WorldWideScience

Sample records for bacterial photosynthetic reaction

  1. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes

    OpenAIRE

    Zeng, Yonghui; Feng, Fuying; Medová, Hana; Dean, Jason; Koblížek, Michal

    2014-01-01

    Photosynthesis is one of the most fundamental biological processes on Earth. To date, species capable of performing (bacterio)chlorophyll-based phototrophy have been reported in six bacterial phyla. Here we report a phototrophic bacterium belonging to the rare and understudied phylum Gemmatimonadetes. This strain, isolated from a freshwater lake in the Gobi Desert, contains fully functional photosynthetic reaction centers. Its photosynthesis genes appear to originate from an ancient horizonta...

  2. Conformational regulation of charge recombination reactions in a photosynthetic bacterial reaction center

    DEFF Research Database (Denmark)

    Katona, Gergely; Snijder, Arjan; Gourdon, Pontus Emanuel

    2005-01-01

    In bright light the photosynthetic reaction center (RC) of Rhodobacter sphaeroides stabilizes the P(+)(870).Q(-)(A) charge-separated state and thereby minimizes the potentially harmful effects of light saturation. Using X-ray diffraction we report a conformational change that occurs within the cy...... the cytoplasmic domain of this RC in response to prolonged illumination with bright light. Our observations suggest a novel structural mechanism for the regulation of electron transfer reactions in photosynthesis....

  3. [On the influence of local molecular environment on the redox potential of electron transfer cofactors in bacterial photosynthetic reaction centers].

    Science.gov (United States)

    Krasil'nikov, P M; Noks, P P; Rubin, A B

    2011-01-01

    The addition of cryosolvents (glycerol, dimethylsulfoxide) to a water solution containing bacterial photosynthetic reaction centers changes the redox potential of the bacteriochlorophyll dimer, but does not affect the redox potential of the quinone primary acceptor. It has been shown that the change in redox potential can be produced by changes of the electrostatic interactions between cofactors and the local molecular environment modified by additives entered into the solution. The degree of influence of a solvent on the redox potential of various cofactors is determined by degree of availability of these cofactors for molecules of solvent, which depends on the arrangement of cofactors in the structure of reaction centers.

  4. The three-dimensional structures of bacterial reaction centers.

    Science.gov (United States)

    Olson, T L; Williams, J C; Allen, J P

    2014-05-01

    This review presents a broad overview of the research that enabled the structure determination of the bacterial reaction centers from Blastochloris viridis and Rhodobacter sphaeroides, with a focus on the contributions from Duysens, Clayton, and Feher. Early experiments performed in the laboratory of Duysens and others demonstrated the utility of spectroscopic techniques and the presence of photosynthetic complexes in both oxygenic and anoxygenic photosynthesis. The laboratories of Clayton and Feher led efforts to isolate and characterize the bacterial reaction centers. The availability of well-characterized preparations of pure and stable reaction centers allowed the crystallization and subsequent determination of the structures using X-ray diffraction. The three-dimensional structures of reaction centers revealed an overall arrangement of two symmetrical branches of cofactors surrounded by transmembrane helices from the L and M subunits, which also are related by the same twofold symmetry axis. The structure has served as a framework to address several issues concerning bacterial photosynthesis, including the directionality of electron transfer, the properties of the reaction center-cytochrome c 2 complex, and the coupling of proton and electron transfer. Together, these research efforts laid the foundation for ongoing efforts to address an outstanding question in oxygenic photosynthesis, namely the molecular mechanism of water oxidation.

  5. Special issue of photosynthetic research

    NARCIS (Netherlands)

    Okamura, M.; Wraight, C.A.; van Grondelle, R.

    2014-01-01

    This Special Issue of Photosynthesis Research honors Louis M. N. Duysens, Roderick K. Clayton, and George Feher, three pioneering researchers whose work on bacterial photosynthesis laid much of the groundwork for our understanding of the role of the reaction center in photosynthetic light energy

  6. Bio-Inspired Assembly of Artificial Photosynthetic Antenna Complexes for Development of Nanobiodevices

    Science.gov (United States)

    2011-06-24

    complexes involved in the primary reactions of bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its...role in the primary process of purple bacterial photosynthesis that is, capturing light energy, transferring it to the RC where it is used in...immobilization LH2 LH1-RC AFM image of a bacterial photosynthetic membrane . Artificial domains of LH2 & LH1-RC with patterning substrate Modern

  7. Quantum measurement corrections to CIDNP in photosynthetic reaction centers

    International Nuclear Information System (INIS)

    Kominis, Iannis K

    2013-01-01

    Chemically induced dynamic nuclear polarization is a signature of spin order appearing in many photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will show here that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected pathway toward obtaining chemically induced dynamic nuclear polarization signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations of the order of 10 4 times (or more) higher than the thermal equilibrium value at the Earth's magnetic field relevant to natural photosynthesis. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis. (paper)

  8. Photosynthetic Reaction Centres-from Basic Research to Application

    Directory of Open Access Journals (Sweden)

    László NAGY

    2010-06-01

    Full Text Available There is no doubt that studying the photosynthetic conversion of light into chemical energy is extremely important in many points of view; e.g., 1 technical-in order to improve the utilization of the solar energy; 2 food production-to improve the photosynthetic production of plants in agriculture; 3 ecology-keeping the primer production in ecosystems in the biosphere balanced, etc. In the photosynthetic reaction centre protein, RC, light energy is converted by a quantum yield of almost unity. There is no such a system designed by human which is able to do that. The RC purified from purple bacteria provides an extremely unique system for studying the requirements for high efficiency conversion of light into electrochemical energy. Thanks to the recent structural (e.g. crystallography (Nobel prize to Michel, Deisenhofer, Huber and functional (Nobel prize to Marcus results together with the works of molecular biology, computer- and electro-techniques, a wealth of information made a relatively clear picture about the kinetics, energetics and stabilization of electron transport within this protein that opens possibilities for new generation practical applications. In this paper we provide a short summary of fields in which the reaction centre protein can be important from practical points of view.

  9. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    Science.gov (United States)

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  10. Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213 - A new method of calculation.

    Science.gov (United States)

    Ptushenko, Vasily V; Cherepanov, Dmitry A; Krishtalik, Lev I

    2015-12-01

    Continuum electrostatic calculation of the transfer energies of anions from water into aprotic solvents gives the figures erroneous by order of magnitude. This is due to the hydrogen bond disruption that suggests the necessity to reconsider the traditional approach of the purely electrostatic calculation of the transfer energy from water into protein. In this paper, the method combining the experimental estimates of the transfer energies from water into aprotic solvent and the electrostatic calculation of the transfer energies from aprotic solvent into protein is proposed. Hydrogen bonds between aprotic solvent and solute are taken into account by introducing an imaginary aprotic medium incapable to form hydrogen bonds with the solute. Besides, a new treatment of the heterogeneous intraprotein dielectric permittivity based on the microscopic protein structure and electrometric measurements is elaborated. The method accounts semi-quantitatively for the electrostatic effect of diverse charged amino acid substitutions in the donor and acceptor parts of the photosynthetic bacterial reaction center from Rhodobacter sphaeroides. Analysis of the volatile secondary acceptor site QB revealed that in the conformation with a minimal distance between quinone QB and Glu L 212 the proton uptake upon the reduction of QB is prompted by Glu L 212 in alkaline and by Asp L 213 in slightly acidic regions. This agrees with the pH dependences of protonation degrees and the proton uptake. The method of pK calculation was applied successfully also for dissociation of Asp 26 in bacterial thioredoxin. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films.

    Science.gov (United States)

    Lukashev, Eugeny P; Knox, Petr P; Gorokhov, Vladimir V; Grishanova, Nadezda P; Seifullina, Nuranija Kh; Krikunova, Maria; Lokstein, Heiko; Paschenko, Vladimir Z

    2016-11-01

    Quantum dots (QDs) absorb ultraviolet and long-wavelength visible light energy much more efficiently than natural bacterial light-harvesting proteins and can transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion of RCs combined with QDs as antennae into liposomes opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components or inorganic components alone. RCs from Rhodobacter sphaeroides and QDs (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased. The efficiency of energy transfer between QDs and RCs and conditions of long-term stability of function of such hybrid complexes in film preparations were investigated as well. It was found that dry films containing RCs and QDs, maintained at atmospheric humidity, are capable of maintaining their functional activity for at least some months as judged by measurements of their spectral characteristics, efficiency of energy transfer from QDs to RCs and RC electron transport activity. Addition of trehalose to the films increases the stability further, especially for films maintained at low humidity. These stable hybrid film structures are promising for further studies towards developing new phototransformation devices for biotechnological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center.

    Science.gov (United States)

    Kitoh-Nishioka, Hirotaka; Ando, Koji

    2012-11-01

    The tunneling mechanisms of electron transfers (ETs) in photosynthetic reaction center of Blastochloris viridis are studied by the ab initio fragment molecular orbital (FMO) method combined with the generalized Mulliken-Hush (GMH) and the bridge Green function (GF) calculations of the electronic coupling T(DA) and the tunneling current method for the ET pathway analysis at the fragment-based resolution. For the ET from batctriopheophytin (H(L)) to menaquinone (MQ), a major tunneling current through Trp M250 and a minor back flow via Ala M215, Ala M216, and His M217 are quantified. For the ET from MQ to ubiquinone, the major tunneling pathway via the nonheme Fe(2+) and His L190 is identified as well as minor pathway via His M217 and small back flows involving His L230, Glu M232, and His M264. At the given molecular structure from X-ray experiment, the spin state of the Fe(2+) ion, its replacement by Zn(2+), or its removal are found to affect the T(DA) value by factors within 2.2. The calculated T(DA) values, together with experimentally estimated values of the driving force and the reorganization energy, give the ET rates in reasonable agreement with experiments.

  13. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    International Nuclear Information System (INIS)

    Coveney, M.F.

    1982-01-01

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H 14 CO 3 uptake experiments to measure 14 C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14 C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14 C uptake per m 2 lake surface. From 28 to 80 % of 14 C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14 CO 2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  14. Volume changes and electrostriction in the primary photoreactions of various photosynthetic systems: estimation of dielectric coefficient in bacterial reaction centers and of the observed volume changes with the Drude-Nernst equation.

    Science.gov (United States)

    Mauzerall, David; Hou, Jian-Min; Boichenko, Vladimir A

    2002-01-01

    Photoacoustics (PA) allows the determination of enthalpy and volume changes of photoreactions in photosynthetic reaction centers on the 0.1-10 mus time scale. These include the bacterial centers from Rb. sphaeroides, PS I and PS II centers from Synechocystis and in whole cells. In vitro and in vivo PA data on PS I and PS II revealed that both the volume change (-26 A(3)) and reaction enthalpy (-0.4 eV) in PS I are the same as those in the bacterial centers. However the volume change in PS II is small and the enthalpy far larger, -1 eV. Assigning the volume changes to electrostriction allows a coherent explanation of these observations. One can explain the large volume decrease in the bacterial centers with an effective dielectric coefficient of approximately 4. This is a unique approach to this parameter so important in estimation of protein energetics. The value of the volume contraction for PS I can only be explained if the acceptor is the super- cluster (Fe(4)S(4))(Cys(4)) with charge change from -1 to -2. The small volume change in PS II is explained by sub-mus electron transfer from Y(Z) anion to P(680) cation, in which charge is only moved from the Y(Z) anion to the Q(A) with no charge separation or with rapid proton transfer from oxidized Y(Z) to a polar region and thus very little change in electrostriction. At more acid pH equally rapid proton transfer from a neighboring histidine to a polar region may be caused by the electric field of the P(680) cation.

  15. Photosynthetic antennas and reaction centers: Current understanding and prospects for improvement

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, R.E. [Arizona State Univ., Tempe, AZ (United States)

    1996-09-01

    A brief introduction to the principles, structures and kinetic processes that take place in natural photosynthetic reaction center complexes is presented. Energy is first collected by an antenna system, and is transferred to a reaction center complex where primary electron transfer takes place. Secondary reactions lead to oxidation of water and reduction of CO{sub 2} in some classes of organisms. Antenna systems are highly regulated to maximize energy collection efficiency while avoiding photodamage. Some areas that are presently not well understood are listed.

  16. The evolutionary pathway from anoxygenic to oxygenic photosynthesis examined by comparison of the properties of photosystem II and bacterial reaction centers.

    Science.gov (United States)

    Allen, J P; Williams, J C

    2011-01-01

    In photosynthetic organisms, such as purple bacteria, cyanobacteria, and plants, light is captured and converted into energy to create energy-rich compounds. The primary process of energy conversion involves the transfer of electrons from an excited donor molecule to a series of electron acceptors in pigment-protein complexes. Two of these complexes, the bacterial reaction center and photosystem II, are evolutionarily related and structurally similar. However, only photosystem II is capable of performing the unique reaction of water oxidation. An understanding of the evolutionary process that lead to the development of oxygenic photosynthesis can be found by comparison of these two complexes. In this review, we summarize how insight is being gained by examination of the differences in critical functional properties of these complexes and by experimental efforts to alter pigment-protein interactions of the bacterial reaction center in order to enable it to perform reactions, such as amino acid and metal oxidation, observable in photosystem II.

  17. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  18. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    Science.gov (United States)

    2012-07-10

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution) revealed...1282 (2011) & Photosynthesis Res.. 111,63-69(2012)) Bacterial photosynthetic antenna polypeptide (LH) was synthesized as a water-soluble fusion...binding protein and its effect on the stability of reconstituted light-harvesting core antenna complex” , Photosynthesis Res.. 111,63-69(2012)(Doi

  19. Biological diversity of photosynthetic reaction centers and the solid-state photo-CIDNP effect

    NARCIS (Netherlands)

    Roy, Esha

    2007-01-01

    Photosynthetic reaction centers (RCs) from plants, heliobacteria and green sulphur bacteria has been investigated with photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR. In photosystem (PS) I of spinach, all signals appear negative which is proposed by a predominance of the

  20. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  1. A multi-pathway model for photosynthetic reaction center

    International Nuclear Information System (INIS)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-01-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  2. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    Science.gov (United States)

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the

  3. Primary photosynthetic processes: from supercomplex to leaf

    NARCIS (Netherlands)

    Broess, K.

    2009-01-01

    This thesis describes fluorescence spectroscopy experiments on photosynthetic complexes that cover the primary photosynthetic processes, from the absorption of light by photosynthetic pigments to a charge separation (CS) in the reaction center (RC). Fluorescence spectroscopy is a useful tool in

  4. Electrostatic dominoes: long distance propagation of mutational effects in photosynthetic reaction centers of Rhodobacter capsulatus.

    Science.gov (United States)

    Sebban, P; Maróti, P; Schiffer, M; Hanson, D K

    1995-07-04

    Two point mutants from the purple bacterium Rhodobacter capsulatus, both modified in the M protein of the photosynthetic reaction center, have been studied by flash-induced absorbance spectroscopy. These strains carry either the M231Arg --> Leu or M43ASN --> Asp mutations, which are located 9 and 15 A, respectively, from the terminal electron acceptor QB. In the wild-type Rb. sphaeroides structure, M231Arg is involved in a conserved salt bridge with H125Glu and H232Glu and M43Asn is located among several polar residues that form or surround the QB binding site. These substitutions were originally uncovered in phenotypic revertants isolated from the photosynthetically incompetent L212Glu-L213Asp --> Ala-Ala site-specific double mutant. As second-site suppressor mutations, they have been shown to restore the proton transfer function that is interrupted in the L212Ala-L213Ala double mutant. The electrostatic effects that are induced in reaction centers by the M231Arg --> Leu and M43Asn --> Asp substitutions are roughly the same in either the double-mutant or wild-type backgrounds. In a reaction center that is otherwise wild type in sequence, they decrease the free energy gap between the QA- and QB- states by 24 +/- 5 and 45 +/- 5 meV, respectively. The pH dependences of K2, the QA-QB QAQB- equilibrium constant, are altered in reaction centers that carry either of these substitutions, revealing differences in the pKas of titratable groups compared to the wild type.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  6. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    Science.gov (United States)

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  7. A single residue controls electron transfer gating in photosynthetic reaction centers

    Czech Academy of Sciences Publication Activity Database

    Shlyk, O.; Samish, I.; Matěnová, M.; Dulebo, A.; Poláková, H.; Kaftan, David; Scherz, A.

    2017-01-01

    Roč. 7, MAR 16 (2017), s. 1-13, č. článku 44580. ISSN 2045-2322 R&D Projects: GA ČR GA15-00703S; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : BACTERIAL REACTION CENTERS * INDUCED STRUCTURAL-CHANGES * ATOMIC-FORCE MICROSCOPE Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.259, year: 2016

  8. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: The symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26

    International Nuclear Information System (INIS)

    Norris, J.R.; Budil, D.E.; Gast, P.; Chang, C.H.; El-Kabbani, O.; Schiffer, M.

    1989-01-01

    The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative to monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms

  9. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  10. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  11. Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site.

    Directory of Open Access Journals (Sweden)

    Nan eZhao

    2013-08-01

    Full Text Available Previously we have shown that ONIOM type (QM/MM calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and 18O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0, 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ, and 2,3-dimethyl-l,4-naphthoquinone (DMNQ incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites.The normal modes that contribute to the bands in the calculated spectra, their composition, frequency and intensity, and how these quantities are modified upon 18O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10-13 cm-1 separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are tail-less. Spectra were also calculated for reaction centers with corresponding tail containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated s

  12. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  13. Structural, theoretical and experimental models of photosynthetic antennas, donors and acceptors

    International Nuclear Information System (INIS)

    Barkigia, K.M.; Chantranupong, L.; Fajer, J.; Kehres, L.A.; Smith, K.M.

    1989-01-01

    Theoretical calculations, based on recent x-ray studies of bacterial reaction centers, suggest that the light-absorption properties of the special pair phototraps in bacteria are controlled by the interplanar spacing between the bacteriochlorophyll subunits that constitute the special pairs. The calculations offer attractively simple explanations for the range of absorption spectra exhibited by photosynthetic bacteria. The wide range of (bacterio)chlorophyll skeletal conformations revealed by x-ray diffraction studies raise the intriguing possibility that different conformations, imposed by protein constraints, can modulate the light-absorption and redox properties of the chromophores in vivo. Electron-nuclear double resonance data obtained for the primary acceptors in green plants suggest specific substituent orientations and hydrogen bonding that may help optimize the orientations of the acceptors relative to the donors

  14. Evidence from the structure and function of cytochromes c(2) that nonsulfur purple bacterial photosynthesis followed the evolution of oxygen respiration.

    Science.gov (United States)

    Meyer, Terry; Van Driessche, Gonzalez; Ambler, Richard; Kyndt, John; Devreese, Bart; Van Beeumen, Jozef; Cusanovich, Michael

    2010-10-01

    Cytochromes c(2) are the nearest bacterial homologs of mitochondrial cytochrome c. The sequences of the known cytochromes c(2) can be placed in two subfamilies based upon insertions and deletions, one subfamily is most like mitochondrial cytochrome c (the small C2s, without significant insertions and deletions), and the other, designated large C2, shares 3- and 8-residue insertions as well as a single-residue deletion. C2s generally function between cytochrome bc(1) and cytochrome oxidase in respiration (ca 80 examples known to date) and between cytochrome bc(1) and the reaction center in nonsulfur purple bacterial photosynthesis (ca 21 examples). However, members of the large C2 subfamily are almost always involved in photosynthesis (12 of 14 examples). In addition, the gene for the large C2 (cycA) is associated with those for the photosynthetic reaction center (pufBALM). We hypothesize that the insertions in the large C2s, which were already functioning in photosynthesis, allowed them to replace the membrane-bound tetraheme cytochrome, PufC, that otherwise mediates between the small C2 or other redox proteins and photosynthetic reaction centers. Based upon our analysis, we propose that the involvement of C2 in nonsulfur purple bacterial photosynthesis was a metabolic feature subsequent to the evolution of oxygen respiration.

  15. Tuning cofactor redox potentials: the 2-methoxy dihedral angle generates a redox potential difference of >160 mV between the primary (Q(A)) and secondary (Q(B)) quinones of the bacterial photosynthetic reaction center.

    Science.gov (United States)

    Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2013-10-15

    Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.

  16. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  17. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers.

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  18. Excitons in intact cells of photosynthetic bacteria.

    Science.gov (United States)

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  19. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  20. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn.

    Science.gov (United States)

    Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa

    2014-01-01

    We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  1. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn

    Directory of Open Access Journals (Sweden)

    Tapio eLinkosalo

    2014-06-01

    Full Text Available We studied the photosynthetic activity of Scots pine (Pinus sylvestris L. and Norway spruce (Picea abies [L.] Karst in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 13 times per week. We began by measuring shoots present in late winter (i.e., March 2013 before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only.We analysed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence.The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 20132014 was unusually mild and similar to future conditions predicted by global warming models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  2. Field reaction of cassava genotypes to anthracnose, bacterial blight ...

    African Journals Online (AJOL)

    Field reaction of cassava genotypes to anthracnose, bacterial blight, cassava mosaic disease and their effects on yield. ... The BYDV-PAV and BYDV-RPV serotypes were identified from 9 and 10 of the 11 surveyed fields, respectively, with the two serotypes co-infecting some plants. Of the nine wheat cultivars surveyed, four ...

  3. Fiber-optic fluorometer for microscale mapping of photosynthetic pigments in microbial communities

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael; Holst, Gerhard

    2001-01-01

    Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls, and bacteri......Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls...

  4. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  5. Photosynthetic control of electron transport and the regulation of gene expression

    NARCIS (Netherlands)

    Foyer, C.H.; Neukermans, J.; Queval, G.; Noctor, G.; Harbinson, J.

    2012-01-01

    The term ‘photosynthetic control’ describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these

  6. Femtosecond spectroscopy of bacterial photosynthesis--towards an understanding of the most important energy conversion process on earth

    International Nuclear Information System (INIS)

    Zinth, W.; Hamm, P.; Arlt, T.; Wachtveitl, J.

    1996-01-01

    Reaction centers of bacterial photosynthesis are ideal systems to study photosynthetic energy conversion. Femtosecond spectroscopy has delivered extensive information on the molecular mechanisms of the primary electron transfer. The data show, that primary electron transfer is an ultrafast stepwise reaction, where the electron is transferred via closely spaced pigments with reaction times as fast as 0.9 ps and 3.5 ps. Experiments on mutated and modified reaction centers allow to determine the energetics of the various intermediates in the reaction center. Recently, femtosecond experiments with light pulses in the mid infrared have shown, that an additional fast process occurs on the 200 fs timescale in the initially excited special pair. Only afterwards the well established electron transfer reactions take place. This fast process may be of importance for the optimization of the primary reaction

  7. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Probing the Energy Transfer Dynamics of Photosynthetic Reaction Center Complexes Through Hole-Burning and Single-Complex Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Kerry Joseph [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Photosynthesis is the process by which light energy is used to drive reactions that generate sugars to supply energy for cellular processes. It is one of the most important fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and eukaryotic (e.g. plants and algae) organisms. Photosynthesis is also remarkably intricate, requiring the coordination of many different steps and reactions in order to successfully transform absorbed solar energy into a biochemical usable form of energy. However, the net reaction for all photosynthetic organisms can be reduced to the following, deceptively general, equation developed by Van Niel[1] H2 - D + Aimplieshv A - H2 + D where H2-D is the electron donor, e.g. H2O, H2S. A is the electron acceptor, e.g. CO2, and A-H2 is the synthesized sugar. Amazingly, this simple net equation is responsible for creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are necessary for the sustainment of the global ecosystem.

  9. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1.

    Science.gov (United States)

    Fujii, Ritsuko; Shimonaka, Shozo; Uchida, Naoko; Gardiner, Alastair T; Cogdell, Richard J; Sugisaki, Mitsuru; Hashimoto, Hideki

    2008-01-01

    Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.

  10. Benthic bacterial diversity in submerged sinkhole ecosystems.

    Science.gov (United States)

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  11. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Strain W4

    OpenAIRE

    Masuda, Shinji; Hori, Koichi; Maruyama, Fumito; Ren, Shukun; Sugimoto, Saori; Yamamoto, Nozomi; Mori, Hiroshi; Yamada, Takuji; Sato, Shusei; Tabata, Satoshi; Ohta, Hiroyuki; Kurokawa, Ken

    2013-01-01

    We report the draft genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum. The photosynthesis gene cluster comprises two segments?a unique feature among photosynthesis gene clusters of purple bacteria. The genome information will be useful for further analysis of bacterial photosynthesis.

  13. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Jankowiak, Ryszard, E-mail: ryszard@ksu.edu [Department of Chemistry, Kansas State University, Manhattan, Kansas 66506 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2015-03-07

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω{sub sp}, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.

  14. Comments on the optical lineshape function: Application to transient hole-burned spectra of bacterial reaction centers

    International Nuclear Information System (INIS)

    Reppert, Mike; Kell, Adam; Pruitt, Thomas; Jankowiak, Ryszard

    2015-01-01

    The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ω sp , for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers

  15. Platelet transfusion therapy in sub-Saharan Africa: bacterial contamination, recipient characteristics and acute transfusion reactions

    Science.gov (United States)

    Hume, Heather A.; Ddungu, Henry; Angom, Racheal; Baluku, Hannington; Kajumbula, Henry; Kyeyune-Byabazaire, Dorothy; Orem, Jackson; Ramirez-Arcos, Sandra; Tobian, Aaron A.R.

    2017-01-01

    Background Little data are available on bacterial contamination (BC) of platelet units or acute transfusion reactions to platelet transfusions (PT) in sub-Saharan Africa (SSA). Methods This prospective observational study evaluated the rate of BC of whole blood derived platelet units (WB-PU), the utility of performing Gram stains (GS) to prevent septic reactions, characteristics of patients receiving PT and the rate of acute reactions associated with PT at the Uganda Cancer Institute in Kampala, Uganda. An aliquot of each WB-PU studied was taken to perform GS and culture using the Bactec™ 9120 instrument. Study participants were monitored for reactions. Results 337 WB-PU were evaluated for BC, of which 323 units were transfused in 151 transfusion episodes to 50 patients. The frequency of BC ranged from 0.3%–2.1% (according to criteria used to define BC). The GS had high specificity (99.1%), but low sensitivity to detect units with BC. The median platelet count prior to PT was 10,900 (IQR 6,000–18,900) cells/μL. 78% of PT were given to patients with no bleeding. Acute reactions occurred in 11 transfusion episodes, involving 13 WB-PU, for a rate of 7.3% (95%CI=3.7–12.7%) per transfusion episode. All recipients of units with positive bacterial cultures were receiving antibiotics at the time of transfusion; none experienced a reaction. Conclusions The rate of BC observed in this study is lower than previously reported in SSA, but still remains a safety issue. As GS appears to be an ineffective screening tool, alternate methods should be explored to prevent transfusing bacterially-contaminated platelets in SSA. PMID:27079627

  16. Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †

    Science.gov (United States)

    Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643

  17. Assembly of photosynthetic reaction center with ABA tri-block polymersomes: highlights on the protein localization.

    KAUST Repository

    Tangorra, Roberto Rocco

    2015-07-07

    The reconstitution of the integral membrane protein photosynthetic reaction center (RC) in polymersomes, i. e. artificial closed vesicles, was achieved by the micelle-to-vesicle transition technique, a very mild protocol based on size exclusion chromatography often used to drive the incorporation of proteins contemporarily to liposomes formation. An optimized protocol was used to successfully reconstitute the protein in a fully active state in polymersomes formed by the tri-block copolymers PMOXA22-PDMS61-PMOXA22. The RC is very sensitive to its solubilizing environment and was used to probe the positioning of the protein in the vesicles. According to charge-recombination experiments and to the enzymatic activity assay, the RC is found to accommodate in the PMOXA22 region of the polymersome, facing the water bulk solution, rather than in the PDMS61 transmembrane-like region. Furthermore, polymersomes were found to preserve protein integrity efficiently as the biomimetic lipid bilayers but show a much longer temporal stability than lipid based vesicles.

  18. Assembly of photosynthetic reaction center with ABA tri-block polymersomes: highlights on the protein localization.

    KAUST Repository

    Tangorra, Roberto Rocco; Operamolla, Alessandra; Milano, Francesco; Hassan Omar, Omar; Henrard, John; Comparelli, Roberto; Italiano, Francesca; Agostiano, Angela; De Leo, Vincenzo; Marotta, Roberto; Falqui, Andrea; Farinola, Gianluca; Trotta, Massimo

    2015-01-01

    The reconstitution of the integral membrane protein photosynthetic reaction center (RC) in polymersomes, i. e. artificial closed vesicles, was achieved by the micelle-to-vesicle transition technique, a very mild protocol based on size exclusion chromatography often used to drive the incorporation of proteins contemporarily to liposomes formation. An optimized protocol was used to successfully reconstitute the protein in a fully active state in polymersomes formed by the tri-block copolymers PMOXA22-PDMS61-PMOXA22. The RC is very sensitive to its solubilizing environment and was used to probe the positioning of the protein in the vesicles. According to charge-recombination experiments and to the enzymatic activity assay, the RC is found to accommodate in the PMOXA22 region of the polymersome, facing the water bulk solution, rather than in the PDMS61 transmembrane-like region. Furthermore, polymersomes were found to preserve protein integrity efficiently as the biomimetic lipid bilayers but show a much longer temporal stability than lipid based vesicles.

  19. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1990-10-01

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  20. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    Science.gov (United States)

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  1. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    Science.gov (United States)

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Quantum transport in the FMO photosynthetic light-harvesting complex.

    Science.gov (United States)

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  3. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    KAUST Repository

    Bredas, Jean-Luc

    2016-12-20

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder-structural and energetic-and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  4. Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2018-01-01

    Full Text Available Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria, Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria employing this photosystem in nature. Almost complete pufLM gene sequences and the derived protein sequences from 152 type strains and 45 additional strains of phototrophic Proteobacteria employing photosystem II were compared. The results give interesting and comprehensive insights into the phylogeny of the photosynthetic apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from Caulobacterales (Brevundimonas subvibrioides. A special relationship exists between the PufLM sequences of those bacteria employing bacteriochlorophyll b instead of bacteriochlorophyll a. A clear phylogenetic association of aerobic phototrophic purple bacteria to anaerobic purple bacteria according to their PufLM sequences is demonstrated indicating multiple evolutionary lines from anaerobic to aerobic phototrophic purple bacteria. The impact of pufLM gene sequences for studies on the environmental diversity of phototrophic bacteria is discussed and the possibility of their identification on the species level in environmental samples is pointed out.

  5. Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate.

    Science.gov (United States)

    Manzo, Anthony J; Goushcha, Alexander O; Barabash, Yuri M; Kharkyanen, Valery N; Scott, Gary W

    2009-07-01

    Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of I(exp), obeys a simple exponential law with the rate constant alphaI(exp) + k(rec), in which alpha is a parameter relating the light intensity, measured in mW/cm(2), to a corresponding theoretical rate in units of reciprocal seconds, and k(rec) is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the alpha parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer-Lambert-Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation.

  6. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.

    Science.gov (United States)

    Wen, Fuyu; Li, Can

    2013-11-19

    Solar fuel production through artificial photosynthesis may be a key to generating abundant and clean energy, thus addressing the high energy needs of the world's expanding population. As the crucial components of photosynthesis, the artificial photosynthetic system should be composed of a light harvester (e.g., semiconductor or molecular dye), a reduction cocatalyst (e.g., hydrogenase mimic, noble metal), and an oxidation cocatalyst (e.g., photosystem II mimic for oxygen evolution from water oxidation). Solar fuel production catalyzed by an artificial photosynthetic system starts from the absorption of sunlight by the light harvester, where charge separation takes place, followed by a charge transfer to the reduction and oxidation cocatalysts, where redox reaction processes occur. One of the most challenging problems is to develop an artificial photosynthetic solar fuel production system that is both highly efficient and stable. The assembly of cocatalysts on the semiconductor (light harvester) not only can facilitate the charge separation, but also can lower the activation energy or overpotential for the reactions. An efficient light harvester loaded with suitable reduction and oxidation cocatalysts is the key for high efficiency of artificial photosynthetic systems. In this Account, we describe our strategy of hybrid photocatalysts using semiconductors as light harvesters with biomimetic complexes as molecular cocatalysts to construct efficient and stable artificial photosynthetic systems. We chose semiconductor nanoparticles as light harvesters because of their broad spectral absorption and relatively robust properties compared with a natural photosynthesis system. Using biomimetic complexes as cocatalysts can significantly facilitate charge separation via fast charge transfer from the semiconductor to the molecular cocatalysts and also catalyze the chemical reactions of solar fuel production. The hybrid photocatalysts supply us with a platform to study the

  7. A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  8. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria

    OpenAIRE

    Maresca, Julia A.; Graham, Joel E.; Wu, Martin; Eisen, Jonathan A.; Bryant, Donald A.

    2007-01-01

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechoc...

  9. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  10. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    International Nuclear Information System (INIS)

    Linnanto, J.M.; Korppi-Tommola, J.E.I.

    2009-01-01

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency

  11. Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, J.M. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)], E-mail: juha.m.linnanto@jyu.fi; Korppi-Tommola, J.E.I. [Department of Chemistry, P.O. Box 35, FIN-40014 University of Jyvaeskylae, Jyvaeskylae (Finland)

    2009-02-23

    Molecular mechanics and quantum chemical configuration interaction calculations in combination with exciton theory were used to predict vibronic energies and eigenstates of light harvesting antennae and the reaction centre and to evaluate excitation energy transfer rates in the photosynthetic unit of purple bacteria. Excitation energy transfer rates were calculated by using the transition matrix formalism and exciton basis sets of the interacting antenna systems. Energy transfer rates of 600-800 fs from B800 ring to B850 ring in the LH2 antenna, 3-10 ps from LH2 to LH2 antenna, 2-8 ps from LH2 to LH1 antenna and finally 30-70 ps from LH1 to the reaction centre were obtained. Dependencies of energy transfer rates on lateral and vertical inter-complex distances were determined. The results indicate that a fair amount of spatial heterogeneity of antenna complexes in the photosynthetic membrane is tolerated without much loss in excitation energy transfer efficiency.

  12. Photosynthetic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  13. Bacterial discrimination by means of a universal array approach mediated by LDR (ligase detection reaction

    Directory of Open Access Journals (Sweden)

    Consolandi Clarissa

    2002-09-01

    Full Text Available Abstract Background PCR amplification of bacterial 16S rRNA genes provides the most comprehensive and flexible means of sampling bacterial communities. Sequence analysis of these cloned fragments can provide a qualitative and quantitative insight of the microbial population under scrutiny although this approach is not suited to large-scale screenings. Other methods, such as denaturing gradient gel electrophoresis, heteroduplex or terminal restriction fragment analysis are rapid and therefore amenable to field-scale experiments. A very recent addition to these analytical tools is represented by microarray technology. Results Here we present our results using a Universal DNA Microarray approach as an analytical tool for bacterial discrimination. The proposed procedure is based on the properties of the DNA ligation reaction and requires the design of two probes specific for each target sequence. One oligo carries a fluorescent label and the other a unique sequence (cZipCode or complementary ZipCode which identifies a ligation product. Ligated fragments, obtained in presence of a proper template (a PCR amplified fragment of the 16s rRNA gene contain either the fluorescent label or the unique sequence and therefore are addressed to the location on the microarray where the ZipCode sequence has been spotted. Such an array is therefore "Universal" being unrelated to a specific molecular analysis. Here we present the design of probes specific for some groups of bacteria and their application to bacterial diagnostics. Conclusions The combined use of selective probes, ligation reaction and the Universal Array approach yielded an analytical procedure with a good power of discrimination among bacteria.

  14. Photosynthetic and Ultrastructure Parameters of Maize Plants are Affected During the Phyto-Rhizoremediation Process of Degraded Metal Working Fluids.

    Science.gov (United States)

    Grijalbo, Lucía; Gutierrez Mañero, Francisco Javier; Fernandez-Pascual, Mercedes; Lucas, Jose Antonio

    2015-01-01

    A phyto-rhizoremediation system using corn and esparto fiber as rooting support to remediate degraded metal working fluids (dMWFs) has been developed in the present study. In order to improve the process, plants were inoculated at the root level with bacteria either individually, and with a consortium of strains. All strains used were able to grow with MWFs. The results show that this system significantly lowers the Chemical Oxygen Demand below legal limits within 5 days. However, results were only improved with the bacterial consortium. Despite the effectiveness of the phyto-rhizoremediation process, plants are damaged at the photosynthetic level according to the photosynthetic parameters measured, as well as at the ultrastructure of the vascular cylinder and the Bundle Sheath Cells. Interestingly, the bacterial inoculation protects against this damage. Therefore, it seems that that the inoculation with bacteria can protect the plants against these harmful effects.

  15. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    Science.gov (United States)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  16. Photosynthetic control of electron transport and the regulation of gene expression.

    Science.gov (United States)

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  17. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  18. Bioinspired Organic PV Cells Using Photosynthetic Pigment Complex for Energy Harvesting Materials

    Science.gov (United States)

    2010-05-10

    the primary reactions of bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure...most stable and well organized. The best results were only obtained with the subset Random immobilization LH2 LH1-RC AFM image of a bacterial ...Green and Technology, Zero-Carbon Energy Kyoto 2009, Springer, p.129-134 (2010). Reviews: 13 1. K. Iida, T. Dewa, *M. Nango, “Assembly of Bacterial

  19. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Dewez, David; Didur, Olivier; Vincent-Heroux, Jonathan; Popovic, Radovan

    2008-01-01

    Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R 2 ≥ 0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (Φ M' ), photochemical quenching (q P ) and relative photochemical quenching (q P(rel) ) values. The cells density was also linearly dependent (R 2 = 0.838) on the relative unquenched fluorescence parameter (UQF (rel) ). Non-linear correlation was found (R 2 = 0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF (rel) > Φ M' > q P > q P(rel) > ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants. - Photosynthetic-fluorescence parameters are reliable biomarkers of isoproturon toxicity

  20. Computation studies into architecture and energy transfer properties of photosynthetic units from filamentous anoxygenic phototrophs

    Energy Technology Data Exchange (ETDEWEB)

    Linnanto, Juha Matti [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Freiberg, Arvi [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu (Estonia)

    2014-10-06

    We have used different computational methods to study structural architecture, and light-harvesting and energy transfer properties of the photosynthetic unit of filamentous anoxygenic phototrophs. Due to the huge number of atoms in the photosynthetic unit, a combination of atomistic and coarse methods was used for electronic structure calculations. The calculations reveal that the light energy absorbed by the peripheral chlorosome antenna complex transfers efficiently via the baseplate and the core B808–866 antenna complexes to the reaction center complex, in general agreement with the present understanding of this complex system.

  1. Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.

    Science.gov (United States)

    Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K

    2003-02-18

    Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional

  2. Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants

    Directory of Open Access Journals (Sweden)

    Tadeusz Baszyński

    2014-01-01

    Full Text Available The actual opinions concerning the role of Cd2+ in inhibition of photosynthesis have been reviewed. The light phase of photosynthesis, particularly the site of Cd2+ action in the photosynthetic transport chain has been given the greatest attention. Cd2+-induced inhibition of Photosystem II activity as the result of thylakoid membrane degradation has been discussed. The present studies on Cd2+-inhibited dark reactions occurring in stroma has been analysed. Attention has been drawn to the fact that the results of studies in vitro are not always compatible with the changes found in the photosynthetic apparatus of higher plants growing in a Cd2 containing medium.

  3. Interfacial charge recombination via the triplet state? Mimicry of photoprotection in the photosynthetic process with a dye-sensitized TiO 2 solar cell reaction

    Science.gov (United States)

    Weng, Yu-Xiang; Li, Long; Liu, Yin; Wang, Li; Yang, Guo-Zhen; Sheng, Jian-Qun

    2002-04-01

    Evidence for the photoinduced charge recombination to the excited-triplet state has been observed in chemical solar cell reaction consisting of dye-sensitized TiO 2 colloidal ethanol solution, which mimicks the photoprotection function in the photosynthetic units. The dye is all -trans-retinoic acid, a structural analog of β-carotenoid. Two channels of charge recombination, i.e., through triplet and ground states were observed by nano-second flash photolysis. The possibility of applying the function of photoprotection to the synthetic solar cell is discussed, which provides a potential entry of molecular engineering of the dye to improve the long term stability of the synthetic solar cell.

  4. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses to renew photosynthetic function.

  5. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    Science.gov (United States)

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.

  6. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome

    KAUST Repository

    Rö thig, Till; Ochsenkuhn, Michael A.; Roik, Anna Krystyna; Van Der Merwe, Riaan; Voolstra, Christian R.

    2016-01-01

    include differences in photosynthetic performance, respiration, and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here we exposed the coral Fungia granulosa

  7. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides.

    Science.gov (United States)

    Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; Tajkhorshid, Emad

    2015-03-31

    Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.

  8. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    Science.gov (United States)

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  9. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    Science.gov (United States)

    Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A

    2011-08-01

    Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.

  10. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, David; Didur, Olivier; Vincent-Heroux, Jonathan [University of Quebec in Montreal, Department of Chemistry, Environmental Toxicology Research Center - TOXEN, 2101, Jeanne-Mance, Montreal, Quebec H2X 2J6 (Canada); Popovic, Radovan [University of Quebec in Montreal, Department of Chemistry, Environmental Toxicology Research Center - TOXEN, 2101, Jeanne-Mance, Montreal, Quebec H2X 2J6 (Canada)], E-mail: popovic.radovan@uqam.ca

    2008-01-15

    Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R{sup 2} {>=} 0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield ({phi}{sub M'}), photochemical quenching (q{sub P}) and relative photochemical quenching (q{sub P(rel)}) values. The cells density was also linearly dependent (R{sup 2} = 0.838) on the relative unquenched fluorescence parameter (UQF{sub (rel)}). Non-linear correlation was found (R{sup 2} = 0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF{sub (rel)} > {phi}{sub M'} > q{sub P} > q{sub P(rel)} > ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants. - Photosynthetic-fluorescence parameters are reliable biomarkers of isoproturon toxicity.

  11. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery

    International Nuclear Information System (INIS)

    Nicolardi, Valentina; Cai, Giampiero; Parrotta, Luigi; Puglia, Michele; Bianchi, Laura; Bini, Luca; Gaggi, Carlo

    2012-01-01

    Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy. - Highlights: ► Lichens exposed to Hg° vapors accumulate this metal irreversibly. ► Hg° interferes with physiological processes of the epiphytic lichen Evernia prunastri. ► Hg° promotes changes in the concentration of photosynthetic pigments. ► Hg° treatment causes changes in the ultrastructure of the photobiont plastids. ► Hg° induces changes in the protein machinery involved in the photosynthesis pathway. - Mercury affects the photosynthetic protein machinery of lichens.

  12. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy.

    Science.gov (United States)

    Kangur, Liina; Jones, Michael R; Freiberg, Arvi

    2017-12-01

    Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Diagnosis of ventricular drainage-related bacterial meningitis by broad-range real-time polymerase chain reaction

    DEFF Research Database (Denmark)

    Deutch, Susanna; Dahlberg, Daniel; Hedegaard, Jesper

    2007-01-01

    OBJECTIVE: To compare a broad-range real-time polymerase chain reaction (PCR) diagnostic strategy with culture to evaluate additional effects on the etiological diagnosis and the quantification of the bacterial load during the course of ventricular drainage-related bacterial meningitis (VR......-BM). METHODS: We applied a PCR that targeted conserved regions of the 16S ribosomal ribonucleic acid gene to cerebrospinal fluid (CSF) samples from patients with external ventricular drainage or a ventriculoperitoneal shunt during the course of VR-BM. We compared the PCR results with CSF cultures. A total...... of 350 routine CSF samples were consecutively collected from 86 patients. The CSF deoxyribonucleic acid was automatically purified and subjected to PCR. Amplicons from the PCR samples that were positive for VR-BM were subsequently deoxyribonucleic acid sequenced for final identification. Clinical data...

  14. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.

    Science.gov (United States)

    Taumer, Christoph; Griesbaum, Lena; Kovacevic, Alen; Soufi, Boumediene; Nalpas, Nicolas C; Macek, Boris

    2018-03-29

    Increasing number of studies report the relevance of protein Ser/Thr/Tyr phosphorylation in bacterial physiology, yet the analysis of this type of modification in bacteria still presents a considerable challenge. Unlike in eukaryotes, where tens of thousands of phosphorylation events likely occupy more than two thirds of the proteome, the abundance of protein phosphorylation is much lower in bacteria. Even the state-of-the-art phosphopeptide enrichment protocols fail to remove the high background of abundant unmodified peptides, leading to low signal intensity and undersampling of phosphopeptide precursor ions in consecutive data-dependent MS runs. Consequently, large-scale bacterial phosphoproteomic datasets often suffer from poor reproducibility and a high number of missing values. Here we explore the application of parallel reaction monitoring (PRM) on a Q Exactive mass spectrometer in bacterial phosphoproteome analysis, focusing especially on run-to-run sampling reproducibility. In multiple measurements of identical phosphopeptide-enriched samples, we show that PRM outperforms data-dependent acquisition (DDA) in terms of detection frequency, reaching almost complete sampling efficiency, compared to 20% in DDA. We observe a similar trend over multiple heterogeneous phosphopeptide-enriched samples and conclude that PRM shows a great promise in bacterial phosphoproteomics analyses where reproducible detection and quantification of a relatively small set of phosphopeptides is desired. Bacterial phosphorylated peptides occur in low abundance compared to their unmodified counterparts, and are therefore rarely reproducibly detected in shotgun (DDA) proteomics measurements. Here we show that parallel reaction monitoring complements DDA analyses and makes detection of known, targeted phosphopeptides more reproducible. This will be of significance in replicated MS measurements that have a goal to reproducibly detect and quantify phosphopeptides of interest. Copyright

  15. B-side charge separation in bacterial photosynthetic reaction centers: nanosecond time scale electron transfer from HB- to QB.

    Science.gov (United States)

    Kirmaier, Christine; Laible, Philip D; Hanson, Deborah K; Holten, Dewey

    2003-02-25

    We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.

  16. Photosynthetic characteristics of Lycoris aurea and monthly ...

    African Journals Online (AJOL)

    The leaf photosynthetic characteristics of Lycoris aurea, the monthly dynamics in lycorine and galantamine contents in its bulb and the correlation among the photosynthetic characteristics and the lycorine and galantamine during the annual growth period were studied by using LI-6400 portable photosynthetic measurement ...

  17. Enhanced Bacterial α(2,6-Sialyltransferase Reaction through an Inhibition of Its Inherent Sialidase Activity by Dephosphorylation of Cytidine-5'-Monophosphate.

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Kang

    Full Text Available Bacterial α(2,6-sialyltransferases (STs from Photobacterium damsela, Photobacterium sp. JT-ISH-224, and P. leiognathi JT-SHIZ-145 were recombinantly expressed in Escherichia coli and their ST activities were compared directly using a galactosylated bi-antennary N-glycan as an acceptor substrate. In all ST reactions, there was an increase of sialylated glycans at shorter reaction times and later a decrease in prolonged reactions, which is related with the inherent sialidase activities of bacterial STs. These sialidase activities are greatly increased by free cytidine monophosphate (CMP generated from a donor substrate CMP-N-acetylneuraminic acid (CMP-Neu5Ac during the ST reactions. The decrease of sialylated glycans in prolonged ST reaction was prevented through an inhibition of sialidase activity by simple treatment of alkaline phosphatase (AP, which dephosphorylates CMP to cytidine. Through supplemental additions of AP and CMP-Neu5Ac to the reaction using the recombinant α(2,6-ST from P. leiognathi JT-SHIZ-145 (P145-ST, the content of bi-sialylated N-glycan increased up to ~98% without any decrease in prolonged reactions. This optimized P145-ST reaction was applied successfully for α(2,6-sialylation of asialofetuin, and this resulted in a large increase in the populations of multi-sialylated N-glycans compared with the reaction without addition of AP and CMP-Neu5Ac. These results suggest that the optimized reaction using the recombinant P145-ST readily expressed from E. coli has a promise for economic glycan synthesis and glyco-conjugate remodeling.

  18. Hydrogen bonding between the QB site ubisemiquinone and Ser-L223 in the bacterial reaction centre – a combined spectroscopic and computational perspective^

    OpenAIRE

    Martin, Erik; Baldansuren, Amgalanbaatar; Lin, Tzu-Jen; Samoilova, Rimma I.; Wraight, Colin A.; Dikanov, Sergei A.; O’Malley, Patrick J.

    2012-01-01

    In the QB site of the Rba. sphaeroides photosynthetic reaction centre the donation of a hydrogen bond from the hydroxyl group of Ser-L223 to the ubisemiquinone formed after the first flash is debatable. In this study we use a combination of spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations to comprehensively explore this topic. We show that ENDOR, ESEEM and HYSCORE spectroscopic differences between the mutant L223SA and the wild type sample (WT) are negligible, indic...

  19. Effect of Chernobyl radionuclides accumulation on the photosynthetic processes and nitrogen metabolism of Lupines Luteus L

    International Nuclear Information System (INIS)

    Zabolotnyj, A.I.; Goncharova, N.V.; Domash, V.I.; Sheverdov, V.V.; Akadehmiya Navuk Belarusi, Minsk

    1995-01-01

    The 134 Cs, 137 Cs and chlorophyll content activity of photochemical reaction in chloroplasts and symbiotic nitrogen fixation in root modules, activity of neutral protease, BAPAse and trypsin inhibitors were investigated for seeds to yellow lupine (Lupines luteus L). The level of radioactive contamination induced a tendency to change the activity of photosynthetic reaction and nitrogen fixation, significant changes in a set of trypsin inhibitors were found in nature lupine seeds

  20. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte

    Directory of Open Access Journals (Sweden)

    Tong Pang

    2011-01-01

    Full Text Available Epiphytic filamentous algae (EFA were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC, decrease of active reaction centers (RCs, and the plastoquinone (PQ pool as well as significant reduction in the performance indexes (PI of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri.

  1. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte.

    Science.gov (United States)

    Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei

    2011-01-01

    Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri.

  2. Biomaterials based on photosynthetic membranes as potential sensors for herbicides.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Placido, Tiziana; Longobardi, Francesco; Agostiano, Angela

    2011-08-15

    In this study, ultrathin film multilayers of Photosystem II-enriched photosynthetic membranes (BBY) were prepared and immobilized on quartz substrates by means of a Layer by Layer procedure exploiting electrostatic interactions with poly(ethylenimine) as polyelectrolyte. The biomaterials thus obtained were characterized by means of optical techniques and Atomic Force Microscopy, highlighting the fact that the Layer by Layer approach allowed the BBYs to be immobilized with satisfactory results. The activity of these hybrid materials was evaluated by means of optical assays based on the Hill Reaction, indicating that the biosamples, which preserved about 65% of their original activity even ten weeks after preparation, were both stable and active. Furthermore, an investigation of the biochips' sensitivity to the herbicide terbutryn, as a model analyte, gave interesting results: inhibition of photosynthetic activity was observed at terbutryn concentrations higher than 10(-7)M, thus evidencing the potential of such biomaterials in the environmental biosensor field. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  4. Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China)

    DEFF Research Database (Denmark)

    Huang, Yili; Zeng, Yanhua; Lu, Hang

    2016-01-01

    Seq sequencing of the 16S rRNA, pufM, and bchY genes was carried out to assess the diversity of local phototrophic communities. In addition, we designed new degenerate primers of aerobic cyclase gene acsF, which serves as a convenient marker for both phototrophic Gemmatimonadetes and phototrophic Proteobacteria...... a diverse community of phototrophic Gemmatimonadetes forming 30 operational taxonomic units. These species represented 10.5 and 17.3% of the acsF reads in the upper semiaerobic sediment and anoxic sediment, whereas their abundance in the water column was ... fundamental biological processes on Earth. Recently, the presence of photosynthetic reaction centers has been reported from a rarely studied bacterial phylum, Gemmatimonadetes, but almost nothing is known about the diversity and environmental distribution of these organisms. The newly designed acsF primers...

  5. Bacterial analysis of combined periodontal-endodontic lesions by polymerase chain reaction-denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Xia, Minghui; Qi, Qingguo

    2013-01-01

    We used denaturing gradient gel electrophoresis (DGGE) to compare bacterial profiles in periodontium and root canals of teeth with combined periodontal-endodontic lesions. Samples of dental plaque and necrotic pulp were collected from thirteen extracted teeth with advanced periodontitis. Genomic DNA was extracted for polymerase chain reaction (PCR) analysis using universal bacterial primers. The PCR products were then loaded onto DGGE gels to obtain fractionated bands. Characteristic DGGE bands were excised and DNA was cloned and sequenced. The number of bands, which indicates the number of bacterial species, was compared between dental plaques and necrotic pulp tissues from the same tooth. Although the difference was statistically significant (P bacteria species were present in both the periodontal pockets and root canals of the same tooth; however, periodontal bacteria did not always invade the root canals, and some bacteria in root canals were not present in periodontal pockets of the same tooth. In some teeth, unique bacteria in root canals had not passed from periodontal pockets. A basic local alignment search tool (BLAST) sequence search in Genbank indicated that new bacteria species were present in periodontal pockets and root canals. Their characteristics must thus be further analyzed.

  6. In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants

    NARCIS (Netherlands)

    Morales Sierra, A.; Yin, Xinyou; Harbinson, Jeremy; Driever, Steven Michiel; Molenaar, Jaap; Kramer, David M.; Struik, Paul

    2018-01-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and non-cyclic alternative electron transport),

  7. Reactions of human dental pulp cells to capping agents in the presence or absence of bacterial exposure.

    Science.gov (United States)

    Cai, Shiwei; Zhang, Wenjian; Tribble, Gena; Chen, Wei

    2017-01-01

    An ideal pulp-capping agent needs to have good biocompatibility and promote reparative dentinogenesis. Although the effects of capping agents on healthy pulp are known, limited data regarding their effects on bacterial contaminated pulp are available. This study aimed to evaluate the reaction of contaminated pulps to various capping agents to assist clinicians in making informed decisions. Human dental pulp (HDP) cell cultures were developed from extracted human molars. The cells were exposed to a bacterial cocktail comprising Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus gordonii before being cocultured with capping agents such as mineral trioxide aggregate (MTA) Portland cement (PC), and Dycal. HDP cell proliferation was assayed by MTS colorimetric cell proliferation assay, and its differentiation was evaluated by real-time PCR for detecting alkaline phosphatase, dentin sialophosphoprotein, and osteocalcin expressions. MTA and PC had no apparent effect, whereas Dycal inhibited HDP cell proliferation. PC stimulated HDP cell differentiation, particularly when they were exposed to bacteria. MTA and Dycal inhibited differentiation, regardless of bacterial infection. In conclusion, PC was the most favorable agent, followed by MTA, and Dycal was the least favorable agent for supporting the functions of bacterial compromised pulp cells.

  8. Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state.

    Science.gov (United States)

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J P

    2005-06-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.

  9. Chemical proprieties of the iron-quinone complex in mutated reaction centers of Rb. sphaeroides

    International Nuclear Information System (INIS)

    Hałas, Agnieszka; Derrien, Valerie; Sebban, Pierre; Matlak, Krzysztof; Korecki, Józef; Kruk, Jerzy; Burda, Kvĕtoslava

    2012-01-01

    We investigated type II bacterial photosynthetic reaction centers, which contain a quinone - iron complex (Q A -Fe-Q B ) on their acceptor side. Under physiological conditions it was observed mainly in a reduced high spin state but its low spin ferrous states were also observed. Therefore, it was suggested that it might regulate the dynamical properties of the iron–quinone complex and the protonation and deprotonation events in its neighbourhood. In order to get insight into the molecular mechanism of the NHFe low spin state formation, we preformed Mössbauer studies of a wild type of Rb. sphaeroides and its two mutated forms. Our Mössbauer measurements show that the hydrophobicity of the Q A binding site can be crucial for stabilization of the high spin ferrous state of NHFe.

  10. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-01-01

    Full Text Available Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant activity and photosynthetic pigments were studied in basil plants. A field experiment was conducted at the University of Zabol in Iran during 2010 growing season. The experiment laid out as split plot based on randomized complete block design with three replications. Three levels of water stress W1 = 80 (control, W2 = 60 and W3 = 40% of the field capacity (FC as main plots and four levels of bacterial species consisting of S1 = Pseudomonades sp., S2 = Bacillus lentus, S3 = Azospirillum brasilens, S4 = combination of three bacterial species and S5 = control (without use of bacterial as sub plots. The results revealed that water stress caused a significant change in the antioxidant activity. The highest concentration CAT and GPX activity were in W3 treatments. By increasing water stress from control to W3, chlorophyll content in leaves was increased but Fv/Fm and APX activity decreased. Application of rhizobacteria under water stress improved the antioxidant and photosynthetic pigments in basil plants. S1 = Pseudomonades sp. under water stress, significantly increased the CAT enzyme activity, but the highest GPX and APX activity and chlorophyll content in leaves under water stress were in S4 = combination of three bacterial species.

  11. Nested polymerase chain reaction (PCR) targeting 16S rDNA for bacterial identification in empyema.

    Science.gov (United States)

    Prasad, Rajniti; Kumari, Chhaya; Das, B K; Nath, Gopal

    2014-05-01

    Empyema in children causes significant morbidity and mortality. However, identification of organisms is a major concern. To detect bacterial pathogens in pus specimens of children with empyema by 16S rDNA nested polymerase chain reaction (PCR) and correlate it with culture and sensitivity. Sixty-six children admitted to the paediatric ward with a diagnosis of empyema were enrolled prospectively. Aspirated pus was subjected to cytochemical examination, culture and sensitivity, and nested PCR targeting 16S rDNA using a universal eubacterial primer. Mean (SD) age was 5·8 (1·8) years (range 1-13). Analysis of aspirated pus demonstrated total leucocyte count >1000×10(6)/L, elevated protein (≧20 g/L) and decreased glucose (≤2·2 mmol/L) in 80·3%, 98·5% and 100%, respectively. Gram-positive cocci were detected in 29 (43·9%) and Gram-negative bacilli in two patients. Nested PCR for the presence of bacterial pathogens was positive in 50·0%, compared with 36·3% for culture. 16S rDNA PCR improves rates of detection of bacteria in pleural fluid, and can detect bacterial species in a single assay as well as identifying unusual and unexpected causal agents.

  12. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    International Nuclear Information System (INIS)

    Dewa, Takehisa; Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu; Nango, Mamoru

    2013-01-01

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency

  13. Energy transfer and clustering of photosynthetic light-harvesting complexes in reconstituted lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dewa, Takehisa, E-mail: takedewa@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Japan Science and Technology, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Sumino, Ayumi; Watanabe, Natsuko; Noji, Tomoyasu [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nango, Mamoru, E-mail: nango@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2013-06-20

    Highlights: ► Photosynthetic light-harvesting complexes were reconstituted into lipid membranes. ► Energy transfers between light-harvesting complexes were examined. ► Atomic force microscopy indicated cluster formation of light-harvesting complexes. ► Efficient energy transfer was observed for the clustered complexes in the membranes. - Abstract: In purple photosynthetic bacteria, light-harvesting complex 2 (LH2) and light harvesting/reaction centre core complex (LH1-RC) play the key roles of capturing and transferring light energy and subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly; however, how the assembly influences the efficiency of energy conversion is not yet clear. We addressed this issue by evaluating the energy transfer in reconstituted photosynthetic protein complexes LH2 and LH1-RC and studying the structures and the membrane environment of the LH2/LH1-RC assemblies, which had been embedded into various lipid bilayers. Thus, LH2 and LH1-RC from Rhodopseudomonas palustris 2.1.6 were reconstituted in phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE)/PG/cardiolipin (CL). Efficient energy transfer from LH2 to LH1-RC was observed in the PC and PE/PG/CL membranes. Atomic force microscopy revealed that LH2 and LH1-RC were heterogeneously distributed to form clusters in the PC and PE/PG/CL membranes. The results indicated that the phospholipid species influenced the cluster formation of LH2 and LH1-RC as well as the energy transfer efficiency.

  14. Recent development in artificial photosynthetic model; Jinko kogosei no moderu ka kenkyu saikin no shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M [Ibaraki Univ., Ibaraki (Japan). Faculty of Engineering

    1996-03-01

    In the conversion from solar energy into chemical energy (fuels) by photochemical conversion, an electron donor is necessary since all the fuels are reductive compounds. From the viewpoint of economic profit, water is the only one candidate as a cheap compound and existing impartially. In this paper, photosynthesis as well as the realization of its artificial model, and the relevant basic research executed recently aiming at the construction of an artificial photosynthetic system are explained. The main reaction of photosynthesis is the generation of carbohydrates by the reduction reaction of carbon dioxide with water as an electron donor and solar visual light as an energy resource. As a special example thereof, the UV photolysis of water due to the photocatalysis of a micro-particle system is introduced. The method of using a semiconductor and the method of using sensitizes are described as the photo excitation system when designing the artificial model. Additionally, as the research with respect to the construction of an artificial photosynthetic system, a photo-exciting charge transfer system is introduced. 27 refs., 1 fig.

  15. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus.

    Science.gov (United States)

    Dewez, David; Didur, Olivier; Vincent-Héroux, Jonathan; Popovic, Radovan

    2008-01-01

    Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R2>or=0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (PhiM'), photochemical quenching (qP) and relative photochemical quenching (qP(rel)) values. The cells density was also linearly dependent (R2=0.838) on the relative unquenched fluorescence parameter (UQF(rel)). Non-linear correlation was found (R2=0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF(rel)>PhiM'>qP>qP(rel)>ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants.

  16. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system.

    Science.gov (United States)

    Manchester, L C; Poeggeler, B; Alvares, F L; Ogden, G B; Reiter, R J

    1995-01-01

    Rhodospirillum rubrum is a spiral anoxygenic photosynthetic bacterium that can exist under either aerobic or anaerobic conditions. The organism thrives in the presence of light or complete darkness and represents one of the oldest species of living organisms, possibly 2-3.5 billion years old. The success of this prokaryotic species may be attributed to the evolution of certain indole compounds that offer protection against life-threatening oxygen radicals produced by an evolutionary harsh environment. Melatonin, N-acetyl-5-methoxytryptamine, is an indolic highly conserved molecule that exists in protists, plants, and animals. This study was undertaken to determine the presence of an immunoreactive melatonin in the kingdom Monera and particularly in the photosynthetic bacterium, R. rubrum, under conditions of prolonged darkness or prolonged light. Immunoreactive melatonin was measured during both the extended day and extended night. Significantly more melatonin was observed during the scotophase than the photophase. This study marks the first demonstration of melatonin in a bacterium. The high level of melatonin observed in bacteria may provide on-site protection of bacterial DNA against free radical attack.

  17. Managing the cellular redox hub in photosynthetic organisms.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  18. Isolation of non-sulphur photosynthetic bacterial strains efficient in hydrogen production at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1991-01-01

    Four strains of non-sulphur photosynthetic bacteria were isolated from root zone associations of aquatic plants like Azolla, Salvinia and Eichhornia, as well as the deep-water rice. Based on the gross cell morphology and pigmentation, the isolates resembled Rhodopseudomonas sp. and have been designated as BHU strains 1 to 4, respectively. When subjected to elevated temperature (from 33-45{sup o}C), substantial growth/hydrogen production could be observed only in strains 1 and 4. Strains 2 and 3 on the other hand, showed diminished growth and negligible hydrogen photoproduction. The BHU strains 1 and 4 have been selected as the most active (thermostable) hydrogen producing strains of local origin as far as the Indian tropical climate is concerned. (author).

  19. Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State

    OpenAIRE

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S.; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J. P.

    2005-01-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO2 nanoparticles in the colloidal solution. The LH2/TiO2 assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO2. The possibility that the decrease of the LH2 excited-state lifetime being caused by ...

  20. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  1. Enriched reaction center preparation from green photosynthetic bacteria. [Chlorobium limicola

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J M; Giddings, Jr, T H; Shaw, E K

    1976-01-01

    Bacteriochlorophyll a reaction-center complex I from Chlorobium limicola f. thiosulfatophilum 6230 (Tassajara) was incubated in 2 M guanidine . HCl and then chromatographed on cross-linked dextran or agarose gel. Two principal components were separated: a larger component with photochemical activity (bacteriochlorophyll a reaction-center complex II) and a smaller component without activity (bacteriochlorophyll a protein). Complex II contains carotenoid, bacteriochlorophyll a, reaction center(s), and cytochromes b and c, but lacks the well characterized bacteriochlorophyll a protein contained in Complex I. Complex II carries out a light-induced reduction of cytochrome b along with an oxidation of cytochrome c.

  2. The importance of the photosynthetic Gibbs effect in the elucidation of the Calvin-Benson-Bassham cycle.

    Science.gov (United States)

    Ebenhöh, Oliver; Spelberg, Stephanie

    2018-02-19

    The photosynthetic carbon reduction cycle, or Calvin-Benson-Bassham (CBB) cycle, is now contained in every standard biochemistry textbook. Although the cycle was already proposed in 1954, it is still the subject of intense research, and even the structure of the cycle, i.e. the exact series of reactions, is still under debate. The controversy about the cycle's structure was fuelled by the findings of Gibbs and Kandler in 1956 and 1957, when they observed that radioactive 14 CO 2 was dynamically incorporated in hexoses in a very atypical and asymmetrical way, a phenomenon later termed the 'photosynthetic Gibbs effect'. Now, it is widely accepted that the photosynthetic Gibbs effect is not in contradiction to the reaction scheme proposed by CBB, but the arguments given have been largely qualitative and hand-waving. To fully appreciate the controversy and to understand the difficulties in interpreting the Gibbs effect, it is illustrative to illuminate the history of the discovery of the CBB cycle. We here give an account of central scientific advances and discoveries, which were essential prerequisites for the elucidation of the cycle. Placing the historic discoveries in the context of the modern textbook pathway scheme illustrates the complexity of the cycle and demonstrates why especially dynamic labelling experiments are far from easy to interpret. We conclude by arguing that it requires sound theoretical approaches to resolve conflicting interpretations and to provide consistent quantitative explanations. © 2018 The Author(s).

  3. A tribute to Ulrich Heber (1930-2016) for his contribution to photosynthesis research: understanding the interplay between photosynthetic primary reactions, metabolism and the environment.

    Science.gov (United States)

    Dietz, Karl-Josef; Krause, G Heinrich; Siebke, Katharina; Krieger-Liszkay, Anja

    2018-07-01

    The dynamic and efficient coordination of primary photosynthetic reactions with leaf energization and metabolism under a wide range of environmental conditions is a fundamental property of plants involving processes at all functional levels. The present historical perspective covers 60 years of research aiming to understand the underlying mechanisms, linking major breakthroughs to current progress. It centers on the contributions of Ulrich Heber who had pioneered novel concepts, fundamental methods, and mechanistic understanding of photosynthesis. An important first step was the development of non-aqueous preparation of chloroplasts allowing the investigation of chloroplast metabolites ex vivo (meaning that the obtained results reflect the in vivo situation). Later on, intact chloroplasts, retaining their functional envelope membranes, were isolated in aqueous media to investigate compartmentation and exchange of metabolites between chloroplasts and external medium. These studies elucidated metabolic interaction between chloroplasts and cytoplasm during photosynthesis. Experiments with isolated intact chloroplasts clarified that oxygenation of ribulose-1.5-bisphosphate generates glycolate in photorespiration. The development of non-invasive optical methods enabled researchers identifying mechanisms that balance electron flow in the photosynthetic electron transport system avoiding its over-reduction. Recording chlorophyll a (Chl a) fluorescence allowed one to monitor, among other parameters, thermal energy dissipation by means of 'nonphotochemical quenching' of the excited state of Chl a. Furthermore, studies both in vivo and in vitro led to basic understanding of the biochemical mechanisms of freezing damage and frost tolerance of plant leaves, to SO 2 tolerance of tree leaves and dehydrating lichens and mosses.

  4. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    Science.gov (United States)

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis--assessment by chlorophyll fluorescence analysis.

    Science.gov (United States)

    Lu, C M; Chau, C W; Zhang, J H

    2000-07-01

    Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.

  6. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  7. Spatial variation of bacterial community composition near the Luzon ...

    African Journals Online (AJOL)

    Spatial variation of bacterial community composition near the Luzon strait assessed by polymerase chain reaction-denaturing gradient gel electrophoresis ... chain reaction (PCR)-amplified bacterial 16S ribosomal deoxyribonucleic acid (DNA) gene fragments and interpreted the results; its relationship with physical and ...

  8. Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides.

    Science.gov (United States)

    Zhu, Jingyi; van Stokkum, Ivo H M; Paparelli, Laura; Jones, Michael R; Groot, Marie Louise

    2013-06-04

    A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA⁻ band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Morning reduction of photosynthetic capacity before midday depression.

    Science.gov (United States)

    Koyama, Kohei; Takemoto, Shuhei

    2014-03-17

    Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees.

  10. The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anita Loeschcke

    Full Text Available Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase, LUP1 (lupeol synthase, THAS1 (thalianol synthase and MRN1 (marneral synthase derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates

  11. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    Science.gov (United States)

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  12. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  13. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S., E-mail: gsengel@uchicago.edu [Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Dahlberg, P. D. [Graduate Program in the Biophysical Sciences, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637 (United States); Gardiner, A. T.; Cogdell, R. J. [Department of Botany, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland (United Kingdom)

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  14. Reaction paths based on mean first-passage times

    International Nuclear Information System (INIS)

    Park, Sanghyun; Sener, Melih K.; Lu Deyu; Schulten, Klaus

    2003-01-01

    Finding representative reaction pathways is important for understanding the mechanism of molecular processes. We propose a new approach for constructing reaction paths based on mean first-passage times. This approach incorporates information about all possible reaction events as well as the effect of temperature. As an application of this method, we study representative pathways of excitation migration in a photosynthetic light-harvesting complex, photosystem I. The paths thus computed provide a complete, yet distilled, representation of the kinetic flow of excitation toward the reaction center, thereby succinctly characterizing the function of the system

  15. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    International Nuclear Information System (INIS)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes

    2013-01-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α ETR ). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination

  16. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rovai, André Scarlate, E-mail: rovaias@hotmail.com [Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Barufi, José Bonomi, E-mail: jose.bonomi@gmail.com [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Pagliosa, Paulo Roberto, E-mail: paulo.pagliosa@ufsc.br [Universidade Federal de Santa Catarina, Departamento de Geociências, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Scherner, Fernando [Universidade Federal Rural de Pernambuco, Laboratório de Ficologia, Campus Universitário, Dois Irmãos, 52171-900 Recife, PE (Brazil); Torres, Moacir Aluísio, E-mail: moatorres@cav.udesc.br [Universidade do Estado de Santa Catarina, Departamento de Engenharia Ambiental, Centro de Ciências Agroveterinárias, Av Luiz de Camões 2090, Conta Dinheiro, 88520-000 Lages, SC (Brazil); Horta, Paulo Antunes, E-mail: pahorta@ccb.ufsc.br [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); others, and

    2013-10-15

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α{sub ETR}). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination.

  17. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    International Nuclear Information System (INIS)

    Hsin, J; Sener, M; Schulten, K; Struempfer, J; Qian, P; Hunter, C N

    2010-01-01

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  18. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, J; Sener, M; Schulten, K [Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Struempfer, J [Center for Biophysics and Computational Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Qian, P; Hunter, C N, E-mail: kschulte@ks.uiuc.ed [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom)

    2010-08-15

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  19. Sensitive Detection of Thirteen Bacterial Vaginosis-Associated Agents Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Natália Malaguti

    2015-01-01

    Full Text Available Bacterial vaginosis (BV is characterized by a polymicrobial proliferation of anaerobic bacteria and depletion of lactobacilli, which are components of natural vaginal microbiota. Currently, there are limited conventional methods for BV diagnosis, and these methods are time-consuming, expensive, and rarely allow for the detection of more than one agent simultaneously. Therefore, we conceived and validated a multiplex polymerase chain reaction (M-PCR assay for the simultaneous screening of thirteen bacterial vaginosis-associated agents (BV-AAs related to symptomatic BV: Gardnerella vaginalis, Mobiluncus curtisii, Mobiluncus mulieris, Bacteroides fragilis, Mycoplasma hominis, Atopobium vaginae, Ureaplasma urealyticum, Megasphaera type I, Clostridia-like bacteria vaginosis-associated bacteria (BVABs 1, 2, and 3, Sneathia sanguinegens, and Mycoplasma genitalium. The overall validation parameters of M-PCR compared to single PCR (sPCR were extremely high, including agreement of 99.1% and sensitivity, specificity, and positive predictive values of 100.0%, negative predictive value of 97.0%, accuracy of 99.3%, and agreement with Nugent results of 100.0%. The prevalence of BV-AAs was very high (72.6%, and simultaneous agents were detected in 53.0%, which demonstrates the effectiveness of the M-PCR assay. Therefore, the M-PCR assay has great potential to impact BV diagnostic methods in vaginal samples and diminish associated complications in the near future.

  20. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  1. Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis

    OpenAIRE

    Manrique, Pedro D.; Caycedo-Soler, Felipe; De Mendoza, Adriana; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil F.

    2016-01-01

    Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display a range where the organism profits maximally from the spatial correlation of the ...

  2. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  3. Evolving a photosynthetic organelle.

    Science.gov (United States)

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  4. Implementation of secondary bacterial culture testing of platelets to mitigate residual risk of septic transfusion reactions.

    Science.gov (United States)

    Bloch, Evan M; Marshall, Christi E; Boyd, Joan S; Shifflett, Lisa; Tobian, Aaron A R; Gehrie, Eric A; Ness, Paul M

    2018-04-01

    Bacterial contamination of platelets remains a major transfusion-associated risk despite long-standing safety measures in the United States. We evaluated an approach using secondary bacterial culture (SBC) to contend with residual risk of bacterial contamination. Phased implementation of SBC was initiated in October 2016 for platelets (all apheresis collected) received at our institution from the blood donor center (Day 3 post collection). Platelet products were sampled aseptically (5 mL inoculated into an aerobic bottle [BacT/ALERT BPA, BioMerieux, Inc.]) by the blood bank staff upon receipt, using a sterile connection device and sampling kit. The platelet sample was inoculated into an aerobic blood culture bottle and incubated at 35°C for 3 days. The cost of SBC was calculated on the basis of consumables and labor costs at time of implementation. In the 13 months following implementation (October 6, 2016, to November 30, 2017), 23,044/24,653 (93.47%) platelet products underwent SBC. A total of eight positive cultures were detected (incidence 1 in 2881 platelet products), seven of which were positive within 24 hours of SBC. Coagulase negative Staphyloccus spp. were identified in four cases. Five of the eight cases were probable true positive (repeat reactive) and interdicted (cost per averted case was US$77,935). The remaining three cases were indeterminate. No septic transfusion reactions were reported during the observation period. We demonstrate the feasibility of SBC of apheresis platelets to mitigate bacterial risk. SBC is lower cost than alternative measures (e.g., pathogen reduction and point-of-release testing) and can be integrated into workflow at hospital transfusion services. © 2018 AABB.

  5. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  6. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.

    Science.gov (United States)

    Hadariová, Lucia; Vesteg, Matej; Hampl, Vladimír; Krajčovič, Juraj

    2018-04-01

    Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

  7. Variability of photosynthetic parameters of Pinus sibirica Du Tour needles under changing climatic factors

    Directory of Open Access Journals (Sweden)

    A.P. Zotikova

    2013-12-01

    of photosystem II was lower than that in the local ecotype. Thus, the increased photosynthetic intensity under favorable conditions follows the path of formation of both a larger number of reaction centers and light-harvesting pigments.

  8. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  9. Photosynthetic Performance of the Imidazolinone Resistant Sunflower Exposed to Single and Combined Treatment by the Herbicide Imazamox and an Amino Acid Extract

    Directory of Open Access Journals (Sweden)

    Dobrinka Anastasova Balabanova

    2016-10-01

    Full Text Available The herbicide imazamox may provoke temporary yellowing and growth retardation in IMI-R sunflower hybrids, more often under stressful environmental conditions. Although photosynthetic processes are not the primary sites of imazamox action, they might be influenced; therefore, more information about the photosynthetic performance of the herbicide-treated plants could be valuable for a further improvement of the Clearfield technology. Plant biostimulants have been shown to ameliorate damages caused by different stress factors on plants, but very limited information exists about their effects on herbicide-stressed plants. In order to characterize photosynthetic performance of imazamox-treated sunflower IMI-R plants, we carried out experiments including both single and combined treatments by imazamox and a plant biostimulants containing amino acid extract. We found that imazamox application in a rate of 132 μg per plant (equivalent of 40 g active ingredient ha-1 induced negative effects on both light-light dependent photosynthetic redox reactions and leaf gas exchange processes, which was much less pronounced after the combined application of imazamox and amino acid extract.

  10. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    Science.gov (United States)

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-02

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  11. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Arnon, D I; Allen, M B; Whatley, F R

    1956-01-01

    Procedures are described for the preparation of chloroplasts capable of carrying out three photochemical reactions, each representing an increasingly complex phase of photosynthesis: photolysis of water (Hill reaction), esterification of inorganic phosphate into adenosine triphosphate (photosynthetic phosphorylation) and the reduction of carbon dioxide to the level of carbohydrates with a simultaneous evolution of oxygen. The three photochemical reactions were separable by variations in the technique for preparation of chloroplasts and by differential inhibition by several reagents. Inhibition of a more complex phase of photosynthesis does not affect the simpler one which precedes it and, conversely, the inhibition of a simpler phase of photosynthesis is paralleled by an inhibition of the more complex phase which follows. Reversible inhibition of CO/sub 2/ fixation and photosynthetic phosphorylation, but not of photolysis, by sulfhydryl group inhibitors suggests that sulfhydryl compounds (enzymes, cofactors, or both) are involved in phosphorylation and CO/sub 2/ fixation, but not in the primary conversion of light into chemical energy as measured by the Hill reaction. Evidence is presented in support of the conclusion that the synthesis of ATP by green cells occurs at two distinct sites: anaerobically in chloroplasts by photosynthetic phosphorylation, and acrobically in smaller cytoplasmic particles, presumably mitochondria, by oxidative phosphorylation independent of light. A general scheme of photosynthesis by chloroplasts, consistent with these findings, is presented. 44 references, 8 figures, 4 tables.

  12. Biological processing of carbon dioxide. ; Photosynthetic function of plants, and carbon dioxide fixing function of marine organisms. Nisanka tanso no seibutsuteki shori. ; Shokubutsu no kogosei kino to kaiyo seibutsu no nisanka tanso kotei kino

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M [National Research Inst. for Pollution and Resources, Tsukuba (Japan)

    1991-02-15

    This paper describes photosynthetic function of plants, and CO {sub 2} fixing function of marine organisms. Among the photosythetic reaction systems, the C {sub 3} type reaction carries out CO {sub 2} fixation using the Calvin cycle, and takes out the carbon dioxide out of the system through enzymatic reactions of 3-phosphoglycerate {yields} fructose-6-phosphate. The C {sub 4} type reaction has a special cycle to supply CO {sub 2} to the Calvin cycle, i. e. C {sub 4} dicarboxylic acid cycle. The CAM type reaction enables the photosynthetic type to be converted according to variations in the growing environment. The majority of the surace agricultural crops are from C {sub 3} plants, of which yield may be increased when grown in a high CO {sub 2} atmosphere. On the one hand, gene engineering may make possible breeding of plants having high CO {sub 2} fixing capability. In the area of marine organisms, lime algae growing in clusters around coral reefs form and deposit CaCO {sub 3}. Reef creating corals have symbiotically in their stomach layer brown algae having photosynthetic function to build CaCO {sub 3} skeleton. The corals calcify algae quickly and in a large quantity, hence play an important role in fixing underwater CO {sub 2}. 2 tabs.

  13. Orientations of Iron-Sulfur Clusters FA and FB in the Homodimeric Type-I Photosynthetic Reaction Center of Heliobacterium modesticaldum.

    Science.gov (United States)

    Kondo, Toru; Matsuoka, Masahiro; Azai, Chihiro; Itoh, Shigeru; Oh-Oka, Hirozo

    2016-05-12

    Orientations of the FA and FB iron-sulfur (FeS) clusters in a structure-unknown type-I homodimeric heriobacterial reaction center (hRC) were studied in oriented membranes of the thermophilic anaerobic photosynthetic bacterium Heliobacterium modesticaldum by electron paramagnetic resonance (EPR), and compared with those in heterodimeric photosystem I (PS I). The Rieske-type FeS center in the cytochrome b/c complex showed a well-oriented EPR signal. Illumination at 14 K induced an FB(-) signal with g-axes of gz = 2.066, gy = 1.937, and gx = 1.890, tilted at angles of 60°, 60°, and 45°, respectively, with respect to the membrane normal. Chemical reduction with dithionite produced an additional signal of FA(-), which magnetically interacted with FB(-), with gz = 2.046, gy = 1.942, and gx = 1.911 at 30°, 60°, and 90°, respectively. The angles and redox properties of FA(-) and FB(-) in hRC resemble those of FB(-) and FA(-), respectively, in PS I. Therefore, FA and FB in hRC, named after their g-value similarities, seem to be located like FB and FA, not like FA and FB, respectively, in PS I. The reducing side of hRC could resemble those in PS I, if the names of FA and FB are interchanged with each other.

  14. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  15. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  16. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  17. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Differences in the photosynthetic UV-B response between European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) saplings

    International Nuclear Information System (INIS)

    Šprtová, M.; Marek, M.V.; Urban, O.; Kalina, J.; Špunda, V.

    2008-01-01

    Cloned saplings of Norway spruce (Picea abies (L) Karst.) and beech (Fagus sylvatica L.) (7 years old) were exposed to enhanced UV-B irradiation (+25%) continuously over three growing seasons (1999-2001). Selected parameters of variable chlorophyll alpha fluorescence and pigment composition were analysed in the late summer of the third growing season to evaluate the influence of long-term elevated UV-B irradiation on broadleaf and conifer tree species. To obtain information on the xanthophyll cycle, the de-epoxidation state (DEPS) was calculated. These tree species responded differentially to the long-term effects of enhanced UV-B radiation, Norway spruce was more sensitive compared to the European beech. The results show that in Norway spruce long-term exposure to enhanced UV-B radiation under field conditions caused negative changes at the level of primary photosynthetic reactions. Contrary to the beech, this had higher degree of UV-B protective responses. UV-B radiation is not effective stressor to its primary photosynthetic reaction

  19. Assembly of Photosynthetic Antenna Protein Complexes from Algae for Development of Nano-biodevice and Its Fuelization

    Science.gov (United States)

    2013-05-20

    bacterial photosynthesis . The structure of the reaction center (RC, the first membrane protein to have its structure determined to high resolution...Introduction] In a bacterial photosynthesis , light-harvesting complex 2 (LH2) and lightharvesting-reaction center complex (LH1-RC) play the key...Artificial Leaf 6CO2 + 6H2O C6H12O6 (Glucose) +6O2 Natural Leaf Photosynthesis and redox proteins are well-organized into thylakoid membrane in natural leaf

  20. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  1. REACTION OF Musa balbisiana TO BANANA BACTERIAL WILT ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    2Makerere University, Department of Agricultural Production, P. O. Box 7062, Kampala, Uganda. Corresponding author: kumalfred@gmail.com. (Received 7 February, 2012; accepted 3 September, 2013). ABSTRACT. Banana bacterial wilt (Xanthomonas campestris) is an emerging disease of bananas in Uganda.

  2. Using the rate of bacterial clearance determined by real-time polymerase chain reaction as a timely surrogate marker to evaluate the appropriateness of antibiotic usage in critical patients with Acinetobacter baumannii bacteremia.

    Science.gov (United States)

    Chuang, Yu-Chung; Chang, Shan-Chwen; Wang, Wei-Kung

    2012-08-01

    Bacteremia caused by Acinetobacter baumannii is becoming more frequent among critically ill patients, and has been associated with high mortality and prolonged hospital stay. Multidrug resistance and delay in blood culture have been shown to be significant barriers to appropriate antibiotic treatment. Quantitative polymerase chain reaction assays were recently used to monitor bacterial loads; we hypothesized that the rate of bacterial clearance determined by quantitative polymerase chain reaction can be used as a timely surrogate marker to evaluate the appropriateness of antibiotic usage. Prospective observational study. University hospital and research laboratory. Patients with culture-proven A. baumannii bacteremia in the intensive care units were prospectively enrolled from April 2008 to February 2009. Plasmid Oxa-51/pCRII-TOPO, which contained a 431-bp fragment of the A. baumannii-specific Oxa-51 gene in a pCRII-TOPO vector, was used as the standard. Sequential bacterial DNA loads in the blood were measured by a quantitative polymerase chain reaction assay. We enrolled 51 patients with A. baumannii bacteremia, and examined 318 sequential whole blood samples. The initial mean bacterial load was 2.15 log copies/mL, and the rate of bacterial clearance was 0.088 log copies/mL/day. Multivariate linear regression using the generalized estimation equation approach revealed that the use of immunosuppressants was an independent predictor for slower bacterial clearance (coefficient, 1.116; pcritical patients. These findings highlight the importance of appropriate antibiotic usage and development of effective antibiotics against A. baumannii in an era of emerging antibiotic resistance. The rate of bacterial clearance could serve as a timely surrogate marker for evaluating the appropriateness of antibiotics.

  3. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  4. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  5. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Science.gov (United States)

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  6. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    Science.gov (United States)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  8. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata

    Directory of Open Access Journals (Sweden)

    Shai Einbinder

    2016-10-01

    that is funneled to the PSI reaction center. In this study, we provide evidence that mesophotic Symbiodinium spp. have developed novel adaptive low-light characteristics consisting of a cooperative system for excitation energy transfer between photosynthetic units that maximizes light utilization.

  9. SOUR CHERRY (Prunus cerasus L. GENETIC VARIABILITY AND PHOTOSYNTHETIC EFFICIENCY DURING DROUGHT

    Directory of Open Access Journals (Sweden)

    Marija Viljevac

    2012-12-01

    Full Text Available Sour cherry is an important fruit in Croatian orchards. Cultivar Oblačinska is predominant in existing orchards with noted intracultivar phenotypic heterogeneity. In this study, the genetic variability of 22 genotypes of cvs. Oblačinska, Maraska and Cigančica, as well as standard cvs. Kelleris 14, Kelleris 16, Kereška, Rexelle and Heimann conserved were investigated. Two types of molecular markers were used: microsatellite markers (SSR in order to identify intercultivar, and AFLP in order to identify intracultivar variabilities. A set of 12 SSR markers revealed small genetic distance between cvs. Maraska and Oblačinska while cv. Cigančica is affined to cv. Oblačinska. Furthermore, cvs. Oblačinska, Cigančica and Maraska were characterized compared to standard ones. AFLP markers didn`t confirm significant intracultivar variability of cv. Oblačinska although the variability has been approved at the morphological, chemical and pomological level. Significant corelation between SSR and AFLP markers was found. Identification of sour cherry cultivars tolerant to drought will enable the sustainability of fruit production with respect to the climate change in the future. For this purpose, the tolerance of seven sour cherry genotypes (cvs. Kelleris 16, Maraska, Cigančica and Oblačinska represented by 4 genotypes: OS, 18, D6 and BOR to drought conditions was tested in order to isolate genotypes with the desired properties. In the greenhouse experiment, cherry plants were exposed to drought stress. The leaf relative water content, OJIP test parameters which specify efficiency of the photosynthetic system based on measurements of chlorophyll a fluorescence, and concentrations of photo-synthetic pigments during the experiment were measured as markers of drought tolerance. Photosynthetic performance index (PIABS comprises three key events in the reaction centre of photosystem II affecting the photosynthetic activity: the absorption of energy

  10. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  11. Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity.

    Science.gov (United States)

    Mazur, Radosław; Sadowska, Monika; Kowalewska, Łucja; Abratowska, Agnieszka; Kalaji, Hazem M; Mostowska, Agnieszka; Garstka, Maciej; Krasnodębska-Ostręga, Beata

    2016-09-02

    Heavy metal exposure affect plant productivity by interfering, directly and indirectly, with photosynthetic reactions. The toxic effect of heavy metals on photosynthetic reactions has been reported in wide-ranging studies, however there is paucity of data in the literature concerning thallium (Tl) toxicity. Thallium is ubiquitous natural trace element and is considered the most toxic of heavy metals; however, some plant species, such as white mustard (Sinapis alba L.) are able to accumulate thallium at very high concentrations. In this study we identified the main sites of the photosynthetic process inhibited either directly or indirectly by thallium, and elucidated possible detoxification mechanisms in S. alba. We studied the toxicity of thallium in white mustard (S. alba) growing plants and demonstrated that tolerance of plants to thallium (the root test) decreased with the increasing Tl(I) ions concentration in culture media. The root growth of plants exposed to Tl at 100 μg L(-1) for 4 weeks was similar to that in control plants, while in plants grown with Tl at 1,000 μg L(-1) root growth was strongly inhibited. In leaves, toxic effect became gradually visible in response to increasing concentration of Tl (100 - 1,000 μg L(-1)) with discoloration spreading around main vascular bundles of the leaf blade; whereas leaf margins remained green. Subsequent structural analyses using chlorophyll fluorescence, microscopy, and pigment and protein analysis have revealed different effects of varying Tl concentrations on leaf tissue. At lower concentration partial rearrangement of the photosynthetic complexes was observed without significant changes in the chloroplast structure and the pigment and protein levels. At higher concentrations, the decrease of PSI and PSII quantum yields and massive oxidation of pigments was observed in discolored leaf areas, which contained high amount of Tl. Substantial decline of the photosystem core proteins and disorder of the

  12. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    International Nuclear Information System (INIS)

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H 2 S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H 2 S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [ 14 C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake

  13. Diurnal changes of net photosynthetic rate (NPR) in leaves of Lonicera japonica Thunb. and the responding mathematical model of NPR to photosynthetic valid radiation

    International Nuclear Information System (INIS)

    Wu Dafu; Zhang Shengli; Li Dongfang

    2009-01-01

    [Objective] The study provided theoretical basis for production practice . [Method] With Lonicera japonica Thunb .as material, diurnal changes of net photosynthetic rate (NPR) in leaves of the plant and the responding mathematical model of NPR to photosynthetic valid radiation were studied using portable photosynthetic determinator system. [Result] Like most of C3 plants, the diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, but there were time difference in reaching the peak value between the study and previous ones . The responding mathematical model of NPR to photosynthetic valid radiation could be described by three mathematic functions, such as logarithm, linearity and binomial, but binomial function was more precise than the others. Light saturation point of Lonicera japonica Thunb. was figured out by binomial equation deduced in the study , and light saturation point was 1 086 .3 μmol/ (m2•s) . [Conclusion] The diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, and the responding mathematical model of NPR to photosynthetic valid radiation could be described by binomial functions

  14. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    Science.gov (United States)

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  15. Coral bleaching independent of photosynthetic activity.

    Science.gov (United States)

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Nitrogen control of photosynthetic protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1986-09-01

    Plant growth is severely affected by impaired photosynthesis resulting from nitrogen deficiency. The molecular aspects of this effect are being studied in the green alga Chlamydomonas grown in continuous culture systems. Photosynthetic membranes of nitrogen-limited cells are dramatically depleted in chlorophylls, xanthophylls and proteins of the light-harvesting complexes. In contrast, enzymes of the reductive pentose phosphate cycle and electron transport chain complexes are reduced only 40 to 65% on a per cell basis comparison with nitrogen-sufficient cultures. From analyses of mRNA levels by in vitro translation and hybridization analyses with cloned DNA sequences for photosynthetic proteins, we have found there are rather minor effects of nitrogen deficiency on nuclear or chloroplast gene transcription. Maturation of a transcript of the nuclear-encoded small subunit of ribulose 1,5-bisphosphate carboxylase is inhibited in nitrogen-deficient cells and causes accumulation of large amounts of mRNA precursors. Most of the effects of nitrogen deficiency on photosynthetic proteins appear to result from posttranscriptional regulatory processes: light-harvesting protein synthesis may be sustained but their import into chloroplasts or translocation to photosynthetic membranes is impaired. Nitrogen-deficient cells lack violaxanthin, a pigment that is essential for the structure, function and biogenesis of the major antenna complexes. The absence of this pigment may be a causative factor for the deficiency of light harvesting complexes. Finally, the accumulation of massive amounts of starch and triglycerides in nitrogen-limited cells indicate there are some genes whose maximal expression is dependent upon nitrogen-limiting conditions. 10 refs.

  17. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Elad [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2012-05-07

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  18. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    International Nuclear Information System (INIS)

    Harel, Elad

    2012-01-01

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  19. Effect of space mutation on photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiaonan; Liu Qi

    2011-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photosynthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soybean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 > SP 3 > SP 4 > CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  20. Climate controls photosynthetic capacity more than leaf nitrogen contents

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  1. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    Directory of Open Access Journals (Sweden)

    Pascal eREY

    2013-10-01

    Full Text Available Plants display a remarkable diversity of thioredoxins (Trxs, reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

  2. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    Science.gov (United States)

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  3. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  4. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  5. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1

    DEFF Research Database (Denmark)

    Kjaer, B; Frigaard, N-U; Yang, F

    1998-01-01

    Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaqui......Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules...

  6. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  7. The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX

    NARCIS (Netherlands)

    Frese, R.N.; Olsen, J.D.; Branvall, R.; Westerhuis, W.H.J.; Hunter, C.N.; van Grondelle, R.

    2000-01-01

    Bacterial photosynthesis relies on the interplay between light harvesting and electron transfer complexes, all of which are located within the intracytoplasmic membrane. These complexes capture and transfer solar energy, which is used to generate a proton gradient. In this study, we identify one of

  8. Light Driven Energy Research at LCLS: Planned Pump-Probe X-ray Spectroscopy Studies on Photosynthetic Water Splitting

    Science.gov (United States)

    Bergmann, Uwe

    2010-02-01

    Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the evolution of complex aerobic life. Coupled to the reduction of carbon dioxide, biological photosynthesis contributes foodstuffs for nutrition while recycling CO2 from the atmosphere and replacing it with O2. By utilizing sunlight to power these energy-requiring reactions, photosynthesis also serves as a model for addressing societal energy needs as we enter an era of diminishing fossil hydrocarbon resources. Understanding, at the molecular level, the dynamics and mechanism of how nature has solved this problem is of fundamental importance and could be critical to aid in the design of manufactured devices to accomplish the conversion of sunlight into useful electrochemical energy and transportable fuel in the foreseeable future. In order to understand the photosynthetic splitting of water by the Mn-OEC we need to be able to follow the reaction in real time at an atomic level. A powerful probe to study the electronic and molecular structure of the Mn-OEC is x-ray spectroscopy. Here, in particular x-ray emission spectroscopy (XES) has two crucial qualities for LCLS based time-dependent pump-probe studies of the Mn-OEC: a) it directly probes the Mn oxidation state and ligation, b) it can be performed with wavelength dispersive optics to avoid the necessity of scanning in pump probe experiments. Recent results and the planned time dependent experiments at LCLS will be discussed. )

  9. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes

    Czech Academy of Sciences Publication Activity Database

    Zeng, Y.; Feng, F.; Medová, Hana; Dean, Jason; Koblížek, Michal

    2014-01-01

    Roč. 111, č. 21 (2014), s. 7795-7800 ISSN 0027-8424 R&D Projects: GA ČR P501/10/0221; GA MŠk ED2.1.00/03.0110; GA MŠk EE2.3.30.0059 Institutional support: RVO:61388971 Keywords : anoxygenic photosynthesis * pigments * horizontal gene transfer Subject RIV: EE - Microbiology, Virology Impact factor: 9.674, year: 2014

  10. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Dahoumane, Si Amar [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France); Djediat, Chakib; Yepremian, Claude; Coute, Alain [Museum National d' Histoire Naturelle, Departement RDDM, FRE 3206, USM 505 (France); Fievet, Fernand [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France); Coradin, Thibaud, E-mail: thibaud.coradin@upmc.fr [UPMC Universites Paris 06, CNRS, Chimie de la Matiere Condensee de Paris (LCMCP), College de France (France); Brayner, Roberta, E-mail: roberta.brayner@univ-paris-diderot.fr [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France)

    2012-06-15

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au{sup 3+} incorporation, intracellular reduction, and Au{sup 0} nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos-aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  11. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    International Nuclear Information System (INIS)

    Dahoumane, Si Amar; Djediat, Chakib; Yéprémian, Claude; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2012-01-01

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au 3+ incorporation, intracellular reduction, and Au 0 nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos-aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  12. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    Science.gov (United States)

    Dahoumane, Si Amar; Djediat, Chakib; Yéprémian, Claude; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2012-06-01

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au3+ incorporation, intracellular reduction, and Au0 nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos- aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  13. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures

    Science.gov (United States)

    Timpmann, Kõu; Kangur, Liina; Lõhmus, Ants; Freiberg, Arvi

    2017-07-01

    The optical absorption and fluorescence response to external high pressure of the reaction center membrane chromoprotein complex from the wild-type non-sulfur photosynthetic bacterium Rhodobacter sphaeroides was investigated using the native pigment cofactors as local molecular probes of the reaction center structure at physiological (ambient) and cryogenic (79 K) temperatures. In detergent-purified complexes at ambient temperature, abrupt blue shift and accompanied broadening of the special pair band was observed at about 265 MPa. These reversible in pressure features were assigned to a pressure-induced rupture of a lone hydrogen bond that binds the photo-chemically active L-branch primary electron donor bacteriochlorophyll cofactor to the surrounding protein scaffold. In native membrane-protected complexes the hydrogen bond rupture appeared significantly restricted and occurred close to about 500 MPa. The free energy change associated with the rupture of the special pair hydrogen bond in isolate complexes was estimated to be equal to about 12 kJ mol-1. In frozen samples at cryogenic temperatures the hydrogen bond remained apparently intact up to the maximum utilized pressure of 600 MPa. In this case, however, heterogeneous spectral response of the cofactors from the L-and M-branches was observed due to anisotropic build-up of the protein structure. While in solid phase, the special pair fluorescence as a function of pressure exactly followed the respective absorption spectrum at a constant Stokes shift, at ambient temperature, the two paths began to deviate strongly from one other at the hydrogen bond rupture pressure. This effect was tentatively interpreted by different emission properties of hydrogen-bound and hydrogen-unbound special pair exciton states.

  14. Photoinhibition-like damage to the photosynthetic apparatus in plant leaves induced by submergence treatment in the dark.

    Directory of Open Access Journals (Sweden)

    Xingli Fan

    Full Text Available Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST, without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII and photosystem I (PSI in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS. DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2 without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.

  15. Bacterial activity in a reservoir determined by autoradiography and its relationships to phyto- and zooplankton

    International Nuclear Information System (INIS)

    Simek, K.

    1986-01-01

    In the drinking water reservoir Rimov (Southern Bohemia) bacterioplankton was studied during 1983. Special attention was given to the relationships between parameters of bacterial abundance, total and individual activity. Bacterial counts and biomass was assessed and autoradiographic determinations of the proportion of active bacteria incorporating thymidine (Th) and a mixture of amino acids (AA) and total uptake rate of AA were made over a year in the surface layer and during summer stratification from the thermocline and 15 m depth. Specific activity of metabolically active bacteria and specific activity per unit of biomass were negatively correlated with counts of metabolizing cells and with bacterial biomass, respectively. Total and individual heterotrophic activity and counts of bacteria coincided with the changes of phytoplankton biomass, whereas bacteria incorporating Th were more tightly correlated with primary production. The most significant relation of metabolically active bacteria was found to cladoceran biomass. Thus, this part of heterotrophic bacterial activity seems to be stimulated by leakage of dissolved organic matter from phytoplankton being disrupted and incompletely digested by cladocerans rather than from healthy photosynthetizing cells. (author)

  16. Energetics of bacterial photosynthesis.

    Science.gov (United States)

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  17. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However......, photosynthetic reducing power feeds into both central and specialized metabolism, which leads to a fiercely competitive system from which to siphon reductant. This thesis explores the optimization of light-driven P450 activity, and proposes strategies to overcome the limitations imposed by competition...... for photosynthetic reducing power. Photosynthetic electron carrier proteins interact with widely different partners because they use relatively non-specific interactions. The mechanistic basis of these interactions and its impact on natural electron transfer complexes is discussed. This particular type...

  18. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland

    International Nuclear Information System (INIS)

    Jones, R.I.; Salonen, K.

    1985-01-01

    Bacterial utilization of photosynthetically fixed dissolved organic carbon (PDOC) released from natural phytoplankton assemblages was studied in two small, extremely humic, forest lakes in southern Finland. Bacterial activity (measured us uptake of 14 C-glucose) and phytoplankton photosynthesis (measured as light uptake of 14 CO 2 ) could be most effectively separated using Nuclepore filters of pore 1-2 μm. Released PDOC was 10-67% of total phytoplankton carbon fixation during in situ experiments, and represented about 0.1% of total DOC. Net uptake of PDOC by bacteria was found to be about 20% during 24 hour laboratory incubations, although about 40% of PDOC present at the start of an experiment could be utilized by bacteria during a 24 hour period. PDOC does not provide a quantitatively important substrate supply fo bacterial respiration in humic forest lakes. (author)

  19. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions.

    Science.gov (United States)

    Barz, W P; Francia, F; Venturoli, G; Melandri, B A; Verméglio, A; Oesterhelt, D

    1995-11-21

    The pufX gene is essential for photoheterotrophic growth of the purple bacterium Rhodobacter sphaeroides. In order to analyze the molecular function of the PufX membrane protein, we constructed a chromosomal pufX deletion mutant and phenotypically compared it to a pufX+ control strain and to two suppressor mutants which are able to grow photosynthetically in the absence of pufX. Using this genetic background, we confirmed that PufX is required for photoheterotrophic growth under anaerobic conditions, although all components of the photosynthetic apparatus were present in similar amounts in all strains investigated. We show that the deletion of PufX is not lethal for illuminated pufX- cells, suggesting that PufX is required for photosynthetic cell division. Since chromatophores isolated from the pufX- mutant were found to be unsealed vesicles, the role of PufX in photosynthetic energy transduction was studied in vivo. We show that PufX is essential for light-induced ATP synthesis (photophosphorylation) in anaerobically incubated cells. Measurements of absorption changes induced by a single turnover flash demonstrated that PufX is not required for electron flow through the reaction center and the cytochrome bc1 complex under anaerobic conditions. During prolonged illumination, however, PufX is essential for the generation of a sufficiently large membrane potential to allow photosynthetic growth. These in vivo results demonstrate that under anaerobic conditions PufX plays an essential role in facilitating effective interaction of the components of the photosynthetic apparatus.

  20. Direct Observation of Energy Detrapping in LH1-RC Complex by Two-Dimensional Electronic Spectroscopy.

    Science.gov (United States)

    Ma, Fei; Yu, Long-Jiang; Hendrikx, Ruud; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2017-01-18

    The purple bacterial core light harvesting antenna-reaction center (LH1-RC) complex is the simplest system able to achieve the entire primary function of photosynthesis. During the past decade, a variety of photosynthetic proteins were studied by a powerful technique, two-dimensional electronic spectroscopy (2DES). However, little attention has been paid to LH1-RC, although its reversible uphill energy transfer, trapping, and backward detrapping processes, represent a crucial step in the early photosynthetic reaction dynamics. Thus, in this work, we employed 2DES to study two LH1-RC complexes of Thermochromatium (Tch.) tepidum. By direct observation of detrapping, the complex reversible process was clearly identified and an overall scheme of the excitation evolution in LH1-RC was obtained.

  1. The effect of nitrogen on the development and photosynthetic activity ...

    African Journals Online (AJOL)

    Whole plant net photosynthetic rates appeared to vary according to the units in which the activity is expressed. The optimum levels of photosynthetic activity differed with the stage of development, depending on the basis of expression. The form and concentration of nitrogen applied influenced morphological development ...

  2. Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Chang Tian-gen

    2017-01-01

    Full Text Available Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system (HAPS, and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

  3. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming; Peng, Meng

    2015-08-01

    This study aimed at enhancing the bacterial biomass and pigments production in together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via using different photoperiods. Different light/dark cycles and light/dark cycle frequencies were examined. Results showed that PSB had the highest biomass production, COD removal and biomass yield, and light energy efficiency with light/dark cycle of 2h/1h. The corresponding biomass, COD removal and biomass yield reached 2068mg/L, 90.3%, and 0.38mg-biomass/mg-COD-removal, respectively. PSB showed higher biomass production and biomass yield with higher light/dark cycle frequency. Mechanism analysis showed within a light/dark cycle from 1h/2h to 2h/1h, the carotenoid and bacteriochlorophyll production increased with an increase in light/dark cycle. Moreover, the pigment contents were much higher with lower frequency of 2-4 times/d. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Reaction of Musa balbisiana to Banana bacterial wilt infection ...

    African Journals Online (AJOL)

    The expression of NPR1, a marker gene of the systemic acquired resistance plant defence system provides preliminary evidence that this may be the major form of resistance in Musa balbisiana to bacterial wilt infection. Keywords: NPR1, PR proteins, Uganda, Xanthomonas campestris. African Crop Science Journal, Vol.

  5. Proton conduction within the reaction centers of Rhodobacter capsulatus: the electrostatic role of the protein.

    OpenAIRE

    Maróti, P; Hanson, D K; Baciou, L; Schiffer, M; Sebban, P

    1994-01-01

    Light-induced charge separation in the photosynthetic reaction center results in delivery of two electrons and two protons to the terminal quinone acceptor QB. In this paper, we have used flash-induced absorbance spectroscopy to study three strains that share identical amino acid sequences in the QB binding site, all of which lack the protonatable amino acids Glu-L212 and Asp-L213. These strains are the photosynthetically incompetent site-specific mutant Glu-L212/Asp-L213-->Ala-L212/Ala-L213 ...

  6. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  7. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  8. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa

    International Nuclear Information System (INIS)

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Deng, Yang; Qiao, Junlian; Ou, Huase; Deng, Jing

    2013-01-01

    Bench scale tests were conducted to study the effects of four common algaecides, including copper sulfate, hydrogen peroxide, diuron and ethyl 2-methylacetoacetate (EMA) on the photosynthetic capacity, cell integrity and microcystin-LR (MC-LR) release of Microcystis aeruginosa. The release of potassium (K + ) from cell membrane during algaecide exposure was also analyzed. The three typical photosynthetic parameters, including the effective quantum yield (φ e ), photosynthetic efficiency (α) and maximal electron transport rate (rETR max ), were measured by a pulse amplitude modulated (PAM) fluorometry. Results showed that the photosynthetic capacity was all inhibited by the four algaecides, to different degrees, by limiting the energy capture in photosynthesis, and blocking the electron transfer chain in primary reaction. For example, at high diuron concentration (7.5 mg L −1 ), φ e , α and rETR max decreased from 0.46 to 0.19 (p −2 s −1 /μmol photons m −2 s −1 , and from 160.7 to 0.1 (p −2 s −1 compared with the control group after 96 h of exposure, respectively. Furthermore, the increase of algaecide dose could lead to the cell lysis, as well as release of intracellular MC-LR that enhanced the accumulation of extracellular MC-LR. The order of MC-LR release potential for the four algaecides was CuSO 4 > H 2 O 2 > diuron > EMA. Highlights: • PAM was used to investigate the effects of algaecides on Microcystis aeruginosa. • We estimate the release of potassium (K + ) from cell membrane for cell lysis. • The risk of microcystin-LR release was evaluated after algaecides exposure. • The order of MC-LR release potential was copper sulfate > hydrogen peroxide > diuron > ethyl 2-methylacetoacetate

  9. Investigation of the structure of photosynthetic reaction centers. Progress report, June 1, 1981-April 1, 1982

    International Nuclear Information System (INIS)

    van Willigen, H.

    1982-04-01

    The investigation is concerned with the application of Electron Nuclear Double Resonance (ENDOR) and Electron Nuclear Triple Resonance (TRIPLE) in the study of the photo excited triplet state of photosynthetic resonance methods hyperfine interactions between unpaired electrons and nuclear spins can be measured, giving an insight in the electronic and geometric structure of paramagnetic systems. During this initial phase of the project, research has focused on the following areas. (1) Instrumental aspects associated with the application of ENDOR and TRIPLE on the photo excited triplets randomly oriented in solid solution. (2) Exploration of the conditions required for these studies employing ground state triplet systems. (3) Study of photo excited triplet states of model systems such as naphthylene, zinc and magnesium tetraphenyl-porphyrin in polymethylmethacrylate or polycrystalline benzophenone. Progress made in these areas is discussed

  10. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  11. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    Science.gov (United States)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  12. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  13. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  14. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

    Science.gov (United States)

    Maresca, Julia A; Graham, Joel E; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A

    2007-07-10

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria.

  15. [Engineering photosynthetic cyanobacterial chassis: a review].

    Science.gov (United States)

    Wu, Qin; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2013-08-01

    Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.

  16. Effect of Photosynthetic Photon Flux Density on Carboxylation Efficiency 1

    Science.gov (United States)

    Weber, James A.; Tenhunen, John D.; Gates, David M.; Lange, Otto L.

    1987-01-01

    The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO2 partial pressures between 35 pascals and CO2 compensation point (Γ) was investigated, especially below PPFD saturation. Spinacia oleracea cv `Atlanta,' Glycine max cv `Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO2 (∂A/∂C[Γ]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Γ there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Γ was essentially constant, but below which Γ increased with decreasing PPFD. All three species showed a dependence of ∂A/∂C(Γ) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses. PMID:16665640

  17. Non-photosynthetic plastids as hosts for metabolic engineering.

    Science.gov (United States)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Energy transfer in real and artificial photosynthetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hindman, J.C.; Hunt, J.E.; Katz, J.J.

    1995-02-01

    Fluorescence emission from the photosynthetic organisms Tribonema aequale, Anacystis nidulau, and Chlorelia vulgais and from some chlorophyll model systems have been recorded as a function of excitation wavelength and temperature. Considerable similarity was observed in the effects of excitation wavelength and temperature on the fluorescence from intact photosynthetic organisms and the model systems. The parallelism in behavior suggest that self-assembly processes may occur in both the in vivo and in vitro systems that give rise to chlorophyll species at low temperature that may differ significantly from those present at ambient temperatures.

  19. Separation, identification and quantification of photosynthetic ...

    African Journals Online (AJOL)

    Thirty one photosynthetic pigments (chlorophylls, carotenoids and degradation products) from the seaweeds, Codium dwarkense, (Chlorophyta), , Laurencia obtusa , (Rhodophyta) and , Lobophora variegata, (Phaeophyta), were separated in a single-step procedure by reversed phase high-performance liquid ...

  20. Sun and Shade leaves, SIF, and Photosynthetic Capacity

    Science.gov (United States)

    Berry, J. A.; Badgley, G.

    2016-12-01

    Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.

  1. Mimicking the Role of the Antenna in Photosynthetic Photoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Terazono, Yuichi; Kodis, Gerdenis; Bhushan, Kul; Zaks, Julia; Madden, Christopher; Moore, Ana L.; Moore, Thomas A.; Fleming, Graham R.; Gust, Devens

    2011-03-09

    One mechanism used by plants to protect against damage from excess sunlight is called nonphotochemical quenching (NPQ). Triggered by low pH in the thylakoid lumen, NPQ leads to conversion of excess excitation energy in the antenna system to heat before it can initiate production of harmful chemical species by photosynthetic reaction centers. Here we report a synthetic hexad molecule that functionally mimics the role of the antenna in NPQ. When the hexad is dissolved in an organic solvent, five zinc porphyrin antenna moieties absorb light, exchange excitation energy, and ultimately decay by normal photophysical processes. Their excited-state lifetimes are long enough to permit harvesting of the excitation energy for photoinduced charge separation or other work. However, when acid is added, a pH-sensitive dye moiety is converted to a form that rapidly quenches the first excited singlet states of all five porphyrins, converting the excitation energy to heat and rendering the porphyrins kinetically incompetent to readily perform useful photochemistry.

  2. Chlorophyll Fluorescence and Reflectance-Based Non-Invasive Quantification of Blast, Bacterial Blight and Drought Stresses in Rice

    Czech Academy of Sciences Publication Activity Database

    Šebela, David; Quiňones, C.; Cruz, C.; Ona, I.; Olejníčková, Julie; Jagadish, K. S. V.

    2018-01-01

    Roč. 59, č. 1 (2018), s. 30-43 ISSN 0032-0781 R&D Projects: GA MŠk(CZ) LO1415 EU Projects: European Commission(XE) 284443 - EPPN Institutional support: RVO:86652079 Keywords : marker-assisted selection * oryza-sativa l. * water -stress * magnaporthe-grisea * disease resistance * photosynthetic efficiency * spectral reflectance * carotenoid content * eucalyptus leaves * diurnal changes * Bacterial blight * Chlorophyll fluorescence * Drought stress * Reflectance * Rice bast Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.760, year: 2016

  3. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  4. Photosynthetic Pigments in Diatoms

    OpenAIRE

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvestin...

  5. Effect of space mutation of photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiao'nan; Liu Qi

    2012-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photo synthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soy bean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 >SP 3 >SP 4 >CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  6. Bacterial community transcription patterns during a marine phytoplankton bloom.

    Science.gov (United States)

    Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Kiene, Ronald P; Moran, Mary Ann

    2012-01-01

    Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern.

    Directory of Open Access Journals (Sweden)

    Anne Jungandreas

    Full Text Available Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL to blue light (BL and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning.

  8. Biological modulation of tectonics

    Science.gov (United States)

    Sleep, N. H.; Bird, D. K.

    2008-12-01

    Photosynthesis has had geologic consequences over the Earth's history. In addition to modifying Earth's atmosphere and ocean chemistry, it has also modulated tectonic processes through enhanced weathering and modification of the nature and composition of sedimentary rocks within fold mountain belts and convergent margins. Molecular biological studies indicate that bacterial photosynthesis evolved just once and that most bacterial clades descend from this photosynthetic common ancestor. Iron-based photosynthesis (ideally 4FeO + CO2 + H2O = 2Fe2O3 + CH2O) was the most bountiful anoxygenic niche on land. The back reaction provided energy to heterotrophic microbes and returned FeO to the photosynthetic microbes. Bacterial land colonists evolved into ecosystems that effectively weathered FeO-bearing minerals and volcanic glass. Clays, sands, and dissolved cations from the weathering process entered the ocean and formed our familiar classes sedimentary rocks: shales, sandstones, and carbonates. Marine photosynthesis caused organic carbon to accumulate in black shales. In contrast, non-photosynthetic ecosystems do not cause organic carbon to accumulate in shale. These evolutionary events occurred before 3.8 Ga as black shales are among the oldest rock types (Rosing and Frei, Earth Planet. Sci. Lett. 217, 237-244, 2004). Thick sedimentary sequences deformed into fold mountain belts. They remelted at depth to form granitic rocks (Rosing et al., Palaeoclimatol. Palaeoecol. 232, 99-11, 2006). Regions of outcropping low-FeO rocks including granites, quartzites, and some shales were a direct result. This dearth of FeO favored the evolution of oxic photosynthesis of cyanobacteria from photosynthetic soil bacteria. Black shales have an additional modulation effect on tectonics as they concentrate radioactive elements, particularly uranium (e.g. so that the surface heat flow varies by a factor of ca. 2). Thick sequences of black shales at continental rises of passive margins are

  9. Thermoluminescence as a complementary technique for the toxicological evaluation of chemicals in photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, Guillermo, E-mail: grepkuh@upo.es [Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville (Spain); Zurita, Jorge L. [Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville (Spain); Roncel, Mercedes; Ortega, José M. [Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville (Spain)

    2015-01-15

    Highlights: • There are very few toxicological applications of thermoluminescence. • It is a luminescence emission induced by heating the sample in the dark. • It is useful for study the photosystem II function and the level of lipid peroxidation. - Abstract: Thermoluminescence is a simple technique very useful for studying electron transfer reactions on photosystem II (standard thermoluminescence) or the level of lipid peroxidation in membranes (high temperature thermoluminescence) in photosynthetic organisms. Both techniques were used to investigate the effects produced on Chlorella vulgaris cells by six compounds: the chemical intermediates bromobenzene and diethanolamine, the antioxidant propyl gallate, the semiconductor indium nitrate, the pesticide sodium monofluoroacetate and the antimalarial drug chloroquine. Electron transfer activity of the photosystem II significantly decreased after the exposure of Chlorella cells to all the six chemicals used. Lipid peroxidation was slightly decreased by the antioxidant propyl gallate, not changed by indium nitrate and very potently stimulated by diethanolamine, chloroquine, sodium monofluoroacetate and bromobenzene. For five of the chemicals studied (not bromobenzene) there is a very good correlation between the cytotoxic effects in Chlorella cells measured by the algal growth inhibition test, and the inhibition of photosystem II activity. The results suggest that one very important effect of these chemicals in Chlorella cells is the inhibition of photosynthetic metabolism by the blocking of photosystem II functionality. In the case of sodium monofluoroacetate, diethanolamine and chloroquine this inhibition seems to be related with the induction of high level of lipid peroxidation in cells that may alter the stability of photosystem II. The results obtained by both techniques supply information that can be used as a supplement to the growth inhibition test and allows a more complete assessment of the effects of

  10. Thermoluminescence as a complementary technique for the toxicological evaluation of chemicals in photosynthetic organisms

    International Nuclear Information System (INIS)

    Repetto, Guillermo; Zurita, Jorge L.; Roncel, Mercedes; Ortega, José M.

    2015-01-01

    Highlights: • There are very few toxicological applications of thermoluminescence. • It is a luminescence emission induced by heating the sample in the dark. • It is useful for study the photosystem II function and the level of lipid peroxidation. - Abstract: Thermoluminescence is a simple technique very useful for studying electron transfer reactions on photosystem II (standard thermoluminescence) or the level of lipid peroxidation in membranes (high temperature thermoluminescence) in photosynthetic organisms. Both techniques were used to investigate the effects produced on Chlorella vulgaris cells by six compounds: the chemical intermediates bromobenzene and diethanolamine, the antioxidant propyl gallate, the semiconductor indium nitrate, the pesticide sodium monofluoroacetate and the antimalarial drug chloroquine. Electron transfer activity of the photosystem II significantly decreased after the exposure of Chlorella cells to all the six chemicals used. Lipid peroxidation was slightly decreased by the antioxidant propyl gallate, not changed by indium nitrate and very potently stimulated by diethanolamine, chloroquine, sodium monofluoroacetate and bromobenzene. For five of the chemicals studied (not bromobenzene) there is a very good correlation between the cytotoxic effects in Chlorella cells measured by the algal growth inhibition test, and the inhibition of photosystem II activity. The results suggest that one very important effect of these chemicals in Chlorella cells is the inhibition of photosynthetic metabolism by the blocking of photosystem II functionality. In the case of sodium monofluoroacetate, diethanolamine and chloroquine this inhibition seems to be related with the induction of high level of lipid peroxidation in cells that may alter the stability of photosystem II. The results obtained by both techniques supply information that can be used as a supplement to the growth inhibition test and allows a more complete assessment of the effects of

  11. Influence of stomatic aperture on photosynthetic activity of bean-seedlings leaves

    International Nuclear Information System (INIS)

    Suarez Moya, J.; Fernandez Gonzalez, J.

    1984-01-01

    The present paper contains the data of photosynthetic activity and stomatic aperture of bean-seedlings Ieaves, and the relations obtained with both results. It has been observed that the product of photosynthetic activity by the resistance; to transpiration measured by a promoter ia a constant, between some limits. (Author) 45 refs

  12. On the photosynthetic potential in the very Early Archean oceans.

    Science.gov (United States)

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  13. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  14. N-Doped Carbon Nanofibrous Network Derived from Bacterial Cellulose for the Loading of Pt Nanoparticles for Methanol Oxidation Reaction.

    Science.gov (United States)

    Yuan, Fanshu; Huang, Yang; Fan, Mengmeng; Chen, Chuntao; Qian, Jieshu; Hao, Qingli; Yang, Jiazhi; Sun, Dongping

    2018-02-06

    The large-scale, low-cost preparation of Pt-based catalysts with high activity and durability for the methanol oxidation reaction is still challenging. The key to achieving this aim is finding suitable supporting materials. In this paper, N-doped carbon nanofibrous networks are prepared by annealing a gel containing two inexpensive and ecofriendly precursors, that is, bacterial cellulose and urea, for the loading of Pt nanoparticles. An undoped analogue is also prepared for comparison. Meanwhile, the effect of the annealing temperature on the performance of the catalysts is evaluated. The results show that the N doping and higher annealing temperature can improve the electron conductivity of the catalyst and provide more active sites for the loading of ultrafine Pt nanoparticles with a narrow size distribution. The best catalyst exhibits a remarkably high electrocatalytic activity (627 mA mg -1 ), excellent poison tolerance, and high durability. This work demonstrates an ideal Pt supporting material for the methanol oxidation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mathematical model for the analytical signal of an herbicide sensor based on the reaction centre of Rhodobacter sphaeroides.

    Science.gov (United States)

    Andreu, Yolanda; Baldini, Francesco; Giannetti, Ambra; Mencaglia, Andrea

    2005-01-30

    This paper introduces a mathematical model which makes it possible both to determine the concentration of photosynthetic herbicides and to obtain a quantitative parameter in order to compare their activity using a previously described sensing system. The working principle involves the changes in absorption properties at 860nm of the reaction centre (RC) isolated from the bacteria Rhodobacter sphaeroides when photosynthetic herbicides are present. The method has been used for the determination and activity comparison of five photosynthetic herbicides: diuron, atrazine, terbutryn, terbuthylazine and simazine. Detection limits obtained were 2.2, 0.75, 0.046, 0.25, and 1.4muM, respectively. The resulting order for the different herbicides according to their action on RC was: terbutryn > terbuthylazine > atrazine > simazine > diuron.

  16. How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations?

    Science.gov (United States)

    Way, Danielle A; Stinziano, Joseph R; Berghoff, Henry; Oren, Ram

    2017-07-01

    Accurate values of photosynthetic capacity are needed in Earth System Models to predict gross primary productivity. Seasonal changes in photosynthetic capacity in these models are primarily driven by temperature, but recent work has suggested that photoperiod may be a better predictor of seasonal photosynthetic capacity. Using field-grown kudzu (Pueraria lobata (Willd.) Ohwi), a nitrogen-fixing vine species, we took weekly measurements of photosynthetic capacity, leaf nitrogen, and pigment and photosynthetic protein concentrations and correlated these with temperature, irradiance and photoperiod over the growing season. Photosynthetic capacity was more strongly correlated with photoperiod than with temperature or daily irradiance, while the growing season pattern in photosynthetic capacity was uncoupled from changes in leaf nitrogen, chlorophyll and Rubisco. Daily estimates of the maximum carboxylation rate of Rubisco (Vcmax) based on either photoperiod or temperature were correlated in a non-linear manner, but Vcmax estimates from both approaches that also accounted for diurnal temperature fluctuations were similar, indicating that differences between these models depend on the relevant time step. We advocate for considering photoperiod, and not just temperature, when estimating photosynthetic capacity across the year, particularly as climate change alters temperatures but not photoperiod. We also caution that the use of leaf biochemical traits as proxies for estimating photosynthetic capacity may be unreliable when the underlying relationships between proxy leaf traits and photosynthetic capacity are established outside of a seasonal framework. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Photosynthetic complex LH2 – Absorption and steady state fluorescence spectra

    International Nuclear Information System (INIS)

    Zapletal, David; Heřman, Pavel

    2014-01-01

    Nowadays, much effort is devoted to the study of photosynthesis which could be the basis for an ideal energy source in the future. To be able to create such an energy source – an artificial photosynthetic complex, the first step is a detailed understanding of the function of photosynthetic complexes in living organisms. Photosynthesis starts with the absorption of a solar photon by one of the LH (light-harvesting) pigment–protein complexes and transferring the excitation energy to the reaction center where a charge separation is initiated. The geometric structure of some LH complexes is known in great detail, e.g. for the LH2 complexes of purple bacteria. For understanding of photosynthesis first stage efficiency, it is necessary to study especially optical properties of LH complexes. In this paper we present simulated absorption and steady-state fluorescence spectra for ring molecular system within full Hamiltonian model. Such system can model bacteriochlorophyll ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). Dynamic disorder (coupling with phonon bath) simultaneously with uncorrelated static disorder (transfer integral fluctuations) is used in our present simulations. We compare and discuss our new results with our previously published ones and of course with experimental data. - Highlights: • We model absorption and steady state fluorescence spectra for B850 ring from LH2. • Fluctuations of environment is modelled by static and dynamic disorder. • Full Hamiltonian model is compared with the nearest neighbour approximation one. • Simulated fluorescence spectrum is compared with experimental data

  18. A Key Role of Xanthophylls That Are Not Embedded in Proteins in Regulation of the Photosynthetic Antenna Function in Plants, Revealed by Monomolecular Layer Studies.

    Science.gov (United States)

    Welc, Renata; Luchowski, Rafal; Grudzinski, Wojciech; Puzio, Michal; Sowinski, Karol; Gruszecki, Wieslaw I

    2016-12-29

    The main physiological function of LHCII (light-harvesting pigment-protein complex of photosystem II), the largest photosynthetic antenna complex of plants, is absorption of light quanta and transfer of excitation energy toward the reaction centers, to drive photosynthesis. However, under strong illumination, the photosynthetic apparatus faces the danger of photodegradation and therefore excitations in LHCII have to be down-regulated, e.g., via thermal energy dissipation. One of the elements of the regulatory system, operating in the photosynthetic apparatus under light stress conditions, is a conversion of violaxanthin, the xanthophyll present under low light, to zeaxanthin, accumulated under strong light. In the present study, an effect of violaxanthin and zeaxanthin on the molecular organization and the photophysical properties of LHCII was studied in a monomolecular layer system with application of molecular imaging (atomic force microscopy, fluorescence lifetime imaging microscopy) and spectroscopy (UV-Vis absorption, FTIR, fluorescence spectroscopy) techniques. The results of the experiments show that violaxanthin promotes the formation of supramolecular LHCII structures preventing dissipative excitation quenching while zeaxanthin is involved in the formation of excitonic energy states able to quench chlorophyll excitations in both the higher (B states) and lower (Q states) energy levels. The results point to a strategic role of xanthophylls that are not embedded in a protein environment, in regulation of the photosynthetic light harvesting activity in plants.

  19. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  20. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  1. Influence of technological treatments on bacterial communities in ...

    African Journals Online (AJOL)

    Influence of technological treatments on bacterial communities in tilapia ( Oreochromis niloticus ) as determined by 16S rDNA fingerprinting using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)

  2. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  3. Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785

    2012-09-12

    In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers

  4. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  5. Effect of temperature and light intensity on growth and photosynthetic activity of Chlamydomonas Reinhardtii

    International Nuclear Information System (INIS)

    Alfonsel, M.; Fernandez Gonzalez, J.

    1986-01-01

    The effect of five temperatures (15, 20, 25, 30 and 35 0 C) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhardtii has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of CO 2 labelled with C 14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 0 C for the lower lavel of illumination (2400 lux) and at 35 0 C for the higher one (13200 lux). These results suggest an interacton of temperature and illumination on photosynthetic activity. (author)

  6. [Correlation research of photosynthetic characteristics and medicinal materials production with 4 Uncariae Cum Uncis].

    Science.gov (United States)

    Luo, Min; Song, Zhi-Qin; Yang, Ping-Fei; Liu, Hai; Yang, Zai-Gang; Wu, Ming-Kai

    2017-01-01

    Using four Uncariae Cum Uncis materials including Uncaria sinensis (HGT), U. hirsutea (MGT), Jianhe U. rhynchophylla (JHGT) and U. rhynchophylla(GT) as the research objects, the correlations between medicinal materials' yield and photosynthetic ecophysiology-factors in the plant exuberant growth period were studied. Results showed that the Uncaria plants net photosynthetic rate (Pn) changed by unimodal curve. There was not "midday depression" phenomenon. There was a different relationship among the photosynthetic ecophysiology-factors and between photosynthetic ecophysiology-factors and medicinal materials' yield. Pn,Tl,Gs had a significant correlation with medicinal materials' yield(M)and were the most important factors of growth. Copyright© by the Chinese Pharmaceutical Association.

  7. Geographic variation in the photosynthetic responses and life history of Mastocarpus papillatus

    International Nuclear Information System (INIS)

    Zupan, J.R.

    1985-01-01

    Population differentiation in Mastocarpus papillatus, a red alga occurring from Baja California to Alaska, was assessed by (1) characterizing the geographic pattern of variation in reproductive behavior and (2) determining the range of variation in photosynthesis and respiration. Examining these two aspects of the biology of M. papillatus yielded different estimates of population differentiation. Carpospores of females collected from 8 locations between Baja California and northern California were grown in laboratory culture and their subsequent development followed. The 8 locations could be divided into 3 groups based on life history patterns. Photosynthetic responses to temperature and photon flux density were measured foliose gametophytes and crustose tetrasporophytes from 4 locations. Gametophytes had maximal net photosynthetic rates 4-5 times higher than tetrasporophytes. Tetrasporophyte populations were uniform in photosynthetic responses to temperature. Maximal rates occurred at 15 0 C Gametophyte populations appeared to be slightly differentiated. The photosynthetic temperature optima were between 20 0 C and 25 0 C for 3 populations and between 15 0 C and 20 0 C for 1 population. A preliminary study of carbon metabolism in M. papillatus gametophytes was conducted using 14 C. Partitioning of early products of photosynthetic carbon fixation between low molecular weight and polymeric, high molecular weight compounds appeared to differ under emerged and submerged conditions

  8. Defense reactions of bean genotypes to bacterial pathogens in controlled conditions

    Science.gov (United States)

    Uysal, B.; Bastas, K. K.

    2018-03-01

    This study was focused on the role of antioxidant enzymes and total protein in imparting resistance against common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli (Xap) and halo blight caused by Pseudomonas syringae pv. phaseolicola (Psp) in bean. Activities of Ascorbate peroxidase (APX), Catalase (CAT) and total protein were studied in resistant and susceptible bean genotypes. Five-day-old seedlings were inoculated with a bacterial suspension (108 CFU ml-1) and harvested at different time intervals (0, 12, 24 and 36 up to 72 h) under controlled growing conditions and assayed for antioxidant enzymes and total protein. Temporal increase of CAT, APX enzymes activities showed maximum activity at 12 h after both pathogens inoculation (hpi) in resistant cultivar, whereas in susceptible it increased at 72 h after both pathogens inoculation for CAT and 12, 24 h for APX enzymes. Maximum total protein activities were observed at 12 h and 24 h respectively after Xap, Psp inoculation (hpi) in resistant and maximum activities were observed at 24 h and 72 h respectively after Xap, Psp inoculation (hpi) in susceptible. Increase of antioxidant enzyme and total protein activities might be an important component in the defense strategy of resistance and susceptible bean genotypes against the bacterial infection. These findings suggest that disease protection is proportional to the amount of enhanced CAT, APX enzyme and total protein activity.

  9. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiqing [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shao, Yisheng, E-mail: yishengshao@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); China Academy of Urban Planning and Design, Beijing 100037 (China); Gao, Naiyun [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Deng, Yang [Department of Earth and Environmental Studies, Montclair State University, Montclair NJ 07043 (United States); Qiao, Junlian; Ou, Huase; Deng, Jing [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2013-10-01

    Bench scale tests were conducted to study the effects of four common algaecides, including copper sulfate, hydrogen peroxide, diuron and ethyl 2-methylacetoacetate (EMA) on the photosynthetic capacity, cell integrity and microcystin-LR (MC-LR) release of Microcystis aeruginosa. The release of potassium (K{sup +}) from cell membrane during algaecide exposure was also analyzed. The three typical photosynthetic parameters, including the effective quantum yield (φ{sub e}), photosynthetic efficiency (α) and maximal electron transport rate (rETR{sub max}), were measured by a pulse amplitude modulated (PAM) fluorometry. Results showed that the photosynthetic capacity was all inhibited by the four algaecides, to different degrees, by limiting the energy capture in photosynthesis, and blocking the electron transfer chain in primary reaction. For example, at high diuron concentration (7.5 mg L{sup −1}), φ{sub e}, α and rETR{sub max} decreased from 0.46 to 0.19 (p < 0.01), from 0.20 to 0.01 (p < 0.01) μmol electrons m{sup −2} s{sup −1}/μmol photons m{sup −2} s{sup −1}, and from 160.7 to 0.1 (p < 0.001) μmol m{sup −2} s{sup −1} compared with the control group after 96 h of exposure, respectively. Furthermore, the increase of algaecide dose could lead to the cell lysis, as well as release of intracellular MC-LR that enhanced the accumulation of extracellular MC-LR. The order of MC-LR release potential for the four algaecides was CuSO{sub 4} > H{sub 2}O{sub 2} > diuron > EMA. Highlights: • PAM was used to investigate the effects of algaecides on Microcystis aeruginosa. • We estimate the release of potassium (K{sup +}) from cell membrane for cell lysis. • The risk of microcystin-LR release was evaluated after algaecides exposure. • The order of MC-LR release potential was copper sulfate > hydrogen peroxide > diuron > ethyl 2-methylacetoacetate.

  10. Respiratory processes in non-photosynthetic plastids

    Science.gov (United States)

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  11. Respiratory processes in non-photosynthetic plastids

    Directory of Open Access Journals (Sweden)

    Marta eRenato

    2015-07-01

    Full Text Available Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(PH to oxygen. This respiratory chain involves the NAD(PH dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX, and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  12. Structural studies on reaction centers from thermophilic photosynthetic bacteria and its functional utilizations. Tainetsusei kogosei saikin ni yuraisuru kogosei hanno chushin no kozo kaimei to kino kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, T; Morishita, Y; Kobayashi, M; Kanno, S [Tohoku University, Sendai (Japan). Faculty of Engineering

    1992-10-31

    This paper describes the results of the experiment in which crystallization of protein of reactive center purified from the photosynthetic film of thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum whose hyrogen donor in photosynthesis is H2S instead of H2O was attempted. Crystallization was carried out by the vapor diffusion method and particularly by using ethylene glycol as precipitator at 4[degree]C after various investigations on the conditions of crystallization. By X-ray diffraction, this crystal was found to belong to the rhombic system, and it was estimated that the lattice constants, a, b, c equal to 140[angstrom], 190[angstrom] and 80[angstrom] respectively. This bacterium is a thermophilic bacterium having the optimum growth temperature of 48-50 [degree]C and utilizes CO2 or H2CO3 as corbon source, ammonium, urea etc. as nitrogen source and thiosulfate as sulfur source. Moreover, another purpose of this investigation was to determine the thermophilic location by elucidating its configuration (although, as a result, the analysis of configuration had no sufficient resolution). It was confirmed that the enzyme system of photosynthetic film and its cytoplasm obtained by ultrasonic spallation of this cell have CO2 fixing activity utilizing light energy. 23 refs., 14 figs., 3 tabs.

  13. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    OpenAIRE

    Xiaosong Li; Guoxiong Zheng; Jinying Wang; Cuicui Ji; Bin Sun; Zhihai Gao

    2016-01-01

    Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv) and NPV (fnpv) using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wi...

  14. Natural strategies for photosynthetic light harvesting

    NARCIS (Netherlands)

    Croce, R.; van Amerongen, H.

    2014-01-01

    Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation

  15. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  16. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  17. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    In the work of finding a place for long time storage of radioactive waste it is of importance to understand the surrounding ecosystems. The storage is supposed to keep the radioactive waste away from humans and nature for some hundreds of thousands of years. It is important to be able to make risk assessments for a hypothetical release and understand by which ways the radionuclides could find their way into the biota. In lakes, released radionuclides would most probably find their way into the biota through heterotrophic bacteria or auto trophic microorganisms. Therefore, it is important to investigate how large the biomass and production of heterotrophic bacteria and photosynthetic organisms in lakes are. This report is an overview of methods that are commonly used today for measuring biomass and production of bacteria and photosynthetic microorganisms in lakes. It elucidates advantages and drawbacks of the different methods. Some results from studies on illuminated lake sediment habitats are given. Biomass of bacteria is commonly measured in microscope after colouring the bacteria with a dye. Dyes commonly used are acridine orange and 4',6-diamino-2-phenylindole (DAPI). Biomass of photosynthetic microorganisms is also commonly measured in microscope but can also be determined by the amount of chlorophyll 'a' and other pigments. An advantage with measuring the biomass photosynthetic microorganisms in microscope is that a good resolution of the community is achieved. A disadvantage with determining the biomass by measuring the chlorophyll 'a' concentrations is that the concentrations may vary with light climate and nutrients even though the carbon biomass is constant. Methods for measuring bacterial production discussed in this report are the thymidine incorporation method, the leucine incorporation method and the frequency of dividing cell method (FDC). Methods for primary production discussed in this report are the 14 CO 2 -incorporation method, the O 2

  18. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    In the work of finding a place for long time storage of radioactive waste it is of importance to understand the surrounding ecosystems. The storage is supposed to keep the radioactive waste away from humans and nature for some hundreds of thousands of years. It is important to be able to make risk assessments for a hypothetical release and understand by which ways the radionuclides could find their way into the biota. In lakes, released radionuclides would most probably find their way into the biota through heterotrophic bacteria or auto trophic microorganisms. Therefore, it is important to investigate how large the biomass and production of heterotrophic bacteria and photosynthetic organisms in lakes are. This report is an overview of methods that are commonly used today for measuring biomass and production of bacteria and photosynthetic microorganisms in lakes. It elucidates advantages and drawbacks of the different methods. Some results from studies on illuminated lake sediment habitats are given. Biomass of bacteria is commonly measured in microscope after colouring the bacteria with a dye. Dyes commonly used are acridine orange and 4',6-diamino-2-phenylindole (DAPI). Biomass of photosynthetic microorganisms is also commonly measured in microscope but can also be determined by the amount of chlorophyll 'a' and other pigments. An advantage with measuring the biomass photosynthetic microorganisms in microscope is that a good resolution of the community is achieved. A disadvantage with determining the biomass by measuring the chlorophyll 'a' concentrations is that the concentrations may vary with light climate and nutrients even though the carbon biomass is constant. Methods for measuring bacterial production discussed in this report are the thymidine incorporation method, the leucine incorporation method and the frequency of dividing cell method (FDC). Methods for primary production discussed in this report are the {sup 14}CO{sub 2

  19. Physiological and photosynthetic response of quinoa to drought stress

    Directory of Open Access Journals (Sweden)

    Rachid Fghire

    2015-06-01

    Full Text Available Water shortage is a critical problem touching plant growth and yield in semi-arid areas, for instance the Mediterranean región. For this reason was studied the physiological basis of drought tolerance of a new, drought tolerant crop quinoa (Chenopodium quinoa Willd. tested in Morocco in two successive seasons, subject to four irrigation treatments (100, 50, and 33%ETc, and rainfed. The chlorophyll a fluorescence transients were analyzed by the JIP-test to transíate stress-induced damage in these transients to changes in biophysical parameter's allowing quantification of the energy flow through the photosynthetic apparatus. Drought stress induced a significant decrease in the maximum quantum yield of primary photochemistry (Φpo = Fv/Fm, and the quantum yield of electron transport (Φeo. The amount of active Photosystem II (PSII reaction centers (RC per excited cross section (RC/CS also decreased when exposed to the highest drought stress. The effective antenna size of active RCs (ABS/RC increased and the effective dissipation per active reaction centers (DIo/RC increased by increasing drought stress during the growth season in comparison to the control. However the performance index (PI, was a very sensitive indicator of the physiological status of plants. Leaf area index, leaf water potential and stomatal conductance decreased as the drought increased. These results indicate that, in quinoa leaf, JIP-test can be used as a sensitive method for measuring drought stress effects.

  20. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  1. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available As an important successional stage and main type of biological soil crusts (BSCs in Shapotou region of China (southeastern edge of Tengger Desert, lichen soil crusts (LSCs often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs.

  2. Identification of the Bacterial Community Responsible for ...

    African Journals Online (AJOL)

    Identification of bacteria community responsible for decontaminating Eleme petrochemical industrial effluent using 16S PCR denaturing gradient gel electrophoresis (DGGE) was determined. Gene profiles were determined by extracting DNA from bacterial isolates and amplified by polymerase chain reaction (PCR) using ...

  3. Seasonal changes in photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa) vines

    International Nuclear Information System (INIS)

    Buwalda, J.G.; Meekings, J.S.; Smith, G.S.

    1991-01-01

    The seasonal trend of photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa var. deliciosa) vines growing in the field was examined, by measuring the response of net photosynthesis (A) to irradiance (PAR) at monthly intervals for leaves that emerged at different stages of the growing season. A climate controlled minicuvette system was used, to ensure constant environmental conditions, apart from the controlled changes in leaf irradiance. Responses of A to irradiance were described using asymptotic exponential curves, providing estimates of the radiation saturated rate of A (A sat ), and the response of A to increasing incident PAR at low PAR levels (ϕ i ). The change in photosynthetic capacity with leaf age was similar for leaves emerging 1, 2, 3 or 4 months after bud burst. At 1 month after leaf emergence, when leaves were fully expanded, Asat was 9–11 μmol CO 2 m −2 s −1 . Maximum photosynthetic capacity was not attained until 3–5 months after leaf emergence, when Asat was 16–17 μmol CO 2 m −2 s −1 . The increasing photosynthetic capacity during 3–5 months after leaf emergence was closely related to concomitant changes in leaf N and chlorophyll contents. The possibility that N import to the leaf was a significant factor limiting the development of photosynthetic capacity is discussed. (author)

  4. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  5. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  6. Effect of maize seed laser irradiation on plant photosynthetic activity

    International Nuclear Information System (INIS)

    Antonov, M.; Stanev, V.; Velichkov, D.; Tsonev, Ts.

    1986-01-01

    Investigations were made with the two hybrids, H-708 and P x -20. The seeds were irradiated by a helium-neon quantum generator (L'vov-1 Electronica) with output power of 24 MW and 632.8 nm wave length. Once and twice irradiated seeds were sown on the 2nd, 5th and 10th day post irradiation. Changes in leaf area, chlorophyll content in the leaves, photosynthetic rate and its dependence on temperature and light, transpiration, stomatal resistance to CO 2 and total dry matter of the overground plant part were traced. Seed irradiation with laser rays did not affect the chlorophyll content of the leaves. The photosynthetic rate did not depend on the cultivar characteristics of the crop. Single and repeated irradiation of the hybrid H-708 in most case enhanced photosynthetic rate, but a similar effect was not observed in P x -20. Transpiration and CO 2 stomatal resistance were not equally affected by radiation. Laser rays enhanced the ability of the photosynthetic apparatus of the entire plants to use more efficiently high light intensities. The leaf area and the total plant dry matter increased in case of sowing on the 2nd and 5th day and a single irradiation and in case of sowing on the 5th and 10th day and twice repeated irradiations

  7. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    OpenAIRE

    Gamon, John A.

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks ever...

  8. Purification of antibodies to bacterial antigens by an immunoadsorbent and a method to quantify their reaction with insoluble bacterial targets

    International Nuclear Information System (INIS)

    Mathews, H.L.; Minden, P.

    1979-01-01

    A combination of procedures was employed to develop a radioimmunoassay which quantified the binding of antibodies to antigens of either intact Propionibacterium acnes or to antigens of insoluble extracts derived from the bacteria. Reactive antibody populations were purified by use of bacterial immunoadsorbents which were prepared by coupling P. acnes to diethylaminoethyl cellulose. Binding of antibodies was detected with [ 125 I]staphylococcal protein A ([ 125 I]SpA) and optimal conditions for the assay defined by varying the amounts of antibodies, bacterial antigenic targets and [ 125 I]SpA. In antibody excess, 100% of available [ 125 I]SpA was bound by the target-antibody complexes. However, when antibody concentration was limiting, a linear relationship was demonstrated between per cent specific binding of[ 125 I]SpA and antibodies bound to bacterial targets. These results were achieved only with immunoadsorbent-purified antibody populations and not with hyperimmune sera or IgG. The radioimmunoassay detected subtle antigenic differences and similarities between P. acnes, P. acnes extracts and a variety of unrelated microorganisms. (Auth.)

  9. BOREAS TE-9 NSA Photosynthetic Response Data

    Science.gov (United States)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. The effect of triazine - and urea - type herbicides on photosynthetic apparatus in cucumber leaves

    Directory of Open Access Journals (Sweden)

    Jolanta Jerzykiewicz

    2011-01-01

    Full Text Available About a half of the herbicides used at present in agnculture inhibit the light reactions in photosynthesis. Triazines and phenylureas shut down the photosynthetic process in susceptible plants by binding to specific sites within the plants photosystem II (PS II complex. Both of them bind at the QB site on the Dl protein of PS II, and prevent the transport of electrons between the primary electron acceptor Q and the plastoquinone (PQ. Herbicides can be highly toxic to human and animal health (triazines are possible human carcinogens. Their indiscriminate use has serious environmental implications, for example pollution of soil and water. We compare two heibicides to investigate the one of lowest environmental toxicity but of high toxicity to weeds.

  11. Detecting in-field variation in photosynthetic capacity of trangenically modifed plants with hyperspectral imaging.

    Science.gov (United States)

    Meacham, K.; Montes, C.; Pederson, T.; Wu, J.; Guan, K.; Bernacchi, C.

    2017-12-01

    Improved photosynthetic rates have been shown to increase crop biomass, making improved photosynthesis a focus for driving future grain yield increases. Improving the photosynthetic pathway offers opportunity to meet food demand, but requires high throughput measurement techniques to detect photosynthetic variation in natural accessions and transgenically modified plants. Gas exchange measurements are the most widely used method of measuring photosynthesis in field trials but this process is laborious and slow, and requires further modeling to estimate meaningful parameters and to upscale to the plot or canopy level. In field trials of tobacco with modifications made to the photosynthetic pathway, we infer the maximum carboxylation rate of Rubisco (Vcmax) and maximum electron transport rate (Jmax) and detect photosynthetic variation from hyperspectral imaging with a partial least squares regression technique. Ground-truth measurements from photosynthetic gas exchange, a full-range (400-2500nm) handheld spectroadiometer with leaf clip, hyperspectral indices, and extractions of leaf pigments support the model. The results from a range of wild-type cultivars and from genetically modified germplasm suggest that the opportunity for rapid selection of top performing genotypes from among thousands of plots. This research creates the opportunity to extend agroecosystem models from simplified "one-cultivar" generic parameterization to better represent a full suite of current and future crop cultivars for a wider range of environmental conditions.

  12. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    Science.gov (United States)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  13. Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants

    Directory of Open Access Journals (Sweden)

    Minobu Kasai

    2012-01-01

    Full Text Available Despite the wide uses of potted plants, information on how pot size affects plant photosynthetic matter production is still considerably limited. This study investigated with soybean plants how transplantation into larger pots affects various characteristics related to photosynthetic matter production. The transplantation was analyzed to increase leaf photosynthetic rate, transpiration rate, and stomatal conductance without affecting significantly leaf intercellular CO2 concentration, implicating that the transplantation induced equal increases in the rate of CO2 diffusion via leaf stomata and the rate of CO2 fixation in leaf photosynthetic cells. Analyses of Rubisco activity and contents of a substrate (ribulose-1,5-bisphosphate (RuBP for Rubisco and total protein in leaf suggested that an increase in leaf Rubisco activity, which is likely to result from an increase in leaf Rubisco content, could contribute to the transplantation-induced increase in leaf photosynthetic rate. Analyses of leaf major photosynthetic carbohydrates and dry weights of source and sink organs revealed that transplantation increased plant sink capacity that uses leaf starch, inducing a decrease in leaf starch content and an increase in whole plant growth, particularly, growth of sink organs. Previously, in the same soybean species, it was demonstrated that negative correlation exists between leaf starch content and photosynthetic rate and that accumulation of starch in leaf decreases the rate of CO2 diffusion within leaf. Thus, it was suggested that the transplantation-induced increase in plant sink capacity decreasing leaf starch content could cause the transplantation-induced increase in leaf photosynthetic rate by inducing an increase in the rate of CO2 diffusion within leaf and thereby substantiating an increase in leaf Rubisco activity in vivo. It was therefore concluded that transplantation of soybean plants into larger pots attempted in this study increased the

  14. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    Science.gov (United States)

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Non-photosynthetic plastids as hosts for metabolic engineering

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Behrendorff, James Bruce Yarnton H; Nielsen, Agnieszka Janina Zygadlo

    2018-01-01

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive......, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most...... in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis...

  16. Photosynthetic capacity of 'Niagara Rosada' grapes grown under transparent plastic covering

    Directory of Open Access Journals (Sweden)

    Bruna Corrêa da Silva de Deus

    2016-06-01

    Full Text Available ABSTRACT: New techniques in tropical regions such as use of transparent plastic covering (TPC, have been employed in grapes to avoid the wetting leaves and fruits, which can reduce the occurrence of fungal diseases, reduce the use of sprays, and reduce damage caused by hail and high winds. TPC may significantly affect the photosynthetic rates of grapevines cultivated in tropical regions, and thus have strong effects on plant productivity and improve fruit quality. However, in the North of Rio de Janeiro region there are lacks of studies related to TPC effects on photosynthetic capacity. The objective of this study was to evaluate the photosynthetic capacity in 'Niagara Rosada' vines grown under TPC and without transparent plastic covering (WTPC. The experiment was conducted between April and June 2013, on Tabuinha farm, located in the 3rd district of São Fidélis, Rio de Janeiro State, Brazil. A completely randomized block design was used with two treatments (TPC and WTPC and twelve replications. Evaluations consisted of climatological variables, gas exchange and maximum quantum efficiency of open photosystem II centers-quantum yield (Fv/Fm It was possible to observe that under TPC maximum temperature increase of 2.3°C, relative humidity reduced 1.5%, vapor pressure deficit increase 0.4kPa, and light intensity reduced 47.7%. These changes did not cause photochemical damage to the leaves. The TPC promoted higher net photosynthetic rate at 800h, which was associated with higher stomatal conductance. Thus, the TPC used in the northern region of Rio de Janeiro State did not impair the photosynthetic capacity of 'Niagara Rosada' vines.

  17. Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

    OpenAIRE

    Kang, In Jeong; Kang, Mi-Hyung; Noh, Tae-Hwan; Shim, Hyeong Kwon; Shin, Dong Bum; Heu, Suggi

    2016-01-01

    Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the 63°C as an opti...

  18. The effect of temperature on the photosynthesis and 14C-photosynthetic products transportation and distribution in cucumber

    International Nuclear Information System (INIS)

    Shi Yuelin; Sun Yiezhi; Xu Guimin; Cai Qiyun

    1991-01-01

    The optimum temperature of photosynthesis tended to become higher following the growth of cucumber. The optimum temperature was 30 deg C at the early growth stage and 35 deg C at the late growth stage. Stomatal resistance decreased and transpiration rate increased with increasing of the temperature. Most of the 14 C-photosynthetic products in leaves were transported out at 30 deg C during the day. After one night, more photosynthetic products were transported out under higher temperature. From the early to the middle growth stage, most of the 14 C-photosynthetic products were transported to fruits at 30 deg C. But caulis, leaves and apical point obtained most of the photosynthetic products at 35 deg C. At the late growth stage, most of the 14 C-photosynthetic products were transported to fruits at 35 deg c. At 25 deg C, caulis and leaves got more 14 C-photosynthetic products

  19. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. I

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The distribution of photosynthetates, originating in leaves of different parts of the shoot of Vitis vinifera L. cv Cabernet Sauvignon at berry set, pea size, veraison and ripeness stages, was investigated. Specific photosynthetic activity of the 14 CO 2 -treated leaves gradually decreased during the season. Photosynthetates were hoarded in the leaves at berry set, but were increasingly diverted to the bunches after that. The apical leaves displayed the highest photosynthesis. The leaves opposite and below the bunches accumulated very little photosynthetates, especially from veraison to ripeness. Redistribution of photosynthetates among the basal, middle and apical leaves was generally very restricted at all stages. Multidirectional distribution from the site of application of 14 CO 2 occurred at berry set stage, while from pea size to ripeness photosynthetates were mainly translocated basipetally. Highest accumulation in the bunches occurred at veraison, while the basal leaves were primarily used to nourish the bunch

  20. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    NARCIS (Netherlands)

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light.

  1. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  2. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  3. Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis

    KAUST Repository

    Jin, Peng; Duarte, Carlos M.; Agusti, Susana

    2017-01-01

    artificial lamps. We found that marine photosynthetic organisms tend to be more sensitive than freshwater photosynthetic organisms to UVB radiation; responses to either decreased or increased UVB radiation vary among taxa; the mortality rate is the most

  4. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    Science.gov (United States)

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Species-specific roles of sulfolipid metabolism in acclimation of photosynthetic microbes to sulfur-starvation stress.

    Directory of Open Access Journals (Sweden)

    Norihiro Sato

    Full Text Available Photosynthetic organisms utilize sulfate for the synthesis of sulfur-compounds including proteins and a sulfolipid, sulfoquinovosyl diacylglycerol. Upon ambient deficiency in sulfate, cells of a green alga, Chlamydomonas reinhardtii, degrade the chloroplast membrane sulfolipid to ensure an intracellular-sulfur source for necessary protein synthesis. Here, the effects of sulfate-starvation on the sulfolipid stability were investigated in another green alga, Chlorella kessleri, and two cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. The results showed that sulfolipid degradation was induced only in C. kessleri, raising the possibility that this degradation ability was obtained not by cyanobacteria, but by eukaryotic algae during the evolution of photosynthetic organisms. Meanwhile, Synechococcus disruptants concerning sqdB and sqdX genes, which are involved in successive reactions in the sulfolipid synthesis pathway, were respectively characterized in cellular response to sulfate-starvation. Phycobilisome degradation intrinsic to Synechococcus, but not to Synechocystis, and cell growth under sulfate-starved conditions were repressed in the sqdB and sqdX disruptants, respectively, relative to in the wild type. Their distinct phenotypes, despite the common loss of the sulfolipid, inferred specific roles of sqdB and sqdX. This study demonstrated that sulfolipid metabolism might have been developed to enable species- or cyanobacterial-strain dependent processes for acclimation to sulfate-starvation.

  6. Difference in photosynthetic performance among three peach ...

    African Journals Online (AJOL)

    The effects of low photosynthetic photon flux density (PPFD) on greenhouse grown peach trees ('Qingfeng': Prunus persica L. Batsch, 'NJN76': Prunus persica L. Batsch and 'Maixiang': P. persica var. nectarine) were investigated. Difference in photosynthesis rate (Pn) and stoma morphology among cultivars were studied.

  7. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2.

    Science.gov (United States)

    Kiyota, Hiroshi; Okuda, Yukiko; Ito, Michiho; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-09-20

    Isoprenoids, major secondary metabolites in many organisms, are utilized in various applications. We constructed a model photosynthetic production system for limonene, a volatile isoprenoid, using a unicellular cyanobacterium that expresses the plant limonene synthase. This system produces limonene photosynthetically at a nearly constant rate and that can be efficiently recovered using a gas-stripping method. This production does not affect the growth of the cyanobacteria and is markedly enhanced by overexpression of three enzymes in the intrinsic pathway to provide the precursor of limonene, geranyl pyrophosphate. The photosynthetic production of limonene in our system is more or less sustained from the linear to stationary phase of cyanobacterial growth for up to 1 month. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Are grazer-induced adaptations of bacterial abundance and morphology timedependent?

    Directory of Open Access Journals (Sweden)

    Gianluca CORNO

    2006-02-01

    Full Text Available Predation by protists is a well known force that shapes bacterial communities and can lead to filamentous forms and aggregations of large cell clusters. These classic resistance strategies were observed as a direct consequence of predation by heteroand mixotrophic flagellates (the main group of bacteria predators in water on natural assemblages of bacteria and on single plastic strains. Recently it was shown that a long time exposure (about 30 days of a bacterial strain, characterized by high degree of phenotypic plasticity, to flagellates, without direct predation, enhanced the formation of resistant forms (filaments in a continuous culture system. Target prey populations and predators were separated by a dialysis membrane. Moreover, the positive impact on bacterial growth, due to the chemical excretes released by flagellates was demonstrated for exudates of photosynthetic activity. The same positive impact may also be seen in response to exudates related to grazing. In this study, two short-term experiments (<100 hours were conducted to test for modifications in the morphology and productivity of three different bacterial strains that were induced by the presence of active predators, but without direct predation. The growth and morphological distribution of each of the selected strains was tested separately using batch cultures. Cultures were either enriched with carbon in the presence or absence of flagellate predators, or included pre-filtered exudates from flagellate activity. In a second experiment, bottles were provided with a central dialysis bag that contained active flagellates, and were inoculated with the selected bacterial strains. In this way, bacteria were exposed to the presence of predators without direct predation. The bacterial strains used in this experience were characterised by a high degree of phenotypic plasticity and exhibited different successful strategies of resistance against grazing. The flagellates selected as

  9. Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan

    Science.gov (United States)

    Aikawa, Shimpei; Hattori, Hiroshi; Gomi, Yasushi; Watanabe, Kentaro; Kudoh, Sakae; Kashino, Yasuhiro; Satoh, Kazuhiko

    Ice algae are the major primary producers in seasonally ice-covered oceans during the cold season. Diurnal change in solar radiation is inevitable for ice algae, even beneath seasonal sea ice in lower-latitude regions. In this work, we focused on the photosynthetic response of ice algae under diurnally changing irradiance in Saroma-ko Lagoon, Japan. Photosynthetic properties were assessed by pulse-amplitude modulation (PAM) fluorometry. The species composition remained almost the same throughout the investigation. The maximum electron transport rate ( rETRmax), which indicates the capacity of photosynthetic electron transport, increased from sunrise until around noon and decreased toward sunset, with no sign of the afternoon depression commonly observed in other photosynthetic organisms. The level of non-photochemical quenching, which indicates photoprotection activity by dissipating excess light energy via thermal processes, changed with diurnal variations in irradiance. The pigment composition appeared constant, except for xanthophyll cycle pigments, which changed irrespective of irradiance. These results indicate that ice algae tune their photosynthetic system harmonically to achieve efficient photosynthesis under diurnally changing irradiance, while avoiding damage to photosystems. This regulation system may be essential for productive photosynthesis in ice algae.

  10. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  11. Diazotrophic Bacterial Community of Degraded Pastures

    Directory of Open Access Journals (Sweden)

    João Tiago Correia Oliveira

    2017-01-01

    Full Text Available Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN of bacteria per gram of sample, in order to determine population density and calculate the Shannon-Weaver diversity index. The diversity of total diazotrophic bacterial community was determined by the technique of Denaturing Gradient Gel Electrophoresis (DGGE of the nifH gene, while the diversity of the culturable diazotrophic bacteria was determined by the Polymerase Chain Reaction (BOX-PCR technique. The increase in the degradation stage of the B. decumbens Stapf. pasture did not reduce the population density of the cultivated diazotrophic bacterial community, suggesting that the degradation at any degree of severity was highly harmful to the bacteria. The structure of the total diazotrophic bacterial community associated with B. decumbens Stapf. was altered by the pasture degradation stage, suggesting a high adaptive capacity of the bacteria to altered environments.

  12. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    Science.gov (United States)

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  13. Effect of Temperature and light intensity on growth and Photosynthetic Activity of Chlamydomonas reinhard II

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Fernandez Gonzalez, J.

    1985-01-01

    The effect of five temperatures (15,20,25,30 and 35 degree centigree) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhard II has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of C0 2 labelled with C-14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 degree centigree for the lower level of illumination (2400 lux) and at 35 degree centigree for the higher one (13200 lux) and at 35 degree centigree for the higher ono (13200 lux). These results suggest an interaction of temperature and illumination on photosynthetic activity. (Author) 37 refs

  14. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Picture series of surface chlorophyll,. SST, wind ... photosynthetic pigments during the time of inten- sification of ... calculation of Ekman pumping (We) using finite- differencing to ..... Legeckis R 1986 A satellite time series sea surface tempera-.

  15. Photosynthetic Rates of Citronella and Lemongrass 1

    Science.gov (United States)

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  16. [Effects of low-light stress on photosynthetic characteristics of Paris polyphylla var. chinensis in artificial domestication cultivation].

    Science.gov (United States)

    Zheng, Shun-lin; Tian, Meng-liang; Liu, Jin-liang; Zhao, Ting-ting; Zhang, Zhong

    2014-09-01

    To decide on the optimum artificial domestication cultivation light environment for Paris polyphylla var. chinensis through investigating the effect of light intensity on leaf's gas exchange parameters, photosynthetic parameters, light saturation point and compensation point of Paris polyphylla var. chinensis. Different low-light stress gradients' effect on the growth of Paris polyphylla var. chinensis was compared with no low-light stress treatment through calculating leaf's gas exchange parameters, photosynthetic parameters, light saturation point and compensation point, and then all these parameters were statistically analyzed. Light intensity had significant influence on the photosynthetic characteristics of Paris polyphylla var. chinensis. With the strengthening of the low-light stress, chlorophyll content, gas exchange parameters, photosynthetic parameters P., AQY and light saturation point all gradually increased at first, and then decreased. However, both photosynthetic parameters Rd and light compensation point firstly decreased and then rose again. These results showed that too strong or too weak light intensity affected the optimization of photosynthetic parameters of Paris polyphylla var. chinensis. The optimal illuminance for each parameter was not completely same, but they could all reach a relative ideal state when the shading ranges between 40% and 60%. However, photosynthetic parameters deteriorated rapidly when the shading surpass 80%. For artificially cultivating Paris polyphylla var. chinensis in Baoxing,Sichuan or the similar ecological region, shading 40%-60% is the optimal light environment, which can enhance the photosynthesis of Paris polyphylla var. chinensis and promote the accumulation of photosynthetic products.

  17. Managing the Microbial Ecology of a Cyanobacteria-Based Photosynthetic Factory Direct!, Final Report for EE0006100

    Energy Technology Data Exchange (ETDEWEB)

    Rittmann, Bruce [Arizona State Univ., Tempe, AZ (United States); Krajmalnik‐Brown, Rosa [Arizona State Univ., Tempe, AZ (United States); Zevin, Alexander [Arizona State Univ., Tempe, AZ (United States); Nguyen, Binh [Arizona State Univ., Tempe, AZ (United States); Patel, Megha [Arizona State Univ., Tempe, AZ (United States)

    2015-02-28

    The grandest challenge facing human society today is providing large amounts of energy and industrial chemicals that are renewable and carbon-neutral. An outstanding opportunity lies in employing photosynthetic microorganisms, which have the potential to generate energy and chemical feedstock from sunlight and CO2 at rates 10 to 100 times greater than plants. Major challenges for solar-powered production using photosynthetic microorganisms are associated with the harvesting and downstream processing of biomass to yield the usable energy or material feedstock e.g. The technical challenges and costs of downstream processing could be avoided if, powered by solar energy, the photosynthetic microorganisms were to convert CO2 directly to the desired product, which they release for direct harvesting. This approach creates a true photosynthetic factory, our goal for Photosynthetic Factory Direct! Our team is able to genetically modify the cyanobacterium Synechocystis sp. PCC 6803 so that it produces and excretes a range of renewable energy and chemical products directly from CO2 and sunlight. Essential to realizing the potential of the photosynthetic factory is an engineered Advanced Photobioreactor (APBR) for reliable synthesis and harvest of the products.

  18. A Study on Photosynthetic Physiological Characteristics of Six Rare and Endangered Species

    Institute of Scientific and Technical Information of China (English)

    Tailin ZHONG; Guangwu ZHAO; Jiamiao CHU; Xiaomin GUO; Genyou LI

    2014-01-01

    The parameters of gas exchange and chlorophyl fluorescence in leaves of six rare and endangered species Neolitsea sericea, Cinnamomum japonicum var. cheni , Sinojackia microcarpa, Discocleidion glabrum var. trichocarpum, Parrotia sub-aequalis, Cercidiphyl um japonicum were measured in fields. The results showed that there were significant differences in photosynthetic capacity, intrinsic water use effi-ciency (WUEi ), the efficiency of primary conversion of light energy of PSⅡ and its potential activity, the quantum yield of PSⅡ electron transport, and the potential ca-pacity of heat dissipation among the six species. However, there was no significant difference in WUE. The highest values of net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (gs) occurred in D. glabrum var. trichocarpum and the lowest in S. microcarpa. On the contrary, D. glabrum var. trichocarpum had the lowest WUE, intrinsic water use efficiency (WUEi ) and S. microcarpa had the highest. The results indicated that D. glabrum var. trichocarpum had higher photo-synthetic capacity and poorer WUE, while S. microcarpa had lower photosynthetic capacity and greater WUE. Furthermore, the mean values of maximal fluorescence (Fm), potential efficiency of primary conversion of light energy of PSⅡ (Fv/Fm),ΦPSⅡ, actual efficiency of primary conversion of light energy of PSⅡ (F′v/F′m) and non-photochemical quenching coefficient (NPQ) were the highest in S. micro-carpa, indicating that its PSⅡ had higher capacity of heat dissipation and could prevent photosynthetic apparatus from damage by excessive light energy. Correlation analysis showed that there were significant correlations among photosynthetic physi-ological parameters. However, the initial fluorescence (Fo) was not significantly cor-related with any other parameters. This study also revealed the extremely significant positive correlations between Pn and Tr, gs, apparent quantum yield (AQY), be-tween Tr and

  19. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Nicolás, Emilio; Fernández, José Enrique

    2007-08-01

    This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (g(m)) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and g(m) was curvilinear. Leaf temperature also affected to g(m) with an optimum temperature at 29 degrees C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic

  20. Differential sensitivity of light-harnessing photosynthetic events in wheat and sunflower to exogenously applied ionic and nanoparticulate silver.

    Science.gov (United States)

    Pardha-Saradhi, P; Shabnam, Nisha; Sharmila, P; Ganguli, Ashok K; Kim, Hyunook

    2018-03-01

    Potential impacts of inevitable leaks of silver nanoparticles (AgNPs) into environment on human beings need attention. Owing to the vitality of photosynthesis in maintaining life and ecosystem functioning, impacts of exogenously applied nanoparticulate and Ag + on photosystem (PS)II function, which governs overall photosynthesis, in wheat and sunflower were evaluated. PSII efficiency and related Chl a fluorescence kinetics of these two plants remained unaffected by AgNPs. However, Ag + caused a significant decline in the PSII activity and related fluorescence steps in wheat, but not in sunflower. Electron flow between Q A and PQ pool was found most sensitive to Ag + . Number of active reaction centers, electron transport, trapping of absorbed light for photochemistry, and performance index declined, while dissipation of absorbed light energy as heat significantly increased in wheat exposed to Ag + . Total antioxidant activity in sunflower was least affected by both Ag and AgNPs. In contrast, in the case of wheat, the antioxidant activity was declined by Ag + but not by AgNPs. Further, the amount of silver absorbed by plants exposed to Ag + was higher than that absorbed by plants exposed to AgNPs. While wheat retained majority of Ag in its roots, sunflower showed major Ag accumulation in stem. Photosynthetic events in sunflower, unlike wheat, were least affected as no detectable Ag levels was recorded in their leaves. Our findings revealed that AgNPs seemed non/less-toxic to light harnessing photosynthetic machinery of wheat, compared to Ag + . Photosynthetic events in sunflower were not affected by Ag + , either, as its translocation to leaves was restricted. Copyright © 2017. Published by Elsevier Ltd.

  1. Viral-bacterial associations in acute apical abscesses.

    Science.gov (United States)

    Ferreira, Dennis C; Rôças, Isabela N; Paiva, Simone S M; Carmo, Flávia L; Cavalcante, Fernanda S; Rosado, Alexandre S; Santos, Kátia R N; Siqueira, José F

    2011-08-01

    Viral-bacterial and bacterial synergism have been suggested to contribute to the pathogenesis of several human diseases. This study sought to investigate the possible associations between 9 candidate endodontic bacterial pathogens and 9 human viruses in samples from acute apical abscesses. DNA extracts from purulent exudate aspirates of 33 cases of acute apical abscess were surveyed for the presence of 9 selected bacterial species using a 16S ribosomal RNA gene-based nested polymerase chain reaction (PCR) approach. Single or nested PCR assays were used for detection of the human papillomavirus (HPV) and herpesviruses types 1 to 8. Two-thirds of the abscess samples were positive for at least one of the target viruses. Specifically, the most frequently detected viruses were HHV-8 (54.5%); HPV (9%); and varicella zoster virus (VZV), Epstein-Barr virus (EBV), and HHV-6 (6%). Bacterial DNA was present in all cases and the most prevalent bacterial species were Treponema denticola (70%), Tannerella forsythia (67%), Porphyromonas endodontalis (67%), Dialister invisus (61%), and Dialister pneumosintes (57.5%). HHV-8 was positively associated with 7 of the target bacterial species and HPV with 4, but all these associations were weak. Several bacterial pairs showed a moderate positive association. Viral coinfection was found in 6 abscess cases, but no significant viral association could be determined. Findings demonstrated that bacterial and viral DNA occurred concomitantly in two-thirds of the samples from endodontic abscesses. Although this may suggest a role for viruses in the etiology of apical abscesses, the possibility also exists that the presence of viruses in abscess samples is merely a consequence of the bacterially induced disease process. Further studies are necessary to clarify the role of these viral-bacterial interactions, if any, in the pathogenesis of acute apical abscesses. Copyright © 2011 Mosby, Inc. All rights reserved.

  2. Molecular Characterization and Potential of Bacterial Species ...

    African Journals Online (AJOL)

    The 16S rRNA gene of total bacteria community and bacterial isolates were amplified by Polymerase Chain Reaction (PCR) using 16S rRNA primers. Total microbial community DNA amplicons were spliced into the PCR-TRAP Cloning Vector, used to transform competent cells of Escherichia coli and sequenced.

  3. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert.

    Science.gov (United States)

    Kemp, Paul R; Gardetto, Pietra E

    1982-11-01

    Diurnal patterns of CO 2 exchange and titratable acidity were monitored in six species of evergreen rosette plants growing in controlled environment chambers and under outdoor environmental conditions. These patterns indicated that two of the species, Yucca baccata and Y. torreyi, were constituitive CAM plants while the other species, Y. elata, Y. campestris, Nolina microcarpa and Dasylirion wheeleri, were C 3 plants. The C 3 species did not exhibit CAM when grown in any of several different temperature, photoperiod, and moisture regimes. Both photosynthetic pathway types appear adapted to desert environments and all species show environmentally induced changes in their photosynthetic responses consistent with desert adaptation. The results of this study do not indicate that changes in the photosynthetic pathway type are an adaptation in any of these species.

  4. Bacterial fatty acid metabolism in modern antibiotic discovery.

    Science.gov (United States)

    Yao, Jiangwei; Rock, Charles O

    2017-11-01

    Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Photoperiodic controls on ecosystem-level photosynthetic capacity

    Science.gov (United States)

    Stoy, P. C.; Trowbridge, A. M.; Bauerle, W.

    2012-12-01

    Most models of photosynthesis at the leaf or canopy level assume that temperature is the dominant control on the variability of photosynthetic parameters. Recent studies, however, have found that photoperiod is a better descriptor of the seasonal variability of photosynthetic function at the leaf and plant scale, and that spectral indices of leaf functionality are poor descriptors of this seasonality. We explored the variability of photosynthesic parameters at the ecosystem scale using over 100 site-years of air temperature and gross primary productivity (GPP) data from non-tropical forested sites in the Free/Fair Use LaThuille FLUXNET database (www.fluxdata.org), excluding sites that were classified as dry and/or with savanna vegetation, where we expected GPP to be driven by moisture availability. Both GPP and GPP normalized by daily photosynthetic photon flux density (GPPn) were considered, and photoperiod was calculated from eddy covariance tower coordinates. We performed a Granger causality analysis, a method based on the understanding that causes precede effects, on both the GPP and GPPn. Photoperiod Granger-caused GPP (GPPn) in 95% (87%) of all site-years. While temperature Granger-caused GPP in a mere 23% of site years, it Granger-caused GPPn 73% of the time. Both temperature values are significantly less than the percent of cases in which day length Granger-caused GPP (p<0.05, Student's t-test). An inverse analysis was performed for completeness, and it was found that GPP Granger-caused photoperiod (temperature) in 39% (78%) of all site years. Results demonstrate that incorporating simple photoperiod controls may be a logical step in improving ecosystem and global model output.

  6. DAILY BUDGETS OF PHOTOSYNTHETICALLY FIXED CARBON IN SYMBIOTIC ZOANTHIDS.

    Science.gov (United States)

    Steen, R Grant; Muscatine, L

    1984-10-01

    We tested the hypothesis that some zoanthids are able to meet a portion of their daily respiratory carbon requirement with photosynthetic carbon from symbiotic algal cells (= zooxanthellae). A daily budget was constructed for carbon (C) photosynthetically fixed by zooxanthellae of the Bermuda zoanthids Zoanthus sociatus and Palythoa variabilis. Zooxanthellae have an average net photosynthetic C fixation of 7.48 and 15.56 µgC·polyp -1 ·day -1 for Z. sociatus and P. variabilis respectively. The C-specific growth rate (µ c ) was 0.215·day -1 for Z. sociatus and 0.152·day -1 for P. variabilis. The specific growth rate (µ) of zooxanthellae in the zoanthids was measured to be 0.011 and 0.017·day -1 for Z. sociatus and P. variabilis zooxanthellae respectively. Z. sociatus zooxanthellae translocated 95.1% of the C assimilated in photosynthesis, while P. variabilis zooxanthellae translocated 88.8% of their fixed C. As the animal tissue of a polyp of Z. sociatus required 14.75 µgC·day -1 for respiration, and one of P. variabiis required 105.54 µgC·day -1 , the contribution of zooxanthellae to animal respiration (CZAR) was 48.2% for Z. sociatus and 13.1% for P. variabilis.

  7. Photosynthetic pathways of some aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Hough, R A [Wayne State Univ., Detroit; Wetzel, R G

    1977-12-01

    Over 40 species of aquatic angiosperms, including submersed, floating and emergent types, have been examined for photosynthetic status as part of a search for possible aquatic C/sub 4/ species. The C/sub 4/ system is viewed as potentially of adaptive value in certain aquatic situations, although evidence for its occurrence there is not conclusive. Emphasis was on plants from North-temperate softwater and hardwater lakes to explore both possibilities of CO/sub 2/ limitation, i.e., low total inorganic carbon in softwater vs. low free CO/sub 2/ in hardwater lakes. On the basis of leaf cross-section anatomy, all plants examined, with one exception, clearly did not show evidence of C/sub 4/ ''Krantz anatomy.'' In the submersed plant Potamogeton praelongus Wulf, large starch-producing chloroplasts were concentrated in cells surrounding vascular bundles and in a narrow band of cells between vascular bundles. The in situ photosynthetic rate of this plant was twice that of a related species, but other evidence including PEP carboxylase content and photorespiratory response to high O/sub 2/ did not confirm the presence of the C/sub 4/ photosynthesis.

  8. A Survey into Taxonomic and Physiological Differences of Symbiodinium sp., the Photosynthetic Symbiont of Reef-building Corals

    KAUST Repository

    Gong, Xianzhe

    2012-11-01

    The dinoflagellate genus Symbiodinium is a popular research topic in the coral reef molecular biology field. Primarily because these organisms serve as the coral holobiont’s primary source of energy, carrying out photosynthesis, and providing hydrocarbons to the coral host. Previous studies have shown the difficulty of isolating Symbiodinium as well as the inherent problems in trying to quantify the diversity of this genus and to qualify the distinct reactions of different Symbiodinium sp. to changing environmental conditions. The main goals of this study are: (1) to detail the relationship between the genetic classification of the organism and its physiology in regard to photosynthesis with a number of established Symbiodinium cultures; and (2) to isolate Symbiodinium from coral of the central Red Sea. To evaluate the photosynthetic physiology of Symbiodinium, a microsensor was used to measure oxygen concentrations along with a phytoplankton analyzer system that used pulse-amplitude-modulation (Phyto-PAM) to measure fluorescence. In order to identify the particular clade that the isolates belonged to, denaturing gradient gel electrophoresis (PCR-DGGE) was used to identify Symbiodinium based on their internal transcribed spacer 2 (ITS2) region. These techniques helped us to achieve our goals in the following ways: Symbiodinium sp. from a culture collection were classified to the subclade level; species-specific and clade-specific photosynthetic profiles were generated; and a Symbiodinium sp. was isolated from the central Red Sea. This study provided preliminary correlation between the photosynthetic difference and Symbiodinium genetic classification; showed the probable existence of a self-protection system inside the Symbiodinium cells by comparing the difference between the initial oxygen production at the beginning of each light step and the oxygen production after light adaptation; and confirmed the possibility of the isolation of Symbiodinium.

  9. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic

  10. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A structural basis for electron transfer in bacterial photosynthesis

    International Nuclear Information System (INIS)

    Norris, J.R.; DiMagno, T.J.; Angerhofer, A.; Chang, C.H.; El-Kabbani, O.; Schiffer, M.

    1989-01-01

    Triplet data for the primary donor in single crystals of bacterial reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis are interpreted in terms of the corresponding x-ray structures. The analysis of electron paramagnetic resonance data from single crystals (triplet zero field splitting and cation and triplet linewidth of the primary special pair donor of bacterial reaction centers) is extended to systems of a non-crystalline nature. A unified interpretation based on frontier molecular orbitals concludes that the special pair behaves like a supermolecule in all wild-type bacteria investigated here. However, in heterodimers of Rb. capsulatus (His M200 changed to Leu or Phe with the result that the M-half of the special pair is converted to bacteriopheophytin) the special pair possesses the EPR properties more appropriately described in terms of a monomer. In all cases the triplet state and cation EPR properties appear to be dominated by the highest occupied molecular orbitals. These conclusions derived from EPR experiments are supplemented by data from Stark spectroscopy of reaction centers from Rb. capsulatus. 41 refs., 3 tabs

  12. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. II

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The effect of partial defoliation of Vitis vinifera L. cv Cabernet Sauvignon on the distribution of photosynthetates, originating in leaves in different positions on the shoot at berry set, pea size, veraison and ripeness stages, was investigated. Partial defoliation (33% and 66%) resulted in a higher apparent photosynthetic effectivity for all the remaining leaves on the shoot. The pattern of distribution of photosynthetates would seem to stay the same between the defoliation treatments. The control vines were found to carry excess foliage. Optimal photosynthetic activity of all the leaves on the vine was therefore not reached

  13. Photosynthetic Responses of Seedlings of two Indigenous Plants ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia, Munessa-Shashemene forest, by examining photosynthetic responses of Bersamaabyssinica Fres. and Croton macrostachyusDel. seedlings naturally grown inside ...

  14. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, David [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Geoffroy, Laure [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Vernet, Guy [Laboratoire d' Eco-Toxicologie, Unite de recherche ' Vignes et Vins de Champagne' , UPRES-EA 2069, Universite de Reims Champagne-Ardenne BP 1039, F51687 REIMS CEDEX 2 (France); Popovic, Radovan [Departement de Chimie et de Biochimie, Centre TOXEN, Universite du Quebec a Montreal, CP 8888, Succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada)]. E-mail: popovic.radovan@uqam.ca

    2005-08-30

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l{sup -1}). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q {sub N} as non-photochemical fluorescence quenching, Q {sub Emax} as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies.

  15. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Dewez, David; Geoffroy, Laure; Vernet, Guy; Popovic, Radovan

    2005-01-01

    Modulated PAM fluorometry and Plant Efficiency Analyser methods were used to investigate photosynthetic fluorescence parameters of alga Scenedesmus obliquus exposed to inhibitory effect of fungicides copper sulphate and fludioxonil (N-(4-nitrophenyl)-N'-propyl-uree). The change of those parameters were studied when alga S. obliquus have been exposed during 48 h to different concentrations of fungicides (1, 2 and 3 mg l -1 ). Under the same condition, enzymatic activities of catalase, ascorbate peroxidase, glutathione reductase and glutathione S-transferase were investigated to evaluate antioxidative response to fungicides effects. The change of sensitivity of those parameters was dependent to the mode of fungicide action, their concentration and time of exposure. For copper effects, the most indicative photosynthetic biomarkers were parameters Q N as non-photochemical fluorescence quenching, Q Emax as the proton induced fluorescence quenching and ABS/RC as the antenna size per photosystem II reaction center. Copper induced oxidative stress was indicated by increased activity of catalase serving as the most sensitive and valuable enzymatic biomarker. On the other hand, fludioxonil effect on photosynthetic parameters was very negligible and consequently not very useful as biomarkers. However, fludioxonil induced strong antioxidative activities associated with cytosol enzymes, as we found for catalase, ascorbate peroxidase and glutathione S-transferase activities. By obtained results, we may suggest for the activation of those enzymes to be sensitive and valuable biomarkers of oxidative stress induced by fludioxonil. Determination of biomarkers sensitivity may offer advantages in providing real criteria to use them for ecotoxicological diagnostic studies

  16. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  18. Dynamics of photosynthetic activity of cyanobacteria after gut ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... carp and goldfish, whereas there was a significant stimulation of photosynthetic activity of diatom and green algae following the depressed cyanobacteria during cultivation. The mainly stimulated eukaryotic algae species were Fragilariaceae and Scenedesmus obliquus by microscopy.

  19. Counting viruses and bacteria in photosynthetic microbial mats

    NARCIS (Netherlands)

    Carreira, C; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures

  20. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  1. Geometric phase and quantum interference in photosynthetic reaction center: Regulation of electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuming, E-mail: ymsun@ytu.edu.cn; Su, Yuehua; Dai, Zhenhong; Wang, WeiTian

    2016-10-20

    Photosynthesis is driven by electron transfer in reaction centers in which the functional unit is composed of several simple molecules C{sub 2}-symmetrically arranged into two branches. In view of quantum mechanism, both branches are possible pathways traversed by the transferred electron. Due to different evolution of spin state along two pathways in transmembrane electric potential (TEP), quantum state of the transferred electron at the bridged site acquires a geometric phase difference dependent on TEP, the most efficient electron transport takes place in a specific range of TEP beyond which electron transfer is dramatically suppressed. What’s more, reaction center acts like elaborately designed quantum device preparing polarized spin dependent on TEP for the transferred electron to regulate the reduction potential at bridged site. In brief, electron transfer generates the TEP, reversely, TEP modulates the efficiency of electron transfer. This may be an important approach to maintaining an appreciable pH environment in photosynthesis.

  2. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  3. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Science.gov (United States)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  4. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  5. Influence of thermal light correlations on photosynthetic structures

    Science.gov (United States)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  6. Desulfovibrio bacterial species are increased in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    BACKGROUND: Debate persists regarding the role of Desulfovibrio subspecies in ulcerative colitis. Combined microscopic and molecular techniques enable this issue to be investigated by allowing precise enumeration of specific bacterial species within the colonic mucous gel. The aim of this study was to combine laser capture microdissection and quantitative polymerase chain reaction to determine Desulfovibrio copy number in crypt-associated mucous gel in health and in acute and chronic ulcerative colitis. METHODS: Colonic mucosal biopsies were harvested from healthy controls (n = 19) and patients with acute (n = 10) or chronic (n = 10) ulcerative colitis. Crypt-associated mucous gel was obtained by laser capture microdissection throughout the colon. Pan-bacterial 16S rRNA and Desulfovibrio copy number\\/mm were obtained by polymerase chain reaction at each locus. Bacterial copy numbers were interrogated for correlation with location and disease activity. Data were evaluated using a combination of ordinary linear methods and linear mixed-effects models to cater for multiple interactions. RESULTS: Desulfovibrio positivity was significantly increased in acute and chronic ulcerative colitis at multiple levels within the colon, and after normalization with total bacterial signal, the relative Desulfovibrio load was increased in acute colitis compared with controls. Desulfovibrio counts did not significantly correlate with age, disease duration, or disease activity but interlevel correlations were found in adjacent colonic segments in the healthy control and chronic ulcerative colitis groups. CONCLUSION: The presence of Desulfovibrio subspecies is increased in ulcerative colitis and the data presented suggest that these bacteria represent an increased percentage of the colonic microbiome in acute ulcerative colitis.

  7. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  8. Vaginal toxic shock reaction triggering desquamative inflammatory vaginitis.

    Science.gov (United States)

    Pereira, Nigel; Edlind, Thomas D; Schlievert, Patrick M; Nyirjesy, Paul

    2013-01-01

    The study aimed to report 2 cases of desquamative inflammatory vaginitis associated with toxic shock syndrome toxin 1 (TSST-1)-producing Staphylococcus aureus strains. Case report of 2 patients, 1 with an acute and 1 with a chronic presentation, diagnosed with desquamative inflammatory vaginitis on the basis of clinical findings and wet mount microscopy. Pretreatment and posttreatment vaginal bacterial and yeast cultures were obtained. Pretreatment vaginal bacterial cultures from both patients grew TSST-1-producing S. aureus. Subsequent vaginal bacterial culture results after oral antibiotic therapy were negative. Desquamative inflammatory vaginitis may be triggered through TSST-1-mediated vaginal toxic shock reaction.

  9. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    Directory of Open Access Journals (Sweden)

    Giuseppina Rea

    2011-01-01

    Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues

  11. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  12. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  13. Non-destructive determination of photosynthetic rates of eight varieties of cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Amadu, A. A.

    2015-07-01

    Cassava is an important food security crop in Ghana and in the wake of climate change there is the need for plant breeders to develop varieties with high water use efficiency as well as high photosynthetic rate in order to adapt to the changing climate. Thus, the photosynthetic rates of eight cassava (Manihot esculenta Crantz) varieties were non-destructively evaluated using photosynthesis meter miniPPM300, from June 2014 to May 2015, with the aim of selecting varieties with high photosynthetic rate for future breeding programmes. The mean photosynthetic rate varied depending on the varieties ranging from 40.5 μmol/m 2 s in Bosom nsia to 45.2 μmol/m 2 s in Gbenze. However, the presence of African cassava mosaic disease (ACMD) marginally reduced the photosynthetic rate to below 40 μmol/m 2 s in all the varieties. Similarly, the chlorophyll content index (CCI) as measured by chlorophyll meter and spectrophotometer also varied from one variety to another; it was low in Nandom (17.9 CCI) and high in Gbenze (39.93 CCI) using the chlorophyll meter and was also reduced by the presence of the virus. Although, the stomatal density varied between the varieties it was not influenced by virus infection. Furthermore, ACMD significantly decreased the leaf surface area from 5705.8mm 2 in uninfected plants to 1251.6mm 2 in infected plants, consequently reducing the number and weight of tubers produced 11 month after planting (MAP). Molecular Testing of the viruses using virus specific primers JSP001/JSP002, EAB555F/EAB555R, EACMV1e/EACMV2e at 6 MAP and 11MAP, showed that the mosaic symptoms were caused by African Cassava Mosaic virus disease. Cassava varieties with high photosynthetic efficiency and low virus infection can be used in cassava improvement programmes in Ghana. (au)

  14. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2000-06-01

    Full Text Available Flow cytometry is rapidly becoming a routine methodology in aquatic microbial ecology. The combination of simple to use bench-top flow cytometers and highly fluorescent nucleic acid stains allows fast and easy determination of microbe abundance in the plankton of lakes and oceans. The different dyes and protocols used to stain and count planktonic bacteria as well as the equipment in use are reviewed, with special attention to some of the problems encountered in daily routine practice such as fixation, staining and absolute counting. One of the main advantages of flow cytometry over epifluorescence microscopy is the ability to obtain cell-specific measurements in large numbers of cells with limited effort. We discuss how this characteristic has been used for differentiating photosynthetic from non-photosynthetic prokaryotes, for measuring bacterial cell size and nucleic acid content, and for estimating the relative activity and physiological state of each cell. We also describe how some of the flow cytometrically obtained data can be used to characterize the role of microbes on carbon cycling in the aquatic environment and we prospect the likely avenues of progress in the study of planktonic prokaryotes through the use of flow cytometry.

  15. Importance of structure and density of macroalgae communities (Fucus serratus) for photosynthetic production and light utilisation

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    at high light depended on community density. Therefore, while the determination of the production of individual algal thalli is useful for evaluating differences in acclimatisation and adaptation between species and stands, it is not useful for evaluating production rates for entire plants and communities......Determination of photosynthetic production in plant communities is essential for evaluating plant growth rates and carbon fluxes in ecosystems, but it cannot easily be derived from the photosynthetic response of individual leaves or thalli, which has been the focus of virtually all previous aquatic...... studies. To evaluate the regulation of aquatic community production, we measured the photosynthetic production of thallus parts and entire communities of Fucus serratus (L.) of different density and spatial structure exposed to varying photon flux density and dissolved CO2 concentration. Photosynthetic...

  16. Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the FA, FB and FX iron-sulfur clusters in green sulfur bacteria.

    Science.gov (United States)

    Jagannathan, Bharat; Golbeck, John H

    2008-12-01

    The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. Mössbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.

  17. A maize resistance gene functions against bacterial streak disease in rice.

    Science.gov (United States)

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  18. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2).

    Science.gov (United States)

    Rutherford, A William; Osyczka, Artur; Rappaport, Fabrice

    2012-03-09

    The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  19. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil.

    Science.gov (United States)

    Xie, Zhiming; Song, Fengbin; Xu, Hongwen; Shao, Hongbo; Song, Ri

    2014-01-01

    The objectives of the study were to determine the effects of silicon on photosynthetic characteristics of maize on alluvial soil, including total chlorophyll contents, photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i ) using the method of field experiment, in which there were five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of silicon supplying. The results showed that certain doses of silicon fertilizers can be used successfully in increasing the values of total chlorophyll contents, P n, and g s and decreasing the values of E and C i of maize leaves, which meant that photosynthetic efficiency of maize was significantly increased in different growth stages by proper doses of Si application on alluvial soil, and the optimal dose of Si application was 150 kg · ha(-1). Our results indicated that silicon in proper amounts can be beneficial in increasing the photosynthetic ability of maize, which would be helpful for the grain yield and growth of maize.

  20. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    Science.gov (United States)

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  1. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3. Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. Efrain Rodriguez-Rubio Jose Stuardo. Volume 111 Issue 3 September 2002 pp 227-236 ...

  2. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products.

    Science.gov (United States)

    Delgado-Andrade, Cristina; Pastoriza de la Cueva, Silvia; Peinado, M Jesús; Rufián-Henares, José Ángel; Navarro, M Pilar; Rubio, Luis A

    2017-10-01

    Bread crust (BC) is one of the major sources of Maillard reaction products (MRPs) in the Western diet. This work was designed to analyze the impact of diets containing important levels of MRPs from BC on intestinal bacterial growth and short chain fatty acids (SCFAs) production in adult rats. Additionally, the pools of compounds excreted in feces attending to their molecular weights were analyzed. Rats were fed for 88days a control diet or diets containing BC or its soluble high molecular weight (HMW), soluble low molecular weight (LMW) or insoluble fractions, respectively. Intestinal (cecum) microbiota composition was determined by qPCR analysis. Consumption of the BC diet lowered (PMaillard reaction products are in vivo fermented by the gut microbiota, thereby changing both the pattern of SCFAs production and the microbiota composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis

    Science.gov (United States)

    Manrique, Pedro D.; Caycedo-Soler, Felipe; De Mendoza, Adriana; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil F.

    Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display a range where the organism profits maximally from the spatial correlation of the incoming light. By contrast, no maximum is found for membranes with low core-core clustering. We employ a detailed membrane model with state-of-the-art empirical inputs. Our results suggest that the organization of the membrane's antenna complexes may be well-suited to the spatial correlations present in an natural light source. Future experiments will be needed to test this prediction.

  4. Photosynthetic behaviour of Arabidopsis thaliana (Pa-1 accession ...

    African Journals Online (AJOL)

    The growth reduction observed in many plants caused by salinity is often associated with a decrease in their photosynthetic capacity. This effect could be associated with the partial stomatal closure and/or the non-stomatal limitation which involves the decrease in ribulose-1,5-bisphosphate carboxylase oxygenase ...

  5. Atomic force microscopy studies of native photosynthetic membranes.

    Science.gov (United States)

    Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A

    2009-05-05

    In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes

  6. The effect of temperature on photosynthetic induction under fluctuating light in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Öztürk, Isik; Ottosen, Carl-Otto; Ritz, Christian

    2013-01-01

    for photosynthetic induction. Gas exchange measurements were used to investigate the rate of induction and the opening of stomata. It was determined that induction equilibrium for C. morifolium at varying temperatures under dynamic light conditions was reached within 15 to 45 minutes except at saturating light...... intensity. For the same photon irradiance, the momentary state of induction equilibrated was higher approximately at 30° C and it decreased as temperature increased. The interaction effect of irradiance and temperature on induction equilibrium was not significant. The rate of photosynthetic induction...... and the time that it reached its 90% value (t90) was influenced by irradiance significantly. The light history of a leaf had a significant effect on t90, which indicated that an equilibrium state of induction will not always be reached within the same time. The effect of temperature on photosynthetic induction...

  7. Electrochemical studies of a reconstituted photosynthetic electron-transfer chain or towards a biomimetic photoproduction of hydrogen

    International Nuclear Information System (INIS)

    Fourmond, V.

    2007-04-01

    The aim of this work is to find an efficient process to convert solar energy into hydrogen. The electrons transfers in reconstituted photosynthetic chains have been particularly studied with the aims 1)in one hand, to better understand the interactions of the different molecules of the photosynthetic chain in order to optimize the changes of the entire organisms for hydrogen production 2)in another hand, to insert the hydrogenases in a photosynthetic chain and then to photo reduce them in order to obtain kinetic data to better understand how it works. (O.M.)

  8. Effect of gamma radiation on photosynthetic metabolism of Chlorella pyrenoidosa studied by 14CO2 assimilation

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five dose of gamma radiation (10, 100, 500, 1000 and 5000 Gy) on photosynthetic activity and metabolism of the primary products of photosynthesis has been studied, on Chlorella pyrenoidoBa cultures, by 14 C O 2 assimilation. The photosynthetic assimilation rate is remarkably depressed after irradiation at 500, 1000 and 5000 Gy dose, which also produce a significant change in radioactivity distribution pattern of primary compounds from photosynthesis. No significant effects have been observed on photosynthetic metabolism after irradiation at 10 and 100 Gy. (Author) 19 refs

  9. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome

    KAUST Repository

    Röthig, Till

    2016-02-03

    Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater runoff, and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration, and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae, and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulfur oxidation, and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.

  10. Applications of whole-cell bacterial sensors in biotechnology and environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Kiyohito [Osaka Univ., Suita (Japan). Graduate School of Pharmaceutical Sciences

    2007-01-15

    Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, {beta}-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry. (orig.)

  11. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    OpenAIRE

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light. A wide range of plant properties respond to the spectral composition of irradiance, such as photosynthesis, photomorphogenesis, phototropism and photonastic movements. These responses affect plant pr...

  12. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    OpenAIRE

    ROSATI, A.; DEJONG, T. M.

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  13. Effect of sodium chloride on photosynthetic 14CO2 assimilation in Portulaca oleracea Linn

    International Nuclear Information System (INIS)

    Joshi, G.V.; Karadge, B.A.

    1979-01-01

    Effect of NaCl on ion uptake, photosynthetic rate and photosynthetic products in a C 4 non-CAM succulent, P. oleracea has been investigated. NaCl causes accumulation of Na as well as Cl ions with decrease in K and Ca contents. Chlorophylls and photosynthetic 14 CO 2 fixation rates are adversely affected due to sodium chloride salinity. Plants grown in the presence of NaCl show increase in C 4 acid percentage with increase in labelling of organic acids in light. Labelling of amino acids (particularly alanine) and sugars (sucrose) is affected by NaCl. Enzyme studies reveal that PEP-carboxylase is stimulated at all concentrations of NaCl but higher concentrations affected the activity of RuBP-Carboxylase. (author)

  14. Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    In Jeong Kang

    2016-12-01

    Full Text Available Burkholderia glumae (bacterial grain rot, Xanthomonas oryzae pv. oryzae (bacterial leaf blight, and Acidovorax avenae subsp. avenae (bacterial brown stripe are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the 63°C as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

  15. Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction.

    Science.gov (United States)

    Kang, In Jeong; Kang, Mi-Hyung; Noh, Tae-Hwan; Shim, Hyeong Kwon; Shin, Dong Bum; Heu, Suggi

    2016-12-01

    Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae , and transposase A gene sequence for X. oryzae pv. oryzae , three sets of primers had been designed to produce 402 bp for B. glumae , 490 bp for X. oryzae , and 290 bp for A. avenae subsp. avenae with the 63°C as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

  16. Changes in photosynthetic performance and antioxidative strategies during maturation of Norway maple (Acer platanoides L.) leaves.

    Science.gov (United States)

    Lepeduš, Hrvoje; Gaća, Vlatka; Viljevac, Marija; Kovač, Spomenka; Fulgosi, Hrvoje; Simić, Domagoj; Jurković, Vlatka; Cesar, Vera

    2011-04-01

    Different structural and functional changes take place during leaf development. Since some of them are highly connected to oxidative metabolism, regulation of reactive oxygen species (ROS) abundance is required. Most of the reactive oxygen species ROS in plant cells are produced in chloroplasts as a result of highly energetic reactions of photosynthesis. The aim of our study was to examine the changes in concentration of oxidative stress parameters (TBARS - thiobarbituric acid-reacting substances and protein carbonyls) as well as antioxidative strategies during development of maple (Acer platanoides L.) leaves in the light of their enhanced photosynthetic performance. We reveal that biogenesis of the photosynthetic apparatus during maple leaf maturation corresponded with oxidative damage of lipids, but not proteins. In addition, antioxidative responses in young leaves differed from that in older leaves. Young leaves had high values of non-photochemical quenching (NPQ) and catalase (CAT, EC 1.11.1.6) activity which declined during the maturation process. Developing leaves were characterized by an increase in TBARS level, the content of non-enzymatic antioxidants as well as ascorbate peroxidase activity (APX, EC 1.11.1.11), while the content of protein carbonyls decreased with leaf maturation. Fully developed leaves had the highest lipid peroxidation level accompanied by a maximum in ascorbic acid content and superoxide dismutase activity (SOD, EC1.15.1.1). These observations imply completely different antioxidative strategies during leaf maturation enabling them to perform their basic function. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    Science.gov (United States)

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.

  18. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach.

    Science.gov (United States)

    Esteban, Raquel; Barrutia, Oihana; Artetxe, Unai; Fernández-Marín, Beatriz; Hernández, Antonio; García-Plazaola, José Ignacio

    2015-04-01

    Photosynthetic pigment composition has been a major study target in plant ecophysiology during the last three decades. Although more than 2000 papers have been published, a comprehensive evaluation of the responses of photosynthetic pigment composition to environmental conditions is not yet available. After an extensive survey, we compiled data from 525 papers including 809 species (subkingdom Viridiplantae) in which pigment composition was described. A meta-analysis was then conducted to assess the ranges of photosynthetic pigment content. Calculated frequency distributions of pigments were compared with those expected from the theoretical pigment composition. Responses to environmental factors were also analysed. The results revealed that lutein and xanthophyll cycle pigments (VAZ) were highly responsive to the environment, emphasizing the high phenotypic plasticity of VAZ, whereas neoxanthin was very stable. The present meta-analysis supports the existence of relatively narrow limits for pigment ratios and also supports the presence of a pool of free 'unbound' VAZ. Results from this study provide highly reliable ranges of photosynthetic pigment contents as a framework for future research on plant pigments. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient.

    Science.gov (United States)

    Granath, Gustaf; Strengbom, Joachim; Breeuwer, Angela; Heijmans, Monique M P D; Berendse, Frank; Rydin, Håkan

    2009-04-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NP(max)) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NP(max) was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

  20. Comparison of bacterial communities of tilapia fish from Cameroon ...

    African Journals Online (AJOL)

    Comparison of bacterial communities of tilapia fish from Cameroon and Vietnam using PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) ... The different PCR-DGGE 16S rDNA banding profiles obtained were analysed and results showed that there were specific bands for each geographical ...

  1. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  3. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    OpenAIRE

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2014-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, R hododendron ferrugineum, S enecio incanus and R anunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which rem...

  4. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  5. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress

    Directory of Open Access Journals (Sweden)

    Zhiyu Zuo

    2017-10-01

    Full Text Available The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.

  6. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2].

    Directory of Open Access Journals (Sweden)

    José C Ramalho

    Full Text Available Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2 s(-1, RH (75% and 380 or 700 μL CO2 L(-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49% when measured at 700 than at 380 μL CO2 L(-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down

  7. Sustained Photosynthetic Performance of Coffea spp. under Long-Term Enhanced [CO2

    Science.gov (United States)

    Ramalho, José C.; Rodrigues, Ana P.; Semedo, José N.; Pais, Isabel P.; Martins, Lima D.; Simões-Costa, Maria C.; Leitão, António E.; Fortunato, Ana S.; Batista-Santos, Paula; Palos, Isabel M.; Tomaz, Marcelo A.; Scotti-Campos, Paula; Lidon, Fernando C.; DaMatta, Fábio M.

    2013-01-01

    Coffee is one of the world’s most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m-2 s-1), RH (75%) and 380 or 700 μL CO2 L-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data

  8. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    Science.gov (United States)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of

  9. Modeling the bacterial photosynthetic reaction center. VII. Full simulation of the intervalence hole-transfer absorption spectrum of the special-pair radical cation

    International Nuclear Information System (INIS)

    Reimers, Jeffrey R.; Hush, Noel S.

    2003-01-01

    reaction centers from photosystems I, II, etc., facilitating a deeper understanding of the role of the special pair in initiating primary charge separation during photosynthesis

  10. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  11. The bacterial corrosion of concretes

    International Nuclear Information System (INIS)

    Tache, G.

    1998-01-01

    Concrete is a material very sensitive to aging effects and to permanent aggressions. It is an evolutive material in which internal hydration reactions and exchange reactions with the external medium are produced. Moreover, its characteristics tightly depends on factors which are bound to its formulation, to the appropriate choice of materials in which it is constituted, to their qualities and to the conditions of its use. Its aging depends then in a large extent of these different factors and of the adequation between its final characteristics and the solicitations in which it is submitted: physical, mechanical, thermal.. or environmental. This chapter deals particularly with the influence of the bacterial phenomena on concrete. Some recalls are at first given on the principles which govern the concrete durability. Then are approached the phenomena mechanisms. (O.M.)

  12. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats

    International Nuclear Information System (INIS)

    Nilsen, E.T.; Sharifi, M.R.

    1997-01-01

    The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (delta 13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 +/- 0.42 per thousand. The delta 13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher delta 13C (less negative) and a lower intercellular CO2 concentration (Ci) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the delta 13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the delta 13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher delta 13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species

  13. The importance of a hot-sequential mechanism in triplet-state formation by charge recombination in reaction centers of bacterial photosynthesis

    International Nuclear Information System (INIS)

    Saito, K.; Mukai, K.; Sumi, H.

    2006-01-01

    In photosynthesis, pigment-excitation energies in the antenna system produced by light harvesting are transferred among antenna pigments toward the core antenna, where they are captured by the reaction center and initially fixed in the form of a charge separation. Primary charge separation between an oxidized special pair (P + ) and a reduced bacteriopheohytin (H - ) is occasionally intervened by recombination, and a spin-triplet state ( 3 P*) is formed on P in the bacterial reaction center. The 3 P* state is harmful to bio-organisms, inducing the formation of the highly damaging singlet oxygen species. Therefore, understanding the 3 P*-formation mechanism is important. The 3 P* formation is mediated by a state |m> of intermediate charge separation between P and the accessory chlorophyll, which is located between P and H. It will be shown theoretically in the present work that at room temperature, not only the mechanism of superexchange by quantum-mechanical virtual mediation at |m>, but also a hot-sequential mechanism contributes to the mediation. In the latter, although |m> is produced as a real state, the final state 3 P* is quickly formed during thermalization of phonons in the protein matrix in |m>. In the former, the final state is formed more quickly before dephasing-thermalization of phonons in |m>. 3 P* is unistep formed from the charge-separated state in the both mechanisms

  14. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    Science.gov (United States)

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-09-14

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  16. Alleviating salt stress in tomato inoculated with mycorrhizae: Photosynthetic performance and enzymatic antioxidants

    Directory of Open Access Journals (Sweden)

    Mohsen K.H. Ebrahim

    2017-11-01

    Full Text Available Tomato cultivars (Sultana-7 & Super Strain-B were germinated with various concentrations (0–200 mM of NaCl. Seed germination in the Super Strain-B was promoted by 25 mM NaCl. However, the germination of both cultivars was progressively inhibited by 50 and 100 mM NaCl and obstructed at 200 mM NaCl, and this response was more pronounced for Sultana-7. Therefore, Super Strain-B was selected for further investigation, such as growth under NaCl stress (50 & 100 mM and inoculation with vesicular-arbuscular mycorrhizal fungus (Glomus fasciculatum, VAMF. The leaves of Super Strain-B showed reduced mineral (N, P, K, Mg uptake and K/Na ratio as well as increased Na uptake and N/P ratio in response to salinity. Moreover, salinity decreased the chlorophyll (Chl contents coupled with an increase in Chl a/b, Hill-reaction activity, and quenched Chl a fluorescence emission. These changes reflect a disturbance in the structure, composition and function of the photosynthetic apparatus as well as the activity of photosystem 2. The superoxide dismutase and peroxidase activities of leaves were enhanced by salinity, whereas the catalase activity was decreased. Leaf polysaccharides and proteins as well as shoot biomass also decreased as a result of salinity, but the total soluble sugars and root to shoot ratio improved.VAMF enhanced both the photosynthesis and productivity of plants; thus, VAMF may alleviate the adverse effects of salinity in plants by increasing their salt tolerance. Although mycorrhizal infection showed a negative correlation with salinity, it remained relatively high (21 & 25% at 100 mM NaCl. Keywords: Mycorrhizae, tomato, salinity, minerals, photosynthetic performance and antioxidant enzymes

  17. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex

    International Nuclear Information System (INIS)

    Baker, Lewis A.; Habershon, Scott

    2015-01-01

    Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly

  18. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea.

    Science.gov (United States)

    Sukhova, Ekaterina; Mudrilov, Maxim; Vodeneev, Vladimir; Sukhov, Vladimir

    2018-05-01

    Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO 2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.

  19. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  20. A theoretical approach to photosynthetically active radiation silicon sensor

    International Nuclear Information System (INIS)

    Tamasi, M.J.L.; Martínez Bogado, M.G.

    2013-01-01

    This paper presents a theoretical approach for the development of low cost radiometers to measure photosynthetically active radiation (PAR). Two alternatives are considered: a) glass optical filters attached to a silicon sensor, and b) dielectric coating on a silicon sensor. The devices proposed are based on radiometers previously developed by the Argentine National Atomic Energy Commission. The objective of this work is to adapt these low cost radiometers to construct reliable instruments for measuring PAR. The transmittance of optical filters and sensor response have been analyzed for different dielectric materials, number of layers deposited, and incidence angles. Uncertainties in thickness of layer deposition were evaluated. - Highlights: • Design of radiometers to measure photosynthetically active radiation • The study has used a filter and a Si sensor to modify spectral response. • Dielectric multilayers on glass and silicon sensor • Spectral response related to different incidence angles, materials and spectra

  1. Hydration of swelling clay and bacteria interaction. An experimental in situ reaction study; Hydratation des argiles gonflantes et influence des bacteries. Etude experimentale de reaction in situ

    Energy Technology Data Exchange (ETDEWEB)

    Berger, J

    2008-01-15

    -aggregates and bio-films. In confined volume conditions, the presence of bacteria in Na-smectite clay was seen to enhance both the uptake of interlayer water and the amount of externally stored surface and pore water. In this type of compacted smectite, an increase in the total thickness of water layer structures occurs due to bacterial enhancement of sample porosity as seen by combined X-ray diffraction study and CALCMIX profile calculations. In the case of nontronite, additional water was stored as external water indicating a similar enhancement of porosity, but here, the rate of water inflow into the reaction cell decreased, most likely due to clogging of the pores by biofilm. With respect to the application of bentonites as a suitable backfill material in underground waste disposal sites, this study demonstrates that bacterial activity can modify both chemically and physically the properties of the smectite. Even if bacteria are not likely to survive in a hydrated bentonite seal, their effects are considered to be long-term, especially due to bacterially produced substances such as EPS and organic ligands. (author)

  2. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  3. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production

    Science.gov (United States)

    Adolfsson, Lisa; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871

  4. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Directory of Open Access Journals (Sweden)

    Lisa Adolfsson

    Full Text Available Arbuscular mycorrhizal (AM fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi, and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM, mock inoculum (control or with P(i fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  5. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    Science.gov (United States)

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Ionizing radiation and photosynthetic ability of cyanobacteria

    International Nuclear Information System (INIS)

    Agarwal, Rachna; Sainis, Jayashree K.

    2006-01-01

    Unicellular photoautotrophic cyanobacteria, Anacystis nidulans when exposed to lethal dose of 1.5 kGy of 60 Co γ- radiation (D 10 = 257.32 Gy) were as effective photosynthetical as unirradiated controls immediately after irradiation although level of ROS was higher by several magnitudes in these irradiated cells. The results suggested the preservation of the functional integrity of thylakoids even after exposure to lethal dose of ionizing radiation. (author)

  7. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.

    Science.gov (United States)

    Revill, Meredith J W; Stanley, Susan; Hibberd, Julian M

    2005-09-01

    The genus Cuscuta (dodder) is composed of parasitic plants, some species of which appear to be losing the ability to photosynthesize. A molecular phylogeny was constructed using 15 species of Cuscuta in order to assess whether changes in photosynthetic ability and alterations in structure of the plastid genome relate to phylogenetic position within the genus. The molecular phylogeny provides evidence for four major clades within Cuscuta. Although DNA blot analysis showed that Cuscuta species have smaller plastid genomes than tobacco, and that plastome size varied significantly even within one Cuscuta clade, dot blot analysis indicated that the dodders possess homologous sequence to 101 genes from the tobacco plastome. Evidence is provided for significant rates of DNA transfer from plastid to nucleus in Cuscuta. Size and structure of Cuscuta plastid genomes, as well as photosynthetic ability, appear to vary independently of position within the phylogeny, thus supporting the hypothesis that within Cuscuta photosynthetic ability and organization of the plastid genome are changing in an unco-ordinated manner.

  8. Effect of different levels of air pollution on photosynthetic activity of some lichens

    Directory of Open Access Journals (Sweden)

    Ewa Niewiadomska

    2014-01-01

    Full Text Available Four lichen species: Hypogymnia physodes, Pseudevernia furfuracea, Parmelia saxatilis, and Platismatia glauca were collected from two sites (S. Poland with a different air pollution level: "Kamienica valley" (less polluted and "Kopa" (more polluted. The thalli were compared with respect to their: net photosynthetic rate (PN, fluorescence parameters (Fv/Fm, Fm, Fm/Fo, chlorophyll a+b content, and phaeophytinization quotient (O.D.435/O.D.415. PN intensity, chlorophyll a+b and O.D.435/O.D.415 were reduced only in Pa furfuracea collected from Kopa, which is in agreement with the Hawksworth-Rose scale of sensitivity of lichens to air pollution. Fluorescence parameters were significantly lowered in all lichens coming from the more polluted site (except of Fv/Fm and Fm/F0 in P. saxatilis. Parameters based on chlorophyll fluorescence measurements enable to reveal the very early signs of decreased photosynthetical capacity of the thalli, caused by air pollution, before changes in the other photosynthetic parameters become mesurable.

  9. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons.

    Science.gov (United States)

    Kim, Yihwan; Jeon, Jehyun; Kwak, Min Seok; Kim, Gwang Hoon; Koh, InSong; Rho, Mina

    2018-01-01

    Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.

  10. High potential oxidation-reduction titration of absorbance changes induced by pulsed laser and continuous light in chromatophores of photosynthesizing bacteria Rhodospirillum rubrum and Ectothiorhodospira shaposhnikovii

    International Nuclear Information System (INIS)

    Remennikov, S.M.; Chamorovsky, S.K.; Kononenko, A.A.; Venediktov, P.S.; Rubin, A.B.

    1975-01-01

    The photoreactions, activated both by pulsed laser and continuous light were studied in the membranes of isolated bacterial chromatophores poised at different oxidation-reduction potentials over a range of +200 mV to +500 mV. In Rhodospirillum rubrum a midpoint potential of oxidation-reduction curves for the laser-induced positive absorbance changes centred around 430 nm and carotenoid red shifts coincides with that for continuous light-induced absorbance changes, bleaching at 865 nm and blue shift at 800 nm, of the photosynthetic reaction centre bacteriochlorophyll. In Ectothiorhodospira shaposhnikovii the photosynthetic reaction centre bacteriochlorophyll, its photooxidation can be seen as light-induced absorbance changes, bleaching at 890 nm, blue shift at 800 nm and broad band appearance near 440 nm, has a midpoint oxidation-reduction potential of +390 mV at pH 7.4. The analysis of the oxidation-reduction titration curves for the high-potential c-type cytochrome absorbance changes induced both by pulsed laser and continuous light allowed to show that at least two haems of this cytochrome with a midpoint potential of +290 mV (pH 7.4), associated with each reaction centre bacteriochlorophyll, can donate electrons to the oxidized pigment directly

  11. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  12. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    Science.gov (United States)

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  13. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts.

    Science.gov (United States)

    Torres, Rocio; Diz, Virginia E; Lagorio, M Gabriela

    2018-04-18

    Effects of gold nanoparticles (average diameter: 10-14 nm) on leaves and chloroplasts have been studied. Gold nanoparticles (AuNPs) quenched significantly chlorophyll fluorescence when introduced both in intact leaves and isolated chloroplasts. Additionally, the fluorescence spectra corrected for light re-absorption processes showed a net decrease in the fluorescence ratio calculated as the quotient between the maximum fluorescence at 680 and 735 nm. This fact gave evidence for a reduction in the fluorescence emission of the PSII relative to that of the PSI. Strikingly, the photosynthetic parameters derived from the analysis of the slow phase of Kautsky's kinetics, the rate of oxygen evolution and the rate of photo-reduction of 2,6-dichlorophenolindophenol were increased in the presence of AuNPs indicating an apparent greater photosynthetic capacity. The observed results were consistent with an electron transfer process from the excited PSII, which was thermodynamically possible, and which competed with both the electron transport process that initiated photosynthesis and the deactivation of the excited PSII by fluorescence emission. Additionally, it is here explained, in terms of a completely rational kinetic scheme and their corresponding algebraic expressions, why the photosynthetic parameters and the variable and non-variable fluorescence of chlorophyll are modified in a photosynthetic tissue containing gold nanoparticles.

  14. Effects of 1-butanol, neomycin and calcium on the photosynthetic ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-31

    Oct 31, 2011 ... (Shanghai Jierui Bio-Engineering Co., Ltd.) were used in the total. RNA extraction of ..... PC and reverse through calcium removal agent. EGTA indicating .... Photosynthetic characteristics and tolerance to photo- oxidation of ...

  15. The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction

    Science.gov (United States)

    Jaisi, Deb P.; Eberl, Dennis D.; Dong, Hailiang; Kim, Jinwook

    2011-01-01

    The formation of illite through the smectite-to-illite (S-I) reaction is considered to be one of the most important mineral reactions occurring during diagenesis. In biologically catalyzed systems, however, this transformation has been suggested to be rapid and to bypass the high temperature and long time requirements. To understand the factors that promote the S-I reaction, the present study focused on the effects of pH, temperature, solution chemistry, and aging on the S-I reaction in microbially mediated systems. Fe(III)-reduction experiments were performed in both growth and non-growth media with two types of bacteria: mesophilic (Shewanella putrefaciens CN32) and thermophilic (Thermus scotoductus SA-01). Reductive dissolution of NAu-2 was observed and the formation of illite in treatment with thermophilic SA-01 was indicated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A basic pH (8.4) and high temperature (65°C) were the most favorable conditions for the formation of illite. A long incubation time was also found to enhance the formation of illite. K-nontronite (non-permanent fixation of K) was also detected and differentiated from the discrete illite in the XRD profiles. These results collectively suggested that the formation of illite associated with the biologically catalyzed smectite-to-illite reaction pathway may bypass the prolonged time and high temperature required for the S-I reaction in the absence of microbial activity.

  16. Light Conditions Affect the Measurement of Oceanic Bacterial Production via Leucine Uptake

    Science.gov (United States)

    Morán, Xosé Anxelu G.; Massana, Ramon; Gasol, Josep M.

    2001-01-01

    The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles. PMID:11525969

  17. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species

    OpenAIRE

    Hidaka, Amane; Kitayama, Kanehiro

    2013-01-01

    How plants develop adaptive strategies to efficiently use nutrients on infertile soils is an important topic in plant ecology. It has been suggested that, with decreasing phosphorus (P) availability, plants increase photosynthetic P-use efficiency (PPUE) (i.e., the ratio of instantaneous photosynthetic carbon assimilation rate per unit foliar P). However, the mechanism to increase PPUE remains unclear. In this study, we tested whether high PPUE is explained by an optimized allocation of P in ...

  18. Effects of the pear tree canopy on photosynthetically active radiation availability

    International Nuclear Information System (INIS)

    Rossi, F.; Baldini, E.; Baraldi, R.

    1984-01-01

    The relationships existing between radiant energy and photosynthesis have been extensively investigated on the apple /2/ but not on the other fruit trees, pear included. In addition, such information resists generalization, owing to the remarkable differences underlying tree morphology and physiology of the different species; furthermore, some disagreement arises regarding the terminology and the units used to evaluate the amount of radiant energy useful for the photosynthetic process. In general this evaluation is based on the readouts of illuminance (symbol Ev; unit: lux), in agreement with the photopic curve (fig. 1:A), i.e. with the human eye sensibility to the visible radiation(light). However, the relative response of the chloroplasts to the radiant flux, although included within the same spectral wavebands as the photopic curve, follows a different model (fig.1:B), that is, it has two peaks in connection with the spectral wavelenghts of blue (440–490 nm), and, particularly, of red (620–700 nm). Therefore, according to a number of authors /3/6/8/11/, the correct evaluation of the photosynthetically active radiation should be made using sensors calibrated to measure the photosynthetic photon lux density (symbol: PPFD; unit: μE m -2 s -1 ), and provided with a relative spectral response similar to that of the leaves. (author)

  19. The role of energy losses in photosynthetic light harvesting

    NARCIS (Netherlands)

    Kruger, T. P. J.; van Grondelle, R.

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic

  20. Gamma radiation-induced mutant of NSIC RC144 with broad-spectrum resistance to bacterial blight

    International Nuclear Information System (INIS)

    Alfonso, A.A.; Avellanoza, E.S.; Miranda, R.T.; Espejo, E.O.; Garcia, N.S.

    2014-01-01

    Mutant lines derived from gamma radiation-treated commercial variety NSIC RC144 were produced and screened for novel resistance to bacterial blight, one of the most serious diseases of rice. Preliminary screening of a bulk M2 population through induced method using race 3 of the pathogen Xanthomonas oryzae pv. oryzae (Xoo) resulted in the selection of 89 resistant plants. Subsequent repeated bacterial blight screenings and generation advance for five seasons resulted in the selection of two highly resistant M7 sister lines whose origin can be traced to a single M2 plant. DNA fingerprinting using 63 genome-wide simple sequence repeat (SSR) markers revealed an identical pattern in these lines. Using the same set of markers, they also exhibited 98% similarity to wild type NSIC RC144 indicating that the resistance is due to mutation and not due to genetic admixture or seed impurity. Two seasons of bacterial blight screening using 14 local isolates representing ten races of Xoo revealed an identical reaction pattern in these lines. The reaction pattern was observed to be unique compared to known patterns in four IRBB isolines (IRBB 4, 5, 7 and 21) with strong resistant reaction to bacterial blight suggesting possible novel resistance. The susceptible reaction in F1 testcrosses using Xoo race 6 and the segregation patterns in two F2 populations that fit with the expected 3 susceptible: 1 resistant ratio (P = 0.4, ns) suggest a single-gene recessive mutation in these lines. These mutants are now being used as resistance donor in the breeding program while further molecular characterization to map and characterize the mutated gene is being pursued

  1. Multipulse spectroscopy on the wild-type and YM210W Bacterial Reaction Centre uncovers a new intermediate state in the special pair excited state

    Science.gov (United States)

    Cohen Stuart, T. A.; van Grondelle, R.

    2009-06-01

    The Bacterial Reaction Centre (BRC) has a complex electronic excited state, P ∗, that evolves into subsequent charge separated product states P +H - and P +B -. Pump-dump-probe spectroscopy on the wild-type BRC and on YM210W, a mutant with a stabilized, long-lived P ∗ excited state, has uncovered a new charge-separated state in both BRC's. When P ∗ is dumped, a fraction of its population is transferred to this state that has a strong Stark shift in the accessory bacteriochlorophyll (B M) region which serves as a signature for P + and a lifetime highly comparable to the slow phase of P ∗ decay. This lead us propose this intermediate to be P +/P -.

  2. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    Science.gov (United States)

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  3. Photosynthetic responses of pea plants (Pisum sativum L. cv. Little ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... (O3) have fundamental effects on CO2 exchange by plants. ... produce responses such as reduced photosynthetic rates and earlier senescence .... quality localities treatments and two soil regimes in Riyadh city, KSA. Pn rates.

  4. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport

    Directory of Open Access Journals (Sweden)

    Andrei eHerdean

    2016-02-01

    Full Text Available Chloride ions can be translocated across cell membranes through Cl− channels or Cl−/H+ exchangers. The thylakoid-located member of the Cl− channel CLC family in Arabidopsis thaliana (AtCLCe was hypothesized to play a role in photosynthetic regulation based on the initial photosynthetic characterization of clce mutant lines. The reduced nitrate content of Arabidopsis clce mutants suggested a role in regulation of plant nitrate homeostasis. In this study, we aimed to further investigate the role of AtCLCe in the regulation of ion homeostasis and photosynthetic processes in the thylakoid membrane. We report that the size and composition of proton motive force were mildly altered in two independent Arabidopsis clce mutant lines. Most pronounced effects in the clce mutants were observed on the photosynthetic electron transport of dark-adapted plants, based on the altered shape and associated parameters of the polyphasic OJIP kinetics of chlorophyll a fluorescence induction. Other alterations were found in the kinetics of state transition and in the macro-organisation of photosystem II supercomplexes, as indicated by circular dichroism measurements. Pre-treatment with KCl but not with KNO3 restored the wild-type photosynthetic phenotype. Analyses by transmission electron microscopy revealed a bow-like arrangement of the thylakoid network and a large thylakoid-free stromal region in chloroplast sections from the dark-adapted clce plants. Based on these data, we propose that AtCLCe functions in Cl− homeostasis after transition from light to dark, which affects chloroplast ultrastructure and regulation of photosynthetic electron transport.

  5. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat.

    Science.gov (United States)

    Zhang, HuiFang; Xu, WeiGang; Wang, HuiWei; Hu, Lin; Li, Yan; Qi, XueLi; Zhang, Lei; Li, ChunXin; Hua, Xia

    2014-09-01

    Using particle bombardment transformation, we introduced maize pepc cDNA encoding phosphoenolpyruvate carboxylase (PEPC) and ppdk cDNA encoding pyruvate orthophosphate dikinase (PPDK) into the C3 crop wheat to generate transgenic wheat lines carrying cDNA of pepc (PC lines), ppdk (PK lines) or both (PKC lines). The integration, transcription, and expression of the foreign genes were confirmed by Southern blot, Real-time quantitative reverse transcription PCR (Q-RT-PCR), and Western blot analysis. Q-RT-PCR results indicated that the average relative expression levels of pepc and ppdk in the PKC lines reached 10 and 4.6, respectively, compared to their expressions in untransformed plants (set to 1). The enzyme activities of PEPC and PPDK in the PKC lines were 4.3- and 2.1-fold higher, respectively, than in the untransformed control. The maximum daily net photosynthetic rates of the PKC, PC, and PK lines were enhanced by 26.4, 13.3, and 4.5%, respectively, whereas the diurnal accumulations of photosynthesis were 21.3, 13.9, and 6.9%, respectively, higher than in the control. The Fv/Fm of the transgenic plants decreased less than in the control under high temperature and high light conditions (2 weeks after anthesis), suggesting that the transgenic wheat transports more absorbed light energy into a photochemical reaction. The exogenous maize C4-specific pepc gene was more effective than ppdk at improving the photosynthetic performance and yield characteristics of transgenic wheat, while the two genes showed a synergistic effect when they were transformed into the same genetic background, because the PKC lines exhibited improved photosynthetic and physiological traits.

  6. High level bacterial contamination of secondary school students' mobile phones.

    Science.gov (United States)

    Kõljalg, Siiri; Mändar, Rando; Sõber, Tiina; Rööp, Tiiu; Mändar, Reet

    2017-06-01

    While contamination of mobile phones in the hospital has been found to be common in several studies, little information about bacterial abundance on phones used in the community is available. Our aim was to quantitatively determine the bacterial contamination of secondary school students' mobile phones. Altogether 27 mobile phones were studied. The contact plate method and microbial identification using MALDI-TOF mass spectrometer were used for culture studies. Quantitative PCR reaction for detection of universal 16S rRNA, Enterococcus faecalis 16S rRNA and Escherichia coli allantoin permease were performed, and the presence of tetracycline ( tet A, tet B, tet M), erythromycin ( erm B) and sulphonamide ( sul 1) resistance genes was assessed. We found a high median bacterial count on secondary school students' mobile phones (10.5 CFU/cm 2 ) and a median of 17,032 bacterial 16S rRNA gene copies per phone. Potentially pathogenic microbes ( Staphylococcus aureus , Acinetobacter spp. , Pseudomonas spp., Bacillus cereus and Neisseria flavescens ) were found among dominant microbes more often on phones with higher percentage of E. faecalis in total bacterial 16S rRNA. No differences in contamination level or dominating bacterial species between phone owner's gender and between phone types (touch screen/keypad) were found. No antibiotic resistance genes were detected on mobile phone surfaces. Quantitative study methods revealed high level bacterial contamination of secondary school students' mobile phones.

  7. Role of environmental factors for the vertical distribution (0–1000 m of marine bacterial communities in the NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. F. Ghiglione

    2008-12-01

    Full Text Available Bacterioplankton plays a central role in energy and matter fluxes in the sea, yet the factors that constrain its variation in marine systems are still poorly understood. Here we use the explanatory power of direct multivariate gradient analysis to evaluate the driving forces exerted by environmental parameters on bacterial community distribution in the water column. We gathered and analysed data from a one month sampling period from the surface to 1000 m depth at the JGOFS-DYFAMED station (NW Mediterranean Sea. This station is characterized by very poor horizontal advection currents which makes it an ideal model to test hypotheses on the causes of vertical stratification of bacterial communities. Capillary electrophoresis single strand conformation polymorphism (CE-SSCP fingerprinting profiles analyzed using multivariate statistical methods demonstrated a vertical zonation of bacterial assemblages in three layers, above, in or just below the chlorophyll maximum and deeper, that remained stable during the entire sampling period. Through the use of direct gradient multivariate ordination analyses we demonstrate that a complex array of biogeochemical parameters is the driving force behind bacterial community structure shifts in the water column. Physico-chemical parameters such as phosphate, nitrate, salinity and to a lesser extent temperature, oxygen, dissolved organic carbon and photosynthetically active radiation acted in synergy to explain bacterial assemblages changes with depth. Analysis of lipid biomarkers of organic matter sources and fates suggested that bacterial community structure in the surface layers was in part explained by lipids of chloroplast origin. Further detailed analysis of pigment-based phytoplankton diversity gave evidence of a compartmentalized influence of several phytoplankton groups on bacterial community structure in the first 150 m depth.

  8. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome.

    Science.gov (United States)

    Röthig, Till; Ochsenkühn, Michael A; Roik, Anna; van der Merwe, Riaan; Voolstra, Christian R

    2016-03-01

    Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  9. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.

    Science.gov (United States)

    Barz, W P; Verméglio, A; Francia, F; Venturoli, G; Melandri, B A; Oesterhelt, D

    1995-11-21

    The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides because it is required for multiple-turnover electron transfer under anaerobic conditions [see accompanying article; Barz, W. P., Francia, F., Venturoli, G., Melandri, B. A., Verméglio, A., & Oesterhelt, D. (1995) Biochemistry 34, 15235-15247]. In order to understand the molecular role of PufX, light-induced absorption spectroscopy was performed using a pufX- mutant, a pufX+ strain, and two suppressor mutants. We show that the reaction center (RC) requires PufX for its functionality under different redox conditions than the cytochrome bc1 complex: When the kinetics of flash-induced reduction of cytochrome b561 were monitored in chromatophores, we observed a requirement of PufX for turnover of the cytochrome bc1 complex only at high redox potential (Eh > 140 mV), suggesting a function of PufX in lateral ubiquinol transfer from the RC. In contrast, PufX is required for multiple turnover of the RC only under reducing conditions: When the Q pool was partially oxidized in vivo using oxygen or electron acceptors like dimethyl sulfoxide or trimethylamine N-oxide, the deletion of PufX had no effect on light-driven electron flow through the RC. Flash train experiments under anaerobic in vivo conditions revealed that RC photochemistry does not depend on PufX for the first two flash excitations. Following the third and subsequent flashes, however, efficient charge separation requires PufX, indicating an important role of PufX for fast Q/QH2 exchange at the QB site of the RC. We show that the Q/QH2 exchange rate is reduced approximately 500-fold by the deletion of PufX when the Q pool is nearly completely reduced, demonstrating an essential role of PufX for the access of ubiquinone to the QB site. The fast ubiquinone/ubiquinol exchange is partially restored by suppressor mutations altering the macromolecular antenna structure. These results suggest an indirect role of PufX in

  10. effect of ambient levels of ozone on photosynthetic components

    African Journals Online (AJOL)

    ACSS

    To clarify the long-term effects of ambient levels of tropospheric ozone (O3) on ... (Rubisco), thus contributing to the reduction in net photosynthetic rate at the .... USA). During the measurements, atmospheric. CO2 concentrations, air ...... productivity and implications for climate change. Annual Review of Plant Biology 63:.

  11. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  12. Photosynthetic incorporation of 14C by Stevia rebaudiana

    International Nuclear Information System (INIS)

    Ferraresi, M. de L.; Ferraresi Filho, O.; Bracht, A.

    1985-01-01

    The photosynthetic incorporation of 14 by Stevia rebaudiana specimens was investigated. The 14 C incorporation, when the isotope was furnished to the plant in form of 14 CO 2 , was rapid. After 24 hours, the radioactivity has been incorporated into a great number of compounds including pigments, terpenes, glucose, cellulose and also stevioside and its derivatives. (M.A.C.) [pt

  13. Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis

    KAUST Repository

    Jin, Peng

    2017-03-14

    Ultraviolet-B (UVB) radiation is a global stressor that has profound impacts on freshwater and marine ecosystems. However, an analysis of the patterns of sensitivity to UVB radiation across aquatic photosynthetic organisms has not yet been published. Here, we performed a meta-analysis on results reported in 214 studies compiled from the published literature to quantify and compare the magnitude of responses of aquatic photosynthetic organisms to changes in UVB radiation. The meta-analysis was conducted on observations of marine (n = 893) and freshwater macroalgae (n = 126) and of marine (n = 1,087) and freshwater (n = 2,889) microalgae (total n = 4,995). Most of these studies (85%) analyzed the performance of organisms exposed to natural solar radiation when UVB was partially or totally reduced compared with the organismal performance under the full solar radiation spectrum, whereas the remaining 15% of the studies examined the responses of organisms to elevated UVB radiation mostly using artificial lamps. We found that marine photosynthetic organisms tend to be more sensitive than freshwater photosynthetic organisms to UVB radiation; responses to either decreased or increased UVB radiation vary among taxa; the mortality rate is the most sensitive of the trait responses to elevated UVB radiation, followed by changes in cellular and molecular traits; the sensitivity of microalgae to UVB radiation is dependent on size, with small-celled microalgae more sensitive than large-celled microalgae to UVB radiation. Thick macroalgae morphotypes were the less sensitive to UVB, but this effect could not be separated from phylogenetic differences. The high sensitivity of marine species, particularly the smallest photosynthetic organisms, to increased UVB radiation suggests that the oligotrophic ocean, a habitat comprising 70% of the world\\'s oceans with high UVB penetration and dominated by picoautotrophs, is extremely vulnerable to changes in UVB radiation.

  14. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  15. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  16. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  17. Influence of photosynthetic pathway on the hydrogen isotopic profile of glucose

    International Nuclear Information System (INIS)

    Ben-li Zhang; Billault, I.; Xiaobao Li; Mabon, F.; Remaud, G.; Martin, M.L.

    2002-01-01

    The SNIF-NMR method (site-specific natural isotope fractionation studied by Nuclear Magnetic Resonance) was used to examine the isotopic profile of glucoses derived from plants with different photosynthetic pathways. It is shown that the type of photosynthetic metabolism, either C3 (beet-root, orange, grape), C4 (maize, sugar-cane) C5 (pineapple), exerts a strong influence on the deuterium distribution in the sugar molecules. The isotope profile also depends, secondarily, on the physiological status of the precursor plant. Consequently, the isotopic fingerprint of glucose may be a rich source of information in mechanistic comparisons of metabolic pathways. Moreover, from an analytical point of view, it may provide complementary criteria with respect to the ethanol probe for origin interface of sugars. (author)

  18. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  19. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Abscisic acid effects on water and photosynthetic characteristics of ...

    African Journals Online (AJOL)

    The aim of this study is to compare the water and photosynthetic characteristics of two xerophilic ecotypes of Atriplex halimus (L.). Seeds collected from two different sites Djelfa and Oran are germinated in controlled greenhouse. After 6 months, the plantlets were treated 21 days with increasing concentrations of abscisic ...

  1. Tufted hairgrass (Deschampsia caespitosa) exhibits a lower photosynthetic plasticity than Antarctic hairgrass (D. antarctica).

    Science.gov (United States)

    Bystrzejewska-Piotrowska, Grazyna; Urban, Pawel L

    2009-06-01

    The aim of our work was to assess photosynthetic plasticity of two hairgrass species with different ecological origins (a temperate zone species, Deschampsia caespitosa (L.) Beauv. and an Antarctic species, D. antarctica) and to consider how the anticipated climate change may affect vitality of these plants. Measurements of chlorophyll fluorescence showed that the photosystem II (PSII) quantum efficiency of D. caespitosa decreased during 4 d of incubation at 4 degrees C but it remained stable in D. antarctica. The fluorescence half-rise times were almost always lower in D. caespitosa than in D. antarctica, irrespective of the incubation temperature. These results indicate that the photosynthetic apparatus of D. caespitosa has poorer performance in these conditions. D. caespitosa reached the maximum photosynthesis rate at a higher temperature than D. antarctica although the values obtained at 8 degrees C were similar in both species. The photosynthetic water-use efficiency (photosynthesis-to-transpiration ratio, P/E) emerges as an important factor demonstrating presence of mechanisms which facilitate functioning of a plant in non-optimal conditions. Comparison of the P/E values, which were higher in D. antarctica than in D. caespitosa at low and medium temperatures, confirms a high degree of adjustability of the photosynthetic apparatus in D. antarctica and unveils the lack of such a feature in D. caespitosa.

  2. Induced mutation for disease resistance in rice with special reference to blast, bacterial blight and tungro

    International Nuclear Information System (INIS)

    Mathur, S.C.

    1983-01-01

    Rice varieties Ratna, Pusa 2-21, Vijaya and Pankaj have been treated with gamma rays, EMS or sodium azide to improve their resistance against blast, bacterial leaf blight or tungro virus. For blast and tungro, mutants with improved resistance were selected. Variation in reaction to bacterial leaf blight has been used in crossbreeding to accumulate genes for resistance. (author)

  3. A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria

    NARCIS (Netherlands)

    Luimstra, V.M.; Kennedy, S.J.; Güttler, J.; Wood, S.A.; Williams, D.E.; Packer, M.A.

    2014-01-01

    This work describes the development of an easily constructed, cost-effective photosynthetic microbial fuel cell design with highly reproducible electrochemical characteristics that can be used to screen algae and cyanobacteria for photosynthetic electrogenic activity. It is especially suitable for

  4. Engineering nanoparticles to silence bacterial communication

    Directory of Open Access Journals (Sweden)

    Kristen Publicover Miller

    2015-03-01

    Full Text Available The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. Quorum sensing is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP were engineered to target the signaling molecules (i.e. acylhomoserine lactones (HSL used for quorum sensing in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with beta-cyclodextrin (beta-CD, then added to cultures of bacteria (Vibrio fischeri, whose luminous output depends upon HSL-mediated quorum sensing, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR analyses of luminescence genes. Binding of AHLs to Si-NPs was examined using nuclear magnetic resonance (NMR spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate quorum sensing, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to quorum sensing – a target that will reduce resistance pressures imposed by traditional antibiotics.

  5. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  6. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  7. REPEATED MEASURES ANALYSIS OF CHANGES IN PHOTOSYNTHETIC EFFICIENCY IN SOUR CHERRY DURING WATER DEFICIT

    Directory of Open Access Journals (Sweden)

    Marija Viljevac

    2012-06-01

    Full Text Available The objective of this study was to investigate changes in photosynthetic efficiency applying repeated measures ANOVA using the photosynthetic performance index (PIABS of the JIP-test as a vitality parameter in seven genotypes of sour cherry (Prunus cerasus, L. during 10 days of continuous water deficit. Both univariate and multivariate ANOVA repeated measures revealed highly significant time effect (Days and its subsequent interactions with genotype and water deficit. However, the multivariate Pillai’s trace test detected the interaction Time × Genotype × Water deficit as not significant. According to the Tukey’s Studentized Range (HSD test, differences between the control and genotypes exposed to water stress became significant on the fourth day of the experiment, indicating that the plants on the average, began to lose their photosynthetic efficiency four days after being exposed to water shortage. It corroborates previous findings in other species that PIABS is very sensitive tool for detecting drought stress.

  8. Progress of CRISPR-Cas based genome editing in Photosynthetic microbes

    NARCIS (Netherlands)

    Naduthodi, M.I.S.; Barbosa, M.J.; Oost, van der J.

    2018-01-01

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been

  9. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    experiments were analysed by polymerase chain reaction-density gradient gel electrophoresis (PCR-DGGE) of 16S rDNA, which showed that the indigenous bacterial community responded quickly to the addition of lysates. Our study confirms that bacteria can efficiently degrade microcystins in natural waters....... It was hypothesised that the bacterial community from a lake with frequent occurrence of toxic cyanobacteria can degrade microcystin along with other organic compounds. The initial dissolved microcystin concentrations ranged between 10 and 136 mug 1(-1) (microcystin-LR equivalents) in the laboratory experiment, using...... experiment to evaluate the effects of organic lysates on bacterial proliferation in the absence of microcystin. An exponential decline of the dissolved toxins was observed in all cases with toxins present, and the degradation rates ranged between 0.5 and 1.0 d(-1). No lag phases were observed but slow...

  10. Conversion Efficiency of Photosynthetically Active Radiation Into Acacia mearnsii Biomass

    Directory of Open Access Journals (Sweden)

    Elder Eloy

    2018-02-01

    Full Text Available ABSTRACT The objective of this experiment was to determine the conversion efficiency of intercepted photosynthetically active radiation into biomass of Acacia mearnsii De Wild. seedlings. A forest species, plastic tubes (90 cm3, and 11 evaluation periods (up to 180 days after emergence were used in this study. The leaf area index (LAI, total dry biomass (BIO, global solar radiation (GSR, cumulative intercepted photosynthetically active radiation (PARic, and conversion efficiency of radiation (εb were determined using a pyranometer (LI200X, LICOR. The value of εb in BIO seedlings of Acacia mearnsii was 7.76 g MJ-1. LAI was directly related to the efficiency of PARic, and this influenced the development, production potential and accumulation of BIO. The value of GSR flow was 11.81 MJ m-2 day-1, while the value inside the greenhouse was 6.26 MJ m-2 day-1.

  11. Photosynthetic planulae and planktonic hydroids: contrasting strategies of propagule survival

    Directory of Open Access Journals (Sweden)

    Patrizia Pagliara

    2000-12-01

    Full Text Available Settlement delays can be important to prevent propagule waste when proper settling substrates are not immediately available. Under laboratory conditions, the planulae of Clytia viridicans underwent two alternative developmental patterns. Some settled on the bottom, forming a hydranth-gonotheca complex that produced up to four medusae and later either degenerated or gave rise to a hydroid colony. Other planulae settled right below the air-water interface, forming floating colonies that eventually fell to the bottom and settled. Halecium nanum released planulae with a rich population of symbiotic zooxanthellae that survived into a rearing jar for three months. After a long period of apparent quiescence (possibly fuelled by photosynthetic activities of zooxanthellae the planulae produced new colonies. Both photosynthetic planulae and settlement at the interface air-water allow a delay in the passage from a planktonic to a fully functional benthic life.

  12. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.

    Science.gov (United States)

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2013-07-09

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.

  13. Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems

    Directory of Open Access Journals (Sweden)

    Félix L Figueroa

    2013-11-01

    Full Text Available In vivo chlorophyll fluorescence associated to Photosystem II is being used to evaluate photosynthetic activity of microalgae grown in different types of photobioreactors; however, controversy on methodology is usual. Several recommendations on the use of chlorophyll fluorescence to estimate electron transport rate and productivity of microalgae grown in thin-layer cascade cultivators and methacrylate cylindrical vessels are included. Different methodologies related to the measure of photosynthetic activity in microalgae are discussed: (1 measurement of light absorption, (2 determination of electron transport rates versus irradiance and (3 use of simplified devices based on pulse amplitude modulated (PAM fluorescence as Junior PAM or Pocket PAM with optical fiber and optical head as measuring units, respectively. Data comparisons of in vivo chlorophyll fluorescence by using these devices and other PAM fluorometers as Water-PAM in the microalga Chlorella sp. (Chlorophyta are presented. Estimations of carbon production and productivity by transforming electron transport rate to gross photosynthetic rate (as oxygen evolution using reported oxygen produced per photons absorbed values and carbon photosynthetic yield based on reported oxygen/carbon ratio are also shown. The limitation of ETR as estimator of photosynthetic and biomass productivity is discussed. Low cost:quality PAMs can promote monitoring of chlorophyll fluorescence in algal biotechnology to estimate the photosynthetic activity and biomass productivity.

  14. Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis

    Directory of Open Access Journals (Sweden)

    Pedro D. Manrique

    Full Text Available Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1 is high, display a range where the organism profits maximally from the spatial correlation of the incoming light. By contrast, no maximum is found for membranes with low core-core clustering. We employ a detailed membrane model with state-of-the-art empirical inputs. Our results suggest that the organization of the membrane’s antenna complexes may be well-suited to the spatial correlations present in an natural light source. Future experiments will be needed to test this prediction. Keywords: Photo-bunching, Spatial correlation, Photosynthesis, Purple bacteria

  15. Some experiments on the primary electron acceptor in reaction centres from Rhodopseudomanas sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Wraight, C A; Cogdell, R J; Clayton, R K

    1975-01-01

    The bacterial reaction center absorbance change at 450 nm (A-450), assigned to an anionic semiquinone, has been suggested as a candidate for the reduced form of the primary electron acceptor in bacterial photosynthesis. In reaction centers of Rhodopseudomonas sphaeroides we have found kinetic discrepancies between the decay of A-450 and the recovery of photochemical competence. In addition, no proton uptake is measurable on the first turnover, although subsequent ones elicit one proton bound per electron. These results are taken to indicate that the acceptor reaction after a long dark period may be different for the first turnover than for subsequent ones. It is suggested that A-450 is still a likely candidate for the acceptor function but that in reaction centers, additional quinone may act as an adventitious primary acceptor when the ''true'' primary acceptor is reduced. Alternatively, the primary acceptor may act in a ''ping-pong'' fashion with respect to subsequent photoelectrons.

  16. Re-engineering of Bacterial Luciferase; For New Aspects of Bioluminescence.

    Science.gov (United States)

    Kim, Da-Som; Choi, Jeong-Ran; Ko, Jeong-Ae; Kim, Kangmin

    2018-01-01

    Bacterial luminescence is the end-product of biochemical reactions catalyzed by the luciferase enzyme. Nowadays, this fascinating phenomenon has been widely used as reporter and/or sensors to detect a variety of biological and environmental processes. The enhancement or diversification of the luciferase activities will increase the versatility of bacterial luminescence. Here, to establish the strategy for luciferase engineering, we summarized the identity and relevant roles of key amino acid residues modulating luciferase in Vibrio harveyi, a model luminous bacterium. The current opinions on crystal structures and the critical amino acid residues involved in the substrate binding sites and unstructured loop have been delineated. Based on these, the potential target residues and/or parameters for enzyme engineering were also suggested in limited scale. In conclusion, even though the accurate knowledge on the bacterial luciferase is yet to be reported, the structure-guided site-directed mutagenesis approaches targeting the regulatory amino acids will provide a useful platform to re-engineer the bacterial luciferase in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    Science.gov (United States)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ˜0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  18. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    International Nuclear Information System (INIS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-01-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc 1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins

  19. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  20. Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression

    Directory of Open Access Journals (Sweden)

    Antonietta Santaniello

    2017-08-01

    Full Text Available Drought represents one of the most relevant abiotic stress affecting growth and yield of crop plants. In order to improve the agricultural productivity within the limited water and land resources, it is mandatory to increase crop yields in presence of unfavorable environmental stresses. The use of biostimulants, often containing seaweed extracts, represents one of the options for farmers willing to alleviate abiotic stress consequences on crops. In this work, we investigated the responses of Arabidopsis plants treated with an extract from the brown alga Ascophyllum nodosum (ANE, under drought stress conditions, demonstrating that ANE positively influences Arabidopsis survival. Pre-treatment with ANE induced a partial stomatal closure, associated with changes in the expression levels of genes involved in ABA-responsive and antioxidant system pathways. The pre-activation of these pathways results in a stronger ability of ANE-treated plants to maintain a better photosynthetic performance compared to untreated plants throughout the dehydration period, combined with a higher capacity to dissipate the excess of energy as heat in the reaction centers of photosystem II. Our results suggest that drought stressed plants treated with ANE are able to maintain a strong stomatal control and relatively higher values of both water use efficiency (WUE and mesophyll conductance during the last phase of dehydration. Simultaneously, the activation of a pre-induced antioxidant defense system, in combination with a more efficient energy dissipation mechanism, prevents irreversible damages to the photosynthetic apparatus. In conclusion, pre-treatment with ANE is effective to acclimate plants to the incoming stress, promoting an increased WUE and dehydration tolerance.

  1. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber).

    Science.gov (United States)

    Vaz, M; Pereira, J S; Gazarini, L C; David, T S; David, J S; Rodrigues, A; Maroco, J; Chaves, M M

    2010-08-01

    Responses of leaf water relations and photosynthesis to summer drought and autumn rewetting were studied in two evergreen Mediterranean oak species, Quercus ilex spp. rotundifolia and Quercus suber. The predawn leaf water potential (Ψ(lPD)), stomatal conductance (gs) and photosynthetic rate (A) at ambient conditions were measured seasonally over a 3-year period. We also measured the photosynthetic response to light and to intercellular CO₂ (A/PPFD and A/C(i) response curves) under water stress (summer) and after recovery due to autumn rainfall. Photosynthetic parameters, Vc(max), J(max) and triose phosphate utilization (TPU) rate, were estimated using the Farquhar model. RuBisCo activity, leaf chlorophyll, leaf nitrogen concentration and leaf carbohydrate concentration were also measured. All measurements were performed in the spring leaves of the current year. In both species, the predawn leaf water potential, stomatal conductance and photosynthetic rate peaked in spring, progressively declined throughout the summer and recovered upon autumn rainfall. During the drought period, Q. ilex maintained a higher predawn leaf water potential and stomatal conductance than Q. suber. During this period, we found that photosynthesis was not only limited by stomatal closure, but was also downregulated as a consequence of a decrease in the maximum carboxylation rate (Vc(max)) and the light-saturated rate of photosynthetic electron transport (J(max)) in both species. The Vc(max) and J(max) increased after the first autumnal rains and this increase was related to RuBisCo activity, leaf nitrogen concentration and chlorophyll concentration. In addition, an increase in the TPU rate and in soluble leaf sugar concentration was observed in this period. The results obtained indicate a high resilience of the photosynthetic apparatus to summer drought as well as good recovery in the following autumn rains of these evergreen oak species.

  2. Plasmon-enhanced absorption in a metal nanoparticles and photosynthetic molecules hybrid system

    Science.gov (United States)

    Fan, Zhiyuan; Govorov, Alexander

    2010-03-01

    Photosystem I from cyanobacteria is one of nature's most efficient light harvesting complexes, converting light energy into electronic energy with a quantum yield of 100% and an energy yield about 58%. It is very attractive to the nanotechnology community because of its nanoscale dimensions and excellent optoelectronic properties. This protein has the potential to be utilized in devices such as solar cells, electric switches, photo-detectors, etc. However, there is one limiting factor for potential applications of a single monolayer of these photosynthetic proteins. One monolayer absorbs less than 1% of sunlight's energy, despite their excellent optoelectronic properties. Recently, experiments [1] have been conducted to enhance light absorption with the assistance of metal nanoparticles as artificial antenna for the photosystem I. Here, we present a theoretical description of the strong plasmon-assisted interactions between the metal nanoparticles and the optical dipoles of the reaction centers observed in the experiments. The resonance and off-resonance plasmon effects enhance the electromagnetic fields around the photosystem-I molecules and, in this way, lead to enhanced absorption. [4pt] [1] I. Carmeli, I. Lieberman, L. Kraversky, Zhiyuan Fan, A. O. Govorov, G. Markovich, and S. Richter, submitted.

  3. Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato

    International Nuclear Information System (INIS)

    Ahammed, Golam Jalal; Li, Xin; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2015-01-01

    Photosynthesis, the basal manufacturing process in the earth is habitually restricted by airborne micropollutants such as phenanthrene (PHE). Here, we show that 24-epibrassinolide (EBR), a bioactive plant steroid is able to keep higher photosynthetic capacity consistently for a long period under a shoot-imposed PHE stress in tomato. EBR-promoted photosynthetic capacity and efficiency eventually resulted in a 37.5% increase of biomass under PHE stress. As primary response, transcripts of antioxidant genes were remarkably induced by EBR in PHE-treated plants. Activities of antioxidant and detoxification enzymes were also enhanced by EBR. Notably, EBR-induced higher antioxidant potential was associated with reduced levels of H 2 O 2 and O 2 · — , resulting in a 32.7% decrease of content of malondialdehyde in the end of experiment and relatively healthy chloroplast ultrastructure in EBR + PHE treatment compared with PHE alone. These results indicate that EBR alleviates shoot-imposed PHE phytotoxicity by maintaining a consistently higher photosynthetic capacity and antioxidant potential in tomato. - Highlights: • PHE mist spray gradually inhibits photosynthesis and eventually reduces biomass. • EBR maintains a consistently higher photosynthesis even under PHE stress. • EBR upregulates expression of antioxidant genes as initial response to PHE stress. • EBR reduces oxidative stress by constantly activating strong antioxidant potential. • EBR-induced efficient neutralization of ROS protects chloroplast ultrastructure. - 24-epibrassinolide protects tomato plants from airborne phenanthrene-induced damages by maintaining a consistently higher photosynthetic capacity and antioxidant potential

  4. Effects of water stress and high temperature on photosynthetic rates of two species of Prosopis.

    Science.gov (United States)

    Delatorre, Jose; Pinto, Manuel; Cardemil, Liliana

    2008-08-21

    The main aim of this research was to compare the photosynthetic responses of two species of Prosopis, Prosopis chilensis (algarrobo) and Prosopis tamarugo (tamarugo) subjected to heat and water stress, to determine how heat shock or water deficit, either individually or combined, affect the photosynthesis of these two species. The photosynthetic rates expressed as a function of photon flow density (PFD) were determined by the O(2) liberated, in seedlings of tamarugo and algarrobo subjected to two water potentials: -0.3 MPa and -2.5 MPa and to three temperatures: 25 degrees C, 35 degrees C and 40 degrees C. Light response curves were constructed to obtain light compensation and light saturation points, maximum photosynthetic rates, quantum yields and dark respiration rates. The photochemical efficiency as the F(v)/F(m) ratio and the amount of RUBISCO were also determined under heat shock, water deficit, and under the combined action of both stress. Photosynthetic rates at a light intensity higher than 500 micromole photons m(-2)s(-1) were not significantly different (P>0.05) between species when measured at 25 degrees C under the same water potential. The maximum photosynthetic rates decreased with temperature in both species and with water deficit in algarrobo. At 40 degrees C and -2.5 MPa, the photosynthetic rate of algarrobo fell to 72% of that of tamarugo. The quantum yield decreased in algarrobo with temperature and water deficit and it was reduced by 50% when the conditions were 40 degrees C and -2.5 MPa. Dark respiration increased by 62% respect to the control at 40 degrees C in tamarugo while remained unchanged in algarrobo. The photochemical efficiency decreased with both, high temperature and water deficit, without differences between species. RUBISCO content increased in algarrobo 35 degrees C. Water deficit reduced the amount of RUBISCO in both species. The results of this work support the conclusion that in both Prosopis species, the interaction between

  5. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  6. Response of Holobiont Compartments to Salinity Changes Indicates Osmoregulation of Scleractinian Corals

    Science.gov (United States)

    Roethig, T.; Ochsenkuehn, M. A.; van der Merwe, R.; Roik, A.; Voolstra, C. R.

    2016-02-01

    Environmental change is expected to render the oceans more saline, but scleractinian corals are assumed to be stenohaline osmoconformers. Yet, some corals are able to tolerate salinities up to 50 PSU, but we know little about the mechanisms involved. Previous studies have exclusively addressed the coral host and their algal symbionts (Symbiodinium) in hospite. To disentangle the role of all compartments of the coral holobiont we assessed the response of the coral host, its symbiont algae in the genus Symbiodinium (in hospite and in culture), and the associated bacterial community to strongly increased salinities. In a short-term incubation (4h) we could measure decreases in the calcification rate of the coral host and the photosynthetic performance of its algal symbiont in hospite. In a long-term (29 days) setup we found no differences in the photosynthetic efficiency but a major restructuring of the bacterial communities. In four Symbiodinium cultures we identified changes in photosynthetic yields and osmolytes composition upon short-term salinity exposure (≤24h). Our results show a short-term reaction of coral host and Symbiodinium to strongly increased salinities. However, lack of an apparent physiological long-term response indicates an acclimation process that is accompanied by a microbiome community shift towards a microbiome that potentially supports increased osmolyte production. Furthermore, changes in osmolytes composition in the Symbiodinium cultures display conserved osmoregulatory processes that may translate to osmoregulation for the coral holobiont.

  7. Photosynthetic light response of the C4 grasses Brachiaria brizantha and B. humidicola under shade

    Directory of Open Access Journals (Sweden)

    Dias-Filho Moacyr Bernardino

    2002-01-01

    Full Text Available Forage grasses in tropical pastures can be subjected to considerable diurnal and seasonal reductions in available light. To evaluate the physiological behavior of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola to low light, the photosynthetic light response and chlorophyll contents of these species were compared for plants grown outdoors, on natural soil, in pots, in full sunlight and those shaded to 30 % of full sunlight, over a 30-day period. Both species showed the ability to adjust their photosynthetic behavior in response to shade. Photosynthetic capacity and light compensation point were lower for shade plants of both species, while apparent quantum yield was unaffected by the light regime. Dark respiration and chlorophyll a:b ratio were significantly reduced by shading only in B. humidicola. B. humidicola could be relatively more adapted to succeed, at least temporarily, in light-limited environments.

  8. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency.

    Directory of Open Access Journals (Sweden)

    Chunlai Li

    2011-07-01

    Full Text Available Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1. Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE, which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG, a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These

  9. In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants.

    Science.gov (United States)

    Morales, Alejandro; Yin, Xinyou; Harbinson, Jeremy; Driever, Steven M; Molenaar, Jaap; Kramer, David M; Struik, Paul C

    2018-02-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis ( Arabidopsis thaliana ). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO 2 , to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO 2 , high light intensity, or combined high CO 2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. © 2018 American Society of Plant Biologists. All Rights Reserved.

  10. Characterization and optimization of antibiotic resistant bacterial strains for polyhydroxyalkanoates (phas) production

    International Nuclear Information System (INIS)

    Rehman, S. U.; Jamil, N.; Hussain, S.

    2005-01-01

    In this investigation, sugarcane soil, sewage water and soil containing long chain hydrocarbons was screened to obtain bacterial strains that were able to synthesize poly-beta-hydroxyalkanoates (PHA). The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in glucose and sucrose. Sixteen bacterial strains were isolated, purified and characterized for Gram reaction, biochemical analysis and PHA production. Isolates showed a wide range of tolerance to different commonly used antibiotics. PHA extraction was done by solvent extraction and hypochlorite digestion method. PHA production was optimized for different nitrogen concentrations. (author)

  11. Magnetic irone oxide nanoparticles in photosynthetic systems

    International Nuclear Information System (INIS)

    Khalilov, R.I.; Nasibova, A.N.; Khomutov, G.B.

    2014-01-01

    Full text : It was found and studied the effect of biogenic formation of magnetic inclusions in photosynthetic systems - in various higher plants under the influence of some external stress factors (radiation impact, moisture deficit) and in a model system - a suspension of chloroplasts. For registration and characterization of magnetic nanoparticles in the samples used EPR spectrometer because superparamagnetic and ferromagnetic nanoparticles have a chcracteristic signals of electron magnetic resonance. For direct visualization of magnetic nanoparticles it was used the method of transmission electron microscopy

  12. Worldwide variation in within-canopy photosynthetic acclimation: differences in temporal and environmental controls among plant functional types

    Science.gov (United States)

    Niinemets, Ülo; Keenan, Trevor

    2017-04-01

    Major light gradients, characteristically 10- to 50-fold, constitute the most prominent feature of plant canopies. These gradients drive within-canopy variation in foliage structural, chemical and physiological traits. As a key acclimation response to variation in light availability, foliage photosynthetic capacity per area (Aarea) increases with increasing light availability within the canopy, maximizing whole canopy photosynthesis. Recently, a worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types was constructed and within-canopy variation in photosynthetic acclimation was characterized (Niinemets Ü, Keenan TF, Hallik L (2015) Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. The New Phytologist 205: 973-993). However, the understanding of how within-canopy photosynthetic gradients vary during the growing season and in response to site and stand characteristics is still limited. Here we analyzed temporal, environmental and site (nutrient availability, stand density, ambient CO2 concentration, water availability) sources of variation in within-canopy photosynthetic acclimation in different plant functional types. Variation in key structural (leaf dry mass per unit area, MA), chemical (nitrogen content per dry mass, NM, and area, NA) and physiological (photosynthetic nitrogen use efficiency, EN) photosynthetic capacity per dry mass, Amass and area, Aarea) was examined. The analysis demonstrates major, typically 1.5-2-fold, time-, environment and site-dependent modifications in within-canopy variation in foliage photosynthetic capacity. However, the magnitude and direction of temporal and environmental variations in plasticity significantly varied among functional types. Species with longer leaf life span and low rates of canopy expansion or flush-type canopy

  13. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    Science.gov (United States)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  14. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae.

    Science.gov (United States)

    Enberg, Sara; Piiparinen, Jonna; Majaneva, Markus; Vähätalo, Anssi V; Autio, Riitta; Rintala, Janne-Markus

    2015-10-01

    The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  16. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation

    Directory of Open Access Journals (Sweden)

    Jun eMinagawa

    2013-12-01

    Full Text Available Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic supercomplexes undergo supramolecular reorganization within a short timeframe during acclimation to an environmental change. This reorganization includes state transitions that balance the excitation of photosystem I and II by shuttling peripheral antenna proteins between the two, thermal energy dissipation that occurs at energy-quenching sites within the light-harvesting antenna generated for negative feedback when excess light is absorbed, and cyclic electron flow that is facilitated between photosystem I and the cytochrome bf complex when cells demand more ATP and/or need to activate energy dissipation. This review will highlight the recent findings regarding these environmental acclimation events in model organisms with particular attention to the unicellular green alga C. reinhardtii and with reference to the vascular plant A. thaliana, which offers a glimpse into the dynamic behavior of photosynthetic machineries in nature.

  17. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  18. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  19. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  20. Effect of ambient levels of ozone on photosynthetic components and ...

    African Journals Online (AJOL)

    Effect of ambient levels of ozone on photosynthetic components and radical scavenging system in leaves of African cowpea varieties. ... The O3-induced significant reduction in catalase activity was observed in Blackeye at vegetative and reproductive growth stages; and in Asontem at reproductive growth stage. On the other ...

  1. Effects of 1-butanol, neomycin and calcium on the photosynthetic ...

    African Journals Online (AJOL)

    ajl yemi

    Institute of Food Crops, Jiangsu High Quality Rice R&D Center, Jiangsu Academy of Agricultural Sciences, Nanjing,. Jiangsu Province, 210014, China. Accepted 31 October, 2011. The effects .... and blue light source under the open system, with the following conditions: 1200 µmol m-2s-1 photosynthetic photon flux density.

  2. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria

    NARCIS (Netherlands)

    Hammar, P.; Angermayr, S.A.; Sjostrom, S.L.; van der Meer, J.; Hellingwerf, K.J.; Hudson, E.P.; Joensson, H.N.

    2015-01-01

    BACKGROUND: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible. RESULTS: We present a method for high-throughput, single-cell

  3. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  4. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  5. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria

    DEFF Research Database (Denmark)

    Hammar, Petter; Angermayr, S. Andreas; Sjostrom, Staffan L.

    2015-01-01

    Background: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible.Results: We present a method for high-throughput, single-cell analy...

  6. Zooxanthellae Harvested by Ciliates Associated with Brown Band Syndrome of Corals Remain Photosynthetically Competent▿

    Science.gov (United States)

    Ulstrup, Karin E.; Kühl, Michael; Bourne, David G.

    2007-01-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae. PMID:17259357

  7. Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent.

    Science.gov (United States)

    Ulstrup, Karin E; Kühl, Michael; Bourne, David G

    2007-03-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae.

  8. Effects of gibberellic acid on growth and photosynthetic pigments of ...

    African Journals Online (AJOL)

    The aim of this study was to improve growth performance by enhancing the photosynthetic pigments and enzyme carbonic anhydrase (CA) activity of Hibiscus sabdariffa L. (cv. Sabahia 17) under NaCl stress. Under non-saline condition, application of GA3 enhanced growth parameters (shoot length, shoot fresh weight (FW) ...

  9. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    Science.gov (United States)

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to…

  10. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper

  11. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius "Diabolo".

    Science.gov (United States)

    Zhang, Huihui; Zhong, Haixiu; Wang, Jifeng; Sui, Xin; Xu, Nan

    2016-01-01

    Physocarpus cultivars, and that the low light intensity significantly inhibited electron transfer on the acceptor side of PS II and reduced the activity of the oxygen-evolving complex (OEC) in the leaves of both Physocarpus cultivars. The PS II function in P. opulifolius "Diabolo" was higher than that in P. amurensis Maxim in response to low light. Under low light, the composition of photosynthetic pigments was altered in the leaves of P. opulifolius "Diabolo" in order to maintain a relatively high activity of primary photochemical reactions, and this is the basis of the greater photosynthetic carbon assimilation capacity and one of the main reasons for the better shade-tolerance in P. opulifolius "Diabolo."

  12. In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants1[OPEN

    Science.gov (United States)

    Kramer, David M.

    2018-01-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (Arabidopsis thaliana). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO2, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO2, high light intensity, or combined high CO2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. PMID:28924017

  13. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  14. Response of Eustoma Leaf Phenotype and Photosynthetic Performance to LED Light Quality

    Directory of Open Access Journals (Sweden)

    Md Zohurul Kadir Roni

    2017-10-01

    Full Text Available In a controlled environment, light from light-emitting diodes (LEDs has been associated with affecting the leaf characteristics of Eustoma. LEDs help plant growth and development, yet little is known about photosynthetic performance and related anatomical features in the early growth stage of Eustoma leaves. In this study, we examined the effects of blue (B, red (R, and white (W LEDs on the photosynthetic performance of Eustoma leaves, as well as leaf morphology and anatomy including epidermal layer thickness, palisade cells, and stomatal characteristics. Leaves grown under B LEDs were thicker and had a higher chlorophyll content than those grown under the R and W LEDs. Leaves under B LEDs had greater net photosynthetic rates (A, stomatal conductance (gs, and transpiration rates (E, especially at a higher photon flux density (PPFD, that resulted in a decrease in the intercellular CO2 concentration (Ci, than leaves under the W and R LEDs. B LEDs resulted in greater abaxial epidermal layer thickness and palisade cell length and width than the R and W LED treatments. The palisade cells also developed a more cylindrical shape in response to the B LEDs. B LED leaves also showed greater guard cell length, breadth, and area, and stomatal density, than W or R LEDs, which may contribute to increased A, gs and E at higher PPFDs.

  15. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.

    Science.gov (United States)

    Falkowski, Paul G; Lin, Hanzhi; Gorbunov, Maxim Y

    2017-09-26

    Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  16. VU-B radiation inhibits the photosynthetic electron transport chain in chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Cai, W.; Li, X.; Chen, L.

    2016-01-01

    UV radiation of sunlight is one of harmful factors for earth organisms, especially for photoautotrophs because they require light for energy and biomass production. A number of works have already been done regarding the effects of UV-B radiation at biochemical and molecular level, which showed that UV-B radiation could inhibit photosynthesis activity and reduce photosynthetic electron transport. However quite limited information can accurately make out inhibition site of UV-B radiation on photosynthetic electron transport. In this study, this issue was investigated through measuring oxygen evolution activity, chlorophyll a fluorescence and gene expression in a model unicellular green alga Chlamydomonas reinhardtii. Our results indicated that UV-B radiation could evidently decrease photosynthesis activity and inhibit electron transport by blocking electron transfer process from the first plastoquinone electron acceptors QA to second plastoquinone electron acceptors QB, but not impair electron transfer from the water oxidizing complex to QA. The psbA gene expression was also altered by UV-B radiation, where up-regulation occurred at 2, 4 and 6h after exposure and down-regulation happened at 12 and 24 h after exposure. These results suggested that UV-B could affects D1 protein normal turnover, so there was not enough D1 for binding with QB, which may affect photosynthetic electron transport and photosynthesis activity. (author)

  17. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  18. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Xie, Xiujun; Wang, Guangce; Pan, Guanghua; Gao, Shan; Xu, Pu; Zhu, Jianyi

    2010-04-28

    Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII

  19. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Gao Shan

    2010-04-01

    Full Text Available Abstract Background Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta. Herein, we documented these changes in this species of red algae. Results In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks. During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within

  20. Autotrophic potential in mesophilic heterotrophic bacterial isolates from Sino-Pacific marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Cao, W.; Das, A.; Saren, G.; Jiang, M.; Zhang, H.; Yu, X.

    concentrations of reduced iron (10–6 to 10–5 fmol/(cell·h) and sulfide (10–5 fmol/(cell·h) decreased the uptake potential significantly at p<0.1. Bacterial tolerance to formaldehyde suggested propensities of anaplerotic chemical reactions that form metabolic...

  1. The photosynthetic responses to stocking depth and algal mat density in the farmed seaweed Gracilaria lemaneiformis (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Jiang, Heng; Zou, Dinghui; Chen, Weizhou; Yang, Yufeng

    2017-11-01

    The branches and mass of Gracilaria lemaneiformis increase with growth season, and the thalli sink to deeper depths with increasing biomass density during maricultivation. The changing depth and algal mat density may affect the physiology of the algae. In the present study, the photosynthetic behaviors regarding different biomass densities in G. lemaneiformis thalli collected from different stocking depths were determined, to examine how photosynthesis of this farmed alga was affected by the growth depths and algal mat densities. Our results showed that the chlorophyll a (Chl a), carotenoids (Car), phycoerythrin (PE) contents, and irradiance-saturated maximum photosynthetic rates (P max ) of the deeper layer-grown algae were significantly increased relative to the surface layer-grown algae. The P max , apparent photosynthetic efficiency (α) and dark respiration rate (R d ) of G. lemaneiformis thalli, were reduced, whereas the irradiance saturation points (I k ) were increased, with the increasing algal mat density. We proposed that appropriate measures are needed to trade off the stocking depth and biomass density, in an effort to maintain a relative high photosynthetic productivity during G. lemaneiformis maricultivation.

  2. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient

    NARCIS (Netherlands)

    Granath, G.; Strengbom, J.; Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Berendse, F.; Rydin, H.

    2009-01-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment

  3. Effects of photochemical Transformations of Dissolved Organic Matter on Bacterial Metabolism and Diversity in Three Contrasting Coastal Sites in the Northwestern Mediterranean Sea during Summer

    International Nuclear Information System (INIS)

    Abboudi, M.

    2010-01-01

    The effects of photo transformation of dissolved organic matter (DOM) on bacterial growth, production, respiration, growth efficiency, and diversity were investigated during summer in two lagoons and one oligo trophic coastal water samples from the Northwestern Mediterranean Sea, differing widely in DOM and chromophoric DOM concentrations. Exposure of 0.2μm filtered waters to full sun radiation for 1 d resulted in small changes in optical properties and concentrations of DOM, and no changes in nitrate, nitrite, and phosphate concentrations. After exposure to sunlight or dark (control) treatments, the water samples were inoculated with the original bacterial com community. Photo transformation of DOM had contrasting effects on bacterial production and respiration, depending on the water's origin, resulting in an increase of bacterial growth efficiency for the oligo trophic coastal water sample (120%) and a decrease for the lagoon waters (20 to 40%) relative to that observed in dark treatments. We also observed that bacterial growth on DOM irradiated by full sun resulted in changes in community structure of total and metabolically active bacterial cells for the three locations studied when compared to the bacteria growing on unirradiated DOM, and that changes were mainly caused by photo transformation of DOM by UV radiation for the eutrophic lagoon and the oligo trophic coastal water and by photosynthetically active radiation (PAR) for the meso eutrophic lagoon. These initial results indicate that photo transformation of DOM significantly alters both bacterial metabolism and community structure in surface water for a variety of coastal ecosystems in the Mediterranean Sea. Further studies will be necessary to elucidate a more detailed appreciation of potential temporal and spatial variations of the effects measured. (author)

  4. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).

    Science.gov (United States)

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-10-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal-bacterial consortia are promising for successful bioremediation of pesticide contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A computer investigation of chemically mediated detachment in bacterial biofilms.

    Science.gov (United States)

    Hunt, Stephen M; Hamilton, Martin A; Sears, John T; Harkin, Gary; Reno, Jason

    2003-05-01

    A three-dimensional computer model was used to evaluate the effect of chemically mediated detachment on biofilm development in a negligible-shear environment. The model, BacLAB, combines conventional diffusion-reaction equations for chemicals with a cellular automata algorithm to simulate bacterial growth, movement and detachment. BacLAB simulates the life cycle of a bacterial biofilm from its initial colonization of a surface to the development of a mature biofilm with cell areal densities comparable to those in the laboratory. A base model founded on well established transport equations that are easily adaptable to investigate conjectures at the biological level has been created. In this study, the conjecture of a detachment mechanism involving a bacterially produced chemical detachment factor in which high local concentrations of this detachment factor cause the bacteria to detach from the biofilm was examined. The results show that the often observed 'mushroom'-shaped structure can occur if detachment events create voids so that the remaining attached cells look like mushrooms.

  6. Bacterial contribution to iodine volatilization in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Amachi, S; Kasahara, M; Fujii, T [Chiba Univ., Dept. of Bioresources Chemistry, Matsudo, Chiba (Japan); Muramatsu, Y [National Inst. of Radiological Sciences, Chiba (Japan)

    2003-09-01

    The roles of microorganisms in iodine volatilization from the environment were studied. More than 100 bacterial strains were isolated from various environments such as soils, seawater and marine sediments, and were examined their capacities for volatilizing iodine. Approximately 40% of these bacteria showed significant capacities for volatilizing iodine. Gas chromatographic determinations revealed that the chemical species of gaseous iodine is methyl iodide (CH{sub 3}I). Phylogenetic analysis based on 16S ribosomal DNA showed that these 'iodine-volatilizing bacteria' are widely distributed through the bacterial domain. The iodide-methylating reaction was mediated by an enzyme protein with S-adenosyl-L-methionine (SAM) as the methyl donor. We then estimated bacterial contribution to iodine volatilization from soils. Iodine in soils was volatilized mainly as CH{sub 3}I. CH{sub 3}I emission was enhanced in the presence of glucose or yeast extract, but was inhibited by autoclaving of soils. Little CH{sub 3}I was produced under anaerobic conditions. Furthermore, the addition of streptomycin and tetracycline, antibiotics which inhibit bacterial growth, strongly inhibited CH{sub 3}I emission, while a fungal inhibitor cycloheximide caused little effect. These results suggest that iodine in soils is volatilized as CH{sub 3}I mainly by the action of aerobic soil bacteria. Similar experiment was carried out by using sea water samples. The emission of iodine from sea waters occurred biologically, and bacterial (and also other microbial) contribution was confirmed. Our results suggest that iodine is methylated and volatilized into the atmosphere as a result of bacterial activities. Since bacteria are so abundant and widespread in the environments, they may significantly contribute to global iodine volatilization. This indicates that if {sup 129}I would be released from nuclear facilities, weapons testing or ground storage of nuclear wastes, the pathway of volatilization by

  7. R-prime site-directed transposon Tn7 mutagenesis of the photosynthetic apparatus in Rhodopseudomonas capsulata

    Energy Technology Data Exchange (ETDEWEB)

    Youvan, D C [Univ. of California, Berkeley; Elder, J T; Sandlin, D E; Zsebo, K; Alder, D P; Panopoulos, N J; Marrs, B L; Hearst, J E

    1982-01-01

    Site-directed mutagenesis of the photosynthetic apparatus (PSA) genes in Rhodopseudomonas capsulata is presented utilizing a transposon Tn7 mutagenized R-prime. The R-prime, pRPS404, bears most of the genes necessary for the differentiation of the photosynthetic apparatus. Mutagenesis of the R-prime with Tn7 in Escherichia coli, conjugation into R. capsulata, and homologous recombination with the wild-type alleles efficiently generates photosynthetic apparatus lesions. Wild-type alleles are lost spontaneously and the Tn7-induced lesions are revealed by subsequent intramolecular recombination between IS21 insertion elements that bracket the prime sequences in direct repeat. The molecular nature of the intermediates involved in the transposition, recombination and deletion have been investigated by Southern hybridization analysis. The spontaneous loss of wild-type alleles after homologous recombination with the chromosome may be of general use to other prokaryotic site-directed transposon mutagenesis schemes. The IS21-mediated deletion of the prime DNA is dependent on the RecA protein in E. coli, generating the parental R-factor bearing one IS21 element. A genetic-physical map exists for a portion of the prime photosynthetic apparatus DNA. When Tn7 is inserted into a bacteriochlorophyll gene in the R-prime and then crossed into R. capsulata, mutants are produced that accumulate a bacteriochlorophyll precursor, which is in excellent agreement with the existing genetic-physical map. This corroborates the mutagenesis scheme.

  8. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    Science.gov (United States)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  9. Characterization of Bioaerosol Bacterial Communities During Hazy and Foggy Weather in Qingdao, China

    Science.gov (United States)

    Qi, Jianhua; Li, Mengzhe; Zhen, Yu; Wu, Lijing

    2018-06-01

    This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis (PCRDGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity (RH; r 2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria ( Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.

  10. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    International Nuclear Information System (INIS)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-01-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  11. Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae.

    Science.gov (United States)

    Harańczyk, Hubert; Baran, Ewelina; Nowak, Piotr; Florek-Wojciechowska, Małgorzata; Leja, Anna; Zalitacz, Dorota; Strzałka, Kazimierz

    2015-12-01

    This study applied 1H-NMR in time and in frequency domain measurements to monitor the changes that occur in bound water dynamics at decreased temperature and with increased hydration level in lyophilizates of native wheat photosynthetic lamellae and in photosynthetic lamellae reconstituted from lyophilizate. Proton relaxometry (measured as free induction decay = FID) distinguishes a Gaussian component S within the NMR signal (o). This comes from protons of the solid matrix of the lamellae and consists of (i) an exponentially decaying contribution L1 from mobile membrane protons, presumably from lipids, and from water that is tightly bound to the membrane surface and thus restricted in mobility; and (ii) an exponentially decaying component L2 from more mobile, loosely bound water pool. Both proton relaxometry data and proton spectroscopy show that dry lyophilizate incubated in dry air, i.e., at a relative humidity (p/p0) of 0% reveals a relatively high hydration level. The observed liquid signal most likely originates from mobile membrane protons and a tightly bound water fraction that is sealed in pores of dry lyophilizate and thus restricted in mobility. The estimations suggest that the amount of sealed water does not exceed the value characteristic for the main hydration shell of a phospholipid. Proton spectra collected for dry lyophilizate of photosynthetic lamellae show a continuous decrease in the liquid signal component without a distinct freezing transition when it is cooled down to -60ºC, which is significantly lower than the homogeneous ice nucleation temperature [Bronshteyn, V.L. et al. Biophys. J. 65 (1993) 1853].

  12. Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata.

    Science.gov (United States)

    Zavřel, Tomáš; Szabó, Milán; Tamburic, Bojan; Evenhuis, Christian; Kuzhiumparambil, Unnikrishnan; Literáková, Petra; Larkum, Anthony W D; Raven, John A; Červený, Jan; Ralph, Peter J

    2018-04-01

    This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P 700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO 2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Light affects the chloroplast ultrastructure and post-storage photosynthetic performance of watermelon (Citrullus lanatus) plug seedlings.

    Science.gov (United States)

    Duan, Qingqing; Jiang, Wu; Ding, Ming; Lin, Ye; Huang, Danfeng

    2014-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m(-2)·s(-1) or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality

  14. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    Directory of Open Access Journals (Sweden)

    Thomas S Bibby

    Full Text Available BACKGROUND: Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. METHODS: All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. CONCLUSION/SIGNIFICANCE: Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1 the phycobilisome (PBS genes of Synechococcus; (2 the pcb genes of Prochlorococcus; and (3 the iron-stress-induced (isiA genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found

  15. Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes

    KAUST Repository

    Lindblad, Peter

    2016-01-01

    With recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research

  16. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto; Menendez Rodriguez, Gabriel; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Poater, Albert; Cavallo, Luigi; Macchioni, Alceo

    2016-01-01

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  17. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  18. Bacterial Flux by Net Precipitation from the Phyllosphere to the Forest Floor.

    Science.gov (United States)

    Pound, P.; Van Stan, J. T., II; Moore, L. D.; Bittar, T.

    2016-12-01

    Transport pathways of microbes between ecosystem spheres (atmosphere, phyllosphere, and pedosphere) represent major fluxes in nutrient cycles and have the potential to significantly affect microbial ecological processes. We quantified a previously unexamined microbial flux from the phyllosphere to the pedosphere during rainfall and found it to be substantial. Net rainfall bacterial fluxes for throughfall and stemflow were quantified using flow cytometry and a quantitative Polymerase Chain Reaction (qPCR) assay for a Quercus virginiana (Mill., southern live oak) forest with heavy epiphyte cover of Tillandsia usneoides (L., Spanish moss) and Pleopeltis polypodiodes (L., resurrection fern) in coastal Georgia (Southeast USA). Total net precipitation flux of bacteria was 15 quadrillion cells year-1 ha-1, which (assuming a bacterial cell mass of 1 pg) is approximately 15 kg of bacterial biomass supply per year. Stemflow generation was low in this stand (rarely exceeded 10 L storm-1) yet still delivered half the annual net precipitation flux due to high bacterial concentration. The role of this previously unquantified bacterial flux in the forest floor has also been under studied, yet it may be significant by contributing functional community members (if living) or labile lysates (if dead).

  19. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  20. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.