WorldWideScience

Sample records for bacterial protein antigens

  1. Participation of CD1 molecules in the presentation of bacterial protein antigens in humans.

    Science.gov (United States)

    Ulanova, M; Tarkowski, A; Hahn-Zoric, M; Hanson, L A

    1999-10-01

    Human CD1 molecules, expressed on the surface of professional antigen-presenting cells (including dendritic cells, Langerhans' cells, B cells and activated monocytes) are structurally homologous to major histocompatibility complex (MHC) class I and class II molecules. CD1b and CD1c have been shown to present nonpeptide bacterial antigens to T cells. We hypothesized that CD1 molecules may also be involved in the presentation of bacterial protein antigens. Human peripheral blood mononuclear cells (PBMC) were exposed to two medically important proteins, tetanus toxoid (TT) and purified protein derivative (PPD), with and without murine monoclonal antibodies (MoAbs) specific for CD1a, CD1b and CD1c. All the MoAbs substantially inhibited the proliferative responses of PBMC to TT and PPD. Simultaneous interaction of CD1 and MHC class II molecules was even more inhibitory to these antigen-specific proliferative responses. In contrast, neither mixed lymphocyte reaction nor superantigen and mitogenic responses were affected by CD1-specific antibodies, indicating a certain restriction pattern in antigen presentation. Our findings suggest that, besides MHC class I and II molecules, there is a family of nonpolymorphic cell surface molecules that is able to present certain bacterial protein antigens to T cells.

  2. Expression, secretion and antigenic variation of bacterial S-layer proteins

    NARCIS (Netherlands)

    Boot, H.J.; Pouwels, P.H.

    1996-01-01

    The function of the S-layer, a regularly arranged structure on the outside of numerous bacteria, appears to be different for bacteria living in different environments. Almost no similarity exists between the primary sequences of S-proteins, although their amino acid composition is comparable.

  3. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics.

    Science.gov (United States)

    Rocco, C J; Davey, M E; Bakaletz, L O; Goodman, S D

    2017-04-01

    Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that whereas antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Epicutaneous sensitization with protein antigen

    Directory of Open Access Journals (Sweden)

    I-Lin Liu

    2012-12-01

    Full Text Available In the past few decades there has been a progressive understanding that epicutaneous sensitization with protein antigen is an important sensitization route in patients with atopic dermatitis. A murine protein-patch model has been established, and an abundance of data has been obtained from experiments using this model. This review discusses the characteristics of epicutaneous sensitization with protein antigen, the induced immune responses, the underlying mechanisms, and the therapeutic potential.

  5. Protein and antigenic heterogeneity among isolates of Bacillus piliformis.

    OpenAIRE

    Riley, L K; Besch-Williford, C; Waggie, K S

    1990-01-01

    Protein and antigenic heterogeneity among isolates of Bacillus piliformis, the etiologic agent of Tyzzer's disease, were investigated. The seven isolates utilized in this study were originally isolated from naturally infected animals of different animal species and diverse geographical locations. Isolates were propagated in mammalian cell lines, and bacterial extracts were prepared. Protein and antigenic profiles were compared among isolates, using Coomassie blue-stained polyacrylamide gels a...

  6. Mucosal delivery of antigens using adsorption to bacterial spores.

    Science.gov (United States)

    Huang, Jen-Min; Hong, Huynh A; Van Tong, Hoang; Hoang, Tran H; Brisson, Alain; Cutting, Simon M

    2010-01-22

    The development of new-generation vaccines has followed a number of strategic avenues including the use of live recombinant bacteria. Of these, the use of genetically engineered bacterial spores has been shown to offer promise as both a mucosal as well as a heat-stable vaccine delivery system. Spores of the genus Bacillus are currently in widespread use as probiotics enabling a case to be made for their safety. In this work we have discovered that the negatively charged and hydrophobic surface layer of spores provides a suitable platform for adsorption of protein antigens. Binding can be promoted under conditions of low pH and requires a potent combination of electrostatic and hydrophobic interactions between spore and immunogen. Using appropriately adsorbed spores we have shown that mice immunised mucosally can be protected against challenge with tetanus toxin, Clostridium perfringens alpha toxin and could survive challenge with anthrax toxin. In some cases protection is actually greater than using a recombinant vaccine. Remarkably, killed or inactivated spores appear equally effective as live spores. The spore appears to present a bound antigen in its native conformation promoting a cellular (T(h)1-biased) response coupled with a strong antibody response. Spores then, should be considered as mucosal adjuvants, most similar to particulate adjuvants, by enhancing responses against soluble antigens. The broad spectrum of immune responses elicited coupled with the attendant benefits of safety suggest that spore adsorption could be appropriate for improving the immunogenicity of some vaccines as well as the delivery of biotherapeutic molecules.

  7. Identification of Bacterial Surface Antigens by Screening Peptide Phage Libraries Using Whole Bacteria Cell-Purified Antisera

    Science.gov (United States)

    Hu, Yun-Fei; Zhao, Dun; Yu, Xing-Long; Hu, Yu-Li; Li, Run-Cheng; Ge, Meng; Xu, Tian-Qi; Liu, Xiao-Bo; Liao, Hua-Yuan

    2017-01-01

    Bacterial surface proteins can be good vaccine candidates. In the present study, we used polyclonal antibodies purified with intact Erysipelothrix rhusiopthiae to screen phage-displayed random dodecapeptide and loop-constrained heptapeptide libraries, which led to the identification of mimotopes. Homology search of the mimotope sequences against E. rhusiopthiae-encoded ORF sequences revealed 14 new antigens that may localize on the surface of E. rhusiopthiae. When these putative surface proteins were used to immunize mice, 9/11 antigens induced protective immunity. Thus, we have demonstrated that a combination of using the whole bacterial cells to purify antibodies and using the phage-displayed peptide libraries to determine the antigen specificities of the antibodies can lead to the discovery of novel bacterial surface antigens. This can be a general approach for identifying surface antigens for other bacterial species. PMID:28184219

  8. Purification of antibodies to bacterial antigens by an immunoadsorbent and a method to quantify their reaction with insoluble bacterial targets

    International Nuclear Information System (INIS)

    Mathews, H.L.; Minden, P.

    1979-01-01

    A combination of procedures was employed to develop a radioimmunoassay which quantified the binding of antibodies to antigens of either intact Propionibacterium acnes or to antigens of insoluble extracts derived from the bacteria. Reactive antibody populations were purified by use of bacterial immunoadsorbents which were prepared by coupling P. acnes to diethylaminoethyl cellulose. Binding of antibodies was detected with [ 125 I]staphylococcal protein A ([ 125 I]SpA) and optimal conditions for the assay defined by varying the amounts of antibodies, bacterial antigenic targets and [ 125 I]SpA. In antibody excess, 100% of available [ 125 I]SpA was bound by the target-antibody complexes. However, when antibody concentration was limiting, a linear relationship was demonstrated between per cent specific binding of[ 125 I]SpA and antibodies bound to bacterial targets. These results were achieved only with immunoadsorbent-purified antibody populations and not with hyperimmune sera or IgG. The radioimmunoassay detected subtle antigenic differences and similarities between P. acnes, P. acnes extracts and a variety of unrelated microorganisms. (Auth.)

  9. Outer membrane protein antigens of Moraxella bovis.

    Science.gov (United States)

    Ostle, A G; Rosenbusch, R F

    1986-07-01

    Outer membranes were isolated from bovine isolates and type strains of Moraxella bovis, M phenylpyruvica, M lacunata, and M ovis by sodium N lauroyl sarcosinate extraction and differential centrifugation. Analysis of outer membranes from these organisms by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis revealed that all M bovis isolates shared a common polypeptide pattern that was readily distinguishable from other Moraxella spp. Nine major outer membrane protein bands were identified by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis analysis of M bovis. Immunoblotting of protein antigens of M bovis revealed several outer membrane proteins that seemed to be common antigens of all M bovis isolates.

  10. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    Science.gov (United States)

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Lipid motif of a bacterial antigen mediates immune responses via TLR2 signaling.

    Directory of Open Access Journals (Sweden)

    Amit A Lugade

    Full Text Available The cross-talk between the innate and the adaptive immune system is facilitated by the initial interaction of antigen with dendritic cells. As DCs express a large array of TLRs, evidence has accumulated that engagement of these molecules contributes to the activation of adaptive immunity. We have evaluated the immunostimulatory role of the highly-conserved outer membrane lipoprotein P6 from non-typeable Haemophilus influenzae (NTHI to determine whether the presence of the lipid motif plays a critical role on its immunogenicity. We undertook a systematic analysis of the role that the lipid motif plays in the activation of DCs and the subsequent stimulation of antigen-specific T and B cells. To facilitate our studies, recombinant P6 protein that lacked the lipid motif was generated. Mice immunized with non-lipidated rP6 were unable to elicit high titers of anti-P6 Ig. Expression of the lipid motif on P6 was also required for proliferation and cytokine secretion by antigen-specific T cells. Upregulation of T cell costimulatory molecules was abrogated in DCs exposed to non-lipidated rP6 and in TLR2(-/- DCs exposed to native P6, thereby resulting in diminished adaptive immune responses. Absence of either the lipid motif on the antigen or TLR2 expression resulted in diminished cytokine production from stimulated DCs. Collectively, our data suggest that the lipid motif of the lipoprotein antigen is essential for triggering TLR2 signaling and effective stimulation of APCs. Our studies establish the pivotal role of a bacterial lipid motif on activating both innate and adaptive immune responses to an otherwise poorly immunogenic protein antigen.

  12. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens.

    Directory of Open Access Journals (Sweden)

    Robert Wilson

    2017-01-01

    Full Text Available Naturally acquired immunity against invasive pneumococcal disease (IPD is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous immunoglobulin preparation (IVIG, representing natural IgG responses to S. pneumoniae, to identify the classes of antigens that are functionally relevant for immunity to IPD. IgG in IVIG recognised capsular antigen and multiple S. pneumoniae protein antigens, with highly conserved patterns between different geographical sources of pooled human IgG. Incubation of S. pneumoniae in IVIG resulted in IgG binding to the bacteria, formation of bacterial aggregates, and enhanced phagocytosis even for unencapsulated S. pneumoniae strains, demonstrating the capsule was unlikely to be the dominant protective antigen. IgG binding to S. pneumoniae incubated in IVIG was reduced after partial chemical or genetic removal of bacterial surface proteins, and increased against a Streptococcus mitis strain expressing the S. pneumoniae protein PspC. In contrast, depletion of type-specific capsular antibody from IVIG did not affect IgG binding, opsonophagocytosis, or protection by passive vaccination against IPD in murine models. These results demonstrate that naturally acquired protection against IPD largely depends on antibody to protein antigens rather than the capsule.

  13. Protein antigen delivery by gene gun-mediated epidermal antigen incorporation (EAI).

    Science.gov (United States)

    Scheiblhofer, Sandra; Ritter, Uwe; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The gene gun technology can not only be employed for efficient transfer of gene vaccines into upper layers of the skin, but also for application of protein antigens. As a tissue rich in professional antigen presenting cells, the skin represents an attractive target for immunizations. In this chapter we present a method for delivery of the model antigen ovalbumin into the skin of mice termed epidermal antigen incorporation and describe in detail how antigen-specific proliferation in draining lymph nodes can be followed by flow cytometry.

  14. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis.

    Science.gov (United States)

    Cortina, María E; Balzano, Rodrigo E; Rey Serantes, Diego A; Caillava, Ana J; Elena, Sebastián; Ferreira, A C; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2016-06-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Chitosan-based delivery systems for protein therapeutics and antigens

    NARCIS (Netherlands)

    Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E.

    Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based

  16. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei.

    Science.gov (United States)

    Caboni, Mariaelena; Pédron, Thierry; Rossi, Omar; Goulding, David; Pickard, Derek; Citiulo, Francesco; MacLennan, Calman A; Dougan, Gordon; Thomson, Nicholas R; Saul, Allan; Sansonetti, Philippe J; Gerke, Christiane

    2015-03-01

    Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.

  17. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei.

    Directory of Open Access Journals (Sweden)

    Mariaelena Caboni

    2015-03-01

    Full Text Available Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg of the lipopolysaccharide (LPS plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.

  18. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  19. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  20. Bacterial antagonist mediated protein molecules

    OpenAIRE

    Urbizu, Lucia Paola; Sparo, Mónica Delfina; Sanchez Bruni, Sergio Fabian

    2016-01-01

    Bacterial antagonism mediated by ribosomally synthesised peptides has gained considerable attention in recent years because of its potential applications in the control of undesirable microbiota. These peptides, generally referred to as bacteriocins, are defined as a heterogeneous group of ribosomally synthesised, proteinaceous substances (with or without further modifications) extracellularly secreted by many Gram-positive and some Gram-negative bacteria. Their mode of activity is primarily ...

  1. A Safe Bacterial Microsyringe for In Vivo Antigen Delivery and Immunotherapy

    Science.gov (United States)

    Le Gouëllec, Audrey; Chauchet, Xavier; Laurin, David; Aspord, Caroline; Verove, Julien; Wang, Yan; Genestet, Charlotte; Trocme, Candice; Ahmadi, Mitra; Martin, Sandrine; Broisat, Alexis; Cretin, François; Ghezzi, Catherine; Polack, Benoit; Plumas, Joël; Toussaint, Bertrand

    2013-01-01

    The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the “killed but metabolically active” (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery. PMID:23531551

  2. Leaky RAG Deficiency in Adult Patients with Impaired Antibody Production against Bacterial Polysaccharide Antigens.

    Directory of Open Access Journals (Sweden)

    Christoph B Geier

    Full Text Available Loss of function mutations in the recombination activating genes RAG1 and RAG2 have been reported to cause a T-B-NK+ type of severe combined immunodeficiency. In addition identification of hypomorphic mutations in RAG1 and RAG2 has led to an expansion of the spectrum of disease to include Omenn syndrome, early onset autoimmunity, granuloma, chronic cytomegalovirus- or EBV-infection with expansion of gamma/delta T-cells, idiophatic CD4 lymphopenia and a phenotype resembling common variable immunodeficiency. Herein we describe a novel presentation of leaky RAG1 and RAG2 deficiency in two unrelated adult patients with impaired antibody production against bacterial polysaccharide antigens. Clinical manifestation included recurrent pneumonia, sinusitis, otitis media and in one patient recurrent cutaneous vasculitis. Both patients harbored a combination of a null mutation on one allele with a novel hypomorphic RAG1/2 mutation on the other allele. One of these novel mutations affected the start codon of RAG1 and resulted in an aberrant gene and protein expression. The second novel RAG2 mutation leads to a truncated RAG2 protein, lacking the C-terminus with intact core RAG2 and reduced VDJ recombination capacity as previously described in a mouse model. Both patients presented with severely decreased numbers of naïve CD4+ T cells and defective T independent IgG responses to bacterial polysaccharide antigens, while T cell-dependent IgG antibody formation e.g. after tetanus or TBEV vaccination was intact. In conclusion, hypomorphic mutations in genes responsible for SCID should be considered in adults with predominantly antibody deficiency.

  3. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    DEFF Research Database (Denmark)

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber

    2013-01-01

    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...

  4. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... measured in serum, and 4 in which it had been measured in both cerebrospinal fluid and serum. The odds ratio for bacterial meningitis versus aseptic meningitis for a positive CRP test with cerebrospinal fluid was estimated at 241 (95% confidence interval [CI]: 59-980), and the central tendencies.......06-0.08, respectively, the post-test probability of not having bacterial meningitis given a negative test is very high (> or = 97%), in the range of a pre-test probability (prevalence of bacterial meningitis) from 10 to 30%, whereas the post-test probability of bacterial meningitis given a positive test is considerably...

  5. The type-specific polysaccharide and the R protein antigens of the L-phase from a group B, type III Streptococcus.

    Science.gov (United States)

    Flores, A E; Ferrieri, P

    1985-04-01

    The type-specific polysaccharide and the R protein antigens from filtered culture supernatants of the bacterial phase and L-phase of the group B, type III streptococcal strain 76-043 were studied by several immunological methods. In the L-phase of growth, the two antigens were separate and distinct molecules which were found principally in the culture supernatant even on the 254th serial subculture in the cell-wall-defective state. Only trace amounts of these antigens were detected in extracts of L-phase cells. The type III polysaccharide antigens in the supernatant of cultures of the parent bacterium and the L-phase gave reactions of identity in immunodiffusion. Precipitin bands obtained by immunoelectrophoresis (IEP) revealed that the type-specific antigen of the bacterial phase of growth migrated toward the anode, whereas that of the L-phase remained near the antigen well. The R protein antigen in the L-phase supernatant was immunologically identical to the R protein of the supernatant and 1% trypsin-extracted antigens from whole cells of the parent bacterial strain, and other groups A, B and C streptococcal strains sharing a common R antigen. Immunologically, the R antigen appeared to be the species R4. The R protein of the L-phase and bacterial phase cultures was resistant to 5% trypsin but sensitive to 0.5% pepsin at 37 degrees C/2hr. Antiserum prepared in rabbits against L-phase cells contained an antibody reactive with the R protein antigens of the bacterial and L-phase cultures. The soluble, naturally released type III and R protein streptococcal antigens of the L-phase of growth permitted immunological confirmation of its bacterial origin.

  6. Antigenic and structural conservation of herpesvirus DNA-binding proteins.

    Science.gov (United States)

    Littler, E; Yeo, J; Killington, R A; Purifoy, D J; Powell, K L

    1981-10-01

    Previously, we have shown a common antigen of several herpesviruses (pseudorabies virus, equine abortion virus and bovine mammillitis virus) to be antigenically related to the major DNA-binding proteins of herpes simplex virus types 1 and 2. In this study we have purified the cross-reacting polypeptide from cells infected with pseudorabies virus, equine abortion virus and bovine mammillitis virus and shown the cross-reacting protein to be a major DNA-binding protein for each virus. Tryptic peptide analysis of the cross-reacting DNA-binding proteins of all five viruses has shown structural similarities. The proteins thus were shown to share common antigenic sites, to have similar biological properties and to have a highly conserved amino acid sequence. This unexpected similarity between proteins from diverse herpes viruses suggests an essential and fundamental role of the major DNA-binding protein in herpes virus replication.

  7. Identification of bacterial antigens and super antigens in synovial fluid of patients with arthritis: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Samileh Noorbakhsh

    2013-02-01

    Full Text Available  Abstract Background: An accurate and prompt diagnosis of bacterial arthritis is essential for earlier treatment and a good outcome. Superantigens produced by Staph. Aureus are among the most lethal toxins. The paper objective was Identification of common bacterial antigens and S.aureus superantigens in synovial fluid (SF of children with negative culture and direct smear for other bacteria except for S.aureus. Methods: In this cross-sectional study a total of 62 patients with a mean age of 11 ± 3.8 years (range: 5 months- 16 years with acute arthritis in pediatric and orthopedic wards of Rasoul hospital (2008-2010 were studied. Three common bacterial antigens (e.g. S.Pneumonia, H.influenza, N. meningitis using LPA (latex particle antigen and Staphylococcal superantigens (TSST1; Enterotoxin A; B; C using ELISA method (ABcam; USA were identified in 60 adequate SF samples with negative culture and negative direct smears (for other bacteria except for S.aureus. Staphylococcal superantigens were compared with S.aureus infection (positive culture or direct smear. Results: Positive bacterial antigens (LPA test were found in 4 cases including two S. Pneumonia, one N.meningitis, and one H.influenza. S.aureus was diagnosed in 7 cases including 4 positive cultures and 3 positive smears. Staphylococcal superantigens (toxins were found in 73% of SF samples. Some cases had 2 or 3 types of toxins. S.aureus toxins were reported in 47% of culture negative SF samples. Positive TSST1, Enterotoxin B, Enterotoxin A, and Enterotoxin C were found in 47% (n= 28, 18% (n= 10, 39% (n= 22, and 39% (n=21 of cases respectively. The most common type of superantigens was TSST1; and Enterotoxin A was the less common type. Except for Enterotoxin A, no relation between positive S.aureus culture and positive tests for superantigens in SF was found. Conclusion: S.aureus has a prominent role in septic arthritis. S.aureus toxins might have a prominent role in arthritis with

  8. Protein phosphorylation and bacterial chemotaxis

    International Nuclear Information System (INIS)

    Hess, J.F.; Bourret, R.B.; Oosawa, K.; Simon, M.I.; Matsumura, P.

    1988-01-01

    Bacteria are able to respond to changes in concentration of a large variety of chemicals and to changes in physical parameters, including viscosity, osmolarity, and temperature, by swimming toward a more favorable location (for review, see Stewart and Dahlquist 1987). Most chemotactic responses are mediated by a series of transmembrane receptor proteins that interact with or bind specific chemicals and thus monitor environmental conditions. Over the past 10 years, work in a number of laboratories has resulted in the identification and characterization of many of the genes and proteins required for the signal transduction process. The authors postulated that rapid and transient covalent modification of the chemotaxis gene products could function to transmit information from the receptor by regulating protein-protein interaction between the chemotaxis gene products. To test this idea, the authors purified the proteins corresponding to the cheA, cheY, cheZ, cheW, and cheB genes and tested the purified polypeptides to determine whether they could be covalently modified and whether they would interact with each other in vitro

  9. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    This study was designed to assess the effects of protein malnutrition (PM) associated with antibiotic on growth weight, cecal bacterial overgrowth and enterobacteria translocation. Eighteen Gnotobiotic young Wistar rats (135 ± 2.35 g) were treated orally with antibiotic and submitted to dietary restriction based on maize diet ...

  10. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    phosphorylation. Protein-tyrosine phosphorylation in bacteria is particular with respect to very low occupancy of phosphorylation sites in vivo; this has represented a major challenge for detection techniques. Only the recent breakthroughs in gel-free high resolution mass spectrometry allowed the systematic...... detection of phosphorylated tyrosines by phosphoprotomics studies in bacteria. Other pioneering studies conducted in recent years, such as the first structures of BY-kinases and biochemical and phyiological studies of new BY-kinase substrates significantly furthered our understanding of these enzymes...

  11. House dust mites as potential carriers for IgE sensitization to bacterial antigens.

    Science.gov (United States)

    Dzoro, S; Mittermann, I; Resch-Marat, Y; Vrtala, S; Nehr, M; Hirschl, A M; Wikberg, G; Lundeberg, L; Johansson, C; Scheynius, A; Valenta, R

    2018-01-01

    IgE reactivity to antigens from Gram-positive and Gram-negative bacteria is common in patients suffering from respiratory and skin manifestations of allergy, but the routes and mechanisms of sensitization are not fully understood. The analysis of the genome, transcriptome and microbiome of house dust mites (HDM) has shown that Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) species are abundant bacteria within the HDM microbiome. Therefore, our aim was to investigate whether HDM are carriers of bacterial antigens leading to IgE sensitization in patients suffering from atopic dermatitis. Plasma samples from patients with AD (n = 179) were analysed for IgE reactivity to a comprehensive panel of microarrayed HDM allergen molecules and to S. aureus and E. coli by IgE immunoblotting. Antibodies specific for S. aureus and E. coli antigens were tested for reactivity to nitrocellulose-blotted extract from purified HDM bodies, and the IgE-reactive antigens were detected by IgE immunoblot inhibition experiments. IgE antibodies directed to bacterial antigens in HDM were quantified by IgE ImmunoCAP™ inhibition experiments. IgE reactivity to bacterial antigens was significantly more frequent in patients with AD sensitized to HDM than in AD patients without HDM sensitization. S. aureus and E. coli antigens were detected in immune-blotted HDM extract, and the presence of IgE-reactive antigens in HDM was demonstrated by qualitative and quantitative IgE inhibition experiments. House dust mites (HDM) may serve as carriers of bacteria responsible for the induction of IgE sensitization to microbial antigens. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  12. Bacterial systems for production of heterologous proteins.

    Science.gov (United States)

    Zerbs, Sarah; Frank, Ashley M; Collart, Frank R

    2009-01-01

    Proteins are the working molecules of all biological systems and participate in a majority of cellular chemical reactions and biological processes. Knowledge of the properties and function of these molecules is central to an understanding of chemical and biological processes. In this context, purified proteins are a starting point for biophysical and biochemical characterization methods that can assist in the elucidation of function. The challenge for production of proteins at the scale and quality required for experimental, therapeutic and commercial applications has led to the development of a diverse set of methods for heterologous protein production. Bacterial expression systems are commonly used for protein production as these systems provide an economical route for protein production and require minimal technical expertise to establish a laboratory protein production system.

  13. Engineered fluorescent proteins illuminate the bacterial periplasm

    Directory of Open Access Journals (Sweden)

    Thorben Dammeyer

    2012-10-01

    Full Text Available The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP, remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat pathway, but actively fold in the periplasm following general secretory pathway (Sec and signal recognition particle (SRP mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  14. Engineered fluorescent proteins illuminate the bacterial periplasm.

    Science.gov (United States)

    Dammeyer, Thorben; Tinnefeld, Philip

    2012-01-01

    The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP), remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat) pathway, but actively fold in the periplasm following general secretory pathway (Sec) and signal recognition particle (SRP) mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  15. ENGINEERED FLUORESCENT PROTEINS ILLUMINATE THE BACTERIAL PERIPLASM

    Directory of Open Access Journals (Sweden)

    Thorben Dammeyer

    2012-10-01

    Full Text Available The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation – a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP, remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat pathway, but actively fold in the periplasm following general secretory pathway (Sec and signal recognition particle (SRP mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  16. Association of Pneumococcal Protein Antigen Serology With Age and Antigenic Profile of Colonizing Isolates.

    Science.gov (United States)

    Azarian, Taj; Grant, Lindsay R; Georgieva, Maria; Hammitt, Laura L; Reid, Raymond; Bentley, Stephen D; Goldblatt, David; Santosham, Mathuran; Weatherholtz, Robert; Burbidge, Paula; Goklish, Novalene; Thompson, Claudette M; Hanage, William P; O'Brien, Kate L; Lipsitch, Marc

    2017-03-01

    Several Streptococcus pneumoniae proteins play a role in pathogenesis and are being investigated as vaccine targets. It is largely unknown whether naturally acquired antibodies reduce the risk of colonization with strains expressing a particular antigenic variant. Serum immunoglobulin G (IgG) titers to 28 pneumococcal protein antigens were measured among 242 individuals aged - 30 days after serum collection, and the antigen variant in each pneumococcal isolate was determined using genomic data. We assessed the association between preexisting variant-specific antibody titers and subsequent carriage of pneumococcus expressing a particular antigen variant. Antibody titers often increased across pediatric groups before decreasing among adults. Individuals with low titers against group 3 pneumococcal surface protein C (PspC) variants were more likely to be colonized with pneumococci expressing those variants. For other antigens, variant-specific IgG titers do not predict colonization. We observed an inverse association between variant-specific antibody concentration and homologous pneumococcal colonization for only 1 protein. Further assessment of antibody repertoires may elucidate the nature of antipneumococcal antibody-mediated mucosal immunity while informing vaccine development. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens

    Directory of Open Access Journals (Sweden)

    Janet Foley

    2015-01-01

    Full Text Available Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck; selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability; and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts.

  18. Virosome-mediated delivery of protein antigens to dendritic cells

    NARCIS (Netherlands)

    Bungener, L; Serre, K; Bijl, L; Leserman, L; Wilschut, J; Daemen, T; Machy, P

    2002-01-01

    Virosomes are reconstituted viral membranes in which protein can be encapsulated. Fusion-active virosomes, fusion-inactive virosomes and liposomes were used to study the conditions needed for delivery of encapsulated protein antigen ovalbumin (OVA) to dendritic cells (DCs) for MHC class I and 11

  19. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...... the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in healthy mice...... ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic specificity...

  20. Bacterial ghosts (BGs)--advanced antigen and drug delivery system.

    Science.gov (United States)

    Kudela, Pavol; Koller, Verena Juliana; Lubitz, Werner

    2010-08-16

    Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expression of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria. BGs are devoid of cytoplasmic content and possess all bacterial bio-adhesive surface properties in their original state while not posing any infectious threat. BGs are ideally suited as an advanced drug delivery system (ADDS) for toxic substances in tumor therapy. The inner space of BGs can be loaded with either single components or combinations of peptides, drugs or DNA which provides an opportunity to design new types of (polyvalent) drug delivery vehicles. Uptake of BGs loaded with Doxorubicin (Dox) by CaCo2 cells led to effective Dox release from endo-lysosomal compartments and accumulation in the nucleus. Viability and proliferative capacity of the cells were significantly decreased (2-3 orders of magnitude) after internalization of Dox loaded BGs as compared to cells incubated with free Dox. The same effect was observed with leukemia cells. Melanoma cells also revealed a high capability to internalize BGs. These results indicate that BGs are able to target a range of types of cancer. BGs have also been investigated as DNA delivery vectors. Studies show DNA loaded BGs are efficiently phagocytosed and internalized by both professional APCs and tumor cells with up to 82% of cells expressing the plasmid-encoded reporter gene. Our studies with BGs as an ADDS system contribute (i) to optimize drug delivery for the treatment of cancer; (ii) define specific conditions for selection and preparation of BG formulations; (iii) and provide a background for the clinical application of BGs in cancer therapy.

  1. Comparative characteristic of the methods of protein antigens epitope mapping

    Directory of Open Access Journals (Sweden)

    O. Yu. Galkin

    2014-08-01

    Full Text Available Comparative analysis of experimental methods of epitope mapping of protein antigens has been carried out. The vast majority of known techniques are involved in immunochemical study of the interaction of protein molecules or peptides with antibodies of corresponding specifici­ty. The most effective and widely applicable metho­dological techniques are those that use synthetic and genetically engineered peptides. Over the past 30 years, these groups of methods have travelled a notable evolutionary path up to the maximum automation and the detection of antigenic determinants of various types (linear and conformational epitopes, and mimotopes. Most of epitope searching algorithms were integrated into a computer program, which greatly facilitates the analysis of experimental data and makes it possible to create spatial models. It is possible to use comparative epitope mapping for solving the applied problems; this less time-consuming method is based on the analysis of competition between different antibodies interactions with the same antigen. The physical method of antigenic structure study is X-ray analysis of antigen-antibody complexes, which may be applied only to crystallizing­ proteins, and nuclear magnetic resonance.

  2. Characterization of a Mycobacterium leprae antigen related to the secreted Mycobacterium tuberculosis protein MPT32

    NARCIS (Netherlands)

    Wieles, B.; van Agterveld, M.; Janson, A.; Clark-Curtiss, J.; Rinke de Wit, T.; Harboe, M.; Thole, J.

    1994-01-01

    Secreted proteins may serve as major targets in the immune response to mycobacteria. To identify potentially secreted Mycobacterium leprae antigens, antisera specific for culture filtrate proteins of Mycobacterium tuberculosis were used to screen a panel of recombinant antigens selected previously

  3. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  4. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  5. Bacterial antigen induced release of soluble vascular endothelial growth factor (VEGF) and VEGFR1 before and after surgery

    DEFF Research Database (Denmark)

    Svendsen, Mads N; Lykke, J; Werther, Kim

    2005-01-01

    OBJECTIVE: The influence of surgery on release of soluble vascular endothelial growth factor (sVEGF) and the soluble inhibitory receptor (sVEGFR1) is unknown. The effect of major and minor surgery on variations in sVEGF and sVEGFR1 concentrations in vivo was studied, and on bacterial antigen...... concentrations in plasma changed during surgery. In vitro stimulation of blood samples with bacteria-derived antigens resulted in a significant increase in sVEGF (p Bacterial antigen-induced release of sVEGF correlated...... significantly with neutrophil cell counts (0.53 Bacterial antigen-induced sVEGFR1 release did not correlate with cell counts. CONCLUSIONS: Plasma sVEGF and sVEGFR1 concentrations did not change during surgery. In vitro bacterial stimulation led to increased release of sVEGF, which...

  6. Antigenic proteins of Helicobacter pylori of potential diagnostic value.

    Science.gov (United States)

    Khalilpour, Akbar; Santhanam, Amutha; Wei, Lee Chun; Saadatnia, Geita; Velusamy, Nagarajan; Osman, Sabariah; Mohamad, Ahmad Munir; Noordin, Rahmah

    2013-01-01

    Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (≥ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture- positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/ TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline- 5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.

  7. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  8. Heat shock protein HSP60 and the perspective for future using as vaccine antigens

    Directory of Open Access Journals (Sweden)

    Joanna Bajzert

    2015-10-01

    Full Text Available Heat Shock Proteins (HSPs are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte and the innate (macrophages, monocytes, dendritic cells immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.

  9. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    International Nuclear Information System (INIS)

    Tuasikal, B.J.; Wibawan, I.W.T.; Pasaribu, F.H; Estuningsih, S.

    2012-01-01

    A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder) vaccine in ruminant. The study aims to determine the Molecular Weight (MW) bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic characteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD 50 ) is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 - 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 - 0.05X (where Y = bands distance; X = MW standard protein); r 2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis. (author)

  10. Bacterial Protein Characterization of Streptococcus agalactiae by SDS-page Method for Subclinical Mastitis Irradiated Vaccine Materials in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    B.J. Tuasikal

    2012-08-01

    Full Text Available A study have been conducted to isolate and characterize bacterial protein S. agalactiae, which is antigenic and can be used to test immunogenicity of vaccine in order to manufacture irradiated mastitis (inflammation of the udder vaccine in ruminant. The study aims to determine the Molecular Weight (MW bacterial protein S. agalactiae irradiation, which can be used to test the nature of its antigenic caharacteristic. The character of S. agalactiae antigenic stimulates antibody induction of the immune system, in which case is the body's defense system against mastitis disease in cattle. In this study, irradiation of gamma ray is used to attenuate the pathogenicity of bacteria by reducing S. agalactiae antigenic caharacteristic. Previous research, in irradiation dose orientation before antigenic protein isolation of S. agalactiae, indicated that irradiation lethal dose to 50% (LD50 is 17 Gy. The characterization of S. agalactiae bacteria isolate using SDS-page method results in no significance different between irradiated and non-irradiated group, which indicated by MW range 75 – 100 kDa base on marker standard which used, or 99 kDa by the linier equation of Y = 11,60 – 0.05X (where Y = bands distance; X = MW standard protein; r2 = 0.99. In conclusion, 17 Gy irradiation dose does not impair antigenic property of S. agalactiae and therefore, can be applied to produce base material of irradiated vaccine for mastitis

  11. [Clinical analysis of patients with bacterial meningitis in childhood and reevaluation of rapid antigen detection methods].

    Science.gov (United States)

    Nakamura, A; Kuroki, H; Ohshima, H; Sugioka, T; Ishiwada, N; Takeda, N; Aizawa, J; Ohkusu, K

    1999-09-01

    Twenty-eight cases of bacterial meningitis during the recent ten years were analyzed retrospectively, and the following results were obtained. 1. Pathogens were as follows; H. influenzae 13 (46.4%), S. pneumoniae 8 (28.6%), S. agalactiae 4 (14.3%), E. coli 2 (7.1%), and L. monocytogenes 1 case (3.6%). 2. Twelve out of the thirteen H. influenzae cases were caused by serotype b (Hib), and 2 strains were beta-lactamase producer. Fifty percent of the S. pneumoniae cases were caused by penicillin-resistant strains. And all these resistant strains belonged to serotype 19 or 23. 3. Underlying diseases related to the onset of meningitis were found in 46% of the cases, and these consisted of CNS shunt operated 5, asplenia or polysplenia 2, Mondini's anomaly 1, sacral dermal sinus 1, and neonate 4 cases. 4. Prognosis of these cases were three deaths, four with neurologic sequelae, and twenty-one complete recoveries. 5. On admission, 85% (17/20) of the cases were diagnosed correctly by the rapid antigen detection. Sensitivity and specificity of the rapid antigen detection by using latex particle agglutination is 90% and 100% in the Hib cases, and 83% and 100% in the S. pneumoniae cases respectively. Moreover, the bacteriologically unknown 2 cases caused by parenteral partial treatment were also diagnosed by the detection of antigen in concentrated urine.

  12. Understanding the bacterial polysaccharide antigenicity of Streptococcus agalactiae versus Streptococcus pneumoniae.

    Science.gov (United States)

    Kadirvelraj, Renuka; Gonzalez-Outeiriño, Jorge; Foley, B Lachele; Beckham, Meredith L; Jennings, Harold J; Foote, Simon; Ford, Michael G; Woods, Robert J

    2006-05-23

    Bacterial surface capsular polysaccharides (CPS) that are similar in carbohydrate sequence may differ markedly in immunogenicity and antigenicity. The structural origin of these phenomena is poorly understood. Such a case is presented by the Gram-positive bacteria Streptococcus agalactiae (Group B Streptococcus; GBS) type III (GBSIII) and Streptococcus pneumoniae (Pn) type 14 (Pn14), which share closely related CPS sequences. Nevertheless, antibodies (Abs) against GBSIII rarely cross-react with the CPS from Pn14. To establish the origin for the variation in CPS antigenicity, models for the immune complexes of CPS fragments from GBSIII and Pn14, with the variable fragment (Fv) of a GBS-specific mAb (mAb 1B1), are presented. The complexes are generated through a combination of comparative Ab modeling and automated ligand docking, followed by explicitly solvated 10-ns molecular dynamics simulations. The relationship between carbohydrate sequence and antigenicity is further quantified through the computation of interaction energies using the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method, augmented by conformational entropy estimates. Despite the electrostatic differences between Pn14 and GBSIII CPS, analysis indicates that entropic penalties are primarily responsible for the loss of affinity of the highly flexible Pn14 CPS for mAb 1B1. The similarity of the solution conformation of the relatively rigid GBSIII CPS with that in the immune complex characterizes the previously undescribed 3D structure of the conformational epitope. The analysis provides a comprehensive interpretation for a large body of biochemical and immunological data related to Ab recognition of bacterial polysaccharides and should be applicable to other Ab-carbohydrate interactions.

  13. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  14. A bacterial engineered glycoprotein as a novel antigen for diagnosis of bovine brucellosis.

    Science.gov (United States)

    Ciocchini, Andrés E; Serantes, Diego A Rey; Melli, Luciano J; Guidolin, Leticia S; Iwashkiw, Jeremy A; Elena, Sebastián; Franco, Cristina; Nicola, Ana M; Feldman, Mario F; Comerci, Diego J; Ugalde, Juan E

    2014-08-27

    Brucellosis is a highly contagious zoonosis that affects livestock and human beings. Laboratory diagnosis of bovine brucellosis mainly relies on serological diagnosis using serum and/or milk samples. Although there are several serological tests with different diagnostic performance and capacity to differentiate vaccinated from infected animals, there is still no standardized reference antigen for the disease. Here we validate the first recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of bovine brucellosis. This antigen can be produced in homogeneous batches without the need of culturing pathogenic brucellae; all characteristics that make it appropriate for standardization. An indirect immunoassay based on the detection of anti O-polysaccharide IgG antibodies in bovine samples was developed coupling OAg-AcrA to magnetic beads or ELISA plates. As a proof of concept and to validate the antigen, we analyzed serum, whole blood and milk samples obtained from non-infected, experimentally infected and vaccinated animals included in a vaccination/infection trial performed in our laboratory as well as more than 1000 serum and milk samples obtained from naturally infected and S19-vaccinated animals from Argentina. Our results demonstrate that OAg-AcrA-based assays are highly accurate for diagnosis of bovine brucellosis, even in vaccinated herds, using different types of samples and in different platforms. We propose this novel recombinant glycoprotein as an antigen suitable for the development of new standard immunological tests for screening and confirmatory diagnosis of bovine brucellosis in regions or countries with brucellosis-control programs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Bacterial antigens alone can influence intestinal barrier integrity, but live bacteria are required for initiation of intestinal inflammation and injury.

    Science.gov (United States)

    Sydora, Beate C; Martin, Sarah M; Lupicki, Maryla; Dieleman, Levinus A; Doyle, Jason; Walker, John W; Fedorak, Richard N

    2006-06-01

    Intestinal flora plays a critical role in the initiation and perpetuation of inflammatory bowel disease. This study examined whether live fecal bacteria were necessary for the initiation of this inflammatory response or whether sterile fecal material would provoke a similar response. Three preparations of fecal material were prepared: (1) a slurry of live fecal bacteria, (2) a sterile lysate of bacterial antigens, and (3) a sterile filtrate of fecal water. Each preparation was introduced via gastric gavage into the intestines of axenic interleukin-10 gene-deficient mice genetically predisposed to develop inflammatory bowel disease. Intestinal barrier integrity and degrees of mucosal and systemic inflammations were determined for each preparation group. Intestinal barrier integrity, as determined by mannitol transmural flux, was altered by both live fecal bacterial and sterile lysates of bacterial antigens, although it was not altered by sterile filtrates of fecal water. However, only live fecal bacteria initiated mucosal inflammation and injury and a systemic immune response. Fecal bacterial antigens in the presence of live bacteria and sterile fecal bacterial antigens have different effects on the initiation and perpetuation of intestinal inflammation.

  16. Preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens and their use for bacterial detection.

    Science.gov (United States)

    Dykman, Lev A; Staroverov, Sergei A; Guliy, Olga I; Ignatov, Oleg V; Fomin, Alexander S; Vidyasheva, Irina V; Karavaeva, Olga A; Bunin, Viktor D; Burygin, Gennady L

    2012-01-01

    This article reports the first preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens by using a combinatorial phage library of sheep antibodies. The prepared phage antibodies were used for the first time for lipopolysaccharide and flagellin detection by dot assay, electro-optical analysis of cell suspensions, and transmission electron microscopy. Interaction of A. brasilense Sp245 with antilipopolysaccharide and antiflagellin phage-displayed miniantibodies caused the magnitude of the electro-optical signal to change considerably. The electro-optical results were in good agreement with the electron microscopic data. This is the first reported possibility of employing phage-displayed miniantibodies in bacterial detection aided by electro-optical analysis of cell suspensions.

  17. AgdbNet – antigen sequence database software for bacterial typing

    Directory of Open Access Journals (Sweden)

    Maiden Martin CJ

    2006-06-01

    Full Text Available Abstract Background Bacterial typing schemes based on the sequences of genes encoding surface antigens require databases that provide a uniform, curated, and widely accepted nomenclature of the variants identified. Due to the differences in typing schemes, imposed by the diversity of genes targeted, creating these databases has typically required the writing of one-off code to link the database to a web interface. Here we describe agdbNet, widely applicable web database software that facilitates simultaneous BLAST querying of multiple loci using either nucleotide or peptide sequences. Results Databases are described by XML files that are parsed by a Perl CGI script. Each database can have any number of loci, which may be defined by nucleotide and/or peptide sequences. The software is currently in use on at least five public databases for the typing of Neisseria meningitidis, Campylobacter jejuni and Streptococcus equi and can be set up to query internal isolate tables or suitably-configured external isolate databases, such as those used for multilocus sequence typing. The style of the resulting website can be fully configured by modifying stylesheets and through the use of customised header and footer files that surround the output of the script. Conclusion The software provides a rapid means of setting up customised Internet antigen sequence databases. The flexible configuration options enable typing schemes with differing requirements to be accommodated.

  18. Changes in the repertoire of natural antibodies caused by immunization with bacterial antigens

    DEFF Research Database (Denmark)

    Shilova, N V; Navakouski, M J; Huflejt, M

    2011-01-01

    The repertoire of natural anti-glycan antibodies in naïve chickens and in chickens immunized with bacteria Burkholderia mallei, Burkholderia pseudomallei, and Francisella tularensis as well as with peptides from an outer membrane protein of B. pseudomallei was studied. A relatively restricted...... pattern of natural antibodies (first of all IgY against bacterial cell wall peptidoglycan fragments, L-Rha, and core N-acetyllactosamine) shrank and, moreover, the level of detectable antibodies decreased as a result of immunization....

  19. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection.

    Science.gov (United States)

    Perkowski, E F; Zulauf, K E; Weerakoon, D; Hayden, J D; Ioerger, T R; Oreper, D; Gomez, S M; Sacchettini, J C; Braunstein, M

    2017-04-25

    Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory ( in vitro ) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT ( ex ported i n vivo t echnology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro ). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions. IMPORTANCE There is long-standing interest in identifying exported proteins of bacteria as they play critical roles in physiology and virulence and are commonly immunogenic antigens and targets of antibiotics. While significant effort has been made to identify the bacterial proteins that are exported beyond the cytoplasm to the membrane, cell wall, or host environment, current methods to identify exported proteins are limited by their use of bacteria growing under laboratory ( in vitro ) conditions. Because in vitro conditions do not mimic the complexity of the host environment, critical exported proteins that are preferentially exported in the context of infection may be overlooked. We developed a novel method to identify proteins that are exported by bacteria during host infection and applied it to identify Mycobacterium tuberculosis proteins exported in a mouse model of tuberculosis

  20. BLANNOTATOR: enhanced homology-based function prediction of bacterial proteins

    Directory of Open Access Journals (Sweden)

    Kankainen Matti

    2012-02-01

    Full Text Available Abstract Background Automated function prediction has played a central role in determining the biological functions of bacterial proteins. Typically, protein function annotation relies on homology, and function is inferred from other proteins with similar sequences. This approach has become popular in bacterial genomics because it is one of the few methods that is practical for large datasets and because it does not require additional functional genomics experiments. However, the existing solutions produce erroneous predictions in many cases, especially when query sequences have low levels of identity with the annotated source protein. This problem has created a pressing need for improvements in homology-based annotation. Results We present an automated method for the functional annotation of bacterial protein sequences. Based on sequence similarity searches, BLANNOTATOR accurately annotates query sequences with one-line summary descriptions of protein function. It groups sequences identified by BLAST into subsets according to their annotation and bases its prediction on a set of sequences with consistent functional information. We show the results of BLANNOTATOR's performance in sets of bacterial proteins with known functions. We simulated the annotation process for 3090 SWISS-PROT proteins using a database in its state preceding the functional characterisation of the query protein. For this dataset, our method outperformed the five others that we tested, and the improved performance was maintained even in the absence of highly related sequence hits. We further demonstrate the value of our tool by analysing the putative proteome of Lactobacillus crispatus strain ST1. Conclusions BLANNOTATOR is an accurate method for bacterial protein function prediction. It is practical for genome-scale data and does not require pre-existing sequence clustering; thus, this method suits the needs of bacterial genome and metagenome researchers. The method and a

  1. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  2. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  3. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... Key words: Rats, enteric bacilli translocation, protein malnutrition, antibiotic, mesenteric lymph nodes. INTRODUCTION. Protein malnutrition ... In animal models, malnutrition is associated with villous atrophy and ..... the thoracic duct and the systemic circulation or via vascular channels to reach the portal.

  4. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  5. Protein modeling of apical membrane antigen-1(AMA-1) of ...

    African Journals Online (AJOL)

    Apical membrane Antigen-1(AMA-1), an asexual blood stage antigen of Plasmodium cynomolgi, is an important candidate for testing as a component of malarial vaccine. The degree of conservation of. AMA-1 sequences implies a conserved function for this molecule across different species of Plasmodium. Since the AMA-1 ...

  6. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    Science.gov (United States)

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  7. Identification of a peptide binding protein that plays a role in antigen presentation

    International Nuclear Information System (INIS)

    Lakey, E.K.; Margoliash, E.; Pierce, S.K.

    1987-01-01

    The helper T-cell response to globular proteins appears, in general, to require intracellular processing of the antigen, such that a peptide fragment containing the T-cell antigenic determinant is released and transported to and held on the surface of an Ia-expressing, antigen-presenting cell. However, the molecular details underlying these phenomena are largely unknown. The means by which antigenic peptides are anchored on the antigen-presenting cell surface was investigated. A cell surface protein is identified that was isolated by it ability to bind to a 24-amino acid peptide fragment of pigeon cytochrome c, residues 81-104, containing the major antigenic determinant for B10.A mouse T cells. This peptide binding protein, purified from [ 35 S]methionine-labeled cells, appears as two discrete bands of ≅72 and 74 kDa after NaDodSO 4 /PAGE. The protein can be eluted from the peptide affinity column with equivalent concentrations of either the antigenic pigeon cytochrome c peptide or the corresponding nonantigenic peptide of mouse cytochrome c. However, it does not bind to the native cytochromes c, either of pigeon or mouse, and thus the protein appears to recognize some structure available only in the free peptides. This protein plays a role in antigen presentation. Its expression is not major histocompatibility complex-restricted in that the blocking activity of the antisera can be absorbed on spleen cells from mice of different haplotypes. This peptide binding protein can be isolated from a variety of cell types, including B cells, T cells, and fibroblasts. The anchoring of processed peptides on the cell surface by such a protein may play a role in antigen presentation

  8. Fast and efficient detection of tuberculosis antigens using liposome encapsulated secretory proteins of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Dileep Tiwari

    2017-04-01

    Conclusion: Our study demonstrated that the newly developed liposome tuberculosis antigen card test detected antigens in our study population with approximately 97.48% sensitivity and 95.79% specificity. This is the first study to report the liposomal encapsulation of culture filtrate proteins from M. tuberculosis for diagnostic application.

  9. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  10. [Changes of urinary proteins in a bacterial meningitis rat model].

    Science.gov (United States)

    Ni, Yanying; Zhang, Fanshuang; An, Manxia; Gao, Youhe

    2017-07-25

    Unlike cerebrospinal fluid or blood, urine accumulates metabolic changes of the body and has the potential to be a promising source of early biomarkers discovery. Bacterial meningitis is a major cause of illness among neonates and children worldwide. In this study, we used Escherichia coli-injected rat model to mimic meningitis and collected urine samples on day 1 and day 3. We used two different methods to digest proteins and analyzed peptides by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 17 and 20 differential proteins by two methods respectively on day 1, and 5 differential proteins by filter-aided digestion method on day 3. Finding these differential proteins laid a foundation to further explore biomarkers of bacterial meningitis.

  11. Demodex-associated bacterial proteins induce neutrophil activation

    OpenAIRE

    O'Reilly, N.; Bergin, D.; Reeves, E.P.; McElvaney, N.G.; Kavanagh, K.

    2012-01-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than do controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea, thus suggesting a possible role for bacterial proteins in the aetiology of this condition. Objectives To examine the response of neutrophils to proteins derived from a bacterium isolated...

  12. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...... was time- and dose-dependent. A brief treatment solely of the accessory cells with the drug compromised their ability to stimulate primed T cells in a subsequent culture provided the accessory cells were treated with chloroquine before their exposure to the antigen. These results suggest that chloroquine...... acts on an early event in the antigen handling by accessory cells. Chloroquine is a well known inhibitor of lysosomal proteolysis, and it is likely that its effect on antigen presentation is caused by an inhibition of antigen degradation....

  13. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria.

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Zhao, Fan; Shi, Xuebin; Li, He; Li, Yingqiu; Zhu, Weiyun; Xu, Xinglian; Li, Chunbao; Lu, Chunbao; Zhou, Guanghong

    2015-10-14

    Long-term consumption of red meat has been considered a potential risk to gut health, but this is based on clinic investigations, excessive intake of fat, heme and some injurious compounds formed during cooking or additions to processed meat products. Whether intake of red meat protein affects gut bacteria and the health of the host remains unclear. In this work, we compared the composition of gut bacteria in the caecum, by sequencing the V4-V5 region of 16S ribosomal RNA gene, obtained from rats fed with proteins from red meat (beef and pork), white meat (chicken and fish) and other sources (casein and soy). The results showed significant differences in profiles of gut bacteria between the six diet groups. Rats fed with meat proteins had a similar overall structure of caecal bacterial communities separated from those fed non-meat proteins. The beneficial genus Lactobacillus was higher in the white meat than in the red meat or non-meat protein groups. Also, rats fed with meat proteins and casein had significantly lower levels of lipopolysaccharide-binding proteins, suggesting that the intake of meat proteins may maintain a more balanced composition of gut bacteria, thereby reducing the antigen load and inflammatory response in the host.

  14. Antigens in human glioblastomas and meningiomas: Search for tumour and onco-foetal antigens. Estimation of S-100 and GFA protein

    DEFF Research Database (Denmark)

    Dittmann, L; Axelsen, N H; Norgaard-Pedersen, B

    1977-01-01

    Extracts of glioblastomas and meningiomas were analysed by quantitative immunoelectrophoresis for the presence of foetal brain antigens and tumour-associated antigens, and levels of 2 normal brain-specific proteins were also determined. The following antibodies were used: monospecific anti-S-100......-alpha-foetoprotein; and monospecific anti-ferritin. Using the antibodies raised against the tumours, several antigens not present in foetal or adult normal brain were found in the glioblastomas and the meningiomas. These antigens cross-reacted with antigens present in normal liver and were therefore not tumour-associated. S-100...... was found in glioblastomas in approximately one tenth the amount in whole brain homogenate, whereas GFA was found 2-4 times enriched. The 2 proteins were absent in meningiomas. The possible use of the GFA protein as a marker for astroglial neoplasia is discussed. Five foetal antigens were found in foetal...

  15. Carcinoembryonic Antigen Level in Primary Sclerosing Cholangitis Is Not Influenced by Dominant Strictures or Bacterial Cholangitis.

    Science.gov (United States)

    Wannhoff, Andreas; Rupp, Christian; Friedrich, Kilian; Knierim, Johannes; Flechtenmacher, Christa; Weiss, Karl Heinz; Stremmel, Wolfgang; Gotthardt, Daniel N

    2017-02-01

    Carcinoembryonic antigen (CEA) can be used to screen for biliary tract cancer in patients with primary sclerosing cholangitis (PSC). To study the influence of benign dominant strictures (DS), superimposed bacterial cholangitis (SBC), smoking status, and inflammatory bowel disease on CEA serum levels. A retrospective analysis of CEA values in cancer-free PSC patients was performed. We included the maximal CEA value obtained during follow-up and information on the presence of DS and SBC at that time, and we analyzed the CEA values in the presence and absence of DS and SBC. Results are reported as medians with the interquartile range (IQR). The median maximal CEA level, which was 1.8 ng/mL (IQR 1.2-2.9) in the final 270 PSC patients included in the study, was not influenced by the presence of either DS or SBC (P = 0.320). Moreover, in 49 patients, the first CEA value available at the time of DS (1.5 ng/mL; IQR 1.2-2.1) and that at a time without DS (1.6 ng/mL; IQR 1.1-2.3) did not differ significantly (P = 0.397). Lastly, in 24 patients, the median CEA values at a time without SBC (1.8 ng/mL; IQR 1.2-2.5) and at the time of SBC (1.8 ng/mL; IQR 1.0-3.0) were comparable (P = 0.305). Smoking did not influence CEA-based cancer screening. Serum CEA level is not influenced by the presence of DS or SBC and might therefore serve as a favorable parameter for improving cancer screening in PSC patients.

  16. Mechanisms of recurrent otitis media: importance of the immune response to bacterial surface antigens.

    Science.gov (United States)

    Murphy, T F; Yi, K

    1997-12-29

    Otitis-prone children experience recurrent episodes of otitis media due to nontypeable H. influenzae (NTHI). A protective immune response occurs following infection, but this immune response is specific for the infecting strain, leaving the child susceptible to infection by other strains of NTHI. Little is known about the mechanism by which a strain-specific antibody response occurs to nonencapsulated bacteria. To explore the mechanism by which this strain-specific response occurs, animals were inoculated with whole bacterial cells and the antibody response was studied. The antibody response was predominantly directed to a highly strain-specific, immunodominant surface loop on the major outer membrane protein. This exquisitely restricted immune response leaves the host susceptible to recurrent infections by many strains of NTHI. The ability of the bacterium to direct the host to make a strain-specific antibody response has important implications in understanding the immune response to otitis media due to NTHI and in designing strategies for vaccine development.

  17. Plant bioreactors for the antigenic hook-associated flgK protein expression

    Directory of Open Access Journals (Sweden)

    Luciana Rossi

    2014-01-01

    Full Text Available Plants engineered with genes encoding for the antigenic proteins of various microorganisms have shown to correctly express the proteins that elicit the production of antibodies in mammalian hosts. In livestock, plant-based vaccines could represent an innovative strategy for oral vaccination, especially to prevent infection by enteric pathogens. The aim of this study was to evaluate tobacco plants as a seedspecific expression system for the production of the flgK flagellar hook-associated protein from a wild type Salmonella typhimurium strain, as a model of an edible vaccine. The flgK gene is the principal component of bacterial flagella and is recognised as virulence factor by the innate immune system. It was isolated from the Salmonella typhimurium strain by PCR. The encoding sequence of flgK was transferred into a pBI binary vector, under control of soybean basic 7S globulin promoter for the seed-specific. Plant transformation was carried out using recombinant EHA 105 Agrobacterium tumefaciens. A transgenic population was obtained made up of independently kanamycin-resistant transgenic plants, which had a similar morphological appearance to the wild-type plants. Molecular analyses of seeds confirmed the integration of the gene and the average expression level of flgK was estimated to be about 0.6 mg per gram of seeds, corresponding to 0.33% of the total amount of soluble protein in tobacco seeds. This study showed that the foreign flgK gene could be stably incorporated into the tobacco plant genome by transcription through the nuclear apparatus of the plant, and that these genes are inherited by the next generation.

  18. Bacterial protein meal in diets for pigs and minks

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein......The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets...

  19. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  20. Identification of antigenic Sarcoptes scabiei proteins for use in a diagnostic test and of non-antigenic proteins that may be immunomodulatory.

    Directory of Open Access Journals (Sweden)

    Marjorie S Morgan

    2017-06-01

    Full Text Available Scabies, caused by the mite, Sarcoptes scabiei, infects millions of humans, and many wild and domestic mammals. Scabies mites burrow in the lower stratum corneum of the epidermis of the skin and are the source of substances that are antigenic or modulate aspects of the protective response of the host. Ordinary scabies is a difficult disease to diagnose.The goal of this project was to identify S. scabiei proteins that may be candidate antigens for use in a diagnostic test or may be used by the mite to modulate the host's protective response.An aqueous extract of S. scabiei was separated by 2-dimensional electrophoresis and proteins were identified by mass spectrometry. A parallel immunoblot was probed with serum from patients with ordinary scabies to identify IgM and/or IgG-binding antigens. The genes coding for 23 selected proteins were cloned into E. coli and the expressed recombinant proteins were screened with serum from patients with confirmed ordinary scabies.We identified 50 different proteins produced by S. scabiei, 34 of which were not previously identified, and determined that 66% were recognized by patient IgM and/or IgG. Fourteen proteins were screened for use in a diagnostic test but none possessed enough sensitivity and specificity to be useful. Six of the 9 proteins selected for the possibility that they may be immunomodulatory were not recognized by antibodies in patient serum.Thirty-three proteins that bound IgM and/or IgG from the serum of patients with ordinary scabies were identified. None of the 14 tested were useful for inclusion in a diagnostic test. The identities of 16 proteins that are not recognized as antigens by infected patients were also determined. These could be among the molecules that are responsible for this mite's ability to modulate its host's innate and adaptive immune responses.

  1. Identification of antigenic Sarcoptes scabiei proteins for use in a diagnostic test and of non-antigenic proteins that may be immunomodulatory.

    Science.gov (United States)

    Morgan, Marjorie S; Rider, S Dean; Arlian, Larry G

    2017-06-01

    Scabies, caused by the mite, Sarcoptes scabiei, infects millions of humans, and many wild and domestic mammals. Scabies mites burrow in the lower stratum corneum of the epidermis of the skin and are the source of substances that are antigenic or modulate aspects of the protective response of the host. Ordinary scabies is a difficult disease to diagnose. The goal of this project was to identify S. scabiei proteins that may be candidate antigens for use in a diagnostic test or may be used by the mite to modulate the host's protective response. An aqueous extract of S. scabiei was separated by 2-dimensional electrophoresis and proteins were identified by mass spectrometry. A parallel immunoblot was probed with serum from patients with ordinary scabies to identify IgM and/or IgG-binding antigens. The genes coding for 23 selected proteins were cloned into E. coli and the expressed recombinant proteins were screened with serum from patients with confirmed ordinary scabies. We identified 50 different proteins produced by S. scabiei, 34 of which were not previously identified, and determined that 66% were recognized by patient IgM and/or IgG. Fourteen proteins were screened for use in a diagnostic test but none possessed enough sensitivity and specificity to be useful. Six of the 9 proteins selected for the possibility that they may be immunomodulatory were not recognized by antibodies in patient serum. Thirty-three proteins that bound IgM and/or IgG from the serum of patients with ordinary scabies were identified. None of the 14 tested were useful for inclusion in a diagnostic test. The identities of 16 proteins that are not recognized as antigens by infected patients were also determined. These could be among the molecules that are responsible for this mite's ability to modulate its host's innate and adaptive immune responses.

  2. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... of T antigen by the associated kinase is reduced whereas a p34cdc2-kinase-specific peptide has no influence. In addition, the T-antigen-associated protein kinase can use GTP and ATP as phosphate donors. These properties together with the observation that immunopurified T antigen can be phosphorylated...

  3. An immunoproteomic approach revealed antigenic proteins enhancing serodiagnosis performance of bird fancier's lung.

    Science.gov (United States)

    Rouzet, Adeline; Reboux, Gabriel; Dalphin, Jean-Charles; Gondouin, Anne; De Vuyst, Paul; Balliau, Thierry; Millon, Laurence; Valot, Benoit; Roussel, Sandrine

    2017-11-01

    Bird fancier's lung (BFL) caused by repeated inhalation of avian proteins is the most common form of hypersensitivity pneumonitis. However, the exact identification of proteins involved is unknown, and serological test use for diagnosis need to be standardized. The objectives of this study were (i) to identify antigenic proteins from pigeon droppings (ii) to provide information about their location in avian matrices and (iii) to produce them in recombinant proteins to evaluate their diagnostic performances. Antigenic proteins of pigeon dropping extracts were investigated using 2-dimensional immunoblotting with sera from patients with BFL, asymptomatic exposed controls and healthy volunteers. We investigated the origin of these antigenic proteins by analyzing droppings, blooms and sera using a shotgun proteomic analysis. BFL-associated proteins were produced as recombinant antigens in E. coli and were assessed in ELISA with sera from patients (n=25) and subject exposed controls (n=30). These diagnostic performances were compared with those obtained by precipitin techniques (agar gel double diffusion, immunoelectrophoresis). We identified 14 antigenic proteins mainly located in droppings and blooms. These proteins were involved in either the digestive or immune systems of pigeons. Using the recombinant BFL-associated proteins: Immunoglobulin lambda-like polypeptide-1 (IGLL1: sensitivity: 76%; specificity: 100%; AUC: 0.93) and Proproteinase E (ProE: sensitivity: 84%; specificity: 80%; AUC: 0.85), the ELISA test showed better performance than precipitin assays with pigeon dropping extracts (sensitivity: 60%; specificity: 93.3%; AUC: 0.76). IGLL1 and ProE were identified as the biomarkers of the disease. The use of these highly standardized antigens discriminates BFL cases from exposed subjects in serological assays. The results of this study offer new possibilities for the serological diagnosis of the disease. ClinicalTrials.gov: Identifier NCT03056404. Copyright

  4. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    Science.gov (United States)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  5. Mechanism of Asp24 Upregulation in Brucella abortus Rough Mutant with a Disrupted O-Antigen Export System and Effect of Asp24 in Bacterial Intracellular Survival

    Science.gov (United States)

    Tian, Mingxing; Qu, Jing; Han, Xiangan; Ding, Chan; Wang, Shaohui; Peng, Daxin

    2014-01-01

    We previously showed that Brucella abortus rough mutant strain 2308 ΔATP (called the ΔrfbE mutant in this study) exhibits reduced intracellular survival in RAW264.7 cells and attenuated persistence in BALB/c mice. In this study, we performed microarray analysis to detect genes with differential expression between the ΔrfbE mutant and wild-type strain S2308. Interestingly, acid shock protein 24 gene (asp24) expression was significantly upregulated in the ΔrfbE mutant compared to S2308, as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Further studies using additional strains indicated that the upregulation of asp24 occurred only in rough mutants with disrupted O-antigen export system components, including the ATP-binding protein gene rfbE (bab1_0542) and the permease gene rfbD (bab1_0543), while the ΔwboA rough mutant (which lacks an O-antigen synthesis-related glycosyltransferase) and the RB51 strain (a vaccine strain with the rough phenotype) showed no significant changes in asp24 expression compared to S2308. In addition, abolishing the intracellular O-antigen synthesis of the ΔrfbE mutant by deleting the wboA gene (thereby creating the ΔrfbE ΔwboA double-knockout strain) recovered asp24 expression. These results indicated that asp24 upregulation is associated with intracellular O-antigen synthesis and accumulation but not with the bacterial rough phenotype. Further studies indicated that asp24 upregulation in the ΔrfbE mutant was associated neither with bacterial adherence and invasion nor with cellular necrosis on RAW264.7 macrophages. However, proper expression of the asp24 gene favors intracellular survival of Brucella in RAW264.7 cells and HeLa cells during an infection. This study reveals a novel mechanism for asp24 upregulation in B. abortus mutants. PMID:24752516

  6. Elucidating the mechanisms of protein antigen adsorption to the CAF/NAF liposomal vaccine adjuvant systems

    DEFF Research Database (Denmark)

    Hamborg, Mette; Rose, Fabrice; Jorgensen, Lene

    2014-01-01

    is generally known about how antigens and adjuvants interact at the molecular level. The aim of this study was to elucidate the mechanisms of interactions between the equally sized, but oppositely charged model protein antigens α-lactalbumin and lysozyme, and i) the clinically tested cationic liposomal......The reverse vaccinology approach has recently resulted in the identification of promising protein antigens, which in combination with appropriate adjuvants can stimulate customized, protective immune responses. Although antigen adsorption to adjuvants influences vaccine efficacy and safety, little...... interaction with the zwitterionic liposomes. In contrast, the net cationic lysozyme showed very little interaction with either types of liposome. Adsorption of α-lactalbumin altered its tertiary structure, affected lipid membrane packing below and above the phase transition temperature, and neutralized...

  7. HIV immune evasion disruption of antigen presentation by the HIV Nef protein.

    Science.gov (United States)

    Wonderlich, Elizabeth R; Leonard, Jolie A; Collins, Kathleen L

    2011-01-01

    The Human Immunodeficiency Virus (HIV) Nef protein is necessary for high viral loads and for timely progression to AIDS. Nef plays a number of roles, but its effect on antigen presentation and immune evasion are among the best characterized. Cytotoxic T lymphocytes (CTLs) recognize and lyse virally infected cells by detecting viral antigens in complex with host major histocompatibility complex class I (MHC-I) molecules on the infected cell surface. The HIV Nef protein disrupts antigen presentation at the cell surface by interfering with the normal trafficking pathway of MHC-I and thus reduces CTL recognition and lysis of infected cells. The molecular mechanism by which Nef causes MHC-I downmodulation is becoming more clear, but some questions remain. A better understanding of how Nef disrupts antigen presentation may lead to the development of drugs that enhance the ability of the anti-HIV CTLs to control HIV disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Science.gov (United States)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  9. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  10. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  11. Molecular mechanisms of viral immune evasion proteins to inhibit MHC class I antigen processing and presentation.

    Science.gov (United States)

    Zhou, Fang

    2009-01-01

    Viral products inhibit MHC class I antigen processing and presentation via three major pathways: inhibition of major histocompatibility complex (MHC) class I expression on cells, blockade of peptide trafficking and loading on MHC class I molecules, and inhibition of peptide generation in host cells. Viral products also interfere with IFN-gamma -mediated JAK/STAT signal transduction in cells. These results imply that viral proteins probably inhibit the function of IFN-gamma in MHC class I antigen presentation via inactivation of JAK/STAT signal transduction in host cells. Mechanisms of viral products to inhibit IFN-gamma -mediated MHC class I antigen presentation were summarized in this literature review.

  12. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly

    NARCIS (Netherlands)

    Hochstenbach, F.; DAVID, V.; WATKINS, S.; Brenner, M. B.

    1992-01-01

    In the endoplasmic reticulum (ER), newly synthesized subunits of the T-cell antigen receptor (TCR), membrane-bound immunoglobulin (mIg), and major histocompatibility complex (MHC) class I antigens must fold correctly and assemble completely into multimeric protein complexes prior to transport to the

  13. Packaging protein drugs as bacterial inclusion bodies for therapeutic applications

    Directory of Open Access Journals (Sweden)

    Villaverde Antonio

    2012-06-01

    Full Text Available Abstract A growing number of insights on the biology of bacterial inclusion bodies (IBs have revealed intriguing utilities of these protein particles. Since they combine mechanical stability and protein functionality, IBs have been already exploited in biocatalysis and explored for bottom-up topographical modification in tissue engineering. Being fully biocompatible and with tuneable bio-physical properties, IBs are currently emerging as agents for protein delivery into mammalian cells in protein-replacement cell therapies. So far, IBs formed by chaperones (heat shock protein 70, Hsp70, enzymes (catalase and dihydrofolate reductase, grow factors (leukemia inhibitory factor, LIF and structural proteins (the cytoskeleton keratin 14 have been shown to rescue exposed cells from a spectrum of stresses and restore cell functions in absence of cytotoxicity. The natural penetrability of IBs into mammalian cells (reaching both cytoplasm and nucleus empowers them as an unexpected platform for the controlled delivery of essentially any therapeutic polypeptide. Production of protein drugs by biopharma has been traditionally challenged by IB formation. However, a time might have arrived in which recombinant bacteria are to be engineered for the controlled packaging of therapeutic proteins as nanoparticulate materials (nanopills, for their extra- or intra-cellular release in medicine and cosmetics.

  14. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  15. Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species.

    Science.gov (United States)

    Rashidi, Mahnaz; Galetto, Luciana; Bosco, Domenico; Bulgarelli, Andrea; Vallino, Marta; Veratti, Flavio; Marzachì, Cristina

    2015-09-30

    Phytoplasmas are bacterial plant pathogens (class Mollicutes), transmitted by phloem feeding leafhoppers, planthoppers and psyllids in a persistent/propagative manner. Transmission of phytoplasmas is under the control of behavioral, environmental and geographical factors, but molecular interactions between membrane proteins of phytoplasma and vectors may also be involved. The aim of the work was to provide experimental evidence that in vivo interaction between phytoplasma antigenic membrane protein (Amp) and vector proteins has a role in the transmission process. In doing so, we also investigated the topology of the interaction at the gut epithelium and at the salivary glands, the two barriers encountered by the phytoplasma during vector colonization. Experiments were performed on the 'Candidatus Phytoplasma asteris' chrysanthemum yellows strain (CYP), and the two leafhopper vectors Macrosteles quadripunctulatus Kirschbaum and Euscelidius variegatus Kirschbaum. To specifically address the interaction of CYP Amp at the gut epithelium barrier, insects were artificially fed with media containing either the recombinant phytoplasma protein Amp, or the antibody (A416) or both, and transmission, acquisition and inoculation efficiencies were measured. An abdominal microinjection protocol was employed to specifically address the interaction of CYP Amp at the salivary gland barrier. Phytoplasma suspension was added with Amp or A416 or both, injected into healthy E. variegatus adults and then infection and inoculation efficiencies were measured. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with A416 antibody. The organs were then either observed in confocal microscopy or subjected to DNA extraction and phytoplasma quantification by qPCR, to visualize and quantify possible differences among treatments in localization/presence/number of CYP cells. Artificial feeding

  16. The SSX Family of Cancer-Testis Antigens as Target Proteins for Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Heath A. Smith

    2010-01-01

    Full Text Available Cancer-testis antigens (CTAs represent an expanding class of tumor-associated proteins defined on the basis of their tissue-restricted expression to testis or ovary germline cells and frequent ectopic expression in tumor tissue. The expression of CTA in MHC class I-deficient germline cells makes these proteins particularly attractive as immunotherapeutic targets because they serve as essentially tumor-specific antigens for MHC class I-restricted CD8+ T cells. Moreover, because CTAs are expressed in many types of cancer, any therapeutic developed to target these antigens might have efficacy for multiple cancer types. Of particular interest among CTAs is the synovial sarcoma X chromosome breakpoint (SSX family of proteins, which includes ten highly homologous family members. Expression of SSX proteins in tumor tissues has been associated with advanced stages of disease and worse patient prognosis. Additionally, both humoral and cell-mediated immune responses to SSX proteins have been demonstrated in patients with tumors of varying histological origin, which indicates that natural immune responses can be spontaneously generated to these antigens in cancer patients. The current review will describe the history and identification of this family of proteins, as well as what is known of their function, expression in normal and malignant tissues, and immunogenicity.

  17. Protein modeling of apical membrane antigen-1(AMA-1) of ...

    African Journals Online (AJOL)

    SERVER

    2007-11-19

    Nov 19, 2007 ... available for the vast majority of the protein sequences. At this juncture, prediction methods have gained much. *Corresponding author. E-mail: drdmmamatha@gmail.com interest (Schwede et al. 2003). Genome sequencing projects continuously detect new protein sequences, this provides new information ...

  18. Programming the composition of polymer blend particles for controlled immunity towards individual protein antigens.

    Science.gov (United States)

    Zhan, Xi; Shen, Hong

    2015-05-28

    In order for a more precise control over the quality and quantity of immune responses stimulated by synthetic particle-based vaccines, it is critical to control the colloidal stability of particles and the release of protein antigens in both extracellular space and intracellular compartments. Different proteins exhibit different sizes, charges and solubilities. This study focused on modulating the release and colloidal stability of proteins with varied isoelectric points. A polymer particle delivery platform made from the blend of three polymers, poly(lactic-co-glycolic acid) (PLGA) and two random pH-sensitive copolymers, were developed. Our study demonstrated its programmability with respective to individual proteins. We showed the colloidal stability of particles at neutral environment and the release of each individual protein at different pH environments were dependent on the ratio of two charge polymers. Subsequently, two antigenic proteins, ovalbumin (OVA) and Type 2 Herpes Simplex Virus (HSV-2) glycoprotein D (gD) protein, were incorporated into particles with systematically varied compositions. We demonstrated that the level of in vitro CD8(+) T cell and in vivo immune responses were dependent on the ratio of two charged polymers, which correlated well with the release of proteins. This study provided a promising design framework of pH-responsive synthetic vaccines for protein antigens of interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Genetic and antigenic analysis of the G attachment protein of bovine respiratory syncytial virus strains

    DEFF Research Database (Denmark)

    Elvander, M.; Vilcek, S.; Baule, C.

    1998-01-01

    Antigenic and genetic studies of bovine respiratory syncytial virus (BRSV) were made on isolates obtained from three continents over 27 years. Antigenic variation between eight isolates was initially determined using protein G-specific monoclonal antibodies. Four distinct reaction patterns were...... of a 731 nucleotide fragment in the G protein gene. Nine of the BRSV strains were analysed by direct sequencing of RT-PCR amplicons whereas sequences of 18 BRSV and three human respiratory syncytial virus (HRSV) strains were obtained from GenBank. The analysis revealed similarities of 88-100% among BRSV...

  20. Protein export through the bacterial flagellar type III export pathway.

    Science.gov (United States)

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. © 2013 Elsevier B.V. All rights reserved.

  1. Immunoglobulin (Ig) D in Labeo rohita is widely expressed and differentially modulated in viral, bacterial and parasitic antigenic challenges.

    Science.gov (United States)

    Basu, Madhubanti; Lenka, Saswati S; Paichha, Mahismita; Swain, Banikalyan; Patel, Bhakti; Banerjee, Rajanya; Jayasankar, Pallipuram; Das, Surajit; Samanta, Mrinal

    2016-10-15

    Immunoglobulins (Igs) play critical roles in protecting host against diverse pathogenic invasion and diseases. Among all Ig isotypes, IgD is the most recently-evolved and enigmatic molecule detected in all vertebrates species except birds. In South-East Asia, Labeo rohita (rohu) is the leading candidate fish species for freshwater aquaculture, and this article describes about IgD gene expression in rohu following viral, bacterial and parasitic antigenic challenges. The partial cDNA (761bp) of Labeo rohita-IgD (LrIgD) was cloned and submitted in the GenBank with the accession no KT883581. Phylogenetically, LrIgD was closely related to grass carp IgD. Analysis of LrIgD gene expression in juveniles by quantitative real-time PCR (qRT-PCR) assay revealed gradual increase in IgD expression with the advancement of time. In the healthy rohu fingerlings, LrIgD expression occurred predominantly in kidney followed by liver and spleen. In response to rhabdoviral antigenic stimulation, LrIgD expression was significantly enhanced in all tested tissues. In bacterial (Aeromonas hydrophila) infection, transcripts of LrIgD increased more dramatically in liver followed by kidney and gill. In parasitic (Argulus) infection, most significant expression of IgD was noted in the skin, followed by kidney, liver, spleen and gill. These results collectively suggest the key role of IgD in the immune response of rohu during viral, bacterial and parasitic infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  4. Effects of roasting, blanching, autoclaving, and microwave heating on antigenicity of almond (Prunus dulcis L.) proteins.

    Science.gov (United States)

    Venkatachalam, M; Teuber, S S; Roux, K H; Sathe, S K

    2002-06-05

    Whole, unprocessed Nonpareil almonds were subjected to a variety of heat processing methods that included roasting (280, 300, and 320 degrees F for 20 and 30 min each; and 335 and 350 degrees F for 8, 10, and 12 min each), autoclaving (121 degrees C, 15 psi, for 5, 10, 15, 20, 25, and 30 min), blanching (100 degrees C for 1, 2, 3, 4, 5, and 10 min), and microwave heating (1, 2, and 3 min). Proteins were extracted from defatted almond flour in borate saline buffer, and immunoreactivity of the soluble proteins (normalized to 1 mg protein/mL for all samples) was determined using enzyme linked immunosorbent assay (ELISA). Antigenic stability of the almond major protein (amandin) in the heat-processed samples was determined by competitive inhibition ELISA using rabbit polyclonal antibodies raised against amandin. Processed samples were also assessed for heat stability of total antigenic proteins by sandwich ELISA using goat and rabbit polyclonal antibodies raised against unprocessed Nonpareil almond total protein extract. ELISA assays and Western blotting experiments that used both rabbit polyclonal antibodies and human IgE from pooled sera indicated antigenic stability of almond proteins when compared with that of the unprocessed counterpart.

  5. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  6. The ultrastructural localization of keratin proteins and carcinoembryonic antigen in malignant mesotheliomas.

    Science.gov (United States)

    Warhol, M J

    1984-09-01

    The immunoultrastructural localization of keratin proteins and carcinoembryonic antigen (CEA) in mesothelioma cells was accomplished with a low-temperature embedding colloidal gold technique. The keratin antiserum labeled only intermediate filaments. These filaments surrounded the cytoplasmic organelles and were inserted into desmosomes. The CEA antiserum labeled cytoplasmic vesicles and droplets. No definite labeling of microvilli was observed.

  7. Outer membrane proteins analysis of Shigella sonnei and evaluation of their antigenicity in Shigella infected individuals.

    Directory of Open Access Journals (Sweden)

    Hemavathy Harikrishnan

    Full Text Available Bacillary dysentery caused by infection with Shigella spp. remains as serious and common health problem throughout the world. It is a highly multi drug resistant organism and rarely identified from the patient at the early stage of infection. S. sonnei is the most frequently isolated species causing shigellosis in industrialized countries. The antigenicity of outer membrane protein of this pathogen expressed during human infection has not been identified to date. We have studied the antigenic outer membrane proteins expressed by S. sonnei, with the aim of identifying presence of specific IgA and IgG in human serum against the candidate protein biomarkers. Three antigenic OMPs sized 33.3, 43.8 and 100.3 kDa were uniquely recognized by IgA and IgG from patients with S. sonnei infection, and did not cross-react with sera from patients with other types of infection. The antigenic proteome data generated in this study are a first for OMPs of S. sonnei, and they provide important insights of human immune responses. Furthermore, numerous prime candidate proteins were identified which will aid the development of new diagnostic tools for the detection of S. sonnei.

  8. Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens

    NARCIS (Netherlands)

    Wilson, R. (Robert); J. Cohen (Jonathan); Reglinski, M. (Mark); R.J. Jose; Chan, W.Y. (Win Yan); Marshall, H. (Helina); C.P. de Vogel (Corné); S.B. Gordon (Stephen); Goldblatt, D. (David); Petersen, F.C. (Fernanda C.); H. Baxendale (Helen); Brown, J.S. (Jeremy S.)

    2017-01-01

    textabstractNaturally acquired immunity against invasive pneumococcal disease (IPD) is thought to be dependent on anti-capsular antibody. However nasopharyngeal colonisation by Streptococcus pneumoniae also induces antibody to protein antigens that could be protective. We have used human intravenous

  9. Role of 30 kDa antigen of enteric bacterial pathogens as a possible arthritogenic factor in post-dysenteric reactive arthritis

    Directory of Open Access Journals (Sweden)

    Malkit Singh

    2013-01-01

    Full Text Available Background: Reactive arthritis (ReA/Reiter′s syndrome (RS may be caused as a sequel of infections caused by enteric bacterial pathogens, although the mechanisms through, which different pathogens cause similar disease are not clear. Aim: This study was done to look for the presence and role of any common bacterial antigen among the pathogens isolated from such patients. Materials and Methods: A total of 51 patients of ReA and 75 controls (three groups of 25 subjects each: Group 1: Patients who did not develop arthritic complications within 3 months after bacillary dysentery/diarrhea; Group 2: Patients with other arthritic diseases and Group 3: Normal healthy subjects were included. The isolated enteric pathogens were tested to detect the immunodominant antigens. Results and Conclusions: A common 30 kDa antigen was found to be specifically present among seven arthritogenic enteric bacterial strains belonging to three genera, Salmonella, Shigella and Hafnia. Post-dysenteric ReA patients′ sera show higher levels of immunoglobulin G, immunoglobulin M and immunoglobulin A antibodies against this antigen as compared to the controls. Lymphocytes of ReA patients recognize this antigen, proliferate and produce interleukin-2 in response to this antigen more than the lymphocytes of controls. 30 kDa antigen may be a common arthritogenic factor associated with post-dysenteric ReA/RS. The association of Hafnia alvei with post-dysenteric ReA is described for the first time. Four cases of mycobacterial ReA had an association with this antigen, suggesting that the arthritogenic antigen of mycobacteria and enteric bacteria may be of a similar nature.

  10. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    Directory of Open Access Journals (Sweden)

    Natalia V. Permyakova

    2015-01-01

    Full Text Available Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L. genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  11. Bacterial flagellar capping proteins adopt diverse oligomeric states

    Energy Technology Data Exchange (ETDEWEB)

    Postel, Sandra; Deredge, Daniel; Bonsor, Daniel A.; Yu, Xiong; Diederichs, Kay; Helmsing, Saskia; Vromen, Aviv; Friedler, Assaf; Hust, Michael; Egelman, Edward H.; Beckett, Dorothy; Wintrode, Patrick L.; Sundberg, Eric J. (UV); (Braunschweig); (Maryland-MED); (Konstanz); (Maryland); (Hebrew)

    2016-09-24

    Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD fromPseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find thatPseudomonasFliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.

  12. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  13. Antibody response to the lipopolysaccharide and protein antigens of Salmonella typhi during typhoid infection

    International Nuclear Information System (INIS)

    Tsang, R.S.W.; Chau, P.Y.; Lam, S.K.

    1981-01-01

    Serum antibody responses to the lipopolysaccharide and protein antigens of S. typhi in typhoid patients were studied using a solid-phase radioimmunoassay technique with 125 I labelled anti-immunoglobulin antibody. Sera from 24 adult typhoid patients and 20 non-typhoid adult controls were compared. As a group, sera from typhoid patients showed increased IgA, IgG and IgM immunoglobulin levels and gave significantly higher anti-LPS and anti-protein antibody titres in all three major immunoglobulin classes than did non-typhoid controls. Levels of antibodies against LPS or protein in sera of typhoid patients were highly variable with a skew distribution. A good correlation was found between antibody titres to the LPS antigen and those to a protein antigen. No correlation, however, was found between the anti-LPS antibody titres measured by radioimmunoassay and the anti-O antibody titres measured by the Widal agglutination test. Titration of anti-LPS or anti-protein antibodies by radioimmunoassay was found to be more sensitive and specific than Widal test for the serological diagnosis of typhoid fever. The advantages of measuring antibody response by radioimmunoassay over conventional Widal test are discussed. (author)

  14. Characterization of Monoclonal Antibody–Protein Antigen Complexes Using Small-Angle Scattering and Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Maria Monica Castellanos

    2017-12-01

    Full Text Available The determination of monoclonal antibody interactions with protein antigens in solution can lead to important insights guiding physical characterization and molecular engineering of therapeutic targets. We used small-angle scattering (SAS combined with size-exclusion multi-angle light scattering high-performance liquid chromatography to obtain monodisperse samples with defined stoichiometry to study an anti-streptavidin monoclonal antibody interacting with tetrameric streptavidin. Ensembles of structures with both monodentate and bidentate antibody–antigen complexes were generated using molecular docking protocols and molecular simulations. By comparing theoretical SAS profiles to the experimental data it was determined that the primary component(s were compact monodentate and/or bidentate complexes. SAS profiles of extended monodentate complexes were not consistent with the experimental data. These results highlight the capability for determining the shape of monoclonal antibody–antigen complexes in solution using SAS data and physics-based molecular modeling.

  15. Cloning, expression and characterization of SeM protein of Streptococcus equi subsp. equi and evaluation of its use as antigen in an indirect ELISA

    Directory of Open Access Journals (Sweden)

    C.M. Moraes

    2014-08-01

    Full Text Available Strangles is an economically important horse disease caused by Streptococcus equi subsp. equi. The diagnosis can be confirmed either directly by bacterial isolation and PCR or by ELISA, which is an indirect method based on the detection of serum antibodies. The aim of this study was to clone, express and characterize the SeM protein of Streptococcus equi subsp. equi, evaluate its use as antigen in indirect ELISA and determine its performance to distinguish sera of negative, vaccinated and positive animals. This was initially performed by cloning the gene encoding the SeM protein and its expression in Escherichia coli. Subsequently, the protein produced was characterized and used as antigen in ELISA. Serum samples for evaluation were taken from 40 negative foals, 46 horses vaccinated with a commercial vaccine against strangles and 46 horses diagnosed with the disease. The test showed high specificity and sensitivity, allowing discrimination between negative and positive, positive and vaccinated animals, and vaccinated animals and negative sera. Thus, it was concluded that the protein produced rSeM, which can be used as antigen for disease diagnosis, and the described ELISA might be helpful to evaluate the immune status of the herd.

  16. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    Science.gov (United States)

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-07-01

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are

  17. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  18. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    Stempfer, René; Weinhäusel, Andreas; Syed, Parvez; Vierlinger, Klemens; Pichler, Rudolf; Meese, Eckart; Leidinger, Petra; Ludwig, Nicole; Kriegner, Albert; Nöhammer, Christa

    2010-01-01

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  19. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  20. CHARACTERIZATION OF THE CARBOHYDRATE COMPONENTS OF Taenia solium ONCOSPHERE PROTEINS AND THEIR ROLE IN THE ANTIGENICITY

    Science.gov (United States)

    Arana, Yanina; Verastegui, Manuela; Tuero, Iskra; Grandjean, Louis; Garcia, Hector H.; Gilman, Robert H.

    2015-01-01

    This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that post-translational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells. PMID:23982308

  1. Determinants of antigenicity and specificity in immune response for protein sequences

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2011-06-01

    Full Text Available Abstract Background Target specific antibodies are pivotal for the design of vaccines, immunodiagnostic tests, studies on proteomics for cancer biomarker discovery, identification of protein-DNA and other interactions, and small and large biochemical assays. Therefore, it is important to understand the properties of protein sequences that are important for antigenicity and to identify small peptide epitopes and large regions in the linear sequence of the proteins whose utilization result in specific antibodies. Results Our analysis using protein properties suggested that sequence composition combined with evolutionary information and predicted secondary structure, as well as solvent accessibility is sufficient to predict successful peptide epitopes. The antigenicity and the specificity in immune response were also found to depend on the epitope length. We trained the B-Cell Epitope Oracle (BEOracle, a support vector machine (SVM classifier, for the identification of continuous B-Cell epitopes with these protein properties as learning features. The BEOracle achieved an F1-measure of 81.37% on a large validation set. The BEOracle classifier outperformed the classical methods based on propensity and sophisticated methods like BCPred and Bepipred for B-Cell epitope prediction. The BEOracle classifier also identified peptides for the ChIP-grade antibodies from the modENCODE/ENCODE projects with 96.88% accuracy. High BEOracle score for peptides showed some correlation with the antibody intensity on Immunofluorescence studies done on fly embryos. Finally, a second SVM classifier, the B-Cell Region Oracle (BROracle was trained with the BEOracle scores as features to predict the performance of antibodies generated with large protein regions with high accuracy. The BROracle classifier achieved accuracies of 75.26-63.88% on a validation set with immunofluorescence, immunohistochemistry, protein arrays and western blot results from Protein Atlas database

  2. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong; Orr, Galya; Xiong, Yijia; Squier, Thomas; Rorrer, Gregory L.; Roesijadi, Guritno

    2016-01-08

    The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively bound the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.

  3. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  4. [Expression, purification and protective antigen analysis of cell wall protein MRP of Streptococcus suis type 2].

    Science.gov (United States)

    Wang, Ping-ping; Pian, Ya-ya; Yuan, Yuan; Zheng, Yu-ling; Jiang, Yong-qiang; Xiong, Zheng-ying

    2012-02-01

    To amplify the mrp gene of Streptococcus suis type 2 05ZYH33, express it in E.coli BL21 in order to acquire high purity recombinant protein MRP, then evaluate the protective antigen of recombinant protein MRP. Using PCR technology to obtain the product of mrp gene of 05ZYH33, and then cloned it into the expression vector pET28a(+). The recombinant protein was purified by affinity chromatography, later immunized New Zealand rabbit to gain anti-serum, then test the anti-serum titer by ELISA. The opsonophagocytic killing test demonstrated the abilities of protective antigen of MRP. The truncated of MRP recombinant protein in E.coli BL21 expressed by inclusion bodies, and purified it in high purity. After immunoprotection, the survival condition of CD-1 was significantly elevated. The survival rate of wild-type strain 05ZYH33 in blood was apparently decreased after anti-serum opsonophagocyticed, but the mutant delta; MRP showed no differences. MRP represent an important protective antigen activity.

  5. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.Y.G. (Univ. of British Columbia, Vancouver, Canada); Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  6. Antigenic structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Wootton, S K; Nelson, E A; Yoo, D

    1998-11-01

    A collection of 12 monoclonal antibodies (MAbs) raised against porcine reproductive and respiratory syndrome (PRRS) virus was used to study the antigenic structure of the virus nucleocapsid protein (N). The full-length N gene, encoded by open reading frame 7, was cloned from the Canadian PRRS virus, PA-8. Deletions were introduced into the N gene to produce a series of nine overlapping protein fragments ranging in length from 25 to 112 amino acids. The individual truncated genes were cloned as glutathione S-transferase fusions into a eukaryotic expression vector downstream of the T7 RNA polymerase promoter. HeLa cells infected with recombinant vaccinia virus expressing T7 RNA polymerase were transfected with plasmid DNA encoding the N protein fragments, and the antigenicity of the synthesized proteins was analyzed by immunoprecipitation. Based on the immunoreactivities of the N protein deletion mutants with the panel of N-specific MAbs, five domains of antigenic importance were identified. MAbs SDOW17, SR30, and 5H2.3B12.1C9 each identified independent domains defined by amino acids 30 to 52, 69 to 123, and 37 to 52, respectively. Seven of the MAbs tested specifically recognized the local protein conformation formed in part by the amino acid residues 52 to 69. Furthermore, deletion of 11 amino acids from the carboxy terminus of the nucleocapsid protein disrupted the epitope configuration recognized by all of the conformation-dependent MAbs, suggesting that the carboxy-terminal region plays an important role in maintaining local protein conformation.

  7. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping

    to the environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required...... the synthesis of antigenic C. jejuni proteins upon cultivation with chicken cells. Two strains of C. jejuni (the human isolate NCTC11168 and the chicken isolate DVI-SC11) were incubated with primary intestinal chicken cells and subsequently used to raise antisera in rabbits. Negative controls were carried out...... in parallel. These antisera were tested by Western blotting against C. jejuni total protein as well as periplasmic-, surface- and extracellular protein fractions. A unique antibody reaction was discovered to a protein from samples, which had been cultivated with chicken cells. The identity of this protein...

  8. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    Directory of Open Access Journals (Sweden)

    Federica Laddomada

    2016-04-01

    Full Text Available The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome” and/or cell wall elongation (the “elongasome”, in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies.

  9. Immunostimulation using bacterial antigens – mechanism ofaction and clinical practice inviral respiratory tract infections

    Directory of Open Access Journals (Sweden)

    Wojciech Feleszko

    2015-12-01

    Full Text Available Recurrent respiratory tract infections constitute a significant problem in the practice of a general practitioner and paediatrician. Antibiotic resistance of bacterial strains, which has been growing for years, prompts the search for alternative ways of combating pathogens. One of them is the usage of preparations based on cell lysis of various bacterial strains. Bacterial lysates have been available in Europe for many years. In preclinical trials, they are characterised by the capability of reducing infections caused by bacteria and viruses that are not the components of the preparations. A range of clinical trials have demonstrated their usefulness in reducing the frequency of seasonal respiratory tract infections and antibiotic use. Moreover, patients with chronic obstructive pulmonary disease gain an additional advantage in the form of the reduction of the risk of hospitalization due to disease exacerbations and a positive influence on the survival curve. The action of bacterial lysates is based on oral immunostimulation of gut-associated lymphoid tissue, which results in increased antibody production. Moreover, they activate a range of mucosal mechanisms of non-specific immunity, mainly by enhancing the activity of TLR-dependent mechanisms. The efficacy of this group of drugs has been confirmed in a range of clinical trials, systematic reviews and meta-analyses. Recent studies also indicate their immunoregulatory potential, suggesting that they might be used in the future in preventing allergies, asthma and autoimmune diseases. To conclude, physicians (paediatricians, laryngologists, pulmonologists should consider reducing the use of antibiotics in their daily practice. Instead, they should offer preparations that promote the immune system, thus controlling infections in a better way.

  10. Genetic reporter system for positioning of proteins at the bacterial pole.

    Science.gov (United States)

    Fixen, Kathryn R; Janakiraman, Anuradha; Garrity, Sean; Slade, Daniel J; Gray, Andrew N; Karahan, Nilay; Hochschild, Ann; Goldberg, Marcia B

    2012-01-01

    Spatial organization within bacteria is fundamental to many cellular processes, although the basic mechanisms underlying localization of proteins to specific sites within bacteria are poorly understood. The study of protein positioning has been limited by a paucity of methods that allow rapid large-scale screening for mutants in which protein positioning is altered. We developed a genetic reporter system for protein localization to the pole within the bacterial cytoplasm that allows saturation screening for mutants in Escherichia coli in which protein localization is altered. Utilizing this system, we identify proteins required for proper positioning of the Shigella autotransporter IcsA. Autotransporters, widely distributed bacterial virulence proteins, are secreted at the bacterial pole. We show that the conserved cell division protein FtsQ is required for localization of IcsA and other autotransporters to the pole. We demonstrate further that this system can be applied to the study of proteins other than autotransporters that display polar positioning within bacterial cells. Many proteins localize to specific sites within bacterial cells, and localization to these sites is frequently critical to proper protein function. The mechanisms that underlie protein localization are incompletely understood, in part because of the paucity of methods that allow saturation screening for mutants in which protein localization is altered. We developed a genetic reporter assay that enables screening of bacterial populations for changes in localization of proteins to the bacterial pole, and we demonstrate the utility of the system in identifying factors required for proper localization of the polar Shigella autotransporter protein IcsA. Using this method, we identify the conserved cell division protein FtsQ as being required for positioning of IcsA to the bacterial pole. We demonstrate further that the requirement for FtsQ for polar positioning applies to other autotransporters

  11. Ribosome reinitiation at leader peptides increases translation of bacterial proteins.

    Science.gov (United States)

    Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A

    2016-04-16

    Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.

  12. A Bacterial Surface Display System Expressing Cleavable Capsid Proteins of Human Norovirus: A Novel System to Discover Candidate Receptors

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2017-12-01

    Full Text Available Human noroviruses (HuNoVs are the dominant cause of food-borne outbreaks of acute gastroenteritis. However, fundamental researches on HuNoVs, such as identification of viral receptors have been limited by the currently immature system to culture HuNoVs and the lack of efficient small animal models. Previously, we demonstrated that the recombinant protruding domain (P domain of HuNoVs capsid proteins were successfully anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with a plasmid expressing HuNoVs P protein fused with bacterial transmembrane anchor protein. The cell-surface-displayed P proteins could specifically recognize and bind to histo-blood group antigens (HBGAs, receptors of HuNoVs. In this study, an upgraded bacterial surface displayed system was developed as a new platform to discover candidate receptors of HuNoVs. A thrombin-susceptible “linker” sequence was added between the sequences of bacterial transmembrane anchor protein and P domain of HuNoV (GII.4 capsid protein in a plasmid that displays the functional P proteins on the surface of bacteria. In this new system, the surface-displayed HuNoV P proteins could be released by thrombin treatment. The released P proteins self-assembled into small particles, which were visualized by electron microscopy. The bacteria with the surface-displayed P proteins were incubated with pig stomach mucin which contained HBGAs. The bacteria-HuNoV P proteins-HBGAs complex could be collected by low speed centrifugation. The HuNoV P proteins-HBGAs complex was then separated from the recombinant bacterial surface by thrombin treatment. The released viral receptor was confirmed by using the monoclonal antibody against type A HBGA. It demonstrated that the new system was able to capture and easily isolate receptors of HuNoVs. This new strategy provides an alternative, easier approach for isolating unknown receptors/ligands of HuNoVs from different samples

  13. Protein and Antigenic Profile among Mycoplasma bovis Field Strains Isolated in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Maid Rifatbegović

    2009-01-01

    Full Text Available Mycoplasma bovis is a serious, worldwide-spread but often overlooked pathogen causing respiratory disease, mastitis, and arthritis in cattle. In this study we characterize the protein and antigenic profiles of M. bovis field strains isolated in Bosnia and Herzegovina by sodium dodecyl sulphate polyacrylamide gel electrophoresis and immunoblotting, and analyze possible variations among these strains. Greater differences occurred when comparing field strains with the reference strain PG45. One field strain isolated from lung samples of a heifer was markedly different from strains isolated from nasal swabs taken from cattle raised in another geographic region. A possible correlation may exist between protein and antigen profiles of M. bovis field strains, geographic regions and anatomical sites of isolation.

  14. Binding of monoclonal antibody to protein antigen in fluid phase or bound to solid supports

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, S.J.

    1982-01-01

    Rat monoclonal antibody (MoAb) to fragment D (FgD) of human fibrinogen was used to characterize the direct binding of antibody to protein in solution or bound to solid supports. Purified IgG, F(ab')/sub 2/ and Fab' were prepared from ascites fluid of hybridoma 104-14B which is a fusion product of spleen cells from a rat immunized with FgD and the mouse myeloma cell line, P3-X63-Ag8. Two-dimensional electrophoresis of radioiodinated antibody preparations demonstrated the presence of hybrid immunoglobulin molecules, but only structures having rat heavy and rat light chains had active antibody combinig sites. The affinity constant for IgG as well as F(ab')/sub 2/ and Fab', 6x10/sup 9/ M/sup -1/, was identical when tested using fluid phase antigen (/sup 125/I-labeled FgD). Affinity constants determined for direct binding of iodinated IgG using FgD immobilized on solid supports showed a slight dependence on the antigen concentration used in the measurement. These values ranged from 0.5x10/sup 9/ M/sup -1/ at high antigen concentrations (1.3x10/sup -7/ M) to 9x10/sup 9/ M/sup -1/ at low antigen concentration (1.3x10/sup -10/ M). Binding constants for F(ab')/sub 2/ and Fab' gave similar results indicating that binding was homogeneous and univalent. The capacity of solid state antigen to bind antibody varied with the method used to bind FgD to the solid support. FgD bound directly to polystyrene plates was least efficient at binding labeled antibody; FgD bound to plates through intermediate carriers poly(L-lysine) was only slightly more efficient, while antigen bound to Sepharose beads by cyanogen bromide activation was the most active.

  15. Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.

    Science.gov (United States)

    Mousa, Jarrod J; Binshtein, Elad; Human, Stacey; Fong, Rachel H; Alvarado, Gabriela; Doranz, Benjamin J; Moore, Martin L; Ohi, Melanie D; Crowe, James E

    2018-02-01

    Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.

  16. Structure-based design of chimeric antigens for multivalent protein vaccines.

    Science.gov (United States)

    Hollingshead, S; Jongerius, I; Exley, R M; Johnson, S; Lea, S M; Tang, C M

    2018-03-13

    There is an urgent need to develop vaccines against pathogenic bacteria. However, this is often hindered by antigenic diversity and difficulties encountered manufacturing membrane proteins. Here we show how to use structure-based design to develop chimeric antigens (ChAs) for subunit vaccines. ChAs are generated against serogroup B Neisseria meningitidis (MenB), the predominant cause of meningococcal disease in wealthy countries. MenB ChAs exploit factor H binding protein (fHbp) as a molecular scaffold to display the immunogenic VR2 epitope from the integral membrane protein PorA. Structural analyses demonstrate fHbp is correctly folded and the PorA VR2 epitope adopts an immunogenic conformation. In mice, immunisation with ChAs generates fHbp and PorA antibodies that recognise the antigens expressed by clinical MenB isolates; these antibody responses correlate with protection against meningococcal disease. Application of ChAs is therefore a potentially powerful approach to develop multivalent subunit vaccines, which can be tailored to circumvent pathogen diversity.

  17. Antigen cross-priming of cell-associated proteins is enhanced by macroautophagy within the antigen donor cell

    Directory of Open Access Journals (Sweden)

    Matthew eAlbert

    2012-03-01

    Full Text Available Phagocytosis of dying cells constitutes an importance mechanism of antigen capture for the cross-priming of CD8+ T cells. This process has been shown to be critical for achieving tumor and viral immunity. While most studies have focused on the mechanisms inherent in the dendritic cell that account for exogenous antigen accessing MHC I, several recent reports have highlighted the important contribution made by the antigen donor cell. Specifically, the cell stress and cell death pathways that precede antigen transfer are now known to impact cross-presentation and cross-priming. Herein, we review the current literature regarding a role for macro-autophagy within the antigen donor cell. Further examination of this point of immune regulation is warranted and may contribute to a better understanding of how to optimize immunotherapy for treatment of cancer and chronic infectious disease.

  18. Several Carcinoembryonic Antigens (CD66) Serve as Receptors for Gonococcal Opacity Proteins

    Science.gov (United States)

    Chen, Tie; Grunert, Fritz; Medina-Marino, Andrew; Gotschlich, Emil C.

    1997-01-01

    Neisseria gonorrhoeae (GC) is a human pathogen that adheres to and invades genital surfaces. Although pili are required for the initial adherence, the interaction of GC with epithelial cells is also promoted by a family of outer membrane proteins, the opacity (Opa) proteins such as OpaA protein from strain MS11. Studies have demonstrated that the interaction of the OpaA GC with epithelial cells involves binding to heparan sulfate attached to syndecan receptors. However, other Opa proteins interact with CEA gene family member 1 (CGM1) or biliary glycoprotein (BGP), members of the CD66 antigen family. In this study, we demonstrate that, in addition, the 180-kD carcinoembryonic antigen (CEA) is a receptor for Opa proteins. This conclusion was based on the following observations. First, transfected HeLa cells expressing CEA (HeLaCEA) and the CEA-expressing colon cancer cell line (LS 174T) bound and subsequently engulfed the Opa+ bacteria. These interactions were inhibited by anti-CEA antibody, but could not be inhibited by addition of heparin. Furthermore, OpaI E. coli directly bound purified CEA. We also compared the adherence and invasion by Opa+ bacteria of CD66 transfected HeLa cells: HeLa-BGPa, HeLa-CGM6, HeLa-NCA, HeLa-CGM1a, HeLa-CEA, and HeLa-Neo serving as negative control. Using OpaI as the prototype, the relative ability of the transfected HeLa cell lines to support adherence was (CEA = BGPa >CGM1a >NCA >>CGM6 = Neo). The ability to mediate invasion of the transfectant cells was (CGM1a >CEA >BGPa >NCA >CGM6 = Neo). Among the Opa proteins tested, OpaC proved to be bifunctional, able to mediate adherence to both syndecan receptors and to CD66 antigens. PMID:9151893

  19. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  20. Structural, antigenic, and evolutionary characterizations of the envelope protein of newly emerging Duck Tembusu Virus.

    Directory of Open Access Journals (Sweden)

    Kexiang Yu

    Full Text Available Since the first reported cases of ducks infected with a previously unknown flavivirus in eastern China in April 2010, the virus, provisionally designated Duck Tembusu Virus (DTMUV, has spread widely in domestic ducks in China and caused significant economic losses to poultry industry. In this study, we examined in detail structural, antigenic, and evolutionary properties of envelope (E proteins of six DTMUV isolates spanning 2010-2012, each being isolated from individual farms with different geographical locations where disease outbreaks were documented. Structural analysis showed that E proteins of DTMUV and its closely related flavivirus (Japanese Encephalitis Virus shared a conserved array of predicted functional domains and motifs. Among the six DTMUV strains, mutations were observed only at thirteen amino acid positions across three separate domains of the E protein. Interestingly, these genetic polymorphisms resulted in no detectable change in viral neutralization properties as demonstrated in a serum neutralization assay. Furthermore, phylogenetic analysis of the nucleotide sequences of the E proteins showed that viruses evolved into two distinct genotypes, termed as DTMUV.I and DTMUV.II, with II emerging as the dominant genotype. New findings described here shall give insights into the antigenicity and evolution of this new pathogen and provide guidance for further functional studies of the E protein for which no effective vaccine has yet been developed.

  1. Characterization of Treponema denticola mutants defective in the major antigenic proteins, Msp and TmpC.

    Science.gov (United States)

    Abiko, Yuki; Nagano, Keiji; Yoshida, Yasuo; Yoshimura, Fuminobu

    2014-01-01

    Treponema denticola, a gram-negative and anaerobic spirochete, is associated with advancing severity of chronic periodontitis. In this study, we confirmed that two major antigenic proteins were Msp and TmpC, and examined their physiological and pathological roles using gene-deletion mutants. Msp formed a large complex that localized to the outer membrane, while TmpC existed as a monomer and largely localized to the inner membrane. However, TmpC was also detected in the outer membrane fraction, but its cell-surface exposure was not detected. Msp defects increased cell-surface hydrophobicity and secretion of TNF-α from macrophage-like cells, whereas TmpC defects decreased autoagglutination and chymotrypsin-like protease activities. Both mutants adhered to gingival epithelial cells similarly to the wild-type and showed slightly decreased motility. In addition, in Msp-defective mutants, the TDE1072 protein, which is a major membrane protein, was abolished; therefore, phenotypic changes in the mutant can be, at least in part, attributed to the loss of the TDE1072 protein. Thus, the major antigenic proteins, Msp and TmpC, have significant and diverse impacts on the characteristics of T. denticola, especially cell surface properties.

  2. Vaccinia virus G8R protein: a structural ortholog of proliferating cell nuclear antigen (PCNA.

    Directory of Open Access Journals (Sweden)

    Melissa Da Silva

    Full Text Available BACKGROUND: Eukaryotic DNA replication involves the synthesis of both a DNA leading and lagging strand, the latter requiring several additional proteins including flap endonuclease (FEN-1 and proliferating cell nuclear antigen (PCNA in order to remove RNA primers used in the synthesis of Okazaki fragments. Poxviruses are complex viruses (dsDNA genomes that infect eukaryotes, but surprisingly little is known about the process of DNA replication. Given our previous results that the vaccinia virus (VACV G5R protein may be structurally similar to a FEN-1-like protein and a recent finding that poxviruses encode a primase function, we undertook a series of in silico analyses to identify whether VACV also encodes a PCNA-like protein. RESULTS: An InterProScan of all VACV proteins using the JIPS software package was used to identify any PCNA-like proteins. The VACV G8R protein was identified as the only vaccinia protein that contained a PCNA-like sliding clamp motif. The VACV G8R protein plays a role in poxvirus late transcription and is known to interact with several other poxvirus proteins including itself. The secondary and tertiary structure of the VACV G8R protein was predicted and compared to the secondary and tertiary structure of both human and yeast PCNA proteins, and a high degree of similarity between all three proteins was noted. CONCLUSIONS: The structure of the VACV G8R protein is predicted to closely resemble the eukaryotic PCNA protein; it possesses several other features including a conserved ubiquitylation and SUMOylation site that suggest that, like its counterpart in T4 bacteriophage (gp45, it may function as a sliding clamp ushering transcription factors to RNA polymerase during late transcription.

  3. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of onchocercal chorioretinopathy. Cell-mediated immune responses to human retinal S-antigen, interphotoreceptor retinoid binding protein (IRBP), and crude retinal extract were investigated in patients with onchocerciasis from

  4. Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Hasman, Henrik; Schembri, Mark

    2002-01-01

    to the outer membrane and secretion through the cell envelope is contained within the protein itself. Ag43 consists of two subunits (alpha and beta), where the beta-subunit forms an integral outer membrane translocator to which the alpha-subunit is noncovalently attached. The simplicity of the Ag43 system...... makes it ideally suited as a surface display scaffold. Here we demonstrate that the Ag43 alpha-module can accommodate and display correctly folded inserts and has the ability to display entire functional protein domains, exemplified by the FimH lectin domain. The presence of heterologous cysteine...... bridges does not interfere with surface display, and Ag43 chimeras are correctly processed into alpha- and beta-modules, offering optional and easy release of the chimeric alpha-subunits. Furthermore, Ag43 can be displayed in many gram-negative bacteria. This feature is exploited for display of our...

  5. Conformational Heterogeneity in Antibody-Protein Antigen Recognition IMPLICATIONS FOR HIGH AFFINITY PROTEIN COMPLEX FORMATION

    Czech Academy of Sciences Publication Activity Database

    Addis, P. W.; Hall, c. J.; Bruton, S.; Veverka, Václav; Wilkinson, I. C.; Muskett, F. W.; Renshaw, P. S.; Prosser, C. E.; Carrington, B.; Lawson, A. D. G.; Griffin, R.; Taylor, R. J.; Waters, L. C.; Henry, A. J.; Carr, M. D.

    2014-01-01

    Roč. 289, č. 10 (2014), s. 7200-7210 ISSN 0021-9258 Institutional support: RVO:61388963 Keywords : NMR * antibody * protein-protein interaction * protein conformation Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  6. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Science.gov (United States)

    Kempsell, Karen E.; Kidd, Stephen P.; Lewandowski, Kuiama; Elmore, Michael J.; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M.; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J.; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from

  7. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA-MUC1 fusion peptides (+/- glycosylation loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB-Tg(HLA-A/H2-D2Enge/J (HLA-A2 transgenic mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.

  8. Identification of early diagnostic antigens from major excretory-secretory proteins of Trichinella spiralis muscle larvae using immunoproteomics.

    Science.gov (United States)

    Wang, Li; Cui, Jing; Hu, Dan Dan; Liu, Ruo Dan; Wang, Zhong Quan

    2014-01-22

    The excretory-secretory (ES) proteins of Trichinella spiralis muscle larvae (ML) come mainly from the excretory granules of the stichosome and the cuticles (membrane proteins), are directly exposed to the host's immune system, and are the main target antigens, which induce the immune responses. Although the ES proteins are the most commonly used diagnostic antigens for trichinellosis, their main disadvantage are the false negative results during the early stage of infection. The aim of this study was to identify early specific diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. Two-dimensional electrophoresis (2-DE) combined with Western blot were used to screen the early diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. The protein spots recognized by the sera from BALB/c mice infected with T. spiralis at 18 days post-infection (dpi) were identified by MALDI-TOF/TOF-MS and putatively annotated using GO terms obtained from the InterPro databases. The ES proteins were analyzed by 2-DE, and more than 33 protein spots were detected with molecular weight varying from 40 to 60 kDa and isoelectric point (pI) from 4 to 7. When probed with the sera from infected mice at 18 dpi, 21 protein spots were recognized and then identified, and they were characterized to correlate with five different proteins of T. spiralis, including two serine proteases, one deoxyribonuclease (DNase) II, and two kinds of trypsin. The five proteins were functionally categorized into molecular function and biological process according to GO hierarchy. 2-DE and Western blot combined with MALDI-TOF/TOF-MS were used to screen the diagnostic antigens from the main components of T. spiralis muscle larval ES proteins. The five proteins of T. spiralis identified (two serine proteases, DNase II and two kinds of trypsin) might be the early specific diagnostic antigens of trichinellosis.

  9. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    Directory of Open Access Journals (Sweden)

    Jonathan J Hansen

    Full Text Available Inflammatory bowel diseases (IBD may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta. Healthy, germ-free HLA-B27 transgenic (Tg rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation.Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene.B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats.B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to the identification of novel microbial targets

  10. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    Science.gov (United States)

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  11. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum.

    Science.gov (United States)

    Cox, D L; Chang, P; McDowall, A W; Radolf, J D

    1992-01-01

    Virulent Treponema pallidum reacts poorly with the specific antibodies present in human and rabbit syphilitic sera, a phenomenon often attributed to an outer coat of host serum proteins. Here we present additional evidence that the limited antigenicity of virulent organisms actually is due to a paucity of proteins in the outer membrane. Initially, we used electron microscopy to demonstrate that the outer membrane is highly susceptible to damage from physical manipulation (i.e., centrifugation and resuspension) and nonionic detergents. Organisms with disrupted outer membranes were markedly more antigenic than intact treponemes as determined by immunoelectron microscopy (IEM) with rabbit syphilitic and antiendoflagellar antisera. Data obtained with a new radioimmunoassay, designated the T. pallidum surface-specific radioimmunoassay, corroborated these IEM findings by demonstrating that the major T. pallidum immunogens are not surface exposed; the assay also was unable to detect serum proteins, including fibronectin, on the surfaces of intact organisms. Furthermore, IEM of T. pallidum on ultrathin cryosections with monospecific anti-47-kDa-immunogen antiserum confirmed the intracellular location of the 47-kDa immunogen. On the basis of these and previous findings, we proposed a new model for T. pallidum ultrastructure in which the outer membrane contains a small number of transmembrane proteins and the major membrane immunogens are anchored by lipids to the periplasmic leaflet of the cytoplasmic membrane. This unique ultrastructure explains the remarkable ability of virulent organisms to evade the humoral immune response of the T. pallidum-infected host. Images PMID:1541522

  12. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  13. Changes in lamina propria dendritic cells on the oral administration of exogenous protein antigens during weaning.

    Science.gov (United States)

    Ohue, Ryuji; Nakamoto, Masahiro; Kitabatake, Naofumi; Tani, Fumito

    2012-05-01

    Two critical periods of maximum exposure to antigens occur in young mammals, immediately after birth and at weaning, as a result of colonization by commensal bacteria and the ingestion of new diets. At weaning, active immune responses of antibody production against dietary proteins are known to occur, but simultaneously, oral tolerance is acquired for harmless food proteins. However, regulated mechanisms of the immune system at weaning remain to be elucidated although its immune responses may be somewhat similar to those in adulthood. Considering that tolerogenic antigen-presenting cells (APCs) are likely to be a key factor in the acquisition of oral tolerance, in the present study, we examined the changes of dendritic cells (DCs) in the lamina propria (LP) on exposure to food proteins at weaning. C57BL/6 female mice were weaned at the age of 3 weeks and orally administered 10 mg of ovalbumin (OVA) for ten consecutive days after weaning. The administration led to a decrease in the plasma level of immunoglobulin specific for OVA, suggesting the acquisition of oral tolerance. The uptake of fluorescence-labeled OVA was significantly observed for CD11c(+)LPDCs. When we analyzed the changes of two types of LPDCs, PDCA-1(+) MHC II(+) DCs and CD103(+) MHC II(+) DCs, ten consecutive gavages of OVA marginally, but not significantly, augmented only the frequency of PDCA-1(+) MHC II(+) DCs. Considering that the change of APCs likely appears immediately on the response to antigen intake, we found the statistically significant increase in the frequency of PDCA-1(+) DCs, but not in that of CD103(+) DCs, even after two treatments, indicating PDCA-1(+) DCs to be recruited in the LP within 2 days of exposure to food proteins. These results suggest that the behavior of tolerogenic PDCA-1(+) DCs may change at weaning with the removal of the immunoprotective components of maternal milk.

  14. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  16. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins

    Directory of Open Access Journals (Sweden)

    Rinas Ursula

    2004-09-01

    Full Text Available Abstract Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures.

  17. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that ...

  18. Naturally-acquired cellular immune response against Plasmodium vivax merozoite surface protein-1 paralog antigen.

    Science.gov (United States)

    Changrob, Siriruk; Leepiyasakulchai, Chaniya; Tsuboi, Takafumi; Cheng, Yang; Lim, Chae Seung; Chootong, Patchanee; Han, Eun-Taek

    2015-04-15

    Plasmodium vivax merozoite surface protein-1 paralog (PvMSP1P) is a glycosylphosphatidylinositol-anchored protein expressed on the merozoite surface. This molecule is a target of natural immunity, as high anti-MSP1P-19 antibody levels were detected during P. vivax infection and the antibody inhibited PvMSP1P-erythrocyte binding. Recombinant PvMSP1P antigen results in production of a significant Th1 cytokine response in immunized mice. The present study was performed to characterize natural cellular immunity against PvMSP1P-19 and PvDBP region II in acute and recovery P. vivax infection. Peripheral blood mononuclear cells (PBMCs) from acute and recovery P. vivax infection were obtained for lymphocyte proliferation assay upon PvMSP1P-19 and PvDBP region II antigen stimulation. The culture supernatant was examined for the presence of the cytokines IL-2, TNF, IFN-γ and IL-10 by enzyme-linked immunosorbent assay (ELISA). To determine whether Th1 or Th2 have a memory response against PvMSP1P-19 and PvDBPII protein antigen, PBMCs from subjects who had recovered from P. vivax infection 8-10 weeks prior to the study were obtained for lymphocyte proliferation assay. Cytokine-producing cells were analysed by flow cytometry. IL-2 was detected at high levels in lymphocyte cultures from acutely infected P. vivax patients upon PvMSP1P-19 stimulation. Analysis of the Th1 or Th2 memory response in PBMC cultures from subjects who had recovered from P. vivax infection showed significantly elevated levels of PvMSP1P-19 and PvDBPII-specific IFN-γ-producing cells (P  response of IFN-γ-producing cells in PvMSP1P stimulation was fourfold greater in recovered subjects than that in acute-infection patients. CD4(+) T cells were the major cell phenotype involved in the response to PvMSP1P-19 and PvDBPII antigen. PvMSP1P-19 strongly induces a specific cellular immune response for protection against P. vivax compared with PvDBPII as the antigen induces activation of IFN

  19. DMPD: The role of Toll-like receptors and Nod proteins in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15476921 The role of Toll-like receptors and Nod proteins in bacterial infection. P...of Toll-like receptors and Nod proteins in bacterial infection. PubmedID 15476921 Title The role of Toll-like receptors and Nod prote...ins in bacterial infection. Authors Philpott DJ, Girardi

  20. Cooperative Serum Bactericidal Activity Between Human Antibodies to Meningococcal Factor H Binding Protein and Neisserial Heparin Binding Antigen

    Science.gov (United States)

    Vu, David M.; Wong, Tracy T.; Granoff, Dan M.

    2011-01-01

    A meningococcal group B vaccine containing multiple protein antigens including factor H binding protein (fHbp) and Neisserial heparin binding antigen (NHba) is in clinical development. The ability of antibodies against individual antigens to interact and augment protective immunity is unknown. We assayed human complement-mediated bactericidal activity (SBA) in stored sera from six immunized adults before and after depletion of antibodies to fHbp and/or NHba. All six subjects developed ≥4-fold increases in SBA titer against a test strain with fHbp in the variant 1 group with an amino acid sequence that matched the vaccine antigen (GMT 95 percent of the SBA was directed against fHbp. Four subjects developed ≥4-fold increases in SBA titer against a test strain with a heterologous fHbp variant 2 antigen and a homologous NHba amino acid sequence that matched the vaccine antigen (GMT bactericidal anti-fHbp variant 1 antiserum with a mouse anti-NHba antiserum also augmented the anti-NHba SBA titer against this test strain. For meningococcal vaccines that target relatively sparsely-exposed antigens such fHbp or NHba, non-bactericidal antibodies against individual antigens can cooperate and elicit SBA. PMID:21241734

  1. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    Directory of Open Access Journals (Sweden)

    Kumar A

    2011-06-01

    Full Text Available Amit Kumar, Xinran Li, Michael A Sandoval, B Leticia Rodriguez, Brian R Sloat, Zhengrong CuiUniversity of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX, USABackground: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection.Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection.Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection.Keywords: antibody responses, safety of microneedles, transepidermal water loss

  2. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    Science.gov (United States)

    Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong

    2011-01-01

    Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877

  3. Identification of Common Bacterial Antigenic Markers From Bovine Digital Dermatitis Lesions Using Meta-Transcriptomics in Combination With High-Density Peptide-Microarrays

    DEFF Research Database (Denmark)

    Nielsen, Martin W.; Marcatili, Paoli; Sicheritz-Ponten, Thomas

    of collagenous and connective tissues. Multiple Treponema species, many of which are not-yet-cultivable, are strongly implicated in disease progression. Despite the economic and welfare importance of this disease, no effective vaccine is available; and there is presently very little knowledge concerning...... efficacious immunoprophylactic antigens against DD. It is highly likely that DD-associated treponemes possess considerable antigenic variation, as cows exhibit a variable humoral response against different isolates of Treponema. Hence, combinations of antigens from multiple Treponema species should be used...... response directed at the site of infection. By metatranscriptomics we measured the in situ genome-wide transcriptome of the bacterial population in DD-affected skin lesions from 21 dairy cows. From the transcriptome data, we identified a panel of Treponema genes that were highly expressed in multiple...

  4. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

    Directory of Open Access Journals (Sweden)

    Mary M. Weber

    2018-01-01

    Full Text Available Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  5. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins.

    Science.gov (United States)

    Weber, Mary M; Faris, Robert

    2018-01-01

    Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis , and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  6. Study on reducing antigenic response and IgE-binding inhibitions of four milk proteins of Lactobacillus casei 1134.

    Science.gov (United States)

    Yao, Minjing; Xu, Qian; Luo, Yongkang; Shi, Jing; Li, Zheng

    2015-04-01

    Cow's milk allergy has aroused public concern. The aim of this study was to investigate the effects of fermentation by Lactobacillus casei 1134 on the antigenicity and allergenicity (IgE-binding inhibitions) of milk proteins. The effects of pH value on the antigenicity and allergenicity of four milk proteins (α-lactalbumin, β-lactoglobulin, α-casein and β-casein) were examined by indirect competitive enzyme-linked immunosorbent assay. The free amino acids which were produced in the fermentation process were analysed and the proteolysis of milk proteins was detected. Fermentation by L. casei 1134 could significantly reduce the antigenicity and allergenicity of the four proteins in reconstituted milk. The allergenicity of milk proteins was further reduced in the process of simulated gastrointestinal digestion. Moreover, we could deduce that one of the potential factors of antigenicity was lactic acid with the comparison of the antigenicity of the four proteins between L. casei 1134 fermented milk and lactic acid milk at different pH values. There are many factors which can affect the milk proteins allergen, including lactic acid and proteolytic enzymes. © 2014 Society of Chemical Industry.

  7. Multidrug-resistance proteins are weak tumor associated antigens for colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Linnebacher Michael

    2011-07-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a clinically, highly relevant phenomenon. Under chemotherapy many tumors show an increasing resistance towards the applied substance(s and to a certain extent also towards other agents. An important molecular cause of this phenomenon is an increased expression of transporter proteins. The functional relationship between high expression levels and chemotherapy resistance makes these MDR and MRP (MDR related protein proteins to interesting therapeutic targets. We here wanted to systematically analyze, whether these proteins are tumor specific antigens which could be targeted immunologically. Results Using the reverse immunology approach, 30 HLA-A2.1 restricted MDR and MRP derived peptides (MDP were selected. Stimulated T cell lines grew well and mainly contained activated CD8+ cells. Peptide specificity and HLA-A2.1 restriction were proven in IFN-γ-ELISpot analyses and in cytotoxicity tests against MDP loaded target cells for a total of twelve peptides derived from MDR-1, MDR-3, MRP-1, MRP-2, MRP-3 and MRP-5. Of note, two of these epitopes are shared between MDR-1 and MDR-3 as well as MRP-2 and MRP-3. However, comparably weak cytotoxic activities were additionally observed against HLA-A2.1+ tumor cells even after upregulation of MDR protein expression by in vitro chemotherapy. Conclusions Taken together, these data demonstrate that human T cells can be sensitised towards MDPs and hence, there is no absolute immunological tolerance. However, our data also hint towards rather low endogenous tumor cell processing and presentation of MDPs in the context of HLA-A2.1 molecules. Consequently, we conclude that MDR and MRP proteins must be considered as weak tumor specific antigens-at least for colorectal carcinoma. Their direct contribution to therapy-failure implies however, that it is worth to further pursue this approach.

  8. Antigen-driven bystander effect accelerates epicutaneous sensitization with a new protein allergen

    Directory of Open Access Journals (Sweden)

    Yu Jhang-Sian

    2009-03-01

    Full Text Available Abstract Exposure to protein allergen epicutaneously, inducing a Th2-dominant immune response, sensitizes the host to the development of atopic disease. Antigen-driven bystander effect demonstrates that polarized T cells could instruct naïve T cells to differentiate into T cells with similar phenotype. In this study, we aimed to determine the contribution of antigen-driven bystander effect on epicutaneous sensitization with a newly introduced protein allergen. BALB/c mice were immunized intraperitoneally with BSA emulsified in alum, known to induce a Th2 response, three weeks before given BSA and OVA epicutaneously. Lymph node cells from these mice restimulated with OVA secreted higher levels IL-4, IL-5 and IL-13 as compared with cells from mice without BSA immunization. In addition, BALB/c mice immunized subcutaneously with BSA emulsified in complete Freund's adjuvant, known to induce a Th1-predominant response, also induced higher Th1 as well as Th2 cytokine response when restimulated with OVA as compared with mice without immunization. We demonstrated that subcutaneous immunization with BSA in CFA induced Th2 as well as Th1 response. The threshold of epicutaneous sensitization to OVA was also reduced, possibly due to increased expressions of IL-4 and IL-10 in the draining lymph nodes during the early phase of sensitization. In conclusion, antigen-driven bystander effect, whether it is of Th1- or Th2-predominant nature, can accelerate epicutaneous sensitization by a newly introduced protein allergen. These results provide a possible explanation for mono- to poly-sensitization spread commonly observed in atopic children.

  9. Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from T4-like bacteriophages.

    Science.gov (United States)

    Sathaliyawala, Taheri; Islam, Mohammad Z; Li, Qin; Fokine, Andrei; Rossmann, Michael G; Rao, Venigalla B

    2010-07-01

    Bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein, Hoc. The Hoc molecule (40 kDa) is present at the centre of each hexameric capsomer and provides a good platform for surface display of pathogen antigens. Biochemical and modelling studies show that Hoc consists of a string of four domains, three immunoglobulin (Ig)-like and one non-Ig domain at the C-terminus. Biochemical data suggest that the Hoc protein has two functional modules, a capsid binding module containing domains 1 and 4 and a solvent-exposed module containing domains 2 and 3. This model is consistent with the dumbbell-shaped cryo-EM density of Hoc observed in the reconstruction of the T4 capsid. Mutagenesis localized the capsid binding site to the C-terminal 25 amino acids, which are predicted to form two beta-strands flanking a capsid binding loop. Mutations in the loop residues, ESRNG, abolished capsid binding, suggesting that these residues might interact with the major capsid protein, gp23*. With the conserved capsid binding module forming a foothold on the virus and the solvent-exposed module able to adapt to bind to a variety of surfaces, Hoc probably provides survival advantages to the phage, such as increasing the virus concentration near the host, efficient dispersion of the virus and exposing the tail for more efficient contact with the host cell surface prior to infection.

  10. Identification and characterization of the interactive proteins with cytotoxic T-lymphocyte antigen-2α.

    Science.gov (United States)

    Nga, Bui Thi To; Luziga, Claudius; Yamamoto, Misa; Kusakabe, Ken Takeshi; Yamamoto, Yoshimi

    2015-01-01

    Cytotoxic T-lymphocyte antigen-2α (CTLA-2α) is a potent inhibitor of cathepsin L-like cysteine proteases. Recombinant CTLA-2α is known to be a potent, competitive inhibitor of cathepsin L-like cysteine proteases. In this study, cathepsin L, cathepsin C, and tubulointerstitial nephritis antigen-related protein 1 (TINAGL1) were identified as novel interactive proteins of CTLA-2α by the yeast two-hybrid screening system. The direct interactions and co-localization of these proteins with CTLA-2α were confirmed using co-immunoprecipitation and immunofluorescence staining, respectively. The disulfide-bonded CTLA-2α/cathepsin L complex was isolated from mouse tissue. CTLA-2α was found to be specific and consistently expressed on the maternal side of the mouse placenta. Double immunofluorescence analysis showed that CTLA-2α was co-localized with cathepsin L, cathepsin C, and TINAGL1 in placenta. A simple cell-based fluorescence assay revealed that CTLA-2α exhibited inhibitory activity toward cathepsin C in live cells, which indicated that CTLA-2α is a novel endogenous inhibitor of cathepsin C.

  11. Preparation of dichlorvos-protein complete antigen by Mannich-type reaction

    Science.gov (United States)

    Feng, Qianqian; Xu, Ying; Zhou, Youxiang; Lu, Liang; Chen, Fusheng; Wang, Xiaohong

    2010-08-01

    Dichlorvos (DDVP) residues have been linked to substantial adverse health effects on several organ systems. To ensure food safety, rapid and low-cost immunological methods must be applied to detect DDVP residues in food. In immunological methods, a key step is coupling DDVP to carrier proteins to obtain a complete antigen due to DDVP being hapten. In the current research, DDVP was coupled with cationized bovine serum albumin (cBSA) using a method based on Mannich-type reaction. A DDVP-cBSA conjugate, with a molar ratio of 40:1 DDVP to cBSA was synthesized. The cationized proteins and their conjugates were identified by UV-Vis and FT-IR spectra, which showed the characteristic bands of the ethylenediamine group and DDVP, respectively. BALB/c mice were immunized with DDVP-cBSA. One hybridoma cell line secreted anti-DDVP monoclonal antibody (Mab) that had high sensitivity and specificity for DDVP. Competitive ELISA identified an IC50 of 600 ng/mL and a limit of detection of 1 ng/mL in aqueous solution. The Mab had some cross-reactivity with phosmet, but no cross-reactivity with chlorothalonil and procymidone. We also detected a trace of DDVP in waste water. In conclusion the Mannich-type reaction couples DDVP to protein, yielding an antigen for the production of Mab to detect residual DDVP in the environment.

  12. Novel protein isoforms of carcinoembryonic antigen are secreted from pancreatic, gastric and colorectal cancer cells

    Science.gov (United States)

    2013-01-01

    Background Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is an oncofetal cell surface glycoprotein. Because of its high expression in cancer cells and secretion into serum, CEA has been widely used as a serum tumor marker. Although other members of CEACAM family were investigated for splice variants/variants-derived protein isoforms, few studies about the variants of CEACAM5 have been reported. In this study, we demonstrated the existence of novel CEACAM5 splice variants and splice variant-derived protein isoforms in gastrointestinal cancer cell lines. Results We identified two novel CEACAM5 splice variants in gastrointestinal (pancreatic, gastric, and colorectal) cancer cell lines. One of the variants possessed an alternative minor splice site that allowed generation of GC-AG intron. Furthermore, CEA protein isoforms derived from the novel splice variants were expressed in cancer cell lines and those protein isoforms were secreted into the culture medium. Although CEA protein isoforms always co-existed with the full-length protein, the secretion patterns of these isoforms did not correlate with the expression patterns. Conclusions This is the first study to identify the expression of CEA isoforms derived from the novel splice variants processed on the unique splice site. In addition, we also revealed the secretion of those isoforms from gastrointestinal cancer cell lines. Our findings suggested that discrimination between the full-length and identified protein isoforms may improve the clinical utility of CEA as a tumor marker. PMID:24070190

  13. Expression of a hantavirus N protein and its efficacy as antigen in immune assays

    Directory of Open Access Journals (Sweden)

    L.T.M. Figueiredo

    2008-07-01

    Full Text Available Hantavirus cardiopulmonary syndrome (HCPS has been recognized as an important public heath problem. Five hantaviruses associated with HCPS are currently known in Brazil: Juquitiba, Araraquara, Laguna Negra-like, Castelo dos Sonhos, and Anajatuba viruses. The laboratory diagnosis of HCPS is routinely carried out by the detection of anti-hantavirus IgM and/or IgG antibodies. The present study describes the expression of the N protein of a hantavirus detected in the blood sample of an HCPS patient. The entire S segment of the virus was amplified and found to be 1858 nucleotides long, with an open reading frame of 1287 nucleotides that encodes a protein of 429 amino acids. The nucleotide sequence described here showed a high identity with the N protein gene of Araraquara virus. The entire N protein was expressed using the vector pET200D and the Escherichia coli BL21 strain. The expression of the recombinant protein was confirmed by the detection of a 52-kDa protein by Western blot using a pool of human sera obtained from HCPS patients, and by specific IgG detection in five serum samples of HCPS patients tested by ELISA. These results suggest that the recombinant N protein could be used as an antigen for the serological screening of hantavirus infection.

  14. Cell division cycle-associated protein 1 as a new melanoma-associated antigen.

    Science.gov (United States)

    Tokuzumi, Aki; Fukushima, Satoshi; Miyashita, Azusa; Nakahara, Satoshi; Kubo, Yosuke; Yamashita, Junji; Harada, Miho; Nakamura, Kayo; Kajihara, Ikko; Jinnin, Masatoshi; Ihn, Hironobu

    2016-12-01

    Immune checkpoint inhibitors have increased the median survival of melanoma patients. To improve their effects, antigen-specific therapies utilizing melanoma-associated antigens should be developed. Cell division cycle-associated protein 1 (CDCA1), which has a specific function at the kinetochores for stabilizing microtubule attachment, is overexpressed in various cancers. CDCA1, which is a member of cancer-testis antigens, does not show detectable expression levels in normal tissues. Quantitative reverse transcription polymerase chain reaction and immunoblotting analyses revealed that CDCA1 was expressed in all of the tested melanoma cell lines, 74% of primary melanomas, 64% of metastatic melanomas and 25% of nevi. An immunohistochemical analysis and a Cox proportional hazards model showed that CDCA1 could be a prognostic marker in malignant melanoma (MM) patients. CDCA1-specific siRNA inhibited the cell proliferation of SKMEL2 and WM115 cells, but did not reduce the migration or invasion activity. These results suggest that CDCA1 may be a new therapeutic target of melanoma. © 2016 Japanese Dermatological Association.

  15. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  16. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...

  17. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation.

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.

  18. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  19. Antigenicity of fractions of Helicobacter pylori prepared by fast protein liquid chromatography and urease captured by monoclonal antibodies.

    Science.gov (United States)

    Stacey, A R; Hawtin, P R; Newell, D G

    1990-10-01

    The antigenicity of Helicobacter pylori protein fractions separated by fast protein liquid chromatography size exclusion was investigated by EIA with sera from patients of well defined Helicobacter pylori status. The antigenic material of Helicobacter pylori was confined to fractions 8 and 14 to 21. Urease containing fractions (14/15) and flagella containing fractions (17/18) were identified. Fraction 8 non-specifically bound human immunoglobulin as demonstrated by the binding of Helicobacter pylori negative sera. The remaining fractions 14 to 21 when used individually as EIA antigens were 91-100% specific, however fractions 16 to 19 showed a reduced sensitivity (78%) compared with the acid extract (95%). The urease fractions were 91% sensitive. Purified urease antigen captured by antiurease monoclonal antibodies was 83% sensitive and 93.3% specific.

  20. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I

    DEFF Research Database (Denmark)

    Cuesta, Àngel M; Suárez, Eduardo; Larsen, Martin

    2006-01-01

    Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting...... immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion...... generated antigen-specific T helper 1-type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene-mediated immune response and may thus provide a strategy for improving its therapeutic effect....

  1. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.

    Science.gov (United States)

    Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N

    2012-11-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.

  2. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling

    NARCIS (Netherlands)

    Chu, D. H.; Spits, H.; Peyron, J. F.; Rowley, R. B.; Bolen, J. B.; Weiss, A.

    1996-01-01

    The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs.

  3. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    Science.gov (United States)

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  4. [VLP vaccines and effects of HIV-1 Env protein modifications on their antigenic properties].

    Science.gov (United States)

    Vzorov, A N; Compans, R W

    2016-01-01

    An ideal protective HIV-1 vaccine can elicit broadly neutralizing antibodies, capable of preventing HIV transmission. The strategies of designing vaccines include generation of soluble recombinant proteins which mimic the native Env complex and are able to enhance the immunogenicity of gp120. Recent data indicate that the cytoplasmic tail (CT) of the Env protein has multiple functions, which can affect the early steps of infection, as well as viral assembly and antigenic properties. Modifications in the CT can be used to induce conformational changes in functional regions of gp120 and to stabilize the trimeric structure, avoiding immune misdirection and induction of non-neutralizing antibody responses. Env-trimers with modified CTs in virus-like particles (VLPs) are able to induce antibodies with broad spectrum neutralizing activity and high avidity and have the potential for developing an effective vaccine against HIV.

  5. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    OpenAIRE

    Michal Sima; Blanka Ferencova; Alon Warburg; Iva Rohousova; Petr Volf

    2016-01-01

    Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replaceme...

  6. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus

    2014-01-01

    microsomal triglyceride transfer protein (MTP), which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen...... presenting cells (APCs), which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis....

  7. Antigenic and immunosuppressive properties of a trimeric recombinant transmembrane envelope protein gp41 of HIV-1.

    Directory of Open Access Journals (Sweden)

    Michael Mühle

    Full Text Available The transmembrane envelope (TM protein gp41 of the human immunodeficiency virus-1 (HIV-1 plays an important role during virus infection inducing the fusion of the viral and cellular membranes. In addition, there are indications that the TM protein plays a role in the immunopathogenesis leading to the acquired immunodeficiency syndrome (AIDS. Inactivated virus particles and recombinant gp41 have been reported to inhibit lymphocyte proliferation, as well as to alter cytokine release and gene expression. The same was shown for a peptide corresponding to a highly conserved domain of all retroviral TM proteins, the immunosuppressive domain. Due to its propensity to aggregate and to be expressed at low levels, studies comprising authentic gp41 produced in eukaryotic cells are extremely rare. Here we describe the production of a secreted, soluble recombinant gp41 in 293 cells. The antigen was purified to homogeneity and characterised thoroughly by various biochemical and immunological methods. It was shown that the protein was glycosylated and assembled into trimers. Binding studies by ELISA and surface plasmon resonance using conformation-specific monoclonal antibodies implied a six-helix bundle conformation. The low binding of broadly neutralising antibodies (bnAb directed against the membrane proximal external region (MPER suggested that this gp41 is probably not suited as vaccine to induce such bnAb. Purified gp41 bound to monocytes and to a lesser extent to lymphocytes and triggered the production of specific cytokines when added to normal peripheral blood mononuclear cells. In addition, gp41 expressed on target cells inhibited the antigen-specific response of murine CD8+ T cells by drastically impairing their IFNγ production. To our knowledge, this is the first comprehensive analysis of a gp41 produced in eukaryotic cells including its immunosuppressive properties. Our data provide another line of evidence that gp41 might be directly involved in

  8. Neurofibromatosis type 2 tumor suppressor protein, NF2, induces proteasome-mediated degradation of JC virus T-antigen in human glioblastoma.

    Directory of Open Access Journals (Sweden)

    Sarah Beltrami

    Full Text Available Neurofibromatosis type 2 protein (NF2 has been shown to act as tumor suppressor primarily through its functions as a cytoskeletal scaffold. However, NF2 can also be found in the nucleus, where its role is less clear. Previously, our group has identified JC virus (JCV tumor antigen (T-antigen as a nuclear binding partner for NF2 in tumors derived from JCV T-antigen transgenic mice. The association of NF2 with T-antigen in neuronal origin tumors suggests a potential role for NF2 in regulating the expression of the JCV T-antigen. Here, we report that NF2 suppresses T-antigen protein expression in U-87 MG human glioblastoma cells, which subsequently reduces T-antigen-mediated regulation of the JCV promoter. When T-antigen mRNA was quantified, it was determined that increasing expression of NF2 correlated with an accumulation of T-antigen mRNA; however, a decrease in T-antigen at the protein level was observed. NF2 was found to promote degradation of ubiquitin bound T-antigen protein via a proteasome dependent pathway concomitant with the accumulation of the JCV early mRNA encoding T-antigen. The interaction between T-antigen and NF2 maps to the FERM domain of NF2, which has been shown previously to be responsible for its tumor suppressor activity. Co-immunoprecipitation assays revealed a ternary complex among NF2, T-antigen, and the tumor suppressor protein, p53 within a glioblastoma cell line. Further, these proteins were detected in various degrees in patient tumor tissue, suggesting that these associations may occur in vivo. Collectively, these results demonstrate that NF2 negatively regulates JCV T-antigen expression by proteasome-mediated degradation, and suggest a novel role for NF2 as a suppressor of JCV T-antigen-induced cell cycle regulation.

  9. Carcinoembryonic antigen family receptor recognition by gonococcal Opa proteins requires distinct combinations of hypervariable Opa protein domains.

    Science.gov (United States)

    Bos, Martine P; Kao, David; Hogan, Daniel M; Grant, Christopher C R; Belland, Robert J

    2002-04-01

    Neisserial Opa proteins function as a family of adhesins that bind heparan sulfate proteoglycan (HSPG) or carcinoembryonic antigen family (CEACAM) receptors on human host cells. In order to define the CEACAM binding domain on Opa proteins, we tested the binding properties of a series of gonococcal (strain MS11) recombinants producing mutant and chimeric Opa proteins with alterations in one or more of the four surface-exposed loops. Mutagenesis demonstrated that the semivariable domain, present in the first loop, was completely dispensable for CEACAM binding. In contrast, the two hypervariable (HV) regions present in the second and third loops were essential for binding; deletion of either domain resulted in loss of receptor recognition. Deletion of the fourth loop resulted in a severe decrease in Opa expression at the cell surface and could therefore not be tested for CEACAM binding. Chimeric Opa variants, containing combinations of HV regions derived from different CEACAM binding Opa proteins, lost most of their receptor binding activity. Some chimeric variants gained HSPG binding activity. Together, our results indicate that full recognition of CEACAM receptors by Opa proteins requires a highly coordinate interplay between both HV regions. Furthermore, shuffling of HV regions may result in novel HSPG receptor binding activity.

  10. Nanoporous gold as a solid support for protein immobilization and development of an electrochemical immunoassay for prostate specific antigen and carcinoembryonic antigen

    International Nuclear Information System (INIS)

    Pandey, B.; Stine, K.J.; Demchenko, A.V.

    2012-01-01

    Nanoporous gold (NPG) was utilized as a support for immobilizing alkaline phosphatase (ALP) conjugated to monoclonal antibodies against either prostate specific antigen (PSA) or carcinoembryonic antigen (CEA). The antibody-ALP conjugates were coupled to self-assembled monolayers of lipoic acid and used in direct kinetic assays. Using the enzyme substrate p-aminophenyl phosphate, the product p-aminophenol was detected by its oxidation near 0.1 V (vs. Ag|AgCl) using square wave voltammetry. The difference in peak current arising from oxidation of p-aminophenol before and after incubation with biomarker increased with biomarker concentration. The response to these two biomarkers was linear up to 10 ng mL -1 for CEA and up to 30 ng mL -1 for PSA. The effect of interference on the PSA assay was studied using bovine serum albumin (BSA) as a model albumin protein. The effect of interference from a serum matrix was examined for the PSA assay using newborn calf serum. A competitive version of the immunoassay using antigen immobilized onto the NPG surface was highly sensitive at lower antigen concentration. Estimates of the surface coverage of the antibody-ALP conjugates on the NPG surface are presented. (author)

  11. Evaluate the efficiency of Antigen 60 (A60 protein from BCG strain of Mycobacterium bovis as a diagnostic antigen

    Directory of Open Access Journals (Sweden)

    Nafiseh Shakibamehr

    2016-01-01

    Conclusion: Results of reactions of the injected A60 and standard human tuberculin shows the effectiveness of this antigen in comparison with standard human tuberculin. Detection of antibody in the serum of patients is a rapid and repeatable method. A60 with 89% sensitivity and 94% specificity could be an appropriate matter for the diagnosis of tuberculosis. Because this method can be performed without radioactive materials or advanced and expensive equipment, it will provide results quickly.

  12. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    Science.gov (United States)

    Hammond, Dianne K.; Becker, Jeanne; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LN1) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate Containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered TradeMark)Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark)a software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  13. Plant-synthesized E. coli CFA/I fimbrial protein protects Caco-2 cells from bacterial attachment.

    Science.gov (United States)

    Lee, Jin-Yong; Yu, Jie; Henderson, David; Langridge, William H R

    2004-11-25

    A DNA fragment encoding the cholera toxin A2 subunit (CTA2) linked to the enterotoxigenic Escherichia coli (ETEC) colony forming fimbrial antigen CFA/I was inserted into a plant expression vector containing the cholera toxin B subunit (CTB) fused to the rotavirus enterotoxin 22 amino acid epitope NSP422. Anti-CFA/I antibodies recognized a single band of approximately 72-kDa in transformed potato tuber tissue consistent with CFA/I-CTA2 and CTB-NSP4 fusion protein assembly into a cholera holotoxin-like structure. Enzyme-linked immunosorbent assay (GM1 ELISA) indicated that the CFA/I-CTA2 fusion protein bound specific GM1 ganglioside membrane receptors and made up approximately 0.002% of the total soluble tuber protein. Oral immunization of BALB/c mice with transformed tuber tissues generated anti-CFA/I serum and intestinal IgG and IgA secretory antibodies. Attachment of ETEC H10407 to enterocyte-like Caco-2 human colon carcinoma cells incubated with antiserum from immunized mice was reduced by 15% in comparison with Caco-2 cells incubated with serum from unimmunized mice. Immunogold staining of bacterial preparations revealed deposition of gold particles on E. coli H10407 fimbria incubated with immune serum but not on fimbria treated with sera from unimmunized mice demonstrating the specificity of antibodies in the immune serum for binding to CFA/I protein containing fimbria. The protection against toxic E. coli binding to Caco-2 cells generated by antisera from mice immunized with plant-synthesized CFA/I antigen demonstrates the feasibility of plant-based multi-component vaccine protection against enterotoxigenic E. coli, rotavirus and cholera, three enteric diseases that together exert the highest levels of child morbidity and mortality in economically emerging countries.

  14. Enhanced discrimination of malignant from benign pancreatic disease by measuring the CA 19-9 antigen on specific protein carriers.

    Directory of Open Access Journals (Sweden)

    Tingting Yue

    Full Text Available The CA 19-9 assay detects a carbohydrate antigen on multiple protein carriers, some of which may be preferential carriers of the antigen in cancer. We tested the hypothesis that the measurement of the CA 19-9 antigen on individual proteins could improve performance over the standard CA 19-9 assay. We used antibody arrays to measure the levels of the CA 19-9 antigen on multiple proteins in serum or plasma samples from patients with pancreatic adenocarcinoma or pancreatitis. Sample sets from three different institutions were examined, comprising 531 individual samples. The measurement of the CA 19-9 antigen on any individual protein did not improve upon the performance of the standard CA 19-9 assay (82% sensitivity at 75% specificity for early-stage cancer, owing to diversity among patients in their CA 19-9 protein carriers. However, a subset of cancer patients with no elevation in the standard CA 19-9 assay showed elevations of the CA 19-9 antigen specifically on the proteins MUC5AC or MUC16 in all sample sets. By combining measurements of the standard CA 19-9 assay with detection of CA 19-9 on MUC5AC and MUC16, the sensitivity of cancer detection was improved relative to CA 19-9 alone in each sample set, achieving 67-80% sensitivity at 98% specificity. This finding demonstrates the value of measuring glycans on specific proteins for improving biomarker performance. Diagnostic tests with improved sensitivity for detecting pancreatic cancer could have important applications for improving the treatment and management of patients suffering from this disease.

  15. A viral vaccine encoding PSA induces antigen spreading to a common set of self proteins in prostate cancer patients

    Science.gov (United States)

    Nesslinger, Nancy J.; Ng, Alvin; Tsang, Kwong-Yok; Ferrara, Theresa; Schlom, Jeff; Gulley, James L.; Nelson, Brad H.

    2010-01-01

    Purpose We previously reported a randomized phase II clinical trial combining a poxvirus-based vaccine encoding PSA with radiotherapy in patients with localized prostate cancer. Here we investigate whether vaccination against PSA induced immune responses to additional tumor-associated antigens and how this influenced clinical outcome. Experimental Design Pre- and post-treatment serum samples from patients treated with vaccine + external beam radiation therapy (EBRT) versus EBRT alone were evaluated by Western blot and serological screening of a prostate cancer cDNA expression library (SEREX) to assess the development of treatment-associated autoantibody responses. Results Western blotting revealed treatment-associated autoantibody responses in 15/33 (45.5%) patients treated with vaccine + EBRT versus 1/8 (12.5%) treated with EBRT alone. SEREX screening identified 18 antigens, which were assembled on an antigen array with 16 previously identified antigens. Antigen array screening revealed that seven of 33 patients (21.2%) treated with vaccine + EBRT demonstrated a vaccine-associated autoantibody response to four ubiquitously expressed self antigens: DIRC2, NDUFS1, MRFAP1 and MATN2. These responses were not seen in patients treated with EBRT alone, or other control groups. Patients with autoantibody responses to this panel of antigens had a trend towards decreased biochemical-free survival. Conclusions Vaccine + EBRT induced antigen spreading in a large proportion of patients. A subset of patients developed autoantibodies to a panel of four self antigens and showed a trend toward inferior outcomes. Thus, cancer vaccines directed against tumor-specific antigens can trigger autoantibody responses to self proteins, which may influence the efficacy of vaccination. PMID:20562209

  16. Usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis.

    Science.gov (United States)

    Rastawicki, Waldemar; Smietafiska, Karolina; Chrost, Anna; Wolkowicz, Tomasz; Rokosz-Chudziak, Natalia

    Proper analysis of the human immune response is crucial in the laboratory diagnosis of many bacterial infections-The current serological diagnosis of yersiniosis often is carried out using ELISA with native antigens. However, recombinant proteins increase the specificity of the serological assays, particularly in patients with chronic, non- specific infections. The aim of the present study was to evaluate the usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis. Recombinant YopD, YopB, YopE and V-Ag proteins of Y enterocolitica were expressing in E. coli BL21 (DE3) using the pET-30 Ek/LIC expression vector (Novagen). Purification was accomplished by immobilized metal (Ni2) affinity column chromatography (His-trap). The proteins were used as antigens in standard ELISA and recom-dot assay, which was performed on nitrocellulose strips. The study population, used for characterization of the humoral immune response to the recombinant proteins, consisted of 74 patients suspected for Y enterocolitica infection and 41 clinically healthy blood donors. Some of the results obtained by ELISA and recom-dot were compared with results obtained by commercial western-blot Yersinia (Virotech). In the group of patients suspected for yersiniosis in clinical investigation the most positive results were obtained in ELISA with the recombinant protein YopD (IgA respectively 25 (42.4%), IgG 41 (69.5%), IgM 24 (40.7%). The percentage ofpositive results in the group of blood donors did not exceed 10.0% in IgG and 5.0% in IgA/IgM classes of immunoglobulin. The results obtained in the recom-dot assay showed that among 74 tested serum samples obtained from individuals suspected of yersiniosis the most common IgA, IgG and IgM antibodies were found for recombinant protein YopD (respectively IgG in 60.8%, IgA in 37.8% and IgM in 33.8% of serum samples). IgG antibodies to

  17. Reduced third-trimester levels of soluble human leukocyte antigen G protein in severe preeclampsia.

    Science.gov (United States)

    Hackmon, Rinat; Koifman, Arie; Hyodo, Hironobu; Hyobo, Hirohito; Glickman, Hagit; Sheiner, Eyal; Geraghty, Daniel E

    2007-09-01

    Recently, lower maternal plasma human leukocyte antigen (HLA)-G protein levels in preeclampsia (PE) in the first and second trimester was reported. Thus, we sought to evaluate the levels of HLA-G protein in patients with severe PE during the third trimester. In this prospective case control study, amniotic fluid and maternal and cord blood samples were aspirated from 50 pregnant women during the third trimester. The study group included 26 pregnant women diagnosed with severe PE and 24 women without PE serving as controls. A soluble HLA-G-specific enzyme-linked immunosorbent assay was used to measure protein levels. Statistical analysis included the Student t test and simple regression analysis. Maternal serum HLA-G levels in PE pregnancies were found to be significantly lower as compared with normal pregnancies (10.97 +/- 6.55 vs 36.05 +/- 34.53 microg/mL; P = .003). A reduced level of maternal HLA-G protein was associated with severe PE during the third trimester. This finding may suggest an essential role for HLA-G in normal and preeclamptic pregnancies.

  18. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    Directory of Open Access Journals (Sweden)

    Michal Sima

    2016-03-01

    Full Text Available Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs using salivary gland homogenates (SGHs as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species.Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera.Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  19. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    Science.gov (United States)

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-03-01

    Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  20. The diagnostic value of c-reactive protein estimation in differentiating bacterial from viral meningitis

    International Nuclear Information System (INIS)

    Sheikh, A.

    2001-01-01

    Objective: To evaluate the efficacy of serum and CSF C-reactive protein (C-rp) in differentiating bacterial from viral meningitis. Design: An observational, respective hospital-based study. Place and duration of study: It was conducted at the Department of Medicine and Department of Pediatrics, Shaikh Zayed Postgraduate Medical Institute Lahore, Over a Period of one year between march, 1999 and March, 2000. Subject and Methods: A randomized group of thirty patients, who presented with clinical features, suggestive of meningitis, were included in the study. C-reactive protein determinations were performed by latex agglutination method on the serum and cerebrospinal fluid (CSF) of these patients. Results: In the present study, c-reactive protein was found to be a more sensitive test for differentiating bacterial from non-bacterial meningitis on initial examination than the usual conventional methods used to diagnose bacterial meningitis. CSF C-reactive protein had a greater sensitivity (92% as compared to serum C-reactive protein (71%). Conclusion: C-reactive protein determination in CSF was found to be a useful indicator of bacterial meningitis that can be used to distinguish it from viral meningitis. (author)

  1. Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates

    Directory of Open Access Journals (Sweden)

    Eisen Damon P

    2006-07-01

    Full Text Available Abstract Background As malaria becomes increasingly drug resistant and more costly to treat, there is increasing urgency to develop effective vaccines. In comparison to other stages of the malaria lifecycle, sexual stage antigens are under less immune selection pressure and hence are likely to have limited antigenic diversity. Methods Clinical isolates from a wide range of geographical regions were collected. Direct sequencing of PCR products was then used to determine the extent of polymorphisms for the novel Plasmodium falciparum sexual stage antigen von Willebrand Factor A domain-related Protein (PfWARP. These isolates were also used to confirm the extent of diversity of sexual stage antigen Pfs28. Results PfWARP was shown to have non-synonymous substitutions at 3 positions and Pfs28 was confirmed to have a single non-synonymous substitution as previously described. Conclusion This study demonstrates the limited antigenic diversity of two prospective P. falciparum sexual stage antigens, PfWARP and Pfs28. This provides further encouragement for the proceeding with vaccine trials based on these antigens.

  2. Limited polymorphism in Plasmodium falciparum ookinete surface antigen, von Willebrand factor A domain-related protein from clinical isolates.

    Science.gov (United States)

    Richards, Jack S; MacDonald, Nicholas J; Eisen, Damon P

    2006-07-05

    As malaria becomes increasingly drug resistant and more costly to treat, there is increasing urgency to develop effective vaccines. In comparison to other stages of the malaria lifecycle, sexual stage antigens are under less immune selection pressure and hence are likely to have limited antigenic diversity. Clinical isolates from a wide range of geographical regions were collected. Direct sequencing of PCR products was then used to determine the extent of polymorphisms for the novel Plasmodium falciparum sexual stage antigen von Willebrand Factor A domain-related Protein (PfWARP). These isolates were also used to confirm the extent of diversity of sexual stage antigen Pfs28. PfWARP was shown to have non-synonymous substitutions at 3 positions and Pfs28 was confirmed to have a single non-synonymous substitution as previously described. This study demonstrates the limited antigenic diversity of two prospective P. falciparum sexual stage antigens, PfWARP and Pfs28. This provides further encouragement for the proceeding with vaccine trials based on these antigens.

  3. Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus.

    Science.gov (United States)

    Yu, Tian-Fei; Li, Ming; Yan, Bing; Shao, Shu-Li; Fan, Xing-Dong; Wang, Jia; Wang, Dan-Na

    2016-08-01

    Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection.

  4. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    Science.gov (United States)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  5. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine

    2012-01-01

    Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing......, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/- glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo...... response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-¿ release, and antibody induction. Gal...

  6. Responses of Bovine WC1+ γδ T Cells to Protein and Nonprotein Antigens of Mycobacterium bovis

    Science.gov (United States)

    Welsh, Michael D.; Kennedy, Hilary E.; Smyth, Allister J.; Girvin, R. Martyn; Andersen, Peter; Pollock, John M.

    2002-01-01

    WC1+ γδ T cells of Mycobacterium bovis-infected cattle are highly responsive to M. bovis sonic extract (MBSE). In mycobacterial infections of other species, γδ T cells have been shown to respond to protein and nonprotein antigens, but the bovine WC1+ γδ T-cell antigenic targets within MBSE require further definition in terms of the dominance of protein versus nonprotein components. The present study sought to characterize the WC1+ γδ T-cell antigenic targets, together with the role of interleukin-2 (IL-2), in the context of M. bovis infection. This was achieved by testing crude and defined antigens to assess protein versus nonprotein recognition by WC1+ γδ T cells in comparison with CD4+ αβ T cells. Both cell types proliferated strongly in response to MBSE, with CD4+ T cells being the major producers of gamma interferon (IFN-γ). However, enzymatic digestion of the protein in MBSE removed its ability to stimulate CD4+ T-cell responses, whereas some WC1+ γδ T-cell proliferation remained. The most antigenic protein inducing proliferation and IFN-γ secretion in WC1+ γδ T-cell cultures was found to be ESAT-6, which is a potential novel diagnostic reagent and vaccine candidate. In addition, WC1+ γδ T-cell proliferation was observed in response to stimulation with prenyl pyrophosphate antigens (isopentenyl pyrophosphate and monomethyl phosphate). High levels of cellular activation (CD25 expression) resulted from MBSE stimulation of WC1+ γδ T cells from infected animals. A similar degree of activation was induced by IL-2 alone, but for WC1+ γδ T-cell division IL-2 was found to act only as a costimulatory signal, enhancing antigen-driven responses. Overall, the data indicate that protein antigens are important stimulators of WC1+ γδ T-cell proliferation and IFN-γ secretion in M. bovis infection, with nonprotein antigens inducing significant proliferation. These findings have important implications for diagnostic and vaccine development. PMID

  7. Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein

    Science.gov (United States)

    Reguera, Juan; Ordoño, Desiderio; Santiago, César; Enjuanes, Luis

    2011-01-01

    The N-terminal S1 region of the transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein contains four antigenic sites (C, B, D and A, from the N- to the C-terminal end) and is engaged in host-cell receptor recognition. The most N-terminal portion of the S1 region, which comprises antigenic sites C and B, is needed for the enteric tropism of TGEV, whereas the major antigenic site A at the C-terminal moiety is required for both respiratory and enteric cell tropism, and is engaged in recognition of the aminopeptidase N (APN) receptor. This study determined the kinetics for binding of a soluble S1 protein to the APN protein. Moreover, the S1 region of the TGEV S protein was dissected, with the aim of identifying discrete modules displaying unique antigenic sites and receptor-binding functions. Following protease treatments and mammalian cell expression methods, four modules or domains (D1–D4) were defined at the S1 region. Papain treatment identified an N-terminal domain (D1) resistant to proteolysis, whereas receptor binding defined a soluble and functional APN receptor-binding domain (D3). This domain was recognized by neutralizing antibodies belonging to the antigenic site A and therefore could be used as an immunogen for the prevention of viral infection. The organization of the four modules in the S1 region of the TGEV S glycoprotein is discussed. PMID:21228126

  8. Sperm protein 17: clinical relevance of a cancer/testis antigen, from contraception to cancer immunotherapy, and beyond.

    Science.gov (United States)

    Chiriva-Internati, Maurizio

    2011-01-01

    Sperm protein 17 belongs to the cancer/testis antigen family and was found to play a key role in the cell fusion process between the mammalian spermatozoa and egg. Sperm protein 17-specific autoantibodies in vasectomized males suggest its high expression in the testis. Sperm protein 17 expression levels are low or absent in normal tissues, other than the testis. Sperm protein 17 is expressed by tumors, including ovarian cancer, indicating that it is an ideal target for cancer immunotherapy, and plays a role in tumorigenesis and drug resistance. This review recapitulates the milestones of sperm protein 17 research and highlights its potential use in translational medicine.

  9. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins.

    Directory of Open Access Journals (Sweden)

    Hadrien Peyret

    Full Text Available The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody.

  10. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  11. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  12. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    International Nuclear Information System (INIS)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-01

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection

  13. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  14. Identifying bacterial immune evasion proteins using phage display

    NARCIS (Netherlands)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional

  15. [Evaluation of the Recombinant Protein Tp0965 of Treponema Pallidum as Perspective Antigen for the Improved Serological Diagnosis of Syphilis].

    Science.gov (United States)

    Runina, A V; Starovoitova, A S; Deryabin, D G; Kubanov, A A

    2016-01-01

    BACKGRAUND. Treponemal tests based on the detection of antibodies against the Treponema pallidum antigens are the most specific methods for serological diagnosis of syphilis. Due to the inability to cultivate this bacterium in vitro, the most promising sources of antigens for diagnostics are recombinant proteins of T. pallidum. Evaluation of the analytical value of certain T. pallidum proteins is the approach to improve sensitivity, specificity, and reproducibility of syphilis serological tests, including possibilities of differential diagnosis of various forms of the disease. The aim of the research was to evaluate the analytical values (sensitivity and specificity) of recombinant protein Tp0965 of T. pallidum as a candidate antigen for serological diagnosis of syphilis. tp0965 gene was cloned into the expression vector pET28a and the construct was used for the transformation of E. coli BL-21 (DE3) cells and further expression and purification of the recombinant protein. The collected protein was used as T. pallidum antigen for serum analysis (ELISA) of groups of patients with various forms of syphilis (n=84) and the group of healthy donors (n = 25). High frequency of positive ELISA results was shown with serum of patients with syphilis, compared to the group of healthy donors. The sensitivity of serological reactions using recombinant protein Tp0965 was 98.8%, specificity--87.5%. The highest sensitivity (100%) was detected in the groups of patients with primary, secondary and early latent syphilis while in the group of patients with late latent syphilis it decreased to 95.2%. We concluded that due to its specificity T. pallidum recombinant protein Tp0965 can be used as a novel perspective antigen for development of syphilis serological diagnostic assays (for primary and early latent forms).

  16. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...... of proteins were clustered based on sequence domains so that each group represented a protein function. Each function was then modeled using Arti- ficial Neural Networks (ANN) and the model was evaluated based on its ability to identify true positives and negatives, that is proteins with or without...... the function of the model. The models were used to annotate a number of proteins without functional annotations and predicted functions for 98% of the genes. Evaluation of the precision of the method was performed, using data from the Critical Assessment of Functional Annotation (CAFA) project, and correct...

  17. Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance

    Science.gov (United States)

    2007-04-01

    in double-distilled de-ionized water (dH2O) [15,16], 1% dimethylsulphoxide (DMSO, a HO scavenger) [15] conferred substantial protection on super...O’loughlin EJ, et al. (2004) Elemental and redox analysis of single bacterial cells by x-ray microbeam analysis. Science 306: 686–687. 26. Lin J, Qi R, Aston C...Brennan S, editors. Synchrotron Radiation Instru- mentation: Eleventh U.S. National Conference . Stanford, California, 13–15 October 1999. CP521

  18. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  19. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface.

    Science.gov (United States)

    Montanaro, Jacqueline; Inic-Kanada, Aleksandra; Ladurner, Angela; Stein, Elisabeth; Belij, Sandra; Bintner, Nora; Schlacher, Simone; Schuerer, Nadine; Mayr, Ulrike Beate; Lubitz, Werner; Leisch, Nikolaus; Barisani-Asenbauer, Talin

    2015-01-01

    To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs) as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN), whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results are an important step in constructing a delivery system based on a nonliving probiotic that is suitable for use in ocular surface diseases pairing immunomodulation and targeted delivery.

  20. Methyl-accepting protein associated with bacterial sensory phodopsin I

    International Nuclear Information System (INIS)

    Spudich, E.N.; Hasselbacher, C.A.; Spudich, J.L.

    1988-01-01

    In vivo radiolabeling of Halaobacterium halobium phototaxis mutants and revertants with L-[methyl- 3 H] methionine implicated seven methyl-accepting protein bands with apparent molecular masses from 65 to 150 kilodaltons (kDa) in adaptation of the organism to chemo and photo stimuli, and one of these (94 kDa) was specifically implicated in photoaxis. The lability of the radiolabeled bands to mild base treatment indicated the the methyl linkages are carboxylmethylesters, as is the case in the eubacterial chemotaxis receptor-transducers. The 94-kDa protein was present in increased amounts in an overproducer of the apoprotein of sensory rhodopsin I, one of two retinal-containing photoaxis receptors in H. halobium. It was absent in a strain the contained sensory rhodopsin II and that lacked sensory rhodopsin I and was also absent in a mutant that lacked both photoreceptors. Based in the role of methyl-accepting proteins in chemotaxis in other bacteria, we suggest that the 94-kDa protein is the signal transducer for sensory rhodopsin I. By [ 3 H]retinal labeling studies, we previously identified a 25-kDa retinal-binding polypeptide that was derived from photochemically reactive sensory rhodopsin I. When H. halobium membranes containing sensory rhodopsin I were treated by a procedure that stably reduced [ 3 H] retinal onto the 25-kDa apoprotein, a 94-kDa protein was also found to be radiolabeled. Protease digestion confirmed that the 94-kDa retinal-labeled protein was the same as the methyl-accepting protein that was suggested above to be the siginal transducer for sensory rhodopsin I. Possible models are that the 25- and 94-kDa proteins are tightly interacting components of the photosensory signaling machinery or that both are forms of sensory rhodopsin I

  1. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  2. A bacterial two-hybrid system that utilizes Gateway cloning for rapid screening of protein-protein interactions.

    Science.gov (United States)

    Karna, S L Rajasekhar; Zogaj, Xhavit; Barker, Jeffrey R; Seshu, Janakiram; Dove, Simon L; Klose, Karl E

    2010-11-01

    Comprehensive clone sets representing the entire genome now exist for a large number of organisms. The Gateway entry clone sets are a particularly useful means to study gene function, given the ease of introduction into any Gateway-suitable destination vector. We have adapted a bacterial two-hybrid system for use with Gateway entry clone sets, such that potential interactions between proteins encoded within these clone sets can be determined by new destination vectors. We show that utilizing the Gateway clone sets for Francisella tularensis and Vibrio cholerae, known interactions between F. tularensis IglA and IglB and V. cholerae VipA and VipB could be confirmed with these destination vectors. Moreover, the introduction of unique tags into each vector allowed for visualization of the expressed hybrid proteins via Western immunoblot. This Gateway-suitable bacterial two-hybrid system provides a new tool for rapid screening of protein-protein interactions.

  3. Characterizing Antibody Responses to Plasmodium vivax and Plasmodium falciparum Antigens in India Using Genome-Scale Protein Microarrays.

    Directory of Open Access Journals (Sweden)

    Swapna Uplekar

    2017-01-01

    Full Text Available Understanding naturally acquired immune responses to Plasmodium in India is key to improving malaria surveillance and diagnostic tools. Here we describe serological profiling of immune responses at three sites in India by probing protein microarrays consisting of 515 Plasmodium vivax and 500 Plasmodium falciparum proteins with 353 plasma samples. A total of 236 malaria-positive (symptomatic and asymptomatic plasma samples and 117 malaria-negative samples were collected at three field sites in Raurkela, Nadiad, and Chennai. Indian samples showed significant seroreactivity to 265 P. vivax and 373 P. falciparum antigens, but overall seroreactivity to P. vivax antigens was lower compared to P. falciparum antigens. We identified the most immunogenic antigens of both Plasmodium species that were recognized at all three sites in India, as well as P. falciparum antigens that were associated with asymptomatic malaria. This is the first genome-scale analysis of serological responses to the two major species of malaria parasite in India. The range of immune responses characterized in different endemic settings argues for targeted surveillance approaches tailored to the diverse epidemiology of malaria across the world.

  4. Protein array profiling of tic patient sera reveals a broad range and enhanced immune response against Group A Streptococcus antigens.

    Directory of Open Access Journals (Sweden)

    Mauro Bombaci

    Full Text Available The human pathogen Group A Streptococcus (Streptococcus pyogenes, GAS is widely recognized as a major cause of common pharyngitis as well as of severe invasive diseases and non-suppurative sequelae associated with the existence of GAS antigens eliciting host autoantibodies. It has been proposed that a subset of paediatric disorders characterized by tics and obsessive-compulsive symptoms would exacerbate in association with relapses of GAS-associated pharyngitis. This hypothesis is however still controversial. In the attempt to shed light on the contribution of GAS infections to the onset of neuropsychiatric or behavioral disorders affecting as many as 3% of children and adolescents, we tested the antibody response of tic patient sera to a representative panel of GAS antigens. In particular, 102 recombinant proteins were spotted on nitrocellulose-coated glass slides and probed against 61 sera collected from young patients with typical tic neuropsychiatric symptoms but with no overt GAS infection. Sera from 35 children with neither tic disorder nor overt GAS infection were also analyzed. The protein recognition patterns of these two sera groups were compared with those obtained using 239 sera from children with GAS-associated pharyngitis. This comparative analysis identified 25 antigens recognized by sera of the three patient groups and 21 antigens recognized by tic and pharyngitis sera, but poorly or not recognized by sera from children without tic. Interestingly, these antigens appeared to be, in quantitative terms, more immunogenic in tic than in pharyngitis patients. Additionally, a third group of antigens appeared to be preferentially and specifically recognized by tic sera. These findings provide the first evidence that tic patient sera exhibit immunological profiles typical of individuals who elicited a broad, specific and strong immune response against GAS. This may be relevant in the context of one of the hypothesis proposing that GAS

  5. Reversals and collisions optimize protein exchange in bacterial swarms

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Aboutaleb; Harvey, Cameron; Buchmann, Amy; Christley, Scott; Shrout, Joshua D.; Aranson, Igor S.; Alber, Mark

    2017-03-01

    Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move over surfaces in search of nutrients and optimal niches for colonization. Many open questions remain about the cues used by swarming bacteria to achieve this self-organization. While chemical cue signaling known as quorum sensing is well-described, swarming bacteria often act and coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. Here, cell-cell contact-dependent protein exchange is explored as amechanism of intercellular signaling for the bacterium Myxococcus xanthus. A detailed biologically calibrated computational model is used to study how M. xanthus optimizes the connection rate between cells and maximizes the spread of an extracellular protein within the population. The maximum rate of protein spreading is observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal frequencies was observed to maximize the cell-cell connection rate and minimize the time of protein spreading. Furthermore, our findings suggest that predesigned motion reversal can be employed to enhance the collective behavior of biological synthetic active systems.

  6. Heat shock protein-90 inhibitors enhance antigen expression on melanomas and increase T cell recognition of tumor cells.

    Directory of Open Access Journals (Sweden)

    Timothy J Haggerty

    Full Text Available In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90 share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer.

  7. Coexisting protist-bacterial community accelerates protein transformation in microcosm experiments

    Directory of Open Access Journals (Sweden)

    Ngo Vy Thao

    2014-12-01

    Full Text Available Proteins constitute the major portion of labile substances in the marine environment and are an important source of organic matter supporting marine ecosystems. However, previous studies have revealed that specific bacterial membrane proteins are refractory in the oceans. We here show by kinetic analyses of protease degradation activity using inactivated Pseudomonas aeruginosa (Pa cells as a proteinaceous substrate that bacterial proteases are insufficient to completely hydrolyze proteins, which may partially cause the protein accumulation in seawater. Protease activity was monitored simultaneously in 8 microcosms subjected to differing conditions. Some Pa proteins were retained for 30 days in the presence of bacteria without protists, whereas the Pa proteins were completely disappeared in the presence of both, indicating that these proteins were substantially incorporated into protist biomass. Our result suggests that protists play an important role in the transformation of bacterial proteins in seawater. Our experiments also imply that the functional/taxonomic diversity should be taken into account when considering decomposition activity in marine environments.

  8. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen.

    Science.gov (United States)

    Ponomarenko, Natalia A; Durova, Oxana M; Vorobiev, Ivan I; Belogurov, Alexey A; Kurkova, Inna N; Petrenko, Alexander G; Telegin, Georgy B; Suchkov, Sergey V; Kiselev, Sergey L; Lagarkova, Maria A; Govorun, Vadim M; Serebryakova, Marina V; Avalle, Bérangère; Tornatore, Pete; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    Autoantibody-mediated tissue destruction is among the main features of organ-specific autoimmunity. This report describes "an antibody enzyme" (abzyme) contribution to the site-specific degradation of a neural antigen. We detected proteolytic activity toward myelin basic protein (MBP) in the fraction of antibodies purified from the sera of humans with multiple sclerosis (MS) and mice with induced experimental allergic encephalomyelitis. Chromatography and zymography data demonstrated that the proteolytic activity of this preparation was exclusively associated with the antibodies. No activity was found in the IgG fraction of healthy donors. The human and murine abzymes efficiently cleaved MBP but not other protein substrates tested. The sites of MBP cleavage determined by mass spectrometry were localized within immunodominant regions of MBP. The abzymes could also cleave recombinant substrates containing encephalytogenic MBP(85-101) peptide. An established MS therapeutic Copaxone appeared to be a specific abzyme inhibitor. Thus, the discovered epitope-specific antibody-mediated degradation of MBP suggests a mechanistic explanation of the slow development of neurodegeneration associated with MS.

  9. Murine carcinoma expressing carcinoembryonic antigen-like protein is restricted by antibody against neem leaf glycoprotein.

    Science.gov (United States)

    Das, Arnab; Barik, Subhasis; Bose, Anamika; Roy, Soumyabrata; Biswas, Jaydip; Baral, Rathindranath; Pal, Smarajit

    2014-11-01

    We have generated a polyclonal antibody against a novel immunomodulator, neem leaf glycoprotein (NLGP) that can react to a specific 47 kDa subunit of NLGP. Generated anti-NLGP antibody (primarily IgG2a) was tested for its anti-tumor activity in murine carcinoma (EC, CT-26), sarcoma (S180) and melanoma (B16Mel) tumor models. Surprisingly, tumor growth restriction was only observed in CT-26 carcinoma models, without any alteration in other tumor systems. Comparative examination of antigenicity between four different tumor models revealed high expression of CEA-like protein on the surface of CT-26 tumors. Subsequent examination of the cross-reactivity of anti-NLGP antibody with purified or cell bound CEA revealed prominent recognition of CEA by anti-NLGP antibody, as detected by ELISA, Western Blotting and immunohistochemistry. This recognition seems to be responsible for anti-tumor function of anti-NLGP antibody only on CEA-like protein expressing CT-26 tumor models, as confirmed by ADCC reaction in CEA(+) tumor systems where dependency to anti-NLGP antibody is equivalent to anti-CEA antibody. Obtained result with enormous therapeutic potential for CEA(+) tumors may be explained in view of the epitope spreading concept, however, further investigation is crucial. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  11. Surfactant protein D augments bacterial association but attenuates major histocompatibility complex class II presentation of bacterial antigens

    DEFF Research Database (Denmark)

    Hansen, Søren; Lo, Bernice; Evans, Kathy

    2006-01-01

    , and CRP showed that Odds Ratio for developing dementia was 2.62 (1.12-6.15) with an SP-D concentration in the highest quartile compared to the other quartiles. The risk of AD was 2.55 (0.95-6.90). Cox regression controlling for the same variables showed that hazard ratio of death was 1.43 (1.06-1...

  12. Point-Counterpoint: A Nucleic Acid Amplification Test for Streptococcus pyogenes Should Replace Antigen Detection and Culture for Detection of Bacterial Pharyngitis.

    Science.gov (United States)

    Pritt, Bobbi S; Patel, Robin; Kirn, Thomas J; Thomson, Richard B

    2016-10-01

    Nucleic acid amplification tests (NAATs) have frequently been the standard diagnostic approach when specific infectious agents are sought in a clinic specimen. They can be applied for specific agents such as S. pyogenes, or commercial multiplex NAATs for detection of a variety of pathogens in gastrointestinal, bloodstream, and respiratory infections may be used. NAATs are both rapid and sensitive. For many years, S. pyogenes testing algorithms used a rapid and specific group A streptococcal antigen test to screen throat specimens, followed, in some clinical settings, by a throat culture for S. pyogenes to increase the sensitivity of its detection. Now S. pyogenes NAATs are being used with increasing frequency. Given their accuracy, rapidity, and ease of use, should they replace antigen detection and culture for the detection of bacterial pharyngitis? Bobbi Pritt and Robin Patel of the Mayo Clinic, where S. pyogenes NAATs have been used for well over a decade with great success, will explain the advantages of this approach, while Richard (Tom) Thomson and Tom Kirn of the NorthShore University HealthSystem will discuss their concerns about this approach to diagnosing bacterial pharyngitis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. An ER-directed fusion protein comprising a bacterial subtilisin ...

    African Journals Online (AJOL)

    nausch

    Many recombinant therapeutic proteins have been expressed in transgenic plants to demonstrate proof-of- concept and there have been significant improvements in yields (Sharma and Sharma, 2009). However, downstream processing costs remain a major constraint for the commercial development of plant-derived.

  14. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems.

    Science.gov (United States)

    Feeley, Eric M; Pilla-Moffett, Danielle M; Zwack, Erin E; Piro, Anthony S; Finethy, Ryan; Kolb, Joseph P; Martinez, Jennifer; Brodsky, Igor E; Coers, Jörn

    2017-02-28

    Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella -containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia- containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella- containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.

  15. Exploitation of an iron transporter for bacterial protein antibiotic import.

    Science.gov (United States)

    White, Paul; Joshi, Amar; Rassam, Patrice; Housden, Nicholas G; Kaminska, Renata; Goult, Jonathan D; Redfield, Christina; McCaughey, Laura C; Walker, Daniel; Mohammed, Shabaz; Kleanthous, Colin

    2017-11-07

    Unlike their descendants, mitochondria and plastids, bacteria do not have dedicated protein import systems. However, paradoxically, import of protein bacteriocins, the mechanisms of which are poorly understood, underpins competition among pathogenic and commensal bacteria alike. Here, using X-ray crystallography, isothermal titration calorimetry, confocal fluorescence microscopy, and in vivo photoactivatable cross-linking of stalled translocation intermediates, we demonstrate how the iron transporter FpvAI in the opportunistic pathogen Pseudomonas aeruginosa is hijacked to translocate the bacteriocin pyocin S2 (pyoS2) across the outer membrane (OM). FpvAI is a TonB-dependent transporter (TBDT) that actively imports the small siderophore ferripyoverdine (Fe-Pvd) by coupling to the proton motive force (PMF) via the inner membrane (IM) protein TonB1. The crystal structure of the N-terminal domain of pyoS2 (pyoS2 NTD ) bound to FpvAI ( K d = 240 pM) reveals that the pyocin mimics Fe-Pvd, inducing the same conformational changes in the receptor. Mimicry leads to fluorescently labeled pyoS2 NTD being imported into FpvAI-expressing P. aeruginosa cells by a process analogous to that used by bona fide TBDT ligands. PyoS2 NTD induces unfolding by TonB1 of a force-labile portion of the plug domain that normally occludes the central channel of FpvAI. The pyocin is then dragged through this narrow channel following delivery of its own TonB1-binding epitope to the periplasm. Hence, energized nutrient transporters in bacteria also serve as rudimentary protein import systems, which, in the case of FpvAI, results in a protein antibiotic 60-fold bigger than the transporter's natural substrate being translocated across the OM. Copyright © 2017 the Author(s). Published by PNAS.

  16. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    Science.gov (United States)

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  17. Mannosylated mucin-type immunoglobulin fusion proteins enhance antigen-specific antibody and T lymphocyte responses.

    Directory of Open Access Journals (Sweden)

    Gustaf Ahlén

    Full Text Available Targeting antigens to antigen-presenting cells (APC improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL. We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG(2b, which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA responses in C57BL/6 mice are presented.OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in (51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays.Immunizations with the OVA - mannosylated PSGL-1/mIgG(2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG(2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG(2b with mono- and disialyl core 1 structures did not have this effect.Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses.

  18. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions.

    Science.gov (United States)

    Kim, S B; Seo, I S; Khan, M A; Ki, K S; Lee, W S; Lee, H J; Shin, H S; Kim, H S

    2007-09-01

    This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100 degrees C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50 degrees C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (beta-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of beta-lactoglobulin, alpha-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4 x 7 H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of

  19. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  20. IL-2/neuroantigen fusion proteins as antigen-specific tolerogens in experimental autoimmune encephalomyelitis (EAE): correlation of T cell-mediated antigen presentation and tolerance induction.

    Science.gov (United States)

    Mannie, Mark D; Clayson, Barbara A; Buskirk, Elizabeth J; DeVine, Jarret L; Hernandez, Jose J; Abbott, Derek J

    2007-03-01

    The purpose of this study was to assess whether the Ag-targeting activity of cytokine/neuroantigen (NAg) fusion proteins may be associated with mechanisms of tolerance induction. To assess this question, we expressed fusion proteins comprised of a N-terminal cytokine domain and a C-terminal NAg domain. The cytokine domain comprised either rat IL-2 or IL-4, and the NAg domain comprised the dominant encephalitogenic determinant of the guinea pig myelin basic protein. Subcutaneous administration of IL2NAg (IL-2/NAg fusion protein) into Lewis rats either before or after an encephalitogenic challenge resulted in an attenuated course of experimental autoimmune encephalomyelitis. In contrast, parallel treatment of rats with IL4NAg (IL-4/NAg fusion protein) or NAg lacked tolerogenic activity. In the presence of IL-2R(+) MHC class II(+) T cells, IL2NAg fusion proteins were at least 1,000 times more potent as an Ag than NAg alone. The tolerogenic activity of IL2NAg in vivo and the enhanced potency in vitro were both dependent upon covalent linkage of IL-2 and NAg. IL4NAg also exhibited enhanced antigenic potency. IL4NAg was approximately 100-fold more active than NAg alone in the presence of splenic APC. The enhanced potency of IL4NAg also required covalent linkage of cytokine and NAg and was blocked by soluble IL-4 or by a mAb specific for IL-4. Other control cytokine/NAg fusion proteins did not exhibit a similar enhancement of Ag potency compared with NAg alone. Thus, the IL2NAg and IL4NAg fusion proteins targeted NAg for enhanced presentation by particular subsets of APC. The activities of IL2NAg revealed a potential relationship between NAg targeting to activated T cells, T cell-mediated Ag presentation, and tolerance induction.

  1. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  2. Pro-inflammatory Effects of Bacterial Recombinant Human C-Reactive Protein are Caused by Contamination with Bacterial Products not by C-Reactive Protein Itself

    Science.gov (United States)

    Pepys, Mark B.; Hawkins, Philip N.; Kahan, Melvyn C.; Tennent, Glenys A.; Gallimore, J. Ruth; Graham, David; Sabin, Caroline A.; Zychlinsky, Arturo; de Diego, Juana

    2006-01-01

    Intravenous administration to human volunteers of a commercial preparation of recombinant human C-reactive protein (CRP) produced in E. coli was recently reported in this journal to induce an acute phase response of serum amyloid A protein (SAA) and of CRP itself, and to activate the coagulation system. The authors concluded that CRP is probably a mediator of atherothrombotic disease. Here we confirm that this recombinant CRP preparation was pro-inflammatory both for mouse macrophages in vitro and for mice in vivo, but show that pure natural human CRP had no such activity. Furthermore mice transgenic for human CRP, and expressing it throughout their lives, maintained normal concentrations of their most sensitive endogenous acute phase reactants, SAA and serum amyloid P component (SAP). The patterns of in vitro cytokine induction and of in vivo acute phase stimulation by the recombinant CRP preparation were consistent with contamination by bacterial products, and there was 46.6 EU of apparent endotoxin activity per mg of CRP in the bacterial product, compared to 0.9 EU per mg of our isolated natural human CRP preparation. The absence of any pro-inflammatory activity in natural CRP for macrophages or healthy mice strongly suggests that the in vivo effects of the recombinant preparation observed in humans were due to pro-inflammatory bacterial products and not human CRP. PMID:16254214

  3. Bacterial Ghosts as antigen and drug delivery system for ocular surface diseases: Effective internalization of Bacterial Ghosts by human conjunctival epithelial cells.

    Science.gov (United States)

    Kudela, Pavol; Koller, Verena Juliana; Mayr, Ulrike Beate; Nepp, Johannes; Lubitz, Werner; Barisani-Asenbauer, Talin

    2011-05-20

    The purpose of the presented investigation was to examine the efficiency of the novel carrier system Bacterial Ghosts (BGs), which are empty bacterial cell envelopes of Gram-negative bacteria to target human conjunctival epithelial cells, as well as to test the endocytic capacity of conjunctival cells after co-incubation with BGs generated from different bacterial species, and to foreclose potential cytotoxic effects caused by BGs. The efficiency of conjunctival cells to internalize BGs was investigated using the Chang conjunctival epithelial cell line and primary human conjunctiva-derived epithelial cells (HCDECs) as in vitro model. A high capacity of HCDECs to functionally internalize BGs was detected with the level of internalization depending on the type of species used for BGs generation. Detailed analysis showed no cytotoxic effect of BGs on HCDECs independently of the used bacterial species. Moreover, co-incubation with BGs did not enhance expression of both MHC class I and class II molecules by HCDECs, but increased expression of ICAM-1. The high rates of BG's internalization by HCDECs with no BG-mediated cytotoxic impact designate this carrier system to be a promising candidate for an ocular surface drug delivery system. BGs could be useful for future therapeutic ocular surface applications and eye-specific disease vaccine development including DNA transfer. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  5. Jun N-terminal protein kinase enhance middle ear mucosal proliferation during bacterial otitis media

    OpenAIRE

    Furukawa, Masayuki; Ebmayer, Jörg; Pak , Kwang; Austin, Darrell A.; Melhus , Åsa; Webster, Nicholas J. G.; Ryan, Allen F.

    2007-01-01

    Mucosal hyperplasia is a characteristic component of otitis media. The present study investigated the participation of signaling via the Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase in middle ear mucosal hyperplasia in animal models of bacterial otitis media. Otitis media was induced by the inoculation of nontypeable Haemophilus influenzae into the middle ear cavity. Western blotting revealed that phosphorylation of JNK isoforms in the middle ear mucosa preceded but pa...

  6. Cancer therapy using viral- and bacterial proteins, as vectors for vaccines or as carriers of cytostatics

    OpenAIRE

    Eriksson, Mathilda

    2012-01-01

    New cancer therapies are urgently needed, since available treatment options today have negative side effects, and cure only about half of the patients with invasive cancer. One, relatively new, option is to vaccinate against cancer, by introducing an antigen that is present on the tumor cells into the patient to stimulate specific immunity against the tumor. For this purpose viral capsid proteins, which can self-assemble into so called virus-like particles (VLPs), can be e...

  7. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface

    Directory of Open Access Journals (Sweden)

    Montanaro J

    2015-07-01

    Full Text Available Jacqueline Montanaro,1 Aleksandra Inic-Kanada,1 Angela Ladurner,1 Elisabeth Stein,1 Sandra Belij,1 Nora Bintner,1 Simone Schlacher,1 Nadine Schuerer,1 Ulrike Beate Mayr,2 Werner Lubitz,2 Nikolaus Leisch,3 Talin Barisani-Asenbauer11Laura Bassi Centres of Expertise, OCUVAC – Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria; 2BIRD-C GmbH & Co KG, Kritzendorf, Austria; 3Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, AustriaAbstract: To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN, whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results

  8. Molecular mechanism of pore creation in bacterial membranes by amyloid proteins

    International Nuclear Information System (INIS)

    Tsigelny, I F; Sharikov, Y; Miller, M A; Masliah, E

    2009-01-01

    This study explores the mechanism of pore creation in cellular membranes by MccE92 bacterial proteins. The results of this study are then compared with the mechanism of alpha-synuclein (aS)-based pore formation in mammalian cells, and its role in Parkinson's disease.

  9. SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review

    Directory of Open Access Journals (Sweden)

    Skyla A. Duncan

    2017-12-01

    Full Text Available Severe bacterial infections can lead to both acute and chronic inflammatory conditions. Innate immunity is the first defense mechanism employed against invading bacterial pathogens through the recognition of conserved molecular patterns on bacteria by pattern recognition receptors (PRRs, especially the toll-like receptors (TLRs. TLRs recognize distinct pathogen-associated molecular patterns (PAMPs that play a critical role in innate immune responses by inducing the expression of several inflammatory genes. Thus, activation of immune cells is regulated by cytokines that use the Janus kinase/signal transducers and activators of transcription (JAK/STAT signaling pathway and microbial recognition by TLRs. This system is tightly controlled by various endogenous molecules to allow for an appropriately regulated and safe host immune response to infections. Suppressor of cytokine signaling (SOCS family of proteins is one of the central regulators of microbial pathogen-induced signaling of cytokines, principally through the inhibition of the activation of JAK/STAT signaling cascades. This review provides recent knowledge regarding the role of SOCS proteins during bacterial infections, with an emphasis on the mechanisms involved in their induction and regulation of antibacterial immune responses. Furthermore, the implication of SOCS proteins in diverse processes of bacteria to escape host defenses and in the outcome of bacterial infections are discussed, as well as the possibilities offered by these proteins for future targeted antimicrobial therapies.

  10. Reactive oxygen species modulator 1, a novel protein, combined with carcinoembryonic antigen in differentiating malignant from benign pleural effusion.

    Science.gov (United States)

    Chen, Xianmeng; Zhang, Na; Dong, Jiahui; Sun, Gengyun

    2017-05-01

    The differential diagnosis of malignant pleural effusion and benign pleural effusion remains a clinical problem. Reactive oxygen species modulator 1 is a novel protein overexpressed in various human tumors. The objective of this study was to evaluate the diagnostic value of joint detection of reactive oxygen species modulator 1 and carcinoembryonic antigen in the differential diagnosis of malignant pleural effusion and benign pleural effusion. One hundred two consecutive patients with pleural effusion (including 52 malignant pleural effusion and 50 benign pleural effusion) were registered in this study. Levels of reactive oxygen species modulator 1 and carcinoembryonic antigen were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Results showed that the concentrations of reactive oxygen species modulator 1 both in pleural fluid and serum of patients with malignant pleural effusion were significantly higher than those of benign pleural effusion (both p carcinoembryonic antigen were 69.23% and 88.00%, respectively, at the cutoff value of 3.05 ng/mL, while serum carcinoembryonic antigen were 80.77% and 72.00% at the cutoff value of 2.60 ng/mL. The sensitivity could be raised to 88.17% in parallel detection of plural fluid reactive oxygen species modulator 1 and carcinoembryonic antigen concentration, and the specificity could be improved to 97.84% in serial detection.

  11. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...... by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides....

  12. The cathelicidin protein CRAMP is a potential atherosclerosis self-antigen in ApoE(-/- mice.

    Directory of Open Access Journals (Sweden)

    Peter M Mihailovic

    Full Text Available Auto-immunity is believed to contribute to inflammation in atherosclerosis. The antimicrobial peptide LL-37, a fragment of the cathelicidin protein precursor hCAP18, was previously identified as an autoantigen in psoriasis. Given the reported link between psoriasis and coronary artery disease, the biological relevance of the autoantigen to atherosclerosis was tested in vitro using a truncated (t form of the mouse homolog of hCAP18, CRAMP, on splenocytes from athero-prone ApoE(-/- mice. Stimulation with tCRAMP resulted in increased CD8+ T cells with Central Memory and Effector Memory phenotypes in ApoE(-/- mice, differentially activated by feeding with normal chow or high fat diet. Immunization of ApoE(-/- with different doses of the shortened peptide (Cramp resulted in differential outcomes with a lower dose reducing atherosclerosis whereas a higher dose exacerbating the disease with increased neutrophil infiltration of the atherosclerotic plaques. Low dose Cramp immunization also resulted in increased splenic CD8+ T cell degranulation and reduced CD11b+CD11c+ conventional dendritic cells (cDCs, whereas high dose increased CD11b+CD11c+ cDCs. Our results identified CRAMP, the mouse homolog of hCAP-18, as a potential self-antigen involved in the immune response to atherosclerosis in the ApoE(-/- mouse model.

  13. Myosin-cross-reactive antigen (MCRA protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

    Directory of Open Access Journals (Sweden)

    Ross R

    2011-02-01

    Full Text Available Abstract Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA production, and this protein has an additional function in bacterial stress protection.

  14. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection

    LENUS (Irish Health Repository)

    Rosberg-Cody, Eva

    2011-02-17

    Abstract Background The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. Results MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. Conclusions MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  15. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bacterial collagen-like proteins that form triple-helical structures

    Science.gov (United States)

    Yu, Zhuoxin; An, Bo; Ramshaw, John A.M.; Brodsky, Barbara

    2014-01-01

    A large number of collagen-like proteins have been identified in bacteria during the past ten years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in E. coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35–39 °C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions. PMID:24434612

  17. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

    Directory of Open Access Journals (Sweden)

    Sungback Cho

    2015-09-01

    Full Text Available This study was performed to investigate the effect of different levels of dietary crude protein (CP on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg fed diets containing three levels of dietary CP (20%, 17.5%, and 15% and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05 in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05 in CP 15% than in CP 20% group. There was a positive correlation (p<0.05 between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

  18. Latex-protein complexes from an acute phase recombinant antigen of Toxoplasma gondii for the diagnosis of recently acquired toxoplasmosis.

    Science.gov (United States)

    Peretti, Leandro E; Gonzalez, Verónica D G; Marcipar, Iván S; Gugliotta, Luis M

    2014-08-01

    The synthesis and characterization of latex-protein complexes (LPC), from the acute phase recombinant antigen P35 (P35Ag) of Toxoplasma gondii and "core-shell" carboxylated or polystyrene (PS) latexes (of different sizes and charge densities) are considered, with the aim of producing immunoagglutination reagents able to detect recently acquired toxoplasmosis. Physical adsorption (PA) and chemical coupling (CC) of P35Ag onto latex particles at different pH were investigated. Greater amounts of adsorbed protein were obtained on PS latexes than on carboxylated latexes, indicating that hydrophobic forces govern the interactions between the protein and the particle surface. In the CC experiments, the highest amount of bound protein was obtained at pH 6, near the isoelectric point of the protein (IP=6.27). At this pH, it decreased both the repulsion between particle surface and protein, and the repulsion between neighboring molecules. The LPC were characterized and the antigenicity of the P35Ag protein coupled on the particles surface was evaluated by Enzyme-Linked ImmunoSorbent Assay (ELISA). Results from ELISA showed that the P35Ag coupled to the latex particles surface was not affected during the particles sensitization by PA and CC and the produced LPC were able to recognize specific anti-P35Ag antibodies present in the acute phase of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. [Cloning, expression and antigenic analysis of VP1-VP4 gene encoding the structural protein of Coxsackie virus A16].

    Science.gov (United States)

    Song, Yuanbin; He, Sijie; Yu, Nan; Chen, Xinxin; Wang, Bin; Che, Xiaoyan; Zeng, Qiyi

    2012-12-01

    To clone and express VP1-VP4 genes encoding the structural proteins of Coxsackie virus A16 and analyze the antigenicity of the expressed recombinant proteins. The VP1-VP4 cDNAs were amplified with RT-PCR from the extracted viral RNA and cloned into pMD19-T vectors. The VP1-VP4 genes were inserted to the multi-cloning sites of the plasmid pQE30a, and the protein expressions in E. coli M15 were induced by IPTG. After purification by washing with 8 mol/L urea under denaturing condition, the recombinant proteins were identified by Western blotting and ELISA for their immunogenicity against rabbit antisera of Coxsackie virus A16 and enterovirus 71, respectively. The recombinant VP1-VP4 proteins were highly expressed in E. coli M15. The purified proteins could be recognized by rabbit antiserum of Coxsackie virus A16 and showed cross reactivity with the rabbit antiserum of Enterovirus 71. The recombinant Coxsackie virus A16 VP1-VP4 proteins obtained possess good antigenicity.

  20. Cooperative Binding and Activation of Fibronectin by a Bacterial Surface Protein*

    Science.gov (United States)

    Marjenberg, Zoe R.; Ellis, Ian R.; Hagan, Robert M.; Prabhakaran, Sabitha; Höök, Magnus; Talay, Susanne R.; Potts, Jennifer R.; Staunton, David; Schwarz-Linek, Ulrich

    2011-01-01

    Integrin-dependent cell invasion of some pathogenic bacteria is mediated by surface proteins targeting the extracellular matrix protein fibronectin (FN). Although the structural basis for bacterial FN recognition is well understood, it has been unclear why proteins such as streptococcal SfbI contain several FN-binding sites. We used microcalorimetry to reveal cooperative binding of FN fragments to arrays of binding sites in SfbI. In combination with thermodynamic analyses, functional cell-based assays show that SfbI induces conformational changes in the N-terminal 100-kDa region of FN (FN100kDa), most likely by competition with intramolecular interactions defining an inactive state of FN100kDa. This study provides insights into how long range conformational changes resulting in FN activation may be triggered by bacterial pathogens. PMID:21059652

  1. Bacterial protein meal in diets for growing pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Kjos, N.P.

    2007-01-01

    % of the digestible nitrogen (N), respectively. Once during each balance period, 22-h respiration experiments were performed using indirect calorimetry. Daily weight gain, feed intake and feed conversion rate were the same for all diets. The apparent digestibility of N was lower on diet BP10 than on BP0 (P = 0...... blocks according to age. One pig from each litter was fed one of the four experimental diets. Soya-bean meal was replaced with BPM on the basis of digestible protein, and the BPM contents in the four diets were 0% (BP0), 5% (BP5), 10% (BP10) and 15% (BP15), corresponding to 0%, 17%, 35% and 52.......002), whereas the apparent digestibility of energy was similar on all diets. The retention of nitrogen did not differ between diets and was 1.50, 1.53, 1.33 and 1.46 g N per kg0.75 per day on BP0, BP5, BP10 and BP15, respectively. Neither metabolisable energy intake nor heat production were affected...

  2. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment.

    Science.gov (United States)

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K

    2012-08-22

    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  3. Synthesis and structural insight into ESX-1 Substrate Protein C, an immunodominant Mycobacterium tuberculosis-secreted antigen.

    Science.gov (United States)

    Son, Soo Jung; Harris, Paul W R; Squire, Chris J; Baker, Edward N; Brimble, Margaret A

    2016-05-01

    Tuberculosis, the second leading cause of death from a single infectious agent, is recognized as a major threat to human health due to a lack of practicable vaccines against the disease and the widespread occurrence of drug resistance. With a pressing need for a novel protein target as a platform for new vaccine development, ESX-1 Substrate Protein C (EspC) was recently identified as a novel Mycobacterium tuberculosis-secreted antigen that is as immunodominant as the two specific immunodiagnostic T-cell antigens, CFP-10 and ESAT-6. Here, we present the first chemical total synthesis, folding conditions, and circular dichroism data of EspC. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 267-274, 2016. © 2016 Wiley Periodicals, Inc.

  4. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Directory of Open Access Journals (Sweden)

    Yakov Lomakin

    2017-07-01

    Full Text Available Multiple sclerosis (MS is an autoimmune chronic inflammatory disease of the central nervous system (CNS. Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV latent membrane protein 1 (LMP1. In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  5. Exposure to the Epstein–Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo. We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20–50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading. PMID:28729867

  6. Exposure to the Epstein-Barr Viral Antigen Latent Membrane Protein 1 Induces Myelin-Reactive Antibodies In Vivo.

    Science.gov (United States)

    Lomakin, Yakov; Arapidi, Georgii Pavlovich; Chernov, Alexander; Ziganshin, Rustam; Tcyganov, Evgenii; Lyadova, Irina; Butenko, Ivan Olegovich; Osetrova, Maria; Ponomarenko, Natalia; Telegin, Georgy; Govorun, Vadim Markovich; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1). In this study, we report that exposure of mice to LMP1 results in induction of myelin-reactive autoantibodies in vivo . We posit that chronic exposure or multiple acute exposures to viral antigen may redirect B cells from production of antiviral antibodies to antibodies, specific to myelin antigen. However, even in inbred animals, which are almost identical in terms of their genomes, such an effect is only observed in 20-50% of animals, indicating that this change occurs by chance, rather than systematically. Cross-immunoprecipitation analysis showed that only part of anti-MBP antibodies from LMP1-immunized mice might simultaneously bind LMP1. In contrast, the majority of anti-LMP1 antibodies from MBP-immunized mice bind MBP. De novo sequencing of anti-LMP1 and anti-MBP antibodies by mass spectrometry demonstrated enhanced clonal diversity in LMP1-immunized mice in comparison with MBP-immunized mice. We suggest that induction of MBP-reactive antibodies in LMP1-immunized mice may be caused by either Follicular dendritic cells (FDCs) or by T cells that are primed by myelin antigens directly in CNS. Our findings help to elucidate the still enigmatic link between EBV infection and MS development, suggesting that myelin-reactive antibodies raised as a response toward EBV protein LMP1 are not truly cross-reactive but are primarily caused by epitope spreading.

  7. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles

    DEFF Research Database (Denmark)

    Hummel, R; Nørgaard, P; Andreasen, P H

    1992-01-01

    The F-antigen is a prominent liver protein which has been extensively used in studies on natural and induced immunological tolerance. However, its intracellular localization and biological function have remained elusive. It has generally been assumed that the F-antigen is confined phylogenetically...... of the TF-ag protein, however, declined only moderately during prolonged periods of starvation demonstrating that extensive release of the TF-ag did not take place. In combination these results suggest that the TF-ag protein is a recycled constituent of the intracellular membrane network in T. thermophila...... to vertebrates. Now we have cloned and characterized a gene from the ciliated protozoan Tetrahymena thermophila encoding a protein which clearly is homologous with the rat F-antigen. The coding region of the Tetrahymena F-antigen (TF-ag) gene specifies a 46,051 M(r) protein and is interrupted by three introns...

  8. Clinical Prognosis in Neonatal Bacterial Meningitis: The Role of Cerebrospinal Fluid Protein

    Science.gov (United States)

    Zhao, Dongying; Ren, Fang; Luo, Zhongcheng; Zhang, Yongjun

    2015-01-01

    Neonates are at high risk of meningitis and of resulting neurologic complications. Early recognition of neonates at risk of poor prognosis would be helpful in providing timely management. From January 2008 to June 2014, we enrolled 232 term neonates with bacterial meningitis admitted to 3 neonatology departments in Shanghai, China. The clinical status on the day of discharge from these hospitals or at a postnatal age of 2.5 to 3 months was evaluated using the Glasgow Outcome Scale (GOS). Patients were classified into two outcome groups: good (167 cases, 72.0%, GOS = 5) or poor (65 cases, 28.0%, GOS = 1–4). Neonates with good outcome had less frequent apnea, drowsiness, poor feeding, bulging fontanelle, irritability and more severe jaundice compared to neonates with poor outcome. The good outcome group also had less pneumonia than the poor outcome group. Besides, there were statistically significant differences in hemoglobin, mean platelet volume, platelet distribution width, C-reaction protein, procalcitonin, cerebrospinal fluid (CSF) glucose and CSF protein. Multivariate logistic regression analyses suggested that poor feeding, pneumonia and CSF protein were the predictors of poor outcome. CSF protein content was significantly higher in patients with poor outcome. The best cut-offs for predicting poor outcome were 1,880 mg/L in CSF protein concentration (sensitivity 70.8%, specificity 86.2%). After 2 weeks of treatment, CSF protein remained higher in the poor outcome group. High CSF protein concentration may prognosticate poor outcome in neonates with bacterial meningitis. PMID:26509880

  9. Clinical Prognosis in Neonatal Bacterial Meningitis: The Role of Cerebrospinal Fluid Protein.

    Science.gov (United States)

    Tan, Jintong; Kan, Juan; Qiu, Gang; Zhao, Dongying; Ren, Fang; Luo, Zhongcheng; Zhang, Yongjun

    2015-01-01

    Neonates are at high risk of meningitis and of resulting neurologic complications. Early recognition of neonates at risk of poor prognosis would be helpful in providing timely management. From January 2008 to June 2014, we enrolled 232 term neonates with bacterial meningitis admitted to 3 neonatology departments in Shanghai, China. The clinical status on the day of discharge from these hospitals or at a postnatal age of 2.5 to 3 months was evaluated using the Glasgow Outcome Scale (GOS). Patients were classified into two outcome groups: good (167 cases, 72.0%, GOS = 5) or poor (65 cases, 28.0%, GOS = 1-4). Neonates with good outcome had less frequent apnea, drowsiness, poor feeding, bulging fontanelle, irritability and more severe jaundice compared to neonates with poor outcome. The good outcome group also had less pneumonia than the poor outcome group. Besides, there were statistically significant differences in hemoglobin, mean platelet volume, platelet distribution width, C-reaction protein, procalcitonin, cerebrospinal fluid (CSF) glucose and CSF protein. Multivariate logistic regression analyses suggested that poor feeding, pneumonia and CSF protein were the predictors of poor outcome. CSF protein content was significantly higher in patients with poor outcome. The best cut-offs for predicting poor outcome were 1,880 mg/L in CSF protein concentration (sensitivity 70.8%, specificity 86.2%). After 2 weeks of treatment, CSF protein remained higher in the poor outcome group. High CSF protein concentration may prognosticate poor outcome in neonates with bacterial meningitis.

  10. Biochemical activities of T-antigen proteins encoded by simian virus 40 A gene deletion mutants.

    OpenAIRE

    Clark, R; Peden, K; Pipas, J M; Nathans, D; Tjian, R

    1983-01-01

    We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of th...

  11. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins.

    Directory of Open Access Journals (Sweden)

    Amelia M Clark

    Full Text Available Antigenic drift of the hemagglutinin (HA and neuraminidase (NA influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses accounts for the limited effectiveness (around 40% of vaccination against pH1N1-like viruses during the 2015-2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015-2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI and HA-specific neutralizing serum antibody (Ab titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2-4 fold lower for the 2015-2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to

  12. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen.

    Science.gov (United States)

    Tekewe, Alemu; Fan, Yuanyuan; Tan, Emilyn; Middelberg, Anton P J; Lua, Linda H L

    2017-02-01

    A high global burden of rotavirus disease and the unresolved challenges with the marketed rotavirus vaccines, particularly in the developing world, have ignited efforts to develop virus-like particle (VLP) vaccines for rotavirus. While rotavirus-like particles comprising multiple viral proteins can be difficult to process, modular VLPs presenting rotavirus antigenic modules are promising alternatives in reducing process complexity and cost. In this study, integrated molecular and bioprocess engineering approaches were used to simplify the production of modular murine polyomavirus capsomeres and VLPs presenting a rotavirus 18 kDa VP8* antigen. A single construct was generated for dual expression of non-tagged murine polyomavirus capsid protein VP1 and modular VP1 inserted with VP8*, for co-expression in Escherichia coli. Co-expressed proteins assembled into pentameric capsomeres in E. coli. A selective salting-out precipitation and a polishing size exclusion chromatography step allowed the recovery of stable modular capsomeres from cell lysates at high purity, and modular capsomeres were successfully translated into modular VLPs when assembled in vitro. Immunogenicity study in mice showed that modular capsomeres and VLPs induced high levels of VP8*-specific antibodies. Our results demonstrate that a multipronged synthetic biology approach combining molecular and bioprocess engineering enabled simple and low-cost production of highly immunogenic modular capsomeres and VLPs presenting conformational VP8* antigenic modules. This strategy potentially provides a cost-effective production route for modular capsomere and VLP vaccines against rotavirus, highly suitable to manufacturing economics for the developing world. Biotechnol. Bioeng. 2017;114: 397-406. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Invariant Chain Modulates HLA Class II Protein Recycling and Peptide Presentation in Nonprofessional Antigen Presenting Cells

    OpenAIRE

    Haque, Azizul; Hajiaghamohseni, Laela M.; Li, Ping; Toomy, Katherine; Blum, Janice S.

    2007-01-01

    The expression of MHC class II molecules and the invariant chain (Ii) chaperone, is coordinately regulated in professional antigen presenting cells (APC). Ii facilitates class II subunit folding as well as transit and retention in mature endosomal compartments rich in antigenic peptides in these APC. Yet, in nonprofessional APC such as tumors, fibroblasts and endocrine tissues, the expression of class II subunits and Ii may be uncoupled. Studies of nonprofessional APC indicate class II molecu...

  14. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2009-01-01

    with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...... protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C...... parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14-18 h after lung...

  15. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  16. Evaluation of the cross‐reactivity of antigens in Glupearl 19S and other hydrolysed wheat proteins in cosmetics

    Science.gov (United States)

    Nakamura, Masashi; Yagami, Akiko; Hara, Kazuhiro; Sano‐Nagai, Akiyo; Kobayashi, Tsukane

    2016-01-01

    Summary Background In Japan, over 2000 users of a facial soap containing Glupearl 19S (GP19S), a hydrolysed wheat protein (HWP), developed immediate‐type systemic wheat allergy (HWP‐IWA), and ∼70% of them developed associated contact urticaria. Objectives We investigated whether HWP‐IWA patients cross‐react with other HWPs, and analysed HWP antigenic characteristics. Methods We used 10 types of HWP that are commercially available as cosmetic ingredients, and 16 subjects with HWP‐IWA. We performed an enzyme‐linked immunosorbent assay (ELISA) to evaluate the reactivity to each HWP, and western blotting to evaluate the characteristics of the antigens by using HWP‐IWA patients' serum IgE antibodies. We also performed prick tests with the HWPs. Results The patients reacted to four other HWPs in addition to GP19S, according to ELISA, and this was confirmed by strong reactions in the prick tests to the same four types of HWP. Smears of antigens with molecular weights ranging from the high range to the low range were seen on western blotting with the four HWPs that showed strong reactions in the ELISA and prick tests. Conclusions HWP‐IWA patients cross‐react with other HWPs. The antigens that they cross‐reacted to had a molecular weight distribution similar to that of GP19S present in the HWPs. PMID:27027256

  17. Oxidative stress and S-100B protein in children with bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Hamed Enas A

    2009-10-01

    Full Text Available Abstract Background Bacterial meningitis is often associated with cerebral compromise which may be responsible for neurological sequelae in nearly half of the survivors. Little is known about the mechanisms of CNS involvement in bacterial meningitis. Several studies have provided substantial evidence for the key role of nitric oxide (NO and reactive oxygen species in the complex pathophysiology of bacterial meningitis. Methods In the present study, serum and CSF levels of NO, lipid peroxide (LPO (mediators for oxidative stress and lipid peroxidation; total thiol, superoxide dismutase (SOD (antioxidant mediators and S-100B protein (mediator of astrocytes activation and injury, were investigated in children with bacterial meningitis (n = 40. Albumin ratio (CSF/serum is a marker of blood-CSF barriers integrity, while mediator index (mediator ratio/albumin ratio is indicative of intrathecal synthesis. Results Compared to normal children (n = 20, patients had lower serum albumin but higher NO, LPO, total thiol, SOD and S-100B. The ratios and indices of NO and LPO indicate blood-CSF barriers dysfunction, while the ratio of S-100B indicates intrathecal synthesis. Changes were marked among patients with positive culture and those with neurological complications. Positive correlation was found between NO index with CSF WBCs (r = 0.319, p Conclusion This study suggests that loss of integrity of brain-CSF barriers, oxidative stress and S-100B may contribute to the severity and neurological complications of bacterial meningitis.

  18. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    Science.gov (United States)

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  19. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation.

    Science.gov (United States)

    Sadarangani, Manish; Hoe, Claire J; Makepeace, Katherine; van der Ley, Peter; Pollard, Andrew J

    2016-03-01

    Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5'-CTCTT-3' coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opa genes demonstrated variable rates of PV, between 6.4 × 10(-4) and 6.9 × 10(-3) per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r(2) = 0.77, p = 0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opa genes in UK disease isolates (315/463, 68.0%) were in the 'on' phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.

  20. Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic β-Glucan Dectin-1 Agonist to Protein Antigen.

    Science.gov (United States)

    Donadei, Agnese; Gallorini, Simona; Berti, Francesco; O'Hagan, Derek T; Adamo, Roberto; Baudner, Barbara C

    2015-05-04

    The potential benefits of skin delivery of vaccines derive from the presence of a densely connected network of antigen presenting cells in the skin layer, most significantly represented by Langerhans cells and dermal dendritic cells. Targeting these cells by adjuvant conjugated to an antigen should result in enhanced immunogenicity of a vaccine. Since one of the most widely used adjuvants is an insoluble salt of aluminum (aluminum hydroxide) that cannot be used for skin delivery due to reactogenicity, we focused our attention on agonists of receptors present on skin dendritic cells, including the Dectin-1 receptor. β-(1-3)-glucans, which are the most abundant components of the fungal surface, are known to activate the innate immune response by interaction with the C-type lectin-like Dectin-1 receptor. In this work we identified by rational design a well-defined synthetic β-(1-3)-glucan hexasaccharide as a Dectin-1 agonist and chemically conjugated it to the genetically detoxified diphtheria toxin (CRM197) protein antigen, as a means to increase the binding to Dectin-1 receptor and to target to skin dendritic cells. We demonstrated that the in vitro activation of the receptor was significantly impacted by the presentation of the glucan on the protein carrier. In vivo results in mice showed that the conjugation of the synthetic β-(1-3)-glucan when delivered intradermally resulted in higher antibody titers in comparison to intramuscular (i.m.) immunization and was not different from subcutaneous (s.c.) delivery. These findings suggest that weak receptor binders can be turned into more potent agonists by the multivalent presentation of many ligands covalently conjugated to the protein core. Moreover, this approach is particularly valuable to increase the immunogenicity of antigens administered via skin delivery.

  1. Leishmania infantum: gene cloning of the GRP94 homologue, its expression as recombinant protein, and analysis of antigenicity.

    Science.gov (United States)

    Larreta, R; Soto, M; Alonso, C; Requena, J M

    2000-10-01

    The complete nucleotide sequence for the Leishmania infantum homologue to the glucose-regulated protein 94 (GRP94) gene was determined from the isolation and characterization of a genomic clone. Like the mammalian and plant GRP94s, the L. infantum GRP94 sequence possesses both an N-terminal signal peptide and a putative endoplasmic reticulum retention signal, consisting of the C-terminal tetrapeptide EDDL. Thus, L. infantum is the first protozoan organism in which GRP94 has been identified. Southern blot analysis has indicated that this protein is encoded by a single-copy gene. The L. infantum GRP94 gene was expressed in Escherichia coli and the recombinant protein used to evaluate its antigenicity and immunogenicity. Eighty-four percent of sera from dogs with visceral leishmaniasis reacted with the protein, indicating that GRP94 is a potent immunogen during Leishmania infection. Given the immunogenic and antigenic properties shown by the L. infantum GRP94, we think that this protein constitutes a valuable molecule for diagnostic purposes and a potential candidate for studies of protective immunogenicity. Copyright 2000 Academic Press.

  2. Immunogenicity of a fusion protein comprising coli surface antigen 3 and labile B subunit of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Alerasol, Masoome; Mousavi Gargari, Seyed Latif; Nazarian, Shahram; Bagheri, Samane

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. A fusion protein is composed of a major fimbrial subunit of coli surface antigen 3, and the heat-labile B subunit (LTB) was constructed as a chimeric immunogen. For optimum level expression of protein, the gene was synthesized with codon bias of E. coli. Also, recombinant protein was expressed in E. coli BL21DE3. ELISA and Western tests were carried out for determination of antigen and specificity of antibody raised against recombinant protein in animals. The anti-toxicity and anti-adherence properties of the immune sera against ETEC were also evaluated. Immunological analyses showed the production of high titer of specific antibody in immunized mice. The built-in LTB retains native toxin properties which were approved by GM1 binding assay. Pre-treatment of the ETEC cells with anti-sera significantly decreased their adhesion to Caco-2 cells. The results indicated the efficacy of the recombinant chimeric protein as an effective immunogen inducing strong humoral response. The designated chimer would be an interesting prototype for a vaccine and worthy of further investigation.

  3. The EXIT Strategy: an Approach for Identifying Bacterial Proteins Exported during Host Infection

    Science.gov (United States)

    Perkowski, E. F.; Zulauf, K. E.; Weerakoon, D.; Hayden, J. D.; Ioerger, T. R.; Oreper, D.; Gomez, S. M.; Sacchettini, J. C.

    2017-01-01

    ABSTRACT Exported proteins of bacterial pathogens function both in essential physiological processes and in virulence. Past efforts to identify exported proteins were limited by the use of bacteria growing under laboratory (in vitro) conditions. Thus, exported proteins that are exported only or preferentially in the context of infection may be overlooked. To solve this problem, we developed a genome-wide method, named EXIT (exported in vivo technology), to identify proteins that are exported by bacteria during infection and applied it to Mycobacterium tuberculosis during murine infection. Our studies validate the power of EXIT to identify proteins exported during infection on an unprecedented scale (593 proteins) and to reveal in vivo induced exported proteins (i.e., proteins exported significantly more during in vivo infection than in vitro). Our EXIT data also provide an unmatched resource for mapping the topology of M. tuberculosis membrane proteins. As a new approach for identifying exported proteins, EXIT has potential applicability to other pathogens and experimental conditions. PMID:28442606

  4. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance].

    Science.gov (United States)

    Xie, Long-xiang; Yu, Zhao-xiao; Guo, Si-yao; Li, Ping; Abdalla, Abualgasim Elgaili; Xie, Jian-ping

    2015-08-01

    The increasing antibiotic resistance is now threatening to take us back to a pre-antibiotic era. Bacteria have evolved diverse resistance mechanisms, on which in-depth research could help the development of new strategies to control antibiotic-resistant infections. Epigenetic alterations and protein post-translational modifications (PTMs) play important roles in multiple cellular processes such as metabolism, signal transduction, protein degradation, DNA replication regulation and stress response. Recent studies demonstrated that epigenetics and PTMs also play vital roles in bacterial antibiotic resistance. In this review, we summarize the regulatory roles of epigenetic factors including DNA methylation and regulatory RNAs as well as PTMs such as phosphorylation and succinylation in bacterial antibiotic resistance, which may provide innovative perspectives on selecting antibacterial targets and developing antibiotics.

  6. Antigen sequence typing of outer membrane protein (fetA gene of Neisseria meningitidis serogroup A from Delhi & adjoining areas

    Directory of Open Access Journals (Sweden)

    S Dwivedi

    2014-01-01

    Full Text Available Background & objectives: Meningitis caused by Neisseria meningitidis is a fatal disease. Meningococcal meningitis is an endemic disease in Delhi and irregular pattern of outbreaks has been reported in India. All these outbreaks were associated with serogroup A. Detailed molecular characterization of N. meningitidis is required for the management of this fatal disease. In this study, we characterized antigenic diversity of surface exposed outer membrane protein (OMP FetA antigen of N. meningitidis serogroup A isolates obtained from cases of invasive meningococcal meningitis in Delhi, India. Methods: Eight isolates of N. meningitidis were collected from cerebrospinal fluid during October 2008 to May 2011 from occasional cases of meningococcal meningitis. Seven isolates were from outbreaks of meningococcal meningitis in 2005-2006 in Delhi and its adjoining areas. These were subjected to molecular typing of fetA gene, an outer membrane protein gene. Results: All 15 N. meningitides isolates studied were serogroup A. This surface exposed porin is putatively under immune pressure. Hence as a part of molecular characterization, genotyping was carried out to find out the diversity in outer membrane protein (FetA gene among the circulating isolates of N. meningitidis. All 15 isolates proved to be of the same existing allele type of FetA variable region (VR when matched with global database. The allele found was F3-1 for all the isolates. Interpretation & conclusions: There was no diversity reported in the outer membrane protein FetA in the present study and hence this protein appeared to be a stable molecule. More studies on molecular characterization of FetA antigen are required from different serogroups circulating in different parts of the world.

  7. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  8. [Acute bacterial meningitis with soluble antigen detected by latex particle agglutination tests at the Sourô-Sanou University Hospital of Bobo-Dioulasso (Burkina Faso)].

    Science.gov (United States)

    Ouédraogo, S M; Yaméogo, T M; Kyelem, C G; Poda, G E A; Ouédraogo, N F; Millogo, A; Ouédraogo, A; Ouédraogo-Traoré, A; Drabo, Y J

    2012-01-01

    Acute bacterial meningitis constitutes a major public health problem in Burkina Faso, in part because of its high lethality rate, estimated in 2004 at 17.5%. Failure to confirm suspected cases of meningitis results in overestimating reported cases and incorrectly treating false positives. The latex particle agglutination test is a diagnostic alternative that overcomes these limitations. Determine the bacteriological and therapeutic profile as well as the course of cases of acute meningitis confirmed by the latex agglutination test at Sourô-Sanou University Hospital. This prospective longitudinal study took place over a one-year period (2008 to 2009). Data were collected from clinical and laboratory records. The diagnosis of meningitis was confirmed by testing for specific soluble antigens in the spinal fluid. We used the Pastorex(™) Meningitis Kit for that purpose. The threshold of significance selected for our study was 0.05. In all, 457 samples of spinal fluid from patients with suspected acute bacterial meningitis were analyzed and the latex test was performed in 438 of these samples: 154 (35.2%) were positive. The average age of our cases confirmed by the latex test was 13.2 ± 4.2 years old. This test confirmed more cases than any other method of identification. The therapeutic strategy used from one to four treatment agents. Streptococcus pneumoniae was the most virulent and the most lethal pathogen, with a 64.7% lethality rate. The earliness of the consultation and the treatment of the bacterial meningitis seem to have a positive effect on the course of disease.

  9. Bacterial infection affects protein synthesis in primary lymphoid tissues and circulating lymphocytes of rats.

    Science.gov (United States)

    Papet, Isabelle; Ruot, Benoît; Breuillé, Denis; Walrand, Stéphane; Farges, Marie-Chantal; Vasson, Marie-Paule; Obled, Christiane

    2002-07-01

    Bacterial infection alters whole-body protein homeostasis. Although immune cells are of prime importance for host defense, the effect of sepsis on their protein synthesis rates is poorly documented. We analyzed protein synthesis rates in rat primary lymphoid tissues and circulating lymphocytes after infection. Male Sprague-Dawley rats were studied 1, 2, 6 or 10 d after an intravenous injection of live Escherichia coli. Control healthy rats consumed food ad libitum (d 0) or were pair-fed to infected rats. Protein synthesis was quantified using a flooding dose of L-(4,4,4-(2)H(3))valine. Sepsis induced a delayed increase in total blood leukocytes and a rapid and persistent inversion of the counts. Basal fractional rates of protein synthesis (ks) were 117, 73 and 29%/d in bone marrow, thymus and circulating lymphocytes, respectively. Pair-feeding strongly depressed the absolute protein synthesis rates (ASR) of bone marrow (d 2 and 10) and thymus (d 2-10). The infection per se increased bone marrow, thymus and circulating lymphocyte ks but at various postinfection times. It decreased bone marrow (d 1) and thymus (d 1 and 2) ASR but increased lymphocyte (d 2 and 10) and bone marrow (d 10) ASR. Our results reflect the deleterious effect of anorexia on primary lymphoid tissues. The host defense against bacterial infection exhibited time- and tissue-dependent modifications of protein synthesis, indicating that blood lymphocyte protein data are not representative of the immune system as a whole. Optimization of nutritional supports would be facilitated by including protein synthesis measurements of the immune system.

  10. Side effects of extra tRNA supplied in a typical bacterial protein production scenario

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie; Nørholm, Morten H. H.

    2016-01-01

    Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence of complemen......Recombinant protein production is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed to make the process more efficient. One commonly used generic solution is to supply extra copies of low-abundance tRNAs to compensate for the presence...... of complementary rare codons in genes-of-interest. Here we show that such extra tRNA, supplied by the commonly used pLysSRARE2 plasmid, can cause two side effects: (1) growth and gene expression can be impaired, and (2) apparent positive effects can be caused by differential expression of the lysozyme gene encoded...... on the same plasmid and not the tRNAs per se. These phenomena seem to have been largely overlooked despite the huge popularity of the T7/pET-based systems for bacterial protein production....

  11. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  12. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines

    Directory of Open Access Journals (Sweden)

    Flower Darren R

    2007-01-01

    Full Text Available Abstract Background Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach – such as speed and cost efficiency – its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC transformation of protein sequences into uniform vectors of principal amino acid properties. Results Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen. Conclusion VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without

  13. [Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with vectors bearing genes of bacterial antigenes from Mycobacterium tuberculosis].

    Science.gov (United States)

    Marveeva, N A; Vasilenko, M Iu; Shakhovskiĭ, A M; Kuchuk, N V

    2009-01-01

    Transgenic plants of lettuce Lactuca sativa L. cv. Eralash, Sniezinka, Rubinovoje kruzevo with genes coding synthesis of tuberculosis antigenes have been obtained by Agrobacterium-mediated transformation. Cotyledons of in vitro seedlings were used as the initial material for transformation with plasmids pCB063 (genes ESAT6, nptII) and pCB064 (genes ESAT6:AG85B(-TMD), nptII). PCR-analysis has shown the presence both selective and target genes in all plants analyzed. At the same time, the RT-PCR has shown that both the presence and the absence of a transcription of gene ESAT6 at a stable transcription of a gene nptII is possible.

  14. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  15. Automated lanes detection and comparison of bacterial electrophoretic protein fingerprints using fast Fourier transformation.

    Science.gov (United States)

    Millership, S; Ragoonaden, K

    1992-08-01

    A method of computer-automated analysis of bacterial fingerprints produced by electrophoresis of proteins in a one-dimensional slab gel system is described. Proteins were visualized by silver staining. Western blotting, or autoradiography. Gels were recorded with a CCD camera, and after initial manual removal of the unwanted image margins, track margins were identified and extracted and a normalized trace was produced automatically using Fourier routines to smooth plots required for this process. Normalized traces were then compared by Fourier correlation after application of a high-pass step filter.

  16. Natural Products at Work: Structural Insights into Inhibition of the Bacterial Membrane Protein MraY.

    Science.gov (United States)

    Koppermann, Stefan; Ducho, Christian

    2016-09-19

    Natural(ly) fit: The X-ray crystal structure of the bacterial membrane protein MraY in complex with its natural product inhibitor muraymycin D2 is discussed. MraY catalyzes one of the membrane-associated steps in peptidoglycan biosynthesis and, therefore, represents a promising target for novel antibiotics. Structural insights derived from the protein-inhibitor complex might now pave the way for the development of new antimicrobial drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    Science.gov (United States)

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  18. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid.

    Science.gov (United States)

    Muñoz-Espín, Daniel; Holguera, Isabel; Ballesteros-Plaza, David; Carballido-López, Rut; Salas, Margarita

    2010-09-21

    The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.

  19. Changes In Protein Abundance Are Observed In Bacterial Isolates from a Natural Host

    Directory of Open Access Journals (Sweden)

    Megan Anne Rees

    2015-10-01

    Full Text Available Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterisation of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.

  20. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    Science.gov (United States)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  1. Changes in protein abundance are observed in bacterial isolates from a natural host.

    Science.gov (United States)

    Rees, Megan A; Stinear, Timothy P; Goode, Robert J A; Coppel, Ross L; Smith, Alexander I; Kleifeld, Oded

    2015-01-01

    Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterization of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the lymph nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins were identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.

  2. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, R L; Oettinger, T; Rosenkrands, I

    2000-01-01

    ), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  3. Multicolor imaging of bacterial nucleoid and division proteins with blue, orange and near-infrared fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Fabai eWu

    2015-06-01

    Full Text Available Studies of the spatiotemporal protein dynamics within live bacterial cells impose a strong demand for multi-color imaging. Despite the increasingly large collection of fluorescent-protein variants engineered to date, only a few of these were successfully applied in bacteria. Here, we explore the performance of recently engineered variants with the blue (TagBFP, orange (TagRFP-T, mKO2 and far-red (mKate2 spectral colors by tagging HU, LacI, MinD, and FtsZ for visualizing the nucleoid and the cell division process. We find that, these fluorescent proteins outperformed previous versions in terms of brightness and photostability at their respective spectral range, both when expressed as cytosolic label and when fused to native proteins. As this indicates that their folding is sufficiently fast, these proteins thus successfully expand the applicable spectra for multi-color imaging in bacteria. A near-infrared protein (eqFP670 is found to be the most red-shifted protein applicable to bacteria so far, with brightness and photostability that are advantageous for cell-body imaging, such as in microfluidic devices. Despite the multiple advantages, we also report the alarming observation that TagBFP directly interacts with TagRFP-T, causing interference of localization patterns between their fusion proteins. Our application of diverse fluorescent proteins for endogenous tagging provides guidelines for future engineering of fluorescent fusions in bacteria, specifically: 1 The performance of newly developed fluorescent proteins should be quantified in vivo for their introduction into bacteria; 2 spectral crosstalk and inter-variant interactions between fluorescent proteins should be carefully examined for multi-color imaging; and 3 successful genomic fusion to the 5’-end of a gene strongly depends on the translational read-through of the inserted coding sequence.

  4. Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP.

    Directory of Open Access Journals (Sweden)

    Danijela Koppers-Lalic

    2008-05-01

    Full Text Available Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1, pseudorabies virus (PRV, and equine herpesvirus 1 and 4 (EHV-1 and EHV-4 are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.

  5. Prediction of antigenic sites on ALS1 and HWP1 protein sequences in vaginal isolated C. albicans of using bioinformatics analysis

    Directory of Open Access Journals (Sweden)

    Mona Pakdel

    2015-04-01

    Full Text Available Background and Aim: The ability to predict antigenic sites on proteins is of major importance for medication. The aim of this study was to predict the antigenic sites on Agglutin in Like Sequence (ALS1 and Hyphal Wall Protein Sequences (HWP1 in Candida albicans isolated of vaginal infections using Physico-Chemical Profiles server. Materials and Methods: 7 isolates were obtained from women with vaginal infection which were collected from various medical centers of Tehran in 2011 and 2012. At the first,DNA was extracted  by Phenol-Chloroform method. Multiplex PCR was performed by using specific primers. In order to do bioinformatic studies, the genes were sequenced and then translated. Antigenic sites of protein sequences were identified by Physico-Chemical Profiles program. Results: The results showed that the presence of two genes als1 and hwp1 in isolates. In ALS1 and HWP1, respectively 2 and 1 antigenic site with the most antigenicity were identified. Conclusions: According to previous studies, Serine and Threonine phosphorylation is an important mechanism in pathogenesis of ALS1 and HWP1 proteins. Results in this study showed that serine and threonine are the most amino acids in the antigenic sites with high antigenicity property.

  6. Analysis of antigenic cross-reactivity between subgroup C avian pneumovirus and human metapneumovirus by using recombinant fusion proteins.

    Science.gov (United States)

    Luo, L; Sabara, M I; Li, Y

    2009-10-01

    Avian pneumovirus subgroup C (APV/C) has recently been reported to be more closely related to human metapneumovirus (hMPV) as determined by sequence analysis. To examine the antigenic relationship between APV/C and hMPV, the APV/C fusion (F) gene was cloned and expressed as an uncleaved glycoprotein in a baculovirus system. The reactivity of the APV/C F protein with antibodies against APV subgroups A, B, C, and hMPV was examined by Western blot analysis. The results showed that the expressed APV/C F protein was not only recognized by APV/C-specific antibodies but also by antibodies raised against hMPV. Previously expressed recombinant hMPV F protein also reacted with APV/C-specific antibodies, suggesting that there was significant antigenic cross-reactivity and a potential evolutionary relationship between hMPV and APV/C. Interestingly, the recombinant F proteins from APV/C and hMPV were not recognized by polyclonal antibodies specific to APV subgroups A and B.

  7. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii.

    Science.gov (United States)

    Irrgang, Alexandra; Murugaiyan, Jayaseelan; Weise, Christoph; Azab, Walid; Roesler, Uwe

    2015-01-01

    Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI-TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

  8. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

    Directory of Open Access Journals (Sweden)

    Alexandra eIrrgang

    2015-09-01

    Full Text Available Microalgae of the genus Prototheca (P. are associated with rare but severe infections (protothecosis and represent a potential zoonotic risk. Genotype (GT 2 of P. zopfii has been established as pathogenic agent for humans, dogs and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1 and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analysed via MALDI- TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g. malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase but some antigens and potential virulence factors, known from other pathogens, have been found (e.g. phosphomannomutase, triosephosphate isomerase. One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70, a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

  9. Comparison of clinical performance of antigen basedenzyme immunoassay (EIA and major outer membrane protein (MOMP-PCR for detection of genital Chlamydia trachomatis infection

    Directory of Open Access Journals (Sweden)

    Mahmoud Nateghi Rostami

    2016-06-01

    Full Text Available Background: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Early detection and treatment of C.trachomatis genital infection prevent serious reproductive complications. Objective: Performances of enzyme immunoassay (EIA and major outer membrane protein (MOMP-polymerase chain reaction (PCR for diagnosis of genital C.trachomatis infection in women were compared. Materials and Methods: In this cross sectional study a total of 518 women volunteers were included (33.67±8.3 yrs who had been referred to Gynecology clinics of Qom province, Iran, were included. Endocervical swab specimens were collected to detect lipopolysaccharide (LPS antigen in EIA and to amplify MOMP gene of C.trachomatis in PCR. Results were confirmed using ompI nested-PCR. Sensitivity, specificity, positive (PPV and negative predictive values (NPV were calculated for performance of the tests. Odds ratios were determined using binary logistic regression analysis. Results: In total, 37 (7.14% cases were positive by EIA and/or MOMP-PCR. All discrepant results were confirmed by nested-PCR. Sensitivity, specificity, PPV and NPV values of EIA were 59.46%, 100%, 100% and 96.98%, and those of MOMPPCR were 97.30%, 100%, 100%, 99.79%, respectively. Reproductive complications including 2.7% ectopic pregnancy, 5.4% stillbirth, 5.4% infertility, and 10.8% PROM were recorded. The risk of developing chlamydiosis was increased 4.8-fold in volunteers with cervicitis (p<0.05; OR 4.80; 95% CI 1.25-18.48. Conclusion: C.trachomatis infection should be regarded in women of reproductive ages especially those with cervicitis. Primary screening of women by using the low cost antigen-EIA is recommended; however, due to the low sensitivity of Ag-EIA, verification of the negative results by a DNA amplification method is needed.

  10. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Science.gov (United States)

    Muir, Elizabeth; Raza, Mansoor; Ellis, Clare; Burnside, Emily; Love, Fiona; Heller, Simon; Elliot, Matthew; Daniell, Esther; Dasgupta, Debayan; Alves, Nuno; Day, Priscilla; Fawcett, James; Keynes, Roger

    2017-01-01

    There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for

  11. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic...

  12. A novel bacterial expression method with optimized parameters for very high yield production of triple-labeled proteins.

    Science.gov (United States)

    Murray, Victoria; Huang, Yuefei; Chen, Jianglei; Wang, Jianjun; Li, Qianqian

    2012-01-01

    The Gram-negative bacterium Escherichia coli offer a means for rapid, high-yield, and economical production of recombinant proteins. However, when preparing protein samples for NMR, high-level production of functional isotopically labeled proteins can be quite challenging. This is especially true for the preparation of triple-labeled protein samples in D(2)O ((2)H/(13)C/(15)N). The large expense and time-consuming nature of triple-labeled protein production for NMR led us to revisit the current bacterial protein expression protocols. Our goal was to develop an efficient bacterial expression method for very high-level production of triple-labeled proteins that could be routinely utilized in every NMR lab without changing expression vectors or requiring fermentation. We developed a novel high cell-density IPTG-induction bacterial expression method that combines tightly controlled traditional IPTG-induction expression with the high cell-density of auto-induction expression. In addition, we optimize several key experimental protocols and parameters to ensure that our new high cell-density bacterial expression method routinely produces 14-25 mg of triple-labeled proteins and 15-35 mg of unlabeled proteins from 50-mL bacterial cell cultures.

  13. A novel antigen-toxin chimeric protein: myelin basic protein-pseudomonas exotoxin (MBP-PE 40) for treatment of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Brenner, T; Steinberger, I; Soffer, D; Beraud, E; Ben-Nun, A; Lorberboum-Galski, H

    1999-06-01

    Myelin basic protein (MBP), is a major component of the central nervous system (CNS) myelin. MBP can stimulate T cells that migrate into the CNS, initiating a cascade of events that result in perivascular infiltration and demyelination. EAE is an inflammatory and demyelinating autoimmune disease of the CNS that serves as a model for the human disease Multiple Sclerosis (MS). Taking advantage of the fact that EAE can be mediated by T cells, able to recognize MBP or its peptides, we developed a new approach to target anti-MBP T cells by fusing an MBP-sequence to a toxin. In the new chimeric protein, an oligonucleotide coding for the guinea pig MBP encephalitogenic moiety (residues 68-88) was fused to a cDNA encoding a truncated form of the PE gene (PE40). The chimeric gene termed MBP-PE was expressed in E. coli and highly purified. MBP-PE chimeric protein was cytotoxic to various anti-MBP T cells. Moreover, treatment with the novel MBP-toxin blocked the clinical signs of EAE as well as CNS inflammation and demyelination. A chimeric protein such as MBP-PE40 presents a novel prototype of chimeric proteins, composed of antigen/peptide-toxin, that could prove to be an efficient and specific immunotherapeutic agent for autoimmune diseases in which a known antigen is involved.

  14. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    Science.gov (United States)

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  16. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents

    Directory of Open Access Journals (Sweden)

    Roxanne P. Smith

    2016-07-01

    Full Text Available Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.

  17. Computational Identification of Antigenicity-Associated Sites in the Hemagglutinin Protein of A/H1N1 Seasonal Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ren

    Full Text Available The antigenic variability of influenza viruses has always made influenza vaccine development challenging. The punctuated nature of antigenic drift of influenza virus suggests that a relatively small number of genetic changes or combinations of genetic changes may drive changes in antigenic phenotype. The present study aimed to identify antigenicity-associated sites in the hemagglutinin protein of A/H1N1 seasonal influenza virus using computational approaches. Random Forest Regression (RFR and Support Vector Regression based on Recursive Feature Elimination (SVR-RFE were applied to H1N1 seasonal influenza viruses and used to analyze the associations between amino acid changes in the HA1 polypeptide and antigenic variation based on hemagglutination-inhibition (HI assay data. Twenty-three and twenty antigenicity-associated sites were identified by RFR and SVR-RFE, respectively, by considering the joint effects of amino acid residues on antigenic drift. Our proposed approaches were further validated with the H3N2 dataset. The prediction models developed in this study can quantitatively predict antigenic differences with high prediction accuracy based only on HA1 sequences. Application of the study results can increase understanding of H1N1 seasonal influenza virus antigenic evolution and accelerate the selection of vaccine strains.

  18. Novel fusion proteins for the antigen-specific staining and elimination of B cell receptor-positive cell populations demonstrated by a tetanus toxoid fragment C (TTC) model antigen.

    Science.gov (United States)

    Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas

    2016-02-17

    In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.

  19. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of scFv-antibodies with staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Kolibo D. V.

    2009-06-01

    Full Text Available Aim. To develop approach for detection of scFv and their complexes with antigens. Methods. The fusion proteins, which include sequences of scFv and staphylococcal protein A, were constructed and the obtained bifunctional molecules were immunochemically analysed. Results. It was shown, that scFv fused with protein A and their complexes with antigens are effectively recognized by labelled immunoglobulins with unrestricted antigenic specificity. Conclusions. The fusion of scFv with protein A fragment is a perspective approach to increase the efficiency of application in ELISA. The obtained scFv, fused with protein A, could be used for development of test-systems for the detection of diphtheria toxin.

  20. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate.

    Science.gov (United States)

    Lacombe, Séverine; Bangratz, Martine; Brizard, Jean-Paul; Petitdidier, Elodie; Pagniez, Julie; Sérémé, Drissa; Lemesre, Jean-Loup; Brugidou, Christophe

    2018-01-01

    In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Study of the Annexin A1 and Its Associations with Carcinoembryonic Antigen and Mismatch Repair Proteins in Colorectal Cancer.

    Science.gov (United States)

    Ydy, Lenuce Ribeiro Aziz; do Espírito Santo, Gilmar Ferreira; de Menezes, Ivana; Martins, Michelle Santos; Ignotti, Eliane; Damazo, Amílcar Sabino

    2016-03-01

    Annexin-A1 (ANXA1) has been implicated in various tumor types, but few studies have investigated its involvement in colorectal cancer. The study aimed to analyze ANXA1 expression in the normal margin and colorectal tumor tissues of 104 patients who underwent surgery for colorectal cancer and to associate the ANXA1 expression with predictive clinicopathological variables. Hematoxylin-eosin and immunohistochemical staining were used for the analysis. ANXA1 expression was higher in colorectal cancer than in normal margin tissue (p = 0.0001). However, no differences were observed when we analyzed the ANXA1 expression in colon and rectal tumors (p = 0.830). Also, this protein positivity was associated with increased carcinoembryonic antigen levels (p = 0.004). Our data in the DNA-mismatch repair proteins expression was in accordance to the literature. And their positivity was not associated with ANXA1 presence in colorectal cancer. The high incidence of ANXA1 positive expression in colorectal cancer and its association with carcinoembryonic antigen levels might indicate the importance of this protein in the colorectal cancer biology.

  2. Expression and characterisation of a Sarcoptes scabiei protein tyrosine kinase as a potential antigen for scabies diagnosis.

    Science.gov (United States)

    Shen, Nengxing; He, Ran; Liang, Yuqing; Xu, Jing; He, Manli; Ren, Yongjun; Gu, Xiaobin; Lai, Weimin; Xie, Yue; Peng, Xuerong; Yang, Guangyou

    2017-08-29

    Scabies is a disease that harms humans and other animals that is caused by the itch mite Sarcoptes scabiei burrowing into the stratum corneum of the skin. In the early stages of scabies, symptoms are often subclinical and there are no effective diagnostic methods. Herein, we cloned, expressed and characterised an S. scabiei protein tyrosine kinase (SsPTK) and evaluated its diagnostic value as a recombinant antigen in rabbit during the early stages of Sarcoptes infestation. The SsPTK protein is ~30 kDa, lacks a signal peptide, and shares high homology with a PTK from the rabbit ear mite Psoroptes ovis cuniculi. The protein was widely distributed at the front end of mites, particularly in the chewing mouthparts and legs. Indirect ELISA using recombinant SsPTK showed good diagnostic value, with 95.2% (40/42) sensitivity and 94.1% (48/51) specificity for detecting anti-PTK antibody in serum samples from naturally-infested rabbits. More importantly, PTK ELISA could diagnose infection in the early stages (infestation for 1 week) with an accuracy of 100% (24/24). SsPTK therefore shows potential as a sensitive antigen for the early diagnosis of parasitic mite infestation.

  3. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number...... of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild...... background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations...

  4. The Shc Family Protein Adaptor, Rai, Negatively Regulates T Cell Antigen Receptor Signaling by Inhibiting ZAP-70 Recruitment and Activation

    OpenAIRE

    Ferro, Micol; Savino, Maria Teresa; Ortensi, Barbara; Finetti, Francesca; Genovese, Luca; Masi, Giulia; Ulivieri, Cristina; Benati, Daniela; Pelicci, Giuliana; Baldari, Cosima T.

    2011-01-01

    Rai/ShcC is a member of the Shc family of protein adaptors expressed with the highest abundance in the central nervous system, where it exerts a protective function by coupling neurotrophic receptors to the PI3K/Akt survival pathway. Rai is also expressed, albeit at lower levels, in other cell types, including T and B lymphocytes. We have previously reported that in these cells Rai attenuates antigen receptor signaling, thereby impairing not only cell proliferation but also, opposite to neuro...

  5. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  6. The non-structural protein 5 and matrix protein are antigenic targets of T cell immunity to genotype 1 porcine reproductive and respiratory syndrome viruses

    Directory of Open Access Journals (Sweden)

    Helen eMokhtar

    2016-02-01

    Full Text Available The porcine reproductive and respiratory syndrome virus (PRRSV is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focussed on envelope glycoproteins to target virus-neutralising antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress towards market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralising antibodies, it has been proposed that T cell mediated immunity plays a key role. We therefore hypothesised that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely-related (subtype 1 or divergent (subtype 3 PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5, and to a lesser extent, the matrix (M protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by co-expression of TNF-α and mobilisation of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved amongst strains of both PRRSV genotypes. Thus M and NSP5 represent attractive vaccine candidate T cell antigens which should be evaluated further in the context of PRRSV vaccine development.

  7. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  8. Definition of linear antigenic regions of the HPV16 L1 capsid protein using synthetic virion-like particles.

    Science.gov (United States)

    Zhou, J; Sun, X Y; Davies, H; Crawford, L; Park, D; Frazer, I H

    1992-08-01

    Mice of three haplotypes (H-2d, H-2b, and H-2d/b) were immunized with synthetic HPV16 virus-like particles (VLPs), produced using a vaccinia virus doubly recombinant for the L1 and L2 proteins of HPV16. The resultant anti-VLP antisera recognized HPV16 capsids by ELISA assay and baculovirus recombinant HPV16 L1 and L2 protein on immunoblot. Overlapping peptides corresponding to the HPV16 L1 amino acid sequence were used to define the immunoreactive regions of the L1 protein. The majority of the L1 peptides were reactive with IgG from the mice immunized with the synthetic HPV16 capsids. A computer algorithm predicted seven B epitopes in HPV16 L1, five of which lay within peptides strongly reactive with the murine antisera. The murine anti-VLP antisera failed to react with the two peptides recognized by anti-HPV16L1 monoclonal antibodies raised by others against recombinant L1 fusion protein. We conclude that the immunoreactive epitopes of HPV16 defined using virus-like particles differ significantly from those defined using recombinant HPV16 L1 fusion proteins, which implies that such fusion proteins may not be the antigens to look for HPV16L1 specific immune responses in HPV-infected patients.

  9. Proteolytic activity of prostate-specific antigen (PSA towards protein substrates and effect of peptides stimulating PSA activity.

    Directory of Open Access Journals (Sweden)

    Johanna M Mattsson

    Full Text Available Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3 exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  10. Proteolytic activity of prostate-specific antigen (PSA) towards protein substrates and effect of peptides stimulating PSA activity.

    Science.gov (United States)

    Mattsson, Johanna M; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.

  11. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    Science.gov (United States)

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  12. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection.

    Science.gov (United States)

    Cram, Erik D; Simmons, Ryan S; Palmer, Amy L; Hildebrand, William H; Rockey, Daniel D; Dolan, Brian P

    2016-02-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.

    Science.gov (United States)

    Slininger Lee, Marilyn F; Jakobson, Christopher M; Tullman-Ercek, Danielle

    2017-10-20

    Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.

  14. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone

    2003-01-01

    The surface of AISI 316 grade stainless steel (SS) was modified with a layer of poly(ethylene glycol) (PEG) (molecular weight 5000) with the aim of preventing protein adsorption and bacterial adhesion. Model SS substrates were first modified to introduce a very high density of reactive amine groups....... The chemical composition and uniformity of the surfaces were determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SSIMS) in the imaging mode. The effects of PEI concentration and different substrate pre-cleaning methods on the structure...

  15. Circulating Gut-Homing (α4β7+) Plasmablast Responses against Shigella Surface Protein Antigens among Hospitalized Patients with Diarrhea.

    Science.gov (United States)

    Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M K; Ghosh, Santanu; Ramamurthy, T; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook; Czerkinsky, Cecil; Nandy, Ranjan K

    2016-07-01

    Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7 (+)) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7 (+) IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7 (+) ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  17. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  18. The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors.

    Directory of Open Access Journals (Sweden)

    Luciana Galetto

    Full Text Available Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of "Candidatus Phytoplasma asteris", the chrysanthemum yellows phytoplasmas (CYP strain, and three others as non-vectors. Interactions between a labelled (recombinant CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.

  19. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype

    Science.gov (United States)

    Folle, Ana Maite; Kitano, Eduardo S.; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K.; Rosenzvit, Mara; Batthyány, Carlos

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  20. Immunization against HTLV-I with chitosan and tri-methylchitosan nanoparticles loaded with recombinant env23 and env13 antigens of envelope protein gp46.

    Science.gov (United States)

    Amirnasr, Maryam; Fallah Tafti, Tannan; Sankian, Mojtaba; Rezaei, Abdorrahim; Tafaghodi, Mohsen

    2016-08-01

    To prevent the spread of HTLV-I (Human T-lymphotropic virus type 1), a safe and effective vaccine is required. To increase immune responses against the peptide antigens can be potentiated with polymer-based nanoparticles, like chitosan (CHT) and trimethylchitosan (TMC), as delivery system/adjuvant. CHT and TMC nanoparticles loaded with recombinant proteins (env23 & env13) of gp46 were prepared by direct coating of antigens with positively charged polymers. The size of CHT and TMC nanoparticles (NPs) loaded with each antigen was about 400 nm. The physical stability of NPs was followed for 4 weeks. Both formulations showed to be stable for about 15 days. The immunogenicity of NPs loaded with antigens was studied after nasal and subcutaneous immunization in mice. Three immunizations (7.5 μg antigen) were performed with 2 weeks intervals. Two weeks after the last booster dose, sera IgG subtypes were measured. After subcutaneous administration, for both nanoparticulate antigens, serum IgG1 and IgGtotal levels were higher than antigen solution (P nanoparticles showed good immunoadjuvant potential. Env23 antigen was a better candidate for vaccination against HTLV-I, as it induced higher cellular immune responses, compared with env13. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...

  2. [Possible Involvement of Surface Antigen Protein 2 in the Morphological Transition and Biofilm Formation of Candida albicans].

    Science.gov (United States)

    Okamoto-Shibayama, Kazuko; Kikuchi, Yuichiro; Kokubu, Eitoyo; Ishihara, Kazuyuki

    2017-01-01

    Surface antigen protein 2 (Csa2) is a member of the Candida albicans Common in Fungal Extracellular Membranes (CFEM) protein superfamily. We previously established its role in iron acquisition in C. albicans. However, the other roles of Csa2 remain unknown. Here, we compared growth, morphological transition, and biofilm formation among wild-type, Csa2-mutant, and complemented strains of C. albicans. Deletion of the Csa2 gene resulted in smaller and reduced colony growth, significant attenuation of the dimorphic transition under serum-inducing conditions, and reduced biofilm formation; complementation restored these levels to those of the wild-type. Our findings demonstrated that Csa2 participated in yeast-to-hyphae morphological switching under serum-inducing conditions and contributed to the biofilm formation of C. albicans. This work, therefore, provides novel insights into the potential roles of Csa2 in virulence of C. albicans.

  3. Expression, characterisation and antigenicity of a truncated Hendra virus attachment protein expressed in the protozoan host Leishmania tarentolae.

    Science.gov (United States)

    Fischer, Kerstin; dos Reis, Vinicius Pinho; Finke, Stefan; Sauerhering, Lucie; Stroh, Eileen; Karger, Axel; Maisner, Andrea; Groschup, Martin H; Diederich, Sandra; Balkema-Buschmann, Anne

    2016-02-01

    Hendra virus (HeV) is an emerging zoonotic paramyxovirus within the genus Henipavirus that has caused severe morbidity and mortality in humans and horses in Australia since 1994. HeV infection of host cells is mediated by the membrane bound attachment (G) and fusion (F) glycoproteins, that are essential for receptor binding and fusion of viral and cellular membranes. The eukaryotic unicellular parasite Leishmania tarentolae has recently been established as a powerful tool to express recombinant proteins with mammalian-like glycosylation patterns, but only few viral proteins have been expressed in this system so far. Here, we describe the purification of a truncated, Strep-tag labelled and soluble version of the HeV attachment protein (sHeV G) expressed in stably transfected L. tarentolae cells. After Strep-tag purification the identity of sHeV G was confirmed by immunoblotting and mass spectrometry. The functional binding of sHeV G to the HeV cell entry receptor ephrin-B2 was confirmed in several binding assays. Generated polyclonal rabbit antiserum against sHeV G reacted with both HeV and Nipah virus (NiV) G proteins in immunofluorescence assay and efficiently neutralised NiV infection, thus further supporting the preserved antigenicity of the purified protein. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein.

    Science.gov (United States)

    Du, Z Q; Wang, J Y

    2015-10-27

    Brucella, an intracellular parasite that infects some livestock and humans, can damage or destroy the reproductive system of livestock. The syndrome is referred to as brucellosis and often occurs in pastoral areas; it is contagious from livestock to humans. In this study, the intact Brucella suis outer membrane protein 31 (omp31) gene was cloned, recombinantly expressed, and examined as a subunit vaccine candidate. The intact Brucella lumazine synthase (bls) gene was cloned and recombinantly expressed to study polymerization function in vitro. Non-reducing gel electrophoresis showed that rBs-BLS existed in different forms in vitro, including as a dimer and a pentamer. An enzyme-linked immunosorbent assay result showed that rOmp31 protein could induce production of an antibody in rabbits. However, the rOmp31-BLS fusion protein could elicit a much higher antibody titer in rabbits; this construct involved fusion of the Omp31 molecule with the BLS molecule. Our results indicate that Omp31 is involved in immune stimulation, while BLS has a polymerizing function based on rOmp31-BLS fusion protein immunogenicity. These data suggest that Omp31 is an ideal subunit vaccine candidate and that the BLS molecule is a favorable transport vector for antigenic proteins.

  5. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Immune responses of a chimaeric protein vaccine containing Mycoplasma hyopneumoniae antigens and LTB against experimental M. hyopneumoniae infection in pigs.

    Science.gov (United States)

    Marchioro, Silvana B; Sácristan, Rubén Del Pozo; Michiels, Annelies; Haesebrouck, Freddy; Conceição, Fabricio R; Dellagostin, Odir A; Maes, Dominiek

    2014-08-06

    A recombinant chimaeric protein containing three Mycoplasma hyopneumoniae antigens (C-terminal portion of P97, heat shock protein P42, and NrdF) fused to an adjuvant, the B subunit of heat-labile enterotoxin of Escherichia coli (LTB), was used to immunize pigs against enzootic pneumonia. The systemic and local immune responses, as well as the efficacy of the chimaeric protein in inducing protection against experimental M. hyopneumoniae infection were evaluated. In total, 60 male piglets, purchased from a M. hyopneumoniae-free herd, at 4 weeks of age were randomly allocated to six different experimental groups of 10 animals each: recombinant chimaeric protein by intramuscular (IM) (1) or intranasal (IN) (2) administration, commercial bacterin by IM administration (3), and the adjuvant LTB by IM (4, control group A) or IN (5, control group B) administration. All groups were immunized at 24 and 38 days of age and challenged at 52 days of age. The sixth group that was not challenged was used as the negative control (IN [n=5] or IM [n=5] administration of the LTB adjuvant). Compared with the non-challenged group, administration of the chimaeric protein induced significant (Phyopneumoniae infection in pigs. This lack of effectiveness points towards the need for further studies to improve the efficacy of this subunit-based vaccine approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The biological lavelling and 75Se of protein antigens of Fasciola hepatica

    Science.gov (United States)

    Mulligan, W.; Cuperlović, K.; Borojević, Dragica; Lalić, R.

    1972-01-01

    Adult liver flukes were incubated for several hours at 37° in a culture medium containing 75Se-L-selenomethionine. Analysis of homogenates of the parasite showed that significant amounts of isotope had become incorporated into parasite proteins. Separation of the fluke proteins on Sephadex G-100 demonstrated the highest specific activity in the most serologically active protein fractions. PMID:4648855

  8. Minimum inhibitory concentration of irradiated silk protein powder for bacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tuntivisoottikul, Kunya; Bunnak, Jintana [King Mongkut' s Institute of Technology Chaokhun Taharn Ladkrabang, Faculty of Industrial Education, Dept. of Agricultural Educaiton, Bangkok (Thailand); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    The objective of this research was to study a minimum concentration level of irradiated silk protein powder, which inhibited bacterial activity. The concentration of 100 kGy irradiated silk protein powder (ISP) solution was ranged from 5 to 15% in distilled water. The activities of three types of bacteria, Escherichia coli B/r, Bacillus subtilis M3-1 and Staphylococcus aureus K, were tested by using minimum inhibition concentration method (MIC). The results indicated that the minimum concentration level that inhibited growth of E. coli B/r and S. aureus K was 5% ISP and all concentration levels studied could not inhibit the Bacilus subtilis M3-1 activity. (author)

  9. Flocculation behaviour of hematite-kaolinite suspensions in presence of extracellular bacterial proteins and polysaccharides.

    Science.gov (United States)

    Poorni, S; Natarajan, K A

    2014-02-01

    Cells of Bacillus subtilis exhibited higher affinity towards hematite than to kaolinite. Bacterial cells were grown and adapted in the presence of hematite and kaolinite. Higher amounts of mineral-specific proteinaceous compounds were secreted in the presence of kaolinite while hematite-grown cells produced higher amounts of exopolysaccharides. Extracellular proteins (EP) exhibited higher adsorption density on kaolinite which was rendered more hydrophobic. Hematite surfaces were rendered more hydrophilic due to increased adsorption of extracellular polysaccharides (ECP). Significant surface chemical changes were produced due to interaction between minerals and extracellular proteins and polysaccharides. Iron oxides such as hematite could be effectively removed from kaolinite clays using selective bioflocculation of hematite after interaction with EP and ECP extracted from mineral-grown cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy

    Science.gov (United States)

    Khweek, Arwa Abu; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A.; Tazi, Mia; Hassan, Hoda; Majumdar, Neal; Doran, Andrew; Guirado, Evelyn; Schlesinger, Larry S.; Shuman, Howard; Amer, Amal O.

    2013-01-01

    Legionella pneumophila (L. pneumophila) is an intracellular bacterium of human alveolar macrophages that causes Legionnaires' disease. In contrast to humans, most inbred mouse strains are restrictive to L. pneumophila replication. We demonstrate that autophagy targets L. pneumophila vacuoles to lysosomes and that this process requires ubiquitination of L. pneumophila vacuoles and the subsequent binding of the autophagic adaptor p62/SQSTM1 to ubiquitinated vacuoles. The L. pneumophila legA9 encodes for an ankyrin-containing protein with unknown role. We show that the legA9 mutant is the first L. pneumophila mutant to replicate in wild-type (WT) mice and their bone marrow derived macrophages (BMDMs). Less legA9 mutant- containing vacuoles acquired ubiquitin labeling and p62/SQSTM1 staining, evading autophagy uptake and avoiding lysosomal fusion. Thus, we describe a bacterial protein that targets the L. pneumophila -containing vacuole for autophagy uptake. PMID:23420491

  11. Marine gastropod hemocyanins as adjuvants of non-conjugated bacterial and viral proteins.

    Science.gov (United States)

    Gesheva, Vera; Idakieva, Krassimira; Kerekov, Nikola; Nikolova, Kalina; Mihaylova, Nikolina; Doumanova, Lyuba; Tchorbanov, Andrey

    2011-01-01

    Killed viral vaccines and bacterial toxoids are weakly immunogenic. Numerous compounds are under evaluation as immunological adjuvants and peptide-carriers to improve the immune response. The hemocyanins, giant extracellular copper proteins in the blood of many mollusks, are widely used as immune stimulants. In the present study we investigated the adjuvant properties of hemocyanins isolated from marine gastropods Rapana thomasiana and Megathura crenulata. An immunization with Influenza vaccine or tetanus toxoid combined with Rapana thomasiana hemocyanin (RtH) and Keyhole limpet hemocyanin (KLH) in mice induced an anti-influenza cytotoxic response lasting at least 5 months and an antibody response to viral proteins. The IgG antibody response to the tetanus toxoid (TT) combined with RtH or KLH was comparable to the response of the toxoid in complete Freund's adjuvant. The results obtained demonstrate that the both hemocyanins are acceptable as potential bio-adjuvants for subunit vaccines. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    Science.gov (United States)

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  13. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens.

    Science.gov (United States)

    van Eijk, Erika; Wittekoek, Bert; Kuijper, Ed J; Smits, Wiep Klaas

    2017-05-01

    With the impending crisis of antimicrobial resistance, there is an urgent need to develop novel antimicrobials to combat difficult infections and MDR pathogenic microorganisms. DNA replication is essential for cell viability and is therefore an attractive target for antimicrobials. Although several antimicrobials targeting DNA replication proteins have been developed to date, gyrase/topoisomerase inhibitors are the only class widely used in the clinic. Given the numerous essential proteins in the bacterial replisome that may serve as a potential target for inhibitors and the relative paucity of suitable compounds, it is evident that antimicrobials targeting the replisome are underdeveloped so far. In this review, we report on the diversity of antimicrobial compounds targeting DNA replication and highlight some of the challenges in developing new drugs that target this process. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  14. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC.

    Directory of Open Access Journals (Sweden)

    Elizabeth Muir

    Full Text Available There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location.To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate.Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed

  15. Evaluation of recombinant porin (rOmp2a) protein as a potential antigen candidate for serodiagnosis of Human Brucellosis.

    Science.gov (United States)

    Pathak, Prachi; Kumar, Ashu; Thavaselvam, Duraipandian

    2017-07-11

    Brucellosis is an important zoonotic disease caused by different Brucella species and human brucellosis is commonly prevalent in different states of India. Among various Brucella species, B. melitensis is most pathogenic to human and included as category B biothreat which can cause infection through aerosol, cut, wounds in skin and contact with infected animals. The diagnosis of human brucellosis is very important for proper treatment and management of disease as there is no vaccine available for human use. The present study was designed to clone, express and purify immunodominant recombinant omp2a (rOmp2a) porin protein of B. melitensis and to evaluate this new antigen candidate for specific serodiagnosis of human brucellosis by highly sensitive iELISA (indirect enzyme linked immunosorbent assay). Omp2a gene of B. melitensis 16 M strain was cloned and expressed in pET-SUMO expression system. The recombinant protein was purified under denaturing conditions using 8 M urea. The purified recombinant protein was confirmed by western blotting by reacting with anti-HIS antibody. The sero-reactivity of the recombinant protein was also checked by reacting with antisera of experimentally infected mice with B. melitensis 16 M at different time points. Serodiagnostic potential of recombinant porin antigen was tested against 185 clinical serum samples collected from regions endemic to brucellosis in southern part of India by iELISA. The samples were grouped into five groups. Group 1 contained cultured confirmed positive serum samples of brucellosis (n = 15), group 2 contained sera samples from positive cases of brucellosis previously tested by conventional methods of RBPT (n = 28) and STAT (n = 26), group 3 contained sera samples negative by RBPT(n = 36) and STAT (n = 32), group 4 contained sera samples of other febrile illness and PUO case (n = 35) and group 5 contained confirmed negative sera samples from healthy donors (n = 23). The rOmp2a was found to be

  16. Papaya ringspot virus coat protein gene for antigen presentation Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Chatchen, S.; Juříček, Miloslav; Rueda, P.; Kertbundit, Sunee

    2006-01-01

    Roč. 39, č. 1 (2006), s. 16-21 ISSN 1225-8687 Grant - others:Thai Research Fund(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : antigen presentation * canine parvo virus * epitope * papaya ringspot virus Subject RIV: EF - Botanics Impact factor: 1.465, year: 2006 http://www.jbmb.or.kr/view_article.php3?cont=jbmb&kid=174&mid=3& pid =3

  17. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  18. Expression, purification, and functional analysis of an antigen-targeting fusion protein composed of CD40 ligand and the C-terminal fragment of ovalbumin.

    Science.gov (United States)

    Shi, Yunnuo; Halperin, Scott A; Lee, Song F

    2018-02-01

    Delivering antigen via molecules specifically targeting receptors on the surface of antigen-presenting cells is a strategy to improve immune responses. In this study, an antigen-targeting fusion protein (OVA-CD40LS) composed of the C-terminal fragment of ovalbumin and the extracellular domain of mouse CD40 ligand was constructed by genetic fusion. The OVA-CD40LS and the control OVA (rOVA) genes were cloned in Escherichia coli and over-expressed as insoluble proteins. The rOVA protein was purified from the insoluble fraction of E. coli cell lysate by nickel affinity chromatography and refolded by step-wise dialysis to give a yield of 11.8 mg/L of culture. The OVA-CD40LS was purified by a 'two-round' nickel affinity and on-column protein-refolding chromatography. The yield was 528 μg/L of culture. The purified OVA-CD40LS, but not the rOVA, was able to simulate the production of pro-inflammatory cytokines and up-regulate cell surface marker proteins in mouse bone marrow-derived dendritic cells. The purified OVA-CD40LS elicited a robust immune response when injected submucosally in the oral cavity of mice. Collectively, the results indicate that the OVA-CD40LS fusion protein was biologically active, functioning as an antigen-targeting protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Signal-dependent turnover of the bacterial flagellar switch protein FliM

    Science.gov (United States)

    Delalez, Nicolas J.; Wadhams, George H.; Rosser, Gabriel; Xue, Quan; Brown, Mostyn T.; Dobbie, Ian M.; Berry, Richard M.; Leake, Mark C.; Armitage, Judith P.

    2010-01-01

    Most biological processes are performed by multiprotein complexes. Traditionally described as static entities, evidence is now emerging that their components can be highly dynamic, exchanging constantly with cellular pools. The bacterial flagellar motor contains ∼13 different proteins and provides an ideal system to study functional molecular complexes. It is powered by transmembrane ion flux through a ring of stator complexes that push on a central rotor. The Escherichia coli motor switches direction stochastically in response to binding of the response regulator CheY to the rotor switch component FliM. Much is known of the static motor structure, but we are just beginning to understand the dynamics of its individual components. Here we measure the stoichiometry and turnover of FliM in functioning flagellar motors, by using high-resolution fluorescence microscopy of E. coli expressing genomically encoded YPet derivatives of FliM at physiological levels. We show that the ∼30 FliM molecules per motor exist in two discrete populations, one tightly associated with the motor and the other undergoing stochastic turnover. This turnover of FliM molecules depends on the presence of active CheY, suggesting a potential role in the process of motor switching. In many ways the bacterial flagellar motor is as an archetype macromolecular assembly, and our results may have further implications for the functional relevance of protein turnover in other large molecular complexes. PMID:20498085

  20. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver

    Directory of Open Access Journals (Sweden)

    Anna Kędziora

    2016-06-01

    Full Text Available The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  1. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai

    2006-01-01

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  2. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    Science.gov (United States)

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. Copyright © 2015 Elsevier B

  3. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  4. Merozoite proteins from Babesia sp. BQ1 (Lintan) as potential antigens for serodiagnosis by ELISA.

    Science.gov (United States)

    Guan, G Q; Chauvin, A; Rogniaux, H; Luo, J X; Yin, H; Moreau, E

    2010-05-01

    Babesia sp. BQ1 (Lintan) is a Babesia isolated from sheep infested with Haemaphysalis qinghaiensis in China, and is closely related to B. motasi based on the 18S rRNA gene sequence. In the present study, an ELISA was developed with merozoite antigens of Babesia sp. BQ1 (Lintan) (BQMA) purified from in vitro culture. When the positive threshold was chosen as 30% of the antibodies rate, evaluated with 198 negative sera, the specificity was 95.5%. Except for Babesia sp. Tianzhu, there was no cross-reaction between BQMA and positive sera from Babesia sp. BQ1 (Ningxian)-, Babesia sp. Hebei-, Babesia sp. Xinjiang-, Theileria luwenshuni-, T. uilenbergi-, or Anaplasma ovis-infected sheep, which are the dominant haemoparasites of small ruminants in China. Specific antibodies against Babesia sp. BQ1 (Lintan) were produced 1 or 2 weeks post-infection and a high level of antibodies persisted for more than 8 months in experimentally infected sheep. This ELISA was tested on 974 sera collected from field-grazing sheep in 3 counties of Gansu province, northwestern China to evaluate the seroprevalence of Babesia sp. BQ1 (Lintan) infection and the average positive rate was 66.84%. The feasibility of increasing the specificity of this BQMA-based ELISA, by using some BQMA antigens for serodiagnosis is discussed.

  5. Inactivation of the alpha C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus.

    Science.gov (United States)

    Li, J; Kasper, D L; Ausubel, F M; Rosner, B; Michel, J L

    1997-11-25

    The alpha C protein of group B Streptococcus (GBS) is a major surface-associated antigen. Although its role in the biology and virulence of GBS has not been defined, it is opsonic and capable of eliciting protective immunity. The alpha C protein is widely distributed among clinical isolates and is a potential protein carrier and antigen in conjugate vaccines to prevent GBS infections. The structural gene for the alpha C protein, bca, has been cloned and sequenced. The protein encoded by bca is related to a class of surface-associated proteins of gram-positive cocci involved in virulence and immunity. To investigate the potential roles of the alpha C protein, bca null mutants were generated in which the bca gene was replaced with a kanamycin resistance cassette via homologous recombination using a novel shuttle/suicide vector. Studies of lethality in neonatal mice showed that the virulence of the bca null mutants was attenuated 5- to 7-fold when compared with the isogenic wild-type strain A909. Significant differences in mortality occurred in the first 24 h, suggesting that the role of the alpha antigen is important in the initial stages of the infection. In contrast to A909, bca mutants were no longer killed by polymorphonuclear leukocytes in the presence of alpha-specific antibodies in an in vitro opsonophagocytic assay. In contrast to previous studies, alpha antigen expression does not appear to play a role in resistance to opsonophagocytosis in the absence of alpha-specific antibodies. In addition, antibodies to the alpha C protein did not passively protect neonatal mice from lethal challenge with bca mutants, suggesting that these epitopes are uniquely present within the alpha antigen as expressed from the bca gene. Therefore, the alpha C protein is important in the pathogenesis of GBS infection and is a target for protective immunity in the development of GBS vaccines.

  6. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    Directory of Open Access Journals (Sweden)

    Lin Jin

    2016-05-01

    Full Text Available Bacterial AvrE-family Type-III effector proteins (T3Es contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000, associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.

  7. Comparison of purified 12 kDa and recombinant 15 kDa Fasciola hepatica antigens related to a Schistosoma mansoni fatty acid binding protein

    Directory of Open Access Journals (Sweden)

    George V. Hillyer

    1995-04-01

    Full Text Available Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44 identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.

  8. Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein.

    Science.gov (United States)

    Hughes, H Velocity; Lisher, John P; Hardy, Gail G; Kysela, David T; Arnold, Randy J; Giedroc, David P; Brun, Yves V

    2013-12-01

    Organelles with specialized form and function occur in diverse bacteria. Within the Alphaproteobacteria, several species extrude thin cellular appendages known as stalks, which function in nutrient uptake, buoyancy and reproduction. Consistent with their specialization, stalks maintain a unique molecular composition compared with the cell body, but how this is achieved remains to be fully elucidated. Here we dissect the mechanism of localization of StpX, a stalk-specific protein in Caulobacter crescentus. Using a forward genetics approach, we identify a penicillin-binding-protein, PbpC, which is required for the localization of StpX in the stalk. We show that PbpC acts at the stalked cell pole to anchor StpX to rigid components of the outer membrane of the elongating stalk, concurrent with stalk synthesis. Stalk-localized StpX in turn functions in cellular responses to copper and zinc, suggesting that the stalk may contribute to metal homeostasis in Caulobacter. Together, these results identify a novel role for a penicillin-binding-protein in compartmentalizing a bacterial organelle it itself helps create, raising the possibility that cell wall-synthetic enzymes may broadly serve not only to synthesize the diverse shapes of bacteria, but also to functionalize them at the molecular level. © 2013 John Wiley & Sons Ltd.

  9. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  10. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  11. Hydrolysis with Cucurbita ficifolia serine protease reduces antigenic response to bovine whey protein concentrate and αs-casein.

    Science.gov (United States)

    Babij, Konrad; Bajzert, Joanna; Dąbrowska, Anna; Szołtysik, Marek; Zambrowicz, Aleksandra; Lubec, Gert; Stefaniak, Tadeusz; Willak-Janc, Ewa; Chrzanowska, Józefa

    2015-11-01

    In the present study the effect of hydrolysis with non-commercial Cucurbita ficifolia serine protease on a reduction of the IgE and IgG binding capacity of whey protein concentrate and αs-casein was investigated. The intensity of the protein degradation was analyzed by the degree of hydrolysis, the free amino groups content and RP-HPLC. The ability to bind the antibodies by native proteins and their hydrolysates was determined using a competitive ELISA test. Deep hydrolysis contributed to a significant reduction of immunoreactive epitopes present in WPC. In the case of IgE and IgG present in the serum pool of children with CMA, the lowest binding capacity was detected in the 24 h WPC hydrolysate, where the inhibition of the reaction with native WPC was ≤23 and ≤60 %, respectively. The analysis of the IgG reactivity in the antiserum of the immunized goat showed that the lowest antibody binding capacity was exhibited also by 24 h WPC hydrolysate at a concentration of 1000 μg/ml where the inhibition of the reaction with nWPC was ≤47 %. One-hour hydrolysis of α-casein was sufficient to significant reduction of the protein antigenicity, while the longer time (5 h) of hydrolysis probably lead to the appearance of new epitopes reactive with polyclonal.

  12. Expression and purification of neurotoxin-associated protein HA-33/A from Clostridium botulinum and evaluation of its antigenicity.

    Science.gov (United States)

    Sayadmanesh, Ali; Ebrahimi, Firouz; Hajizade, Abbas; Rostamian, Mosayeb; Keshavarz, Hani

    2013-01-01

    Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expressed and purified, and subsequently its antigenicity in mice was studied. Initially, ha-33 gene sequence of Clostridium botulinum serotype A was adopted from GenBank. The gene sequence was optimized and synthesized in pET28a (+) vector. E. coli BL21 (DE3) strain was transformed by the recombinant vector and the expression of HA-33 was optimized at 37°C and 5 h induction time. The recombinant protein was purified by nickel nitrilotriacetic acid agarose affinity chromatography and confirmed by immunoblotting. Enzyme Linked Immunoassay showed a high titer antibody production in mice. The results indicated a highly expressed and purified recombinant protein, which is able to evoke high antibody titers in mice.

  13. Characterization of the antigenicity of Cpl1, a surface protein of Cryptococcus neoformans var. neoformans.

    Science.gov (United States)

    Cai, Jian-Piao; Liu, Ling-Li; To, Kelvin K W; Lau, Candy C Y; Woo, Patrick C Y; Lau, Susanna K P; Guo, Yong-Hui; Ngan, Antonio H Y; Che, Xiao-Yan; Yuen, Kwok-Yung

    2015-01-01

    Cryptococcus neoformans var. neoformans is an important fungal pathogen. The capsule is a well established virulence factor and a target site for diagnostic tests. The CPL1 gene is required for capsular formation and virulence. The protein product Cpl1 has been proposed to be a secreted protein, but the characteristics of this protein have not been reported. Here we sought to characterize Cpl1. Phylogenetic analysis showed that the Cpl1 of C. neoformans var. neoformans and the Cpl1 orthologs identified in C. neoformans var. grubii and C. gattii formed a distinct cluster among related fungi; while the putative ortholog found in Trichosporon asahii was distantly related to the Cryptococcus cluster. We expressed Cpl1 abundantly as a secreted His-tagged protein in Pichia pastoris. The protein was used to immunize guinea pigs and rabbits for high titer mono-specific polyclonal antibody that was shown to be highly specific against the cell wall of C. neoformans var. neoformans and did not cross react with C. gattii, T. asahii, Aspergillus spp., Candida spp. and Penicillium spp. Using the anti-Cpl1 antibody, we detected Cpl1 protein in the fresh culture supernatant of C. neoformans var. neoformans and we showed by immunostaining that the Cpl1 protein was located on the surface. The Cpl1 protein is a specific surface protein of C. neoformans var. neoformans. © 2015 by The Mycological Society of America.

  14. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    Science.gov (United States)

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.

  15. Three-dimensional structure of the bacterial protein-translocation complex SecYEG.

    Science.gov (United States)

    Breyton, Cécile; Haase, Winfried; Rapoport, Tom A; Kühlbrandt, Werner; Collinson, Ian

    2002-08-08

    Transport and membrane integration of polypeptides is carried out by specific protein complexes in the membranes of all living cells. The Sec transport path provides an essential and ubiquitous route for protein translocation. In the bacterial cytoplasmic membrane, the channel is formed by oligomers of a heterotrimeric membrane protein complex consisting of subunits SecY, SecE and SecG. In the endoplasmic reticulum membrane, the channel is formed from the related Sec61 complex. Here we report the structure of the Escherichia coli SecYEG assembly at an in-plane resolution of 8 A. The three-dimensional map, calculated from two-dimensional SecYEG crystals, reveals a sandwich of two membranes interacting through the extensive cytoplasmic domains. Each membrane is composed of dimers of SecYEG. The monomeric complex contains 15 transmembrane helices. In the centre of the dimer we observe a 16 x 25 A cavity closed on the periplasmic side by two highly tilted transmembrane helices. This may represent the closed state of the protein-conducting channel.

  16. Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method.

    Science.gov (United States)

    Wang, Tong; Yang, Jie

    2010-01-01

    With the rapid increase of protein sequences in the post-genomic age, the need for an automated and accurate tool to predict protein subcellular localization becomes increasingly important. Many efforts have been tried. Most of them aim to find the optimal classification scheme and less of them take the simplifying the complexity of biological system into consideration. This work shows how to decrease the complexity of biological system with linear DR (Dimensionality Reduction) method by transforming the original high-dimensional feature vectors into the low-dimensional feature vectors. A powerful sequence encoding scheme by fusing PSSM (Position-Specific Score Matrix) and Chou's PseAA (Pseudo Amino Acid) composition is proposed to represent the protein samples. Then, the K-NN (K-Nearest Neighbor) classifier is employed to identify the subcellular localization based on their reduced low-dimensional feature vectors. Experimental results thus obtained are quite encouraging, indicating that the aforementioned linear DR method is quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  17. Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Muriel Mercier-Bonin

    2017-11-01

    Full Text Available Food and probiotic bacteria, in particular lactic acid bacteria, are ingested in large amounts by humans and are part of the transient microbiota which is increasingly considered to be able to impact the resident microbiota and thus possibly the host health. The lactic acid bacterium Lactococcus lactis is extensively used in starter cultures to produce dairy fermented food. Also because of a generally recognized as safe status, L. lactis has been considered as a possible vehicle to deliver in vivo therapeutic molecules with anti-inflammatory properties in the gastrointestinal tract. One of the key factors that may favor health effects of beneficial bacteria to the host is their capacity to colonize transiently the gut, notably through close interactions with mucus, which covers and protects the intestinal epithelium. Several L. lactis strains have been shown to exhibit mucus-binding properties and bacterial surface proteins have been identified as key determinants of such capacity. In this review, we describe the different types of surface proteins found in L. lactis, with a special focus on mucus-binding proteins and pili. We also review the different approaches used to investigate the adhesion of L. lactis to mucus, and particularly to mucins, one of its major components, and we present how these approaches allowed revealing the role of surface proteins in muco-adhesion.

  18. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis

    OpenAIRE

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-01-01

    Abstract There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children. All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and Novemb...

  19. Human sperm protein encyclopedia and alloantigen index: mining novel allo-antigens using sera from ASA-positive infertile patients and vasectomized men.

    Science.gov (United States)

    Shetty, Jagathpala; Bronson, Richard A; Herr, John C

    2008-01-01

    Anti-sperm antibodies (ASA) are an important cause of immunological infertility. The objective of this study was to identify immunodominant sperm antigens recognized by anti-sperm antibodies (ASA) in serum samples of infertile men, women and vasectomized men. High-resolution two-dimensional gel electrophoresis was employed to separate human sperm proteins using isoelectric focusing (IEF) or nonequilibrium pH gradient electrophoresis (NEPHGE), followed by PAGE and Western blotting. Serum samples from five infertile male and five infertile female subjects that contained ASA as assayed by the immunobead binding test (IBT), were analyzed by Western blotting using NEPHGE gels followed by enhanced chemiluminescence (ECL) to identify the basic sperm antigens reactive to the sera. Serum samples from five fertile male and five fertile female subjects that were ASA-negative by IBT were used as controls. Serum samples from six vasectomized men collected before vasectomy and at different time intervals until 6 months after vasectomy were analyzed by Western blotting using IEF gels. The ECL blots were analyzed to compare immunoreactivity between serum samples from fertile and infertile subjects and identify antigens unique to sera of the infertile subjects. Similarly, immunoreactivity between serum samples from pre- and post-vasectomy was compared to identify antigens unique to sera collected following vasectomy. Five allo-antigenic basic protein spots were recognized by sera from infertile males but not from fertile subjects. Five sperm iso-antigenic basic spots were recognized by infertile female subjects. Two among six of the vasectomized men's sera showed a difference in the Western blot profile 6 months after vasectomy, recognizing at least one new protein spot in each case when compared to pre-vasectomy sera. The acrosomal protein SP-10 was identified as an alloantigen recognized by a post-vasectomy serum. Molecular identities of the known allo- and iso-antigens

  20. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  1. Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity.

    Directory of Open Access Journals (Sweden)

    Shuaiqi Guo

    Full Text Available A novel role for antifreeze proteins (AFPs may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII and region IV (RIV, divide MpAFP into five distinct regions, all of which require mM Ca(2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca(2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2 server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice.

  2. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Shi-qi An

    2014-10-01

    Full Text Available Bis-(3',5' cyclic di-guanylate (cyclic di-GMP is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc. This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d∼2 µM. Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  3. [Characterization of antigenic types of circulating rotaviruses in Mendoza, Argentina based on typing of the external VP7 capsid protein].

    Science.gov (United States)

    Espul, C; Cuello, H; Navarta, L M; Mamani, N; O'Ryan, M; O'Ryan, M

    1993-01-01

    Rotavirus is one of the most common etiologic agents of acute diarrhea in childhood. Understanding the immunologic mechanisms involved in rotavirus diseases, including knowledge on seasonal and geographic antigenic variations may be crucial for vaccine development. A monoclonal antibody based ELISA specific for antigenic domains on the outer capsid protein VP7 has been developed and used widely in the past years. We studied the rotavirus VP7-serotype epidemiology causing diarrhea in children who consulted at two main hospitals of Mendoza, Argentina over a 20 month period. A total of 227 cases of diarrhea were identified, 45 of which (20%) were rotavirus positive. We're able to serotype 43 viruses (96%), 42 VP7-type 1 and one VP7-type 3. The VP7-type 3 was detected towards the end of the second year, possibly representing a new incoming VP7-type. Three electropherotype patterns were identified, two corresponding to VP7-type epidemiology in Mendoza, Argentina seems to be characterized by a relatively homogeneous pattern of circulation with a strong predominance of VP7-type 1 viruses, at least during the 20 month period studied, in contrast to what has been reported in larger, more cosmopolitan cities like Buenos Aires.

  4. Detection of the circulating antigen 14-3-3 protein of Schistosoma japonicum by time-resolved fluoroimmunoassay in rabbits

    Directory of Open Access Journals (Sweden)

    Wang Jie

    2011-05-01

    Full Text Available Abstract Background Schistosomiasis remains a major public health concern that afflicts millions of people worldwide. Low levels of Schistosoma infection require more sensitive diagnostic methods. In this study, a time-resolved fluoroimmunoassay (TRFIA was developed for detecting the signal transduction protein 14-3-3, a circulating antigen of Schistosoma japonicum. Results The detection limit of 14-3-3-TRFIA was 0.78 ng/ml, with a linear measurement range from 0.78 to 800 ng/ml. The average intra-assay and inter-assay variability of this TRFIA was 8.9% and 12.2% respectively, and the mean recovery rate ranged from 92.1% to 115.5%. Within the first 21 days post-infection in rabbits, the positive rates of the 14-3-3-TRFIA were distinctly higher compared to ELISA. All these findings illustrate that 14-3-3-TRFIA has a higher detection efficacy and is a good early diagnostic method for active Schistosoma infection. Conclusions A sandwich TRFIA for detecting the circulating antigen 14-3-3 of S. japonicum has been developed, and has demonstrated to be a good potential diagnostic method for schistosomiasis.

  5. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model.

    Science.gov (United States)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen; Chen, Fulin

    2013-05-03

    Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The Staphylococcus aureus Cell Wall-Anchored Protein Clumping Factor A Is an Important T Cell Antigen.

    Science.gov (United States)

    Lacey, Keenan A; Leech, John M; Lalor, Stephen J; McCormack, Niamh; Geoghegan, Joan A; McLoughlin, Rachel M

    2017-12-01

    Staphylococcus aureus has become increasingly resistant to antibiotics, and vaccines offer a potential solution to this epidemic of antimicrobial resistance. Targeting of specific T cell subsets is now considered crucial for next-generation anti- S. aureus vaccines; however, there is a paucity of information regarding T cell antigens of S. aureus This study highlights the importance of cell wall-anchored proteins as human CD4 + T cell activators capable of driving antigen-specific Th1 and Th17 cell activation. Clumping factor A (ClfA), which contains N1, N2, and N3 binding domains, was found to be a potent human T cell activator. We further investigated which subdomains of ClfA were involved in T cell activation and found that the full-length ClfA N123 and N23 were potent Th1 and Th17 activators. Interestingly, the N1 subdomain was capable of exclusively activating Th1 cells. Furthermore, when these subdomains were used in a model vaccine, N23 and N1 offered Th1- and Th17-mediated systemic protection in mice upon intraperitoneal challenge. Overall, however, full-length ClfA N123 is required for maximal protection both locally and systemically. Copyright © 2017 Lacey et al.

  7. The hemochromatosis protein HFE 20 years later: An emerging role in antigen presentation and in the immune system.

    Science.gov (United States)

    Reuben, Alexandre; Chung, Jacqueline W; Lapointe, Réjean; Santos, Manuela M

    2017-09-01

    Since its discovery, the hemochromatosis protein HFE has been primarily defined by its role in iron metabolism and homeostasis, and its involvement in the genetic disease termed hereditary hemochromatosis (HH). While HH patients are typically afflicted by dysregulated iron levels, many are also affected by several immune defects and increased incidence of autoimmune diseases that have thereby implicated HFE in the immune response. Growing evidence has supported an immunological role for HFE with recent studies describing HFE specifically as it relates to MHC I antigen presentation. Here, we present a comprehensive overview of the relationship between iron metabolism, HFE, and the immune system to better understand the origin and cause of immune defects in HH patients. We further describe the role of HFE in MHC I antigen presentation and its potential to impair autoimmune responses in homeostatic conditions, a mechanism which may be exploited by tumors to evade immune surveillance. Overall, this increased understanding of the role of HFE in the immune response sets the stage for better treatment and management of HH and other iron-related diseases, as well as of the immune defects related to this condition. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  8. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    current tools especially where the N-terminally anchored and the SPIase-cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%. LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial genomes. The results are stored in the database LocateP-DB http://www.cmbi.ru.nl/locatep-db1. Conclusion LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive bacteria currently available.

  9. Lactoferrin binding protein B - a bi-functional bacterial receptor protein.

    Directory of Open Access Journals (Sweden)

    Nicholas K H Ostan

    2017-03-01

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB, there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.

  10. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films.

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R; Sleytr, U B; Toca-Herrera, José L

    2013-09-28

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (T(g)) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below T(g). The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm(2)), followed by PDLLA (0.034 μm(2)), and PLGA (0.039 μm(2)), and the largest size for PLCL (0.09 μm(2)). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (~1800 ng cm(-2)) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest T(g)). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  11. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment.

    Science.gov (United States)

    Jones, Robert T; Sanchez-Contreras, Maria; Vlisidou, Isabella; Amos, Matthew R; Yang, Guowei; Muñoz-Berbel, Xavier; Upadhyay, Abhishek; Potter, Ursula J; Joyce, Susan A; Ciche, Todd A; Jenkins, A Toby A; Bagby, Stefan; Ffrench-Constant, Richard H; Waterfield, Nicholas R

    2010-05-12

    Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28 degrees C) and human (37 degrees C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of EPS properties. Despite

  12. Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films

    Science.gov (United States)

    Lejardi, Ainhoa; López, Aitziber Eleta; Sarasua, José R.; Sleytr, U. B.; Toca-Herrera, José L.

    2013-09-01

    Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (Tg) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below Tg. The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 μm2), followed by PDLLA (0.034 μm2), and PLGA (0.039 μm2), and the largest size for PLCL (0.09 μm2). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (˜1800 ng cm-2) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest Tg). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.

  13. An autoclave treatment reduces the solubility and antigenicity of an allergenic protein found in buckwheat flour.

    Science.gov (United States)

    Tomotake, Hiroyuki; Yamazaki, Rikio; Yamato, Masayuki

    2012-06-01

    The effects of an autoclave treatment of buckwheat flour on a 24-kDa allergenic protein were investigated by measuring reduction in solubility and antibody binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the intensity of the major bands, including that of the 24-kDa allergen, was reduced by the autoclave treatment. The protein solubility in buckwheat flour was variably decreased by the autoclave treatment. Enzyme-linked immunosorbent assay analysis using a monoclonal antibody specific for buckwheat 24-kDa protein showed that the reactivity of protein extracts (10 μg/ml) from buckwheat flour was lowered by the autoclave treatment. The autoclave treatment may reduce the major allergen content of buckwheat. Future studies will determine if autoclaving treatments affect the allergenicity of the 24-kDa buckwheat protein.

  14. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    Science.gov (United States)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-11-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes ( IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon ( IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  15. Involvement of T- and B-lymphocytes in the immune response to the protein exotoxin and the lipopolysaccharide antigens of Vibrio cholerae

    International Nuclear Information System (INIS)

    Kateley, J.R.; Patel, C.B.; Friedman, H.

    1975-01-01

    The immune response at the level of individual immunocytes to the somatic lipopolysaccharide antigen derived from whole Vibrio cholerae and to the purified protein exotoxin from this organism were studied in terms of the role of T- and B-lymphocytes. By adoptive cell transfer studies with irradiated recipient mice, it was shown that normal spleen cells from normal syngeneic mice could readily transfer the capability of responding to both types of cholera antigens. However, when the spleen cells were depleted of T-cells with anti-theta serum and complement, antibody responsiveness to the LPS antigen, but not the exotoxin, could be achieved in recipients. Furthermore, by appropriate transfer of either bone marrow, thymus, or thymus-marrow cell mixtures to irradiated mice, it was shown that the response to the cholera somatic antigen was relatively independent of thymus cells, whereas the response to exotoxin required ''helper'' T-cells

  16. Application of 125I-labelled soluble proteins in the histoautoradiographic detection of antigen and antibodies in the spleen of rabbits during primary immune response

    International Nuclear Information System (INIS)

    Rodak, L.

    1975-01-01

    An autoradiographic method for detecting soluble antigen (chicken serum albumin, CSA) and specific antibodies in the spleen of rabbits during a primary immune response is described. The method consists of incubating sections from the spleen with 125 I-labelled IgG 2 anti CSA (for demonstration of antigen) or with 125 I-labelled antigen (for demonstration of specific antibodies). This treatment of histological sections combines the advantages and principles of the immunofluorescence technique with the possibility of evaluating the exact localization of the proteins by light microscopy in preparations stained with haematoxylin or methyl green-pyronin. The sensitivity of detection is very high: both antigen and antibodies could be demonstrated in the spleen follicles for as long as 42 days after the primary intravenous injection

  17. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Rafał Biedroń

    Full Text Available The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl, causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin and glycoproteins (human apo-transferrin, ovalbumin gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206, scavenger receptors A (CD204 and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system

  18. Immunogenicity of a cholera toxin B subunit Porphyromonas gingivalis fimbrial antigen fusion protein expressed in E. coli.

    Science.gov (United States)

    Kim, Tae-Geum; Huy, Nguyen-Xuan; Kim, Mi-Young; Jeong, Dong-Keun; Jang, Yong-Suk; Yang, Moon-Sik; Langridge, William H R; Lee, Jin-Yong

    2009-02-01

    The gram-negative anaerobic oral bacterium Porphyromonas gingivalis initiates periodontal disease through fimbrial attachment to saliva-coated oral surfaces. To study the effects of immunomodulation on enhancement of subunit vaccination, the expression in E. coli and immunogenicity of P. gingivalis fimbrial protein (FimA) linked to the C-terminus of the cholera toxin B subunit (CTB) were investigated. Complementary DNAs encoding the P. gingivalis 381 fimbrillin protein sequence FimA1 (amino acid residues 1-200) and FimA2 (amino acid residues 201-337) were cloned into an E. coli expression vector downstream of a cDNA fragment encoding the immunostimulatory CTB. CTB-FimA1 and CTB-FimA2 fusion proteins synthesized in E. coli BL21 (DE3) cells were purified under denaturing conditions by Ni2+-NTA affinity column chromatography. Renaturation of the CTB-FimA1 and CTB-FimA2 fusion proteins, permitted identification of CTB-FimA pentamers and restored CTB binding activity to GM1-ganglioside to provide a biologically active CTB-FimA fusion protein. Mice orally inoculated with purified CTB-FimA1 or CTB-FimA2 fusion proteins generated measurable FimA1 and FimA2 IgG antibody titers, while no serum fimbrial IgG antibodies were detected when mice were inoculated with FimA1 or FimA2 proteins alone. Immunoblot analysis confirmed that sera from mice immunized with CTB linked to FimA1 or FimA2 contained antibodies specific for P. gingivalis fimbrial proteins. In addition, mice immunized with FimA2 or CTB-FimA2 generated measurable intestinal IgA titers indicating the presence of fimbrial antibody class switching. Further, mice orally immunized with CTB-FimA1 generated higher IgA antibody titers than mice inoculated with FimA1 alone. The experimental data show that the immunostimulatory molecule CTB enhances B cell-mediated immunity against linked P. gingivalis FimA fusion proteins, in comparison to immunization with FimA protein alone. Thus, linkage of CTB to P. gingivalis fimbrial

  19. Structure of an essential bacterial protein YeaZ (TM0874) from Thermotoga maritima at 2.5 Å resolution

    International Nuclear Information System (INIS)

    Xu, Qingping; McMullan, Daniel; Jaroszewski, Lukasz; Krishna, S. Sri; Elsliger, Marc-André; Yeh, Andrew P.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grant, Joanna; Han, Gye Won; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Bedem, Henry van den; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of an essential bacterial protein, YeaZ, from T. maritima identifies an interface that potentially mediates protein–protein interaction. YeaZ is involved in a protein network that is essential for bacteria. The crystal structure of YeaZ from Thermotoga maritima was determined to 2.5 Å resolution. Although this protein belongs to a family of ancient actin-like ATPases, it appears that it has lost the ability to bind ATP since it lacks some key structural features that are important for interaction with ATP. A conserved surface was identified, supporting its role in the formation of protein complexes

  20. Evaluation of Urinary Nuclear Matrix Protein-22 as Tumor Marker Versus Tissue Polypeptide Specific Antigen in Bilharzial and Bladder Cancer

    International Nuclear Information System (INIS)

    Ahmed, W.A.; El-Kabany, H.

    2004-01-01

    Urinary nuclear matrix protein-22 (NMP-22) and tissue polypeptide specific antigen (TPS) were determined as potential marker for early detection of bladder tumors in patients with high risk (Bilharzial-patients), monitoring and follow up bladder cancer patients. The objective was to determine sensitivity and specificity of markers for bilharzial and cancer lesions. The levels of two parameters were determined pre and post operation. A total of 110 individuals, 20 healthy, 20 bilharzial patients and 70 bladder cancer patients with confirmed diagnosis were investigated. Urine samples were assayed for NMP-22 and TPS test kits. Some bladder cancer patients were selected to follow up. NMP-22 showed highly significant increase (P,0.001) more than TPS (P<0.01) in bladder cancer patients when compared with bilharzial and control group. Overall sensitivity is 7.8% for TPS and 98.5% for NMP-22

  1. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, Rikke L. V.; Oettinger, Thomas; Rosenkrands, Ida

    2000-01-01

    Culture filtrate from Mycobacterium tuberculosis contains protective antigens of relevance for the generation of a new antituberculosis vaccine. We have identified two previously uncharacterized M. tuberculosis proteins (TB7.3 and TB10.4) from the highly active low-mass fraction of culture filtrate....... The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P, B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195-3203, 1998......), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  2. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, R L; Oettinger, T; Rosenkrands, I

    2000-01-01

    Culture filtrate from Mycobacterium tuberculosis contains protective antigens of relevance for the generation of a new antituberculosis vaccine. We have identified two previously uncharacterized M. tuberculosis proteins (TB7.3 and TB10.4) from the highly active low-mass fraction of culture filtrate....... The molecules were characterized, mapped in a two-dimensional electrophoresis reference map of short-term culture filtrate, and compared with another recently identified low-mass protein, CFP10 (F. X. Berthet, P. B. Rasmussen, I. Rosenkrands, P. Andersen, and B. Gicquel. Microbiology 144:3195-3203, 1998......), and the well-described ESAT-6 antigen. Genetic analyses demonstrated that TB10.4 as well as CFP10 belongs to the ESAT-6 family of low-mass proteins, whereas TB7.3 is a low-molecular-mass protein outside this family. The proteins were expressed in Escherichia coli, and their immunogenicity was tested...

  3. Fusion protein comprised of the two schistosomal antigens, Sm14 and Sm29, provides significant protection against Schistosoma mansoni in murine infection model.

    Science.gov (United States)

    Mossallam, Shereen F; Amer, Eglal I; Ewaisha, Radwa E; Khalil, Amal M; Aboushleib, Hamida M; Bahey-El-Din, Mohammed

    2015-03-24

    Schistosoma mansoni infection represents a major cause of morbidity and mortality in many areas of the developing world. Effective vaccines against schistosomiasis are not available and disease management relies mainly on treatment with the anthelmintic drug praziquantel. Several promising schistosomal antigens have been evaluated for vaccine efficacy such as Sm14, Sm29 and tetraspanins. However, most investigators examine these promising antigens in animal models individually rather than in properly adjuvanted antigen combinations. In the present study, we made a recombinant fusion protein comprised of the promising schistosomal antigens Sm14 and Sm29. The fusion protein, FSm14/29, was administered to Swiss albino mice either unadjuvanted or adjuvanted with polyinosinic-polycytidylic acid adjuvant, poly(I:C). Mice were challenged with S. mansoni cercariae and different parasitological/immunological parameters were assessed seven weeks post-challenge. Data were analyzed using the ANOVA test with post-hoc Tukey-Kramer test. Mice pre-immunized with unadjuvanted or poly(I:C)-adjuvanted fusion protein showed reduction of adult worm burden of 44.7 and 48.4%, respectively. In addition, significant reduction of tissue egg burdens was observed in mice immunized with the fusion protein when compared with the infected saline/adjuvant negative control groups and groups immunized with the individual Sm14 and Sm29 antigens. Light microscope and scanning electron microscope (SEM) investigation of adult worms recovered from FSm14/29-immunized mice revealed appreciable morphological damage and tegumental deformities. Histopathological examination of liver sections of immunized mice demonstrated reduced granulomatous and inflammatory reactions when compared with infected unvaccinated mice or mice immunized with the individual Sm14 and Sm29 antigens. The findings presented in this study highlight the importance of the fusion protein FSm14/29 as a potential vaccine candidate that is

  4. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    2016-06-01

    Full Text Available Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro-and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds.

  5. Identification of three antigen epitopes on the nucleocapsid protein of the genotype C of bovine parainfluenza virus type 3.

    Science.gov (United States)

    Ren, Jian-Le; Zhu, Yuan-Mao; Zhou, Yue-Hui; Lv, Chuang; Yan, Hao; Ma, Lei; Shi, Hong-Fei; Xue, Fei

    2015-07-09

    Bovine parainfluenza virus type 3 (BPIV3) is an important respiratory tract pathogen for both young and adult cattle. So far, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis. But fine mapping of epitopes of BPIV3 is scant and the antigenic variations among the three genotypes of BPIV3 have not been reported. Nucleocapsid protein (NP) is the most abundant protein in the virion and highly conserved in BPIV3, which is crucial for the induction of protective immunity in host. To identify antigenic determinants of BPIV3 NP, a panel of monoclonal antibodies (mAbs) was tested against a series of overlapping recombinant NP fragments expressed in Escherichia coli. Firstly, six monoclonal antibodies (mAbs) against NP of the genotype C of BPIV3 (BPIV3c) were generated by using the purified BPIV3c strain SD0835 as immunogen and the recombinant NP of SD0835 as screening antigen. Then three antigen epitopes were identified with the six mAbs. One epitope (91)GNNADVKYVIYM(102) was recognized by mAb 5E5. The mAbs 7G5, 7G8, 7G9, and 7H5 were reactive with another epitope (407)FYKPTGG(413). The third epitope (428)ESRGDQDQ(435) was reactive with mAb 6F8. Further analysis showed that the epitope (91-102 amino acids [aa]) was the most conserved and reactive with mAb 5E5 for all three genotypes of BPIV3 and HPIV3. The epitope (407-413 aa) was relatively conserved and reactive with mAbs 7G5, 7G8, 7G9, and 7H5 for BPIV3a, BPIV3c and HPIV3, but not reactive with BPIV3b. The epitope (428-435 aa) was less conserved and was reactive only with mAb 6F8 for BPIV3a and BPIV3c. These results suggested that there were evident antigenic variations among the three genotypes of BPIV3 and HPIV3. The mAb 6F8 could be used to detect BPIV3a and BPIV3c. The mAbs 7G5, 7G8, 7G9, and 7H5 might be used for differentiate BPIV3a, BPIV3c and HPIV3 from BPIV3b. The mAb 5E5 might be used for detecting all three types of BPIV3 and HPIV3. The results in this

  6. Genetic fusion protein 3×STa-ovalbumin is an effective coating antigen in ELISA to titrate anti-STa antibodies.

    Science.gov (United States)

    Duan, Qiangde; Zhang, Weiping

    2017-07-01

    Heat-stable toxin type I (STa)-ovalbumin chemical conjugates are currently used as the only coating antigen in ELISA to titrate anti-STa antibodies for ETEC vaccine candidates. STa-ovalbumin chemical conjugation requires STa toxin purification, a process that can be carried out by only a couple of laboratories and often with a low yield. Alternative ELISA coating antigens are needed for anti-STa antibody titration for ETEC vaccine development. In the present study, we genetically fused STa toxin gene (three copies) to a modified chicken ovalbumin gene for genetic fusion 3×STa-ovalbumin, and examined application of this fusion protein as an alternative coating antigen of anti-STa antibody titration ELISA. Data showed fusion protein 3×STa-ovalbumin was effectively expressed and extracted, and anti-STa antibody titration ELISA using this recombinant protein (25 ng per well) or STa-ovalbumin chemical conjugates (10 ng/well) showed the same levels of sensitivity and specificity. Furthermore, mice immunized with this fusion protein developed anti-STa antibodies; induced antibodies showed in vitro neutralization activity against STa toxin. These results indicate that recombinant fusion protein 3×STa-ovalbumin is an effective ELISA coating antigen for anti-STa antibody titration, enabling a reliable reagent supply to make standardization of STa antibody titration assay feasible and to accelerate ETEC vaccine development. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  7. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  8. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  9. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures

    Science.gov (United States)

    Wu, Fabai; van Schie, Bas G. C.; Keymer, Juan E.; Dekker, Cees

    2015-08-01

    The boundary of a cell defines the shape and scale of its subcellular organization. However, the effects of the cell's spatial boundaries as well as the geometry sensing and scale adaptation of intracellular molecular networks remain largely unexplored. Here, we show that living bacterial cells can be ‘sculpted’ into defined shapes, such as squares and rectangles, which are used to explore the spatial adaptation of Min proteins that oscillate pole-to-pole in rod-shaped Escherichia coli to assist cell division. In a wide geometric parameter space, ranging from 2 × 1 × 1 to 11 × 6 × 1 μm3, Min proteins exhibit versatile oscillation patterns, sustaining rotational, longitudinal, diagonal, stripe and even transversal modes. These patterns are found to directly capture the symmetry and scale of the cell boundary, and the Min concentration gradients scale with the cell size within a characteristic length range of 3-6 μm. Numerical simulations reveal that local microscopic Turing kinetics of Min proteins can yield global symmetry selection, gradient scaling and an adaptive range, when and only when facilitated by the three-dimensional confinement of the cell boundary. These findings cannot be explained by previous geometry-sensing models based on the longest distance, membrane area or curvature, and reveal that spatial boundaries can facilitate simple molecular interactions to result in far more versatile functions than previously understood.

  10. Using the nonlinear dimensionality reduction method for the prediction of subcellular localization of Gram-negative bacterial proteins.

    Science.gov (United States)

    Wang, Tong; Yang, Jie

    2009-11-01

    One of the central problems in computational biology is protein function identification in an automated fashion. A key step to achieve this is predicting to which subcellular location the protein belongs, since protein localization correlates closely with its function. A wide variety of methods for protein subcellular localization prediction have been proposed over recent years. Linear dimensionality reduction (DR) methods have been introduced to address the high-dimensionality problem by transforming the representation of protein sequences. However, this approach is not suitable for some complex biological systems that have nonlinear characteristics. Herein, we use nonlinear DR methods such as the kernel DR method to capture the nonlinear characteristics of a high-dimensional space. Then, the K-nearest-neighbor (K-NN) classifier is employed to identify the subcellular localization of Gram-negative bacterial proteins based on their reduced low-dimensional features. Experimental results thus obtained are quite encouraging, indicating that the applied nonlinear DR method is effective to deal with this complicated problem of predicting subcellular localization of Gram-negative bacterial proteins. An online web server for predicting subcellular location of Gram-negative bacterial proteins is available at (http://202.120.37.185:8080/).

  11. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics

    International Nuclear Information System (INIS)

    Khan, S. Sudheer; Srivatsan, P.; Vaishnavi, N.; Mukherjee, Amitava; Chandrasekaran, N.

    2011-01-01

    Highlights: → Bacterial extracellular proteins stabilize the silver nanoparticles. → Adsorption process varies with pH and salt concentration of the interaction medium. → Adsorption process was strongly influenced by surface charge. → Adsorption equilibrium isotherms was fitted well by the Freundlich model. → Kinetics of adsorption was fitted by pseudo-second-order. -- Abstract: Indiscriminate and increased use of silver nanoparticles (SNPs) in consumer products leads to the release of it into the environment. The fate and transport of SNPs in environment remains unknown. We have studied the interaction of SNPs with extracellular protein (ECP) produced by two environmental bacterial species and the adsorption behavior in aqueous solutions. The effect of pH and salt concentrations on the adsorption was also investigated. The adsorption process was found to be dependent on surface charge (zeta potential). The capping of SNPs by ECP was confirmed by Fourier transform infrared spectroscopy and X-ray diffraction. The adsorption of ECP on SNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fitted well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicated that pseudo-second-order kinetic equation would better describe the adsorption kinetics. The capping was stable at environmental pH and salt concentration. The destabilization of nanoparticles was observed at alkaline pH. The study suggests that the stabilization of nanoparticles in the environment might lead to the accumulation and transport of nanomaterials in the environment, and ultimately destabilizes the functioning of the ecosystem.

  12. Cell-to-Cell Transfer of M. tuberculosis Antigens Optimizes CD4 T Cell Priming

    Science.gov (United States)

    Srivastava, Smita; Ernst, Joel D.

    2014-01-01

    SUMMARY During Mycobacterium tuberculosis and other respiratory infections, optimal T cell activation requires pathogen transport from the lung to a local draining lymph node (LN). However, the infected inflammatory monocyte-derived dendritic cells (DCs) that transport M. tuberculosis to the local lymph node are relatively inefficient at activating CD4 T cells, possibly due to bacterial inhibition of antigen presentation. We found that infected migratory DCs release M. tuberculosis antigens as soluble, unprocessed proteins for uptake and presentation by uninfected resident lymph node DCs. This transfer of bacterial proteins from migratory to local DCs results in optimal priming of antigen-specific CD4 T cells, which are essential in controlling tuberculosis. Additionally, this mechanism does not involve transfer of the whole bacterium and is distinct from apoptosis or exosome shedding. These findings reveal a mechanism that bypasses pathogen inhibition of antigen presentation by infected cells and generates CD4 T cell responses that control the infection. PMID:24922576

  13. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth.

    Science.gov (United States)

    Breton, Jonathan; Tennoune, Naouel; Lucas, Nicolas; Francois, Marie; Legrand, Romain; Jacquemot, Justine; Goichon, Alexis; Guérin, Charlène; Peltier, Johann; Pestel-Caron, Martine; Chan, Philippe; Vaudry, David; do Rego, Jean-Claude; Liénard, Fabienne; Pénicaud, Luc; Fioramonti, Xavier; Ebenezer, Ivor S; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2016-02-09

    The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Conserved epitope on several human vitamin K-dependent proteins: location of the antigenic site and influence of metal ions on antibody binding

    International Nuclear Information System (INIS)

    Church, W.R.; Messier, T.; Howard, P.R.; Amiral, J.; Meyer, D.; Mann, K.G.

    1988-01-01

    A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125 I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 x 10 -8 to 1 x 10 -6 M. Chemical treatment of prothrombin with a variety of agents did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. Increasing concentrations of Ca 2+ , Mg 2+ , or Mn 2+ partially inhibited binding of 125 I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively. The antigenic site thus recognized by monoclonal antibody H-11 is located at the amino-terminal region in the highly conserved γ-carboxyglutamic acid-containing domains of several, but not all, vitamin K-dependent proteins

  15. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    Science.gov (United States)

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.

  16. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2 beta)

    DEFF Research Database (Denmark)

    Drake, P.G.; Peters, Günther H.j.; Andersen, H.S.

    2003-01-01

    Islet-cell antigen 512 (IA-2) and phogrin (IA-2) are atypical members of he receptor protein tyrosine phosphatase (PTP) family that are characterized by a lack of activity against conventional PTP substrates. The physiological role(s) of these proteins remain poorly defined, although recent studi...

  17. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  18. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    Energy Technology Data Exchange (ETDEWEB)

    Welling, M. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Feitsma, H.I.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Calame, W. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands)); Ensing, G.J. (Mallinckrodt Medical, Petten (Netherlands)); Goedemans, W. (Mallinckrodt Medical, Petten (Netherlands)); Pauwels, E.K.J. (Dept. of Diagnostic Radiology and Nuclear Medicine, University Hospital, Leiden (Netherlands))

    1994-10-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P<0.03) higher for the purified than for the unpurified immunoglobulin. For the in vivo study, mice were infected in the thigh muscle with Staph. aureus or K. pneumoniae. After 18 h 0.1 mg of technetium-99m labelled polyclonal immunoglobulin or [sup 99m]Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P<0.03) for protein charge-purified polyclonal immunoglobulin than for unpurified polyclonal human immunoglobulin. Already within 1 h the infected tissues could be detected by the purified immunoglobulin. It is concluded that [sup 99m]Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than [sup 99m]Tc-labelled unpurified immunoglobulin. (orig.)

  19. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    Science.gov (United States)

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  20. Antigenicity of recombinant maltose binding protein-Mycobacterium avium subsp. paratuberculosis fusion proteins with and without factor Xa cleaving

    Science.gov (United States)

    Mycobacterium avium subsp paratuberculosis (MAP) causes Johne’s disease (JD) in ruminants. Proteomic studies have shown that MAP expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such prot...

  1. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens

    DEFF Research Database (Denmark)

    Skjøt, R L; Oettinger, T; Rosenkrands, I

    2000-01-01

    Culture filtrate from Mycobacterium tuberculosis contains protective antigens of relevance for the generation of a new antituberculosis vaccine. We have identified two previously uncharacterized M. tuberculosis proteins (TB7.3 and TB10.4) from the highly active low-mass fraction of culture filtra...

  2. Mapping of Monoclonal Antibody Binding Sites on CNBr Fragments of the S- Layer Protein Antigens of Rickettsia Typhi and Rickettsia Prowazekii

    Science.gov (United States)

    1992-01-01

    Security Clasification ) Mapping of monoclonal antibody binding sites on CNBr fragments o; the S-layer protein antigens of Rickettsia Typhi and...homology was found in all the viral polypeptides have long fatty acids attached to fragments which react with type I antibody (Fig. 4). A their N-termini

  3. A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties

    Czech Academy of Sciences Publication Activity Database

    Bukin, Y. S.; Dzhioev, Y.; Tkachev, S. E.; Kozlova, I.; Paramonov, A. I.; Růžek, Daniel; Qu, Z.; Zlobin, V. I.

    2017-01-01

    Roč. 238, JUN 15 (2017), s. 124-132 ISSN 0168-1702 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis virus * E protein * physicochemical properties amino acid residue * antigen * antibody Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 2.628, year: 2016

  4. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping

    to the environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required...

  5. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hjerrild, L.; Gjermansen, Morten

    2004-01-01

    -clumping variants, we have pinpointed the region of the protein responsible for autoaggregation to be located within the N-terminal one-third of the passenger domain. Our data suggest that ionic interactions between charged residues residing in interacting pairs of Ag43(alpha) domains may be important for the self...

  6. Identification, Purification and Characterization of Major Antigenic Proteins of Campylobacter jejuni

    Science.gov (United States)

    1991-01-01

    ptrepairaitiiin was dtttrdhhiiit 2i8)fu5mt.itltlt’tiltt’dIitwtt lI opiltliIized atid reco nst itutited with Itdist ilIledI water andtc desalt ec usinrg...proteins within the membrane intestinal Campylobacters. through electrostatic interaction with negatively charged li- Campylobacter are microaerophilic

  7. Differential binding of heavy chain variable domain 3 antigen binding fragments to protein A chromatography resins.

    Science.gov (United States)

    Bach, Julia; Lewis, Nathaniel; Maggiora, Kathy; Gillespie, Alison J; Connell-Crowley, Lisa

    2015-08-28

    This work examines the binding of 15 different VH3 IgGs and their corresponding F(ab')2 fragments to two different protein A chromatography resins: MabSelect(®), which utilizes a recombinant protein A ligand, and MabSelect SuRe(®) (SuRe), which utilizes a tetrameric Z domain ligand. The results show that VH3 F(ab')2 fragments can exhibit a variety of binding behaviours for the two resins. Contrary to previously published data, a subset of these molecules show strong interaction with the Z domain of SuRe(®). Furthermore, the results show that sequence variability of residue 57 in the VH3 heavy chain CDR2 domain correlates with binding behaviour on MabSelect(®) and SuRe(®). Site-directed mutagenesis of this residue confers gain or loss of VH3 F(ab')2 binding to these resins in 3 mAbs, demonstrating that it plays a key role in both recombinant protein A and Z domain interaction. A fourth mAb with a longer CDR2 loop was not affected by mutation of residue 57, indicating that CDR2 domain length may alter the binding interface and lead to the involvement of other residues in protein A binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response

    Science.gov (United States)

    Background: Celiac disease is an immune-mediated enteropathy that is generally understood to be triggered by the ingestion of gluten proteins of wheat and related cereals. The skin manifestation of the condition is known as dermatitis herpetiformis. Antibody response to native and deamidated seque...

  9. An immunoglobulin binding protein (antigen 5) of the stable fly (Diptera: Muscidae) salivary gland stimulates bovine immune responses.

    Science.gov (United States)

    Ameri, M; Wang, X; Wilkerson, M J; Kanost, M R; Broce, A B

    2008-01-01

    The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is an economically important pest of livestock. Previous studies demonstrated lymphocyte suppression by crude salivary gland extract (SGE) of the stable fly. A dominant 27-kDa protein identified in the SGE was reported to stimulate immunodominant antibody responses in exposed cattle. The purpose of this study was to determine whether this protein, now identified as ahomolog of insect proteins named antigen 5 (Ag5), was responsible for the lymphocyte suppression and whether naive calves can mount an immune response to it. Calves raised in the winter were immunized with recombinant Ag5 (rAg5) expressed in Drosophila S2 cells or with "natural" Ag5 protein isolated by preparative gel electrophoresis of SGE. Control calves were immunized with adjuvant alone. Rising antibody concentrations to rAg5 were detected in two of three calves immunized with rAg5 and one of three calves immunized with natural Ag5. Recall lymphocyte responses to rAg5 were detected at 21 and 28 d postimmunization in calves immunized with rAg5 but not in calves immunized with the natural Ag5 or those exposed to adjuvant alone. Mitogen-stimulated bovine lymphocyte responses were not suppressed by rAg5. Further investigation using immunoblotting revealed that rAg5 binds to the Fc and F (ab')2 portions of bovine IgG, but not to an Fab fragment. These findings suggest that Ag5 of the stable fly salivary gland is not immunosuppressive but that it has immunoglobulin binding properties and can invoke specific antibody and memory lymphocyte responses in immunized calves.

  10. A defect in epithelial barrier integrity is not required for a systemic response to bacterial antigens or intestinal injury in T cell receptor-alpha gene-deficient mice.

    Science.gov (United States)

    Sydora, Beate C; Tavernini, Michele M; Doyle, Jason; Fedorak, Richard N

    2006-08-01

    Genetically induced disruption of the intestinal epithelial barrier leads to development of intestinal inflammation. In the interleukin-10 gene-deficient inflammatory bowel disease (IBD) mouse model, for instance, a primary defect in intestinal epithelial integrity occurs before the development of enterocolitis. In humans, a causal role for epithelial barrier disruption is still controversial. Although studies with first-degree relatives of IBD patients suggests an underlying role of impaired barrier function, a primary epithelial barrier defect in IBD patients has not been confirmed. The purpose of this article is to examine whether a primary epithelial barrier disruption is a prerequisite for the development of intestinal inflammation or whether intestinal inflammation can develop in the absence of epithelial disruption. We examined the intestinal epithelial integrity of the T cell receptor (TCR)-alpha gene-deficient mouse model of IBD. In vivo colonic permeability, determined by mannitol transmural flux, was assessed in 6-week-, 12-week-, and 25-week-old TCR-alpha gene-deficient and wild-type control mice using a single-pass perfusion technique. Mice were scored for intestinal histological injury and intestinal cytokine levels measured in organ cultures. Systemic responses to bacterial antigens were determined through 48-h spleen cell cultures stimulated with sonicate derived from endogenous bacterial strains. In contrast with previous findings in the interleukin-10 gene-deficient IBD model, TCR-alpha gene-deficient mice did not demonstrate evidence of primary intestinal epithelial barrier disruption at any age, despite developing a moderate to severe colitis within 12 weeks. A rise in intestinal interferon (IFN)-gamma levels preceded the onset of mucosal inflammation and then correlated closely with the degree of intestinal inflammation and injury. Spleen cells from TCR-alpha gene-deficient mice released IFN-gamma in response to stimulation with endogenous

  11. New candidate vaccines against blood-stage Plasmodium falciparum malaria: prime-boost immunization regimens incorporating human and simian adenoviral vectors and poxviral vectors expressing an optimized antigen based on merozoite surface protein 1

    NARCIS (Netherlands)

    Goodman, Anna L.; Epp, C.; Moss, D.; Holder, A. A.; Wilson, J. M.; Gao, G. P.; Long, C. A.; Remarque, E. J.; Thomas, A. W.; Ammendola, V.; Colloca, S.; Dicks, M. D. J.; Biswas, S.; Seibel, D.; van Duivenvoorde, L. M.; Gilbert, S. C.; Hill, A. V. S.; Draper, S. J.

    2010-01-01

    Although merozoite surface protein 1 (MSP-1) is a leading candidate vaccine antigen for blood-stage malaria, its efficacy in clinical trials has been limited in part by antigenic polymorphism and potentially by the inability of protein-in-adjuvant vaccines to induce strong cellular immunity. Here we

  12. The role of bacterial fermentation in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages.

    Science.gov (United States)

    Chen, Qian; Kong, Baohua; Han, Qi; Liu, Qian; Xu, Li

    2016-11-01

    Pediococcus pentosaceus, Lactobacillus curvatus, Lactobacillus sake and Staphylococcus xylosus were evaluated to determine their role in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages. Electrophoresis analysis showed that the hydrolysis of sarcoplasmic and myofibrillar proteins in dry sausages inoculated with bacterial strains was more severe than that in the non-inoculated control. The predominant free amino acids at the end of the fermentation were glutamic acid and alanine, both of which are involved in creating a desirable taste. The inoculation of dry sausages with bacterial strains, especially mixed strains, significantly decreased carbonyl formation and sulfhydryl loss in sausages (Psausage with multiple bacterial strains could contribute to flavour formation via flavour precursors. The results demonstrate that Harbin dry sausage can be inoculated with a starter culture mixture of P. pentosaceus, L. curvatus and S. xylosus to improve flavour formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Directory of Open Access Journals (Sweden)

    Tauson Anne-Helene

    2007-11-01

    Full Text Available Abstract The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07 with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters.

  14. Blood parameters in growing pigs fed increasing levels of bacterial protein meal

    Science.gov (United States)

    Hellwing, Anne Louise F; Tauson, Anne-Helene; Skrede, Anders

    2007-01-01

    The experiment investigated the effects of increasing dietary levels of bacterial protein meal (BPM) on various blood parameters reflecting protein and fat metabolism, liver function, and purine base metabolism in growing pigs. Sixteen barrows were allocated to four different experimental diets. The control diet was based on soybean meal. In the other three diets soybean meal was replaced with increasing levels of BPM, approximately 17%, 35%, and 50% of the nitrogen being derived from BPM. Blood samples from the jugular vein were taken when the body weights of the pigs were approximately 10 kg, 21 kg, 45 kg, and 77 kg. The blood parameters reflecting fat metabolism and liver function were not affected by diet. Both the plasma albumin and uric acid concentrations tended to decrease (P = 0.07 and 0.01, respectively) with increasing dietary BPM content, whereas the plasma glucose concentration tended to increase (P = 0.07) with increasing dietary BPM content. It was concluded that up to 50% of the nitrogen could be derived from BPM without affecting metabolic function, as reflected in the measured blood parameters. PMID:17996082

  15. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  16. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  17. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  18. Development of Phage-Based Antibody Fragment Reagents for Affinity Enrichment of Bacterial Immunoglobulin G Binding Proteins.

    Science.gov (United States)

    Säll, Anna; Sjöholm, Kristoffer; Waldemarson, Sofia; Happonen, Lotta; Karlsson, Christofer; Persson, Helena; Malmström, Johan

    2015-11-06

    Disease and death caused by bacterial infections are global health problems. Effective bacterial strategies are required to promote survival and proliferation within a human host, and it is important to explore how this adaption occurs. However, the detection and quantification of bacterial virulence factors in complex biological samples are technically demanding challenges. These can be addressed by combining targeted affinity enrichment of antibodies with the sensitivity of liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS). However, many virulence factors have evolved properties that make specific detection by conventional antibodies difficult. We here present an antibody format that is particularly well suited for detection and analysis of immunoglobulin G (IgG)-binding virulence factors. As proof of concept, we have generated single chain fragment variable (scFv) antibodies that specifically target the IgG-binding surface proteins M1 and H of Streptococcus pyogenes. The binding ability of the developed scFv is demonstrated against both recombinant soluble protein M1 and H as well as the intact surface proteins on a wild-type S. pyogenes strain. Additionally, the capacity of the developed scFv antibodies to enrich their target proteins from both simple and complex backgrounds, thereby allowing for detection and quantification with LC-SRM MS, was demonstrated. We have established a workflow that allows for affinity enrichment of bacterial virulence factors.

  19. Role of alpha-crystallin, early-secreted antigenic target 6-kDa protein and culture filtrate protein 10 as novel diagnostic markers in osteoarticular tuberculosis

    Directory of Open Access Journals (Sweden)

    Nazia Rizvi

    2016-07-01

    Full Text Available Osteoarticular tuberculosis constitutes about 3% of all tuberculosis cases. Early and accurate diagnosis of tuberculosis is a challenging problem especially in the case of osteoarticular tuberculosis owing to the lower number of bacilli. However, an accurate and timely diagnosis of the disease results in an improved efficacy of the given treatment. Besides the limitations of conventional methods, nowadays molecular diagnostic techniques have emerged as a major breakthrough for the early diagnosis of tuberculosis with high sensitivity and specificity. Alpha-crystallin is a dominantly expressed protein responsible for the long viability of the pathogen during the latent phase under certain stress conditions such as hypoxia and nitric oxide stress. Two other proteins—early secreted antigenic target-6 and culture filtrate protein-10—show high expression in the active infective phase of Mycobacterium tuberculosis. In this article, we focus on the different proteins expressed dominantly in latent/active tuberculosis, and which may be further used as prognostic biomarkers for diagnosing tuberculosis, both in latent and active phases.

  20. Co-ordinate action of bacterial adhesins and human carcinoembryonic antigen receptors in enhanced cellular invasion by capsulate serum resistant Neisseria meningitidis.

    Science.gov (United States)

    Rowe, Helen A; Griffiths, Natalie J; Hill, Darryl J; Virji, Mumtaz

    2007-01-01

    Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining

  1. Epicutaneous immunization with protein antigen TNP-Ig and NOD2 ligand muramyl dipeptide (MDP) reverses skin-induced suppression of contact hypersensitivity.

    Science.gov (United States)

    Majewska-Szczepanik, Monika; Dorożyńska, Iwona; Strzępa, Anna; Szczepanik, Marian

    2014-02-01

    Epicutaneous (EC) immunization offers a new method of a needle-free and self-administrable immunization by using a topically applied patch to deliver vaccine. We have previously shown that EC immunization with hapten-conjugated protein antigen TNP-Ig prior to hapten sensitization inhibits Th1-mediated contact hypersensitivity (CHS) in mice. Our further work showed that EC immunization with TNP-Ig and Toll-like receptor (TLR) ligands prior to hapten sensitization reverses skin-induced suppression. Animal model of contact hypersensitivity was used to study reversal of skin-induced suppression. Current work showed that EC immunization with protein antigen TNP-Ig and MDP NOD2 agonist - muramyldipeptide (L isoform) reverses skin-induced suppression of CHS. On the other hand L18-MDP NOD2 agonist - muramyldipeptide with a C18 fatty acid chain and MDP control - negative control for MDP - muramyldipeptide (D isoform, inactive) did not reverse skin-induced suppression. "Transfer in" experiment showed that reversal of skin-induced suppression can be adoptively transferred with lymphoid cells isolated from donors EC treated with TNP-Ig and MDP NOD2 agonist. Moreover, experiment employing two non-cross-reacting antigens TNP-Ig and OX-Ig proved that reversal of skin-induced suppression is antigen specific. Additionally, lymph node cells isolated from mice EC immunized with TNP-Ig and MDP NOD2 agonist produced increased level of IFN-γ suggesting that this cytokine might be involved in reversal of skin-induced suppression. This work shows that EC immunization with protein antigen plus NOD2 ligand MDP may be a potential tool to increase the immunogenicity of weekly immunogenic antigens. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Receptor interacting protein kinase-2 inhibition by CYLD impairs anti-bacterial immune responses in macrophages

    Directory of Open Access Journals (Sweden)

    Katharina eWex

    2016-01-01

    Full Text Available Upon infection with intracellular bacteria, nucleotide oligomerization domain protein 2 (NOD2 recognizes bacterial muramyl dipeptide and binds, subsequently, to receptor-interacting serine/threonine kinase 2 (RIPK2. RIPK2 mediates the activation of immune responses via the nuclear factor-κB (NF-κB and extracellular-signal regulated kinase (ERK pathways. Previously, it has been shown that RIPK2 activation dependens on its K63-ubiquitination by the E3 ligases pellino-3 and ITCH, whereas the deubiquitinating enzyme A20 counter-regulates RIPK2 activity by cleaving K63-polyubiquitin chains from RIPK2. Here, we newly identify the deubiquitinating enzyme CYLD as a new interacting partner and inhibitor of RIPK2. We show that CYLD binds to and removes K63-polyubiquitin chains from RIPK2 in Listeria monocytogenes (Lm infected bone-marrow-derived macrophages (BMDM. CYLD-mediated K63-deubiquitination of RIPK2 resulted in an impaired activation of both NF-κB and ERK1/2 pathways, reduced production of proinflammatory cytokines (IL-6, IL-12, anti-listerial ROS and NO, and, finally, impaired pathogen control. In turn, RIPK2 inhibition by siRNA prevented activation of NF-κB and ERK1/2 and completely abolished the protective effect of CYLD-deficiency with respect to the production of IL-6, NO, ROS and pathogen control. Noteworthy, CYLD also inhibited autophagy of Listeria in a RIPK2-ERK1/2 dependent manner.The protective function of CYLD-deficiency was dependent on IFN-γ pre-stimulation of infected macrophages. Interestingly, the reduced NF-κB activation in CYLD-expressing macrophages limited the protective effect of IFN-γ by reducing NF-κB-dependent STAT1 activation. Taken together, our study identifies CYLD as an important inhibitor of RIPK2-dependent anti-bacterial immune responses in macrophages.

  3. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection.

    Directory of Open Access Journals (Sweden)

    Leigh A Baxt

    Full Text Available Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min., the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG. Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.

  4. Comprehensive Mapping Antigenic Epitopes of NS1 Protein of Japanese Encephalitis Virus with Monoclonal Antibodies.

    Directory of Open Access Journals (Sweden)

    Rong-Hong Hua

    Full Text Available Japanese encephalitis virus (JEV non-structural protein 1 (NS1 contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA, five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues (5AIDITRK(11, (72RDELNVL(78, (251KSKHNRREGY(260, (269DENGIVLD(276, and (341DETTLVRS(348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.

  5. Streptococcus pneumoniae Proteins AmiA, AliA, and AliB Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species

    Directory of Open Access Journals (Sweden)

    Fauzy Nasher

    2018-01-01

    Full Text Available The nasopharynx is frequently colonized by both commensal and pathogenic bacteria including Streptococcus pneumoniae (pneumococcus. Pneumococcus is an important pathogen responsible for bacterial meningitis and community acquired pneumonia but is also commonly an asymptomatic colonizer of the nasopharynx. Understanding interactions between microbes may provide insights into pathogenesis. Here, we investigated the ability of the three oligopeptide-binding proteins AmiA, AliA, and AliB of an ATP-binding cassette transporter of pneumococcus to detect short peptides found in other bacterial species. We found three possible peptide ligands for AmiA and four each for AliA and AliB of which two for each protein matched ribosomal proteins of other bacterial species. Using synthetic peptides we confirmed the following binding: AmiA binds peptide AKTIKITQTR, matching 50S ribosomal subunit protein L30, AliA binds peptide FNEMQPIVDRQ, matching 30S ribosomal protein S20, and AliB binds peptide AIQSEKARKHN, matching 30S ribosomal protein S20, without excluding the possibility of binding of the other peptides. These Ami–AliA/AliB peptide ligands are found in multiple species in the class of Gammaproteobacteria which includes common colonizers of the nostrils and nasopharynx. Binding such peptides may enable pneumococcus to detect and respond to neighboring species in its environment and is a potential mechanism for interspecies communication and environmental surveillance.

  6. Apoptosis and necrosis increase antigenicity of proteins recognized by antinuclear antibodies

    Directory of Open Access Journals (Sweden)

    J.J. Bollain-y-Goitia

    2011-09-01

    Full Text Available Obiettivo. Lo scopo di questo studio è quello di indagare se l’apoptosis e la necrosi aumentano l’antigenicità delle proteine riconosciute da anticorpi antinucleo. Materiale e metodi. Cellule HEp-2 sono state coltivate in condizioni standard; l’apoptosis è stata indotta con camptecina e la necrosi con cloruro di mercurio. L’antigenicità delle proteine estratte dalle cellule è stato testata su membrane di nitrocellulosa e sondata con sieri positivi o negativi per anticorpi antinucleo utilizzando un sistema ELISA a luminescenza (luminescent. Risultati. Le alterazioni apoptotiche nelle cellule HEp-2 sono apparse entro 24 ore dall’esposizione alla camptoicina, mentre i segni di necrosi si sono evidenziati più precocemente. La luminescenza si è dimostrata significativamente superiore nei sieri ANA positivi che nei controlli ANA negativi. Gli antcorpi antinucleari sieirici riconoscono meglio gli antigeni da cellule apoptotiche e necrotiche rispetto ai controlli che non hanno subito trattamenti chimici. Conclusioni. L’apoptosi e la necrosi incrementano la capacità legante degli ANA attraverso una migliore disponibilità di antigeni intracellulari o svelando epitopi criptici.

  7. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    Directory of Open Access Journals (Sweden)

    Rafael Dhalia

    2009-12-01

    Full Text Available Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP. The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado

  8. The influence of different cucumariosides on immunogenicity of OmpF porin from Yersinia pseudotuberulosis as a model protein antigen of tubular immunostimulating complex

    Science.gov (United States)

    Sanina, N. M.; Chopenko, N. S.; Davydova, L. A.; Mazeika, A. N.; Portnyagina, O. Yu.; Kim, N. Yu.; Golotin, V. A.; Kostetsky, E. Y.; Shnyrov, V. L.

    2017-09-01

    Nanoparticulate tubular immunostimulating complex (TI-complex) is a novel promising adjuvant carrier of antigens allowing to create safe and effective vaccines of new generation. The adjuvant activity of TI-complexes based on monogalactosyldyacylglycerol (MGDG) from the sea alga Ulva lactuca and different triterpene glycosides cucumariosides (CDs) from marine invertebrate Cucumaria japonica and their fractions was studied to assess effects of different CDs on the immunogenicity of porin OmpF from Yersinia pseudotuberculosis (YOmpF). TI-complexes with cucumarioside A2-2 (CDA2-2) maximally stimulated anti-porin antibody production. Studies of protein intrinsic fluorescence showed that all CDs had a relaxing effect on the conformation of YOmpF, loosening peripheral region of protein and promoting exposure of the protein antigenic determinants to the water environment. The greatest immunostimulating effect of TI-complexes comprising CDA2-2 was accompanied by mild effect of this CD on the tertiary structure of protein antigen YOmpF, whereas cucumarioside E (CDE) and cucumarioside A2-4 (CDA2-4) caused especially sharp redistribution of spectral form of the YOmpF corresponding to the emission of an intrinsic protein fluorophore tryptophan.

  9. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changhua; Mao, Mao [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Yuan, Hang [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Shen, Huaibin [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Wu, Feng; Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)

    2013-09-15

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 Degree-Sign C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  10. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Science.gov (United States)

    Zhou, Changhua; Mao, Mao; Yuan, Hang; Shen, Huaibin; Wu, Feng; Ma, Lan; Li, Lin Song

    2013-09-01

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 °C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  11. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    Science.gov (United States)

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F

    2014-01-01

    -linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two...... immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme...... commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods...

  13. In Vivo Microbial Antigen Discovery (InMAD) to identify diagnostic proteins and polysaccharides that are circulating during microbial infections.

    Science.gov (United States)

    Chaves, Sindy J; Schegg, Kathleen; Kozel, Thomas R; Aucoin, David P

    2013-01-01

    Immunoassays employed at the point-of-care (POC) are often useful for diagnosing acute infections. Many of these assays rely on identification of microbial antigens that are secreted or shed during infection. However, determining which microbial antigens are best to target by immunoassay can be the most difficult aspect of developing a new diagnostic product. Here we describe a novel technique termed "In vivo Microbial Antigen Discovery" or "InMAD" for identification of microbial antigens that may be targeted for the diagnosis of infectious diseases.

  14. Coadministration of the Three Antigenic Leishmania infantum Poly (A Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Manuel Soto

    2015-05-01

    Full Text Available Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A binding proteins (LiPABPs.Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid.The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasis.

  15. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N-U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously...

  16. Factor H-IgG Chimeric Proteins as a Therapeutic Approach against the Gram-Positive Bacterial Pathogen Streptococcus pyogenes.

    Science.gov (United States)

    Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David

    2017-12-01

    Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. A Protein-Conjugate Approach to Develop a Monoclonal Antibody-Based Antigen Detection Test for the Diagnosis of Human Brucellosis

    Science.gov (United States)

    Patra, Kailash P.; Saito, Mayuko; Atluri, Vidya L.; Rolán, Hortensia G.; Young, Briana; Kerrinnes, Tobias; Smits, Henk; Ricaldi, Jessica N.; Gotuzzo, Eduardo; Gilman, Robert H.; Tsolis, Renee M.; Vinetz, Joseph M.

    2014-01-01

    Human brucellosis is most commonly diagnosed by serology based on agglutination of fixed Brucella abortus as antigen. Nucleic acid amplification techniques have not proven capable of reproducibly and sensitively demonstrating the presence of Brucella DNA in clinical specimens. We sought to optimize a monoclonal antibody-based assay to detect Brucella melitensis lipopolysaccharide in blood by conjugating B. melitensis LPS to keyhole limpet hemocyanin, an immunogenic protein carrier to maximize IgG affinity of monoclonal antibodies. A panel of specific of monoclonal antibodies was obtained that recognized both B. melitensis and B. abortus lipopolysaccharide epitopes. An antigen capture assay was developed that detected B. melitensis in the blood of experimentally infected mice and, in a pilot study, in naturally infected Peruvian subjects. As a proof of principle, a majority (7/10) of the patients with positive blood cultures had B. melitensis lipopolysaccharide detected in the initial blood specimen obtained. One of 10 patients with relapsed brucellosis and negative blood culture had a positive serum antigen test. No seronegative/blood culture negative patients had a positive serum antigen test. Analysis of the pair of monoclonal antibodies (2D1, 2E8) used in the capture ELISA for potential cross-reactivity in the detection of lipopolysaccharides of E. coli O157:H7 and Yersinia enterocolitica O9 showed specificity for Brucella lipopolysaccharide. This new approach to develop antigen-detection monoclonal antibodies against a T cell-independent polysaccharide antigen based on immunogenic protein conjugation may lead to the production of improved rapid point-of-care-deployable assays for the diagnosis of brucellosis and other infectious diseases. PMID:24901521

  18. Nonstructural Protein 4 of Porcine Reproductive and Respiratory Syndrome Virus Modulates Cell Surface Swine Leukocyte Antigen Class I Expression by Downregulating β2-Microglobulin Transcription.

    Science.gov (United States)

    Qi, Pengfei; Liu, Ke; Wei, Jianchao; Li, Yuming; Li, Beibei; Shao, Donghua; Wu, Zhuanchang; Shi, Yuanyuan; Tong, Guangzhi; Qiu, Yafeng; Ma, Zhiyong

    2017-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which has important impacts on the pig industry. PRRSV infection results in disruption of the swine leukocyte antigen class I (SLA-I) antigen presentation pathway. In this study, highly pathogenic PRRSV (HP-PRRSV) infection inhibited transcription of the β2-microglobulin (β2M) gene ( B2M ) and reduced cellular levels of β2M, which forms a heterotrimeric complex with the SLA-I heavy chain and a variable peptide and plays a critical role in SLA-I antigen presentation. HP-PRRSV nonstructural protein 4 (Nsp4) was involved in the downregulation of β2M expression. Exogenous expression of Nsp4 downregulated β2M expression at both the mRNA and the protein level and reduced SLA-I expression on the cell surface. Nsp4 bound to the porcine B2M promoter and inhibited its transcriptional activity. Domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter were identified as essential for the interaction between Nsp4 and B2M These findings demonstrate a novel mechanism whereby HP-PRRSV may modulate the SLA-I antigen presentation pathway and provide new insights into the functions of HP-PRRSV Nsp4. IMPORTANCE PRRSV modulates the host response by disrupting the SLA-I antigen presentation pathway. We show that HP-PRRSV downregulates SLA-I expression on the cell surface via transcriptional inhibition of B2M expression by viral Nsp4. The interaction between domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter is essential for inhibiting B2M transcription. These observations reveal a novel mechanism whereby HP-PRRSV may modulate SLA-I antigen presentation and provide new insights into the functions of viral Nsp4. Copyright © 2017 American Society for Microbiology.

  19. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexe