in AAIndex datab ases of known 544 indices. For all that, this approach have two steps. Firstly , the amino acid sequence of a given protein analysed with Lyapunov Exponents that they have a chaotic structure in accordance wi th the chaos theory. After that, if the results show chara cterization over the complete distribution in the phase space from the point of deterministic sys tem, it means related protein will show a chaotic structure. Empirical results revealed that generated feature v ectors give the best performance with chaotic structure of physicochemical features of amino acid s with Adhesins and non-Adhesins data sets.

  9. "Danger" conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells.

    Science.gov (United States)

    Lavergne, S N; Wang, H; Callan, H E; Park, B K; Naisbitt, D J

    2009-11-01

    Antigen-presenting cells (APC) are thought to play an important role in the pathogenesis of drug-induced immune reactions. Various pathological factors can activate APC and therefore influence the immune equilibrium. It is interesting that several diseases have been associated with an increased rate of drug allergy. The aim of this project was to evaluate the impact of such "danger signals" on sulfamethoxazole (SMX) metabolism in human APC (peripheral blood mononuclear cells, Epstein-Barr virus-modified B lymphocytes, monocyte-derived dendritic cells, and two cell lines). APC were incubated with SMX (100 microM-2 mM; 5 min-24 h), in the presence of pathological factors: bacterial endotoxins (lipopolysaccharide and staphylococcal enterotoxin B), flu viral proteins, cytokines [interleukin (IL)-1beta, IL-6, IL-10; tumor necrosis factor-alpha; interferon-gamma; and transforming growth factor-beta], inflammatory molecules (prostaglandin E2, human serum complement, and activated protein C), oxidants (buthionine sulfoximine and H(2)O(2)), and hyperthermia (37.5-39.5 degrees C). Adduct formation was evaluated by enzyme-linked immunosorbent assay and confocal microscopy. SMX-protein adduct formation was time- and concentration-dependent for each cell type tested, in both physiological and danger conditions. A danger environment significantly increased the formation of SMX-protein adducts and significantly shortened the delay for their detection. An additive effect was observed with a combination of danger signals. Dimedone (chemical selectively binding cysteine sulfenic acid) and antioxidants decreased both baseline and danger-enhanced SMX-adduct formation. Various enzyme inhibitors were associated with a significant decrease in SMX-adduct levels, with a pattern varying depending on the cell type and the culture conditions. These results illustrate that danger signals enhance the formation of intracellular SMX-protein adducts in human APC. These findings might be relevant

  10. Immunization with purified protein antigens from Streptococcus mutans against dental caries in rhesus monkeys.

    OpenAIRE

    Lehner, T; Russell, M W; Caldwell, J.; Smith, R.

    1981-01-01

    Protein antigens I, I/II, II, and III were prepared from Streptococcus mutans (serotype c). Their immunogenicities and protective effects against dental caries were investigated in 40 rhesus monkeys kept entirely on a human-type diet, containing about 15% sucrose. Antigens I, I/II and, to a lesser extent, antigen II induced significant reductions in dental caries, as compared with sham-immunized monkeys. This was achieved with 1 or 2 doses of antigen, the first of which was administered with ...

  11. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  12. Monocyte chemotactic protein-1 gene polymorphism and spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Levent; Filik

    2010-01-01

    I read with great interest the article by Gbele et al published in issue 44 of World J Gastroenterol 2009.The results of their study indicate that-2518 Monocyte chemotactic protein-1(MCP-1)genotype AA is a risk factor for spontaneous bacterial peritonitis in patients with alcoholic cirrhosis.However,there are some items that need to be discussed.

  13. Visualization of Pseudomonas aeruginosa O antigens by using a protein A-dextran-colloidal gold conjugate with both immunoglobulin G and immunoglobulin M monoclonal antibodies.

    OpenAIRE

    Lam, J S; Lam, M. Y.; MacDonald, L A; Hancock, R E

    1987-01-01

    Two lipopolysaccharide O-antigen-specific monoclonal antibodies, MA1-8 (an immunoglobulin G1 [IgG1]) and MF15-4 (an IgM), were used to localize the O antigen of the lipopolysaccharide of Pseudomonas aeruginosa PAO1. A protein A-dextran-gold conjugate with an average particle diameter of 12.5 nm was used to label bacterial cells treated with MA1-8, while a second antibody (goat anti-mouse IgM) was required before the same probe could interact with cells treated with the IgM antibody MF15-4. Bo...

  14. DEMONSTRATION OF MULTIPLE ANTIGENIC DETERMINANTS ON 'MYCOPLASMA PNEUMONIAE' ATTACHMENT PROTEIN BY MONOCLONAL ANTIBODIES

    Science.gov (United States)

    Distinct multiple antigenic determinants of the attachment protein of Mycoplasma pneumoniae have been identified by limited proteolytic cleavage using specific monoclonal antibodies. Western blots prepared from the gels containing the cleaved fragments were probed with antiserum ...

  15. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation.

    Science.gov (United States)

    Argüello, Rafael J; Reverendo, Marisa; Gatti, Evelina; Pierre, Philippe

    2016-07-01

    Antigenic peptides presented in the context of major histocompatibility complex (MHC) molecules originate from the degradation of both self and non-self proteins. T cells can therefore recognize at the surface of surveyed cells, the self-peptidome produced by the cell itself (mostly inducing tolerance) or immunogenic peptides derived from exogenous origins. The initiation of adaptive immune responses by dendritic cells (DCs), through the antigenic priming of naïve T cells, is associated to microbial pattern recognition receptors engagement. Activation of DCs by microbial product or inflammatory cytokines initiates multiple processes that maximize DC capacity to present exogenous antigens and stimulate T cells by affecting major metabolic and membrane traffic pathways. These include the modulation of protein synthesis, the regulation of MHC and co-stimulatory molecules transport, as well as the regulation of autophagy, that, all together promote exogenous antigen presentation while limiting the display of self-antigens by MHC molecules.

  16. Plant bioreactors for the antigenic hook-associated flgK protein expression

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2014-01-01

    Full Text Available Plants engineered with genes encoding for the antigenic proteins of various microorganisms have shown to correctly express the proteins that elicit the production of antibodies in mammalian hosts. In livestock, plant-based vaccines could represent an innovative strategy for oral vaccination, especially to prevent infection by enteric pathogens. The aim of this study was to evaluate tobacco plants as a seedspecific expression system for the production of the flgK flagellar hook-associated protein from a wild type Salmonella typhimurium strain, as a model of an edible vaccine. The flgK gene is the principal component of bacterial flagella and is recognised as virulence factor by the innate immune system. It was isolated from the Salmonella typhimurium strain by PCR. The encoding sequence of flgK was transferred into a pBI binary vector, under control of soybean basic 7S globulin promoter for the seed-specific. Plant transformation was carried out using recombinant EHA 105 Agrobacterium tumefaciens. A transgenic population was obtained made up of independently kanamycin-resistant transgenic plants, which had a similar morphological appearance to the wild-type plants. Molecular analyses of seeds confirmed the integration of the gene and the average expression level of flgK was estimated to be about 0.6 mg per gram of seeds, corresponding to 0.33% of the total amount of soluble protein in tobacco seeds. This study showed that the foreign flgK gene could be stably incorporated into the tobacco plant genome by transcription through the nuclear apparatus of the plant, and that these genes are inherited by the next generation.

  17. Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion.

    Science.gov (United States)

    MacBeth, K J; Lee, C A

    1993-01-01

    We have found that prolonged inhibition of bacterial protein synthesis abolishes the ability of Salmonella typhimurium to enter HEp-2 cells. Our results suggest that an essential invasion factor has a functional half-life that is seen as a gradual loss of invasiveness in the absence of protein synthesis. Therefore, Salmonella invasiveness appears to be a transient phenotype that is lost unless protein synthesis is maintained. This finding may explain why salmonellae grown to stationary phase lose their ability to enter cultured cells. In addition, a short-lived capacity to enter cells may be important during infection so that bacterial invasiveness is limited to certain times and host sites during pathogenesis. PMID:8454361

  18. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  19. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...... examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive...

  20. Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery.

    Science.gov (United States)

    Sau, S; Chattoraj, P; Ganguly, T; Chanda, P K; Mandal, N C

    2008-06-01

    Bacteriophages utilize host bacterial cellular machineries for their own reproduction and completion of life cycles. The early proteins that phage synthesize immediately after the entry of their genomes into bacterial cells participate in inhibiting host macromolecular biosynthesis, initiating phage-specific replication and synthesizing late proteins. Inhibition of synthesis of host macromolecules that eventually leads to cell death is generally performed by the physical and/or chemical modification of indispensable host proteins by early proteins. Interestingly, most modified bacterial proteins were shown to take part actively in phage-specific transcription and replication. Research on phages in last nine decades has demonstrated such lethal early proteins that interact with or chemically modify indispensable host proteins. Among the host proteins inhibited by lethal phage proteins, several are not inhibited by any chemical inhibitor available today. Under the context of widespread dissemination of antibiotic-resistant strains of pathogenic bacteria in recent years, the information of lethal phage proteins and cognate host proteins could be extremely invaluable as they may lead to the identification of novel antibacterial compounds. In this review, we summarize the current knowledge about some early phage proteins, their cognate host proteins and their mechanism of action and also describe how the above interacting proteins had been exploited in antibacterial drug discovery. PMID:18537683

  1. Automatic selection of representative proteins for bacterial phylogeny

    Directory of Open Access Journals (Sweden)

    Goldberg David

    2005-05-01

    Full Text Available Abstract Background Although there are now about 200 complete bacterial genomes in GenBank, deep bacterial phylogeny remains a difficult problem, due to confounding horizontal gene transfers and other phylogenetic "noise". Previous methods have relied primarily upon biological intuition or manual curation for choosing genomic sequences unlikely to be horizontally transferred, and have given inconsistent phylogenies with poor bootstrap confidence. Results We describe an algorithm that automatically picks "representative" protein families from entire genomes for use as phylogenetic characters. A representative protein family is one that, taken alone, gives an organismal distance matrix in good agreement with a distance matrix computed from all sufficiently conserved proteins. We then use maximum-likelihood methods to compute phylogenetic trees from a concatenation of representative sequences. We validate the use of representative proteins on a number of small phylogenetic questions with accepted answers. We then use our methodology to compute a robust and well-resolved phylogenetic tree for a diverse set of sequenced bacteria. The tree agrees closely with a recently published tree computed using manually curated proteins, and supports two proposed high-level clades: one containing Actinobacteria, Deinococcus, and Cyanobacteria ("Terrabacteria", and another containing Planctomycetes and Chlamydiales. Conclusion Representative proteins provide an effective solution to the problem of selecting phylogenetic characters.

  2. Protein-lipid interactions in the purple bacterial reaction centre.

    Science.gov (United States)

    Jones, Michael R; Fyfe, Paul K; Roszak, Aleksander W; Isaacs, Neil W; Cogdell, Richard J

    2002-10-11

    The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.

  3. Differential antigenic protein recovery from Taenia solium cyst tissues using several detergents.

    Science.gov (United States)

    Navarrete-Perea, José; Orozco-Ramírez, Rodrigo; Moguel, Bárbara; Sciutto, Edda; Bobes, Raúl J; Laclette, Juan P

    2015-07-01

    Human and porcine cysticercosis is caused by the larval stage of the flatworm Taenia solium (Cestoda). The protein extracts of T. solium cysts are complex mixtures including cyst's and host proteins. Little is known about the influence of using different detergents in the efficiency of solubilization-extraction of these proteins, including relevant antigens. Here, we describe the use of CHAPS, ASB-14 and Triton X-100, alone or in combination in the extraction buffers, as a strategy to notably increase the recovery of proteins that are usually left aside in insoluble fractions of cysts. Using buffer with CHAPS alone, 315 protein spots were detected through 2D-PAGE. A total of 255 and 258 spots were detected using buffers with Triton X-100 or ASB-14, respectively. More protein spots were detected when detergents were combined, i.e., 2% CHAPS, 1% Triton X-100 and 1% ASB-14 allowed detection of up to 368 spots. Our results indicated that insoluble fractions of T. solium cysts were rich in antigens, including several glycoproteins that were sensitive to metaperiodate treatment. Host proteins, a common component in protein extracts of cysts, were present in larger amounts in soluble than insoluble fractions of cysts proteins. Finally, antigens present in the insoluble fraction were more appropriate as a source of antigens for diagnostic procedures.

  4. [Elaboration of new adjuvant lipid-saponin complex and its use at experimental immunization by bacterial antigen].

    Science.gov (United States)

    Tsybul'skiĭ, A V; Sanina, N M; Li, I A; Popov, A M; Kostetskiĭ, E Ia; Portniagina, O Iu; Shnyrov, V L

    2007-01-01

    Results of experiments on modification of immunostimulating complexes (ISCOM's) matrix by the replacement of the phospholipid for the glycolipid (monogalactosyldiacylglycerol) from sea macrophytes, and saponin QuillA to triterpene glycoside of cucumarioside A2-2 from Cucumaria japonica are shown. The resultant complexes include the morphological structures of two types: ISCOM-like structures with the characteristic morphology and sizes and also the tubular structures with diameter of approximately 40 nm and length of 150-400 nm. We have named these structures as TI-complexes. These TI-complexes exhibit considerably lower toxicity than ISCOM. They may include an amphiphilic protein antigen and provide immunoadjuvant effect during experimental vaccination. Under conditions of experimental immunization of mice by a weak immunogen--(subunit membrane pore protein from Y. pseudotuberculosis), TI-complexes with antigen provided stronger humoral immune response to antigen than the complexes of porin with classical ISCOM, liposomes and Freund's adjuvant. Thus, it's shown the prospect of the use of TI-complexes as a new type of adjuvant carriers for antigens. PMID:17722580

  5. Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens.

    Science.gov (United States)

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid; Hensel, Michael

    2012-03-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines.

  6. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms.

    Directory of Open Access Journals (Sweden)

    Carlos J Sanchez

    Full Text Available The Pneumococcal serine-rich repeat protein (PsrP is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10 on the surface of lung cells through amino acids 273-341 located in the Basic Region (BR domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (rBR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122-166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.

  7. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.;

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  8. Screening and Identification of Antigenic Proteins from the Hard Tick Dermacentor silvarum (Acari: Ixodidae).

    Science.gov (United States)

    Zhang, Tiantian; Cui, Xuejiao; Zhang, Jincheng; Wang, Hui; Wu, Meng; Zeng, Hua; Cao, Yuanyuan; Liu, Jingze; Hu, Yonghong

    2015-12-01

    In order to explore tick proteins as potential targets for further developing vaccine against ticks, the total proteins of unfed female Dermacentor silvarum were screened with anti-D. silvarum serum produced from rabbits. The results of western blot showed that 3 antigenic proteins of about 100, 68, and 52 kDa were detected by polyclonal antibodies, which means that they probably have immunogenicity. Then, unfed female tick proteins were separated by 12% SDS-PAGE, and target proteins (100, 68, and 52 kDa) were cut and analyzed by LC-MS/MS, respectively. The comparative results of peptide sequences showed that they might be vitellogenin (Vg), heat shock protein 60 (Hsp60), and fructose-1, 6-bisphosphate aldolase (FBA), respectively. These data will lay the foundation for the further validation of antigenic proteins to prevent infestation and diseases transmitted by D. silvarum. PMID:26797451

  9. Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter.

    Science.gov (United States)

    Johansson, Cecilia; Wick, Mary Jo

    2004-02-15

    The capacity of murine liver dendritic cells (DC) to present bacterial Ags and produce cytokines after encounter with Salmonella was studied. Freshly isolated, nonparenchymal liver CD11c(+) cells had heterogeneous expression of MHC class II and CD11b and a low level of CD40 and CD86 expression. Characterization of liver DC subsets revealed that CD8alpha(-)CD4(-) double negative cells constituted the majority of liver CD11c(+) ( approximately 85%) with few cells expressing CD8alpha or CD4. Flow cytometry analysis of freshly isolated CD11c(+) cells enriched from the liver and cocultured with Salmonella expressing green fluorescent protein (GFP) showed that CD11c(+) MHC class II(high) cells had a greater capacity to internalize Salmonella relative to CD11c(+) MHC class II(low) cells. Moreover, both CD8alpha(-) and CD8alpha(+) liver DC internalized bacteria with similar efficiency after both in vitro and in vivo infection. CD11c(+) cells enriched from the liver could also process Salmonella for peptide presentation on MHC class I and class II to primary, Ag-specific T cells after internalization requiring actin cytoskeletal rearrangements. Flow cytometry analysis of liver CD11c(+) cells infected with Salmonella expressing GFP showed that both CD8alpha(-) and CD8alpha(+) DC produced IL-12p40 and TNF-alpha. The majority of cytokine-positive cells did not contain bacteria (GFP(-)) whereas only a minor fraction of cytokine-positive cells were GFP(+). Furthermore, only approximately 30-50% of liver DC containing bacteria (GFP(+)) produced cytokines. Thus, liver DC can internalize and process Salmonella for peptide presentation to CD4(+) and CD8(+) T cells and elicit proinflammatory cytokine production upon Salmonella encounter, suggesting that DC in the liver may contribute to immunity against hepatotropic bacteria.

  10. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  11. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane.

    Science.gov (United States)

    Amarasiri, Mohan; Hashiba, Satoshi; Miura, Takayuki; Nakagomi, Toyoko; Nakagomi, Osamu; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-05-15

    We demonstrated the genotype-dependent removal of human norovirus particles with a microfiltration (MF) membrane in the presence of bacteria bearing histo-blood group antigens (HBGAs). Three genotypes (GII.3, GII.4, and GII.6) of norovirus-like particles (NoVLPs) were mixed with three bacterial strains (Enterobacter sp. SENG-6, Escherichia coli O86:K61:B7, and Staphylococcus epidermidis), respectively, and the mixture was filtered with an MF membrane having a nominal pore size of 0.45 μm. All NoVLP genotypes were rejected by the MF membrane in the presence of Enterobacter sp. SENG-6, which excreted HBGAs as extracellular polymeric substances (EPS). This MF membrane removal of NoVLPs was not significant when EPS was removed from cells of Enterobacter sp. SENG-6. GII.6 NoVLP was not rejected with the MF membrane in the presence of E. coli O86:K61:B7, but the removal of EPS of E. coli O86:K61:B7 increased the removal efficiency due to the interaction of NoVLPs with the exposed B-antigen in lipopolysaccharide (LPS) of E. coli O86:K61:B7. No MF membrane removal of all three genotypes was observed when S. epidermidis, an HBGA-negative strain, was mixed with NoVLPs. These results demonstrate that the location of HBGAs on bacterial cells is an important factor in determining the genotype-dependent removal efficiency of norovirus particles with the MF membrane. The presence of HBGAs in mixed liquor suspended solids from a membrane bioreactor (MBR) pilot plant was confirmed by immune-transmission electron microscopy, which implies that bacterial HBGAs can contribute to the genotype-dependent removal of human noroviruses with MBR using MF membrane. PMID:27095709

  12. The C-Terminal Portion of the Nucleocapsid Protein Demonstrates SARS-CoV Antigenicity

    Institute of Scientific and Technical Information of China (English)

    Guozhen Liu; Bo You; Ye Yin; Shuting Li; Hao Wang; Yan Ren; Jia Ji; Xiaoqian Zhao; Yongqiao Sun; Xiaowei Zhang; Jianqiu Fang; Shaohui Hu; Jian Wang; Siqi Liu; Jun Yu; Heng Zhu; Huanming Yang; Yongwu Hu; Peng Chen; Jianning Yin; Jie Wen; Jingqiang Wang; Liang Lin; Jinxiu Liu

    2003-01-01

    In order to develop clinical diagnostic tools for rapid detection of SARS-CoV (severe acute respiratory syndrome-associated coronavirus) and to identify candidate proteins for vaccine development, the C-terminal portion of the nucleocapsid (NC)gene was amplified using RT-PCR from the SARS-CoV genome, cloned into a yeast expression vector (pEGH), and expressed as a glutathione S-transferase (GST) and Hisx6 double-tagged fusion protein under the control of an inducible promoter.Western analysis on the purified protein confirmed the expression and purification of the NC fusion proteins from yeast. To determine its antigenicity, the fusion protein was challenged with serum samples from SARS patients and normal controls.The NC fusion protein demonstrated high antigenicity with high specificity, and therefore, it should have great potential in designing clinical diagnostic tools and provide useful information for vaccine development.

  13. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition.

    Science.gov (United States)

    Arenz, Stefan; Wilson, Daniel N

    2016-01-01

    Protein synthesis occurs on macromolecular machines, called ribosomes. Bacterial ribosomes and the translational machinery represent one of the major targets for antibiotics in the cell. Therefore, structural and biochemical investigations into ribosome-targeting antibiotics provide not only insight into the mechanism of action and resistance of antibiotics, but also insight into the fundamental process of protein synthesis. This review summarizes the recent advances in our understanding of protein synthesis, particularly with respect to X-ray and cryoelectron microscopy (cryo-EM) structures of ribosome complexes, and highlights the different steps of translation that are targeted by the diverse array of known antibiotics. Such findings will be important for the ongoing development of novel and improved antimicrobial agents to combat the rapid emergence of multidrug resistant pathogenic bacteria. PMID:27481773

  14. The Secondary Structure of Heated Whey Protein and Its Hydrolysates Antigenicity

    Institute of Scientific and Technical Information of China (English)

    PANGZhi-hua; ZHU Jun; WU Wei-jing; WANG Fang; RENFa-zheng; ZHANG Lu-daa; GUOHui-yuan

    2011-01-01

    Fourier transform infrared spectroscopy (FFIR) and circular dichroism (CD) were used to investigate the conformational changes of heated whey protein (WP) and the corresponding changes in the hydrolysates immunoreactivity were determined by competitive enzyme-linked immunosorbent assay (ELISA).Results showed that the contents of α- helix and β-sheet of WP did not decrease much under mild heating conditions and the antigenicity was relatively high; when the heating intensity increased (70 ℃ for 25 min or 75 ℃ for 20 min),the content of α- helix and β-sheet decreased to the minimum,so was the antigenicity; However,when the WP was heated at even higher temperature and for a longer time,the β-sheet associated with protein aggregation begun to increase and the antigenicity increased correspondingly.It was concluded that the conformations of heated WP and the antigenicity of its hydrolysates are related and the optimum structure for decreasing the hydrolysates antigeniity is the least content of α-helix and β-sheet.Establishing the elationship between the WP secondary structure and WP hydrolysates antigenicity is significant to supply the reference for antigenicity reduction by enzymolysis.

  15. Genetic and antigenic analysis of the G attachment protein of bovine respiratory syncytial virus strains

    DEFF Research Database (Denmark)

    Elvander, M.; Vilcek, S.; Baule, C.;

    1998-01-01

    Antigenic and genetic studies of bovine respiratory syncytial virus (BRSV) were made on isolates obtained from three continents over 27 years. Antigenic variation between eight isolates was initially determined using protein G-specific monoclonal antibodies. Four distinct reaction patterns were...... of a 731 nucleotide fragment in the G protein gene. Nine of the BRSV strains were analysed by direct sequencing of RT-PCR amplicons whereas sequences of 18 BRSV and three human respiratory syncytial virus (HRSV) strains were obtained from GenBank. The analysis revealed similarities of 88-100% among BRSV...

  16. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...

  17. Expression and characterization of hepatitis C virus core protein fused to hepatitis B virus core antigen

    Institute of Scientific and Technical Information of China (English)

    杨莉; 王春林; 汪垣; 李光地

    1999-01-01

    Recombinant plasmids were constructed by fusing the gene fragments encoding the full-length (1-191aa) and the truncated (1-40aa and 1-69aa) HCV core proteins (HCc) respectively to the core gene of HBV at the position of amino acid 144 and expressed in E. coli. The products were analyzed by ELISA, Western blotting as well as the immunization of the mice. The results showed that those fusion proteins (B144C191, B144C69, B144C40) possessed the dual antigenicity and immunogenicity of both hepatitis B virus core antigen (HBcAg) and hepatitis C virus core protein (HCc). Analysis by electron microscopy and CsCl density gradient ultra-centrifugation revealed that similar to the HBcAg itself, all fusion proteins were able to form particles. Comparison of the antigenicity and immunogenicity of those fusion proteins showed that the length of HCc gene fused to HBeAg had no much effect on the antigenicity and immunogenicity of HBcAg, however, B144C69 and B144C40 induced higher titres antibodies against HCc than B14d

  18. Sperm protein 17 is an oncofetal antigen: a lesson from a murine model.

    Science.gov (United States)

    Arnaboldi, F; Menon, A; Menegola, E; Di Renzo, F; Mirandola, L; Grizzi, F; Figueroa, J A; Cobos, E; Jenkins, M; Barajon, I; Chiriva-Internati, Maurizio

    2014-10-01

    Sperm protein 17 (Sp17) was originally identified in the flagellum of spermatozoa and subsequently included in the subfamily of tumor-associated antigens known as cancer-testes antigens (CTA). Sp17 has been associated with the motility and migratory capacity in tumor cells, representing a link between gene expression patterns in germinal and tumor cells of different histological origins. Here we review the relevance of Sp17 expression in the mouse embryo and cancerous tissues, and present additional data demonstrating Sp17 complex expression pattern in this murine model. The expression of Sp17 in embryonic as well as adult neoplastic cells, but not normal tissues, suggests this protein should be considered an "oncofetal antigen." Further investigations are necessary to elucidate the mechanisms and functional significance of Sp17 aberrant expression in human adult cells and its implication in the pathobiology of cancer. PMID:24811209

  19. Screening and characterization of early diagnostic antigens in excretory-secretory proteins from Trichinella spiralis intestinal infective larvae by immunoproteomics.

    Science.gov (United States)

    Liu, Ruo Dan; Jiang, Peng; Wen, Hui; Duan, Jiang Yang; Wang, Li Ang; Li, Jie Feng; Liu, Chun Ying; Sun, Ge Ge; Wang, Zhong Quan; Cui, Jing

    2016-02-01

    The excretory-secretory (ES) antigens from Trichinella spiralis muscle larvae are the most commonly used diagnostic antigens for trichinellosis, but specific IgG antibodies were not detected in early stage of infection. The aim of this study was to identify early diagnostic antigens from ES proteins of intestinal infective larvae (IIL), the first invasive stage of T. spiralis. Six bands (92, 52, 45, 35, 32, and 29 kDa) of IIL ES proteins were recognized by infection sera in Western blotting as early as 10 days post infection. Total of 54 T. spiralis proteins in six bands were identified by shotgun LC-MS/MS, 30 proteins were annotated, and 27 had hydrolase activity. Several proteins (serine protease, putative trypsin, deoxyribonuclease II family protein, etc.) could be considered as the potential early diagnostic antigens for trichinellosis. Our study provides new insights for screening early diagnostic antigens from intestinal worms of T. spiralis. PMID:26468148

  20. Speciifc T-cell Responses to CFP10, an Secreted Antigens of Mycobacterium Tuberculosis Protein, in Chinese hIV Positive Individuals

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Objective To construct prokaryotic expression vector of CFP-10 gene, and obtain recombinant protein, and the recombinant CFP-10 protein was taken as stimulus to detect speciifc T cell responses, to set up a method to faciliate to detect potential TB infection in China. Methods CFP-10 was cloned into inducible prokaryotic expression vector pET-32a (+) and transfected into E. coli BL21 (DE3). After IPTG induction, the product were veriifed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot hybridization were carried out to verify the antigenicity;the recombinant CFP-10 protein was taken as stimulus to detect speciifc T cell responses in HIV (+) persons with or without clinical manifestation of TB diseases, and HIV (-) controls with or without TB diseases. Results The CFP-10 recombinant protein exsited in the form of inclusion body and accounted for 94%in total bacterial protein of E. coli and the molecular weight is 31 kD;Western blot conifrmed the recombinant proteins had high antigenicity;our in-house ELISpot-IFN-γassay with recombinant antigen derived from CFP-10 proteins showed significant higher frequencies in TB patients with or without HIV infection than that in the healthy controls and only HIV (+) group. Conclusions The recombinant CFP-10 genes can be expressed successfully in prokaryotic expression system of E. coli and recombinant proteins with high antigenicity were obtained, which will set foundation for further study on their immunogenicity and bioinformatics. Our results proved that it is indeed true that some HIV positive patient have high frequencies of TB specific T cell responses, which maybe a clue to find latent TB infection in this population.

  1. Group B streptococcal Ibc protein antigen: distribution of two determinants in wild-type strains of common serotypes.

    OpenAIRE

    Johnson, D R; Ferrieri, P

    1984-01-01

    Studies were carried out on the distribution of the Ibc protein antigenic marker in wild-type strains of group B streptococci of diverse serotypes isolated from epidemiological studies. Rabbits were immunized with group B streptococcal strain H36B, a prototype Ib strain, to produce antibody to the Ibc protein antigens. One antiserum (no. 970) contained antibody only against the trypsin-sensitive (TS) portion of the Ibc antigen. A second antiserum (no. 973), however, contained antibody to both...

  2. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine;

    2012-01-01

    Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing...

  3. Entamoeba histolytica antigenic protein detected in pus aspirates from patients with amoebic liver abscess.

    Science.gov (United States)

    Othman, Nurulhasanah; Mohamed, Zeehaida; Yahya, Maya Mazuwin; Leow, Voon Meng; Lim, Boon Huat; Noordin, Rahmah

    2013-08-01

    Entamoeba histolytica is a causative agent of amoebic liver abscess (ALA) and is endemic in many underdeveloped countries. We investigated antigenic E. histolytica proteins in liver abscess aspirates using proteomics approach. Pus samples were first tested by real-time PCR to confirm the presence of E. histolytica DNA and the corresponding serum samples tested for E. histolytica-specific IgG by a commercial ELISA. Proteins were extracted from three and one pool(s) of pus samples from ALA and PLA (pyogenic liver abscess) patients respectively, followed by analysis using isoelectric focussing, SDS-PAGE and Western blot. Unpurified pooled serum samples from infected hamsters and pooled human amoebic-specific IgG were used as primary antibodies. The antigenic protein band was excised from the gel, digested and analysed by MALDI-TOF/TOF and LC-MS/MS. The results using both primary antibodies showed an antigenic protein band of ∼14kDa. Based on the mass spectrum analysis, putative tyrosine kinase is the most probable identification of the antigenic band.

  4. Entamoeba histolytica antigenic protein detected in pus aspirates from patients with amoebic liver abscess.

    Science.gov (United States)

    Othman, Nurulhasanah; Mohamed, Zeehaida; Yahya, Maya Mazuwin; Leow, Voon Meng; Lim, Boon Huat; Noordin, Rahmah

    2013-08-01

    Entamoeba histolytica is a causative agent of amoebic liver abscess (ALA) and is endemic in many underdeveloped countries. We investigated antigenic E. histolytica proteins in liver abscess aspirates using proteomics approach. Pus samples were first tested by real-time PCR to confirm the presence of E. histolytica DNA and the corresponding serum samples tested for E. histolytica-specific IgG by a commercial ELISA. Proteins were extracted from three and one pool(s) of pus samples from ALA and PLA (pyogenic liver abscess) patients respectively, followed by analysis using isoelectric focussing, SDS-PAGE and Western blot. Unpurified pooled serum samples from infected hamsters and pooled human amoebic-specific IgG were used as primary antibodies. The antigenic protein band was excised from the gel, digested and analysed by MALDI-TOF/TOF and LC-MS/MS. The results using both primary antibodies showed an antigenic protein band of ∼14kDa. Based on the mass spectrum analysis, putative tyrosine kinase is the most probable identification of the antigenic band. PMID:23680184

  5. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    Directory of Open Access Journals (Sweden)

    Natalia V. Permyakova

    2015-01-01

    Full Text Available Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L. genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  6. Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II

    NARCIS (Netherlands)

    Xu, Chun-Ping; de Belt-Gritter, Betsy van; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2007-01-01

    Antigen I/II can be found on streptococcal cell surfaces and is involved in their interaction with salivary proteins. In this paper, we determine the adsorption enthalpies of salivary proteins to Streptococcus mutans LT 11 and S. mutans IB03987 with and without antigen I/II, respectively, using isot

  7. In Silico Design of a Chimeric Protein Containing Antigenic Fragments of Helicobacter pylori; A Bioinformatic Approach

    Science.gov (United States)

    Mohammad, Nazanin; Karsabet, Mehrnaz Taghipour; Amani, Jafar; Ardjmand, Abolfazl; Zadeh, Mohsen Razavi; Gholi, Mohammad Khalifeh; Saffari, Mahmood; Ghasemi, Amir

    2016-01-01

    Helicobacter pylori is a global health problem which has encouraged scientists to find new ways to diagnose, immunize and eradicate the H. pylori infection. In silico studies are a promising approach to design new chimeric antigen having the immunogenic potential of several antigens. In order to obtain such benefit in H. pylori vaccine study, a chimeric gene containing four fragments of FliD sequence (1-600 bp), UreB (327-334 bp),VacA (744-805 bp) and CagL(51-100 bp) which have a high density of B- and T-cell epitopes was designed. The secondary and tertiary structures of the chimeric protein and other properties such as stability, solubility and antigenicity were analyzed. The in silico results showed that after optimizing for the purpose of expression in Escherichia coli BL21, the solubility and antigenicity of the construct fragments were highly retained. Most regions of the chimeric protein were found to have a high antigenic propensity and surface accessibility. These results would be useful in animal model application and accounted for the development of an epitope-based vaccine against the H. pylori. PMID:27335622

  8. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  9. Overexpression and Enzymatic Assessment of Antigenic Fragments of Hyaluronidase Recombinant Protein From Streptococcus pyogenes

    OpenAIRE

    Sadoogh Abbasian, Shabnam; Ghaznavi Rad, Ehsanollah; Akbari, Neda; Zolfaghari, Mohammad Reza; Pakzad, Iraj; ABTAHI, Hamid

    2014-01-01

    Background: Hyaluronidase catalyzes the hydrolysis of hyaluronan polymers to N-acetyl-D-glucosamine and D-glucuronic acid. This enzyme is a dimer of identical subunits. Hyaluronidase has different pharmaceutical and medical applications. Previously, we produced a recombinant hyaluronidase antigenic fragment of Streptococcus pyogenes. Objectives: This study aimed to improve the protein production and purity of hyaluronidase recombinant protein from S. pyogenes. In addition, the enzymatic activ...

  10. Antigen capture ELISA for the heat shock protein (hsp60) of Chlamydia trachomatis.

    OpenAIRE

    Horner, P J; Ali, M.; Parker, D.; Weber, J. N.; Taylor-Robinson, D.; McClure, M O

    1996-01-01

    AIMS: To develop an indirect ELISA using the heat shock protein (hsp60) of Chlamydia trachomatis as antigen. METHODS: The hsp60 gene was amplified by PCR, expressed in the vector pDEV-107 and transformed into Escherichia coli. The recombinant protein, expressed as a beta-galactosidase fusion product, was captured onto a solid phase using a monoclonal antibody directed against beta-galactosidase. Following incubation with goat anti-human antibody conjugated to peroxidase and colour development...

  11. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  12. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  13. Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins

    OpenAIRE

    Zhou, Dapeng; Cantu, Carlos; Sagiv, Yuval; Schrantz, Nicolas; Kulkarni, Ashok B.; Qi, Xiaoyang; Mahuran, Don J.; Carlos R Morales; Grabowski, Gregory A.; Benlagha, Kamel; Savage, Paul; Bendelac, Albert; Teyton, Luc

    2003-01-01

    It is now established that CD1 molecules present lipid antigens to T cells, although it is not clear how the exchange of lipids between membrane compartments and the CD1 binding groove is assisted. We report that mice deficient in prosaposin, the precursor to a family of endosomal lipid transfer proteins (LTP), exhibit specific defects in CD1d-mediated antigen presentation and lack Vα14 NKT cells. In vitro, saposins extracted monomeric lipids from membranes and from CD1, thereby promoting the...

  14. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  15. Bacterial Hydrolysis of Protein and Methylated Protein and Its Implications for Studies of Protein Degradation in Aquatic Systems

    OpenAIRE

    Keil, Richard G.; Kirchman, David L.

    1992-01-01

    Ribulose 1,5-bisphosphate carboxylase was radiolabelled by in vitro translation, resulting in uniformly labelled ribulose 1,5-bisphosphate carboxylase, and also by reductive methylation. We investigated the degradation of the two forms of radiolabelled protein by natural bacterial populations. Although total hydrolysis of uniformly labelled protein and methylated protein was nearly equal, percent assimilation, respiration, and release as low-molecular-weight material were different. Radioacti...

  16. A mutant chaperone converts a wild-type protein into a tumor-specific antigen.

    Science.gov (United States)

    Schietinger, Andrea; Philip, Mary; Yoshida, Barbara A; Azadi, Parastoo; Liu, Hui; Meredith, Stephen C; Schreiber, Hans

    2006-10-13

    Monoclonal antibodies have become important therapeutic agents against certain cancers. Many tumor-specific antigens are mutant proteins that are predominantly intracellular and thus not readily accessible to monoclonal antibodies. We found that a wild-type transmembrane protein could be transformed into a tumor-specific antigen. A somatic mutation in the chaperone gene Cosmc abolished function of a glycosyltransferase, disrupting O-glycan Core 1 synthesis and creating a tumor-specific glycopeptidic neo-epitope consisting of a monosaccharide and a specific wild-type protein sequence. This epitope induced a high-affinity, highly specific, syngeneic monoclonal antibody with antitumor activity. Such tumor-specific glycopeptidic neo-epitopes represent potential targets for monoclonal antibody therapy.

  17. Characterization of the carbohydrate components of Taenia solium oncosphere proteins and their role in the antigenicity.

    Science.gov (United States)

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H; Gilman, Robert H

    2013-10-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that posttranslational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells.

  18. [Immunotherapy by polyvalent bacterial antigen (Broncasma Berna) in the prevention of pneumonia in the elderly].

    Science.gov (United States)

    Suzuki, K; Yamamoto, K; Adachi, S; Yamamoto, T

    1989-03-01

    Pneumonia in the elderly often occurs repeatedly, and the mortality rate from pneumonia continues to remain high today despite the usual use of antibacterial chemotherapy. Therefore, we conducted immunotherapy using a polyvalent bacterial vaccine (broncasma Berna). We treated 54 elderly patients with Broncasma Berna, containing chief bacterial pathogens responsible for pneumonia in the elderly. Clinical results obtained during 2 years were compared with those of 18 subjects not treated with Broncasma Berna. The survival rate was 64.8% for the group treated with Broncasma Berna and 50% for the group not treated. The frequency of contraction of pneumonia decreased significantly in the group treated. Clinical efficacy was obtained in 63% of the group treated to prevent pneumonia. The death rate from pneumonia was 17.6% for the group treated and 44.4% for the group not treated. Immunologically, reinforcement in humoral and cellular immunities was indicated by immunoglobulin values, positive tuberculin skin tests, and an increase in lymphocyte stimulation index values for Broncasma Berna. Significant pathogens in sputum disappeared or decreased in 6 (54.6%) out of 11 patients. Side effects such as pain or redness at the site of injection were observed in 6 patients. From the above results, it may be concluded that Broncasma Berna can be considered to be effective as a long-term immunoprophylactic agent in the prevention of pneumonia in the elderly.

  19. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  20. Determinants of antigenicity and specificity in immune response for protein sequences

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2011-06-01

    Full Text Available Abstract Background Target specific antibodies are pivotal for the design of vaccines, immunodiagnostic tests, studies on proteomics for cancer biomarker discovery, identification of protein-DNA and other interactions, and small and large biochemical assays. Therefore, it is important to understand the properties of protein sequences that are important for antigenicity and to identify small peptide epitopes and large regions in the linear sequence of the proteins whose utilization result in specific antibodies. Results Our analysis using protein properties suggested that sequence composition combined with evolutionary information and predicted secondary structure, as well as solvent accessibility is sufficient to predict successful peptide epitopes. The antigenicity and the specificity in immune response were also found to depend on the epitope length. We trained the B-Cell Epitope Oracle (BEOracle, a support vector machine (SVM classifier, for the identification of continuous B-Cell epitopes with these protein properties as learning features. The BEOracle achieved an F1-measure of 81.37% on a large validation set. The BEOracle classifier outperformed the classical methods based on propensity and sophisticated methods like BCPred and Bepipred for B-Cell epitope prediction. The BEOracle classifier also identified peptides for the ChIP-grade antibodies from the modENCODE/ENCODE projects with 96.88% accuracy. High BEOracle score for peptides showed some correlation with the antibody intensity on Immunofluorescence studies done on fly embryos. Finally, a second SVM classifier, the B-Cell Region Oracle (BROracle was trained with the BEOracle scores as features to predict the performance of antibodies generated with large protein regions with high accuracy. The BROracle classifier achieved accuracies of 75.26-63.88% on a validation set with immunofluorescence, immunohistochemistry, protein arrays and western blot results from Protein Atlas database

  1. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong; Orr, Galya; Xiong, Yijia; Squier, Thomas; Rorrer, Gregory L.; Roesijadi, Guritno

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively bound the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.

  2. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  3. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  4. Abnormal expressions of proliferating cell nuclear antigen and P27 protein in brain glioma

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Both proliferating cell nuclear antigen and P27 protein are important factors to regulate cell cycle. While, the combination of them can provide exactly objective markers to evaluate prognosis of patients with brain glioma needs to be further studied based on pathological level.OBJECTIVE: To observe the expressions of proliferating cell nuclear antigen and P27 protein in both injured and normal brain glioma tissues and analyze the effect of them on onset and development of brain glioma.DESIGN: Case contrast observation.SETTING: Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University.PARTICIPANTS: A total of 63 patients with brain glioma were selected from Department of Neurosurgery,the Second Affiliated Hospital of Xi'an Jiaotong University from July 1996 to June 2000. There were 38 males and 25 females and their ages ranged from 23 to 71 years. Based on pathological classification and grading standards of brain glioma, patients were divided into grade Ⅰ - tⅡ (n =30) and grade Ⅲ - Ⅳ (n =33). All cases received one operation but no radiotherapy and chemiotherapy before operation. Sample tissues were collected from tumor parenchyma. Non-neoplastic brain tissues were collected from another 12 non-tumor subjects who received craniocerebral trauma infra-decompression and regarded as the control group. There were 10 males and 2 females and their ages ranged from 16 to 54 years. The experiment had got confirmed consent from local ethic committee and the collection was provided confirmed consent from patients and their relatives. All samples were restained with HE staining so as to diagnose as the brain glioma.While, all patients with brain glioma received radiotherapy after operation and their survival periods were followed up.METHODS: Primary lesion wax of brain glioma was cut into serial sections and stained with S-P immunohistochemical staining. Brown substance which was observed in tumor nucleus was regarded as the

  5. Evaluation of Mdh1 protein as an antigenic candidate for a vaccine against candidiasis.

    Science.gov (United States)

    Shibasaki, Seiji; Aoki, Wataru; Nomura, Takashi; Karasaki, Miki; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2014-01-01

    Candida albicans malate dehydrogenase (Mdh1p) has been screened by previous proteome studies as a candidate for a vaccine against candidiasis. In this study, recombinant Mdh1 protein with a His-tag was produced in Escherichia coli and evaluated as an immunogenic protein against candidiasis. Mdh1p was administrated to mice by two methods subcutaneous injection and intranasal administration before challenging them with a lethal dose of C. albicans. After vaccination of Mdh1p, antibody responses were observed. To evaluate the vaccination effect of Mdh1p, survival tests were performed after 35 d. Although all control mice died within 24 d or 25 d, 100% and 80% of mice survived with subcutaneous and intranasal administration, respectively. Therefore, our results indicate that, among C. albicans antigens examined thus far, Mdh1p is currently the most effective antigen for use as a vaccine for C. albicans.

  6. Transcriptional Regulation of the Borrelia burgdorferi Antigenically Variable VlsE Surface Protein

    OpenAIRE

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P.; Norris, Steven J; Stevenson, Brian

    2006-01-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that...

  7. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins

    OpenAIRE

    Aguilar, Roberto M.; Talamantes, Frank J.; Bustamante, Juan J.; Muñoz, Jesus; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2009-01-01

    The membrane-bound rat growth hormone receptor (GH-R) and an alternatively spliced isoform, the soluble rat GH binding protein (GH-BP), are comprised of identical N-terminal GH binding domains, however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent multiple antigen peptide (MAP) dendrimer with four identical branches of a C-ter...

  8. Demonstration of antigenic variation among rabies virus isolates by using monoclonal antibodies to nucleocapsid proteins.

    OpenAIRE

    Smith, J S; Reid-Sanden, F L; Roumillat, L. F.; Trimarchi, C; Clark, K; Baer, G M; Winkler, W G

    1986-01-01

    Rabies virus isolates from terrestrial animals in six areas of the United States were examined with a panel of monoclonal antibodies to nucleocapsid proteins. Characteristic differences in immunofluorescence reactions permitted the formation of four antigenically distinct reaction groups from the 231 isolates tested. The geographic distribution of these groups corresponded well with separate rabies enzootic areas recognized by surveillance of sylvatic rabies in the United States. Distinctive ...

  9. Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens.

    OpenAIRE

    Lindahl, Gunnar; Stålhammar-Carlemalm, Margaretha; Areschoug, Thomas

    2005-01-01

    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received incre...

  10. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin;

    2006-01-01

    immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...

  11. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus;

    2014-01-01

    microsomal triglyceride transfer protein (MTP), which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen...

  12. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Science.gov (United States)

    Standish, Alistair J; Salim, Angela A; Zhang, Hua; Capon, Robert J; Morona, Renato

    2012-01-01

    Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  13. Chemical inhibition of bacterial protein tyrosine phosphatase suppresses capsule production.

    Directory of Open Access Journals (Sweden)

    Alistair J Standish

    Full Text Available Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pneumoniae, a major human pathogen, the system is present in all but 2 of the 93 serotypes found to date. In order to study this regulation further, we performed a screen to find inhibitors of the phosphatase, CpsB. This led to the observation that a recently discovered marine sponge metabolite, fascioquinol E, inhibited CpsB phosphatase activity both in vitro and in vivo at concentrations that did not affect the growth of the bacteria. This inhibition resulted in decreased capsule synthesis in D39 and Type 1 S. pneumoniae. Furthermore, concentrations of Fascioquinol E that inhibited capsule also lead to increased attachment of pneumococci to a macrophage cell line, suggesting that this compound would inhibit the virulence of the pathogen. Interestingly, this compound also inhibited the phosphatase activity of the structurally unrelated gram-negative PTP, Wzb, which belongs to separate family of protein tyrosine phosphatases. Furthermore, incubation with Klebsiella pneumoniae, which contains a homologous phosphatase, resulted in decreased capsule synthesis. Taken together, these data provide evidence that PTPs are critical for Wzy-dependent capsule production across a spectrum of bacteria, and as such represents a valuable new molecular target for the development of anti-virulence antibacterials.

  14. A Strategy for Searching Antigenic Regions in the SARS-CoV Spike Protein

    Institute of Scientific and Technical Information of China (English)

    Yan Ren; Cuiqi Zhou; Jingqiang Wang; Jianning Yin; Ningzhi Xu; Siqi Liu; Zhengfeng Zhou; Jinxiu Liu; Liang Lin; Shuting Li; Hao Wang; Ji Xia; Zhe Zhao; Jie Wen

    2003-01-01

    In the face of the worldwide threat of severe acute respiratory syndrome (SARS)to human life, some of the most urgent challenges are to develop fast and accurate analytical methods for early diagnosis of this disease as well as to create a safe anti-viral vaccine for prevention. To these ends, we investigated the antigenicity of the spike protein (S protein), a major structural protein in the SARS-coronavirus (SARS-CoV). Based upon the theoretical analysis for hydrophobicity of the S protein, 18 peptides were synthesized. Using Enzyme-Linked Immunosorbent Assay (ELISA), these peptides were screened in the sera from SARS patients. According to these results, two fragments of the S gene were amplified by PCR and cloned into pET-32a. Both S fragments were expressed in the BL-21 strain and further purified with an affinity chromatography. These recombinant S fragments were confirmed to have positive cross-reactions with SARS sera, either by Western blot or by ELISA. Our results demonstrated that the potential epitope regions were located at Codons 469-882 in the S protein, and one epitope site was located at Codons 599-620. Identification of antigenic regions in the SARS-CoV S protein may be important for the functional studies of this virus or the development of clinical diagnosis.

  15. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    Directory of Open Access Journals (Sweden)

    Jonathan J Hansen

    Full Text Available BACKGROUND: Inflammatory bowel diseases (IBD may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta. Healthy, germ-free HLA-B27 transgenic (Tg rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation. METHODS: Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene. RESULTS: B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats. CONCLUSIONS: B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to

  16. Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery.

    Science.gov (United States)

    Gao, Ping; Xia, Guixue; Bao, Zixian; Feng, Chao; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Chen, Xiguang

    2016-10-01

    This study aimed to investigate the efficacy of nanoparticles based on chitosan as a vehicle for oral antigen delivery in fish vaccination. Carboxymethyl chitosan/chitosan nanoparticles (CMCS/CS-NPs) loaded extracellular products (ECPs) of Vibrio anguillarum were successfully developed by ionic gelation method. The prepared ECPs-loaded CMCS/CS-NPs were characterized for various parameters including morphology, particle size (312±7.18nm), zeta potential (+17.4±0.38mV), loading efficiency (57.8±2.54%) and stability under the simulated gastrointestinal (GI) tract conditions in turbot. The in vitro profile showed that the cumulative release of ECPs from nanoparticles was higher in pH 7.4 (58%) than in pH 2.0 (37%) and pH 4.5 (29%) after 48h. Fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) was used as model protein antigen and encapsulated in CMCS/CS-NPs for investigating the biodistribution of antigen after oral delivery to turbot in 24h. Oral immunization of ECPs-loaded CMCS/CS-NPs group in turbot showed elevated specific antibody and higher concentrations of lysozyme activity and complement activity in fish serum than ECPs solution. CMCS/CS-NPs loaded with ECPs could enhance both adaptive and innate immune responses than the group treated with ECPs solution and suggested to be a potential antigen delivery system. PMID:27287772

  17. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  18. Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery.

    Science.gov (United States)

    Bae, Hae-Duck; Lee, Joohyun; Jin, Xing-Hai; Lee, Kyunglim

    2016-09-01

    Nasal vaccination offers a promising alternative to intramuscular (i.m.) vaccination because it can induce both mucosal and systemic immunity. However, its major drawback is poor absorption of large antigens in the nasal epithelium. Protein transduction domains (PTDs), also called cell-penetrating peptides, have been proposed as vehicles for nasal delivery of therapeutic peptides and proteins. Here, we evaluated the potential of a mutant PTD derived from translationally controlled tumor protein (designated TCTP-PTD 13) as an antigen carrier for nasal vaccines. We first compared the l- and d-forms of TCTP-PTD 13 isomers (l- or d-TCTP-PTD 13) as antigen carriers. Studies in mice demonstrated that nasally administered mixtures of the model antigen ovalbumin (OVA) and d-TCTP-PTD 13 induced higher plasma IgG titers and secretory IgA levels in nasal washes than nasally administered OVA alone, OVA/l-TCTP-PTD 13, or i.m.-injected OVA. Plasma IgG subclass responses (IgG1 and IgG2a) of mice nasally administered OVA/d-TCTP-PTD 13 showed that the predominant IgG subclass was IgG1, indicating a Th2-biased immune response. We also used synthetic CpG oligonucleotides (CpG) as a Th1 immune response-inducing adjuvant. Nasally administered CpG plus OVA/d-TCTP-PTD 13 was superior in eliciting systemic and mucosal immune responses compared to those induced by nasally administered OVA/d-TCTP-PTD 13. Furthermore, the OVA/CpG/d-TCTP-PTD 13 combination skewed IgG1 and IgG2a profiles of humoral immune responses toward a Th1 profile. These findings suggest that TCTP-derived PTD is a suitable vehicle to efficiently carry antigens and to induce more powerful antigen-specific immune responses and a more balanced Th1/Th2 response when combined with a DNA adjuvant. PMID:27454469

  19. Hepatitis delta virus: protein composition of delta antigen and its hepatitis B virus-derived envelope.

    Science.gov (United States)

    Bonino, F; Heermann, K H; Rizzetto, M; Gerlich, W H

    1986-01-01

    Hepatitis delta virus (HDV)-associated particles were purified from the serum of an experimentally infected chimpanzee by size chromatography and by density centrifugation. Hepatitis delta antigen (HDAg) was detected after mild detergent treatment at a column elution volume corresponding to 36-nm particles and banded at a density of 1.25 g/ml. The serum had an estimated titer of 10(9) to 10(10) HDV-associated particles and had only a 10-fold excess of hepatitis B surface antigen (HBsAg) not associated with HDAg. Therefore, HDV appears to be much more efficiently packed and secreted than is its helper virus, hepatitis B virus (HBV), which is usually accompanied by a 1,000-fold excess of HBsAg. The protein compositions of the HDAg-containing particles were analyzed by immunoblotting with HDAg-, HBsAg-, and hepatitis B core antigen-specific antisera and monoclonal antibodies to HBV surface gene products. The HBsAg envelope of HDAg contained approximately 95% P24/GP27s, 5% GP33/36s, and 1% P39/GP42s proteins. This protein composition was more similar to that of the 22-nm particles of HBsAg than to that of complete HBV. The significant amount of GP33/36s suggests that the HBsAg component of the HDV-associated particle carries the albumin receptor. Two proteins of 27 and 29 kilodaltons which specifically bound antibody to HDAg but not HBV-specific antibodies were detected in the interior of the 36-nm particle. Since these proteins were structural components of HDAg and were most likely coded for by HDV, they were designated P27d and P29d. Images PMID:3701932

  20. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

    OpenAIRE

    Berens, Shawn J.; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the comp...

  1. Human seminal proteinase and prostate-specific antigen are the same protein

    Indian Academy of Sciences (India)

    Abdul Waheed; Md Imtaiyaz Hassan; Robert L Van Etten; Faizan Ahmad

    2008-06-01

    Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and compared. Both are glycoproteins of 32–34 kDa with protease activities. Based on some physicochemical, enzymatic and immunological properties, it is concluded that these proteins are in fact identical. The protein exhibits properties similar to kallikrein-like serine protease, trypsin, chymotrypsin and thiol acid protease. Tests of the activity of the enzyme against some potential natural and synthetic substrates showed that bovine serum albumin was more readily hydrolysed than casein. The results of this study should be useful in purifying and assaying this protein. Based on published studies and the present results, the broad proteolytic specificity of human seminal proteinase suggests a role for this protein in several physiological functions.

  2. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA-MUC1 fusion peptides (+/- glycosylation loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB-Tg(HLA-A/H2-D2Enge/J (HLA-A2 transgenic mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.

  3. Monitoring antigenic protein integrity during glycoconjugate vaccine synthesis using capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Tengattini, Sara; Domínguez-Vega, Elena; Temporini, Caterina; Terreni, Marco; Somsen, Govert W

    2016-09-01

    A capillary electrophoresis-mass spectrometry (CE-MS) method was developed for the characterization and integrity assessment of the Mycobacterium tuberculosis (MTB) antigens TB10.4 and Ag85B and their chemically produced glycoconjugates, which are glycovaccine candidates against tuberculosis (TB). In order to prevent protein adsorption to the inner capillary wall and to achieve efficient separation of the antigen proteoforms, a polyionic multilayer coating of polybrene-dextran sulfate-polybrene (PB-DS-PB) was used in combination with 1.5 M acetic acid as background electrolyte (BGE). Coupling of CE to high-resolution time-of-flight MS was achieved by a coaxial interface employing a sheath liquid of isopropanol-water (50:50, v/v) containing 0.1 % formic acid. The MTB antigens were exposed to experimental conditions used for chemical glycosylation (but no activated saccharide was added) in order to investigate their stability during glycovaccine production. CE-MS analysis revealed the presence of several closely related degradation products, including truncated, oxidized and conformational variants, which were assigned by accurate mass. Analysis of synthesized mannose conjugates of TB10.4 and Ag85B allowed the determination of the glycoform composition of the neo-glycoproteins next to the characterization of degradation products which were shown to be partly glycoconjugated. Moreover, the selectivity of CE-MS allowed specific detection of deamidated species (protein mass change of 1.0 Da only), indicating that chemical glycosylation increased susceptibility to deamidation. Overall, the results show that CE-MS represents a useful analytical tool for the detailed characterization and optimization of neo-glycoconjugate products. Graphical Abstract Flowchart illustrating Mycobacterium tuberculosis (MTB) antigen glycosylation, glycoconjugate variant and degradation product separation by capillary electrophoresis (CE) and their characterization by intact mass

  4. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  5. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. PMID:27561651

  6. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  7. Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

    OpenAIRE

    Ling, Losee L.; Xian, Jun; Ali, Syed; Geng, Bolin; Fan, Jun; Mills, Debra M.; Arvanites, Anthony C.; Orgueira, Hernan; Ashwell, Mark A.; Carmel, Gilles; Xiang, Yibin; Moir, Donald T.

    2004-01-01

    Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Esch...

  8. Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR)

    Science.gov (United States)

    Gomez, Sandra; Adalid-Peralta, Laura; Palafox-Fonseca, Hector; Cantu-Robles, Vito Adrian; Soberón, Xavier; Sciutto, Edda; Fragoso, Gladis; Bobes, Raúl J.; Laclette, Juan P.; Yauner, Luis del Pozo; Ochoa-Leyva, Adrián

    2015-01-01

    Excretory/Secretory (ES) proteins play an important role in the host-parasite interactions. Experimental identification of ES proteins is time-consuming and expensive. Alternative bioinformatics approaches are cost-effective and can be used to prioritize the experimental analysis of therapeutic targets for parasitic diseases. Here we predicted and functionally annotated the ES proteins in T. solium genome using an integration of bioinformatics tools. Additionally, we developed a novel measurement to evaluate the potential antigenicity of T. solium secretome using sequence length and number of antigenic regions of ES proteins. This measurement was formalized as the Abundance of Antigenic Regions (AAR) value. AAR value for secretome showed a similar value to that obtained for a set of experimentally determined antigenic proteins and was different to the calculated value for the non-ES proteins of T. solium genome. Furthermore, we calculated the AAR values for known helminth secretomes and they were similar to that obtained for T. solium. The results reveal the utility of AAR value as a novel genomic measurement to evaluate the potential antigenicity of secretomes. This comprehensive analysis of T. solium secretome provides functional information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnosis and immunological interest. PMID:25989346

  9. Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR).

    Science.gov (United States)

    Gomez, Sandra; Adalid-Peralta, Laura; Palafox-Fonseca, Hector; Cantu-Robles, Vito Adrian; Soberón, Xavier; Sciutto, Edda; Fragoso, Gladis; Bobes, Raúl J; Laclette, Juan P; Yauner, Luis del Pozo; Ochoa-Leyva, Adrián

    2015-05-19

    Excretory/Secretory (ES) proteins play an important role in the host-parasite interactions. Experimental identification of ES proteins is time-consuming and expensive. Alternative bioinformatics approaches are cost-effective and can be used to prioritize the experimental analysis of therapeutic targets for parasitic diseases. Here we predicted and functionally annotated the ES proteins in T. solium genome using an integration of bioinformatics tools. Additionally, we developed a novel measurement to evaluate the potential antigenicity of T. solium secretome using sequence length and number of antigenic regions of ES proteins. This measurement was formalized as the Abundance of Antigenic Regions (AAR) value. AAR value for secretome showed a similar value to that obtained for a set of experimentally determined antigenic proteins and was different to the calculated value for the non-ES proteins of T. solium genome. Furthermore, we calculated the AAR values for known helminth secretomes and they were similar to that obtained for T. solium. The results reveal the utility of AAR value as a novel genomic measurement to evaluate the potential antigenicity of secretomes. This comprehensive analysis of T. solium secretome provides functional information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnosis and immunological interest.

  10. Expression and refolding of the protective antigen of Bacillus anthracis: A model for high-throughput screening of antigenic recombinant protein refolding.

    Science.gov (United States)

    Pavan, María Elisa; Pavan, Esteban Enrique; Cairó, Fabián Martín; Pettinari, María Julia

    2016-01-01

    Bacillus anthracis protective antigen (PA) is a well known and relevant immunogenic protein that is the basis for both anthrax vaccines and diagnostic methods. Properly folded antigenic PA is necessary for these applications. In this study a high level of PA was obtained in recombinant Escherichia coli. The protein was initially accumulated in inclusion bodies, which facilitated its efficient purification by simple washing steps; however, it could not be recognized by specific antibodies. Refolding conditions were subsequently analyzed in a high-throughput manner that enabled nearly a hundred different conditions to be tested simultaneously. The recovery of the ability of PA to be recognized by antibodies was screened by dot blot using a coefficient that provided a measure of properly refolded protein levels with a high degree of discrimination. The best refolding conditions resulted in a tenfold increase in the intensity of the dot blot compared to the control. The only refolding additive that consistently yielded good results was L-arginine. The statistical analysis identified both cooperative and negative interactions between the different refolding additives. The high-throughput approach described in this study that enabled overproduction, purification and refolding of PA in a simple and straightforward manner, can be potentially useful for the rapid screening of adequate refolding conditions for other overexpressed antigenic proteins. PMID:26777581

  11. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  12. Salmonella enterica Serotype Typhimurium Fimbrial Proteins Serve as Antigens during Infection of Mice

    OpenAIRE

    Humphries, Andrea; DeRidder, Sandra; Bäumler, Andreas J.

    2005-01-01

    The Salmonella enterica serotype Typhimurium genome contains 13 operons with homology to fimbrial gene sequences. Here we investigated the role of 11 serotype Typhimurium fimbrial proteins, including FimA, AgfA (CsgA), BcfA, StbA, SthA, LpfA, PefA, StdA, StcA, StiA, and StfA, as antigens during the infection of genetically resistant mice (CBA). Upon the growth of serotype Typhimurium in standard laboratory broth culture, only the expression of FimA could be detected by Western blot analysis. ...

  13. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G;

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...

  14. The RFA regulatory sequence-binding protein in the promoter of prostate-specific antigen gene

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To assure what sequence associated with the androgen regulation, a 15 bp region at the upstream of the ARE of prostate-specific antigen (PSA) promoter, termed RFA, was found indispensable for androgen receptor (AR)-mediated transactivation of PSA promoter. In transfection and CAT assays, some nucleotides substitution in RFA could significantly decrease the androgen inducibility for PSA promoter. The in vitro DNA binding assay demonstrated that RFA bound specifically with some non-receptor protein factors in prostate cell nucleus, but the mutant type of RFA lost this ability, so RFA might be a novel accessory cis-element. The RFA-binding proteins were isolated and purified by affinity chromatography using RFA probes. SDS-PAGE and preliminary protein identification showed these proteins possessed sequence high homology with multifunctional protein heterogeneous nuclear ribonucleoprotein A1, A2 (hnRNP A1, A2). RFA-binding proteins possibly cooperate with AR-mediated transactivation for PSA promoter as coactivator. The study results will facilitate further understanding the mechanism and tissue specificity of PSA promoter.

  15. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites

    OpenAIRE

    Michal Sima; Blanka Ferencova; Alon Warburg; Iva Rohousova; Petr Volf

    2016-01-01

    Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replaceme...

  16. Transfer of protein antigens into milk after intravenous injection into lactating mice

    Energy Technology Data Exchange (ETDEWEB)

    Harmatz, P.R.; Hanson, D.G.; Walsh, M.K.; Kleinman, R.E.; Bloch, K.J.; Walker, W.A.

    1986-08-01

    We investigated the transfer of bovine serum /sup 125/I-albumin (/sup 125/I-BSA), bovine /sup 125/I-gamma-globulin (/sup 125/I-BGG), /sup 125/I-ovalbumin (/sup 125/I-OVA), and /sup 125/I-beta-lactoglobulin (/sup 125/I-BLG) from the blood into the milk of lactating mice. Equal amounts (by weight) of the radiolabeled proteins were injected intravenously into mice 1 wk postpartum. Total radioactivity, trichloroacetic acid-precipitable radioactivity, and specifically immunoprecipitable radioactivity were measured in serum, mammary gland homogenate, and milk. Clearance of immunoreactive OVA (iOVA) and iBLG from the circulation was more rapid than iBSA and iBGG. The radioactivity in mammary tissue associated with BSA and BGG was greater than 70% immunoprecipitable throughout the 4-h test interval; /sup 125/I-OVA and /sup 125/I-BLG were less than 12% precipitable 1 and 4 h after injection. In milk obtained at 4 h, there was an approximately 10-fold greater accumulation of iBSA or iBGG than of iOVA or iBLG. These experiments demonstrate that protein antigens differ in their ability to transfer from maternal circulation into milk. The transfer into milk appeared to be in proportion to persistence of the antigens in the maternal circulation.

  17. Neurofibromatosis type 2 tumor suppressor protein, NF2, induces proteasome-mediated degradation of JC virus T-antigen in human glioblastoma.

    Directory of Open Access Journals (Sweden)

    Sarah Beltrami

    Full Text Available Neurofibromatosis type 2 protein (NF2 has been shown to act as tumor suppressor primarily through its functions as a cytoskeletal scaffold. However, NF2 can also be found in the nucleus, where its role is less clear. Previously, our group has identified JC virus (JCV tumor antigen (T-antigen as a nuclear binding partner for NF2 in tumors derived from JCV T-antigen transgenic mice. The association of NF2 with T-antigen in neuronal origin tumors suggests a potential role for NF2 in regulating the expression of the JCV T-antigen. Here, we report that NF2 suppresses T-antigen protein expression in U-87 MG human glioblastoma cells, which subsequently reduces T-antigen-mediated regulation of the JCV promoter. When T-antigen mRNA was quantified, it was determined that increasing expression of NF2 correlated with an accumulation of T-antigen mRNA; however, a decrease in T-antigen at the protein level was observed. NF2 was found to promote degradation of ubiquitin bound T-antigen protein via a proteasome dependent pathway concomitant with the accumulation of the JCV early mRNA encoding T-antigen. The interaction between T-antigen and NF2 maps to the FERM domain of NF2, which has been shown previously to be responsible for its tumor suppressor activity. Co-immunoprecipitation assays revealed a ternary complex among NF2, T-antigen, and the tumor suppressor protein, p53 within a glioblastoma cell line. Further, these proteins were detected in various degrees in patient tumor tissue, suggesting that these associations may occur in vivo. Collectively, these results demonstrate that NF2 negatively regulates JCV T-antigen expression by proteasome-mediated degradation, and suggest a novel role for NF2 as a suppressor of JCV T-antigen-induced cell cycle regulation.

  18. EXPRESSION OF P53 PROTEIN AND PROLIFERATING CELL NUCLEAR ANTIGEN IN HUMAN GESTATION TROPHOBLASTIC DISEASE

    Institute of Scientific and Technical Information of China (English)

    黄铁军; 王志忠; 方光光; 刘志恒

    2004-01-01

    Objective: To study the relationship between p53 protein, proliferating cell nuclear antigen (PCNA) expression and benign or malignant gestational trophoblastic disease (MGTD). Methods: The histotomic sections of 48 patients with gestational trophoblastic disease and 24 patients of normal chorionic villi were stained using immunohistochemistry. The monoclonal antibodies were used to determine p53 protein and PCNA. Results: The frequency of p53 and PCNA positive expression were significantly different among the chorionic villi of normal pregnancy, hydratidiform mole (HM) and MGTD. But neither p53 nor PCNA has any relation with the clinical staging or metastasis of MGTD. Conclusion: Both P53 and PCNA are valuable in diagnosis of human gestational trophoblastic disease.

  19. Echinococcus granulosus antigen B: a Hydrophobic Ligand Binding Protein at the host-parasite interface.

    Science.gov (United States)

    Silva-Álvarez, Valeria; Folle, Ana Maite; Ramos, Ana Lía; Zamarreño, Fernando; Costabel, Marcelo D; García-Zepeda, Eduardo; Salinas, Gustavo; Córsico, Betina; Ferreira, Ana María

    2015-02-01

    Lipids are mainly solubilized by various families of lipid binding proteins which participate in their transport between tissues as well as cell compartments. Among these families, Hydrophobic Ligand Binding Proteins (HLBPs) deserve special consideration since they comprise intracellular and extracellular members, are able to bind a variety of fatty acids, retinoids and some sterols, and are present exclusively in cestodes. Since these parasites have lost catabolic and biosynthetic pathways for fatty acids and cholesterol, HLBPs are likely relevant for lipid uptake and transportation between parasite and host cells. Echinococcus granulosus antigen B (EgAgB) is a lipoprotein belonging to the HLBP family, which is very abundant in the larval stage of this parasite. Herein, we review the literature on EgAgB composition, structural organization and biological properties, and propose an integrated scenario in which this parasite HLBP contributes to adaptation to mammalian hosts by meeting both metabolic and immunomodulatory parasite demands.

  20. Comparison of protein and DNA synthesis assays of guinea pig spleen lymphocytes after stimulation with influenza virus antigen and phytohemagglutinin

    International Nuclear Information System (INIS)

    Two in vitro methods for the demonstration of cell-mediated immune response are compared: Protein and DNA synthesis for detection of in vitro influenza virus antigen- and mitogen-induced lymphocyte stimulation. Guinea pig spleen lymphocytes sensitized with influenza virus antigen were tested in a microadaptation of the lymphocyte transformation test using 14C- or 3H-leucine and 3H-thymidine. As a positive control for T-cell stimulation phytohemagglutinin (PHA)-induced lymphocyte stimulation was measured. The following results were obtained: 1. Kinetics of the incorporation of 14C-leucine and 3H-thymidine in lymphocytes incubated with optimal and suboptimal PHA-doses respectively are quantitatively similar but different in time. 2. The results of the protein and DNA synthesis stimulation assays were correlated against influenza virus antigens. 3. The administration of influenza virus antigens in complete Freund's adjuvant induced a more intensive cell-mediated reaction than injections of antigens in aqueous suspensions, but the results of both methods of cell-mediated immune response (CMI) were correlated. 4. The optimal CMI under the experimental cinditions described is induced by an administration of 30 to 50 μg virus protein per animal and by a combined intramuscular - intraperitoneal immunization procedure. 5. The measurement of the early stimulation of protein synthesis in the protein synthesis stimulation test is substantially more rapid than for the classical lymphocyte transformation test. (author)

  1. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping;

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the environm......Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the...... environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required for...

  2. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping;

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the environm......Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world causing millions of gastroenteritis cases each year. C. jejuni is a Gram negative, spiral-shaped, highly motile bacterium with very restricted growth requirements, and it appears to be adapted to the...... environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required for...

  3. Antigenicity and Immunogenicity of Rotavirus VP6 Protein Expressed on the Surface of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    L. E. Esteban

    2013-01-01

    Full Text Available Group A rotaviruses are the major etiologic agents of acute gastroenteritis worldwide in children and young animals. Among its structural proteins, VP6 is the most immunogenic and is highly conserved within this group. Lactococcus lactis is a food-grade, Gram-positive, and nonpathogenic lactic acid bacteria that has already been explored as a mucosal delivery system of heterologous antigens. In this work, the nisin-controlled expression system was used to display the VP6 protein at the cell surface of L. lactis. Conditions for optimal gene expression were established by testing different nisin concentrations, cell density at induction, and incubation times after induction. Cytoplasmic and cell wall protein extracts were analyzed by Western blot and surface expression was confirmed by flow cytometry. Both analysis provided evidence that VP6 was efficiently expressed and displayed on the cell surface of L. lactis. Furthermore, the humoral response of mice immunized with recombinant L. lactis was evaluated and the displayed recombinant VP6 protein proved to be immunogenic. In conclusion, this is the first report of displaying VP6 protein on the surface of L. lactis to induce a specific immune response against rotavirus. These results provide the basis for further evaluation of this VP6-displaying L. lactis as a mucosal delivery vector in a mouse model of rotavirus infection.

  4. Hypervariable antigenic region 1 of classical swine fever virus E2 protein impacts antibody neutralization.

    Science.gov (United States)

    Liao, Xun; Wang, Zuohuan; Cao, Tong; Tong, Chao; Geng, Shichao; Gu, Yuanxing; Zhou, Yingshan; Li, Xiaoliang; Fang, Weihuan

    2016-07-19

    Envelope glycoprotein E2 of classical swine fever virus (CSFV) is the major antigen that induces neutralizing antibodies and confers protection against CSFV infection. There are three hypervariable antigenic regions (HAR1, HAR2 and HAR3) of E2 that are different between the group 1 vaccine C-strain and group 2 clinical isolates. This study was aimed to characterize the antigenic epitope region recognized by monoclonal antibody 4F4 (mAb-4F4) that is present in the group 2 field isolate HZ1-08, but not in the C-strain, and examine its impact on neutralization titers when antisera from different recombinant viruses were cross-examined. Indirect ELISA with C-strain E2-based chimeric proteins carrying the three HAR regions showed that the mAb-4F4 bound to HAR1 from HZ1-08 E2, but not to HAR2 or HAR3, indicating that the specific epitope is located in the HAR1 region. Of the 6 major residues differences between C-strain and field isolates, Glu713 in the HAR1 region of strain HZ1-08 is critical for mAb-4F4 binding either at the recombinant protein level or using intact recombinant viruses carrying single mutations. C-strain-based recombinant viruses carrying the most antigenic part of E2 or HAR1 from strain HZ1-08 remained non-pathogenic to pigs and induced good antibody responses. By cross-neutralization assay, we observed that the anti-C-strain serum lost most of its neutralization capacity to RecC-HZ-E2 and QZ-14 (subgroup 2.1d field isolate in 2014), and vice versa. More importantly, the RecC-HAR1 virus remained competent in neutralizing ReC-HZ-E2 and QZ-14 strains without compromising the neutralization capability to the recombinant C-strain. Thus, we propose that chimeric C-strain carrying the HAR1 region of field isolates is a good vaccine candidate for classical swine fever. PMID:27317266

  5. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    Science.gov (United States)

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  6. Imaging bacterial protein expression using genetically encoded sensors composed of RNA

    OpenAIRE

    Song, Wenjiao; Strack, Rita L.; Jaffrey, Samie R.

    2013-01-01

    We show that the difficulties in imaging the dynamics of protein expression in live bacterial cells can be overcome using fluorescent sensors based on Spinach, an RNA that activates the fluorescence of a small-molecule fluorophore. These RNAs selectively bind target proteins, and exhibit fluorescence increases that enable protein expression to be imaged in living cells. These sensors provide a general strategy to image protein expression in single bacteria in real-time.

  7. Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi.

    Science.gov (United States)

    Lawrenz, M B; Hardham, J M; Owens, R T; Nowakowski, J; Steere, A C; Wormser, G P; Norris, S J

    1999-12-01

    VlsE is a 35-kDa surface-exposed lipoprotein of Borrelia burgdorferi that was shown previously to undergo antigenic variation through segmental recombination of silent vls cassettes with vlsE during experimental mouse infections. Previous data had indicated that sera from North American Lyme disease patients and experimentally infected animals contained antibodies reactive with VlsE. In this study, sera from patients with Lyme disease, syphilis, and autoimmune conditions as well as from healthy controls were examined for reactivity with VlsE by Western blotting and enzyme-linked immunosorbent assay (ELISA). Strong Western blot reactivity to a recombinant VlsE cassette region protein was obtained consistently with Lyme disease sera. Although sera from Lyme disease patients also reacted with a band corresponding to VlsE in B. burgdorferi B31-5A3, interpretation was complicated by low levels of VlsE expression in in vitro-cultured B. burgdorferi and by the presence of comigrating bands. An ELISA using recombinant VlsE was compared with an ELISA using sonically disrupted B. burgdorferi as the antigen. For a total of 93 Lyme disease patient sera examined, the VlsE ELISA yielded sensitivities of 63% for culture-confirmed erythema migrans cases and 92% for later stages, as compared to 61 and 98%, respectively, for the "whole-cell" ELISA. The specificities of the two assays with healthy blood donor sera were comparable, but the VlsE ELISA was 90% specific with sera from syphilis patients, compared to 20% specificity for the whole-cell ELISA with this group. Neither assay showed reactivity with a panel of sera from 20 non-Lyme disease arthritis patients or 20 systemic lupus erythematosus patients. Our results indicate that VlsE may be useful in the immunodiagnosis of Lyme disease and may offer greater specificity than ELISAs using whole B. burgdorferi as the antigen.

  8. Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates

    Directory of Open Access Journals (Sweden)

    Eisen Damon P

    2006-07-01

    Full Text Available Abstract Background As malaria becomes increasingly drug resistant and more costly to treat, there is increasing urgency to develop effective vaccines. In comparison to other stages of the malaria lifecycle, sexual stage antigens are under less immune selection pressure and hence are likely to have limited antigenic diversity. Methods Clinical isolates from a wide range of geographical regions were collected. Direct sequencing of PCR products was then used to determine the extent of polymorphisms for the novel Plasmodium falciparum sexual stage antigen von Willebrand Factor A domain-related Protein (PfWARP. These isolates were also used to confirm the extent of diversity of sexual stage antigen Pfs28. Results PfWARP was shown to have non-synonymous substitutions at 3 positions and Pfs28 was confirmed to have a single non-synonymous substitution as previously described. Conclusion This study demonstrates the limited antigenic diversity of two prospective P. falciparum sexual stage antigens, PfWARP and Pfs28. This provides further encouragement for the proceeding with vaccine trials based on these antigens.

  9. Effect of Bacterial Infection on Proliferating Cell Nuclear Antigen Expression after Partial Splenectomy of Rabbits Using Microwave Coagulator

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The purpose of this study was to investigate the proliferating cell nuclear antigen (PCNA) expression of preserved spleen in rabbits when pneumonia diplococcus suspension was administered after partial splenectomy using microwaver coagulator.

  10. The Structural Characterization and Antigenicity of the S Protein of SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Jingxiang Li; Zhao Xu; Wei Tong; Wei Wei; Qingrun Zhang; Shengbin Li; Wei Li; Hongyan Li; Yudong Li; Wei Dong; Jian Wang; Chunqing Luo; Shengli Bi; Huanming Yang; Yajun Deng; Yujun Han; Lin Tang; Jing Wang; Jia Ji; Jia Ye; Fanbo Jiang

    2003-01-01

    The corona-like spikes or peplomers on the surface of the virion under electronicmicroscope are the most striking features of coronaviruses. The S (spike) proteinis the largest structural protein, with 1,255 amino acids, in the viral genome. Itsstructure can be divided into three regions: a long N-terminal region in the exte-rior, a characteristic transmembrane (TM) region, and a short C-terminus in theinterior of a virion. We detected fifteen substitutions of nucleotides by comparisonswith the seventeen published SARS-CoV genome sequences, eight (53.3%) of whichare non-synonymous mutations leading to amino acid alternations with predictedphysiochemical changes. The possible antigenic determinants of the S protein arepredicted, and the result is confirmed by ELISA (enzyme-linked immunosorbentassay) with synthesized peptides. Another profound finding is that three disulfidebonds are defined at the C-terminus with the N-terminus of the E (envelope) pro-tein, based on the typical sequence and positions, thus establishing the structuralconnection with these two important structural proteins, if confirmed. Phyloge-netic analysis reveals several conserved regions that might be potent drug targets.

  11. Mesothelioma: profile of keratin proteins and carcinoembryonic antigen: an immunoperoxidase study of 20 cases and comparison with pulmonary adenocarcinomas.

    OpenAIRE

    Corson, J M; Pinkus, G. S.

    1982-01-01

    The distribution of keratin proteins and carcinoembryonic antigen (CEA) in 20 diffuse pleural malignant mesotheliomas and 20 adenocarcinomas of the lung was determined with the use of an indirect immunoperoxidase method. Keratin proteins were identified in all of the mesotheliomas, with strong staining observed in 17 of the cases. Tumor cells of various histologic types (tubular, papillary, solid, and spindle) revealed staining for keratin proteins. A variety of staining patterns were observe...

  12. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    Directory of Open Access Journals (Sweden)

    Michal Sima

    2016-03-01

    Full Text Available Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs using salivary gland homogenates (SGHs as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species.Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera.Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  13. Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica.

    Science.gov (United States)

    Brewer, Matthew T; Agbedanu, Prince N; Zamanian, Mostafa; Day, Tim A; Carlson, Steve A

    2013-11-01

    Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.

  14. Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus.

    Science.gov (United States)

    Yu, Tian-Fei; Li, Ming; Yan, Bing; Shao, Shu-Li; Fan, Xing-Dong; Wang, Jia; Wang, Dan-Na

    2016-08-01

    Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection. PMID:27154558

  15. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines.

    Science.gov (United States)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel ('nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination. PMID:20562880

  16. Expression, biosynthesis and release of preadipocyte factor-1/ delta-like protein/fetal antigen-1 in pancreatic -cells

    DEFF Research Database (Denmark)

    Friedrichsen, B N; Carlsson, C; Møldrup, A;

    2003-01-01

    Preadipocyte factor-1 (Pref-1)/delta-like protein/fetal antigen-1 (FA1) is a member of the epidermal growth factor-like family. It is widely expressed in embryonic tissues, whereas in adults it is confined to the adrenal gland, the anterior pituitary, the endocrine pancreas, the testis and the ov......Preadipocyte factor-1 (Pref-1)/delta-like protein/fetal antigen-1 (FA1) is a member of the epidermal growth factor-like family. It is widely expressed in embryonic tissues, whereas in adults it is confined to the adrenal gland, the anterior pituitary, the endocrine pancreas, the testis...

  17. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    Science.gov (United States)

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  18. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    Science.gov (United States)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  19. Regulation of bacterial RecA protein function.

    Science.gov (United States)

    Cox, Michael M

    2007-01-01

    The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes. PMID:17364684

  20. Development of an ELISA based on the baculovirus-expressed capsid protein of porcine circovirus type 2 as antigen.

    Science.gov (United States)

    Liu, Changming; Ihara, Takeshi; Nunoya, Tetsuo; Ueda, Susumu

    2004-03-01

    The genome of porcine circovirus type 2 (PCV2) contains two major open reading frames, which have been shown to encode the virus capsid and replication-associated proteins. The capsid protein is a major structural protein of the virus; it can be a suitable target antigen for detecting PCV2-specific antibodies to monitor PCV2 infection. To produce the antigen, the capsid protein coding sequence was cloned into a baculovirus transfer vector, and a recombinant capsid (rC) protein of PCV2 was expressed as a combined fusion protein in frame with a C-terminal peptide of six histidines. The affinity-purified rC protein was used as coating antigen to develop an ELISA for detecting the virus-specific antibodies in swine sera. The rC protein-based ELISA (rcELISA) was evaluated by examining a panel of 49 PCV2-positive and 49 PCV2-negative swine sera. In comparative experiments of immunoperoxidase monolayer assay (IPMA) using 102 field sera, there was 89.2% coincidence between data obtained by the rcELISA and IPMA. The rcELISA achieved 88.5% specificity and 89.4% sensitivity for detection of PCV2 antibody in the field sera. The assay showed no cross-reactivity with antibodies to PCV type 1, porcine reproductive and respiratory syndrome virus and porcine parvovirus. The results suggest that the rcELISA is suitable for routine serodiagnosis and epidemiological surveys of PCV2-associated diseases. PMID:15107550

  1. Identification of a nonstructural DNA-binding protein (DBP as an antigen with diagnostic potential for human adenovirus.

    Directory of Open Access Journals (Sweden)

    Li Guo

    Full Text Available BACKGROUND: Human adenoviruses (HAdVs have been implicated as important agents in a wide range of human illnesses. To date, 58 distinct HAdV serotypes have been identified and can be grouped into six species. For the immunological diagnosis of adenoviruses, the hexon protein, a structural protein, has been used. The potential of other HAdV proteins has not been fully addressed. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a nonstructural antigenic protein, the DNA binding protein (DBP of human adenovirus 5 and 35 (Ad5, Ad35 - was identified using immunoproteomic technology. The expression of Ad5 and Ad35 DBP in insect cells could be detected by rhesus monkey serum antibodies and healthy adult human serum positive for Ad5 and Ad35. Recombinant DBPs elicited high titer antibodies in mice. Their conserved domain displayed immunological cross-reactions with heterologous DBP antibodies in Western blot assays. DBP-IgM ELISA showed higher sensitivity adenovirus IgM detection than the commercial Adenovirus IgM Human ELISA Kit. A Western blot method developed based on Ad5 DBP was highly consistent with (χ(2 = 44.9, P<0.01 the Western blot assay for the hexon protein in the detection of IgG, but proved even more sensitive. CONCLUSIONS/SIGNIFICANCE: The HAdV nonstructural protein DBP is an antigenic protein that could serve as an alternative common antigen for adenovirus diagnosis.

  2. Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR expression by flow cytometry

    Directory of Open Access Journals (Sweden)

    Zheng Zhili

    2012-02-01

    Full Text Available Abstract Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymphocytes (PBL with CARs directed against a variety of tumor associated antigens. Despite the improvements in the design of CARs and expansion of the number of target antigens, there is no universal flow cytometric method available to detect the expression of CARs on the surface of transduced lymphocytes. Methods Currently anti-fragment antigen binding (Fab conjugates are most widely used to determine the expression of CARs on gene-modified lymphocytes by flow cytometry. The limitations of these reagents are that many of them are not commercially available, generally they are polyclonal antibodies and often the results are inconsistent. In an effort to develop a simple universal flow cytometric method to detect the expression of CARs, we employed protein L to determine the expression of CARs on transduced lymphocytes. Protein L is an immunoglobulin (Ig-binding protein that binds to the variable light chains (kappa chain of Ig without interfering with antigen binding site. Protein L binds to most classes of Ig and also binds to single-chain antibody fragments (scFv and Fab fragments. Results We used CARs derived from both human and murine antibodies to validate this novel protein L based flow cytometric method and the results correlated well with other established methods. Activated human PBLs were transduced with retroviral vectors expressing two human antibody based CARs (anti-EGFRvIII, and anti-VEGFR2, two murine antibody derived CARs (anti-CSPG4, and anti

  3. Rho-modifying bacterial protein toxins from Photorhabdus species.

    Science.gov (United States)

    Jank, Thomas; Lang, Alexander E; Aktories, Klaus

    2016-06-15

    Photorhabdus bacteria live in symbiosis with entomopathogenic nematodes. The nematodes invade insect larvae, where they release the bacteria, which then produce toxins to kill the insects. Recently, the molecular mechanisms of some toxins from Photorhabdus luminescens and asymbiotica have been elucidated, showing that GTP-binding proteins of the Rho family are targets. The tripartite Tc toxin PTC5 from P. luminescens activates Rho proteins by ADP-ribosylation of a glutamine residue, which is involved in GTP hydrolysis, while PaTox from Photorhabdus asymbiotica inhibits the activity of GTPases by N-acetyl-glucosaminylation at tyrosine residues and activates Rho proteins indirectly by deamidation of heterotrimeric G proteins.

  4. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  5. Tartrate/tripolyphosphate as co-crosslinker for water soluble chitosan used in protein antigens encapsulation.

    Science.gov (United States)

    Srivastava, Gopal; Walke, Shilratna; Dhavale, Dilip; Gade, Wasudeo; Doshi, Jignesh; Kumar, Rakesh; Ravetkar, Satish; Doshi, Pooja

    2016-10-01

    In drug delivery research, several toxic chemical crosslinkers and non-toxic ionic crosslinkers have been exploited for the synthesis of microparticles from acetic acid soluble chitosan. This paper hypothesized the implementation of sodium potassium tartrate (SPT) as an alternative crosslinker for sodium tripolyphosphate (TPP) and SPT/TPP co-crosslinkers for synthesis of the microparticles using water soluble chitosan (WSC) for encapsulation of Bovine serum albumin (BSA) as a model protein, and Tetanus toxoid (TT) as a model vaccine. The crosslinking was confirmed by FT-IR, SEM with EDS. The XRD entailed molecular dispersion of proteins and thermal analysis confirmed the higher stability of STP/TPP co-crosslinked formulations. The resultant microparticles were exhibiting crosslinking degree (52-67%), entrapment efficiency (72-80%), particle size (0.3-1.7μm), zeta potential (+24 to 46mV) and mucoadhesion (41-68%). The superiority of SPT over TPP was confirmed by higher crosslinking degree and entrapment efficiency. However, co-crosslinking were advantageous in higher regression values for Langmuir adsorption isotherm, slower swelling tendency and extended 30days controlled in-vitro release study. TT release obeyed the Quasi-Fickian diffusion mechanism for single and cocrosslinked formulations. Overall, in crosslinking of chitosan as biological macromolecules, STP/TPP may be alternative for single ionic crosslinked formulations for protein antigen delivery. PMID:27246374

  6. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  7. Construction, Expression and Characterization of a Chimeric Protein Targeting Carcinoembryonic Antigen in Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    LI Yang; HUA Shu-cheng; MA Cheng-yuan; YU Zhen-xiang; XU Li-jun; LI Dan; SUN Li-li; LI Xiao; PENG Li-ping

    2011-01-01

    The carcinoembryonic antigen(CEA) is an oncofetal glycoprotein known as an important clinical tumor marker and is overexpressed in several types of tumors, including colorectal and lung carcinomas. We constructed a chimeric protein that exhibits both specific binding and immune stimulating activities, by fusing staphylococcal enterotoxin A(SEA) to the C-terminus of an anti-CEA single-chain disulfide-stabilized Fv(scdsFv) antibody (single-chain-C-terminus/SEA, SC-C/SEA). The SC-C/SEA protein was expressed in Escherichia coli(E. coli), refolded, and purified on an immobilized Ni2+ affinity chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and Western blot analysis reveal that the target protein was expressed sufficiently. We used immunofluorescence assays to demonstrate that SC-C/SEA could bind specifically to human lung carcinoma cells(A549), but almost human uterine cervix cells(HeLa). We also used the L-lactate dehydrogenase(LDH) release assay to show that SC-C/SEA elicits a strong A549 tumor-specific cytotoxic T lymphocyte(CTL) response in vitro. The results suggest that SC-C/SEA shows specific activity against CEA-positive cells and has potential application in CEA-targeted cancer immunotherapy.

  8. Identification of antigenic proteins associated with trichloroethylene-induced autoimmune disease by serological proteome analysis

    International Nuclear Information System (INIS)

    Although many studies indicated that trichloroethylene (TCE) could induce autoimmune diseases and some protein adducts were detected, the proteins were not identified and mechanisms remain unknown. To screen and identify autoantigens which might be involved in TCE-induced autoimmune diseases, three groups of sera were collected from healthy donors (I), patients suffering from TCE-induced exfoliative dermatitis (ED) (II), and the healed ones (III). Serological proteome analysis (SERPA) was performed with total proteins of TCE-treated L-02 liver cells as antigen sources and immunoglobins of the above sera as probes. Highly immunogenic spots (2-fold or above increase compared with group I) in group II and III were submitted to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem mass spectrometry sequencing. Western blot analysis was followed using commercial antibodies and individual serum. Six proteins were identified. Among them, Enoyl Coenzyme A hydratase peroxisoma 1 and lactate dehydrogenase B only showed stronger immunogenicity for group II sera, while Purine nucleoside phosphorylase, ribosomal protein P0 and proteasome activator subunit1 isoform1 also showed stronger immunogenicity for group III sera. Noteworthy, NM23 reacted only with group II sera. Western blot analysis of NM23 expression indicated that all of the individual serum of group II showed immune activity, which confirmed the validity of SERPA result. These findings revealed that there exist autoantibodies in group II and III sera. Besides, autoantibodies of the two stages of disease course were different. These autoantigens might serve as biomarkers to elucidate mechanisms underlying TCE toxicity and are helpful for diagnosis, therapy and prognosis of TCE-induced autoimmune diseases.

  9. BACTERIAL SOLUTE TRANSPORT PROTEINS IN THEIR LIPID ENVIRONMENT

    NARCIS (Netherlands)

    TVELD, GI; DRIESSEN, AJM; KONINGS, WN; Veld, Gerda in 't

    1993-01-01

    The cytoplasmic membrane of bacteria is a selective barrier that restricts entry and exit of solutes. Transport of solutes across this membrane is catalyzed by specific membrane proteins. Integral membrane proteins usually require specific lipids for optimal activity and are inhibited by other lipid

  10. Essential bacterial helicases that counteract the toxicity of recombination proteins

    OpenAIRE

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-01-01

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previo...

  11. Proteolytic activation of human pancreatitis associated protein is required for peptidoglycan binding and bacterial aggregation

    OpenAIRE

    Medveczky, Péter; Szmola, Richárd; Sahin-Tóth, Miklós

    2009-01-01

    Pancreatitis associated protein (PAP) is a 16 kDa lectin-like protein, which becomes robustly upregulated in the pancreatic juice during acute pancreatitis. Trypsin cleaves the N terminus of PAP, which in turn forms insoluble fibrils. PAP and its paralog the pancreatic stone protein induce bacterial aggregation and, more recently, PAP was shown to bind to the peptidoglycan of Gram positive bacteria and exert a direct bactericidal effect. However, the role of N-terminal processing in the antib...

  12. The Expression of Sperm Membrane Peptide-Hepatitis B Surface Antigen Fusion Protein with Recombinant Vaccinia Virus

    Institute of Scientific and Technical Information of China (English)

    杨晓鸣; 赵峰; 严缘昌; 李光地; 汪垣

    1998-01-01

    A synthetic oligonucleotide, HSD-2a, encoding a peptide segment of the extracellular domain of a human sperm membrane protein, YWK-Ⅱ, was fused with hepatitis B surface antigen gene (HBs gene). The fused gene was then cloned to pUC18 plasmid.

  13. Challenge with innate and protein antigens induces CCR7 expression by microglia in vitro and in vivo

    NARCIS (Netherlands)

    Dijkstra, I. M.; de Haas, A. H.; Brouwer, N.; Boddeke, H. W. G. M.; Biber, K.

    2006-01-01

    Since activated microglia are able to phagocytose damaged cells and subsequently express major histocompatibility complex class II (MHC-II) and co-stimulatory proteins, they are considered to function as antigen presenting cells (APCs) in the central nervous system. The maturation and migratory pote

  14. A New Gene Family (ariel) Encodes Asparagine-Rich Entamoeba histolytica Antigens, Which Resemble the Amebic Vaccine Candidate Serine-Rich E. histolytica Protein

    OpenAIRE

    Mai, Zhiming; Samuelson, John

    1998-01-01

    A family of genes, called ariel, are named for and encode asparagine-rich Entamoeba histolytica antigens containing 2 to 16 octapeptide repeats. Ariel proteins, which are constitutively expressed by trophozoites, belong to a large antigen family that includes the serine-rich E. histolytica protein (SREHP), an amebic vaccine candidate.

  15. High-Throughput Screening of Bacterial Protein Localization

    OpenAIRE

    Werner, John N.; Gitai, Zemer

    2010-01-01

    The ever-increasing number of sequenced genomes and subsequent sequence-based analysis has provided tremendous insight into cellular processes; however, the ability to experimentally manipulate this genomic information in the laboratory requires the development of new high-throughput methods. To translate this genomic information into information on protein function, molecular and cell biological techniques are required. One strategy to gain insight into protein function is to observe where e...

  16. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  17. Behind the lines–actions of bacterial type III effector proteins in plant cells

    Science.gov (United States)

    Büttner, Daniela

    2016-01-01

    Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:27526699

  18. A Peptide Mimicking a Region in Proliferating Cell Nuclear Antigen Specific to Key Protein Interactions Is Cytotoxic to Breast Cancer

    OpenAIRE

    Smith, Shanna J.; Gu, Long; Phipps, Elizabeth A.; Lacey E Dobrolecki; Mabrey, Karla S.; Gulley, Pattie; Dillehay, Kelsey L; Dong, Zhongyun; Fields, Gregg B.; Chen, Yun-Ru; Ann, David; Hickey, Robert J.; Malkas, Linda H.

    2015-01-01

    Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has imp...

  19. Development of antigen capture ELISA for the quantification of EIAV p26 protein.

    Science.gov (United States)

    Hu, Zhe; Chang, Hao; Ge, Man; Lin, Yuezhi; Wang, Xuefeng; Guo, Wei; Wang, Xiaojun

    2014-11-01

    An antigen capture enzyme-linked immunosorbent assay (AC-ELISA) was established based on two monoclonal antibodies (mAbs) for the quantification of equine infectious anemia virus (EIAV). Two p26-specific monoclonal antibodies were developed in mice. The mAb 9H8 was coated in microtiter plates as the capture antibody; the other mAb, 1G11, was coupled to horseradish peroxidase (HRP) and used as the detection antibody. The limit of detection for the EIAV p26 protein was 0.98 ng/ml, and the linearity range was 3.9-62.5 ng/ml. The sensitivity of p26 AC-ELISA for the detection of the virus (EIAV infectious clone, FDDVcmv3-8) was the same as that for the purified p26 protein. No cross-reaction with other equine viruses was observed by this method. The intra- and inter-assay coefficients of variation were below 8.3 and 10.3 % for testing p26 and FDDVcmv3-8, respectively. The AC-ELISA was also compared to Western blotting (WB) and reverse transcriptase (RT) assays, validating the sensitivity, accuracy, and reliability of this method. Both the AC-ELISA and RT assay showed good agreement, with a correlation coefficient of R (2) =0.9946. Sample analysis showed that this AC-ELISA is a useful tool for quantifying EIAV p26 in cell lysates and culture medium.

  20. Murine carcinoma expressing carcinoembryonic antigen-like protein is restricted by antibody against neem leaf glycoprotein.

    Science.gov (United States)

    Das, Arnab; Barik, Subhasis; Bose, Anamika; Roy, Soumyabrata; Biswas, Jaydip; Baral, Rathindranath; Pal, Smarajit

    2014-11-01

    We have generated a polyclonal antibody against a novel immunomodulator, neem leaf glycoprotein (NLGP) that can react to a specific 47 kDa subunit of NLGP. Generated anti-NLGP antibody (primarily IgG2a) was tested for its anti-tumor activity in murine carcinoma (EC, CT-26), sarcoma (S180) and melanoma (B16Mel) tumor models. Surprisingly, tumor growth restriction was only observed in CT-26 carcinoma models, without any alteration in other tumor systems. Comparative examination of antigenicity between four different tumor models revealed high expression of CEA-like protein on the surface of CT-26 tumors. Subsequent examination of the cross-reactivity of anti-NLGP antibody with purified or cell bound CEA revealed prominent recognition of CEA by anti-NLGP antibody, as detected by ELISA, Western Blotting and immunohistochemistry. This recognition seems to be responsible for anti-tumor function of anti-NLGP antibody only on CEA-like protein expressing CT-26 tumor models, as confirmed by ADCC reaction in CEA(+) tumor systems where dependency to anti-NLGP antibody is equivalent to anti-CEA antibody. Obtained result with enormous therapeutic potential for CEA(+) tumors may be explained in view of the epitope spreading concept, however, further investigation is crucial.

  1. Coexisting protist-bacterial community accelerates protein transformation in microcosm experiments

    Directory of Open Access Journals (Sweden)

    Ngo Vy Thao

    2014-12-01

    Full Text Available Proteins constitute the major portion of labile substances in the marine environment and are an important source of organic matter supporting marine ecosystems. However, previous studies have revealed that specific bacterial membrane proteins are refractory in the oceans. We here show by kinetic analyses of protease degradation activity using inactivated Pseudomonas aeruginosa (Pa cells as a proteinaceous substrate that bacterial proteases are insufficient to completely hydrolyze proteins, which may partially cause the protein accumulation in seawater. Protease activity was monitored simultaneously in 8 microcosms subjected to differing conditions. Some Pa proteins were retained for 30 days in the presence of bacteria without protists, whereas the Pa proteins were completely disappeared in the presence of both, indicating that these proteins were substantially incorporated into protist biomass. Our result suggests that protists play an important role in the transformation of bacterial proteins in seawater. Our experiments also imply that the functional/taxonomic diversity should be taken into account when considering decomposition activity in marine environments.

  2. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  3. Nematode-Derived Proteins Suppress Proliferation and Cytokine Production of Antigen-Specific T Cells via Induction of Cell Death

    Science.gov (United States)

    Hartmann, Wiebke; Brenz, Yannick; Kingsley, Manchang Tanyi; Ajonina-Ekoti, Irene; Brattig, Norbert W.; Liebau, Eva; Breloer, Minka

    2013-01-01

    In order to establish long-lasting infections in their mammalian host, filarial nematodes have developed sophisticated strategies to dampen their host’s immune response. Proteins that are actively secreted by the parasites have been shown to induce the expansion of regulatory T cells and to directly interfere with effector T cell function. Here, we analyze the suppressive capacity of Onchocercavolvulus-derived excreted/secreted proteins. Addition of two recombinant O. volvulus proteins, abundant larval transcript-2 (OvALT-2) and novel larval transcript-1 (OvNLT-1) to cell cultures of T cell receptor transgenic CD4+ and CD8+ T cells suppressed antigen-specific stimulation in vitro. Ovalbumin-specific CD4+ DO11.10 and OT-II T cells that had been stimulated with their cognate antigen in the presence of OvALT-2 or OvNLT-1 displayed reduced DNA synthesis quantified by 3H-thymidine incorporation and reduced cell division quantified by CFSE dilution. Furthermore, the IL-2 and IFN-γ response of ovalbumin-specific CD8+ OT-I T cells was suppressed by OvALT-2 and OvNLT-1. In contrast, another recombinant O. volvulus protein, microfilariae surface-associated antigen (Ov103), did not modulate T cell activation, thus serving as internal control for non-ESP-mediated artifacts. Suppressive capacity of the identified ESP was associated with induction of apoptosis in T cells demonstrated by increased exposure of phosphatidylserine on the plasma membrane. Of note, the digestion of recombinant proteins with proteinase K did not abolish the suppression of antigen-specific proliferation although the suppressive capacity of the identified excreted/secreted products was not mediated by low molecular weight contaminants in the undigested preparations. In summary, we identified two suppressive excreted/secreted products from O. volvulus, which interfere with the function of antigen-specific T cells in vitro. PMID:23861729

  4. Nematode-derived proteins suppress proliferation and cytokine production of antigen-specific T cells via induction of cell death.

    Directory of Open Access Journals (Sweden)

    Wiebke Hartmann

    Full Text Available In order to establish long-lasting infections in their mammalian host, filarial nematodes have developed sophisticated strategies to dampen their host's immune response. Proteins that are actively secreted by the parasites have been shown to induce the expansion of regulatory T cells and to directly interfere with effector T cell function. Here, we analyze the suppressive capacity of Onchocercavolvulus-derived excreted/secreted proteins. Addition of two recombinant O. volvulus proteins, abundant larval transcript-2 (OvALT-2 and novel larval transcript-1 (OvNLT-1 to cell cultures of T cell receptor transgenic CD4(+ and CD8(+ T cells suppressed antigen-specific stimulation in vitro. Ovalbumin-specific CD4(+ DO11.10 and OT-II T cells that had been stimulated with their cognate antigen in the presence of OvALT-2 or OvNLT-1 displayed reduced DNA synthesis quantified by (3H-thymidine incorporation and reduced cell division quantified by CFSE dilution. Furthermore, the IL-2 and IFN-γ response of ovalbumin-specific CD8(+ OT-I T cells was suppressed by OvALT-2 and OvNLT-1. In contrast, another recombinant O. volvulus protein, microfilariae surface-associated antigen (Ov103, did not modulate T cell activation, thus serving as internal control for non-ESP-mediated artifacts. Suppressive capacity of the identified ESP was associated with induction of apoptosis in T cells demonstrated by increased exposure of phosphatidylserine on the plasma membrane. Of note, the digestion of recombinant proteins with proteinase K did not abolish the suppression of antigen-specific proliferation although the suppressive capacity of the identified excreted/secreted products was not mediated by low molecular weight contaminants in the undigested preparations. In summary, we identified two suppressive excreted/secreted products from O. volvulus, which interfere with the function of antigen-specific T cells in vitro.

  5. Protein oxidation implicated as the primary determinant of bacterial radioresistance.

    Directory of Open Access Journals (Sweden)

    Michael J Daly

    2007-04-01

    Full Text Available In the hierarchy of cellular targets damaged by ionizing radiation (IR, classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

  6. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins.

    Directory of Open Access Journals (Sweden)

    Eran Bosis

    Full Text Available Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.

  7. Intracellular proteins of feline immunodeficiency virus and their antigenic relationship with equine infectious anaemia virus proteins.

    Science.gov (United States)

    Egberink, H F; Ederveen, J; Montelaro, R C; Pedersen, N C; Horzinek, M C; Koolen, M J

    1990-03-01

    Feline immunodeficiency virus (FIV) grown in cat lymphocyte and thymocyte cultures was labelled with L-[35S]methionine or [3H]glucosamine and virus-coded proteins were identified using immunoprecipitation. Polypeptides with apparent Mr values of 15K, 24K, 43K, 50K, 120K and 160K were detected. An additional polypeptide of 10K was detected by Western blot analysis. The two highest Mr species sometimes appeared as one band, of which only the 120K polypeptide was glycosylated. In the presence of tunicamycin gp120 was no longer detectable and a non-glycosylated precursor of 75K was found instead. Pulse-chase experiments suggested that the smaller polypeptides p24 and p15 are cleavage products of both p160 and p50. Western blot analysis using a rabbit serum directed against p26 of equine infectious anaemia virus (EIAV) and an anti-EIAV horse serum from a field case of infection revealed a cross-reactivity with p24 of FIV. Cat sera collected late after experimental FIV infection recognized p26 of EIAV, indicating a reciprocal cross-reactivity. PMID:1690264

  8. Effect of Bacillus mucilaginosus on weathering of phosphorite and a preliminary analysis of bacterial proteins

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu; LIAN Bin; LIU Congqiang

    2008-01-01

    The authors investigated the effect of Bacillus mucilaginosus on weathering of phosphorite. Analysis of different proteins was of significance in exploring the molecular biological mechanism in the bacterial weathering process. The concrete methods are described as follows: Mineral powder was put into liquid culture medium and B. mucilaginosus was incubated in the medium. The control (group) had no mineral powder in the medium. The treatments and controls were cultured simultaneously under the same condition. In a few days, the supernatant was filtrated, the main cations (Ca2+, Mg2+, Na+, Mn2+, Al3+, Fe3+, K+) were measured by ICP-OES, and the contents of water soluble phosphorus (Pws) and silicon (Siws) were determined by colorimetry. The residual solid was weighed on the filter paper, followed by digestion with concentrated HNO3. The concentrations of the main cations and Pws, Siws in the digest liquid were measured by using the method mentioned above. After the supernatant was centrifuged, the precipitation was used to analyze the protein differences between the treatment groups and the control groups by 2-dimentional gel electrophoresis (2-DE). The experimental results showed that apatite and quartz were partially weathered, but kaolinite was dissolved completely. The population of bacteria increased when mineral powder was added in the liquid medium. Software analysis and comparison of the 2-DE pictures of bacterial proteins revealed 1134 visible protein spots in the treatment group, and 729 visible protein spots in the control group. To compare the bacterial protein expression contents of the treatment group with those of the control group, there were 496 different protein spots, including 214 protein spots which indicated that the protein contents increased, 75 protein spots were indicative of a decrease, and 207 proteins were newly synthesized. It is proposed that the increased bacterial contents may be related to some protein expression and activation

  9. Bacterial protein meal in diets for growing pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Kjos, N.P.;

    2007-01-01

    blocks according to age. One pig from each litter was fed one of the four experimental diets. Soya-bean meal was replaced with BPM on the basis of digestible protein, and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), corresponding to 0%, 17%, 35% and 52...

  10. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  11. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands.

    Science.gov (United States)

    Niu, Mengya; Yu, Qianqian; Tian, Peng; Gao, Zhiyong; Wang, Dapeng; Shi, Xianming

    2015-01-01

    Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3' terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5' terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs. PMID:26733983

  12. Evaluation of multiple antigenic peptides based on the Chikungunya E2 protein for improved serological diagnosis of infection.

    Science.gov (United States)

    Bhatnagar, Santwana; Kumar, Pradeep; Mohan, Teena; Verma, Priyanka; Parida, M M; Hoti, S L; Rao, D N

    2015-03-01

    In recent years, Chikungunya virus (CHIKV) reemerged and numerous outbreaks were reported all over the world. After screening CHIKV-positive sera, we had already reported many dominant epitopes within the envelope E2 protein of CHIKV. In the present study, we aimed at developing a highly sensitive immunodiagnostic assay for CHIKV based on a multiple antigenic peptide (MAP) approach using selective epitopes of the E2 protein. MAPs in four different E2 peptide combinations were screened with CHIKV-positive sera. The MAPs reacted with all CHIKV-positive sera and no reactivity was seen with healthy or dengue-positive sera. Our results indicate that MAP 1 seems to be an alternate antigen to full-length protein E2 for immunodiagnosis of CHIKV infections with high sensitivity and specificity. PMID:25412351

  13. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  14. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    Directory of Open Access Journals (Sweden)

    Yanbo Shi

    2010-01-01

    Full Text Available Ferric ion binding proteins (Fbps transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.

  15. Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB.

    Science.gov (United States)

    Denoel, P A; Vo, T K; Weynants, V E; Tibor, A; Gilson, D; Zygmunt, M S; Limet, J N; Letesson, J J

    1997-09-01

    Brucellergene is a commercial allergen prepared from Brucella melitensis strain B115 and containing at least 20 cytoplasmic proteins. These proteins were separated by SDS-PAGE. The unstained gel was divided into 18 fractions and proteins were eluted from the gel fractions. The capacity of the separated proteins to elicit delayed-type hypersensitivity (DTH) in infected guinea-pigs or to induce the production of interferon-gamma (IFN-gamma) by blood cells from infected cattle was evaluated. The biological activity of the corresponding protein fractions blotted on to nitrocellulose was measured in a lymphocyte blastogenesis assay. Among the 18 fractions tested, two-spanning the mol. wt ranges 17-22 (fraction 8) and 35-42-kDa (fraction 17)-showed the maximum biological activity in the three tests. These fractions contain two antigens, the Brucella bacterioferritin (BFR) and P39 proteins. Both proteins are good candidates for the detection of cellular immunity to Brucella. PMID:9291893

  16. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    OpenAIRE

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    International audience The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we st...

  17. Procalcitonin and C-reactive protein as markers of bacterial infection in patients with solid tumours

    DEFF Research Database (Denmark)

    Diness, Laura V; Maraldo, Maja V; Mortensen, Christiane E;

    2014-01-01

    infection. In this prospective study, we wanted to investigate the value of procalcitonin (PCT) compared with C-reactive protein (CRP) as an indicator of bacterial infection in adult patients with solid tumours. METHODS: A total of 41 patients with solid tumours admitted to hospital due to fever or clinical...

  18. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone;

    2003-01-01

    The surface of AISI 316 grade stainless steel (SS) was modified with a layer of poly(ethylene glycol) (PEG) (molecular weight 5000) with the aim of preventing protein adsorption and bacterial adhesion. Model SS substrates were first modified to introduce a very high density of reactive amine grou...

  19. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen...

  20. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

    LENUS (Irish Health Repository)

    Rosberg-Cody, Eva

    2011-02-17

    Abstract Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  1. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    Science.gov (United States)

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  2. Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function.

    Science.gov (United States)

    Shen, Chih-Lung; Liu, Cheng-Der; You, Ren-In; Ching, Yung-Hao; Liang, Jun; Ke, Liangru; Chen, Ya-Lin; Chen, Hong-Chi; Hsu, Hao-Jen; Liou, Je-Wen; Kieff, Elliott; Peng, Chih-Wen

    2016-02-23

    Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1)-mediated origin of plasmid replication (oriP) DNA episome maintenance is essential for EBV-mediated tumorigenesis. We have now found that EBNA1 binds to Ribosome Protein L4 (RPL4). RPL4 shRNA knockdown decreased EBNA1 activation of an oriP luciferase reporter, EBNA1 DNA binding in lymphoblastoid cell lines, and EBV genome number per lymphoblastoid cell line. EBV infection increased RPL4 expression and redistributed RPL4 to cell nuclei. RPL4 and Nucleolin (NCL) were a scaffold for an EBNA1-induced oriP complex. The RPL4 N terminus cooperated with NCL-K429 to support EBNA1 and oriP-mediated episome binding and maintenance, whereas the NCL C-terminal K380 and K393 induced oriP DNA H3K4me2 modification and promoted EBNA1 activation of oriP-dependent transcription. These observations provide new insights into the mechanisms by which EBV uses NCL and RPL4 to establish persistent B-lymphoblastoid cell infection. PMID:26858444

  3. CD301b+ dendritic cells suppress T follicular helper cells and antibody responses to protein antigens

    Science.gov (United States)

    Kumamoto, Yosuke; Hirai, Toshiro; Wong, Patrick W; Kaplan, Daniel H; Iwasaki, Akiko

    2016-01-01

    Strong antibody response is considered a hallmark of a successful vaccine. While dendritic cells (DCs) are important for T follicular helper (Tfh) cell priming, how this process is regulated in vivo is unclear. We show here that the depletion of CD301b+ DCs specifically enhanced the development of Tfh cells, germinal center B cells and antibody responses against protein antigens. Exaggerated antibody responses in mice depleted of CD301b+ DCs occurred in the absence of any adjuvants, and resulting antibodies had broader specificity and higher affinity to the immunogen. CD301b+ DCs express high levels of PD-1 ligands, PD-L1 and PD-L2. Blocking PD-1 or PD-L1 during priming in wild-type mice partially mimicked the phenotype of CD301b+ DC-depleted animals, suggesting their role in Tfh suppression. Transient depletion of CD301b+ DC results in the generation of autoreactive IgG responses. These results revealed a novel regulatory mechanism and a key role of CD301b+ DCs in blocking autoantibody generation. DOI: http://dx.doi.org/10.7554/eLife.17979.001 PMID:27657168

  4. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...hilpott DJ, Girardin SE. Mol Immunol. 2004 Nov;41(11):1099-108. (.png) (.svg) (.html) (.csml) Show The role ...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-lik

  5. In silico design, cloning and high level expression of L7/L12-TOmp31 fusion protein of Brucella antigens

    OpenAIRE

    Golshani, Maryam; Rafati, Sima; Jahanian-Najafabadi, Ali; Nejati-Moheimani, Mehdi; Siadat, Seyed Davar; Shahcheraghi, Fereshteh; Bouzari, Saeid

    2015-01-01

    Globally, Brucella melitensis and B. abortus are the most common cause of human brucellosis. The outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens which are considered as potential vaccine candidates. We aimed to design the fusion protein from Brucella L7/L12 and truncated Omp31proteins, in silico, clone the fusion in pET28a vector, and express it in Escherichia coli host. Two possible fusion forms, L7/L12-TOmp31 and ...

  6. A method for in vivo identification of bacterial small RNA-binding proteins.

    Science.gov (United States)

    Osborne, Jonathan; Djapgne, Louise; Tran, Bao Quoc; Goo, Young Ah; Oglesby-Sherrouse, Amanda G

    2014-12-01

    Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA "bait", and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA "bait" as compared to the PrrH cDNA "bait", suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins.

  7. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    Science.gov (United States)

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  8. Human teratomas express differentiated neural antigens. An immunohistochemical study with anti-neurofilament, anti-glial filament, and anti-myelin basic protein monoclonal antibodies.

    OpenAIRE

    Trojanowski, J Q.; Hickey, W. F.

    1984-01-01

    Monoclonal antibodies specific for neurofilament proteins, glial filament protein, or myelin basic protein were used with immunohistochemistry for evaluation of a series of 14 human benign and malignant teratomas for the presence of these neural specific antigens. The results indicate that human teratomas can express all of these neural antigens, reflecting the presence of differentiated neurons, astrocytes, and oligodendroglia, respectively. Although the tumors were selected because neural t...

  9. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    predictions were made in about 60% of the cases. This project has highlighted the difficulties and challenges in functional annotation and computational analysis of sequence data. It has provided possible solutions for creating reproducible pipelines for comparative genomics as well as constructed a number......In November 2013, there was around 21.000 different prokaryotic genomes sequenced and publicly available, and the number is growing daily with another 20.000 or more genomes expected to be sequenced and deposited by the end of 2014. An important part of the analysis of this data is the functional...... annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...

  10. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.

    Directory of Open Access Journals (Sweden)

    Andrea Procaccini

    Full Text Available Predictive understanding of the myriads of signal transduction pathways in a cell is an outstanding challenge of systems biology. Such pathways are primarily mediated by specific but transient protein-protein interactions, which are difficult to study experimentally. In this study, we dissect the specificity of protein-protein interactions governing two-component signaling (TCS systems ubiquitously used in bacteria. Exploiting the large number of sequenced bacterial genomes and an operon structure which packages many pairs of interacting TCS proteins together, we developed a computational approach to extract a molecular interaction code capturing the preferences of a small but critical number of directly interacting residue pairs. This code is found to reflect physical interaction mechanisms, with the strongest signal coming from charged amino acids. It is used to predict the specificity of TCS interaction: Our results compare favorably to most available experimental results, including the prediction of 7 (out of 8 known interaction partners of orphan signaling proteins in Caulobacter crescentus. Surveying among the available bacterial genomes, our results suggest 15∼25% of the TCS proteins could participate in out-of-operon "crosstalks". Additionally, we predict clusters of crosstalking candidates, expanding from the anecdotally known examples in model organisms. The tools and results presented here can be used to guide experimental studies towards a system-level understanding of two-component signaling.

  11. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    OpenAIRE

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-01-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas ch...

  12. Excretion of purine base derivatives after intake of bacterial protein meal in pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, A.

    2007-01-01

    Bacterial protein meal has a high content ofprotein but also of RNA and DNA. Sixteen barrows were allocated to four diets containing increasing levels of bacterial protein meal (BPM), from weaning to 80 kg live weight, to evaluate whether the RNA and DNA contents of BPM influenced the retention...... of nitrogen. It was hypothesised that an increased intake of RNA and DNA would lead to an increased urinary excretion of purine base derivatives and increased plasma concentrations. Retention of nitrogen was unaffected by dietary content of BPM (P=0.08) and the urinary excretion of purine base derivatives...... increased with increasing dietary content of BPM. No differences in fasting plasma concentration of uric acid, xanthine and hypoxanthine were observed. It can therefore be concluded that increasing levels of dietary BPM maintained protein accretion and led to changes in excretion of purine detrivatices...

  13. Definition of a physiologic aging autoantigen by using synthetic peptides of membrane protein band 3: localization of the active antigenic sites.

    Science.gov (United States)

    Kay, M M; Marchalonis, J J; Hughes, J; Watanabe, K; Schluter, S F

    1990-08-01

    Senescent cell antigen (SCA), an aging antigen, is a protein that appears on old cells and marks them for removal by the immune system in mammals. It is derived from band 3, a ubiquitous membrane transport protein found in diverse cell types and tissues. We have used synthetic peptides to identify aging antigenic sites on band 3, using a competitive inhibition assay and immunoblotting with IgG directed against the aging antigen on old cells. Results indicate that: (i) the active antigenic sites of the aging antigen reside on membrane protein band 3 residues that are extracellular regions implicated in anion transport (residues 538-554 and 788-827); (ii) a putative ankyrin-binding-region peptide is not involved in SCA activity; and (iii) carbohydrate moieties are not required for the antigenicity or recognition of SCA because synthetic peptides alone abolish binding of senescent cell IgG to erythrocytes. One of the putative transport sites that contributes to the aging antigen is located toward the carboxyl terminus. A model of band 3 is presented. Localization of the active antigenic site on the band 3 molecule facilitates definition of the molecular changes occurring during aging that initiate molecular as well as cellular degeneration. PMID:1696010

  14. NetPhosBac - A predictor for Ser/Thr phosphorylation sites in bacterial proteins

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Soufi, Boumediene; Jers, Carsten;

    2009-01-01

    sites in two bacterial model organisms Bacillus subtilis and Escherichia coli. Interestingly, the analysis of these phosphorylation sites revealed that most of them are not characteristic for eukaryotic-type protein kinases, which explains the poor performance of eukaryotic data-trained phosphorylation....... Moreover, NetPhosBac predictions of phosphorylation sites in E. coli proteins were experimentally verified on protein and site-specific levels. In conclusion, NetPhosBac clearly illustrates the advantage of taxa-specific predictors and we hope it will provide a useful asset to the microbiological community....

  15. Development of a sandwich Dot-ELISA for detecting bovine viral diarrhea virus antigen with E2 recombinant protein

    Institute of Scientific and Technical Information of China (English)

    Yuelan ZHAO; Yuzhu ZUO; Lei ZHANG; Jinghui FAN; Hanchun YANG; Jianhua QIN

    2009-01-01

    The IgG antibodies of rabbit anti-E2 protein of the bovine viral diarrhea virus were prepared by a general method from high efficiency serum immunized by E2 recombinant protein antigen expressed in E. coli prokaryotic expression system and were labeled to make enzymelabeled antibody with the method of NaIO4. A sandwich Dot enzyme-linked immunosorbent assay (Dot-ELISA) for the detection of BVDV was developed. The optimal reaction conditions of Dot-ELISAwere determined. The results show that optimal coating antibody was 300 μg·mL-1, the working concentration of HRP-labeled antibody was 1:50. The optimal blocking reagent and time were 5% bovine serum and 45 rain. The minimum detection of the content of antigen reached 1.35μg·mL-1. Compared with the routine IDEXX ELISA test kit with the whole virus, its specificity, sensitivity and coincidence rate were 90.48%, 96.55% and 95.24%, respectively. Compared with the sandwich Dot-ELISA with the negative staining electron microscope and RT-PCR, the coincidence rates were 90.9% and 93.1%, respectively. In addition, Bovine viral diarrhea virus (BVDV) antigen of 178 samples collected from cow farms in the Hebei Province, China, were detected by the developed Dot-ELISA and the IDEXX BVDV antigen Test Kit simultaneously, BVDV antigen positive rate was 39.89%-41.01%. The result of detecting clinical samples demonstrated that the established method showed its specificity, sensitivity and repeatability, whereas the results were easily interpreted without an ELISA reader.

  16. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs.

    Directory of Open Access Journals (Sweden)

    Frances R Wadelin

    Full Text Available Preferentially expressed antigen in melanoma (PRAME has been described as a cancer-testis antigen and is associated with leukaemias and solid tumours. Here we show that PRAME gene transcription in leukaemic cell lines is rapidly induced by exposure of cells to bacterial PAMPs (pathogen associated molecular patterns in combination with type 2 interferon (IFNγ. Treatment of HL60 cells with lipopolysaccharide or peptidoglycan in combination with IFNγ resulted in a rapid and transient induction of PRAME transcription, and increased association of PRAME transcripts with polysomes. Moreover, treatment with PAMPs/IFNγ also modulated the subcellular localisation of PRAME proteins in HL60 and U937 cells, resulting in targeting of cytoplasmic PRAME to the Golgi. Affinity purification studies revealed that PRAME associates with Elongin B and Elongin C, components of Cullin E3 ubiquitin ligase complexes. This occurs via direct interaction of PRAME with Elongin C, and PRAME colocalises with Elongins in the Golgi after PAMP/IFNγ treatment. PRAME was also found to co-immunoprecipitate core histones, consistent with its partial localisation to the nucleus, and was found to bind directly to histone H3 in vitro. Thus, PRAME is upregulated by signalling pathways that are activated in response to infection/inflammation, and its product may have dual functions as a histone-binding protein, and in directing ubiquitylation of target proteins for processing in the Golgi.

  17. Identification of a Streptococcus agalactiae protein antigen associated with bovine mastitis isolates.

    OpenAIRE

    Wanger, A R; Dunny, G. M.

    1987-01-01

    Immunoblotting was used to analyze the immune response of cows to Streptococcus agalactiae. Antibody from the milk of cows immunized (via the superficial inguinal lymph node) with formalinized S. agalactiae cells or from the milk of cows with S. agalactiae mastitis reacted strongly with a group of high-molecular-weight proteinaceous antigens. The two most predominant antigenic polypeptides in this group had apparent molecular weights of 97,000 and 104,000. Because the data indicated that thes...

  18. Identification of in vivo induced protein antigens of Salmonella enterica serovar Typhi during human infection

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During infectious disease episodes, pathogens express distinct subsets of virulence factors which allow them to adapt to different environments. Hence, genes that are expressed or upregulated in vivo are implicated in pathogenesis. We used in vivo induced antigen technology (IVIAT) to identify antigens which are expressed during infection with Salmonella enterica serovar Typhi. We identified 7 in vivo induced (IVI) antigens, which included BcfD (a fimbrial structural subunit), GrxC (a glutaredoxin 3), SapB (an ABC-type transport system), T3663 (an ABC-type uncharacterized transport system), T3816 (a putative rhodanese-related sulfurtransferase), T1497 (a probable TonB-dependent receptor) and T3689 (unknown function). Of the 7 identified antigens, 5 antigens had no cross-immunoreactivity in adsorbed control sera from healthy subjects. These 5 included BcfD, GrxC, SapB, T3663 and T3689. Antigens identified in this study are potential targets for drug and vaccine development and may be utilized as diagnostic agents.

  19. Identification of in vivo induced protein antigens of Salmonella enterica serovar Typhi during human infection

    Institute of Scientific and Technical Information of China (English)

    HU Yong; CONG YanGuang; LI Shu; RAO XianCai; WANG Gang; HU FuQuan

    2009-01-01

    During infectious disease episodes, pathogens express distinct subsets of virulence factors which allow them to adapt to different environments. Hence, genes that are expressed or upregulated in vivo are implicated in pathogenesis. We used in vivo induced antigen technology (IVIAT) to identify antigens which are expressed during infection with Salmonella enterica serovar Typhi. We identified 7 in vivo induced (IVI) antigens, which included BcfD (a fimbrial structural subunit), GrxC (a giutaredoxin 3),SapB (an ABC-type transport system), T3663 (an ABC-type uncharacterized transport system), T3816 (a putative rhodanese-related sulfurtransferase), T1497 (a probable TonB-dependent receptor) and T3689 (unknown function). Of the 7 identified antigens, 5 antigens had no cross-immunoreactivity in adsorbed control sera from healthy subjects. These 5 included BcfD, GrxC, SapB, T3663 and T3689. Antigens identified in this study are potential targets for drug and vaccine development and may be utilized as diagnostic agents.

  20. The J Domain of Simian Virus 40 Large T Antigen Is Required To Functionally Inactivate RB Family Proteins

    OpenAIRE

    Zalvide, Juan; Stubdal, Hilde; DeCaprio, James A.

    1998-01-01

    Transformation by simian virus 40 large T antigen (TAg) is dependent on the inactivation of cellular tumor suppressors. Transformation minimally requires the following three domains: (i) a C-terminal domain that mediates binding to p53; (ii) the LXCXE domain (residues 103 to 107), necessary for binding to the retinoblastoma tumor suppressor protein, pRB, and the related p107 and p130; and (iii) an N-terminal domain that is homologous to the J domain of DnaJ molecular chaperone proteins. We ha...

  1. Expression and Purification of Neurotoxin-Associated Protein HA-33/A from Clostridium botulinum and Evaluation of Its Antigenicity

    OpenAIRE

    Sayadmanesh, Ali; Ebrahimi, Firouz; Hajizade, Abbas; Rostamian, Mosayeb; Keshavarz, Hani

    2013-01-01

    Background: Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expressed and purified, and subsequently its antigenicity in mice was studied. Methods: Initially, ha-33...

  2. Mass-sensing BioCD Protein Array towards Clinical Application: Prostate Specific Antigen Detection in Patient Sera

    CERN Document Server

    Wang, Xuefeng; Nolte, David D; Ratliff, Timothy L

    2009-01-01

    Mass-sensing biosensor arrays for protein detection require no fluorophores or enzyme labels. However, few mass biosensor protein arrays have demonstrated successful application in high background samples, such as serum. In this paper, we test the BioCD as a mass biosensor based on optical interferometry of antibodies covalently attached through Schiff-base reduction. We use the BioCD to detect prostate specific antigen (PSA, a biomarker of prostate cancer) in patient sera in a 96-well anti-PSA microarray. We have attained a 4 ng/ml detection limit in full serum and have measured PSA concentrations in three patient sera.

  3. The oral immunogenicity of BioProtein, a bacterial single-cell protein, is affected by its particulate nature

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Larsen, L.C.; Frøkiær, Hanne

    2003-01-01

    -culture homogenate induced immunoglobulin A in saliva but there was no systemic response. The antibodies from BP-fed mice cross-reacted with BP-culture homogenate revealing the presence of the same antigenic components in the two products despite the different oral immunogenicity. Thus, ingestion of BP induces...... a persistent mucosal and systemic immune response of which the systemic response can be avoided by ingesting a BP preparation free of whole cells. This indicates the importance of the non-particulate constitution of single-cell protein products intended for human or animal consumption....

  4. A Fusion Protein between Streptavidin and the Endogenous TLR4 Ligand EDA Targets Biotinylated Antigens to Dendritic Cells and Induces T Cell Responses In Vivo

    Directory of Open Access Journals (Sweden)

    Laura Arribillaga

    2013-01-01

    Full Text Available The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA, an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC, are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-κβ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer.

  5. A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo.

    Science.gov (United States)

    Arribillaga, Laura; Durantez, Maika; Lozano, Teresa; Rudilla, Francesc; Rehberger, Federico; Casares, Noelia; Villanueva, Lorea; Martinez, Marta; Gorraiz, Marta; Borrás-Cuesta, Francisco; Sarobe, Pablo; Prieto, Jesús; Lasarte, Juan José

    2013-01-01

    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a Kd ~ 2.6 × 10(-14) mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF- κβ by TLR4-expressing cells, as well as the production of TNF- α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer. PMID:24093105

  6. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation

    Indian Academy of Sciences (India)

    Manish Sadarangani; J Claire Hoe; Katherine Makepeace; Peter Van Der Ley; Andrew J Pollard

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5′-CTCTT-3′ coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opagenes demonstrated variable rates of PV, between 6.4 ×10–4 and 6.9 ×10–3 per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r2=0.77, p=0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opagenes in UK disease isolates (315/463, 68.0%) were in the ‘on’ phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  7. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross).

  8. [The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance].

    Science.gov (United States)

    Xie, Longxiang; Yu, Zhaoxiao; Guo, Siyao; Li, Ping; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-08-01

    The increasing antibiotic resistance is now threatening to take us back to a pre-antibiotic era. Bacteria have evolved diverse resistance mechanisms, on which in-depth research could help the development of new strategies to control antibiotic-resistant infections. Epigenetic alterations and protein post-translational modifications (PTMs) play important roles in multiple cellular processes such as metabolism, signal transduction, protein degradation, DNA replication regulation and stress response. Recent studies demonstrated that epigenetics and PTMs also play vital roles in bacterial antibiotic resistance. In this review, we summarize the regulatory roles of epigenetic factors including DNA methylation and regulatory RNAs as well as PTMs such as phosphorylation and succinylation in bacterial antibiotic resistance, which may provide innovative perspectives on selecting antibacterial targets and developing antibiotics. PMID:26266782

  9. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling.

    Science.gov (United States)

    Podgornaia, Anna I; Casino, Patricia; Marina, Alberto; Laub, Michael T

    2013-09-01

    Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, Escherichia coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes and a systematic mutagenesis study reveal how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions and protein evolution and for the design of novel protein interfaces. PMID:23954504

  10. In vitro estimation of rumen protein degradability using 35S to label the bacterial mass

    International Nuclear Information System (INIS)

    An experiment was carried out in order to simplify a previously developed 15N-method for in vitro estimation of rumen protein degradability. Casein (Cas), whole soybeans (Sb) heated at 120oC for 20 min (SbTherm) and sunflower (Sfl) were incubated at 39oC for 4 hours in a water bathshaker with the following media: McDougall's buffer, strained and enriched with particle associated bacteria rumen fluid (2:1), rapidly (maltose, sucrose, glucose) and more slowly (pectin, soluble starch) degradable carbohydrates with final concentration of 815 mg/100 ml and 21.7 μCi/100 ml of35S (from Na235SO4). After the incubation had been ceased, a bacterial fraction was isolated through differential centrifugation and specific activity of bacterial (Bac) and high speed total solids (TS) nitrogen was measured. The ratio was used to calculate bacterial mass in TS and through the Kjeldahl nitrogen concentration in TS - the net bacterial growth (against control vessels without protein). The level of ammonia-N in the supernate after blank correction was used to find the ammonia-N released from protein degradation. The data showed that the rate (and extend) of degradation for the Cas (as a standard protein) was lower compared to those obtained through the 15N-method but it was higher than the rate derived through another in vitro method. The Cas equivalent of the Sb was higher than the figure we found in a previous experiment with solvent extracted soybean meal suggesting that the 35S-method underestimated the degradability of the Cas. After being tested on a wider range of foodstuffs, the proposed 35S-method might be considered as an alternative procedure which is less laborous than the 15N-method. (author)

  11. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    OpenAIRE

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; David H Sherman; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduc...

  12. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins.

    Science.gov (United States)

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-12-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold with β-sandwich architecture. The structure suggests that Cj0090 may be involved in protein-protein interactions, consistent with a possible role for bacterial lipoproteins. PMID:22987763

  13. Recombinant expression and purification of "virus-like" bacterial encapsulin protein cages.

    Science.gov (United States)

    Rurup, W Frederik; Cornelissen, Jeroen J L M; Koay, Melissa S T

    2015-01-01

    Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules and organelles, the rate of migration can be used as a tool for purification. Here we describe a detailed protocol for the purification of recently discovered virus-like assemblies called bacterial encapsulins from Thermotoga maritima and Brevibacterium linens. PMID:25358773

  14. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  15. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells.

    Science.gov (United States)

    Bravo-Angel, A M; Gloeckler, V; Hohn, B; Tinland, B

    1999-09-01

    Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins. PMID:10482518

  16. RHAMM (CD168 Is Overexpressed at the Protein Level and May Constitute an Immunogenic Antigen in Advanced Prostate Cancer Disease

    Directory of Open Access Journals (Sweden)

    Kilian M. Gust

    2009-09-01

    Full Text Available Localized prostate cancer (CaP can be cured using several strategies. However, the need to identify active substances in advanced tumor stages is tremendous, as the outcome in such cases is still disappointing. One approach is to deliver human tumor antigen-targeted therapy, which is recognized by T cells or antibodies. We used data mining of the Cancer Immunome Database (CID, which comprises potential immunologic targets identified by serological screening of expression libraries. Candidate antigens were screened by DNA microarrays. Genes were then validated at the protein level by tissue microarrays, representing various stages of CaP disease. Of 43 targets identified by CID, 10 showed an overexpression on the complementary DNA array in CaP metastases. The RHAMM (CD168 gene, earlier identified by our group as an immunogenic antigen in acute and chronic leukemia, also showed highly significant overexpression in CaP metastases compared with localized disease and benign prostatic hyperplasia. At the protein level, RHAMM was highest in metastatic tissue samples and significantly higher in neoplastic localized disease compared with benign tissue. High RHAMM expression was associated with clinical parameters known to be linked to better clinical outcome. Patients with high RHAMM expression in the primaries had a significantly lower risk of biochemical failure. The number of viable cells in cell cultures was reduced in blocking experiments using hormone-sensitive and hormone-insensitive metastatic CaP cell lines. Acknowledging the proven immunogenic effects of RHAMM in leukemia, this antigen is intriguing as a therapeutic target in far-advanced CaP.

  17. Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae.

    Science.gov (United States)

    Antúnez, Karina; Anido, Matilde; Evans, Jay D; Zunino, Pablo

    2010-03-24

    American Foulbrood is a severe disease affecting larvae of honeybee Apis mellifera, causing significant decrease in the honeybee population, beekeeping industries and agricultural production. In spite of its importance, little is known about the virulence factors secreted by Paenibacillus larvae during larval infection. The aim of the present work was to perform a first approach to the identification and characterization of P. larvae secretome. P. larvae secreted proteins were analyzed by SDS-PAGE and identified by MALDI-TOF. Protein toxicity was evaluated using an experimental model based on feeding of A. mellifera larvae and immunogenicity was evaluated by Western blot, using an antiserum raised against cells and spores of P. larvae. Ten different proteins were identified among P. larvae secreted proteins, including proteins involved in transcription, metabolism, translation, cell envelope, transport, protein folding, degradation of polysaccharides and motility. Although most of these proteins are cytosolic, many of them have been previously detected in the extracellular medium of different Bacillus spp. cultures and have been related to virulence. The secreted proteins resulted highly toxic and immunogenic when larvae were exposed using an experimental model. This is the first description of proteins secreted by the honeybee pathogen P. larvae. This information may be relevant for the elucidation of bacterial pathogenesis mechanisms. PMID:19781868

  18. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

    Science.gov (United States)

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI—TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae. PMID:26484314

  19. Application of In Vivo Induced Antigen Technology (IVIAT) to Bacillus anthracis

    OpenAIRE

    Peppercorn, Amanda; Young, John S; Drysdale, Melissa; Baresch, Andrea; Bikowski, Margaret V.; Ashford, David A.; Quinn, Conrad P.; Handfield, Martin; Hillman, Jeffrey D.; Lyons, C. Rick; Koehler, Theresa M.; Sonenshein, Abraham L.; Rollins, Sean McKenzie; Calderwood, Stephen Beaven; Ryan, Edward Thomas

    2008-01-01

    In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase Nar...

  20. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition.

    Science.gov (United States)

    Luo, Ting; Krüger, Thomas; Knüpfer, Uwe; Kasper, Lydia; Wielsch, Natalie; Hube, Bernhard; Kortgen, Andreas; Bauer, Michael; Giamarellos-Bourboulis, Evangelos J; Dimopoulos, George; Brakhage, Axel A; Kniemeyer, Olaf

    2016-08-01

    During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera. PMID:27386892

  1. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  2. A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, and ROP1 proteins-impact of immunodominant sequences size on its diagnostic usefulness.

    Science.gov (United States)

    Ferra, Bartłomiej; Holec-Gąsior, Lucyna; Kur, Józef

    2015-09-01

    This study presents the first evaluation of new Toxoplasma gondii recombinant chimeric antigens containing three immunodominant regions of SAG2, GRA1, and one of two ROP1 fragments differing in length for the serodiagnosis of human toxoplasmosis. The recombinant chimeric antigens SAG2-GRA1-ROP1L (with large fragment of ROP1, 85-396 amino acid residues) and SAG2-GRA1-ROP1S (with a small fragment of ROP1, 85-250 amino acid residues) were obtained as fusion proteins containing His6-tags at both ends using an Escherichia coli expression system. The diagnostic utility of these chimeric antigens was determined using the enzyme-linked immunosorbent assay (ELISA) for the detection of specific anti-T. gondii immunoglobulin G (IgG). The IgG ELISA results obtained for the chimeric antigens were compared to those obtained for the use of Toxoplasma lysate antigen (TLA) and for a mixture of recombinant antigens containing rSAG2, rGRA1, and rROP1. The sensitivity of the IgG ELISA was similar for the SAG2-GRA1-ROP1L chimeric antigen (100 %), the mixture of three proteins (99.4 %) and the TLA (97.1 %), whereas the sensitivity of IgG ELISA with the SAG2-GRA1-ROP1S chimeric antigen was definitely lower, reaching 88.4 %. In conclusion, this study shows that SAG2-GRA1-ROP1L chimeric antigen can be useful for serodiagnosis of human toxoplasmosis with the use of the IgG ELISA assay. Therefore, the importance of proper selection of protein fragments for the construction of chimeric antigen with the highest reactivity in ELISA test is demonstrated.

  3. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens

    OpenAIRE

    Daniels, Calvin C.; Rogers, P. David; Shelton, Chasity M.

    2016-01-01

    This review describes development of currently available pneumococcal vaccines, provides summary tables of current pneumococcal vaccine recommendations in children and adults, and describes new potential vaccine antigens in the pipeline. Streptococcus pneumoniae, the bacteria responsible for pneumonia, otitis media, meningitis and bacteremia, remains a cause of morbidity and mortality in both children and adults. Introductions of unconjugated and conjugated pneumococcal polysaccharide vaccine...

  4. Object-adapted trapping and shape-tracking to probe a bacterial protein chain motor

    Science.gov (United States)

    Roth, Julian; Koch, Matthias; Rohrbach, Alexander

    2015-03-01

    The helical bacterium Spiroplasma is a motile plant and anthropod pathogen which swims by propagating pairs of kinks along its cell body. As a well suited model system for bacterial locomotion, understanding the cell's molecular motor is of vital interest also regarding the combat of bacterial diseases. The extensive deformations related to these kinks are caused by a contractile cytoskeletal protein ribbon representing a linear motor in contrast to common rotary motors as, e.g., flagella. We present new insights into the working of this motor through experiments with object-adapted optical traps and shape-tracking techniques. We use the given laser irradiation from the optical trap to hinder bacterial energy (ATP) production through the production of O2 radicals. The results are compared with experiments performed under the influence of an O2-Scavenger and ATP inhibitors, respectively. Our results show clear dependences of the kinking properties on the ATP concentration inside the bacterium. The experiments are supported by a theoretical model which we developed to describe the switching of the ribbon's protein subunits.

  5. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure.

    Science.gov (United States)

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-09-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (pp-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  6. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    Science.gov (United States)

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  7. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  8. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  9. Protein kinase Cβ is critical for the metabolic switch to glycolysis following B-cell antigen receptor engagement.

    Science.gov (United States)

    Blair, Derek; Dufort, Fay J; Chiles, Thomas C

    2012-11-15

    Signals derived from the BCR (B-cell antigen receptor) control survival, development and antigenic responses. One mechanism by which BCR signals may mediate these responses is by regulating cell metabolism. Indeed, the bioenergetic demands of naïve B-cells increase following BCR engagement and are characterized by a metabolic switch to aerobic glycolysis; however, the signalling pathways involved in this metabolic reprogramming are poorly defined. The PKC (protein kinase C) family plays an integral role in B-cell survival and antigenic responses. Using pharmacological inhibition and mice deficient in PKCβ, we demonstrate an essential role of PKCβ in BCR-induced glycolysis in B-cells. In contrast, mice deficient in PKCδ exhibit glycolytic rates comparable with those of wild-type B-cells following BCR cross-linking. The induction of several glycolytic genes following BCR engagement is impaired in PKCβ-deficient B-cells. Moreover, blocking glycolysis results in decreased survival of B-cells despite BCR engagement. The results establish a definitive role for PKCβ in the metabolic switch to glycolysis following BCR engagement of naïve B-cells.

  10. Protein and antigen diversity in the vesicular fluid of Taenia solium cysticerci dissected from naturally infected pigs.

    Science.gov (United States)

    Esquivel-Velázquez, Marcela; Larralde, Carlos; Morales, Julio; Ostoa-Saloma, Pedro

    2011-01-01

    Cysticercosis caused by Taenia solium is a health threat for humans and pigs living in developing countries, for which there is neither a flawless immunodiagnostic test nor a totally effective vaccine. Suspecting of individual diversity of hosts and parasites as possible sources of the variations of the parasite loads among cysticercotic animals and of the limited success of such immunological applications as well as, we explored and measured both in nine cases of naturally acquired porcine cysticercosis. For this purpose, 2-Dimensional IgG immunoblots were performed by reacting the sera of each cysticercotic pig with the antigens contained in the vesicular fluid (VF) of their own cysticerci. We found an unexpectedly large diversity among the proteins and antigens contained in each of the nine VFs. Also diverse were the serum IgG antibody responses of the nine pigs, as none of their 2D- immunoblot images exhibited the same number of spots and resembled each other in only 6.3% to 65.3% of their features. So large an individual immunological diversity of the cysticercal antigens and of the infected pigs´ IgG antibody response should be taken into account in the design of immunological tools for diagnosis and prevention of cysticercosis and should also be considered as a possibly significant source of diversity in Taenia solium´s infectiveness and pathogenicity.

  11. Detection of antigens using a protein-DNA chimera developed by enzymatic covalent bonding with phiX gene A*.

    Science.gov (United States)

    Akter, Farhima; Mie, Masayasu; Grimm, Sebastian; Nygren, Per-Åke; Kobatake, Eiry

    2012-06-01

    The chemical reactions used to make antibody-DNA conjugates in many immunoassays diminish antigen-binding activity and yield heterogeneous products. Here, we address these issues by developing an antibody-based rolling circle amplification (RCA) strategy using a fusion of φX174 gene A* protein and Z(mab25) (A*-Zmab). The φX174 gene A* protein is an enzyme that can covalently link with DNA, while the Z(mab25) protein moiety can bind to specific species of antibodies. The DNA in an A*-Zmab conjugate was attached to the A* protein at a site chosen to not interfere with protein function, as determined by enzyme-linked immunosorbent assay (ELISA) and gel mobility shift analysis. The novel A*-Zmab-DNA conjugate retained its binding capabilities to a specific class of murine immunoglobulin γ1 (IgG1) but not to rabbit IgG. This indicates the generality of the A*-Zmab-based immuno-RCA assay that can be used in-sandwich ELISA format. Moreover, the enzymatic covalent method dramatically increased the yields of A*-Zmab-DNA conjugates up to 80% after a 15 min reaction. Finally, sensitive detection of human interferon-γ (IFN-γ) was achieved by immuno-RCA using our fusion protein in sandwich ELISA format. This new approach of the use of site-specific enzymatic DNA conjugation to proteins should be applicable to fabrication of novel immunoassays for biosensing.

  12. Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation.

    OpenAIRE

    Zalvide, J; DeCaprio, J A

    1995-01-01

    Simian virus 40 large T-antigen (TAg) transformation is thought to be mediated, at least in part, by binding to and modulating the function of certain cellular proteins, including the retinoblastoma tumor suppressor gene product, pRb. TAg can disrupt the inhibitory complexes formed by pRb with the oncogenic transcription factor E2F, and this mechanism has been suggested to be important for TAg-mediated transformation. Residues 102 to 114 of TAg (including the LXCXE motif) are required for bin...

  13. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella.

    OpenAIRE

    Wu, J Y; Newton, S; Judd, A; Stocker, B; Robinson, W S

    1989-01-01

    A nonvirulent Salmonella dublin flagellin-negative, aromatic-dependent live vaccine strain has been used to express hepatitis B virus surface antigen epitopes in an immunogenic form. The envelope proteins of the virion are encoded by the S gene, which contains the pre-S1, pre-S2, and S coding regions. Synthetic oligonucleotides corresponding to amino acid residues S-(122-137) and pre-S2-(120-145) were inserted in-frame into the hypervariable region of a cloned Salmonella flagellin gene, and t...

  14. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.;

    2015-01-01

    variable regions, where all variants bind HLA. These regions, although variable, can thus be considered stable in terms of HLA binding and represent valuable vaccine targets. Results: We applied this method to predict CD8+ T-cell targets in influenza A H7N9 hemagglutinin and significantly increased the...... number of potential vaccine targets compared to the number of targets discovered using the traditional approach where low-frequency peptides are excluded. Conclusions: We developed a webserver with an intuitive visualization scheme for summarizing the T cell-based antigenic potential of any given protein...

  15. Chirality Switching by Martensitic Transformation in Protein Cylindrical Crystals: Application to Bacterial Flagella

    Science.gov (United States)

    Komai, Ricardo Kiyohiro

    Martensitic transformations provide unique engineering properties that, when designed properly, become important parts of new technology. Martensitic transformations have been studied for many years in traditional alloys (iron, steel, titanium, etc.), however there is still much to be learned in regards to these transformations in biological materials. Olson and Hartman showed in 1982 that these transformations are also observed in bacterial flagella and T4 bacteriophage viral sheaths, allowing for propulsion of bacteria in a fluid environment and, for the virus, is responsible for the infection mechanism. This work demonstrates, using the bacterial flagella as an example, that these transformations can be modelled using thermodynamic methods that are also used to model the transformations in alloys. This thesis work attempts to explain the transformations that occur in bacterial flagella, which are capable of small strain, highly reversible martensitic transformations. The first stress/temperature phase diagrams of these flagella were created by adding the mechanical energy of the transformation of the flagella to limited chemical thermodynamics information of the transformation. Mechanical energy is critical to the transformation process because the bacterial body applies a torque to the radius of the flagella. Finally, work has begun and will be completed in regards to understanding the kinetics of the transformation of the flagella. The motion of the transformation interface can be predicted by using a Landau-Ginzburg model. The crystallography of the transformation in bacterial flagella is also being computed to determine the invariant lines of transformation that occur within this cylindrical crystal. This work has shown that it is possible to treat proteins in a similar manner that alloys are treated when using thermodynamic modelling. Much can be learned from translating what is known regarding phase transformations in hard material systems to soft, organic

  16. Bacterial ortholog of mammalian translocator protein (TSPO with virulence regulating activity.

    Directory of Open Access Journals (Sweden)

    Annelise Chapalain

    Full Text Available The translocator protein (TSPO, previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5 M adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.

  17. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems.

    Science.gov (United States)

    Gottschamel, Johanna; Lössl, Andreas; Ruf, Stephanie; Wang, Yanliang; Skaugen, Morten; Bock, Ralph; Clarke, Jihong Liu

    2016-07-01

    Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression. PMID:27116001

  18. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  19. Merkel Cell Polyomavirus Small T Antigen Targets the NEMO Adaptor Protein To Disrupt Inflammatory Signaling

    OpenAIRE

    Griffiths, David A.; Abdul-Sada, Hussein; Knight, Laura M.; Jackson, Brian R.; Richards, Kathryn; Prescott, Emma L.; Peach, A. Howard S.; Blair, G. Eric; MacDonald, Andrew; Whitehouse, Adrian

    2013-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST)...

  20. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  1. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    Science.gov (United States)

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.

  2. Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant.

    Science.gov (United States)

    Gallovic, Matthew D; Montjoy, Douglas G; Collier, Michael A; Do, Clement; Wyslouzil, Barbara E; Bachelder, Eric M; Ainslie, Kristy M

    2016-03-01

    To develop a new subunit vaccine adjuvant, we chemically modified a naturally-occurring, immunostimulatory inulin polysaccharide to produce an acid-sensitive biopolymer (acetalated inulin, Ace-IN). Various hydrophobic Ace-IN polymers were formed into microparticles (MPs) by oil-in-water emulsions followed by solvent evaporation These Ace-IN MPs possessed tunable degradation characteristics that, unlike polyesters used in FDA-approved microparticulate formulations, had only pH-neutral hydrolytic byproducts. Macrophages were passively targeted with cytocompatible Ace-IN MPs. TNF-α production by macrophages treated with Ace-IN MPs could be altered by adjusting the polymers' chemistry. Mice immunized with Ace-IN MPs encapsulating a model ovalbumin (OVA) antigen showed higher production of anti-OVA IgG antibody levels relative to soluble antigen. The antibody titers were also comparable to an alum-based formulation. This proof-of-concept establishes the potential for chemically-modified inulin MPs to simultaneously enable dual functionality as a stimuli-controlled antigen delivery vehicle and immunostimulatory adjuvant.

  3. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  4. A method to identify protein antigens of Dermanyssus gallinae for the protection of birds from poultry mites.

    Science.gov (United States)

    Makert, Gustavo R; Vorbrüggen, Susanne; Krautwald-Junghanns, Maria-Elisabeth; Voss, Matthias; Sohn, Kai; Buschmann, Tilo; Ulbert, Sebastian

    2016-07-01

    The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae. PMID:27026505

  5. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    International Nuclear Information System (INIS)

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women

  6. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  7. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    Science.gov (United States)

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  8. Role of acute-phase proteins in interleukin-1-induced nonspecific resistance to bacterial infections in mice.

    OpenAIRE

    Vogels, M.T.E.; L. Cantoni; Carelli, M.; Sironi, M; Ghezzi, P; van der Meer, J. W M

    1993-01-01

    Treatment with a single low dose (80 to 800 ng) of interleukin-1 (IL-1) 24 h before a lethal bacterial challenge of granulocytopenic and normal mice enhances nonspecific resistance. Since IL-1 induces secretion of acute-phase proteins, liver proteins which possess several detoxifying effects, we investigated the role of these proteins in the IL-1-induced protection. Inhibition of liver protein synthesis with D-galactosamine (GALN) completely inhibited the IL-1-induced synthesis of acute-phase...

  9. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement.

    OpenAIRE

    Saouaf, S J; Mahajan, S.; Rowley, R B; Kut, S A; Fargnoli, J.; Burkhardt, A L; Tsukada, S; Witte, O. N.; Bolen, J B

    1994-01-01

    We evaluated in WEHI 231 B cells the time-dependent responses of Lyn, Blk, Btk, Syk, and three members of the Jak family of protein tyrosine kinases following antibody-mediated surface engagement of the B-cell antigen receptor. Our results show that the enzyme activities of Lyn and Blk were stimulated within seconds of antigen receptor engagement and correlated with the initial tyrosine phosphorylation of the Ig alpha and Ig beta subunits of the B-cell antigen receptor. Btk enzyme activity wa...

  10. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    OpenAIRE

    Lin Jin; Jong Hyun Ham; Rosemary Hage; Wanying Zhao; Jaricelis Soto-Hernández; Sang Yeol Lee; Seung-Mann Paek; Min Gab Kim; Charles Boone; Coplin, David L.; David Mackey

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, w...

  11. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein

    OpenAIRE

    Blair, Jimmy A.; Xu, Qingping; Childers, W. Seth; Mathews, Irimpan I.; Kern, Justin W.; Eckart, Michael; Deacon, Ashley M.; Shapiro, Lucy

    2013-01-01

    Vital to bacterial survival is the faithful propagation of cellular signals, and in Caulobacter crescentus ChpT is an essential mediator within the cell cycle circuit. ChpT functions as a histidine-containing phosphotransfer protein (HPt) that shuttles a phosphoryl group from the receiver domain of CckA, the upstream hybrid histidine kinase (HK), to one of two downstream response regulators (RRs)—CtrA or CpdR—that controls cell cycle progression. To understand how ChpT interacts with multiple...

  12. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    OpenAIRE

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC mutant strain which proved to be hypersensitive to cadmium. Both the human and bacterial MDR genes conferred cadmium resistance to E. coli up to 0.4 mM concentration. Protection was abolished by 10...

  13. Dot-ELISA Rapid Test Using Recombinant 56-kDa Protein Antigens for Serodiagnosis of Scrub Typhus.

    Science.gov (United States)

    Rodkvamtook, Wuttikon; Zhang, Zhiwen; Chao, Chien-Chung; Huber, Erin; Bodhidatta, Dharadhida; Gaywee, Jariyanart; Grieco, John; Sirisopana, Narongrid; Kityapan, Manerat; Lewis, Michael; Ching, Wei-Mei

    2015-05-01

    We developed a rapid dot-enzyme-linked immunosorbent assay (dot-ELISA) using the combination of recombinant 56-kDa protein antigens that exhibited broad reactivity with serum antibodies against the four most prevalent strains (Karp, Kato, Gilliam, and TA763) of Orientia tsutsugamushi. The assay is rapid (30 minutes), and can be done at room temperature, and results can be read by the naked eye. Only a simple shaker is required to wash the membrane. Sera from 338 patients suspected of being ill with scrub typhus from rural hospitals around Thailand were tested using this dot-ELISA. Seventy-five (22.2%) patients were found to be positive. The sensitivity and specificity of dot-ELISA were determined using the indirect immunofluorescent assay (IFA) test as the gold standard, with the cutoff titer of immunoglobulin peroxidase conjugate M (IgM)/G (IgG) greater than 1:400/1:400. The dot-ELISA had a sensitivity of 98.5%, a specificity of 96.3%, a positive predictive value of 86.7%, and a negative predictive value of 99.6% for the acute-phase specimens. The results indicate that dot-ELISA rapid test using recombinant 56-kDa protein antigen was comparable with the IFA test and may be very useful for the diagnosis of scrub typhus in rural hospitals, where IFA is not available.

  14. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    Science.gov (United States)

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  15. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.

    Science.gov (United States)

    Gennaris, Alexandra; Ezraty, Benjamin; Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric

    2015-12-17

    The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.

  16. Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis

    Science.gov (United States)

    Samiotaki, Martina; Panayotou, George; Karagouni, Evdokia

    2016-01-01

    Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests. PMID:26906226

  17. Merozoite Surface Antigen 2 Proteins of Babesia bovis Vaccine Breakthrough Isolates Contain a Unique Hypervariable Region Composed of Degenerate Repeats

    Science.gov (United States)

    Berens, Shawn J.; Brayton, Kelly A.; Molloy, John B.; Bock, Russell E.; Lew, Ala E.; McElwain, Terry F.

    2005-01-01

    The merozoite surface antigen 2 (MSA-2) proteins of Babesia bovis are members of the variable merozoite surface antigen (VMSA) family that have been implicated in erythrocyte invasion and are important targets for antibody-mediated blocking of invasion. Extensive sequence variation in another VMSA member, MSA-1, has been shown in all vaccine breakthrough isolates. To test the hypothesis that the msa-2 genes of vaccine breakthrough isolates would also encode a diverse set of proteins, the complete msa-2 locus was characterized from 12 Australian B. bovis strains and isolates, including two vaccine strains and eight vaccine breakthrough isolates, and compared to the loci in previously and newly characterized American strains. In contrast to American strains, the msa-2 loci of all Australian strains and isolates examined contain, in addition to msa-2c, only a solitary gene (designated msa-2a/b) closely related to American strain msa-2a and msa-2b. Nevertheless, the proteins encoded by these genes are quite diverse both between and within geographic regions and harbor evidence of genetic exchange among other VMSA family members, including msa-1. Moreover, all but one of the Australian breakthrough isolate MSA-2a/b proteins is markedly different from the vaccine strain from which immune escape occurred, consistent with their role in strain-specific protective immunity. The densest distribution of polymorphisms occurs in a hypervariable region (HVR) within the carboxy third of the molecule that is highly proline rich. Variation in length and content of the HVR is primarily attributable to differences in the order and number of degenerate nucleotide repeats encoding three motifs of unknown function. PMID:16239512

  18. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein.

    Science.gov (United States)

    Du, Z Q; Wang, J Y

    2015-10-27

    Brucella, an intracellular parasite that infects some livestock and humans, can damage or destroy the reproductive system of livestock. The syndrome is referred to as brucellosis and often occurs in pastoral areas; it is contagious from livestock to humans. In this study, the intact Brucella suis outer membrane protein 31 (omp31) gene was cloned, recombinantly expressed, and examined as a subunit vaccine candidate. The intact Brucella lumazine synthase (bls) gene was cloned and recombinantly expressed to study polymerization function in vitro. Non-reducing gel electrophoresis showed that rBs-BLS existed in different forms in vitro, including as a dimer and a pentamer. An enzyme-linked immunosorbent assay result showed that rOmp31 protein could induce production of an antibody in rabbits. However, the rOmp31-BLS fusion protein could elicit a much higher antibody titer in rabbits; this construct involved fusion of the Omp31 molecule with the BLS molecule. Our results indicate that Omp31 is involved in immune stimulation, while BLS has a polymerizing function based on rOmp31-BLS fusion protein immunogenicity. These data suggest that Omp31 is an ideal subunit vaccine candidate and that the BLS molecule is a favorable transport vector for antigenic proteins.

  19. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. PMID:27030586

  20. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  1. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.;

    Introduction Silicone rubber is among the most biocompatible materials available, exhibiting low levels of extractables, absence of plasticizers and additives and fairly low activation of blood thrombogenesis components. However untreated silicone rubber does not efficiently resist protein...... by staining with crystal violet with the extent of biofilm formation determined from absorbance measurement of the extracted dye. Flow chamber assay: Measurements of bacterial colonization during prolonged growth in liquid flow were done using a flow chamber (modified version of FCS lc, Oligene, Germany......). Quantification was carried out by a similar method as described above, using crystal violet as a direct measure of the amount of adhering bacteria. Protein adsorption measurements: Gold plated QCMcrystals were spin coated with polystyrene (PS) to create a hydrophobic reference surface similar to silicone. PS...

  2. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets......, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver funtion were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended...... to increase (P = 0.07) with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters....

  3. Single-stranded DNA bound to bacterial cold-shock proteins: preliminary crystallographic and Raman analysis.

    Science.gov (United States)

    Bienert, Ralf; Zeeb, Markus; Dostál, Lubomir; Feske, Anette; Magg, Christine; Max, Klaas; Welfle, Heinz; Balbach, Jochen; Heinemann, Udo

    2004-04-01

    The cold-shock response has been described for several bacterial species. It is characterized by distinct changes in intracellular protein patterns whereby a set of cold-shock-inducible proteins become abundant. The major cold-shock proteins of Bacillus subtilis (Bs-CspB) and Bacillus caldolyticus (Bc-Csp) are small oligonucleotide/oligosaccharide-binding (OB) fold proteins that have been described as binding single-stranded nucleic acids. Bs-CspB (Mr = 7365) and Bc-Csp (Mr = 7333) were crystallized in the presence of the deoxyhexanucleotide (dT)6. Crystals of (dT)6 with Bs-CspB grew in the orthorhombic space group C222(1), with unit-cell parameters a = 49.0, b = 53.2, c = 77.0 A. Crystals with Bc-Csp grew in the primitive orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 74.3, b = 64.9, c = 31.2 A. These crystals diffract to maximal resolutions of 1.78 and 1.29 A, respectively. The presence of protein and DNA in the crystals was demonstrated by Raman spectroscopy.

  4. Reconstitution of nanomachine driving the assembly of proteins into bacterial outer membranes

    International Nuclear Information System (INIS)

    Over 9.5 million people die each year due to infectious diseases caused by pathogens. Many species of pathogenic bacteria require nanomachines acting like a molecular pump that shuttle key disease-causing molecules (proteins) from inside bacteria cells to the outside surface, priming the bacteria for infections. How such proteins are assembled remains an important question in biology. If we can inhibit the nanomachines function in transporting specific violence factors, it would disable the disease process. Therefore it is crucial to understand how the proteins are transported through the nanomachines from the periplasm to the extracellular space. Measuring the activity of the component parts of membrane-embedded nanomachines in solution is a major technological challenge. The translocation assembly module (the TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by Quartz Crystal Microbalance with Dissipation (QCM-D) and Magnetic Contrast Neutron Reflectrometry (MCNR). We show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  5. Motion of single MreB bacterial actin proteins in Caulobacter show treadmilling in vivo

    Science.gov (United States)

    Moerner, W. E.; Kim, Soyeon; Gitai, Zemer; Kinkhabwala, Anika; McAdams, Harley; Shapiro, Lucy

    2006-03-01

    Ensemble imaging of a bacterial actin homologue, the MreB protein, suggests that the MreB proteins form a dynamic filamentous spiral along the long axis of the cell in Caulobacter crescentus. MreB contracts and expands along the cell axis and plays an important role in cell shape and polarity maintenance, as well as chromosome segregation and translocation of the origin of replication during cell division. In this study we investigated the real-time polymerization of MreB in Caulobacter crescentus using single-molecule fluorescence imaging. With time-lapse imaging, polymerized MreB could be distinguished from cytoplasmic MreB monomers, because single monomeric MreB showed fast motion characteristic of Brownian diffusion, while single polymerized MreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer implies that treadmilling is the predominant mechanism in MreB filament formation. These single-molecule imaging experiments provide the first available information on the velocity of bacterial actin polymerization in a living cell.

  6. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver.

    Science.gov (United States)

    Kędziora, Anna; Krzyżewska, Eva; Dudek, Bartłomiej; Bugla-Płoskońska, Gabriela

    2016-01-01

    The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS) are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  7. Disordered patterns in clustered Protein Data Bank and in eukaryotic and bacterial proteomes.

    Directory of Open Access Journals (Sweden)

    Michail Yu Lobanov

    Full Text Available We have constructed the clustered Protein Data Bank and obtained clusters of chains of different identity inside each cluster, http://bioinfo.protres.ru/st_pdb/. We have compiled the largest database of disordered patterns (141 from the clustered PDB where identity between chains inside of a cluster is larger or equal to 75% (version of 28 June 2010 by using simple rules of selection. The results of these analyses would help to further our understanding of the physicochemical and structural determinants of intrinsically disordered regions that serve as molecular recognition elements. We have analyzed the occurrence of the selected patterns in 97 eukaryotic and in 26 bacterial proteomes. The disordered patterns appear more often in eukaryotic than in bacterial proteomes. The matrix of correlation coefficients between numbers of proteins where a disordered pattern from the library of 141 disordered patterns appears at least once in 9 kingdoms of eukaryota and 5 phyla of bacteria have been calculated. As a rule, the correlation coefficients are higher inside of the considered kingdom than between them. The patterns with the frequent occurrence in proteomes have low complexity (PPPPP, GGGGG, EEEED, HHHH, KKKKK, SSTSS, QQQQQP, and the type of patterns vary across different proteomes, http://bioinfo.protres.ru/fp/search_new_pattern.html.

  8. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    Science.gov (United States)

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  9. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  10. Pharmaceutical proteins in plants. A strategic genetic engineering approach for the production of tuberculosis antigens.

    Science.gov (United States)

    Frutos, Roger; Denise, Hubert; Vivares, Christian; Neuhaus, Jean-Marc; Vitale, Sandro; Pedrazzini, Emmanuela; Ma, Julian; Dix, Phil; Gray, John; Pezzotti, Mario; Conrad, Udo; Robinson, David

    2008-12-01

    Tuberculosis (TB) is a re-emerging disease that is considered a major human health priority as well as an important disease of livestock. TB is also a zoonosis, and Mycobacterium tuberculosis and M. bovis, the human and bovine causative agents, respectively, are very closely related. Protection against TB is essentially achieved through vaccination with the Bacille Calmetle-Guerin (BCG) strain of M. bovis. Protection is, however, incomplete, and novel improved vaccines are currently under investigation. Production of protective antigens in transgenic plants, or "pharming," is a promising emerging approach, and a zoonosis-like TB is a good model for investigating the potential of this approach. Pharma-Planta, a European Commission-funded project and consortium, was set up to address this topic, within which a component is aimed at assessing the production efficacy and stability of the TB antigens in different compartments of the plant cell. This article is meant to introduce this promising approach for veterinary medicine by describing the ongoing project and its specific genetic engineering strategy. PMID:19120228

  11. Pharmaceutical proteins in plants. A strategic genetic engineering approach for the production of tuberculosis antigens.

    Science.gov (United States)

    Frutos, Roger; Denise, Hubert; Vivares, Christian; Neuhaus, Jean-Marc; Vitale, Sandro; Pedrazzini, Emmanuela; Ma, Julian; Dix, Phil; Gray, John; Pezzotti, Mario; Conrad, Udo; Robinson, David

    2008-12-01

    Tuberculosis (TB) is a re-emerging disease that is considered a major human health priority as well as an important disease of livestock. TB is also a zoonosis, and Mycobacterium tuberculosis and M. bovis, the human and bovine causative agents, respectively, are very closely related. Protection against TB is essentially achieved through vaccination with the Bacille Calmetle-Guerin (BCG) strain of M. bovis. Protection is, however, incomplete, and novel improved vaccines are currently under investigation. Production of protective antigens in transgenic plants, or "pharming," is a promising emerging approach, and a zoonosis-like TB is a good model for investigating the potential of this approach. Pharma-Planta, a European Commission-funded project and consortium, was set up to address this topic, within which a component is aimed at assessing the production efficacy and stability of the TB antigens in different compartments of the plant cell. This article is meant to introduce this promising approach for veterinary medicine by describing the ongoing project and its specific genetic engineering strategy.

  12. Comparison of purified 12 kDa and recombinant 15 kDa Fasciola hepatica antigens related to a Schistosoma mansoni fatty acid binding protein

    Directory of Open Access Journals (Sweden)

    George V. Hillyer

    1995-04-01

    Full Text Available Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44 identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.

  13. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells.

    Science.gov (United States)

    Rancan, Fiorenza; Amselgruber, Sarah; Hadam, Sabrina; Munier, Sevérine; Pavot, Vincent; Verrier, Bernard; Hackbarth, Steffen; Combadiere, Behazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-02-28

    Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination.

  14. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells.

    Science.gov (United States)

    Rancan, Fiorenza; Amselgruber, Sarah; Hadam, Sabrina; Munier, Sevérine; Pavot, Vincent; Verrier, Bernard; Hackbarth, Steffen; Combadiere, Behazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2014-02-28

    Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination. PMID:24384300

  15. Bm86 antigen induces a protective immune response against Boophilus microplus following DNA and protein vaccination in sheep.

    Science.gov (United States)

    De Rose, R; McKenna, R V; Cobon, G; Tennent, J; Zakrzewski, H; Gale, K; Wood, P R; Scheerlinck, J P; Willadsen, P

    1999-11-30

    Vaccination of sheep with a plasmid bearing the full length gene for the tick antigen Bm86 either alone or co-administered with plasmid carrying the ovine genes for the cytokines, granulocyte and macrophage colony stimulating factor (GM-CSF) or interleukin (IL)-1beta induced a relatively low level of protection against subsequent tick infestation. This tick damage reached statistical significance only for the groups which were vaccinated with plasmid encoding for Bm86, co-administered with plasmid encoding for ovine GM-CSF. Antibody titres measured against Bm86 were also low in all groups injected with the Bm86 DNA vaccine. Antibody production and anti-tick effect were significantly less than that achieved by two vaccinations with recombinant Bm86 protein. In all cases only a low level of antigen-specific stimulation of peripheral blood lymphocytes was recorded, as measured either by the incorporation of tritiated thymidine or the release of IFN-gamma. Injection of DNA encoding for Bm86, either alone or with co-administered cytokine genes, did however prime for a strong subsequent antibody response following a single injection of recombinant Bm86 protein in adjuvant. Antibody production nevertheless appeared to be slightly less effective than following two vaccinations with recombinant protein. The persistence of antibody following vaccination was the same regardless of the method of primary sensitization. In all cases the half-life of the antibody response was approximately 40-50 days indicating that, in contrast to results reported in mice, DNA vaccination in sheep did not result in sustained antibody production. PMID:10587297

  16. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection.

    Science.gov (United States)

    Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo

    2016-09-01

    Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. PMID:27458055

  17. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  18. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  19. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Science.gov (United States)

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L; Mackey, David

    2016-05-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  20. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  1. Crystal structure of the Campylobacter jejuni Cj0090 protein reveals a novel variant of the immunoglobulin fold among bacterial lipoproteins

    OpenAIRE

    Paek, Seonghee; Kawai, Fumihiro; Choi, Kyoung-Jae; Yeo, Hye-Jeong

    2012-01-01

    Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold wit...

  2. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  3. Antigenic cross-reactivity among avian pneumoviruses of subgroups A, B, and C at the matrix but not nucleocapsid proteins.

    Science.gov (United States)

    Lwamba, Humphrey C M; Halvorson, David A; Nagaraja, Kakambi V; Turpin, Elizabeth A; Swayne, David; Seal, Bruce S; Njenga, M Kariuki

    2002-01-01

    Earlier findings from our laboratory based on analysis of nucleotide and predicted amino acid sequence identities of 15 avian pneumoviruses (APVs) isolated from the United States (subgroup C) demonstrated that the viruses were phylogenetically separated from the European subgroup A and subgroup B viruses. Here, we investigated whether viruses from the three subgroups were cross-reactive by testing field sera positive for each of the APV subgroups in an enzyme-linked immunosorbent assay (ELISA) test with recombinant matrix (M) and nucleoprotein (N) proteins generated from a Minnesota APV isolate (APV/MN2A). Sera from turkeys infected with APV subgroup A, B, or C reacted with recombinant M protein derived from APV/MN2A. In contrast, recombinant N protein from APV/MN2A virus was reactive with sera from subtypes A and C viruses but not from subtype B virus. The results illustrate that viruses from the three APV subtypes share antigenic homology, and the M protein-based ELISA is adequate for monitoring APV outbreaks but not for distinguishing between different subtypes.

  4. Structural analysis of the synthetic Duffy Binding Protein (DBP antigen DEKnull relevant for Plasmodium vivax malaria vaccine design.

    Directory of Open Access Journals (Sweden)

    Edwin Chen

    2015-03-01

    Full Text Available The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP is a protein necessary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-specific immune responses that pose unique challenges for vaccine development. DEKnull is a synthetic DBP based antigen that has been engineered through mutation to enhance induction of blocking inhibitory antibodies. We determined the x-ray crystal structure of DEKnull to identify if any conformational changes had occurred upon mutation. Computational and experimental analyses assessed immunogenicity differences between DBP and DEKnull epitopes. Functional binding assays with monoclonal antibodies were used to interrogate the available epitopes in DEKnull. We demonstrate that DEKnull is structurally similar to the parental Sal1 DBP. The DEKnull mutations do not cause peptide backbone shifts within the polymorphic loop, or at either the DBP dimerization interface or DARC receptor binding pockets, two important structurally conserved protective epitope motifs. All B-cell epitopes, except for the mutated DEK motif, are conserved between DEKnull and DBP. The DEKnull protein retains binding to conformationally dependent inhibitory antibodies. DEKnull is an iterative improvement of DBP as a vaccine candidate. DEKnull has reduced immunogenicity to polymorphic regions responsible for strain-specific immunity while retaining conserved protein folds necessary for induction of strain-transcending blocking inhibitory antibodies.

  5. Determination of the genus-specific antigens in outer membrane proteins from the strains of Leptospira interrogans and Leptospira biflexa with different virulence

    Institute of Scientific and Technical Information of China (English)

    罗依惠; 严杰; 毛亚飞; 李淑萍

    2004-01-01

    Objective:To determine the existence of genus-specific antigens in outer membrane proteins (OMPs) of leptospira with different virulence. Methods: Microscope agglutination test (MAT) was applied to detect the agglutination between commercial rabbit antiserum against leptospiral genus-specific TR/Patoc I antigen and 17 strains of Leptospira interrongans belonging to 15 serogroups and 2 strains of Leptospira biflexa belonging to 2 serogroups.The outer envelopes (OEs) of L.interrogans serogroup Icterohaemorrhagiae serovar lai strain lai (56601) with strong virulence and serogroup Pomona serovar pomona strain Luo (56608) with low virulence,and L.biflexa serogroup Semaranga serovar patoc strain Patoc I without virulence were prepared by using the method reported in Auran et al.(1972).OMPs in the OEs were obtained by treatment with sodium deoxycholate. SDS-PAGE and western blot were used for analyzing the features of the OMPs on electrophoretic pattern and the immunoreactivity to the antiserum against TR/Patoc I antigen, respectively. Results:All the tested strains belonging to different leptospiral serogroups agglutinated to the antiserum against leptospiral genus-specific TR/Patoc I antigen with agglutination titers ranging from 1:256-1:512. A similar SDS-PAGE pattern of the OMPs from the three strains of leptospira with different virulence was shown and the molecular weight of a major protein fragment in the OMPs was found to be approximately 60 KDa.A positive protein fragment with approximately 32 KDa confirmed by Western blot,was able to react with the antiserum against leptospiral genus-specific TR/Patoc I antigen, and was found in each the OMPs of the three stains of leptospira.Conclusion: There are genus-specific antigens on the surface of L.interrogans and L.biflexa. The OMP with molecular weight of 32 KDa may be one of the genus-specific protein antigens of leptospira.

  6. Determination of the genus-specific antigens in outer membrane proteins from the strains of Leptospira interrogans and Leptospira biflexa with different virulence

    Institute of Scientific and Technical Information of China (English)

    罗依惠; 严杰; 毛亚飞; 李淑萍

    2004-01-01

    Objective: To determine the existence of genus-specific antigens in outer membrane proteins (OMPs) of leptospira with different virulence. Methods: Microscope agglutination test (MAT) was applied to detect the agglutination between commercial rabbit antiserum against leptospiral genus-specific TR/Patoc I antigen and 17 strains of Leptospira interrongans belonging to 15 serogroups and 2 strains of Leptospira biflexa belonging to 2 serogroups. The outer envelopes (OEs) of L.interrogans serogroup Icterohaemorrhagiae serovar lai strain lai (56601) with strong virulence and serogroup Pomona serovar pomona strain Luo (56608) with low virulence, and L.biflexa serogroup Semaranga serovar patoc strain Patoc I without virulence were prepared by using the method reported in Auran et al.(1972). OMPs in the OEs were obtained by treatment with sodium deoxycholate. SDS-PAGE and western blot were used for analyzing the features of the OMPs on electrophoretic pattern and the immunoreactivity to the antiserum against TR/Patoc I antigen, respectively. Results: All the tested strains belonging to different leptospiral serogroups agglutinated to the antiserum against leptospiral genus-specific TR/Patoc I antigen with agglutination titers ranging from 1:256-1:512. A similar SDS-PAGE pattern of the OMPs from the three strains of leptospira with different virulence was shown and the molecular weight of a major protein fragment in the OMPs was found to be approximately 60 KDa. A positive protein fragment with approximately 32 KDa confirmed by Western blot, was able to react with the antiserum against leptospiral genus-specific TR/Patoc I antigen, and was found in each the OMPs of the three stains of leptospira. Conclusion: There are genus-specific antigens on the surface of L.interrogans and L.biflexa. The OMP with molecular weight of 32 KDa may be one of the genus-specific protein antigens of leptospira.

  7. Improved serodiagnosis of hepatitis C virus infection with synthetic peptide antigen from capsid protein.

    OpenAIRE

    Hosein, B; Fang, C T; Popovsky, M A; J. Ye; Zhang, M; WANG, C. Y.

    1991-01-01

    Cloning and expression of hepatitis C virus have allowed the development of immunoassays to detect hepatitis C virus infection. However, currently available recombinant fusion protein C100-3 assays, based on a nonstructural protein of the virus, are limited in sensitivity, particularly for detecting acute infection. In this report seroconversion panels showed that an assay based on synthetic peptides, derived from immunodominant regions of both capsid and nonstructural proteins, accelerated h...

  8. The Structure Analysis and Antigenicity Study of the N Protein of SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Jingqiang Wang; Haipan Zeng; Yongwu Hu; Xiangjun Tian; Xuehai Tan; Ningzhi Xu; Changqing Zeng; Jian Wang; Shengli Bi; Huanming Yang; Jia Ji; Jia Ye; Xiaoqian Zhao; Jie Wen; Wei Li; Jianfei Hu; Dawei Li; Min Sun

    2003-01-01

    The Coronaviridae family is characterized by a nucleocapsid that is composed of thegenome RNA molecule in combination with the nucleoprotein (N protein) withina virion. The most striking physiochemical feature of the N protein of SARS-CoVis that it is a typical basic protein with a high predicted pI and high hydrophilicity,which is consistent with its function of binding to the ribophosphate backbone ofthe RNA molecule. The predicted high extent of phosphorylation of the N proteinon multiple candidate phosphorylation sites demonstrates that it would be relatedto important functions, such as RNA-binding and localization to the nucleolus ofhost cells. Subsequent study shows that there is an SR-rich region in the N proteinand this region might be involved in the protein-protein interaction. The abundantantigenic sites predicted in the N protein, as well as experimental evidence withsynthesized polypeptides, indicate that the N protein is one of the major antigensof the SARS-CoV. Compared with other viral structural proteins, the low variationrate of the N protein with regards to its size suggests its importance to the survivalof the virus.

  9. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.

    Science.gov (United States)

    Robert, Francis; Brakier-Gingras, Léa

    2003-11-01

    In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.

  10. Topographic study of the ADP/ATP transport protein. Localization of ADP and atractyloside fixation sites. Identification of the antigenic domains

    International Nuclear Information System (INIS)

    The objectives of this research thesis were: to determine the intramolecular localisation of binding sites of atractyloside and adenine-nucleotides; to determine whether antibodies obtained against the ADP/ATP carrier protein and isolated from beef heart mitochondria possess a reactivity specific to the organ or the species, where antigenic determinants are localized and whether there is conservation of the antigenic structure from one species to the other; to study how to follow and interpret conformational changes of the protein under the effect of ADP and inhibitors (carboxy-atractyloside or bongkrekic acid), and where the SH group unmasked by ADP and bongkrekic acid is localized

  11. Human MHC class I antigens are associated with a 90-kDa cell surface protein.

    Science.gov (United States)

    Ferm, M T; Grönberg, A

    1991-08-01

    Human MHC class I proteins are expressed on almost all nucleated cells as a heavy chain (about 45 kDa) non-covalently associated with beta 2-microglobulin (12 kDa). In this report we show that MHC class I (MHC-I) proteins can also be associated with a 90-kDa protein in the cell membrane. Surface-radiolabelled cells were treated with dithiobis succinimidyl propionate (DSP) in order to preserve multimer protein complexes during cell lysis. The lysates were immunoprecipitated and analysed by SDS-PAGE and autoradiography. Immunoprecipitation of human MHC-I proteins co-precipitated another protein of about 90 kDa in molecular weight-p90. p90 was coprecipitated from all the MHC-I expressing cells tested: U937, Raji, Molt-4 and IFN-gamma treated K562, but not from untreated, MHC-I negative K562. A 90-kDa protein was also co-precipitated with MHC-I from fresh peripheral blood mononuclear cells (PBMC). Furthermore, p90 was coprecipitated by different MoAbs to the MHC-I heavy chain or beta 2-microglobulin, but not by control antibodies. Two additional co-precipitating proteins at 34 kDa and 28 kDa were seen in MHC-I precipitates from Raji cells. Our results suggest that MHC-I proteins and the 90-kDa protein are associated in the cell membrane, probably by a close but weak, non-covalent interaction. Two additional cell surface proteins at 34 kDa and 28 kDa seem to be MHC-I associated on Raji Burkitt's lymphoma cells.

  12. Involvement of T- and B-lymphocytes in the immune response to the protein exotoxin and the lipopolysaccharide antigens of Vibrio cholerae

    International Nuclear Information System (INIS)

    The immune response at the level of individual immunocytes to the somatic lipopolysaccharide antigen derived from whole Vibrio cholerae and to the purified protein exotoxin from this organism were studied in terms of the role of T- and B-lymphocytes. By adoptive cell transfer studies with irradiated recipient mice, it was shown that normal spleen cells from normal syngeneic mice could readily transfer the capability of responding to both types of cholera antigens. However, when the spleen cells were depleted of T-cells with anti-theta serum and complement, antibody responsiveness to the LPS antigen, but not the exotoxin, could be achieved in recipients. Furthermore, by appropriate transfer of either bone marrow, thymus, or thymus-marrow cell mixtures to irradiated mice, it was shown that the response to the cholera somatic antigen was relatively independent of thymus cells, whereas the response to exotoxin required ''helper'' T-cells

  13. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

    Directory of Open Access Journals (Sweden)

    Shuaiqi Guo

    Full Text Available A novel role for antifreeze proteins (AFPs may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII and region IV (RIV, divide MpAFP into five distinct regions, all of which require mM Ca(2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2 server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.

  14. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  15. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  16. Molecular Characterization of Soybean Mosaic Virus NIa Protein and its Processing Event in Bacterial Expression

    Directory of Open Access Journals (Sweden)

    Bong K. Choi

    2006-01-01

    Full Text Available Soybean mosaic virus (SMV-CN18 is an Rsv resistance-breaking (RB isolate to overcome soybean resistance genes Rsv1, Rsv3 and Rsv4. The aim of this study was to characterize nuclear inclusion protein a (NIa protein of RB isolate at the molecular level and demonstrate its processing into genome-linked protein (VPg and NIa-Pro domains in Esherichia coli containing a bacterial expression pET vector inserted with NIa gene. The full-length of NIa gene was synthesized by reverse transcription-polymerase chain reaction (RT-PCR and its 1298 nucleotides (nt and 432 amino acids (aa were deduced. The nt and aa sequences of NIa gene of SMV-CN18 shared high identities with the corresponding sequences of the NIa gene of the known SMV isolates, suggesting that the NIa is a highly conserved protein. The NIa-Pro domain contains a highly conserved structural motif for proteolysis, while the VPg domain contains a nuclear localization signal (NLS, a putative NTP-binding site and cellular factor-binding sites. The phylogenetic tree revealed that less divergence of NIa protein exists among twelve SMV isolates, which can be supported by a low bootstrap value between clades. In addition, the full-length of NIa gene, amplified by RT-PCR, was ligated into pET-28b E. coli expression vector with an N-terminal His6-tag. Optimal conditions for expression were at 1mM treatment of IPTG at 25°C for 5 hr. The released protein from bacterial lysates remained soluble and proved the processing form of the NIa polyprotein. E. coli expression system shows the processed product of 29 kDa VPg in SDS-PAGE confirmed by western blot analysis in both crude extracts and purified elution products, using Ni2+-NTA resin. The present study indicates that the N-terminal region of NIa which is processed and expressed in bacteria.

  17. Bacterial ghosts provided with antigens

    NARCIS (Netherlands)

    Leenhouts Cornelis, Johannes; Ramasamy, Ranjan; Steen, Anton; Kok, Jan; Buist, Girbe; Kuipers, Oscar

    2003-01-01

    Methods for improving binding of a proteinaceous substance to cell-wall material of a Gram-positive bacterium are disclosed. The proteinaceous substance includes an AcmA cell-wall binding domain, homolog or functional derivative thereof. The method includes treating the cell-wall material with a sol

  18. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films.

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R; Sleytr, U B; Toca-Herrera, José L

    2013-09-28

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (T(g)) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below T(g). The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm(2)), followed by PDLLA (0.034 μm(2)), and PLGA (0.039 μm(2)), and the largest size for PLCL (0.09 μm(2)). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (~1800 ng cm(-2)) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest T(g)). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  19. Effect of pH, salt and chemical rinses on bacterial attachment to extracellular matrix proteins.

    Science.gov (United States)

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark

    2013-06-01

    Microbial contamination of carcass surfaces occurs during slaughter and post-slaughter processing steps, therefore interventions are needed to enhance meat safety and quality. Although many studies have been done at the macro-level, little is known about specific processes that influence bacterial attachment to carcass surfaces, particularly the role of extracellular matrix (ECM) proteins. In the present study, the effect of pH and salt (NaCl, KCl and CaCl2) on attachment of Escherichia coli and Salmonella isolates to dominant ECM proteins: collagen I, fibronectin, collagen IV and laminin were assessed. Also, the effects of three chemical rinses commonly used in abattoirs (2% acetic acid, 2% lactic acid and 10% trisodium phosphate (TSP)) were tested. Within a pH range of 5-9, there was no significant effect on attachment to ECM proteins, whereas the effect of salt type and concentration varied depending on combination of strain and ECM protein. A concentration-dependant effect was observed with NaCl and KCl (0.1-0.85%) on attachment of E. coli M23Sr, but only to collagen I. One-tenth percent CaCl2 produced the highest level of attachment to ECM proteins for E. coli M23Sr and EC614. In contrast, higher concentrations of CaCl2 increased attachment of E. coli EC473 to collagen IV. Rinses containing TSP produced >95% reduction in attachment to all ECM proteins. These observations will assist in the design of targeted interventions to prevent or disrupt contamination of meat surfaces, thus improving meat safety and quality.

  20. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    Science.gov (United States)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-02-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes (IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon (IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  1. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    current tools especially where the N-terminally anchored and the SPIase-cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%. LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial genomes. The results are stored in the database LocateP-DB http://www.cmbi.ru.nl/locatep-db1. Conclusion LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive bacteria currently available.

  2. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Rafał Biedroń

    Full Text Available The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl, causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin and glycoproteins (human apo-transferrin, ovalbumin gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206, scavenger receptors A (CD204 and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system

  3. Identification of three new type-specific antigen epitopes in the capsid protein of porcine circovirus type 1.

    Science.gov (United States)

    Huang, Liping; Lu, Yuehua; Wei, Yanwu; Guo, Longjun; Liu, Changming

    2012-07-01

    Porcine circovirus type 1 (PCV1) has been identified as a contaminant of porcine kidney cell line (PK-15). Serological evidence and genetic studies have suggested that PCV1 is widespread in domestic pigs. In this study, monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) were generated against a recombinant PCV1 Cap protein (PCV1-Cap), which was expressed using the baculovirus system. PEPSCAN analysis was used to identify epitopes on the PCV1-Cap with mAbs and pAbs. Three linear B-cell epitopes, including residues (85)GGTNPLP(91), (162)FTPKPELDKTIDWFHPNNK(180) and (219)YVQFREFILKDPLNK(233), specific for PCV1-Cap, were finely defined. These results will facilitate future investigations into antigenic differences and differential diagnosis between PCV1 and PCV2. PMID:22437253

  4. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  5. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Jutta Messing

    2014-03-01

    Full Text Available Fruit extracts from black currants (Ribes nigrum L. are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2 was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. 125I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.

  6. Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori.

    Science.gov (United States)

    Messing, Jutta; Niehues, Michael; Shevtsova, Anna; Borén, Thomas; Hensel, Andreas

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects. PMID:24662083

  7. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  8. Immunogenicity and antigenicity of a recombinant chimeric protein containing epitopes of poliovirus type 1.

    Science.gov (United States)

    Pan, X-X; Wang, J; Xia, W-Y; Li, X-F; Yang, L-J; Huang, C; Chen, Y-D

    2016-01-01

    To design a vaccine that simultaneously prevents both rotavirus (RV) and poliovirus (PV), a PV type 1 (PV1) chimeric protein using RV VP6 as a vector (VP6F) was constructed, expressed in Escherichia coli expression system and characterized by SDS-PAGE, Western blot, immunofluorescence assay and neutralization test. The results showed that the chimeric protein reacted with anti-VP6F and anti-PV1 antibodies and elicited production of serum antibodies against the chimeric protein in guinea pigs. Antibodies against the chimeric protein neutralized RV Wa and PV1 infection in vitro. The results provided a relevant possibility of developing novel approaches in the rational design of vaccines effective against both RV and PV. PMID:27640433

  9. Acute phase proteins in serum and cerebrospinal fluid in the course of bacterial meningitis.

    Science.gov (United States)

    Paradowski, M; Lobos, M; Kuydowicz, J; Krakowiak, M; Kubasiewicz-Ujma, B

    1995-08-01

    We carried out estimations of the following acute phase proteins: C-reactive protein (CRP), alpha-1-antitrypsin (AAT), alpha-1-acid glycoprotein (AAG), alpha-2-ceruloplasmin (CER), and alpha-2-haptoglobin (HPT) in serum and in cerebrospinal fluid (CSF) in patients with bacterial meningitis (BM, n = 30) and viral meningitis (VM, n = 30). We have shown that determinations of concentrations of AAG and CRP in serum and CER in CSF are useful in differentiation between BM and VM. The diagnostic power of these three tests (the areas under their ROC curves equal 0.942, 0.929, and 0.931, respectively) is bigger, though statistically not significantly, than that of traditional parameters of BM in CSF, i.e., total protein concentration and white blood cell count. Determination of AAG, CRP, and AAT in serum is a valuable monitoring marker in the course of BM treatment. Convenience of serum sampling constitutes an advantage over traditional BM parameters in CSF. PMID:8521602

  10. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    Science.gov (United States)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  11. EXPRESSION OF BACTERIAL PROTEIN-A IN TOBACCO LEADS TO ENHANCED RESISTANCE TO STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Chaitali Roy

    2014-08-01

    Full Text Available Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms because it can be easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. As bacterial enzymes can be synthesized in tobacco, here we explore the possibility of in planta expression of staphylococcal protein-A(PA which is an antibody, an important group among biopharmaceuticals. In our study we have shown that the tobacco plants harboring PA gene could combat the crown gall infection and also effective in resisting abiotic stress conditions. Transgenic plants when subjected to interact with wild variety of Agrobacterium shows its enhanced capability to resist the gall formation. And when transgenic tobacco plants were grown in presence of 200mM NaCl and/or MG(Methylglyoxal solution, shows their increased tolerance towards salinity stress and high MG stress. So far transgenic tobacco plants are concerned, improvements in the expression of recombinant proteins and their recovery from tobacco may also enhance production and commercial use of this protein.

  12. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth.

    Science.gov (United States)

    Breton, Jonathan; Tennoune, Naouel; Lucas, Nicolas; Francois, Marie; Legrand, Romain; Jacquemot, Justine; Goichon, Alexis; Guérin, Charlène; Peltier, Johann; Pestel-Caron, Martine; Chan, Philippe; Vaudry, David; do Rego, Jean-Claude; Liénard, Fabienne; Pénicaud, Luc; Fioramonti, Xavier; Ebenezer, Ivor S; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2016-02-01

    The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern. PMID:26621107

  13. Immunodominant antigens in Naegleria fowleri excretory--secretory proteins were potential pathogenic factors.

    Science.gov (United States)

    Kim, Jong-Hyun; Yang, Ae-Hee; Sohn, Hae-Jin; Kim, Daesik; Song, Kyoung-Ju; Shin, Ho-Joon

    2009-11-01

    Naegleria fowleri, a ubiquitous pathogenic free-living amoeba, is the most virulent species and causes primary amoebic meningoencephalitis in laboratory animals and humans. The parasite secretes various inducing molecules as biological responses, which are thought to be involved in pathophysiological and immunological events during infection. To investigate what molecules of N. fowleri excretory-secretory proteins (ESPs) are related with amoebic pathogenicity, N. fowleri ESPs fractionated by two-dimensional electrophoresis were reacted with N. fowleri infection or immune sera. To identify immunodominant ESPs, six major protein spots were selected and analyzed by N-terminal sequencing. Finally, six proteins, 58, 40, 24, 21, 18, and 16 kDa of molecular weight, were partially cloned and matched with reference proteins as follow: 58 kDa of exendin-3 precursor, 40 kDa of secretory lipase, 24 kDa of cathepsin B-like proteases and cysteine protease, 21 kDa of cathepsin B, 18 kDa of peroxiredoxin, and 16 kDa of thrombin receptor, respectively. These results suggest that N. fowleri ESPs contained important proteins, which may play an important role in the pathogenicity of N. fowleri.

  14. Prediction on Antigenic Epitope Characteristics of Bt Cry2Ab Protein in Transgenic Crops

    Institute of Scientific and Technical Information of China (English)

    Jierong GAO; Ying HE; Zehong ZOU; Ailin TAO; Yuncan AI

    2012-01-01

    Abstract [Objective] This study aimed to predict the structural characteristics of Bt Cry2Ab protein in transgenic crops with bioinformatic analysis to provide the theoreti- cal clues for design of antibody Cry2Ab. [Method] The amino acid sequence of Cry2Ab protein was searched from NCBI database. The B cell epitopes were pre- dicted with DNAStar. The binding affinity between Cry2Ab protein and MHC-II molecules was analyzed with NetMHCII 2.2 Server to predict the T cell epitopes. [Result] Prediction result suggested the potential B cell epitope of Cry2Ab locating in the region of 208-215. Analysis of the binding affinity between Cry2Ab and MHC-II molecules suggested the regions of 177-185, 299-307 and 255-263 were the po- tential T cell epitopes. Human with HLA-DRB10101 alleles and HLA-DRB10701 al- leles were more sensitive to Cry2Ab protein. [Conclusion] This study facilitates to un- derstand the structural characteristics of Cry2Ab protein and provides a new clue to improve the assessment method for potential allergenicity of genetically modified food.

  15. Synthesis of human parainfluenza virus 2 nucleocapsid protein in yeast as nucleocapsid-like particles and investigation of its antigenic structure.

    Science.gov (United States)

    Bulavaitė, Aistė; Lasickienė, Rita; Vaitiekaitė, Aušra; Sasnauskas, Kęstutis; Žvirblienė, Aurelija

    2016-05-01

    The aim of this study was to investigate the suitability of yeast Saccharomyces cerevisiae expression system for the production of human parainfluenza virus type 2 (HPIV2) nucleocapsid (N) protein in the form of nucleocapsid-like particles (NLPs) and to characterize its antigenic structure. The gene encoding HPIV2 N amino acid (aa) sequence RefSeq NP_598401.1 was cloned into the galactose-inducible S. cerevisiae expression vector and its high-level expression was achieved. However, this recombinant HPIV2 N protein did not form NLPs. The PCR mutagenesis was carried out to change the encoded aa residues to the ones conserved across HPIV2 isolates. Synthesis of the modified proteins in yeast demonstrated that the single aa substitution NP_598401.1:p.D331V was sufficient for the self-assembly of NLPs. The significance of certain aa residues in this position was confirmed by analysing HPIV2 N protein structure models. To characterize the antigenic structure of NLP-forming HPIV2 N protein, a panel of monoclonal antibodies (MAbs) was generated. The majority of the MAbs raised against the recombinant NLPs recognized HPIV2-infected cells suggesting the antigenic similarity between the recombinant and virus-derived HPIV2 N protein. Fine epitope mapping revealed the C-terminal part (aa 386-504) as the main antigenic region of the HPIV2 N protein. In conclusion, the current study provides new data on the impact of HPIV2 N protein sequence variants on the NLP self-assembly and demonstrates an efficient production of recombinant HPIV2 N protein in the form of NLPs. PMID:26821928

  16. Capsule shields the function of short bacterial adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Dalsgaard, D.; Klemm, Per

    2004-01-01

    Bacterial surface structures such as capsules and adhesins are generally regarded as important virulence factors. Here we demonstrate that capsules block the function of the self-recognizing protein antigen 43 through physical shielding. The phenomenon is not restricted to Escherichia coli but can...

  17. Reverse Line Blot Assay for Direct Identification of Seven Streptococcus agalactiae Major Surface Protein Antigen Genes

    OpenAIRE

    Zhao, Zuotao; Kong, Fanrong; Gilbert, Gwendolyn L.

    2006-01-01

    We developed a multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB) to detect the genes encoding members of the family of variable surface-localized proteins of Streptococcus agalactiae (group B streptococcus [GBS]), namely, Bca (Cα), Rib, Epsilon (Epsilon/Alp1/Alp5), Alp2, Alp3, and Alp4, and the immunoglobulin A binding protein, Bac (Cβ). We used the assay to identify these genes in a collection of well-characterized GBS isolates and reference strains. The results showed tha...

  18. Identification of Leishmania proteins preferentially released in infected cells using change mediated antigen technology (CMAT.

    Directory of Open Access Journals (Sweden)

    Peter E Kima

    Full Text Available Although Leishmania parasites have been shown to modulate their host cell's responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus.

  19. Antigenic Profiles of Recombinant Proteins from Mycobacterium avium subsp paratuberculosis in Sheep with Johne's Disease

    Science.gov (United States)

    Methods to improve the ELISA test to detect Mycobacterium avium subsp paratuberculosis have been explored over several years. Previously, selected recombinant proteins of M. avium subspecies paratuberculosis were found to be immunogenic in cattle with Johne’s disease. In the present study, antibo...

  20. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response

    Science.gov (United States)

    Background: Celiac disease is an immune-mediated enteropathy that is generally understood to be triggered by the ingestion of gluten proteins of wheat and related cereals. The skin manifestation of the condition is known as dermatitis herpetiformis. Antibody response to native and deamidated seque...

  1. Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins

    Science.gov (United States)

    Classical swine fever virus (CSFV) harbors three envelope glycoproteins (E(rns), E1 and E2). Previous studies have demonstrated that removal of specific glycosylation sites within these proteins yielded attenuated and immunogenic CSFV mutants. Here we analyzed the effects of lack of glycosylation of...

  2. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hjerrild, L.; Gjermansen, Morten;

    2004-01-01

    -clumping variants, we have pinpointed the region of the protein responsible for autoaggregation to be located within the N-terminal one-third of the passenger domain. Our data suggest that ionic interactions between charged residues residing in interacting pairs of Ag43(alpha) domains may be important for the self...

  3. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  4. Targeting hepatitis B virus antigens to dendritic cells by heat shock protein to improve DNA vaccine potency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a control DNA vaccine were generated. Mice were immunized with these different construct. Immune responses were measured 2 wk after a second immunization by a T cell response assay, CTL cytotoxicity assay, and an antibody assay in C57BL/6 and BALB/c mice. CT26-HBeAg tumor cell challenge test in vivo was performed in BALB/c mice to monitor anti-tumor immune responses.RESULTS: In the mice immunized with pCMV-HBe-HSP DNA, superior CTL activity to target HBV-positive target cells was observed in comparison with mice immunized with pCMV-HBeAg (44% ± 5% vs 30% ± 6% in E: T > 50:1, P < 0.05). ELISPOT assays showed a stronger T-cell response from mice immunized with pCMV-HBe-HSP than that from pCMV-HBeAg immunized animals when stimulated either with MHC class Ⅰ or class Ⅱ epitopes derived from HBeAg (74% ± 9% vs 31% ± 6%, P < 0.01). ELISA assays revealed an enhanced HBeAg antibody response from mice immunized with pCMV-HBe-HSP than from those immunized with pCMV-HBeAg. The lowest tumor incidence and the slowest tumor growth were observed in mice immunized with pCMV-HBe-HSP when challenged with CT26-HBeAg.CONCLUSION: The results of this study demonstrate a broad enhancement of antigen-specific CD4+ helper,CD8+ cytotoxic T-cell, and B-cell responses by a novel DNA vaccination strategy. They also proved a stronger antigen-specific immune memory, which may be superior to currently described HBV DNA vaccination strategies for the treatment of chronic HBV infection.

  5. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  6. Use of bacterial expression cloning to define the amino acid sequences of antigenic determinants on the G2 glycoprotein of Rift Valley fever virus.

    OpenAIRE

    K. Keegan; Collett, M S

    1986-01-01

    Four distinct antigenic determinants along the G2 glycoprotein encoded by the M segment RNA of the Phlebovirus Rift Valley fever virus were localized. These epitopes were defined by four monoclonal antibodies, three of which were capable of neutralizing virus infectivity; one was nonneutralizing. Immunoprecipitation by these monoclonal antibodies of either denatured or native antigen characterized the epitopes as having linear or higher order structure. Molecular cloning of G2 glycoprotein-co...

  7. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating: Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P.F.; Currie, E.P.K.; Thies, J.C.; Mei, van der H.C.; Busscher, H.J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  8. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  9. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    Science.gov (United States)

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  10. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Directory of Open Access Journals (Sweden)

    Paweł Błażej

    Full Text Available Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  11. Third order nonlinear optical properties of stacked bacteriochlorophylls in bacterial photosynthetic light-harvesting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.X.; Laible, P.D. [Argonne National Lab., IL (United States). Chemistry Div.; Spano, F.C.; Manas, E.S. [Temple Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1997-09-01

    Enhancement of the nonresonant second order molecular hyperpolarizabilities {gamma} were observed in stacked macrocyclic molecular systems, previously in a {micro}-oxo silicon phthalocyanine (SiPcO) monomer, dimer and trimer series, and now in bacteriochlorophyll a (BChla) arrays of light harvesting (LH) proteins. Compared to monomeric BChla in a tetrahydrofuran (THF) solution, the <{gamma}> for each macrocycle was enhanced in naturally occurring stacked macrocyclic molecular systems in the bacterial photosynthetic LH proteins where BChla`s are arranged in tilted face-to-face arrays. In addition, the {gamma} enhancement is more significant in B875 of LH1 than in B850 in LH2. Theoretical modeling of the nonresonant {gamma} enhancement using simplified molecular orbitals for model SiPcO indicated that the energy level of the two photon state is crucial to the {gamma} enhancement when a two photon process is involved, whereas the charge transfer between the monomers is largely responsible when one photon near resonant process is involved. The calculated results can be extended to {gamma} enhancement in B875 and B850 arrays, suggesting that BChla in B875 are more strongly coupled than in B850. In addition, a 50--160 fold increase in <{gamma}> for the S{sub 1} excited state of relative to S{sub 0} of bacteriochlorophyll in vivo was observed which provides an alternative method for probing excited state dynamics and a potential application for molecular switching.

  12. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Directory of Open Access Journals (Sweden)

    Tauson Anne-Helene

    2007-11-01

    Full Text Available Abstract The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07 with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.

  13. Virulence-associated trimeric autotransporters of Haemophilus parasuis are antigenic proteins expressed in vivo

    OpenAIRE

    Olvera, Alex; Pina, Sonia; Pérez-Simó, Marta; Oliveira, Simone; Bensaid, Albert

    2010-01-01

    International audience Glässer's disease is a re-emerging swine disease characterized by a severe septicaemia. Vaccination has been widely used to control the disease, although there is a lack of extended cross-protection. Trimeric autotransporters, a family of surface exposed proteins implicated in host-pathogen interactions, are good vaccine candidates. Members of this family have been described in Haemophilus parasuis and designated as virulence-associated trimeric autotransporters (Vta...

  14. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  15. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  16. Wild-type, but not mutant, human p53 proteins inhibit the replication activities of simian virus 40 large tumor antigen.

    OpenAIRE

    Friedman, P N; Kern, S. E.; Vogelstein, B; Prives, C

    1990-01-01

    Murine p53 blocks many of the replication activities of simian virus 40 (SV40) large tumor antigen (T antigen) in vitro. As murine cells do not replicate SV40 DNA, it was of interest to determine how p53 from permissive human cells functions. Recombinant baculoviruses encoding either the wild-type form of human p53 or a mutant p53 cloned from a human tumor cell line were constructed, and p53 proteins were purified from infected insect cells. Surprisingly, we found that wild-type human p53 was...

  17. Role of alpha-crystallin, early-secreted antigenic target 6-kDa protein and culture filtrate protein 10 as novel diagnostic markers in osteoarticular tuberculosis

    Directory of Open Access Journals (Sweden)

    Nazia Rizvi

    2016-07-01

    Full Text Available Osteoarticular tuberculosis constitutes about 3% of all tuberculosis cases. Early and accurate diagnosis of tuberculosis is a challenging problem especially in the case of osteoarticular tuberculosis owing to the lower number of bacilli. However, an accurate and timely diagnosis of the disease results in an improved efficacy of the given treatment. Besides the limitations of conventional methods, nowadays molecular diagnostic techniques have emerged as a major breakthrough for the early diagnosis of tuberculosis with high sensitivity and specificity. Alpha-crystallin is a dominantly expressed protein responsible for the long viability of the pathogen during the latent phase under certain stress conditions such as hypoxia and nitric oxide stress. Two other proteins—early secreted antigenic target-6 and culture filtrate protein-10—show high expression in the active infective phase of Mycobacterium tuberculosis. In this article, we focus on the different proteins expressed dominantly in latent/active tuberculosis, and which may be further used as prognostic biomarkers for diagnosing tuberculosis, both in latent and active phases.

  18. Receptor interacting protein kinase-2 inhibition by CYLD impairs anti-bacterial immune responses in macrophages

    Directory of Open Access Journals (Sweden)

    Katharina eWex

    2016-01-01

    Full Text Available Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 (NOD2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2. RIPK2 mediates the activation of immune responses via the nuclear factor-κB (NF-κB and extracellular-signal regulated kinase (ERK pathways. Previously, it has been shown that RIPK2 activation dependens on its K63-ubiquitination by the E3 ligases pellino-3 and ITCH, whereas the deubiquitinating enzyme A20 counter-regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new interacting partner and inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm infected bone-marrow-derived macrophages (BMDM. CYLD-mediated K63-deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines (IL-6, IL-12, anti-listerial ROS and NO, and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD-deficiency with respect to the production of IL-6, NO, ROS and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2 dependent manner.The protective function of CYLD-deficiency was dependent on IFN-γ pre-stimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent STAT1 activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent anti-bacterial immune responses in macrophages.

  19. Purification and functional analysis of the recombinant protein isolated from E. coli by employing three different methods of bacterial lysis

    Directory of Open Access Journals (Sweden)

    MARIJA MOJSIN

    2005-07-01

    Full Text Available In this paper, the purification of the human recombinant protein expressed in E. coli using the GSTGene Fusion System, by applying various methods of bacterial lysis: sonication, freeze/thaw and beadbeating, is presented. The study was an attempt to compare the properties of the proteins obtained by the sonication method, recommended by manufacturers but inaccessible for many researchers, with those obtained using two other readily available lysis methods. The data show that all purified proteins were soluble and intact with the highest protein yield being obtained via the freeze/thaw method. The results of functional analysis indicate that the proteins purified using the sonication and freeze/thaw methods of lysis exhibited similar DNA binding affinity, while the protein purified by beadbeating was also functional but with a lower binding affinity. The conclusion of this study is that all three lysis methods could be successfully employed for protein purification.

  20. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement.

    Science.gov (United States)

    Saouaf, S J; Mahajan, S; Rowley, R B; Kut, S A; Fargnoli, J; Burkhardt, A L; Tsukada, S; Witte, O N; Bolen, J B

    1994-09-27

    We evaluated in WEHI 231 B cells the time-dependent responses of Lyn, Blk, Btk, Syk, and three members of the Jak family of protein tyrosine kinases following antibody-mediated surface engagement of the B-cell antigen receptor. Our results show that the enzyme activities of Lyn and Blk were stimulated within seconds of antigen receptor engagement and correlated with the initial tyrosine phosphorylation of the Ig alpha and Ig beta subunits of the B-cell antigen receptor. Btk enzyme activity was also transiently stimulated and was maximal at approximately 5 min after B-cell receptor surface binding. Syk activity gradually increased to a maximum at 10-30 min following receptor ligation and was found to parallel the association of Syk with the tyrosine phosphorylated Ig alpha and Ig beta subunits of the receptor. While the specific activities of the Jak1, Jak2, and Tyk2 protein tyrosine kinases were unaltered following B-cell receptor ligation, the abundance of Jak1 and Jak2 were increased 3- to 4-fold within 10 min of receptor engagement. These results demonstrate that multiple families of non-transmembrane protein tyrosine kinases are temporally regulated during the process of B-cell antigen receptor-initiated intracellular signal transduction. PMID:7524079

  1. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution. PMID:23475937

  2. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  3. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.

    Science.gov (United States)

    Williams, Laura E; Wernegreen, Jennifer J

    2013-01-01

    Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochmannia chromaiodes, an obligate bacterial endosymbiont of carpenter ants, and compared it with the close relative, B. pennsylvanicus. The genetic distance between these species is small enough for accurate whole genome alignment but large enough to provide a meaningful spectrum of indel mutations. We found that indels are subjected to purifying selection in coding regions and even intergenic regions, which show a reduced rate of indel base pairs per kilobase compared with nonfunctional pseudogenes. Indels occur almost exclusively in repeat regions composed of homopolymers and multimeric simple sequence repeats, demonstrating the importance of sequence context for indel mutations. Despite purifying selection, some indels occur in protein-coding genes. Most are multiples of three, indicating selective pressure to maintain the reading frame. The deleterious effect of frameshift-inducing indels is minimized by either compensation from a nearby indel to restore reading frame or the indel's location near the 3'-end of the gene. We observed amino acid divergence exceeding nucleotide divergence in regions affected by frameshift-inducing indels, suggesting that these indels may either drive adaptive protein evolution or initiate gene degradation. Our results shed light on how indel mutations impact processes of molecular evolution underlying endosymbiont genome evolution.

  4. Comprehensive Mapping Antigenic Epitopes of NS1 Protein of Japanese Encephalitis Virus with Monoclonal Antibodies.

    Directory of Open Access Journals (Sweden)

    Rong-Hong Hua

    Full Text Available Japanese encephalitis virus (JEV non-structural protein 1 (NS1 contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA, five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues (5AIDITRK(11, (72RDELNVL(78, (251KSKHNRREGY(260, (269DENGIVLD(276, and (341DETTLVRS(348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.

  5. Improving Antigenicity of the Recombinant Hepatitis C Virus Core Protein via Random Mutagenesis

    OpenAIRE

    Chen-Ji Huang; Hwei-Ling Peng; Chih-Yu Cheng

    2011-01-01

    In order to enhance the sensitivity of diagnosis, a recombinant clone containing domain I of HCV core (amino acid residues 1 to 123) was subjected to random mutagenesis. Five mutants with higher sensitivity were obtained by colony screening of 616 mutants using reverse ELISA. Sequence analysis of these mutants revealed alterations focusing on W84, P95, P110, or V129. The inclusion bodies of these recombinant proteins overexpressed in E. coli BL21(DE3) were subsequently dissolved using 6 M ure...

  6. Structure and antigenic properties of the tip-located P pilus proteins of uropathogenic Escherichia coli.

    OpenAIRE

    Lund, B; Lindberg, F; Normark, S

    1988-01-01

    Pyelonephritogenic Escherichia coli frequently expresses pili which bind to Gal alpha (1-4)Gal receptors present on the uroepithelium. Binding of these pili is mediated by a pilus-associated adhesin, PapG, and not by the major subunit which constitutes the bulk of the pilus structure. The adhesin and two pilinlike proteins, PapE and PapF, are present in only a few copies each at the pilus tip. Surface exposure of both PapF and PapG is required to achieve receptor-specific binding. The nucleot...

  7. The use of C-reactive protein in predicting bacterial co-Infection in children with bronchiolitis

    Directory of Open Access Journals (Sweden)

    Mohamad Fares

    2011-03-01

    Full Text Available Background: Bronchiolitis is a potentially life-threatening respiratory illness commonly affecting children who are less than two years of age. Patients with viral lower respiratory tract infection are at risk for co-bacterial infection. Aim: The aim of our study was to evaluate the use of C-reactive protein (CRP in predicting bacterial co-infection in patients hospitalized for bronchiolitis and to correlate the results with the use of antibiotics. Patients and Methods: This is a prospective study that included patients diagnosed with bronchiolitis admitted to Makassed General Hospital in Beirut from October 2008 to April 2009. A tracheal aspirate culture was taken from all patients with bronchiolitis on admission to the hospital. Blood was drawn to test C-reactive protein level, white cell count, transaminases level, and blood sugar level. Results: Forty-nine patients were enrolled in the study and were divided into two groups. Group 1 included patients with positive tracheal aspirate culture and Group 2 included those with negative culture. All patients with a CRP level ≥2 mg/dL have had bacterial co-infection. White cell count, transaminases and blood sugar levels were not predictive for bacterial co-infection. The presence of bacterial co-infection increased the length of hospital stay in the first group by 2 days compared to those in the second group. Conclusion: Bacterial co-infection is frequent in infants with moderate to severe bronchiolitis and requires admission. Our data showed that a CRP level greater than 1.1 mg/dL raised suspicion for bacterial co-infection. Thus, a tracheal aspirate should be investigated microbiologically in all hospitalized patients in order to avoid unnecessary antimicrobial therapy and to shorten the duration of the hospital stay.

  8. Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR) expression by flow cytometry

    OpenAIRE

    Zheng Zhili; Chinnasamy Nachimuthu; Morgan Richard A

    2012-01-01

    Abstract Background There has been significant progress in the last two decades on the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. Structurally CARs consist of a single chain antibody fragment directed against a tumor-associated antigen fused to an extracellular spacer and transmembrane domain followed by T cell cytoplasmic signaling moieties. Currently several clinical trials are underway using gene modified peripheral blood lymp...

  9. Production of soluble recombinant proteins with Kell, Duffy and Lutheran blood group antigen activity, and their use in screening human sera for Kell, Duffy and Lutheran antibodies.

    Science.gov (United States)

    Ridgwell, K; Dixey, J; Scott, M L

    2007-10-01

    The aim of this study was to show that soluble recombinant (sr) proteins can mimic blood group antigens and be used to screen human sera for blood-group-specific antibodies. The blood of all pregnant women and pretransfusion patients should be screened for blood-group-specific antibodies to identify and monitor pregnancies at risk of haemolytic disease of the foetus and newborn (HDFN), and to prevent haemolytic transfusion reactions. Current antibody screening and identification methods use human red blood cell panels, which can complicate antibody identification if more than one antibody specificity is present. COS-7 cells were transfected to produce sr forms of the extracellular domains of the red blood cell membrane proteins that express Kell, Duffy or Lutheran blood group antigens. These sr proteins were used to screen for and identify anti-Kell, anti-Duffy or anti-Lutheran blood-group-specific allo-antibodies in human sera by haemagglutination inhibition and in solid-phase enzyme-linked immunosorbent assays (ELISAs). There is a positive correlation (correlation coefficient 0.605, P value 0.002) between antibody titre by standard indirect antiglobulin test (IAT) and signal intensity in the ELISA test. This work shows that sr proteins can mimic blood group antigens and react with human allogeneic antibodies, and that such proteins could be used to develop solid-phase, high-throughput blood group antibody screening and identification platforms. PMID:17725551

  10. Serum Concentrations of Antibodies against Outer Membrane Protein P6, Protein D, and T- and B-Cell Combined Antigenic Epitopes of Nontypeable Haemophilus influenzae in Children and Adults of Different Ages.

    Science.gov (United States)

    Hua, Chun-Zhen; Hu, Wei-Lin; Shang, Shi-Qiang; Li, Jian-Ping; Hong, Li-Quan; Yan, Jie

    2016-02-01

    Nontypeable Haemophilus influenzae (NTHi) is one of the most common etiologies of acute otitis media, rhinosinusitis, and pneumonia. Outer membrane proteins (OMPs) are the main focus in new vaccine development against NTHi, as the H. influenzae type b (Hib) vaccine does not cover noncapsulated NTHi. The OMPs P6 and protein D are the most promising candidate antigens for an NTHi vaccine, and low antibody levels against them in serum may be correlated with infection caused by NTHi. In the current study, we measured the antibody titers against P6, protein D, and their T- and B-cell combined peptide epitopes in healthy individuals of different ages. We found that children B-cell combined antigenic epitopes. Antibody titers increased at ages 1 to 6 months, peaked at 7 months to 3 years, and remained high at 4 to 6 years. The antibody titers started to decrease after 6 years and were the lowest in the 21- to 30-year group. The geometric mean titers (GMTs) of T- and B-cell combined antigenic epitopes in P6 and protein D were positively correlated with those of the protein antigens. Among 12 peptides tested, P6-61, P6-123, and protein D-167 epitopes were better recognized than others in human serum. These findings might contribute to the development of an effective serotype-independent vaccine for H. influenzae. PMID:26677200

  11. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  12. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.

    Science.gov (United States)

    Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R

    2015-05-01

    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0

  13. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    International Nuclear Information System (INIS)

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46–103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 °C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit

  14. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changhua; Mao, Mao [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Yuan, Hang [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Shen, Huaibin [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Wu, Feng; Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)

    2013-09-15

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 Degree-Sign C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  15. Serological diagnosis of pneumococcal infection in children with pneumonia using protein antigens: A study of cut-offs with positive and negative controls.

    Science.gov (United States)

    Andrade, Dafne Carvalho; Borges, Igor Carmo; Ivaska, Lauri; Peltola, Ville; Meinke, Andreas; Barral, Aldina; Käyhty, Helena; Ruuskanen, Olli; Nascimento-Carvalho, Cristiana Maria

    2016-06-01

    The etiological diagnosis of infection by Streptococcus pneumoniae in children is difficult, and the use of indirect techniques is frequently warranted. We aimed to study the use of pneumococcal proteins for the serological diagnosis of pneumococcal infection in children with pneumonia. We analyzed paired serum samples from 13 Brazilian children with invasive pneumococcal pneumonia (positive control group) and 23 Finnish children with viral pharyngitis (negative control group), all aged pharyngitis were evaluated for oropharyngeal colonization, and none of them carried S. pneumoniae. We used a multiplex bead-based assay with eight proteins: Ply, CbpA, PspA1 and 2, PcpA, PhtD, StkP and PcsB. The optimal cut-off for increase in antibody level for the diagnosis of pneumococcal infection was determined for each antigen by ROC curve analysis. The positive control group had a significantly higher rate of ≥2-fold rise in antibody levels against all pneumococcal proteins, except Ply, compared to the negative controls. The cut-off of ≥2-fold increase in antibody levels was accurate for pneumococcal infection diagnosis for all investigated antigens. However, there was a substantial increase in the accuracy of the test with a cut-off of ≥1.52-fold rise in antibody levels for PcpA. When using the investigated protein antigens for the diagnosis of pneumococcal infection, the detection of response against at least one antigen was highly sensitive (92.31%) and specific (91.30%). The use of serology with pneumococcal proteins is a promising method for the diagnosis of pneumococcal infection in children with pneumonia. The use of a ≥2-fold increase cut-off is adequate for most pneumococcal proteins. PMID:26928648

  16. Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Ahlstrøm, Øystein;

    2005-01-01

    The objective of this study was to estimate the effect of increasing the dietary content of bacterial protein meal (BPM) on energy and protein metabolism in growing mink kits. Sixteen male mink kits of the standard brown genotype were randomly fed one of four diets: A control (Diet III) and 60.......7% on Diet I to 26.6% on Diet IV, and oxidation of fat increased from 53.8% on Diet I to 63.5% Diet IV. In conclusion, protein and energy metabolism remained unaffected when up to 40% of DN was derived from BPM....

  17. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N-U;

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  18. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress.

    Science.gov (United States)

    Pirlot, Céline; Thiry, Marc; Trussart, Charlotte; Di Valentin, Emmanuel; Piette, Jacques; Habraken, Yvette

    2016-04-01

    Melanoma antigen D2 (MAGE-D2) is recognized as a cancer diagnostic marker; however, it has poorly characterized functions. Here, we established its intracellular localization and shuttling during cell cycle progression and in response to cellular stress. In normal conditions, MAGE-D2 is present in the cytoplasm, nucleoplasm, and nucleoli. Within the latter, MAGE-D2 is mostly found in the granular and the dense fibrillar components, and it interacts with nucleolin. Transfection of MAGE-D2 deletion mutants demonstrated that Δ203-254 leads to confinement of MAGE-D2 to the cytoplasm, while Δ248-254 prevents its accumulation in nucleoli but still allows its presence in the nucleoplasm. Consequently, this short sequence belongs to a nucleolar localization signal. MAGE-D2 deletion does not alter the nucleolar organization or rRNA levels. However, its intracellular localization varies with the cell cycle in a different kinetic than nucleolin. After genotoxic and nucleolar stresses, MAGE-D2 is excluded from nucleoli and concentrates in the nucleoplasm. We demonstrated that its camptothecin-related delocalization results from two distinct events: a rapid nucleolar release and a slower phospho-ERK-dependent cytoplasm to nucleoplasm translocation, which results from an increased flux from the cytoplasm to nucleoplasm. In conclusion, MAGE-D2 is a dynamic protein whose shuttling properties could suggest a role in cell cycle regulation. PMID:26705694

  19. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  20. Mass Spectrometric Detection of Bacterial Protein Toxins and Their Enzymatic Activity.

    Science.gov (United States)

    Kalb, Suzanne R; Boyer, Anne E; Barr, John R

    2015-08-31

    Mass spectrometry has recently become a powerful technique for bacterial identification. Mass spectrometry approaches generally rely upon introduction of the bacteria into a matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometer with mass spectrometric recognition of proteins specific to that organism that form a reliable fingerprint. With some bacteria, such as Bacillus anthracis and Clostridium botulinum, the health threat posed by these organisms is not the organism itself, but rather the protein toxins produced by the organisms. One such example is botulinum neurotoxin (BoNT), a potent neurotoxin produced by C. botulinum. There are seven known serotypes of BoNT, A-G, and many of the serotypes can be further differentiated into toxin variants, which are up to 99.9% identical in some cases. Mass spectrometric proteomic techniques have been established to differentiate the serotype or toxin variant of BoNT produced by varied strains of C. botulinum. Detection of potent biological toxins requires high analytical sensitivity and mass spectrometry based methods have been developed to determine the enzymatic activity of BoNT and the anthrax lethal toxins produced by B. anthracis. This enzymatic activity, unique for each toxin, is assessed with detection of the toxin-induced cleavage of strategically designed peptide substrates by MALDI-TOF mass spectrometry offering unparalleled specificity. Furthermore, activity assays allow for the assessment of the biological activity of a toxin and its potential health risk. Such methods have become important diagnostics for botulism and anthrax. Here, we review mass spectrometry based methods for the enzymatic activity of BoNT and the anthrax lethal factor toxin.

  1. Nucleotide and partner-protein control of bacterial replicative helicase structure and function.

    Science.gov (United States)

    Strycharska, Melania S; Arias-Palomo, Ernesto; Lyubimov, Artem Y; Erzberger, Jan P; O'Shea, Valerie L; Bustamante, Carlos J; Berger, James M

    2013-12-26

    Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors. PMID:24373746

  2. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [35S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  3. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    Science.gov (United States)

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  4. Comprehensive Analysis and Characterization of Linear Antigenic Domains on HN Protein from Genotype VII Newcastle Disease Virus Using Yeast Surface Display System.

    Science.gov (United States)

    Li, Tao; Wang, Gaoling; Shi, Bingtian; Liu, Peixin; Si, Wei; Wang, Bin; Jiang, Li; Zhou, Lunjiang; Xiu, Jinsheng; Liu, Henggui

    2015-01-01

    Circulation of genotype VII Newcastle disease virus (NDV) has posed a great threat for the poultry industry worldwide. Antibodies against Hemagglutinin-neuraminidase (HN), a membrane protein of NDV with critical roles in NDV infection, have been reported to provide chickens protection from NDV infection. In this study, we comprehensively analyzed the in vivo antibody responses against the linear antigenic domains of the HN protein from genotype VII NDV using a yeast surface display system. The results revealed four distinct regions of HN, P1 (1-52aa), P2 (53-192aa), P3 (193-302aa) and P4 (303-571aa), respectively, according to their antigenic potency. Analysis by FACS and ELISA assay indicated P2 to be the dominant linear antigenic domain, with the immunogenic potency to protect the majority of chickens from NDV challenge. In contrast, the P1, P3 and P4 domains showed weak antigenicity in vivo and could not protect chickens from NDV challenge. These results provide important insight into the characteristic of humoral immune responses elicited by HN of NDV in vivo.

  5. Comprehensive Analysis and Characterization of Linear Antigenic Domains on HN Protein from Genotype VII Newcastle Disease Virus Using Yeast Surface Display System.

    Science.gov (United States)

    Li, Tao; Wang, Gaoling; Shi, Bingtian; Liu, Peixin; Si, Wei; Wang, Bin; Jiang, Li; Zhou, Lunjiang; Xiu, Jinsheng; Liu, Henggui

    2015-01-01

    Circulation of genotype VII Newcastle disease virus (NDV) has posed a great threat for the poultry industry worldwide. Antibodies against Hemagglutinin-neuraminidase (HN), a membrane protein of NDV with critical roles in NDV infection, have been reported to provide chickens protection from NDV infection. In this study, we comprehensively analyzed the in vivo antibody responses against the linear antigenic domains of the HN protein from genotype VII NDV using a yeast surface display system. The results revealed four distinct regions of HN, P1 (1-52aa), P2 (53-192aa), P3 (193-302aa) and P4 (303-571aa), respectively, according to their antigenic potency. Analysis by FACS and ELISA assay indicated P2 to be the dominant linear antigenic domain, with the immunogenic potency to protect the majority of chickens from NDV challenge. In contrast, the P1, P3 and P4 domains showed weak antigenicity in vivo and could not protect chickens from NDV challenge. These results provide important insight into the characteristic of humoral immune responses elicited by HN of NDV in vivo. PMID:26121247

  6. Comprehensive Analysis and Characterization of Linear Antigenic Domains on HN Protein from Genotype VII Newcastle Disease Virus Using Yeast Surface Display System.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Circulation of genotype VII Newcastle disease virus (NDV has posed a great threat for the poultry industry worldwide. Antibodies against Hemagglutinin-neuraminidase (HN, a membrane protein of NDV with critical roles in NDV infection, have been reported to provide chickens protection from NDV infection. In this study, we comprehensively analyzed the in vivo antibody responses against the linear antigenic domains of the HN protein from genotype VII NDV using a yeast surface display system. The results revealed four distinct regions of HN, P1 (1-52aa, P2 (53-192aa, P3 (193-302aa and P4 (303-571aa, respectively, according to their antigenic potency. Analysis by FACS and ELISA assay indicated P2 to be the dominant linear antigenic domain, with the immunogenic potency to protect the majority of chickens from NDV challenge. In contrast, the P1, P3 and P4 domains showed weak antigenicity in vivo and could not protect chickens from NDV challenge. These results provide important insight into the characteristic of humoral immune responses elicited by HN of NDV in vivo.

  7. Hepatitis C Virus Subtype 3a Envelope Protein 1 Binding with Human Leukocyte Antigen Class I Types of Pakistani Population: Candidate Epitopes for Synthetic Peptide Vaccine

    Directory of Open Access Journals (Sweden)

    Hamid Nawaz-Tipu

    2015-10-01

    Full Text Available The object of this cross sectional study was to determine the HCV subtype 3a envelope protein binding affinity with Human Leukocyte Antigen. Envelope 1 (E1 protein is one of the structural proteins responsible for entering the cells through the receptors. The binding affinity of E1 protein epitopes to the selected Human Leukocyte Antigen (HLA class I alleles was investigated using the computer-based tools. These prediction tools were also used to design the synthetic vaccine’s candidate epitopes and to identify the individuals/populations who are likely to be responder to those vaccines.The mean frequency of HLA I antigens in Pakistani population was calculated. Threealleles each from HLA A and B were selected. E1 protein sequence extracted from HCV 3a isolates was retrieved and twenty-four sequences of it were selected. NetMHCcons 1.0 server was used to determine the binding affinities of HLA alleles to the epitope sequences of 10 amino acids in length.A02, A03, A11, A24, A33, B08, B13, B15, B35 and B40 were the first five antigens moreprevalent in Pakistan each from HLA A and HLA B.. We did not find any binding affinity between HLA A*201, B*1501 and B*4001 and epitopes from E1 sequences in a threshold of50 nM. Totally five various epitopes derived from different isolates were characterized.The prediction of HLA-E1 epitope specific bindings and the forthcoming response can be a useful bioinformatics tool to uncover the right synthetic peptides for vaccine design purposes.

  8. Hepatitis C Virus Subtype 3a Envelope Protein 1 Binding with Human Leukocyte Antigen Class I Types of Pakistani Population: Candidate Epitopes for Synthetic Peptide Vaccine.

    Science.gov (United States)

    Nawaz-Tipu, Hamid

    2015-10-01

    The object of this cross sectional study was to determine the HCV subtype 3a envelope protein binding affinity with Human Leukocyte Antigen. Envelope 1 (E1) protein is one of the structural proteins responsible for entering the cells through the receptors. The binding affinity of E1 protein epitopes to the selected Human Leukocyte Antigen (HLA) class I alleles was investigated using the computer-based tools. These prediction tools were also used to design the synthetic vaccine's candidate epitopes and to identify the individuals/populations who are likely to be responder to those vaccines.The mean frequency of HLA I antigens in Pakistani population was calculated. Three alleles each from HLA A and B were selected. E1 protein sequence extracted from HCV 3a isolates was retrieved and twenty-four sequences of it were selected. NetMHCcons 1.0 server was used to determine the binding affinities of HLA alleles to the epitope sequences of 10 amino acids in length.A02, A03, A11, A24, A33, B08, B13, B15, B35 and B40 were the first five antigens more prevalent in Pakistan each from HLA A and HLA B.. We did not find any binding affinity between HLA A*201, B*1501 and B*4001 and epitopes from E1 sequences in a threshold of 50 nM. Totally five various epitopes derived from different isolates were characterized.The prediction of HLA-E1 epitope specific bindings and the forthcoming response can be a useful bioinformatics tool to uncover the right synthetic peptides for vaccine design purposes.

  9. The uptake of soluble and particulate antigens by epithelial cells in the mouse small intestine.

    Science.gov (United States)

    Howe, Savannah E; Lickteig, Duane J; Plunkett, Kyle N; Ryerse, Jan S; Konjufca, Vjollca

    2014-01-01

    Intestinal epithelial cells (IECs) overlying the villi play a prominent role in absorption of digested nutrients and establish a barrier that separates the internal milieu from potentially harmful microbial antigens. Several mechanisms by which antigens of dietary and microbial origin enter the body have been identified; however whether IECs play a role in antigen uptake is not known. Using in vivo imaging of the mouse small intestine, we investigated whether epithelial cells (enterocytes) play an active role in the uptake (sampling) of lumen antigens. We found that small molecular weight antigens such as chicken ovalbumin, dextran, and bacterial LPS enter the lamina propria, the loose connective tissue which lies beneath the epithelium via goblet cell associated passageways. However, epithelial cells overlying the villi can internalize particulate antigens such as bacterial cell debris and inert nanoparticles (NPs), which are then found co-localizing with the CD11c+ dendritic cells in the lamina propria. The extent of NP uptake by IECs depends on their size: 20-40 nm NPs are taken up readily, while NPs larger than 100 nm are taken up mainly by the epithelial cells overlying Peyer's patches. Blocking NPs with small proteins or conjugating them with ovalbumin does not inhibit their uptake. However, the uptake of 40 nm NPs can be inhibited when they are administered with an endocytosis inhibitor (chlorpromazine). Delineating the mechanisms of antigen uptake in the gut is essential for understanding how tolerance and immunity to lumen antigens are generated, and for the development of mucosal vaccines and therapies.

  10. P48 Major Surface Antigen of Mycoplasma agalactiae Is Homologous to a malp Product of Mycoplasma fermentans and Belongs to a Selected Family of Bacterial Lipoproteins

    OpenAIRE

    Rosati, Sergio; Pozzi, Sarah; Robino, Patrizia; Montinaro, Barbara; Conti, Amedeo; Fadda, Manlio; Pittau, Marco

    1999-01-01

    A major surface antigenic lipoprotein of Mycoplasma agalactiae, promptly recognized by the host's immune system, was characterized. The mature product, P48, showed significant similarity and shared conserved amino acid motifs with lipoproteins or predicted lipoproteins from Mycoplasma fermentans, Mycoplasma hyorhinis, relapsing fever Borrelia spp., Bacillus subtilis, and Treponema pallidum.

  11. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  12. Vaccination of Goats with 31 kDa and 32 kDa Schistosoma japonicum Antigens by DNA Priming and Protein Boosting

    Institute of Scientific and Technical Information of China (English)

    Lianfei Tang; Zhijun Zhou; Yuxiao Chen; Yonghui Luo; Linqian Wang; Liyu Chen; Fushen Huang; Xianfang Zeng; Xinyuan Yi

    2007-01-01

    Two Schistosoma japonicum vaccine candidate antigens Sj 31 and Sj 32, which have shown particular promise to induce protective immunity in mice, were used to immunize goats by using a DNA priming-protein boosting strategy in present work. DNA vaccine formulations of the two antigens (VRSj31 and VRSj32) were produced and injected intramuscularly twice at a 2-week interval and then recombinant proteins (rSj31 and rSj32) together with Freund Complete Adjuvant (FCA) were used to boost the goats. The experiment was repeated in different batche cercariae. A strong anamnestic antibody response was induced after boost. A significant reduction of liver egg counts and miracidial hatching was showed in both experiments. Significant protections against challenge infection were elicited with 31.6% of percentage reduction for worm recovery in the second experiment and 20.9% in the first experiment, respectively.

  13. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    Directory of Open Access Journals (Sweden)

    David S Milner

    2014-04-01

    Full Text Available Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd GTP-binding are conserved. Deletion of mglA(Bd abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd interacted with a previously uncharacterised tetratricopeptide repeat (TPR domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.

  14. Kinetics of Dengue Non-Structural Protein 1 Antigen and IgM and IgA Antibodies in Capillary Blood Samples from Confirmed Dengue Patients

    OpenAIRE

    Matheus, Séverine; Pham, Thai Binh; Labeau, Bhetty; Huong, Vu Thi Que; Lacoste, Vincent; Deparis, Xavier; Marechal, Vincent

    2014-01-01

    Large-scale epidemiological surveillance of dengue in the field and dengue patient management require simple methods for sample collection, storage, and transportation as well as effective diagnostic tools. We evaluated the kinetics of three biological markers of dengue infection—non-structural protein 1 (NS1) antigen, immunoglobulin M (IgM), and IgA—in sequential capillary blood samples collected from fingertips of confirmed dengue patients. The overall sensitivities and specificities of the...

  15. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    OpenAIRE

    Susanne H. Hodgson; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Thomas W Rampling; Biswas, Sumi; Ian D Poulton; Miura, Kazutoyo; Douglas, Alexander D.; Alanine, Daniel GW; Illingworth, Joseph J.; de Cassan, Simone C.; ZHU, DAMING; Nicosia, Alfredo; Long, Carole A.

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovir...

  16. Oral Immunization with Recombinant Mycobacterium smegmatis Expressing the Outer Membrane Protein 26-Kilodalton Antigen Confers Prophylactic Protection against Helicobacter pylori Infection ▿ †

    OpenAIRE

    Lü, Lin; Zeng, Han-qing; Wang, Pi-Long; Shen, Wei; Xiang, Ting-xiu; Mei, Zhe-chuan

    2011-01-01

    Helicobacter pylori infection is prevalent worldwide and results in chronic gastritis, which may lead to gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. We have previously reported that oral immunization with recombinant Mycobacterium smegmatis expressing the H. pylori outer membrane protein 26-kilodalton (Omp26) antigen affords therapeutic protection against H. pylori infection in mice. In the present study, we investigated the prophylactic effects of this vaccine cand...

  17. Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo

    Directory of Open Access Journals (Sweden)

    Laura A. Novotny

    2016-08-01

    Full Text Available The vast majority of chronic and recurrent bacterial diseases are attributed to the presence of a recalcitrant biofilm that contributes significantly to pathogenesis. As such, these diseases will require an innovative therapeutic approach. We targeted DNABII proteins, an integral component of extracellular DNA (eDNA which is universally found as part of the pathogenic biofilm matrix to develop a biofilm disrupting therapeutic. We show that a cocktail of monoclonal antibodies directed against specific epitopes of a DNABII protein is highly effective to disrupt diverse biofilms in vitro as well as resolve experimental infection in vivo, in both a chinchilla and murine model. Combining this monoclonal antibody cocktail with a traditional antibiotic to kill bacteria newly released from the biofilm due to the action of the antibody cocktail was highly effective. Our results strongly support these monoclonal antibodies as attractive candidates for lead optimization as a therapeutic for resolution of bacterial biofilm diseases.

  18. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    Science.gov (United States)

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  19. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates

    OpenAIRE

    Seras Franzoso, Joaquin; Peebo, Karl; Garcia Fruitós, Elena; Vázquez Gómez, Esther; Rinas, Ursula; Villaverde Corrales, Antonio

    2014-01-01

    Altres ajuts: We are indebted CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, Spain) for funding our research on inclusion bodies. Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with...

  20. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains

    OpenAIRE

    Al Akeel, Raid; Al-Sheikh, Yazeed; Mateen, Ayesha; Syed, Rabbani; Janardhan, K.; V C Gupta

    2013-01-01

    A huge group of natural antimicrobial compounds are active against a large spectrum of bacterial strains causing infectious threat. The present study was conducted to investigate the crude extracts of antimicrobial protein and peptide efficacy from six medicinal plant seeds. Extraction was carried out in Sodium phosphate citrate buffer, and Sodium acetate buffer using different pH. Antimicrobial activities of these plants were determined by the microbiological technique using Agar well diffus...

  1. Induction of protective T-helper 1 immune responses against Echinococcus granulosus in mice by a multi-T-cell epitope antigen based on five proteins

    Directory of Open Access Journals (Sweden)

    Majid Esmaelizad

    2013-06-01

    Full Text Available In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3 were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST. The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL, but interleukin (IL-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6% was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.

  2. Evaluation of an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of Chlamydia trachomatis infections

    Directory of Open Access Journals (Sweden)

    Gargouri Jalel

    2008-12-01

    Full Text Available Abstract Background The OmcB protein is one of the most immunogenic proteins in C. trachomatis and C. pneumoniae infections. This protein is highly conserved leading to serum cross reactivity between the various chlamydial species. Since previous studies based on recombinant proteins failed to identify a species specific immune response against the OmcB protein, this study evaluated an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of C. trachomatis infections. Results Using the ClustalW and Antigenic programs, we have selected two predicted specific and immunogenic regions in the OmcB protein: the N-terminal (Nt region containing three epitopes and the C-terminal (Ct region containing two epitopes with high scores. These regions were cloned into the PinPoint Xa-1 and pGEX-6P-1 expression vectors, incorporating a biotin purification tag and a glutathione-S-transferase tag, respectively. These regions were then expressed in E. coli. Only the pGEX-6P-1 has been found suitable for serological studies as its tag showed less cross reactivity with human sera and was retained for the evaluation of the selected antigens. Only the Ct region of the protein has been found to be well expressed in E. coli and was evaluated for its ability to be recognized by human sera. 384 sera were tested for the presence of IgG antibodies to C. trachomatis by our in house microimmunofluorescence (MIF and the developed ELISA test. Using the MIF as the reference method, the developed OmcB Ct ELISA has a high specificity (94.3% but a low sensitivity (23.9. Our results indicate that the use of the sequence alignment tool might be useful for identifying specific regions in an immunodominant antigen. However, the two epitopes, located in the selected Ct region, of the 24 predicted in the full length OmcB protein account for approximately 25% of the serological response detected by MIF, which limits the use of the developed ELISA

  3. Comparing Prothrombin induced by vitamin K absence-II (PIVKA-II) with the oncofetal proteins Glypican-3, Alpha feto protein and Carcinoembryonic antigen in diagnosing hepatocellular carcinoma among Egyptian patients

    OpenAIRE

    Iman A. Abd El Gawad; Mossallam, Ghada I.; Noha H. Radwan; Elzawahry, Heba M; Niveen M. Elhifnawy

    2014-01-01

    Background: Hepatocellular carcinoma (HCC) is usually asymptomatic in the early stage and does not show elevated alpha-feto protein (AFP). AFP shows 60–80% sensitivity in diagnosing HCC. Glypican3 (GPC-3) is an oncofetal protein that is only detected in HCC cells but not in benign liver tissues, while Carcinoembryonic antigen (CEA) is expressed in various neoplasms including HCC. Although, it is not specific for HCC. Prothrombin induced by vitamin K absence-II (PIVKA-II) is an abnormal ...

  4. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance.

    Science.gov (United States)

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C; Steinman, Ralph M

    2002-12-16

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal alphaDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c- cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When alphaDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4-48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of alphaDEC-205:OVA to DCs in the steady state initially induced 4-7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with alphaDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic alphaCD40 antibody produced large amounts of interleukin 2 and interferon gamma, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.

  5. Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance

    Science.gov (United States)

    Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Rivera, Miguel; Nussenzweig, Michel C.; Steinman, Ralph M.

    2002-01-01

    To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation. PMID:12486105

  6. Simultaneous cytoplasmic and nuclear protein expression of melanoma antigen-A family and NY-ESO-1 cancer-testis antigens represents an independent marker for poor survival in head and neck cancer.

    Science.gov (United States)

    Laban, Simon; Atanackovic, Djordje; Luetkens, Tim; Knecht, Rainald; Busch, Chia-Jung; Freytag, Marcus; Spagnoli, Giulio; Ritter, Gerd; Hoffmann, Thomas K; Knuth, Alexander; Sauter, Guido; Wilczak, Waldemar; Blessmann, Marco; Borgmann, Kerstin; Muenscher, Adrian; Clauditz, Till S

    2014-09-01

    The prognosis of head and neck squamous cell carcinoma (HNSCC) patients remains poor. The identification of high-risk subgroups is needed for the development of custom-tailored therapies. The expression of cancer-testis antigens (CTAs) has been linked to a worse prognosis in other cancer types; however, their prognostic value in HNSCC is unclear because only few patients have been examined and data on CTA protein expression are sparse. A tissue microarray consisting of tumor samples from 453 HNSCC patients was evaluated for the expression of CTA proteins using immunohistochemistry. Frequency of expression and the subcellular expression pattern (nuclear, cytoplasmic, or both) was recorded. Protein expression of melanoma antigen (MAGE)-A family CTA, MAGE-C family CTA and NY-ESO-1 was found in approximately 30, 7 and 4% of tumors, respectively. The subcellular expression pattern in particular had a marked impact on the patients' prognosis. Median overall survival (OS) of patients with (i) simultaneous cytoplasmic and nuclear expression compared to (ii) either cytoplasmic or nuclear expression and (iii) negative patients was 23.0 versus 109.0 versus 102.5 months, for pan-MAGE (p ESO-1 (p = 0.0019). By multivariate analysis, these factors were confirmed as independent markers for poor survival. HNSCC patients showing protein expression of MAGE-A family members or NY-ESO-1 represent a subgroup with an extraordinarily poor survival. The development of immunotherapeutic strategies targeting these CTA may, therefore, be a promising approach to improve the outcome of HNSCC patients.

  7. Unusual Heme Binding in the Bacterial Iron Response Regulator Protein (Irr): Spectral Characterization of Heme Binding to Heme Regulatory Motif

    OpenAIRE

    Ishikawa, Haruto; Nakagaki, Megumi; Bamba, Ai; Uchida, Takeshi; Hori, Hiroshi; O'Brian, Mark R.; Iwai, Kazuhiro; Ishimori, Koichiro

    2011-01-01

    We characterized heme binding in the bacterial iron response regulator (Irr) protein, which is a simple heme-regulated protein having a single “heme-regulatory motif”, HRM, and plays a key role in the iron homeostasis of a nitrogen fixing bacterium. The heme titration to wild-type and mutant Irr clearly showed that Irr has two heme binding sites: one of the heme binding sites is in the HRM, where 29Cys is the axial ligand, and the other one, the secondary heme binding site, is located outside...

  8. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.

    Science.gov (United States)

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be

  9. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.

    Directory of Open Access Journals (Sweden)

    Alessandro Pandini

    Full Text Available Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM domains (amino-terminal (FliGN, middle (FliGM and FliGC as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6. FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM

  10. Antigenic Properties and Diagnostic Potential of Baculovirus-Expressed Infectious Bursal Disease Virus Proteins VPX and VP3

    OpenAIRE

    Martínez-Torrecuadrada, Jorge L.; Lázaro, Beatriz; Rodriguez, José F; Casal, J. Ignacio

    2000-01-01

    The routine technique for detecting antibodies specific to infectious bursal disease virus (IBDV) is a serological evaluation by enzyme-linked immunosorbent assay (ELISA) with preparations of whole virions as the antigens. To avoid using complete virus in the standard technique, we have developed two new antigens through the expression of the VPX and VP3 genes in insect cells. VPX and especially VP3 were expressed at high levels in insect cells and simple to purify. The immunogenicity of both...

  11. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.

    Directory of Open Access Journals (Sweden)

    Monique van Velzen

    2013-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection results in lifelong chronic infection of trigeminal ganglion (TG neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

  12. Bacterial beta-lactamase fragmentation complementation strategy can be used as a method for identifying interacting protein pairs.

    Science.gov (United States)

    Park, Jong-Hwa; Back, Jung Ho; Hahm, Soo Hyun; Shim, Hye-Young; Park, Min Ju; Ko, Sung Il; Han, Ye Sun

    2007-10-01

    We investigated the applicability of the TEM-1 beta- lactamase fragment complementation (BFC) system to develop a strategy for the screening of protein-protein interactions in bacteria. A BFC system containing a human Fas-associated death domain (hFADD) and human Fas death domain (hFasDD) was generated. The hFADD-hFasDD interaction was verified by cell survivability in ampicillin-containing medium and the colorimetric change of nitrocefin. It was also confirmed by His pull-down assay using cell lysates obtained in selection steps. A coiled-coil helix coiled-coil domain-containing protein 5 (CHCH5) was identified as an interacting protein of human uracil DNA glycosylase (hUNG) from the bacterial BFC cDNA library strategy. The interaction between hUNG and CHCH5 was further confirmed with immunoprecipitation using a mammalian expression system. CHCH5 enhanced the DNA glycosylase activity of hUNG to remove uracil from DNA duplexes containing a U/G mismatch pair. These results suggest that the bacterial BFC cDNA library strategy can be effectively used to identify interacting protein pairs.

  13. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen.

    OpenAIRE

    Stubdal, H; Zalvide, J; Campbell, K S; Schweitzer, C; Roberts, T.M.; DeCaprio, J A

    1997-01-01

    Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previously shown that the N terminus and the LXCXE domain of TAg cooperate to alter the phosphorylation state of p130 and p107. Here, we demonstrate that...

  14. Antigens in human glioblastomas and meningiomas: Search for tumour and onco-foetal antigens. Estimation of S-100 and GFA protein

    DEFF Research Database (Denmark)

    Dittmann, L; Axelsen, N H; Norgaard-Pedersen, B;

    1977-01-01

    (glia specific); monospecific anti-GFA (glial fibrillary acidic protein), (astroglia specific); polyspecific anti-foetal brain (12-16th week of gestation); a polyspecific anti-glioblastoma antiserum, absorbed with insolubilized serum, haemolysate and normal brain extract; polyspecific anti...

  15. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  16. Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Vivian T Martins

    Full Text Available BACKGROUND: The present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1, previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene family, attempting to select a new candidate antigen for specific serodiagnosis, as well as to compose a vaccine against VL. METHODOLOGY/PRINCIPAL FINDINGS: The LiHyp1 DNA sequence was cloned; the recombinant protein (rLiHyp1 was purified and evaluated for its antigenicity and immunogenicity. The rLiHyp1 protein was recognized by antibodies from sera of asymptomatic and symptomatic animals with canine visceral leishmaniasis (CVL, but presented no cross-reactivity with sera of dogs vaccinated with Leish-Tec, a Brazilian commercial vaccine; with Chagas' disease or healthy animals. In addition, the immunogenicity and protective efficacy of rLiHyp1 plus saponin was evaluated in BALB/c mice challenged subcutaneously with virulent L. infantum promastigotes. rLiHyp1 plus saponin vaccinated mice showed a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with the recombinant protein. Immunized and infected mice, as compared to the control groups (saline and saponin, showed significant reductions in the number of parasites found in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, produced mainly by CD4 T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 response could also be observed. CONCLUSIONS/SIGNIFICANCE: The present study showed that this Leishmania oxygenase amastigote-specific protein can be used for a more sensitive and specific serodiagnosis of asymptomatic and symptomatic CVL and, when combined with a Th1-type adjuvant, can also be employ as a candidate antigen to develop vaccines against VL.

  17. IgG responses to Pneumococcal and Haemophilus influenzae protein antigens are not impaired in children with a history of recurrent acute otitis media.

    Directory of Open Access Journals (Sweden)

    Selma P Wiertsema

    Full Text Available BACKGROUND: Vaccines including conserved antigens from Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi have the potential to reduce the burden of acute otitis media. Little is known about the antibody response to such antigens in young children with recurrent acute otitis media, however, it has been suggested antibody production may be impaired in these children. METHODS: We measured serum IgG levels against 4 pneumococcal (PspA1, PspA 2, CbpA and Ply and 3 NTHi (P4, P6 and PD proteins in a cross-sectional study of 172 children under 3 years of age with a history of recurrent acute otitis media (median 7 episodes, requiring ventilation tube insertion and 63 healthy age-matched controls, using a newly developed multiplex bead assay. RESULTS: Children with a history of recurrent acute otitis media had significantly higher geometric mean serum IgG levels against NTHi proteins P4, P6 and PD compared with healthy controls, whereas there was no difference in antibody levels against pneumococcal protein antigens. In both children with and without a history of acute otitis media, antibody levels increased with age and were significantly higher in children colonised with S. pneumoniae or NTHi compared with children that were not colonised. CONCLUSIONS: Proteins from S. pneumoniae and NTHi induce serum IgG in children with a history of acute otitis media. The mechanisms in which proteins induce immunity and potential protection requires further investigation but the dogma of impaired antibody responses in children with recurrent acute otitis media should be reconsidered.

  18. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    Science.gov (United States)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  19. PAS-1, a protein affinity purified from Ascaris suum worms, maintains the ability to modulate the immune response to a bystander antigen.

    Science.gov (United States)

    Oshiro, Telma M; Enobe, Cristina S; Araújo, Cláudia A; Macedo, Mahasti S; Macedo-Soares, Maria Fernanda

    2006-04-01

    Helminth infections and parasite components have potent immunomodulatory effects on a host's immune system. In the present study, we investigated the effect of PAS-1, a protein component of Ascaris suum adult worms recognized by a monoclonal antibody (MAIP-1), on humoral and cell-mediated responses to a bystander antigen (ovalbumin [OVA]). MAIP-1 recognized only one of the three polypeptide chains of PAS-1, but neutralized the suppressive effect of the whole worm extract on OVA-specific antibody production. PAS-1 inhibited antibody production against a T-cell-dependent, but not a T-cell-independent, antigen in a dose-dependent way. IgM, IgG1, IgG2b, and also IgE and anaphylactic IgG1 levels were downregulated. In addition, PAS-1 inhibited OVA-specific delayed type hypersensitivity reactions in the footpad of mice, showing a potent immunosuppressive activity on both Th1 and Th2 responses that seems to be mediated by the induction of large amounts of IL-10 and IL-4. Indeed, PAS-1-specific spleen cells secreted sevenfold more IL-10 and threefold more IL-4 than OVA-specific cells in response to in vitro restimulation with the respective antigens. In conclusion, we showed that PAS-1, a single protein component from A. suum, maintains all its immunosuppressive properties. PMID:16519731

  20. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  1. Assessment of Relationship Between Bacterial Stripe Resistance And Leaf Protein Bands In Rice (Oryza sativa L.) Varieties.

    Science.gov (United States)

    Talei, D.; Fotokian, M. H.

    2008-01-01

    Bacterial stripe as a new rice disease in Iran is more frequent nowadays. The objective of this study was to assessment of resistance in rice varieties together with evaluating of zymogram bands resulted from SDS PAGE electrophoresis of leaf proteins. For this purpose, 30 lines were tested in a randomized complete block design with three replications. The analysis of variance showed that there was significant difference between genotypes for resistance. Mean compare based on field results revealed that Domsiyah had the lowest resistance while Nemat and 7162 demonstrated the highest resistance. Laboratory results showed that there were significant difference between protein bands resulted from sensitive and resistance verities. Twenty bands were observed through SDS PAGE electrophoresis of leaf proteins. The 9th and 12th bands were found in sensitive varieties while were not in resistance genotypes. According to the results of this study, 7162 variety can be considered as the sources of resistance in breeding programs. Meanwhile attending to existence of 9th and 12th bands in sensitive varieties, resistance against bacterial stripe of rice maybe influenced by absence of these proteins.

  2. Vaccination with Brucella abortus Recombinant In Vivo-Induced Antigens Reduces Bacterial Load and Promotes Clearance in a Mouse Model for Infection

    OpenAIRE

    Jake E Lowry; Isaak, Dale D.; Leonhardt, Jack A.; Giulia Vernati; Jessie C Pate; Andrews, Gerard P.

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for ...

  3. B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F;

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective...... immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme......-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two...

  4. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted prot...

  5. Predicting promiscuous antigenic T cell epitopes of Mycobacterium tuberculosis mymA operon proteins binding to MHC Class I and Class II molecules.

    Science.gov (United States)

    Saraav, Iti; Pandey, Kirti; Sharma, Monika; Singh, Swati; Dutta, Prasun; Bhardwaj, Anshu; Sharma, Sadhna

    2016-10-01

    Limited efficacy of Bacillus Calmette-Guérin vaccine has raised the need to explore other immunogenic candidates to develop an effective vaccine against Mycobacterium tuberculosis (Mtb). Both CD4+ and CD8+ T cells play a critical role in host immunity to Mtb. Infection of macrophages with Mtb results in upregulation of mymA operon genes thereby suggesting their importance as immune targets. In the present study, after exclusion of self-peptides mymA operon proteins of Mtb were analyzed in silico for the presence of Human Leukocyte Antigen (HLA) Class I and Class II binding peptides using Bioinformatics and molecular analysis section, NetMHC 3.4, ProPred and Immune epitope database software. Out of 56 promiscuous epitopes obtained, 41 epitopes were predicted to be antigenic for MHC Class I. In MHC Class II, out of 336 promiscuous epitopes obtained, 142 epitopes were predicted to be antigenic. The comparative bioinformatics analysis of mymA operon proteins found Rv3083 to be the best vaccine candidate. Molecular docking was performed with the most antigenic peptides of Rv3083 (LASGAASVV with alleles HLA-B51:01, HAATSGTLI with HLA-A02, IVTATGLNI and EKIHYGLKVNTA with HLA-DRB1_01:01) to study the structural basis for recognition of peptides by various HLA molecules. The software binding prediction was validated by the obtained molecular docking score of peptide-HLA complex. These peptides can be further investigated for their immunological relevance in patients of tuberculosis using major histocompatibility complex tetramer approach. PMID:27389362

  6. Small organic compounds enhance antigen loading of class II major histocompatibility complex proteins by targeting the polymorphic P1 pocket

    DEFF Research Database (Denmark)

    Höpner, Sabine; Dickhaut, Katharina; Hofstätter, Maria;

    2006-01-01

    immune responses by catalyzing the peptide loading of human class II MHC molecules HLA-DR. Here we show now that they achieve this by interacting with a defined binding site of the HLA-DR peptide receptor. Screening of a compound library revealed a set of adamantane derivatives that strongly accelerated......, transient occupation of this pocket by the organic compound stabilizes the peptide-receptive conformation permitting rapid antigen loading. This interaction appeared restricted to the larger Gly(beta86) pocket and allowed striking enhancements of T cell responses for antigens presented by these "adamantyl......Major histocompatibility complex (MHC) molecules are a key element of the cellular immune response. Encoded by the MHC they are a family of highly polymorphic peptide receptors presenting peptide antigens for the surveillance by T cells. We have shown that certain organic compounds can amplify...

  7. Characterization of a 60-kDa Thermally Stable Antigenic Protein as a Marker for the Immunodetection of Bovine Plasma-Derived Food Ingredients.

    Science.gov (United States)

    Ofori, Jack A; Hsieh, Yun-Hwa P

    2015-08-01

    A sandwich enzyme-linked immunosorbent assay (sELISA) based on 2 monoclonal antibodies (Bb3D6 and Bb6G12) that recognize a 60-kDa antigenic protein in bovine blood was previously developed for detecting bovine blood in animal feed for the prevention of mad cow disease. This study sought to establish the identity of this 60-kDa antigenic protein and consequently determine the suitability of the sELISA for detecting bovine plasma-derived food ingredients (BPFIs), which are widely used in dietary products without explicit labeling. Results from western blot confirmed the 60-kDa protein to be present in the plasma fraction of bovine blood. Further proteomic analyses involving 2-dimensional gel electrophoresis (2-D GE) and amino acid sequencing revealed the 60-kDa protein to be bovine serum albumin (BSA). The sELISA proved capable of detecting BPFIs in all the commercial dietary supplements tested, including those that were formulated with hydrolyzed BPFIs. The assay could also detect 0.01% and 0.5% of different BPFIs in spiked raw and cooked ground beef, respectively. This assay based on the detection of BSA therefore has the potential to become a valuable analytical tool to protect consumers who avoid consuming BPFIs for religious, health, or ethical reasons. PMID:26172875

  8. Immobilization antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis.

    Science.gov (United States)

    Josepriya, T A; Chien, Kuo-Hsuan; Lin, Hsin-Yun; Huang, Han-Ning; Wu, Chang-Jer; Song, Yen-Ling

    2015-08-01

    The immobilization antigen (iAg) has been demonstrated as a protective immunogen against Cryptocaryon irritans infection. In this study, C-terminal domain of heat shock protein 70 cloned from C. irritans (Hsp70C) was tested for its immuno-stimulatory effects. The iAg and Hsp70C cDNAs were constructed independently in secretory forms and were encapsulated in chitosan nanoparticles. In the first immunization trial, grouper fingerlings orally intubated with iAg and iAg:Hsp70C presented 96% and 100% relative percent survival (RPS), respectively, after a lethal challenge. In the second trial, both iAg and iAg:Hsp70C groups showed 100% RPS and the skin trophont burden was significantly lowered. The iAg:Hsp70C still provides a significantly high protection of 51% RPS at 49 days post immunization, when an even more serious lethal infection occurs. RT-qPCR results showed that Hsp70C could up-regulate the expression of i) T cell markers: Cluster of Differentiation 8 alpha (CD8α) and CD4, ii) cytokine genes: Interferon gamma (IFNγ), Tumor Necrosis Factor alpha (TNFα) and Interleukin 12 p40 (IL-12/P40), iii) antibody genes: Immunoglobulin M heavy chain (IgMH) and IgTH, and iv) major histocompatibility complex (MHC-I & MHC-II), in the spleen of iAg:Hsp70C group. Furthermore, significantly high levels of iAg-specific IgM was detected in skin mucus which efficiently immobilized live theronts in iAg- and iAg:Hsp70C-immunized fish at 5 weeks post immunization. Hsp70C significantly increased the number of nonspecific CD8(+) skin leucocytes which exerted cytotoxicity against theronts, although cytotoxic activity showed no difference among the various groups. Because of this complementary cooperation of cellular and humoral immune responses, Hsp70C enhances the efficacy of iAg vaccine and constrains C. irritans infection. In view of the severe loss caused by cryptocaryonosis, application of this parasitic vaccine in farmed and ornamental fish, is worthy to be considered. PMID

  9. Neisserial Opa Protein-CEACAM Interactions: Competition for Receptors as a Means of Bacterial Invasion and Pathogenesis.

    Science.gov (United States)

    Martin, Jennifer N; Ball, Louise M; Solomon, Tsega L; Dewald, Alison H; Criss, Alison K; Columbus, Linda

    2016-08-01

    Carcino-embryonic antigen-like cellular adhesion molecules (CEACAMs), members of the immunoglobulin superfamily, are responsible for cell-cell interactions and cellular signaling events. Extracellular interactions with CEACAMs have the potential to induce phagocytosis, as is the case with pathogenic Neisseria bacteria. Pathogenic Neisseria species express opacity-associated (Opa) proteins, which interact with a subset of CEACAMs on human cells, and initiate the engulfment of the bacterium. We demonstrate that recombinant Opa proteins reconstituted into liposomes retain the ability to recognize and interact with CEACAMs in vitro but do not maintain receptor specificity compared to that of Opa proteins natively expressed by Neisseria gonorrhoeae. We report that two Opa proteins interact with CEACAMs with nanomolar affinity, and we hypothesize that this high affinity is necessary to compete with the native CEACAM homo- and heterotypic interactions in the host. Understanding the mechanisms of Opa protein-receptor recognition and engulfment enhances our understanding of Neisserial pathogenesis. Additionally, these mechanisms provide insight into how human cells that are typically nonphagocytic can utilize CEACAM receptors to internalize exogenous matter, with implications for the targeted delivery of therapeutics and development of imaging agents. PMID:27442026

  10. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U;

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  11. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  12. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana.

    Science.gov (United States)

    Saur, Isabel M L; Kadota, Yasuhiro; Sklenar, Jan; Holton, Nicholas J; Smakowska, Elwira; Belkhadir, Youssef; Zipfel, Cyril; Rathjen, John P

    2016-03-22

    Plants use receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) that are typical of whole classes of microbes. After ligand perception, many leucine-rich repeat (LRR)-containing PRRs interact with the LRR-RK BRI1-ASSOCIATED KINASE 1 (BAK1). BAK1 is thus expected to interact with unknown PRRs. Here, we used BAK1 as molecular bait to identify a previously unknown LRR-RLP required for the recognition of the csp22 peptide derived from bacterial cold shock protein. We established a method to identify proteins that interact with BAK1 only after csp22 treatment. BAK1 was expressed transiently in Nicotiana benthamiana and immunopurified after treatment with csp22. BAK1-associated proteins were identified by mass spectrometry. We identified several proteins including known BAK1 interactors and a previously uncharacterized LRR-RLP that we termed RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR). This RLP associates with BAK1 upon csp22 treatment, and NbCSPR-silenced plants are impaired in csp22-induced defense responses. NbCSPR confers resistance to bacteria in an age-dependent and flagellin-induced manner. As such, it limits bacterial growth and Agrobacterium-mediated transformation of flowering N. benthamiana plants. Transgenic expression of NbCSPR into Arabidopsis thaliana conferred responsiveness to csp22 and antibacterial resistance. Our method may be used to identify LRR-type RKs and RLPs required for PAMP perception/responsiveness, even when the active purified PAMP has not been defined.

  13. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins.

    Science.gov (United States)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-12-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted proteins, they are frequently N-glycosylated. This hampers production in microbes as these hosts glycosylate proteins differently. The resulting products may therefore be immunogenic, unstable and show reduced efficacy. Recently, successful glycoengineering of microbes has demonstrated that it is possible to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae.

  14. Common antigens of streptococcal and non-streptococcal oral bacteria: immunochemical studies of extracellular and cell-wall-associated antigens from Streptococcus sanguis, Streptococcus mutans, Lactobacillus salivarius, and Actinomyces viscosus.

    Science.gov (United States)

    Schöller, M; Klein, J P; Frank, R M

    1981-01-01

    Soluble extracellular antigens (ESA) were prepared from the culture supernatant of exponential growing cells of Streptococcus sanguis OMZ 9 by a combination of ammonium sulfate precipitation and chromatography on a Bio-Gel P6 column. Soluble cell wall antigens (WEA) were obtained from the bacterial pellet by extraction with 1 M phosphate buffer (pH 6). Antisera against whole cells of S. sanguis and S. mutans of different serotypes, 10% trichloroacetic extracts of bacterial cell walls, dextran, ESA, and WEA were prepared by injecting the different antigens several times in rabbits. ESA and WEA were prepared from a representative strain of Bratthall's seven serological groups, Lactobacillus salivarius, and Actinomyces viscosus. All sera showed various agglutinin titers against heat-killed cells, and titers were generally higher with homologous cells. The comparison of the different antigens using agar gel diffusion and immunoelectrophoresis showed the presence of extracellular common antigens in both ESA and WEA between the different strains. Absorption of anti-ESA sera with WEA, and anti-WEA sera with ESA, showed the existence of a specific antigen common to all bacteria in each fraction. Enzymatic treatment of the antigen before immunodiffusion demonstrated the protein nature of the two antigens present in ESA and WEA. Images PMID:6783541

  15. The topology of the bacterial co-conserved protein network and its implications for predicting protein function

    Directory of Open Access Journals (Sweden)

    Leach Sonia M

    2008-06-01

    Full Text Available Abstract Background Protein-protein interactions networks are most often generated from physical protein-protein interaction data. Co-conservation, also known as phylogenetic profiles, is an alternative source of information for generating protein interaction networks. Co-conservation methods generate interaction networks among proteins that are gained or lost together through evolution. Co-conservation is a particularly useful technique in the compact bacteria genomes. Prior studies in yeast suggest that the topology of protein-protein interaction networks generated from physical interaction assays can offer important insight into protein function. Here, we hypothesize that in bacteria, the topology of protein interaction networks derived via co-conservation information could similarly improve methods for predicting protein function. Since the topology of bacteria co-conservation protein-protein interaction networks has not previously been studied in depth, we first perform such an analysis for co-conservation networks in E. coli K12. Next, we demonstrate one way in which network connectivity measures and global and local function distribution can be exploited to predict protein function for previously uncharacterized proteins. Results Our results showed, like most biological networks, our bacteria co-conserved protein-protein interaction networks had scale-free topologies. Our results indicated that some properties of the physical yeast interaction network hold in our bacteria co-conservation networks, such as high connectivity for essential proteins. However, the high connectivity among protein complexes in the yeast physical network was not seen in the co-conservation network which uses all bacteria as the reference set. We found that the distribution of node connectivity varied by functional category and could be informative for function prediction. By integrating of functional information from different annotation sources and using the

  16. The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane

    Directory of Open Access Journals (Sweden)

    Cacciotto Carla

    2010-08-01

    Full Text Available Abstract Background Mycoplasmas are the simplest bacteria capable of autonomous replication. Their evolution proceeded from gram-positive bacteria, with the loss of many biosynthetic pathways and of the cell wall. In this work, the liposoluble protein complement of Mycoplasma agalactiae, a minimal bacterial pathogen causing mastitis, polyarthritis, keratoconjunctivitis, and abortion in small ruminants, was subjected to systematic characterization in order to gain insights into its membrane proteome composition. Results The selective enrichment for M. agalactiae PG2T liposoluble proteins was accomplished by means of Triton X-114 fractionation. Liposoluble proteins were subjected to 2-D PAGE-MS, leading to the identification of 40 unique proteins and to the generation of a reference 2D map of the M. agalactiae liposoluble proteome. Liposoluble proteins from the type strain PG2 and two field isolates were then compared by means of 2D DIGE, revealing reproducible differences in protein expression among isolates. An in-depth analysis was then performed by GeLC-MS/MS in order to achieve a higher coverage of the liposoluble proteome. Using this approach, a total of 194 unique proteins were identified, corresponding to 26% of all M. agalactiae PG2T genes. A gene ontology analysis and classification for localization and function was also carried out on all protein identifications. Interestingly, the 11.5% of expressed membrane proteins derived from putative horizontal gene transfer events. Conclusions This study led to the in-depth systematic characterization of the M. agalactiae liposoluble protein component, providing useful insights into its membrane organization.

  17. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions

    Institute of Scientific and Technical Information of China (English)

    Carol L Fischer; Katherine S Walters; David R Drake; Deborah V Dawson; Derek R Blanchette; Kim A Brogden; Philip W Wertz

    2013-01-01

    Oral mucosal and salivary lipids exhibit potent antimicrobial activity for a variety of Gram-positive and Gram-negative bacteria;however, little is known about their spectrum of antimicrobial activity or mechanisms of action against oral bacteria. In this study, we examine the activity of two fatty acids and three sphingoid bases against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Minimal inhibitory concentrations, minimal bactericidal concentrations, and kill kinetics revealed variable, but potent, activity of oral mucosal and salivary lipids against P. gingivalis, indicating that lipid structure may be an important determinant in lipid mechanisms of activity against bacteria, although specific components of bacterial membranes are also likely important. Electron micrographs showed ultrastructural damage induced by sapienic acid and phytosphingosine and confirmed disruption of the bacterial plasma membrane. This information, coupled with the association of treatment lipids with P. gingivalis lipids revealed via thin layer chromatography, suggests that the plasma membrane is a likely target of lipid antibacterial activity. Utilizing a combination of two-dimensional in-gel electrophoresis and Western blot followed by mass spectroscopy and N-terminus degradation sequencing we also show that treatment with sapienic acid induces upregulation of a set of proteins comprising a unique P. gingivalis stress response, including proteins important in fatty acid biosynthesis, metabolism and energy production, protein processing, cell adhesion and virulence. Prophylactic or therapeutic lipid treatments may be beneficial for intervention of infection by supplementing the natural immune function of endogenous lipids on mucosal surfaces.

  18. Antimicrobial proteins from snake venoms: direct bacterial damage and activation of innate immunity against Staphylococcus aureus skin infection.

    Science.gov (United States)

    Samy, R P; Stiles, B G; Gopalakrishnakone, P; Chow, V T K

    2011-01-01

    The innate immune system is the first line of defense against microbial diseases. Antimicrobial proteins produced by snake venoms have recently attracted significant attention due to their relevance to bacterial infection and potential development into new therapeutic agents. Staphylococcus aureus is one of the major human pathogens causing a variety of infections involving pneumonia, toxic shock syndrome, and skin lesions. With the recent emergence of methicillin (MRSA) and vancomycin (VRSA) resistance, S. aureus infection is a serious clinical problem that will have a grave socio-economic impact in the near future. Although S. aureus susceptibility to innate antimicrobial peptides has been reported recently, the protective effect of snake venom phospholipase A₂ (svPLA₂) proteins on the skin from S. aureus infection has been understudied. This review details the protective function of svPLA₂s derived from venoms against skin infections caused by S. aureus. We have demonstrated in vivo that local application of svPLA₂ provides complete clearance of S. aureus within 2 weeks after treatment compared to fusidic acid ointment (FAO). In vitro experiments also demonstrate that svPLA₂ proteins have inhibitory (bacteriostatic) and killing (bactericidal) effects on S. aureus in a dose-dependant manner. The mechanism of bacterial membrane damage and perturbation was clearly evidenced by electron microscopic studies. In summary, svPLA₂s from Viperidae and Elapidae snakes are novel molecules that can activate important mechanisms of innate immunity in animals to endow them with protection against skin infection caused by S. aureus.

  19. Fusion to green fluorescent protein improves expression levels of Theileria parva sporozoite surface antigen p67 in insect cells

    NARCIS (Netherlands)

    Kaba, S.A.; Nene, V.; Musoke, A.J.; Vlak, J.M.; Oers, van M.M.

    2002-01-01

    East Coast fever (ECF) is a fatal disease of cattle caused by the protozoan parasite Theileria parva. The development of a subunit vaccine, based on the sporozoite-specific surface antigen p67, has been hampered by difficulties in achieving high-level expression of recombinant p67 in a near-authenti

  20. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo.

    Directory of Open Access Journals (Sweden)

    Larry J Bischof

    2008-10-01

    Full Text Available Pore-forming toxins (PFTs constitute the single largest class of proteinaceous bacterial virulence factors and are made by many of the most important bacterial pathogens. Host responses to these toxins are complex and poorly understood. We find that the endoplasmic reticulum unfolded protein response (UPR is activated upon exposure to PFTs both in Caenorhabditis elegans and in mammalian cells. Activation of the UPR is protective in vivo against PFTs since animals that lack either the ire-1-xbp-1 or the atf-6 arms of the UPR are more sensitive to PFT than wild-type animals. The UPR acts directly in the cells targeted by the PFT. Loss of the UPR leads to a normal response against unrelated toxins or a pathogenic bacterium, indicating its PFT-protective role is specific. The p38 mitogen-activated protein (MAPK kinase pathway has been previously shown to be important for cellular defenses against PFTs. We find here that the UPR is one of the key downstream targets of the p38 MAPK pathway in response to PFT since loss of a functional p38 MAPK pathway leads to a failure of PFT to properly activate the ire-1-xbp-1 arm of the UPR. The UPR-mediated activation and response to PFTs is distinct from the canonical UPR-mediated response to unfolded proteins both in terms of its activation and functional sensitivities. These data demonstrate that the UPR, a fundamental intracellular pathway, can operate in intrinsic cellular defenses against bacterial attack.

  1. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    Directory of Open Access Journals (Sweden)

    Isabella R Prokhorenko

    2009-03-01

    Full Text Available Isabella R Prokhorenko1, Svetlana V Zubova1, Alexandr Yu Ivanov2, Sergey V Grachev31Laboratory of Molecular Biomedicine, Institute of Basic Biological Problems; 2Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia; 3I.M. Sechenov’s Moscow Medical Academy, Moscow, Russia Abstract: Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Signifi cant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall.Keywords: lipopolysaccharide, Escherichia coli, chemotype, lysozyme, lactoferrin, colony-forming units

  2. Effect of prior dietary exposure to cow’s milk protein on antigen-specific and nonspecific cellular proliferation in mice

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Magyar, O.H.; Barkholt, Vibeke;

    2005-01-01

    in cell donors. Focusing on the immunostimulatory potential of cows' milk proteins and peptides, we studied the impact of prior dietary exposure to cows' milk on proliferation of murine immune cells upon ex vivo stimulation with bovine milk proteins. Nonspecific proliferation induced by beta-casein...... the importance of employing immune cells from mice unexposed to cows' milk for studies of the immunomodulating capacity of cows' milk proteins and peptides, in order to rule out the interference caused by antigen-specific immune responses. By using such cells, we here show that some beta-casein peptides possess......The impact of dietary components on the immune system is gaining increased attention in the effort to develop safe food products, some even with health-promoting potential, as well as to improve the basic understanding of the immunomodulatory potential of common food components. In such studies...

  3. Determination of the Normal Prostate Specific Antigen (PSA) Value in Iraqi Society and its Relation to Bacterial Urinary Tract Infection (UTI)

    International Nuclear Information System (INIS)

    The study was carried out by radioimmunoassay and immuno radiographic analysis in the Iraqi Ministry of Health, within the research plan of Kurdistan institution for strategic study and scientific research. A total of 793 serum samples were collected in which 50 patient samples have biopsy with positive bacterial UTI. The other 743 samples were obtained from normal healthy volunteers all were over 45 years old. The samples were gathered randomly from three regions in Iraq namely, from north (Sulaymaniyah, Erbil and Dohuk), from the middle (Baghdad and Diyala) and from south (Basra, Missan and Najaf). The total PSA was measured and the results were subjected to statistical analysis based on statistical package social science (SPSS) method. The obtained data showed that the normal PSA values are function of the age of the donors. The results were grouped and clarified that PSA was less than 3.8 ng/ml for the age 45-55 years, while it was less than 4.8 ng/ml for the volunteers from 56-65 years old and the values lower than 5.9 ng/ml for group aged 66-75 years old. On the other hand, the obtained data illustrated that there were non-significant variations in PSA values as a function of the geographic regions. The PSA values for the 50 male positive bacterial UTI samples were within the same grouping previously stated for the normal healthy volunteers. Seven cases of the 743 samples showed abnormal high PSA values (i.e. greater than 9 ng/ml) which represent 0.93% of the healthy collected samples. It could be concluded that the PSA has non-significance relation to the bacterial UTI. In addition, the radioimmunoassay has a sensitivity of about 99.04% for the normal cases and specificity of 0.96% for prostate cancer.

  4. Protein Modification: Bacterial Effectors Rewrite the Rules of Ubiquitylation.

    Science.gov (United States)

    Berk, Jason M; Hochstrasser, Mark

    2016-07-11

    A family of virulence factors from the bacterial pathogen Legionella pneumophila has been discovered to modify human Rab GTPases with ubiquitin. Surprisingly, this modification occurs via a non-canonical mechanism that uses nicotinamide adenine dinucleotide as a cofactor. PMID:27404243

  5. An immunocytochemical study of pulpal responses to cavity preparation by laser ablation in rat molars by using antibodies to heat shock protein (Hsp) 25 and class II MHC antigen.

    Science.gov (United States)

    Suzuki, Takeshi; Nomura, Shuichi; Maeda, Takeyasu; Ohshima, Hayato

    2004-03-01

    Initial responses of odontoblasts and immunocompetent cells to cavity preparation by laser ablation were investigated in rat molars. In untreated control teeth, intense heat shock protein (Hsp) 25 immunoreactivity was found in the cell bodies of odontoblasts, whereas cells immunopositive for the class II major histocompatibility complex (MHC) antigen were predominantly located beneath the odontoblast layer in the dental pulp. Cavity preparation caused the destruction of the odontoblast layer and the shift of most class-II-MHC-positive cells from the pulp-dentin border toward the pulp core at the affected site. Twelve hours after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border and extended their processes deep into the exposed dentinal tubules, but subsequently disappeared from the pulp-dentin border together with Hsp-25-immunopositive cells by 24 h after the operation. By 3-5 days postoperation, distinct abscess formation consisting of polymorphonuclear leukocytes was found in the dental pulp. The penetration of masses of oral bacteria was recognizable in the dentinal tubules beneath the prepared cavity. These findings indicate that cavity preparation by laser ablation induces remarkable inflammation by continuous bacterial infections via dentinal tubules in this experimental model, thereby delaying pulpal regeneration.

  6. A LytM Domain Dictates the Localization of Proteins to the Mother Cell-Forespore Interface during Bacterial Endospore Formation▿ †

    OpenAIRE

    Meisner, Jeffrey; Moran, Charles P.

    2010-01-01

    A large number of proteins are known to reside at specific subcellular locations in bacterial cells. However, the molecular mechanisms by which many of these proteins are anchored at these locations remains unclear. During endospore formation in Bacillus subtilis, several integral membrane proteins are located specifically at the interface of the two adjacent cells of the developing sporangium, the mother cell and forespore. The mother cell membrane protein SpoIIIAH recognizes the cell-cell i...

  7. Effect of Bacterial Flora on Postimmunization Gastritis following Oral Vaccination of Mice with Helicobacter pylori Heat Shock Protein 60

    OpenAIRE

    Yamaguchi, Hiroyuki; Osaki, Takako; Taguchi, Haruhiko; Sato, Noriko; Toyoda, Atushi; Takahashi, Motomichi; Kai, Masanori; Nakata, Noboru; Komatsu, Akio; Atomi, Yutaka; Kamiya, Shigeru

    2003-01-01

    In order to assess the efficacy of oral Helicobacter pylori heat shock protein 60 (HSP60) as a vaccine, protection against H. pylori infection in specific-pathogen-free (SPF) C57BL/6 and germfree (GF) IQI mice was examined. Prophylactic oral vaccination of these two strains of mice with either H. pylori HSP60 or Escherichia coli GroEL inhibited H. pylori colonization by 90 to 95% at 3 weeks postinfection (p.i.). However, these mice were only partially protected because bacterial loads increas...

  8. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein.

    Directory of Open Access Journals (Sweden)

    Mark J White

    Full Text Available Mycobacterium tuberculosis remains a significant global health concern largely due to its ability to persist for extended periods within the granuloma of the host. While residing within the granuloma, the tubercle bacilli are likely to be exposed to stress that can result in formation of aberrant proteins with altered structures. Bacteria encode stress responsive determinants such as proteases and chaperones to deal with misfolded or unfolded proteins. pepD encodes an HtrA-like serine protease and is thought to process proteins altered following exposure of M. tuberculosis to extra-cytoplasmic stress. PepD functions both as a protease and chaperone in vitro, and is required for aspects of M. tuberculosis virulence in vivo. pepD is directly regulated by the stress-responsive two-component signal transduction system MprAB and indirectly by extracytoplasmic function (ECF sigma factor SigE. Loss of PepD also impacts expression of other stress-responsive determinants in M. tuberculosis. To further understand the role of PepD in stress adaptation by M. tuberculosis, a proteomics approach was taken to identify binding proteins and possible substrates of this protein. Using subcellular fractionation, the cellular localization of wild-type and PepD variants was determined. Purified fractions as well as whole cell lysates from Mycobacterium smegmatis or M. tuberculosis strains expressing a catalytically compromised PepD variant were immunoprecipitated for PepD and subjected to LC-MS/MS analyses. Using this strategy, the 35-kDa antigen encoding a homolog of the PspA phage shock protein was identified as a predominant binding partner and substrate of PepD. We postulate that proteolytic cleavage of the 35-kDa antigen by PepD helps maintain cell wall homeostasis in Mycobacterium and regulates specific stress response pathways during periods of extracytoplasmic stress.

  9. Identification of Leishmania infantum chagasi proteins in urine of patients with visceral leishmaniasis: a promising antigen discovery approach of vaccine candidates.

    Science.gov (United States)

    Kashino, S S; Abeijon, C; Qin, L; Kanunfre, K A; Kubrusly, F S; Silva, F O; Costa, D L; Campos, D; Costa, C H N; Raw, I; Campos-Neto, A

    2012-07-01

    Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients' urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.

  10. Development of an antigen-capture ELISA for the detection of the p27-CA protein of HERV-K(HML-2).

    Science.gov (United States)

    Hohn, Oliver; Mostafa, Saeed; Norley, Stephen; Bannert, Norbert

    2016-08-01

    The detection or quantification of retroviruses is often achieved using an antigen-capture ELISA (AC-ELISA) that targets the Gag capsid (CA) protein. We report here the development of an AC-ELISA specific for the p27-CA protein of HERV-K(HML-2). A monoclonal p27-specific antibody is used for capture and a polyclonal anti-p27-CA immune serum generated in rabbits serves for detection. The assay was shown to be specific for HERV-K(HML-2), showing no evidence of cross reactivity with the human retroviruses HIV-1, HIV-2 and HTLV-1 or with XMRV (as a model non-human gammaretrovirus). Using purified recombinant antigen, the limit of detection was shown to be 130pg/ml. The AC-ELISA can be used to quantify HERV-K(HML-2) expression in teratocarcinoma cell lines and to normalize HERV particles generated by transfecting HEK 293T cells with full-length molecular clones. This novel AC-ELISA also proved useful in studies of virus regulation, for example in demonstrating that HERV-K(HML-2) expression is dramatically enhanced by overexpression of Staufen-1, a binding partner of the HERV-K(HML-2) Rec protein. This specific and sensitive HERV-K(HML-2) AC-ELISA will be a useful tool for investigating many aspects of endogenous retroviruses, from basic research to the role they may play in human diseases or as a surrogate marker for particular diseases.

  11. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    Science.gov (United States)

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  12. [Stable and efficient expression of hepatitis B virus S antigen and preS1 epitope fusion protein (S/preS1) in CHO cells].

    Science.gov (United States)

    Yang, Zhenxi; Li, Shichong; Liu, Hong; Zhang, Miao; Ye, Lingling; Wu, Yanzhuo; Xu, Mingbo; Chen, Zhaolie

    2013-12-01

    Hepatitis B surface antigen (HBsAg) carrying preS sequences could be an ideal candidate for a new hepatitis B virus (HBV) vaccine with higher efficacy. Here we report the success in achieving efficient and stable expression of hepatitis B virus S antigen and preS1 epitope fusion protein (S/preS1) in CHO cells. The HMRCHEF53u/Neo-S/preS1 expression vector carrying S/preS1 gene was constructed and transfected into CHO-S cells. A stable and high-expression CHO cell line, named 10G6, was selected by ELISA and limiting dilution analysis. Western blotting analysis showed S/preS1 expressed from 10G6 cells possessed both S and preS1 antigenicity. 10G6 cells displayed characters of favorable growth and stable S/preS1 expression in repeated batch cultures as evaluated by viable cell density, viability and S/preS1 concentration. And cultivation of 10G6 cells in fed-batch mode resulted in S/preS1 production at 17-20 mg/L with viable cell density at 7 x 10(6)-10 x 10(6) cells/mL. PMID:24660628

  13. SLA/LP/tRNP((Ser)Sec) antigen in autoimmune hepatitis: identification of the native protein in human hepatic cell extract.

    Science.gov (United States)

    Volkmann, Martin; Luithle, Daniel; Zentgraf, Hanswalter; Schnölzer, Martina; Fiedler, Sabine; Heid, Hans; Schulze-Bergkamen, Andrea; Strassburg, Christian P; Gehrke, Sven G; Manns, Michael P

    2010-02-01

    A diagnostic subgroup of AIH type 1 is characterized by specific serum antibodies against soluble liver protein. The respective autoantigen was named SLA/LP/tRNP((Ser)Sec), after three homologous recombinant polypeptides were isolated from expression gene libraries. We analyzed human cultured liver cells for the human homologue of recombinant SLA/LP/tRNP((Ser)Sec) by antigen purification. In addition, a monoclonal antibody was generated against recombinant SLA-p35, a truncated recombinant SLA-reactive polypeptide. With a positive patient serum, immune affinity chromatography was performed on the 52 kD-SLA main antigenic determinant pre-enriched by ion exchange chromatography. By mass spectrometry, the 52 kD-SLA/LP/tRNP ((Ser)Sec) autoantigen was unambiguously identified in the purification product. The identity of the recombinant SLA-p35 and its human homologue was further confirmed by a specific signal of the anti SLA-p35 monoclonal antibody with purified human SLA/LP/tRNP((Ser)Sec). The 48 kD-SLA species frequently comigrating in SLA-immunoblotting however was not identified by either approach. We conclude that the native counterpart of recombinant tRNP((Ser)(Sec)) indeed is detectable with a molecular weight of 52 kD in soluble liver extract of human cells as the major antigenic component of SLA/LP/tRNP((Ser)Sec).

  14. Use of a hybrid protein consisting of the variable region of the Borrelia burgdorferi flagellin and part of the 83-kDa protein as antigen for serodiagnosis of Lyme disease.

    Science.gov (United States)

    Rasiah, C; Rauer, S; Gassmann, G S; Vogt, A

    1994-04-01

    A hybrid protein consisting of the variable region of the Borrelia burgdorferi flagellin (an 18-kDa fragment) and a 59-kDa fragment (lacking the N-terminal part) of the 83-kDa protein has been constructed by genetic engineering. It was expressed as a nonfusion protein of an apparent molecular weight of 77,000 in Escherichia coli. The suitability of this new antigen for the diagnosis of Lyme disease was tested by immunoblotting; for comparison, the recombinant variable region of the flagellin, the 18-kDa fragment (p18), and the whole recombinant 83-kDa protein (p83), both expressed in E. coli, were used. A total of 120 serum samples from various stages of Lyme disease, which were positive in two serological assays, a passive hemagglutination assay and an indirect immunofluorescence assay, were tested. By indirect immunofluorescence, 74 samples were positive for immunoglobulin G (IgG) antibodies and 72 were positive for IgM antibodies. Of these serum samples, 69 of 74 (93%) contained IgG antibodies against p18 and/or p83, and IgG antibodies were detected by the hybrid protein in 67 (90%) samples. IgM antibodies against p18 and/or p83 were detected in 60 of 72 (83%) serum samples, and 57 (79%) serum samples were reactive with the hybrid protein. Twenty serum samples of patients with a history of syphilis and 40 serum samples, negative in routine B. burgdorferi serology, were tested as controls. The hybrid protein, made up of specific epitopes of an early (p18) and late (p83) antigen, is recognized by almost the same number of patient serum samples as the individual antigens.

  15. Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p130 and p107.

    OpenAIRE

    Stubdal, H; Zalvide, J; DeCaprio, J A

    1996-01-01

    p130 and p107 are nuclear phosphoproteins related to the retinoblastoma gene product (pRb). pRb, p107, and p130 each undergo cell cycle-dependent phosphorylation, form complexes with the E2F family of transcription factors, and associate with oncoproteins of DNA tumor viruses, including simian virus 40 (SV40) large T antigen (TAg) and adenovirus ElA protein. The results of recent studies with mouse embryo fibroblasts (MEFs) lacking the retinoblastoma gene (Rb-1) have suggested that p130 and p...

  16. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors

    International Nuclear Information System (INIS)

    A green fluorescent protein (GFP)-based bacterial biosensor Escherichia coli DH5α (pVLCD1) was developed based on the expression of gfp under the control of the cad promoter and the cadC gene of Staphylococcus aureus plasmid pI258. DH5α (pVLCD1) mainly responded to Cd(II), Pb(II), and Sb(III), the lowest detectable concentrations being 0.1 nmol L-1, 10 nmol L-1, and 0.1 nmol L-1, respectively, with 2 h exposure. The biosensor was field-tested to measure the relative bioavailability of the heavy metals in contaminated sediments and soil samples. The results showed that the majority of heavy metals remained adsorbed to soil particles: Cd(II)/Pb(II) was only partially available to the biosensor in soil-water extracts. Our results demonstrate that the GFP-based bacterial biosensor is useful and applicable in determining the bioavailability of heavy metals with high sensitivity in contaminated sediment and soil samples and suggests a potential for its inexpensive application in environmentally relevant sample tests. - Nonpathogenic GFP-based bacterial biosensor is applicable in determining the bioavailability of heavy metals in environmental samples

  17. JC virus small T antigen binds phosphatase PP2A and Rb family proteins and is required for efficient viral DNA replication activity.

    Directory of Open Access Journals (Sweden)

    Brigitte Bollag

    Full Text Available BACKGROUND: The human polyomavirus, JC virus (JCV produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg and three T' proteins, but little is known about small tumor antigen (tAg functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A, and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions.

  18. Genome Scale Identification of Treponema pallidum Antigens

    OpenAIRE

    McKevitt, Matthew; Brinkman, Mary Beth; McLoughlin, Melanie; Perez, Carla; Howell, Jerrilyn K.; Weinstock, George M.; Norris, Steven J; Palzkill, Timothy

    2005-01-01

    Antibody responses for 882 of the 1,039 proteins in the proteome of Treponema pallidum were examined. Sera collected from infected rabbits were used to systematically identify 106 antigenic proteins, including 22 previously identified antigens and 84 novel antigens. Additionally, sera collected from rabbits throughout the course of infection demonstrated a progression in the breadth and intensity of humoral immunoreactivity against a representative panel of T. pallidum antigens.

  19. NEW EMBO MEMBER’S REVIEW: Viral and bacterial proteins regulating apoptosis at the mitochondrial level

    OpenAIRE

    Boya, Patricia; Roques, Bernard,; Kroemer, Guido

    2001-01-01

    Mitochondrial membrane permeabilization (MMP) is a critical step of several apoptotic pathways. Some infectious intracellular pathogens can regulate (induce or inhibit) apoptosis of their host cells at the mitochondrial level, by targeting proteins to mitochondrial membranes that either induce or inhibit MMP. Pathogen-encoded mitochondrion-targeted proteins may or may not show amino acid sequence homology to Bcl-2-like proteins. Among the Bcl-2-unrelated, mitochondrion-targeted proteins, seve...

  20. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.