WorldWideScience

Sample records for bacterial phosphotransferase system

  1. Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system

    DEFF Research Database (Denmark)

    Rohwer, J.M.; Jensen, Peter Ruhdal; Shinohara, Y.

    1996-01-01

    The effect of different cellular free-energy states on the uptake of methyl alfa-D-glucopyranoside, an analoque of glucose, by Escherichia coli phosphoenolpyruvate:carbohydrate phosphotransferase system was investigated. The intracellular ATP/ADP ratio was varied by changing the expression...... of the atp operon, which codes for the H+-ATPase, or by adding an uncoupler of oxidative phosphorylation or an inhibitor of respiration. Corresponding initial phosphotransferase uptake rates were determined using an improved uptake assay that works with growing cells in steady state. The results show...... that the initial uptake rate was decreased under conditions of lowered intracellular ATP/ADP ratios, irrespective of which method was used to change the cellular energy state.. When either the expression of the atp operon was changed or 2,4-dinitrophenol was added to wild-type cells, the relationship between...

  2. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides : The coupling between transport and phosphorylation in inside-out vesicles

    NARCIS (Netherlands)

    Lolkema, Juke S.; Robillard, George T.

    The bacterial phosphotransferase systems are believed to catalyze the concomitant transport and phosphorylation of hexoses and hexitols. The transport is from the outside to the inside of the cell. An absolute coupling between transport and phosphorylation has however been questioned in the

  3. Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation

    Directory of Open Access Journals (Sweden)

    Yu-Tze Horng

    2018-04-01

    Full Text Available Background/Purpose: Klebsiella pneumoniae is one of the leading causes of device-related infections (DRIs, which are associated with attachment of bacteria to these devices to form a biofilm. The latter is composed of not only bacteria but also extracellular polymeric substances (EPSes consisting of extracellular DNAs, polysaccharides, and other macromolecules. The phosphoenolpyruvate (PEP:carbohydrate phosphotransferase system (PTS regulates diverse processes of bacterial physiology. In the genome of K. pneumoniae MGH 78578, we found an uncharacterized enzyme II complex homolog of PTS: KPN00353 (EIIA homolog, KPN00352 (EIIB homolog, and KPN00351 (EIIC homolog. The aim of this study was to characterize the potential physiological role of KPN00353, KPN00352, and KPN00351 in biofilm formation by K. pneumoniae. Methods/Results: We constructed the PTS mutants and recombinant strains carrying the gene(s of PTS. The recombinant K. pneumoniae strain overexpressing KPN00353–KPN00352–KPN00351 produced more extracellular matrix than did the vector control according to transmission and scanning electron microscopy. Judging by quantification of biofilm formation, of extracellular DNA (eDNA, and of capsular polysaccharide, the recombinant strain overexpressing KPN00353-KPN00352-KPN00351 produced more biofilm and capsular polysaccharide after overnight culture and more eDNA in the log phase as compared to the vector control. Conclusion: The genes, KPN00353–KPN00352–KPN00351, encode a putative enzyme II complex in PTS and positively regulate biofilm formation by enhancing production of eDNA and capsular polysaccharide in K. pneumoniae. Five proteins related to chaperones, to the citric acid cycle, and to quorum sensing are upregulated by the KPN00353–KPN00352–KPN00351 system. Keywords: Klebsiella, PTS, Biofilm, eDNA, Polysaccharide

  4. Crystallization of Enzyme IIB of the Cellobiose-specific Phosphotransferase System of Escherichia coli

    NARCIS (Netherlands)

    van Montfort, Robert; Pijning, Tjaard; Kalk, Kornelis; Schuurman-Wolters, Gea K.; Reizer, Jonathan; Safer Jr., Milton H.; Robillard, George; Dijkstra, Bauke W.

    1994-01-01

    Crystals of enzyme IIB of the cellobiose-specific phosphotransferase system have been obtained from 15% polyethylene glycol 4000 using both streak-seeding and macroseeding techniques at 4°. Crystals were grown with the hanging drop method of vapour diffusion. Addition of 2-propanol and

  5. Escherichia coli Phosphoenolpyruvate Dependent Phosphotransferase System. Copurification of HPr and α1-6 Glucan

    NARCIS (Netherlands)

    Dooijewaard, G.; Roossien, F.F.; Robillard, G.T.

    1979-01-01

    A rapid, high-yield procedure has been developed for the purification of HPr from the Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. During this procedure, the protein copurifies with a 2500-dalton homopolysaccharide which we have identified as α1-6 glucan. The results of

  6. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    Science.gov (United States)

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Bustamante, Víctor H

    2016-02-01

    A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression. © 2015 John Wiley & Sons Ltd.

  8. 31PHOSPHO-NMR DEMONSTRATION OF PHOSPHOCYSTEINE AS A CATALYTIC INTERMEDIATE ON THE ESCHERICHIA-COLI PHOSPHOTRANSFERASE SYSTEM EIIMTL

    NARCIS (Netherlands)

    MEYER, GH; KRUIZINGA, WH; TAMMINGA, KS; VANWEEGHEL, RP; ROBILLARD, GT; Pas, Hendrikus

    1991-01-01

    The mannitol-specific phosphotransferase system transport protein, Enzyme II(Mtl), contains two catalytically important phosphorylated amino acid residues, both present on the cytoplasmic part of the enzyme. Recently, this portion has been subcloned, purified, and shown to be an enzymatically active

  9. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System : Mechanism of Phosphoryl-Group Transfer from Phosphoenolpyruvate to HPr

    NARCIS (Netherlands)

    Misset, Onno; Robillard, George T.

    1982-01-01

    The mechanism of phosphoryl-group transfer from phosphoenolpyruvate (PEP) to HPr, catalyzed by enzyme I of the Escherichia coli PEP-dependent phosphotransferase system, has been studied in vitro. Steady-state kinetics and isotope exchange measurements revealed that this reaction cannot be described

  10. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2005-05-01

    Full Text Available Abstract The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.

  11. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization.

    Science.gov (United States)

    Francl, Alyssa L; Hoeflinger, Jennifer L; Miller, Michael J

    2012-04-01

    Improving the annotation of sugar catabolism-related genes requires functional characterization. Our objective was to identify the genes necessary for lactose utilization by Lactobacillus gasseri ATCC 33323 (NCK334). The mechanism of lactose transport in many lactobacilli is a lactose/galactose-specific permease, yet no orthologue was found in NCK334. Characterization of an EI knockout strain [EI (enzyme I) is required for phosphotransferase system transporter (PTS) function] demonstrated that L. gasseri requires PTS(s) to utilize lactose. In order to determine which PTS(s) were necessary for lactose utilization, we compared transcript expression profiles in response to lactose for the 15 complete PTSs identified in the NCK334 genome. PTS 6CB (LGAS_343) and PTS 8C (LGAS_497) were induced in the presence of lactose 107- and 53-fold, respectively. However, L. gasseri ATCC 33323 PTS 6CB, PTS 8C had a growth rate similar to that of the wild-type on semisynthetic deMan, Rogosa, Sharpe (MRS) medium with lactose. Expression profiles of L. gasseri ATCC 33323 PTS 6CB, PTS 8C in response to lactose identified PTS 9BC (LGAS_501) as 373-fold induced, whereas PTS 9BC was not induced in NCK334. Elimination of growth on lactose required the inactivation of both PTS 6CB and PTS 9BC. Among the six candidate phospho-β-galactosidase genes present in the NCK334 genome, LGAS_344 was found to be induced 156-fold in the presence of lactose. In conclusion, we have determined that: (1) NCK334 uses a PTS to import lactose; (2) PTS 6CB and PTS 8C gene expression is strongly induced by lactose; and (3) elimination of PTS 6CB and PTS 9BC is required to prevent growth on lactose.

  12. Escherichia coli Phosphoenolpyruvate Dependent Phosphotransferase System. NMR Studies of the Conformation of HPr and P-HPr and the Mechanism of Energy Coupling

    NARCIS (Netherlands)

    Dooijewaard, G.; Roossien, F.F.; Robillard, G.T.

    1979-01-01

    1H and 31P nuclear magnetic resonance investigations of the phosphoprotein intermediate P-HPr and the parent molecule HPr of the E. coli phosphoenolpyruvate dependent phosphotransferase system (PTS) show that HPr can exist in two conformations. These conformations influence the protonation state of

  13. Phosphoenolpyruvate-Dependent Fructose Phosphotransferase System of Rhodopseudomonas sphaeroides : Purification and Physicochemical and Immunochemical Characterization of a Membrane-Associated Enzyme I

    NARCIS (Netherlands)

    Brouwer, Marius; Elferink, Marieke G.L.; Robillard, George T.

    1982-01-01

    The phosphotransferase system (PTS) of the phototrophic bacterium Rhodopseudomonas sphaeroides consists of a component located in the cytoplasmic membrane and a membrane-associated enzyme called “soluble factor” (SF). SF has been partially purified by a combination of hydrophobic interaction and

  14. Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate : phosphotransferase system of Pseudomonas putida.

    Science.gov (United States)

    Chavarría, Max; Fuhrer, Tobias; Sauer, Uwe; Pflüger-Grau, Katharina; de Lorenzo, Víctor

    2013-01-01

    The gene that encodes the catabolite repressor/activator, Cra (FruR), of Pseudomonas putida is divergent from the fruBKA operon for the uptake of fructose via the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS(Fru)). The expression of the fru cluster has been studied in cells growing on substrates that change the intracellular concentrations of fructose-1-P (F1P), the principal metabolic intermediate that counteracts the DNA-binding ability of Cra on an upstream operator. While the levels of the regulator were not affected by any of the growth conditions tested, the transcription of fruB was stimulated by fructose but not by the gluconeogenic substrate, succinate. The analysis of the P(fruB) promoter activity in a strain lacking the Cra protein and the determination of key metabolites revealed that this regulator represses the expression of PTS(Fru) in a fashion that is dependent on the endogenous concentrations of F1P. Because FruB (i.e. the EI-HPr-EIIA(Fru) polyprotein) can deliver a high-energy phosphate to the EIIA(Ntr) (PtsN) enzyme of the PTS(Ntr) branch, the cross-talk between the two phosphotransferase systems was examined under metabolic regimes that allowed for the high or low transcription of the fruBKA operon. While fructose caused cross-talk, succinate prevented it almost completely. Furthermore, PtsN phosphorylation by FruB occurred in a Δcra mutant regardless of growth conditions. These results traced the occurrence of the cross-talk to intracellular pools of Cra effectors, in particular F1P. The Cra/F1P duo seems to not only control the expression of the PTS(Fru) but also checks the activity of the PTS(Ntr) in vivo. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    Directory of Open Access Journals (Sweden)

    Zúñiga Manuel

    2008-05-01

    Full Text Available Abstract Background The phosphoenolpyruvate phosphotransferase system (PTS plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria

  16. The Small Protein SgrT Controls Transport Activity of the Glucose-Specific Phosphotransferase System.

    Science.gov (United States)

    Lloyd, Chelsea R; Park, Seongjin; Fei, Jingyi; Vanderpool, Carin K

    2017-06-01

    stress to help bacterial cells maintain balanced metabolism and continue growing. Our results indicate that this protein acts on the glucose transport system, inhibiting its activity under stress conditions in order to allow cells to utilize alternative carbon sources. This work sheds new light on a key biological problem: how cells coordinate carbohydrate transport and metabolism. The study also expands our understanding of the functional capacities of small proteins. Copyright © 2017 American Society for Microbiology.

  17. Plasticity of regulation of mannitol phosphotransferase system operon by CRP-cAMP complex in Vibrio cholerae.

    Science.gov (United States)

    Zhou, Yan Yan; Zhang, Hong Zhi; Liang, Wei Li; Zhang, Li Juan; Zhu, Jun; Kan, Biao

    2013-10-01

    The complex of the cyclic AMP receptor protein (CRP) and cAMP is an important transcriptional regulator of numerous genes in prokaryotes. The transport of mannitol through the phosphotransferase systems (PTS) is regulated by the CRP-cAMP complex. The aim of the study is to investigate how the CRP-cAMP complex acting on the mannitol PTS operon mtl of the Vibrio cholerae El Tor biotype. The crp mutant strain was generated by homologous recombination to assess the need of CRP to activate the mannitol PTS operon of V. cholerae El Tor. Electrophoretic mobility shift assays (EMSA) and the reporter plasmid pBBRlux were used to confirm the role that the CRP-cAMP complex playing on the mannitol PTS operon mtl. In this study, we confirmed that CRP is strictly needed for the activation of the mtl operon. We further experimentally identified five CRP binding sites within the promoter region upstream of the mannitol PTS operon mtl of the Vibrio cholerae El Tor biotype and found that these sites display different affinities for CRP and provide different contributions to the activation of the operon. The five binding sites collectively confer the strong activation of mannitol transfer by CRP in V. cholerae, indicating an elaborate and subtle CRP activation mechanism. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Involvement of adenosine cyclic 3',5'-phosphate and inducer.

    Science.gov (United States)

    Saier, M H; Keeler, D K; Feucht, B U

    1982-03-10

    Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.

  19. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).

    Science.gov (United States)

    Koh, Ji Hoon; Choi, Seung Hye; Park, Seung Won; Choi, Nag-Jin; Kim, Younghoon; Kim, Sae Hun

    2013-10-01

    Synbiotics, the combination of prebiotics and probiotics, has been shown to produce synergistic effects that promote gastrointestinal well-being of host. Tagatose is a low calorie food ingredient with putative health-promoting benefits. Herein, we investigated its synbiotic impact on the viability of Lactobacillus casei 01 and Lactobacillus rhamnosus strain GG and the potential mechanism involved. Tagatose, as a synbiotic substrate, enhanced the growth of L. casei 01 and L. rhamnosus strain GG compared to other prebiotics. Other gut-indigenous such as Clostridium spp. readily utilized fructooligosaccharide (FOS), the most widely used functional prebiotics, but not tagatose. Additionally, tagatose enhanced probiotic functions of L. casei 01 and L. rhamnosus strain GG by reinforcing their attachment on HT-29 intestine epithelial cells and enhancing their cholesterol-lowering activities. Whole transcriptome study and quantitative real-time polymerase chain reaction (qRT-PCR) test showed that the presence of tagatose in L. rhamnosus strain GG caused induction of a large number of genes associated with carbohydrate metabolism including the phosphotransferase system (PTS). Collectively, these results indicate the tagatose enhanced the growth of L. casei 01 and L. rhamnosus strain GG and their probiotic activities by activating tagatose-associated PTS networks. Importantly, this study highlights the potential application of tagatose and L. casei 01 and/or L. rhamnosus strain GG as a synbiotic partner in functional dairy foods (i.e. yogurt and cheese) and therapeutic dietary supplements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Identification and functional analysis of the L-ascorbate-specific enzyme II complex of the phosphotransferase system in Streptococcus mutans.

    Science.gov (United States)

    Wu, Xinyu; Hou, Jin; Chen, Xiaodan; Chen, Xuan; Zhao, Wanghong

    2016-03-22

    Streptococcus mutans is the primary etiological agent of human dental caries. It can metabolize a wide variety of carbohydrates and produce large amounts of organic acids that cause enamel demineralization. Phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays an important role in carbohydrates uptake of S. mutans. The ptxA and ptxB genes in S. mutans encode putative enzyme IIA and enzyme IIB of the L-ascorbate-specific PTS. The aim of this study was to analyze the function of these proteins and understand the transcriptional regulatory mechanism. ptxA (-), ptxB (-), as well as ptxA (-) , ptxB (-) double-deletion mutants all had more extended lag phase and lower growth yield than wild-type strain UA159 when grown in the medium using L-ascorbate as the sole carbon source. Acid production and acid killing assays showed that the absence of the ptxA and ptxB genes resulted in a reduction in the capacity for acidogenesis, and all three mutant strains did not survive an acid shock. According to biofilm and extracellular polysaccharides (EPS) formation analysis, all the mutant strains formed much less prolific biofilms with small amounts of EPS than wild-type UA159 when using L-ascorbate as the sole carbon source. Moreover, PCR analysis and quantitative real-time PCR revealed that sgaT, ptxA, ptxB, SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon. The transcription levels of these genes were all elevated in the presence of L-ascorbate, and the expression of ptxA gene decreased significantly once ptxB gene was knockout. The ptxA and ptxB genes are involved in the growth, aciduricity, acidogenesis, and formation of biofilms and EPS of S. mutans when L-ascorbate is the sole carbon source. In addition, the expression of ptxA is regulated by ptxB. ptxA, ptxB, and the upstream gene sgaT, the downstream genes SMU.273, SMU.274 and SMU.275 appear to be parts of the same operon, and L-ascorbate is a potential inducer of the operon.

  1. Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System. Functional Asymmetry in Enzyme I Subunits Demonstrated by Reaction with 3-Bromopyruvate

    NARCIS (Netherlands)

    Hoeve-Duurkens, Ria ten; Robillard, George T.

    1984-01-01

    In the bacterial phosphoenolpyruvate-dependent sugar transport systems, enzyme I (EI) is responsible for the initial reaction step which is the transfer of the phosphoryl group from phosphoenolpyruvate to a cytoplasmic phosphocarrier protein (HPr). The inactivation of enzyme I by the substrate

  2. Control of Lactose Transport, β-Galactosidase Activity, and Glycolysis by CcpA in Streptococcus thermophilus : Evidence for Carbon Catabolite Repression by a Non-Phosphoenolpyruvate-Dependent Phosphotransferase System Sugar

    NARCIS (Netherlands)

    Bogaard, Patrick T.C. van den; Kleerebezem, Michiel; Kuipers, Oscar P.; Vos, Willem M. de

    2000-01-01

    Streptococcus thermophilus, unlike many other gram-positive bacteria, prefers lactose over glucose as the primary carbon and energy source. Moreover, lactose is not taken up by a phosphoenolpyruvate-dependent phosphotransferase system (PTS) but by the dedicated transporter LacS. In this paper we

  3. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    International Nuclear Information System (INIS)

    Pas, H.H.; Robillard, G.T.

    1988-01-01

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linked cysteine was accomplished by inactivation with [ 14 C]iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing

  4. Modeling and analysis of flux distributions in the two branches of the phosphotransferase system in Pseudomonas putida

    NARCIS (Netherlands)

    Kremling, A.; Plufger-Grau, K.; Silva-Rocha, R.; Puchalka, J.; Martins Dos Santos, V.A.P.; Lorenzo, de V.

    2012-01-01

    BACKGROUND: Signal transduction plays a fundamental role in the understanding of cellular physiology. The bacterialphosphotransferase system (PTS) together with the PEP/pyruvate node in central metabolism represents asignaling unit that acts as a sensory element and measures the activity of the

  5. sigma54-Mediated control of the mannose phosphotransferase sytem in Lactobacillus plantarum impacts on carbohydrate metabolism

    NARCIS (Netherlands)

    Stevens, M.J.A.; Molenaar, D.; Jong, de A.; Vos, de W.M.; Kleerebezem, M.

    2010-01-01

    Sigma factors direct specific binding of the bacterial RNA polymerase to the promoter. Here we present the elucidation of the sigma(54 ) regulon in Lactobacillus plantarum. A sequence-based regulon prediction of sigma(54)-dependent promoters revealed an operon encoding a mannose phosphotransferase

  6. sigma(54)-mediated control of the mannose phosphotransferase sytem in Lactobacillus plantarum impacts on carbohydrate metabolism

    NARCIS (Netherlands)

    Stevens, Marc J. A.; Molenaar, Douwe; de Jong, Anne; De Vos, Willem M.; Kleerebezem, Michiel

    Sigma factors direct specific binding of the bacterial RNA polymerase to the promoter. Here we present the elucidation of the sigma(54) regulon in Lactobacillus plantarum. A sequence-based regulon prediction of sigma(54)-dependent promoters revealed an operon encoding a mannose phosphotransferase

  7. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme III/sup mtl/ of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme II/sup mtl/ of Escherichia coli

    International Nuclear Information System (INIS)

    Reiche, B.; Frank, R.; Deutscher, J.; Meyer, N.; Hengstenberg, W.

    1988-01-01

    Enzyme III/sup mtl/ is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, the authors report the isolation of III/sup mtl/ from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of III/sup mtl/ with [ 32 P]PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase GLu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp-Asp. The corresponding peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which they assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the III/sup mtl/ proteins was found to be 15,000. They have also determined the N-terminal sequence of both proteins. Comparison of the III/sup mtl/ peptide sequences and the C-terminal part of the enzyme II/sup mtl/ of Escherichia coli reveals considerable sequence homology, which supports the suggestion that II/sup mtl/ of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II

  8. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  9. An homolog of the Frz Phosphoenolpyruvate:carbohydrate phosphoTransferase System of extraintestinal pathogenic Escherichia coli is encoded on a genomic island in specific lineages of Streptococcus agalactiae.

    Science.gov (United States)

    Patron, Kévin; Gilot, Philippe; Camiade, Emilie; Mereghetti, Laurent

    2015-06-01

    We identified a Streptococcus agalactiae metabolic region (fru2) coding for a Phosphoenolpyruvate:carbohydrate phosphoTransferase System (PTS) homologous to the Frz system of extraintestinal pathogenic Escherichia coli strains. The Frz system is involved in environmental sensing and regulation of the expression of adaptation and virulence genes in E. coli. The S. agalactiae fru2 region codes three subunits of a PTS transporter of the fructose-mannitol family, a transcriptional activator of PTSs of the MtlR family, an allulose-6 phosphate-3-epimerase, a transaldolase and a transketolase. We demonstrated that all these genes form an operon. The fru2 operon is present in a 17494-bp genomic island. We analyzed by multilocus sequence typing a population of 492 strains representative of the S. agalactiae population and we showed that the presence of the fru2 operon is linked to the phylogeny of S. agalactiae. The fru2 operon is always present within strains of clonal complexes CC 1, CC 7, CC 10, CC 283 and singletons ST 130 and ST 288, but never found in other CCs and STs. Our results indicate that the fru2 operon was acquired during the evolution of the S. agalactiae species from a common ancestor before the divergence of CC 1, CC 7, CC 10, CC 283, ST 130 and ST 288. As S. agalactiae strains of CC 1 and CC 10 are frequently isolated from adults with invasive disease, we hypothesize that the S. agalactiae Fru2 system senses the environment to allow the bacterium to adapt to new conditions encountered during the infection of adults. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Boyko, Konstantin M., E-mail: kmb@inbi.ras.ru [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Gorbacheva, Marina A.; Korzhenevskiy, Dmitry A. [National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Alekseeva, Maria G.; Mavletova, Dilara A.; Zakharevich, Natalia V.; Elizarov, Sergey M.; Rudakova, Natalia N.; Danilenko, Valery N. [Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, 119333 (Russian Federation); Popov, Vladimir O. [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation)

    2016-09-02

    Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3′-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding. - Highlights: • 3D structure of the novel aminoglycoside phosphotransferase AphVIII was obtained. • AphVIII activation loop is clearly identified in the electron density. • AphVIII has some unique structural features in its substrate C-ring binding pocket.

  11. The redox state and the phosphorylation state of the mannitol-specific carrier of the E. coli phosphoenolpyruvate-dependent phosphotransferase system

    NARCIS (Netherlands)

    Robillard, G.T.; Pas, H.H.; Gage, D.; Elferink, M.G.L.

    1988-01-01

    This review summarizes the recent developments in identifying the activity-linked cysteine as one of the phosphorylation sites on the mannitol-specific EII of the E. coli phosphoenolpyruvate-dependent mannitol transport system. Two phosphorylation sites have been identified, one being the HPr/P-HPr

  12. Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: Evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system

    NARCIS (Netherlands)

    Chaillou, S.; Pouwels, P.H.; Postma, P.W.

    1999-01-01

    We have identified and characterized the D-xylose transport system of Lactobacillus pentosus. Uptake of D-xylose was not driven by the proton motive force generated by malolactic fermentation and required D-xylose metabolism. The kinetics of D-xylose transport were indicative of a low- affinity

  13. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine.

    Directory of Open Access Journals (Sweden)

    Yaffa Mizrachi Nebenzahl

    Full Text Available In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.

  14. Crystallization and preliminary crystallographic analysis of hygromycin B phosphotransferase from Escherichia coli

    International Nuclear Information System (INIS)

    Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika; Kawakami, Ryouta; Sasaki, Yasuyuki; Hoshino, Takayuki; Ohsawa, Kanju; Nakamura, Akira; Yajima, Shunsuke

    2007-01-01

    The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported. Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3 2 21, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein

  15. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  16. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  17. Bacterial toxin-antitoxin systems: more than selfish entities?

    OpenAIRE

    Laurence Van Melderen; Manuel Saavedra De Bast

    2009-01-01

    Bacterial toxin?antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence,...

  18. Bacterial community changes in an industrial algae production system.

    Science.gov (United States)

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  19. Determinants of bacterial communities in Canadian agroforestry systems.

    Science.gov (United States)

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Bacterial toxin-antitoxin systems: more than selfish entities?

    Science.gov (United States)

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-03-01

    Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  1. Bacterial levels in the Nyl River system, Limpopo province, South ...

    African Journals Online (AJOL)

    Heterotrophic plate counts, faecal coliform counts and total coliform counts indicated that the system was stressed. The Modimolle sewage treatment works and local agricultural activities were found to be the point and diffuse sources of bacterial contamination, respectively. African Journal of Aquatic Science 2010, 35(1): ...

  2. Compensatory expression of human -Acetylglucosaminyl-1-phosphotransferase subunits in mucolipidosis type III gamma

    OpenAIRE

    Pohl , Sandra; Tiede , Stephan; Castrichini , Monica; Cantz , Michael; Gieselmann , Volkmar; Braulke , Thomas

    2009-01-01

    Abstract The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markers essential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (?2, ?2, ?2). The ?- and ?-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the ?-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GN...

  3. Bacterial Toxin–Antitoxin Systems: More Than Selfish Entities?

    Science.gov (United States)

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-01-01

    Bacterial toxin–antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes. PMID:19325885

  4. Bacterial toxin-antitoxin systems: more than selfish entities?

    Directory of Open Access Journals (Sweden)

    Laurence Van Melderen

    2009-03-01

    Full Text Available Bacterial toxin-antitoxin (TA systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  5. CRISPR technologies for bacterial systems: Current achievements and future directions.

    Science.gov (United States)

    Choi, Kyeong Rok; Lee, Sang Yup

    2016-11-15

    Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR technologies. Next, we describe CRISPR/Cas-derived technologies for bacterial strain development, including genome editing and gene expression regulation applications. Then, other CRISPR technologies possessing great potential for industrial applications are described, including typing and tracking of bacterial strains, virome identification, vaccination of bacteria, and advanced antimicrobial approaches. For each application, we note our suggestions for additional improvements as well. In the same context, replication of CRISPR/Cas-based chromosome imaging technologies developed originally in eukaryotic systems is introduced with its potential impact on studying bacterial chromosomal dynamics. Also, the current patent status of CRISPR technologies is reviewed. Finally, we provide some insights to the future of CRISPR technologies for bacterial systems by proposing complementary techniques to be developed for the use of CRISPR technologies in even wider range of applications. Copyright © 2016. Published by Elsevier Inc.

  6. Harnessing CRISPR-Cas systems for bacterial genome editing.

    Science.gov (United States)

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Small intestinal bacterial overgrowth in patients with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Saara Rawn

    2017-01-01

    Full Text Available Small intestinal bacterial overgrowth (SIBO is common in patients with systemic sclerosis (SSc yet often goes underrecognized in clinical practice. In patients with SSc, untreated SIBO may result in marked morbidity and possible mortality. The pathogenesis of SIBO is multifactorial and relates to immune dysregulation, vasculopathy, and dysmotility. This article reviews various diagnostic approaches and therapeutic options for SIBO. Treatment modalities mainly include prokinetics, probiotics, and antibiotics.

  8. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Suhyung Cho

    2018-04-01

    Full Text Available The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas adaptive immune system has been extensively used for gene editing, including gene deletion, insertion, and replacement in bacterial and eukaryotic cells owing to its simple, rapid, and efficient activities in unprecedented resolution. Furthermore, the CRISPR interference (CRISPRi system including deactivated Cas9 (dCas9 with inactivated endonuclease activity has been further investigated for regulation of the target gene transiently or constitutively, avoiding cell death by disruption of genome. This review discusses the applications of CRISPR/Cas for genome editing in various bacterial systems and their applications. In particular, CRISPR technology has been used for the production of metabolites of high industrial significance, including biochemical, biofuel, and pharmaceutical products/precursors in bacteria. Here, we focus on methods to increase the productivity and yield/titer scan by controlling metabolic flux through individual or combinatorial use of CRISPR/Cas and CRISPRi systems with introduction of synthetic pathway in industrially common bacteria including Escherichia coli. Further, we discuss additional useful applications of the CRISPR/Cas system, including its use in functional genomics.

  9. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    Science.gov (United States)

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Distribution and diversity of bacterial secretion systems across metagenomic datasets.

    Science.gov (United States)

    Barret, Matthieu; Egan, Frank; O'Gara, Fergal

    2013-02-01

    Bacteria can manipulate their surrounding environment through the secretion of proteins into other living organisms and into the extracellular milieu. In Gram stain negative bacteria this process is mediated by different types of secretion systems from type I through type VI secretion system (T1SS-T6SS). In this study the prevalence of these secretion systems in 312 publicly available microbiomes derived from a wide range of ecosystems was investigated by a gene-centric approach. Our analysis demonstrates that some secretion systems are over-represented in some specific samples. In addition, some T3SS and T6SS phylogenetic clusters were specifically enriched in particular ecological niches, which could indicate specific bacterial adaptation to these environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Newer systems for bacterial resistances to toxic heavy metals.

    Science.gov (United States)

    Silver, S; Ji, G

    1994-01-01

    Bacterial plasmids contain specific genes for resistances to toxic heavy metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, and Zn2+. Recent progress with plasmid copper-resistance systems in Escherichia coli and Pseudomonas syringae show a system of four gene products, an inner membrane protein (PcoD), an outer membrane protein (PcoB), and two periplasmic Cu(2+)-binding proteins (PcoA and PcoC). Synthesis of this system is governed by two regulatory proteins (the membrane sensor PcoS and the soluble responder PcoR, probably a DNA-binding protein), homologous to other bacterial two-component regulatory systems. Chromosomally encoded Cu2+ P-type ATPases have recently been recognized in Enterococcus hirae and these are closely homologous to the bacterial cadmium efflux ATPase and the human copper-deficiency disease Menkes gene product. The Cd(2+)-efflux ATPase of gram-positive bacteria is a large P-type ATPase, homologous to the muscle Ca2+ ATPase and the Na+/K+ ATPases of animals. The arsenic-resistance system of gram-negative bacteria functions as an oxyanion efflux ATPase for arsenite and presumably antimonite. However, the structure of the arsenic ATPase is fundamentally different from that of P-type ATPases. The absence of the arsA gene (for the ATPase subunit) in gram-positive bacteria raises questions of energy-coupling for arsenite efflux. The ArsC protein product of the arsenic-resistance operons of both gram-positive and gram-negative bacteria is an intracellular enzyme that reduces arsenate [As(V)] to arsenite [As(III)], the substrate for the transport pump. Newly studied cation efflux systems for Cd2+, Zn2+, and Co2+ (Czc) or Co2+ and Ni2+ resistance (Cnr) lack ATPase motifs in their predicted polypeptide sequences. Therefore, not all plasmid-resistance systems that function through toxic ion efflux are ATPases. The first well-defined bacterial metallothionein was found in the cyanobacterium Synechococcus

  12. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose

    OpenAIRE

    Dominguez, H.; Lindley, N. D.

    1996-01-01

    Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.

  13. Pattern Transitions in Bacterial Oscillating System under Nanofluidic Confinement

    Science.gov (United States)

    Shen, Jie-Pan; Chou, Chia-Fu

    2011-03-01

    Successful binary fission in E. coli relies on remarkable oscillatory behavior of the MinCDE protein system to determine the exact division site. The most favorable models to explain this fascinating spatiotemporal regulation on dynamic MinDE pattern formation in cells are based on reaction-diffusion scenario. Although not fully understood, geometric factors caused by bacterial morphology play a crucial role in MinDE dynamics. In the present study, bacteria were cultured, confined and reshaped in various micro/nanofluidic devices, to mimic either curvature changes of cell peripherals. Fluorescence imaging was utilized to detail the mode transitions in multiple MinDE patterns. The understanding of the physics in multiple pattern formations is further complemented via in silico modeling. The study synergizes the join merits of in vivo, in vitro and in silico approaches, to grasp the insight of stochastic dynamics inherited from the noisy mesoscopic biophysics. We acknowledge support from the Foresight Project, Academia Sinica.

  14. Bacterial burden in the operating room: impact of airflow systems.

    Science.gov (United States)

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  15. Regulation of bacterial virulence by Csr (Rsm) systems.

    Science.gov (United States)

    Vakulskas, Christopher A; Potts, Anastasia H; Babitzke, Paul; Ahmer, Brian M M; Romeo, Tony

    2015-06-01

    Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Bacterial communities in full-scale wastewater treatment systems.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  17. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model.

    Science.gov (United States)

    Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin

    2018-03-01

    Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.

  18. Portable bacterial identification system based on elastic light scatter patterns

    Directory of Open Access Journals (Sweden)

    Bae Euiwon

    2012-08-01

    Full Text Available Abstract Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.

  19. Bacterial concentration detection using a portable embedded sensor system for environmental monitoring

    OpenAIRE

    Grossi , Marco; Riccò , Bruno; Parolin , Carola; Vitali , Beatrice

    2017-01-01

    International audience; The detection of bacterial concentration is important in different fields since high microbial contamination or the presence of particular pathogens can seriously endanger human health. The reference technique to measure bacterial concentration is Standard Plate Count (SPC) that, however, has long response times (24 to 72 hours) and is not suitable for automatic implementation. This paper presents a portable embedded system for bacterial concentration measurement based...

  20. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    International Nuclear Information System (INIS)

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.; Smith, Clyde A.

    2008-01-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl 2 , 0.1 M Tris–HCl pH 8.5 and 1 mM Mg 2 GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA

  1. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  2. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems.

    Science.gov (United States)

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa

    2018-01-01

    Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.

  3. Bacterial communities in full-scale wastewater treatment systems

    OpenAIRE

    Cydzik-Kwiatkowska, Agnieszka; Zieli?ska, Magdalena

    2016-01-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in...

  4. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    Science.gov (United States)

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the

  5. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems

    Directory of Open Access Journals (Sweden)

    Kyukwang Kim

    2018-02-01

    Full Text Available Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  6. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.

    Science.gov (United States)

    Kim, Kyukwang; Kim, Seunggyu; Jeon, Jessie S

    2018-02-03

    Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT) to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  7. 8.3 Microbiology and Biodegradation: A New Bacterial Communication System

    Science.gov (United States)

    2014-04-09

    Approved for Public Release; Distribution Unlimited 8.3 Microbiology and Biodegradation: A new bacterial communication system The views, opinions and...JB.01479-10 Federico E. Rey, Caroline S. Harwood. FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas...Quorum sensing is a term used to describe bacterial cell-to-cell communication that allows cell-density-dependent gene expression. There are many

  8. Reduction of Airborne Bacterial Burden in the OR by Installation of Unidirectional Displacement Airflow (UDF) Systems.

    Science.gov (United States)

    Fischer, Sebastian; Thieves, Martin; Hirsch, Tobias; Fischer, Klaus-Dieter; Hubert, Helmine; Beppler, Steffen; Seipp, Hans-Martin

    2015-08-13

    Intraoperative bacterial contamination is a major risk factor for postoperative wound infections. This study investigated the influence of type of ventilation system on intraoperative airborne bacterial burden before and after installation of unidirectional displacement air flow systems. We microbiologically monitored 1286 surgeries performed by a single surgical team that moved from operating rooms (ORs) equipped with turbulent mixing ventilation (TMV, according to standard DIN-1946-4 [1999], ORs 1, 2, and 3) to ORs with unidirectional displacement airflow (UDF, according to standard DIN-1946-4, annex D [2008], ORs 7 and 8). The airborne bacteria were collected intraoperatively with sedimentation plates. After incubation for 48 h, we analyzed the average number of bacteria per h, peak values, and correlation to surgery duration. In addition, we compared the last 138 surgeries in ORs 1-3 with the first 138 surgeries in ORs 7 and 8. Intraoperative airborne bacterial burden was 5.4 CFU/h, 5.5 CFU/h, and 6.1 CFU/h in ORs 1, 2, and 3, respectively. Peak values of burden were 10.7 CFU/h, 11.1 CFU/h, and 11.0 CFU/h in ORs 1, 2, and 3, respectively). With the UDF system, the intraoperative airborne bacterial burden was reduced to 0.21 CFU/h (OR 7) and 0.35 CFU/h (OR 8) on average (pAirborne bacterial burden increased linearly with surgery duration in ORs 1-3, but the UDF system in ORs 7 and 8 kept bacterial levels constantly low (airborne bacterial burden (5 CFU/h vs. 0.29 CFU/h, pairborne bacterial burden under real clinical conditions by more than 90%. Although decreased postoperative wound infection incidence was not specifically assessed, it is clear that airborne microbiological burden contributes to surgical infections.

  9. Microbial Genomics: The Expanding Universe of Bacterial Defense Systems.

    Science.gov (United States)

    Forsberg, Kevin J; Malik, Harmit S

    2018-04-23

    Bacteria protect themselves against infection using multiple defensive systems that move by horizontal gene transfer and accumulate in genomic 'defense islands'. A recent study exploited these features to uncover ten novel defense systems, substantially expanding the catalog of bacterial defense systems and predicting the discovery of many more. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The use of hygromycin phosphotransferase gene (hpt) with an ...

    African Journals Online (AJOL)

    Previously, we have developed a marker-off system to truncate a selec marker in transgenic plants by locating one end of the transposon in the intron of the marker gene (glyphosate-tolerant epsps gene). In order to expand this technique to those marker genes without intron in this report, we created an artificial intron ...

  11. CRISPR/Cas systems: new players in gene regulation and bacterial physiology

    Directory of Open Access Journals (Sweden)

    David eWeiss

    2014-04-01

    Full Text Available CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP. Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2, CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes.

  12. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  13. A Gateway((R)) -compatible bacterial adenylate cyclase-based two-hybrid system

    Czech Academy of Sciences Publication Activity Database

    Ouellette, S. P.; Gauliard, E.; Antošová, Zuzana; Ladant, D.

    2014-01-01

    Roč. 6, č. 3 (2014), s. 259-267 ISSN 1758-2229 Institutional support: RVO:67985823 Keywords : bacterial two-hybrid system * protein–protein interactions * cell division * Gateway((R))(GW) cloning system Subject RIV: EE - Microbiology, Virology Impact factor: 3.293, year: 2014

  14. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A METROPOLITAN DRINKING WATER DISTRIBUTION SYSTEM

    Science.gov (United States)

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The b...

  15. A Fuzzy Expert System for Distinguishing between Bacterial and Aseptic Meningitis

    Directory of Open Access Journals (Sweden)

    Mostafa Langarizadeh

    2015-05-01

    Data were extracted from 106 records of patients with meningitis (42 cases with bacterial meningitis in order to evaluate the proposed system. The system accuracy, specificity, and sensitivity were 89%, 92 %, and 97%, respectively. The area under the ROC curve was 0.93, and Kappa test revealed a good level of agreement (k=0.84, P

  16. Procedure and means for determining aminoglucoside phosphotransferase activity. Verfahren und Mittel zur Bestimmung der Aminoglucosid-Phosphotransferaseaktivitaet

    Energy Technology Data Exchange (ETDEWEB)

    Hunger, H D; Behrendt, G; Schmidt, G; Merkel, D

    1988-02-10

    A method and means are described for determining the activity of aminoglucoside phosphotransferase. Possible applications are genetic engineering, biotechnology and medicine. Cell lysates or cell extracts are contacted with a surface carrier on cellulose basis, in the presence of a mixture of ATP and /sup 32/P-ATP, with the phosphorylated kanamycin made visible in the solid phase by autoradiography.

  17. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED...

  18. Bacterial diversity in water injection systems of Brazilian offshore oil platforms.

    Science.gov (United States)

    Korenblum, Elisa; Valoni, Erika; Penna, Mônica; Seldin, Lucy

    2010-01-01

    Biogenic souring and microbial-influenced corrosion is a common scenario in water-flooded petroleum reservoirs. Water injection systems are continuously treated to control bacterial contamination, but some bacteria that cause souring and corrosion can persist even after different treatments have been applied. Our aim was to increase our knowledge of the bacterial communities that persist in the water injection systems of three offshore oil platforms in Brazil. To achieve this goal, we used a culture-independent molecular approach (16S ribosomal RNA gene clone libraries) to analyze seawater samples that had been subjected to different treatments. Phylogenetic analyses revealed that the bacterial communities from the different platforms were taxonomically different. A predominance of bacterial clones affiliated with Gammaproteobacteria, mostly belonging to the genus Marinobacter (60.7%), were observed in the platform A samples. Clones from platform B were mainly related to the genera Colwellia (37.9%) and Achromobacter (24.6%), whereas clones obtained from platform C were all related to unclassified bacteria. Canonical correspondence analyses showed that different treatments such as chlorination, deoxygenation, and biocide addition did not significantly influence the bacterial diversity in the platforms studied. Our results demonstrated that the injection water used in secondary oil recovery procedures contained potentially hazardous bacteria, which may ultimately cause souring and corrosion.

  19. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    Science.gov (United States)

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  1. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    International Nuclear Information System (INIS)

    Walanj, Rupa; Young, Paul; Baker, Heather M.; Baker, Edward N.; Metcalf, Peter; Chow, Joseph W.; Lerner, Stephen; Vakulenko, Sergei; Smith, Clyde A.

    2005-01-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong to the monoclinic space group P2 1 , with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding

  2. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    Energy Technology Data Exchange (ETDEWEB)

    Walanj, Rupa; Young, Paul; Baker, Heather M.; Baker, Edward N.; Metcalf, Peter [Laboratory of Structural Biology, School of Biological Sciences, University of Auckland, Auckland (New Zealand); Chow, Joseph W.; Lerner, Stephen [Division of Infectious Diseases, Wayne State University School of Medicine and VA Medical Center, Detroit, Michigan 48201 (United States); Vakulenko, Sergei [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States); Smith, Clyde A., E-mail: csmith@slac.stanford.edu [Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Laboratory of Structural Biology, School of Biological Sciences, University of Auckland, Auckland (New Zealand)

    2005-04-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong to the monoclinic space group P2{sub 1}, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding.

  3. Bacterial contamination of table eggs and the influence of housing systems

    NARCIS (Netherlands)

    Reu, de K.; Messens, W.; Heyndrickx, M.; Rodenburg, T.B.; Uyttendaele, M.; Herman, L.

    2008-01-01

    With the introduction of alternative housing systems for laying hens in the EU, recent research has focussed on the bacterial contamination of table eggs, e.g. eggshell and egg content contamination. Contamination of eggshells with aerobic bacteria is generally higher for nest eggs from non-cage

  4. Role of toll like receptors in bacterial and viral diseases – A systemic ...

    African Journals Online (AJOL)

    Background: Toll like receptors are key-receptors of the innate immune system, but their role against bacterial and viral infections are yet to be understood. Aim: The present study is aimed to investigate the diversity and frequency distribution of 10 TLR genes among typhoid fever and HIV+ patients. In this study, 44 samples ...

  5. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  7. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  8. CRISPR technologies for bacterial systems: Current achievements and future directions

    DEFF Research Database (Denmark)

    Choi, Kyeong Rok; Lee, Sang Yup

    2016-01-01

    Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolution......Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now...... revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial...... microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR...

  9. A Bacterial-Based Algorithm to Simulate Complex Adaptative Systems

    OpenAIRE

    González Rodríguez, Diego; Hernández Carrión, José Rodolfo

    2014-01-01

    Paper presented at the 13th International Conference on Simulation of Adaptive Behavior which took place at Castellón, Spain in 2014, July 22-25. Bacteria have demonstrated an amazing capacity to overcome envi-ronmental changes by collective adaptation through genetic exchanges. Using a distributed communication system and sharing individual strategies, bacteria propagate mutations as innovations that allow them to survive in different envi-ronments. In this paper we present an agent-based...

  10. A Fuzzy Expert System for Distinguishing between Bacterial and Aseptic Meningitis

    Directory of Open Access Journals (Sweden)

    Mostafa Langarizadeh

    2015-05-01

    Full Text Available Introduction Bacterial meningitis is a known infectious disease which occurs at early ages and should be promptly diagnosed and treated. Bacterial and aseptic meningitis are hard to be distinguished. Therefore, physicians should be highly informed and experienced in this area. The main aim of this study was to suggest a system for distinguishing between bacterial and aseptic meningitis, using fuzzy logic.    Materials and Methods In the first step, proper attributes were selected using Weka 3.6.7 software. Six attributes were selected using Attribute Evaluator, InfoGainAttributeEval, and Ranker search method items. Then, a fuzzy inference engine was designed using MATLAB software, based on Mamdani’s fuzzy logic method with max-min composition, prod-probor, and centroid defuzzification. The rule base consisted of eight rules, based on the experience of three specialists and information extracted from textbooks. Results Data were extracted from 106 records of patients with meningitis (42 cases with bacterial meningitis in order to evaluate the proposed system. The system accuracy, specificity, and sensitivity were 89%, 92 %, and 97%, respectively. The area under the ROC curve was 0.93, and Kappa test revealed a good level of agreement (k=0.84, P

  11. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    Belov, O.V.; Kapralov, M.I.; Chuluunbaatar, O.; Sweilam, N.H.

    2012-01-01

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD' 2 C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  12. Bacterial derived proteoliposome as ideal delivery system and cellular adjuvant.

    Science.gov (United States)

    Rodríguez, Tamara; Pérez, Oliver a; Ugrinovic, Sanja; Bracho, Gustavo; Mastroeni, Pietro

    2006-04-12

    We explored the potential of a proteoliposome (PL) from the outer membrane of N. meningitidis B, as an immunopotentiator and as a vector for antigen delivery to dendritic cells (DC). DC were incubated with PL resulting in up-regulation of MHC-II, CD40, CD80, and CD86 expression and production of TNFalpha and IL12(p70). Ovoalbumin (OVA) was incorporated within PL (PL-OVA). PL-OVA presented OVA-specific peptides to CD4+ and CD8+ OVA-specific T-cell hybridomas. PL exerts an immunomodulatory effect on DC and is a general system to deliver antigens for presentation to CD4+ and CD8+ T-cells possibly implicated in the induction CD8+ cytotoxic T lymphocytes (CTLs) responses.

  13. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  14. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  15. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    Science.gov (United States)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  16. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  17. Putative bacterial interactions from metagenomic knowledge with an integrative systems ecology approach.

    Science.gov (United States)

    Bordron, Philippe; Latorre, Mauricio; Cortés, Maria-Paz; González, Mauricio; Thiele, Sven; Siegel, Anne; Maass, Alejandro; Eveillard, Damien

    2016-02-01

    Following the trend of studies that investigate microbial ecosystems using different metagenomic techniques, we propose a new integrative systems ecology approach that aims to decipher functional roles within a consortium through the integration of genomic and metabolic knowledge at genome scale. For the sake of application, using public genomes of five bacterial strains involved in copper bioleaching: Acidiphilium cryptum, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans, we first reconstructed a global metabolic network. Next, using a parsimony assumption, we deciphered sets of genes, called Sets from Genome Segments (SGS), that (1) are close on their respective genomes, (2) take an active part in metabolic pathways and (3) whose associated metabolic reactions are also closely connected within metabolic networks. Overall, this SGS paradigm depicts genomic functional units that emphasize respective roles of bacterial strains to catalyze metabolic pathways and environmental processes. Our analysis suggested that only few functional metabolic genes are horizontally transferred within the consortium and that no single bacterial strain can accomplish by itself the whole copper bioleaching. The use of SGS pinpoints a functional compartmentalization among the investigated species and exhibits putative bacterial interactions necessary for promoting these pathways. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. System automation for a bacterial colony detection and identification instrument via forward scattering

    International Nuclear Information System (INIS)

    Bae, Euiwon; Hirleman, E Daniel; Aroonnual, Amornrat; Bhunia, Arun K; Robinson, J Paul

    2009-01-01

    A system design and automation of a microbiological instrument that locates bacterial colonies and captures the forward-scattering signatures are presented. The proposed instrument integrates three major components: a colony locator, a forward scatterometer and a motion controller. The colony locator utilizes an off-axis light source to illuminate a Petri dish and an IEEE1394 camera to capture the diffusively scattered light to provide the number of bacterial colonies and two-dimensional coordinate information of the bacterial colonies with the help of a segmentation algorithm with region-growing. Then the Petri dish is automatically aligned with the respective centroid coordinate with a trajectory optimization method, such as the Traveling Salesman Algorithm. The forward scatterometer automatically computes the scattered laser beam from a monochromatic image sensor via quadrant intensity balancing and quantitatively determines the centeredness of the forward-scattering pattern. The final scattering signatures are stored to be analyzed to provide rapid identification and classification of the bacterial samples

  19. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  20. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  1. Speed and Displacement Control System of Bearingless Brushless DC Motor Based on Improved Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Diao Xiaoyan

    2016-01-01

    Full Text Available To solve the deficiencies of long optimization time and poor precision existing in conventional bacterial foraging algorithm (BFA in the process of parameter optimization, an improved bacterial foraging algorithm (IBFA is proposed and applied to speed and displacement control system of bearingless brushless DC (Bearingless BLDC motors. To begin with the fundamental principle of BFA, the proposed method is introduced and the individual intelligence is efficiently used in the process of parameter optimization, and then the working principle of bearingless BLDC motors is expounded. Finally, modeling and simulation of the speed and displacement control system of bearingless BLDC motors based on the IBFA are carried out by taking the software of MATLAB/Simulink as a platform. Simulation results show that, speed overshoot, torque ripple and rotor position oscillation are dramatically reduced, thus the proposed method has good application prospects in the field of bearingless motors.

  2. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stoica-Guzun, Anicuta [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)], E-mail: astoica@mt.pub.ro; Stroescu, Marta; Tache, Florin [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)], E-mail: zaharescut@icpe-ca.ro; Grosu, Elena [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2007-12-15

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of {gamma}-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  3. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-01-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell

  4. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  5. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... fermentation processes in which the escape of genetically modified cells would be considered highly risky....

  6. The bacterial sealing capacity of morse taper implant-abutment systems in vitro.

    Science.gov (United States)

    Ranieri, Rogerio; Ferreira, Andreia; Souza, Emmanuel; Arcoverde, Joao; Dametto, Fabio; Gade-Neto, Cicero; Seabra, Flavio; Sarmento, Carlos

    2015-05-01

    The use of Morse taper systems in dental implantology has been associated widely with a more precise adaptation between implants and their respective abutments. This may lead to an increase in the stability of the implant system and may also prevent microbial invasion through the implant-abutment interface. The aim of this study was to investigate in vitro the ability of four commercially available Morse taper system units to impede bacterial penetration through their implant-abutment interfaces. Abutments were screwed onto the implants, and the units were subsequently immersed in Streptococcus sanguinis bacterial broth (1 × 10(8) colony forming units/mL) for 48 hours. The units were examined by scanning electron microscopy (SEM) under three conditions: 1) with the implant-abutment components assembled as units to investigate for both the existence of microgaps and the presence of bacteria; 2) with the implants and abutments separated for examination of internal surfaces; and 3) with the implant-abutment components again assembled as units to measure any microgaps detected. The mean size of the microgaps in each unit was determined by measuring, under SEM, their width in four equidistant points. Microgaps were detected in all units with no significant differences in dimension (Kruskal-Wallis test, P >0.05). Within all units, the presence of bacteria was also observed. The seals provided by the interfaces of the commercially available Morse taper implant-abutment units tested were not sufficiently small to shield the implant from bacterial penetration.

  7. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  8. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  9. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  10. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Silvio Erler

    2011-03-01

    Full Text Available The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT. There is a lack of immune genes in social insects (e.g. honeybees when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals. The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP (abaecin, defensin 1, hymenoptaecin were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish and JNK pathway (basket. Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the

  11. Application of Biomaterials and Inkjet Printing to Develop Bacterial Culture System

    Directory of Open Access Journals (Sweden)

    Tithimanan Srimongkon

    2015-01-01

    Full Text Available We created an automated bioassay system based on inkjet printing. Compared to conventional manual bacterial culture systems our printing approach improves the quality as well as the processing speed. A hydrophobic/hydrophilic pattern as a container supporting a culture medium was built on filter paper using a toluene solution of polystyrene for hydrophobization, followed by toluene printing to create several hydrophilic areas. As culture media we used a novel poly(vinyl alcohol based hydrogel and a standard calcium alginate hydrogel. The poly(vinyl alcohol hydrogel was formed by physical crosslinking poly(vinyl alcohol with adipic acid dihydrazide solutions. The conditions of poly(vinyl alcohol gelation were optimized for inkjet printability and the optimum mixture ratio was determined. The calcium alginate hydrogel was formed by chemical reaction between sodium alginate and CaCl2 solutions. Together with nutrients both hydrogel solutions were successfully printed on paper by means of the modified inkjet printer. The amount of each solution was demanded simply by outputting CMYK values. In the last step bacterial cells were printed on both hydrogel media. For both media we achieved a stable bacteria growth which was confirmed by microscopical imaging of the developed bacterial colonies.

  12. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, A.

    2006-01-01

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137 C s) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  13. Application of a microcomputer-based system to control and monitor bacterial growth.

    Science.gov (United States)

    Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R

    1984-02-01

    A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.

  14. Encyclopedia of bacterial gene circuits whose presence or absence correlate with pathogenicity--a large-scale system analysis of decoded bacterial genomes.

    Science.gov (United States)

    Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin

    2015-10-13

    Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex

  15. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.

    Science.gov (United States)

    Hwang, Jiye; Kim, Jeongmin; Sung, Bong June

    2016-08-01

    There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

  16. Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology

    Science.gov (United States)

    2017-01-01

    ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that

  17. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi [Chinese Academy of Sciences; Fulbright, Scott P [Colorado State University; Zeng, Xiaowei [Chinese Academy of Sciences; Yates, Tracy [Solix Biofuels; Wardle, Greg [Solix Biofuels; Chisholm, Stephen T [Colorado State University; Xu, Jian [Chinese Academy of Sciences; Lammers, Peter [New Mexico State University

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We

  18. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  19. Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.

    Directory of Open Access Journals (Sweden)

    Selina R Church

    Full Text Available Vibrio vulnificus is a bacterium responsible for severe gastroenteritis, sepsis and wound infections. Gastroenteritis and sepsis are commonly associated with the consumption of raw oysters, whereas wound infection is often associated with the handling of contaminated fish. Although classical virulence factors of this emerging pathogen are well characterised, there remains a paucity of knowledge regarding the general biology of this species. To investigate the presence of previously unreported virulence factors, we applied whole genome sequencing to a panel of ten V. vulnificus strains with varying virulence potentials. This identified two novel type 6 secretion systems (T6SSs, systems that are known to have a role in bacterial virulence and population dynamics. By utilising a range of molecular techniques and assays we have demonstrated the functionality of one of these T6SSs. Furthermore, we have shown that this system is subject to thermoregulation and is negatively regulated by increasing salinity concentrations. This secretion system was also shown to be involved in the killing of V. vulnificus strains that did not possess this system and a model is proposed as to how this interaction may contribute to population dynamics within V. vulnificus strains. In addition to this intra-species killing, this system also contributes to the killing of inter bacterial species and may have a role in the general composition of Vibrio species in the environment.

  20. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Bellod Cisneros, Jose Luis

    2016-01-01

    and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services...... and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services...

  1. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.

    Science.gov (United States)

    Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L

    2014-01-28

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions

  2. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system.

    Science.gov (United States)

    Chattopadhyay, Pritam; Banerjee, Goutam; Mukherjee, Sayantan

    2017-05-01

    Food security and safety are the major concern in ever expanding human population on the planet earth. Each and every year insect pests cause a serious damage in agricultural field that cost billions of dollars annually to farmers. The loss in term of productivity and high cost of chemical pesticides enhance the production cost. Irrespective use of chemical pesticides (such as Benzene hexachloride, Endosulfan, Aldicarb, and Fenobucarb) in agricultural field raised several types of environmental issues. Furthermore, continuous use of chemical pesticides creates a selective pressure which helps in emerging of resistance pest. These excess chemical pesticide residues also contaminate the environment including the soil and water. Therefore, the biological control of insect pest in the agricultural field gains more importance due to food safety and environment friendly nature. In this regard, bacterial insecticides offer better alternative to chemical pesticides. It not only helps to establish food security through fighting against insect pests but also ensure the food safety. In this review, we have categorized insect pests and the corresponding bacterial insecticides, and critically analyzed the importance and mode of action of bacterial pesticides. We also have summarized the use of biopesticides in integrated pest management system. We have tried to focus the future research area in this field for the upcoming scientists.

  3. Exposure to bacterial DNA before hemorrhagic shock strongly aggravates systemic inflammation and gut barrier loss via an IFN-gamma-dependent route

    NARCIS (Netherlands)

    Luyer, Misha D.; Buurman, Wim A.; Hadfoune, M.'hamed; Wolfs, T.; van't Veer, Cornelis; Jacobs, Jan A.; Dejong, Cornelis H.; Greve, Jan Willem M.

    2007-01-01

    OBJECTIVE: To investigate the role of bacterial DNA in development of an excessive inflammatory response and loss of gut barrier loss following systemic hypotension. SUMMARY BACKGROUND DATA: Bacterial infection may contribute to development of inflammatory complications following major surgery;

  4. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.; Hammes, F.; Kotzsch, S.; van Loosdrecht, M. C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach

  5. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality.

    Science.gov (United States)

    Park, Se-keun; Hu, Jiang Yong

    2010-01-01

    This study was carried out to assess reverse osmosis (RO) treatment efficacy of drinking water in terms of biological stability in the distribution system. Two flat-sheet RO membranes were used in this study. Experiments were designed to investigate the growth of biofilm and bulk phase bacteria for the RO-treated water flowing through a model distribution system under controlled conditions without disinfectants. RO membranes improved the water quality of drinking water in terms of inorganic, organic and bacterial contents. Organic matter including the fraction available for microbes was efficiently removed by the RO membranes tested. More than 99% of bacterial cells in the tap water was retained by the RO membranes, leaving water. In spite of the low nutrient contents and few cells in the RO permeates, monitoring of the model distribution systems receiving the RO permeates showed that remarkable biofilm accumulation and bulk cell growth occurred in the RO permeate water. In quasi-steady state, the total cell numbers in the biofilm and bulk water were of order 10(3) cells/cm(2) and 10(3) cells/mL, respectively, which were about 2 orders of magnitude lower than those grown in the tap water produced from conventional water treatment. The culturable heterotrophic bacteria constituted a significant part of the total cells (20.7-32.1% in biofilms and 21.3-46.3% in bulk waters). Biofilm maximum density and production rate were of the order 10(4) cells/cm(2) and 10(2) cells/cm(2)/day, respectively. The specific cell growth rate of bacteria in the biofilms was found to be much lower than those in the bulk waters (0.04-0.05 day(-1) versus 0.28-0.36 day(-1)). The overall specific cell growth rate which indicates the growth potential in the whole system was calculated as 0.07-0.08 day(-1), representing a doubling time of 9.1-10.1 days. These observations can be indicative of possibilities for bacterial growth in the RO permeate water with easily assimilable organic carbon

  6. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  7. [Risk factors associated with bacterial growth in derivative systems from cerebrospinal liquid in pediatric patients].

    Science.gov (United States)

    de Jesús Vargas-Lares, José; Andrade-Aguilera, Angélica Rocío; Díaz-Peña, Rafael; Barrera de León, Juan Carlos

    2015-01-01

    To determine risk factors associated with bacterial growth in systems derived from cerebrospinal fluid in pediatric patients. Case and controls study from January to December 2012, in patients aged <16 years who were carriers of hydrocephalus and who required placement or replacement of derivative system. Cases were considered as children with cultures with bacterial growth and controls with negative bacterial growth. Inferential statistics with Chi-squared and Mann-Whitney U tests. Association of risk with odds ratio. We reviewed 746 registries, cases n=99 (13%) and controls n=647 (87%). Masculine gender 58 (57%) vs. feminine gender 297 (46%) (p=0.530). Age of cases: median, five months and controls, one year (p=0.02). Median weight, 7 vs. 10 kg (p=0.634). Surgical interventions: median n=2 (range, 1-8) vs. n=1 (range, 1-7). Infection rate, 13.2%. Main etiology ductal stenosis, n=29 (29%) vs. n=50 (23%) (p=0.530). Non-communicating, n=50 (51%) vs. 396 (61%) (p=0.456). Predominant microorganisms: enterobacteria, pseudomonas, and enterococcus. Non-use of iodized dressing OR=2.6 (range, 1.8-4.3), use of connector OR=6.8 (range, 1.9-24.0), System replacement OR=2.0 (range, 1.3-3.1), assistant without surgical facemask OR=9.7 (range, 2.3-42.0). Being a breastfeeding infant, of low weight, non-application of iodized dressing, use of connector, previous derivation, and lack of adherence to aseptic technique were all factors associated with ependymitis.

  8. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum.

    Science.gov (United States)

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L

    2011-12-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.

  9. [Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems]: Final report

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-08-01

    This study sought to exploit the use of uv radiation as a source of genomic damage. We explored the molecular mechanism of the repair of DNA damage at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian cells. Not only have observations obtained in one biological system suggested specific experimental approaches in others, but we have also learned that some biochemical pathways for DNA repair are unique to specific organisms. Our studies are summarized in terms of 4 major areas of research activity that span the past 16 years. 86 refs

  10. Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea; Knudsen, Berith Elkær; Johansen, Anders

    2014-01-01

    organism. In addition, fungal hyphae may function as transport vectors for bacteria, thereby facilitating a more effective spreading of degrader organisms in the soil. A more rapid mineralization of the phenylurea herbicide diuron was found in sand with added microbial consortia consisting of both...... degrading bacteria and fungi. Facilitated transport of bacteria by fungal hyphae was demonstrated using a system where herbicide-spiked sand was separated from the consortium by a layer of sterile glass beads. Several fungal–bacterial consortia were investigated by combining different diuron...

  11. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  12. Vanadate and phosphotransferases with special emphasis on ouabain/Na, K-ATPase interaction

    International Nuclear Information System (INIS)

    Hansen, O.

    1983-01-01

    A short introduction to the chemistry and possible physiological or toxicological role of vanadium is given. The +5 oxidation state, vanadate, is a very efficient inhibitor of several phosphotransferases and for that reason a prosperous tool in the study of such enzymes. Special emphasis is placed on studies with vanadate on the sodium pump. Vanadate appears to supplement ouabain as high affinity inhibitor of Na,K-ATPase. They are also complementary to one another since vanadate binds to the cytoplasmic aspect and ouabain to the extracellular side of the cell membrane, and moreover, they potentiate the binding of one another. The hypothesis that vanadate may act as a transition state analogue of phosphate seems supported by the observation that vanadate, like phosphate, is able to induce ouabain binding to Na,K-ATPase. The vanadate affinity is much higher than that of phosphate, however, and vanadate remains bound in a rather stable enzyme-vanadate-ouabain complex. Fluorescene studies indicate that different subspecies of an E 2 -conformation of the enzyme is obtained with vanadate and with ouabain. In molecular studies on Na,K-ATPase, e.g. in studies on the protein folding through the plasma-membrane, one can imagine that the simultaneous binding of an extracellular marker, ouabain, and of the intracellular marker, vanadate, may be most helpful tools. A proposed physiological regulatory role of vanadium on the pump activity seems less likely considering the simultaneous acceleration of K + -uptake which is probably due to adenylate cyclase activation. Vanadate seems more likely to have a pharmacological role as a cofactor for digitals binding to Na,K-ATPase. Finally, the vasoconstriction evoked by vanadate could indicate a pathophysiological role of the ion and vanadate could then become useful tool in experimental hypertension and uremia. (author)

  13. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    International Nuclear Information System (INIS)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-01-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [ 14 C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31 P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM

  14. Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting.

    Science.gov (United States)

    Robledo-Mahón, Tatiana; Aranda, Elisabet; Pesciaroli, Chiara; Rodríguez-Calvo, Alfonso; Silva-Castro, Gloria Andrea; González-López, Jesús; Calvo, Concepción

    2018-06-01

    Sewage sludge composting is a profitable process economically viable and environmentally friendly. In despite of there are several kind of composting types, the use of combined system of semipermeable cover film and aeration air-floor is widely developed at industrial scale. However, the knowledge of the linkages between microbial communities structure, enzyme activities and physico-chemical factors under these conditions it has been poorly explored. Thus, the aim of this study was to investigate the bacterial dynamic and community structure using next generation sequencing coupled to analyses of microbial enzymatic activity and culturable dependent techniques in a full-scale real composting plant. Sewage sludge composting process was conducted using a semi-permeable Gore-tex cover, in combination with an air-insufflation system. The highest values of enzymatic activities such as dehydrogenase, protease and arylsulphatase were detected in the first 5 days of composting; suggesting that during this period of time a greater degrading activity of organic matter took place. Culturable bacteria identified were in agreement with the bacteria found by massive sequencing technologies. The greatest bacterial diversity was detected between days 15 and 30, with Actinomycetales and Bacillales being the predominant orders at the beginning and end of the process. Bacillus was the most representative genus during all the process. A strong correlation between abiotic factors as total organic content and organic matter and enzymatic activities such as dehydrogenase, alkaline phosphatase, and ß-glucosidase activity was found. Bacterial diversity was strongly influenced by the stage of the process, community-structure change was concomitant with a temperature rise, rendering favorable conditions to stimulate microbial activity and facilitate the change in the microbial community linked to the degradation process. Moreover, results obtained confirmed that the use of semipermeable

  15. 31P NMR Spectroscopy Revealed Adenylate kinase-like Activity and Phosphotransferase-like Activity from F1-ATPase of Escherichia coli

    International Nuclear Information System (INIS)

    Kim, Hyun Won

    2011-01-01

    Adenylate kinase-like activity and phosphotransferase-like activity from F 1 -ATPase of Escherichia coli was revealed by 31 P NMR spectroscopy. Incubation of F 1 -ATPase with ADP in the presence of Mg 2+ shows the appearance of 31 P resonances from AMP and Pi, suggesting generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of F1-ATPase with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase-like activity of F 1 -ATPase. Both adenylate kinase-like activity and phosphotransferase-like activity has not been reported from F 1 -ATPase of Escherichia coli. 31 P NMR could be a valuable tool for the investigation of phosphorous related enzyme

  16. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2017-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.

  17. Molecular Epidemiologic Typing Systems of Bacterial Pathogens: Current Issues and Perpectives

    Directory of Open Access Journals (Sweden)

    Struelens Marc J

    1998-01-01

    Full Text Available The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s ? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection. Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

  18. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Directory of Open Access Journals (Sweden)

    E I Prest

    Full Text Available Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP effluent and at one fixed location in the drinking water distribution network (NET. The samples were analysed for heterotrophic plate counts (HPC, Aeromonas plate counts, adenosine-tri-phosphate (ATP concentrations, and flow cytometric (FCM total and intact cell counts (TCC, ICC, water temperature, pH, conductivity, total organic carbon (TOC and assimilable organic carbon (AOC. Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time and in bacterial ATP concentrations (<1-3.6 ng L-1, which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35, and positively correlated with water temperature (r = 0.49. Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  19. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; Van Loosdrecht, M. C M; Vrouwenvelder, Johannes S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  20. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  1. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  2. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    Science.gov (United States)

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of a pulsed xenon ultraviolet disinfection system to decrease bacterial contamination in operating rooms.

    Science.gov (United States)

    El Haddad, Lynn; Ghantoji, Shashank S; Stibich, Mark; Fleming, Jason B; Segal, Cindy; Ware, Kathy M; Chemaly, Roy F

    2017-10-10

    Environmental cleanliness is one of the contributing factors for surgical site infections in the operating rooms (ORs). To decrease environmental contamination, pulsed xenon ultraviolet (PX-UV), an easy and safe no-touch disinfection system, is employed in several hospital environments. The positive effect of this technology on environmental decontamination has been observed in patient rooms and ORs during the end-of-day cleaning but so far, no study explored its feasibility between surgical cases in the OR. In this study, 5 high-touch surfaces in 30 ORs were sampled after manual cleaning and after PX-UV intervention mimicking between-case cleaning to avoid the disruption of the ORs' normal flow. The efficacy of a 1-min, 2-min, and 8-min cycle were tested by measuring the surfaces' contaminants by quantitative cultures using Tryptic Soy Agar contact plates. We showed that combining standard between-case manual cleaning of surfaces with a 2-min cycle of disinfection using a portable xenon pulsed ultraviolet light germicidal device eliminated at least 70% more bacterial load after manual cleaning. This study showed the proof of efficacy of a 2-min cycle of PX-UV in ORs in eliminating bacterial contaminants. This method will allow a short time for room turnover and a potential reduction of pathogen transmission to patients and possibly surgical site infections.

  4. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  5. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    Science.gov (United States)

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  6. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    Science.gov (United States)

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  7. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  8. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    Science.gov (United States)

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

  9. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may

  10. Changes in symbiotic and associative interrelations in a higher plant-bacterial system during space flight

    Science.gov (United States)

    Kordyum, V. A.; Man'ko, V. G.; Popova, A. F.; Shcherbak, O. H.; Mashinsky, A. L.; Nguen-Hgue-Thyok

    The miniature cenosis consisting of the water fern Azolla with its associated symbiotic nitrogen-fixing cyanobacterium Anabaena and the concomitant bacteria was investigated. Ecological closure was shown to produce sharp quantitative and qualitative changes in the number and type of concomitant bacteria. Changes in the distribution of bacterial types grown on beef-extract broth after space flight were recorded. Anabaena azollae underwent the most significant changes under spaceflight conditions. Its cell number per Azolla biomass unit increased substantially. Thus closure of cenosis resulted in a weakening of control over microbial development by Azolla. This tendency was augmented by spaceflight factors. Reduction in control exerted by macro-organisms over development of associated micro-organisms must be taken into account in constructing closed ecological systems in the state of weightlessness.

  11. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems.

    Science.gov (United States)

    Rampelotto, Pabulo Henrique; de Siqueira Ferreira, Adão; Barboza, Anthony Diego Muller; Roesch, Luiz Fernando Wurdig

    2013-10-01

    The Brazilian Savanna, also known as "Cerrado", is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.

  12. Membrane Lipids as Indicators for Viable Bacterial Communities Inhabiting Petroleum Systems.

    Science.gov (United States)

    Gruner, Andrea; Mangelsdorf, Kai; Vieth-Hillebrand, Andrea; Horsfield, Brian; van der Kraan, Geert M; Köhler, Thomas; Janka, Christoph; Morris, Brandon E L; Wilkes, Heinz

    2017-08-01

    Microbial activity in petroleum reservoirs has been implicated in a suite of detrimental effects including deterioration of petroleum quality, increases in oil sulfur content, biofouling of steel pipelines and other infrastructures, and well plugging. Here, we present a biogeochemical approach, using phospholipid fatty acids (PLFAs), for detecting viable bacteria in petroleum systems. Variations within the bacterial community along water flow paths (producing well, topside facilities, and injection well) can be elucidated in the field using the same technique, as shown here within oil production plants in the Molasse Basin of Upper Austria. The abundance of PLFAs is compared to total cellular numbers, as detected by qPCR of the 16S rDNA gene, to give an overall comparison between the resolutions of both methods in a true field setting. Additionally, the influence of biocide applications on lipid- and DNA-based quantification was investigated. The first oil field, Trattnach, showed significant PLFA abundances and cell numbers within the reservoir and topside facilities. In contrast, the second field (Engenfeld) showed very low PLFA levels overall, likely due to continuous treatment of the topside facilities with a glutaraldehyde-based antimicrobial. In comparison, Trattnach is dosed once per week in a batch fashion. Changes within PLFA compositions across the flow path, throughout the petroleum production plants, point to cellular adaptation within the system and may be linked to shifts in the dominance of certain bacterial types in oil reservoirs versus topside facilities. Overall, PLFA-based monitoring provides a useful tool to assess the abundance and high-level taxonomic diversity of viable microbial populations in oil production wells, topside infrastructure, pipelines, and other related facilities.

  13. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah

    2014-07-18

    The intake system can play a significant role in improving the feed water quality and ultimately influence the performance of downstream components of the seawater reverse osmosis desalination processes. In most cases, open-ocean intakes produce poor feed water quality in terms of the abundance of naturally occurring organic matter, which increases the risk of membrane fouling. An alternative intake is the subsurface system, which is based on the riverbank filtration concept that provides natural filtration and biological treatment of the feed water prior to the entry of the water into the desalination plant. The use of subsurface intakes normally improves the raw water quality by reducing suspended solids, algae, bacterial, and dissolved organic carbon concentrations. Therefore, the risk of biofouling caused by these substances can be reduced by implementing the appropriate type of intake system. The use of well intake systems was investigated along the Red Sea shoreline of Saudi Arabia in the Jeddah region. Data were collected from a seawater reverse osmosis (SWRO) plant with a capacity of 10,000 m3/d. The well system produces feed water from an artificial-fill peninsula that was constructed atop of the seabed. Ten wells have been constructed on the peninsula for extracting raw seawater. Water samples were collected from nearby surface seawater as a reference and from selected individual wells. The percentage of algae and bacterial removal by induced filtration process was evaluated by comparison of the seawater concentrations with the well discharges. Transparent exopolymer particles and organic carbon fractions reduction was also measured. The quality of raw water extracted from the well systems was highly improved compared with the raw seawater source. It was observed that algae were virtually 100% removed and the bacterial concentration was significantly removed by the aquifer matrix. The detailed analysis of organic carbon fraction using liquid

  14. Frequency of dental caries in active and inactive systemic lupus erythematous patients: salivary and bacterial factors.

    Science.gov (United States)

    Loyola Rodriguez, J P; Galvan Torres, L J; Martinez Martinez, R E; Abud Mendoza, C; Medina Solis, C E; Ramos Coronel, S; Garcia Cortes, J O; Domínguez Pérez, R A

    2016-10-01

    The objective of this study was to determine dental caries frequency and to analyze salivary and bacterial factors associated with active and inactive systemic lupus erythematous (SLE) patients. Also, a proposal to identify dental caries by a surface, teeth, and the patient was developed. A cross-sectional, blinded study that included 60 SLE patients divided into two groups of 30 subjects each, according to the Activity Index for Diagnosis of Systemic Lupus Erythematous (SLEDAI). The decayed, missing, and filled teeth (DMFT) index and Integrative Dental Caries Index (IDCI) were used for analyzing dental caries. The saliva variables recorded were: flow, pH, and buffer capacity. The DNA copies of Streptococcus mutans and Streptococcus sobrinus were estimated by real-time PCR. The caries frequency was 85% for SLE subjects (73.3% for inactive systemic lupus erythematous (ISLE) and 100% for active systemic lupus erythematous (ASLE)); DMFT for the SLE group was 12.6 ± 5.7 and the IDCI was (9.8 ± 5.9). The ASLE group showed a salivary flow of 0.65 compared with 0.97 ml/1 min from the ISLE group; all variables mentioned above showed a statistical difference (p dental caries in epidemiological studies. © The Author(s) 2016.

  15. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    Science.gov (United States)

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-03-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  16. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    Science.gov (United States)

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  17. Involvement of the Mannose Phosphotransferase System of Lactobacillus plantarum WCFS1 in Peroxide Stress Tolerance

    NARCIS (Netherlands)

    Stevens, Marc J. A.; Molenaar, Douwe; de Jong, Anne; de Vos, Willem M.; Kleerebezem, Michiel

    A Lactobacillus plantarum strain with a deletion in the gene rpoN, encoding the alternative sigma factor 54 (sigma(54)), displayed a 100-fold-higher sensitivity to peroxide than its parental strain. This feature could be due to sigma(54)-dependent regulation of genes involved in the peroxide stress

  18. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.

    Science.gov (United States)

    Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee

    2010-10-15

    Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of

  19. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Tong Minyan

    2010-10-01

    Full Text Available Abstract Background Effectors of Type III Secretion System (T3SS play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i comprehensive annotation of experimental status of effectors, ii submission and curation review of records by users of the database, and iii the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%. Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors

  20. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    Science.gov (United States)

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  1. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    Science.gov (United States)

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Directory of Open Access Journals (Sweden)

    Püntener Ursula

    2012-06-01

    Full Text Available Abstract Background Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods Mice were given repeated doses of lipopolysaccharide (LPS or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral intracerebral injection of LPS. Results Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in Salmonella typhimurium-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.

  3. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit, E-mail: amgross@exchange.bgu.ac.il

    2016-08-15

    Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) – a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0–9.7 × 10{sup 4} CFU m{sup −2} h{sup −1}) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1 m away from the GW systems. At the 5 m distance amounts of these bacteria were not statistically different (p > 0.05) from background concentrations tested over 50 m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques

  4. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems

    International Nuclear Information System (INIS)

    Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit

    2016-01-01

    Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) – a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0–9.7 × 10"4 CFU m"−"2 h"−"1) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1 m away from the GW systems. At the 5 m distance amounts of these bacteria were not statistically different (p > 0.05) from background concentrations tested over 50 m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide

  5. Towards rationally redesigning bacterial signaling systems using information encoded in abundant sequence data

    Science.gov (United States)

    Cheng, Ryan; Morcos, Faruck; Levine, Herbert; Onuchic, Jose

    2014-03-01

    An important challenge in biology is to distinguish the subset of residues that allow bacterial two-component signaling (TCS) proteins to preferentially interact with their correct TCS partner such that they can bind and transfer signal. Detailed knowledge of this information would allow one to search sequence-space for mutations that can systematically tune the signal transmission between TCS partners as well as re-encode a TCS protein to preferentially transfer signals to a non-partner. Motivated by the notion that this detailed information is found in sequence data, we explore the mutual sequence co-evolution between signaling partners to infer how mutations can positively or negatively alter their interaction. Using Direct Coupling Analysis (DCA) for determining evolutionarily conserved interprotein interactions, we apply a DCA-based metric to quantify mutational changes in the interaction between TCS proteins and demonstrate that it accurately correlates with experimental mutagenesis studies probing the mutational change in the in vitro phosphotransfer. Our methodology serves as a potential framework for the rational design of TCS systems as well as a framework for the system-level study of protein-protein interactions in sequence-rich systems. This research has been supported by the NSF INSPIRE award MCB-1241332 and by the CTBP sponsored by the NSF (Grant PHY-1308264).

  6. Phytoplankton production systems in a shellfish hatchery: variations of the bacterial load and diversity of vibrios.

    Science.gov (United States)

    Dubert, J; Fernández-Pardo, A; Nóvoa, S; Barja, J L; Prado, S

    2015-06-01

    Outbreaks of disease caused by some Vibrio species represent the main production bottleneck in shellfish hatcheries. Although the phytoplankton used as food is one of the main sources of bacteria, studies of the associated bacterial populations, specifically vibrios, are scarce. The aim of the study was the microbiological monitoring of the microalgae as the first step in assessing the risk disease for bivalve cultures. Two phytoplankton production systems were sampled weekly throughout 1-year period in a bivalve hatchery. Quantitative analysis revealed high levels of marine heterotrophic bacteria in both systems throughout the study. Presumptive vibrios were detected occasionally and at low concentrations. In most of the cases, they belonged to the Splendidus and Harveyi clades. The early detection of vibrios in the microalgae may be the key for a successful bivalve culture. Their abundance and diversity were affected by factors related to the hatchery environment. This work represents the first long study where the presence of vibrios was evaluated rigorously in phytoplankton production systems and provides a suitable microbiological protocol to control and guarantee the quality of the algal cultures to avoid the risk of transferring potential pathogens to shellfish larvae and/or broodstock. © 2015 The Society for Applied Microbiology.

  7. [Investigation of bacterial and viral etiology in community acquired central nervous system infections with molecular methods].

    Science.gov (United States)

    Kahraman, Hasip; Tünger, Alper; Şenol, Şebnem; Gazi, Hörü; Avcı, Meltem; Örmen, Bahar; Türker, Nesrin; Atalay, Sabri; Köse, Şükran; Ulusoy, Sercan; Işıkgöz Taşbakan, Meltem; Sipahi, Oğuz Reşat; Yamazhan, Tansu; Gülay, Zeynep; Alp Çavuş, Sema; Pullukçu, Hüsnü

    2017-07-01

    In this multicenter prospective cohort study, it was aimed to evaluate the bacterial and viral etiology in community-acquired central nervous system infections by standart bacteriological culture and multiplex polymerase chain reaction (PCR) methods. Patients hospitalized with central nervous system infections between April 2012 and February 2014 were enrolled in the study. Demographic and clinical information of the patients were collected prospectively. Cerebrospinal fluid (CSF) samples of the patients were examined by standart bacteriological culture methods, bacterial multiplex PCR (Seeplex meningitis-B ACE Detection (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Listeria monocytogenes, Group B streptococci) and viral multiplex PCR (Seeplex meningitis-V1 ACE Detection kits herpes simplex virus-1 (HSV1), herpes simplex virus-2 (HSV2), varicella zoster virus (VZV), cytomegalovirus (CMV), Epstein Barr virus (EBV) and human herpes virus 6 (HHV6)) (Seeplex meningitis-V2 ACE Detection kit (enteroviruses)). Patients were classified as purulent meningitis, aseptic meningitis and encephalitis according to their clinical, CSF (leukocyte level, predominant cell type, protein and glucose (blood/CSF) levels) and cranial imaging results. Patients who were infected with a pathogen other than the detection of the kit or diagnosed as chronic meningitis and other diseases during the follow up, were excluded from the study. A total of 79 patients (28 female, 51 male, aged 42.1 ± 18.5) fulfilled the study inclusion criteria. A total of 46 patients were classified in purulent meningitis group whereas 33 were in aseptic meningitis/encephalitis group. Pathogens were detected by multiplex PCR in 41 patients. CSF cultures were positive in 10 (21.7%) patients (nine S.pneumoniae, one H.influenzae) and PCR were positive for 27 (58.6%) patients in purulent meningitis group. In this group one type of bacteria were detected in 18 patients (14 S.pneumoniae, two N

  8. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  9. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Science.gov (United States)

    Bhatnagar, Srijak; Eisen, Jonathan A.; Kopp, Artyom

    2011-01-01

    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in

  10. Microbiological quality and bacterial diversity of the tropical oyster Crassostrea rhizophorae in a monitored farming system and from natural stocks.

    Science.gov (United States)

    Silva Neta, M T; Maciel, B M; Lopes, A T S; Marques, E L S; Rezende, R P; Boehs, G

    2015-12-02

    Microbiological evaluation is one of the most important parameters for analyzing the viability of an oyster farming system, which addresses public health and ecological concerns. Here, the microbiological quality of the oyster Crassostrea rhizophorae cultivated in a monitored environment and from natural beds in Bahia, northeastern Brazil, was determined. Bacterial diversity in oysters was measured by polymerase chain reaction-denaturing gradient gel electrophoresis. Sequence analysis revealed that most bacterial species showed similarity with uncultured or unidentified bacteria from environmental samples, and were clustered into the phylum Proteobacteria. Diverse bacteria from cultivated (monitored) oyster samples were grouped in the same cluster with a high similarity index (above 79%). Microbiological analyses revealed that these oysters did not contain pathogens. These results reflect the natural balance of the microbial communities essential to the maintenance of health and in inhibiting pathogen colonization in the oyster. On the other hand, bacterial diversity of samples from native stocks in extractive areas displayed a similarity index varying between 55 and 77%, and all samples were clustered separately from each other and from the cluster of samples derived from the cultivation area. Microbiological analyses showed that oysters from the extractive area were not fit for human consumption. This reflected a different composition of the microbial community in this area, probably resulting from anthropic impact. Our study also demonstrated that low temperatures and high rainfall limits the bacterial concentration in tropical oysters. This is the first study analyzing the total bacterial community profiles of the oyster C. rhizophorae.

  11. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ida Autiero

    Full Text Available BACKGROUND: A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined "robustness". The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a beta-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs. These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. METHODOLOGY: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML. To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. CONCLUSIONS: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.

  12. Assessment of cytotoxic and genotoxic potential of refinery waste effluent using plant, animal and bacterial systems.

    Science.gov (United States)

    Gupta, Amit Kumar; Ahmad, Masood

    2012-01-30

    The work described here presents the toxic effect of Mathura refinery wastewater (MRWW) in plant (Allium cepa), bacterial (E. coli K12) and human (blood) system. The samples were collected from adjoining area of Mathura refinery, Dist. Mathura, U.P. (India). Chromosomal aberration test and micronucleus assay in (A. cepa) system, E. coli K12 survival assay as well as hemolysis assay in human blood were employed to assess the toxicity of MRWW. MRWW exposure resulted in the formation of micronuclei and bridges in chromosomes of A. cepa cells. A significant decline occurred in survival of DNA repair defective mutants of E. coli K12 exposed to MRWW. On incubation with MRWW, calf thymus DNA-EtBr fluorescence intensity decreased and percent hemolysis of human blood cells increased. An induction in the MDA levels of MRWW treated A. cepa roots indicated lipid peroxidation also. Collectively, the results demonstrate a significant genotoxic and cytotoxic potential of MRWW. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane.

  14. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  15. Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary.

    Science.gov (United States)

    Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika

    2014-07-01

    Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Differences of serum procalcitonin levels between bacterial infection and flare in systemic lupus erythematosus patients

    Science.gov (United States)

    Patrick, J.; Marpaung, B.; Ginting, Y.

    2018-03-01

    Differentiate bacterial infections from flare in SLE patients is difficult to do because clinical symptoms of infection is similar to flare. SLE patients with infection require antibiotic therapy with decreased doses of immunosuppressant while in flare diseases require increased immunosuppressant. Procalcitonin (PCT), a biological marker, increased in serum patients with bacterial infections and expected to be a solution of problem. The aim of this study was to examine the function of PCT serum as marker to differentiate bacterial infection and flare in SLE patients. This cross-sectional study was conducted in Adam Malik Hospital from January-July 2017. We examined 80 patients SLE flare (MEX-SLEDAI>5), screen PCT and culture according to focal infection. Data were statistically analyzed. 80 SLE patients divided into 2 groups: bacterial infection group (31 patients) and non-infection/flare group (49 patients). Median PCT levels of bacterial infection group was 1.66 (0.04-8.45)ng/ml while flare group was 0.12 (0.02-0.81)ng/ml. There was significant difference of serum Procalcitonin level between bacterial infection and flare group in SLE patients (p=0.001). Procalcitonin serum levels can be used as a biomarker to differentiate bacterial infections and flare in SLE patients.

  17. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...

  18. Bacterial Effectors and Their Functions in the Ubiquitin-Proteasome System: Insight from the Modes of Substrate Recognition

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    2014-08-01

    Full Text Available Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  19. Bacterial effectors and their functions in the ubiquitin-proteasome system: insight from the modes of substrate recognition.

    Science.gov (United States)

    Kim, Minsoo; Otsubo, Ryota; Morikawa, Hanako; Nishide, Akira; Takagi, Kenji; Sasakawa, Chihiro; Mizushima, Tsunehiro

    2014-08-18

    Protein ubiquitination plays indispensable roles in the regulation of cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative diseases. Given the importance of this modification, it is to be expected that several pathogenic bacteria have developed the ability to utilize the host ubiquitin system for their own benefit. Modulation of the host ubiquitin system by bacterial effector proteins inhibits innate immune responses and hijacks central signaling pathways. Bacterial effectors mimic enzymes of the host ubiquitin system, but may or may not be structurally similar to the mammalian enzymes. Other effectors bind and modify components of the host ubiquitin system, and some are themselves subject to ubiquitination. This review will describe recent findings, based on structural analyses, regarding how pathogens use post-translational modifications of proteins to establish an infection.

  20. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part?2? antimicrobial choice, treatment regimens and compliance

    OpenAIRE

    Beco, L.; Guagu?re, E.; M?ndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of t...

  1. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  2. Control of corrosive bacterial community by bronopol in industrial water system.

    Science.gov (United States)

    Narenkumar, Jayaraman; Ramesh, Nachimuthu; Rajasekar, Aruliah

    2018-01-01

    Ten aerobic corrosive bacterial strains were isolated from a cooling tower water system (CWS) which were identified based on the biochemical characterization and 16S rRNA gene sequencing. Out of them, dominant corrosion-causing bacteria, namely, Bacillus thuringiensis EN2, Terribacillus aidingensis EN3, and Bacillus oleronius EN9, were selected for biocorrosion studies on mild steel 1010 (MS) in a CWS. The biocorrosion behaviour of EN2, EN3, and EN9 strains was studied using immersion test (weight loss method), electrochemical analysis, and surface analysis. To address the corrosion problems, an anti-corrosive study using a biocide, bronopol was also demonstrated. Scanning electron microscopy and Fourier-transform infrared spectroscopy analyses of the MS coupons with biofilm developed after exposure to CWS confirmed the accumulation of extracellular polymeric substances and revealed that biofilms was formed as microcolonies, which subsequently cause pitting corrosion. In contrast, the biocide system, no pitting type of corrosion, was observed and weight loss was reduced about 32 ± 2 mg over biotic system (286 ± 2 mg). FTIR results confirmed the adsorption of bronopol on the MS metal surface as protective layer (co-ordination of NH 2 -Fe 3+ ) to prevent the biofilm formation and inhibit the corrosive chemical compounds and thus led to reduction of corrosion rate (10 ± 1 mm/year). Overall, the results from WL, EIS, SEM, XRD, and FTIR concluded that bronopol was identified as effective biocide and corrosion inhibitor which controls the both chemical and biocorrosion of MS in CWS.

  3. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Elad [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2012-05-07

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  4. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus

    International Nuclear Information System (INIS)

    Harel, Elad

    2012-01-01

    Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

  5. α-Intercalated cells defend the urinary system from bacterial infection.

    Science.gov (United States)

    Paragas, Neal; Kulkarni, Ritwij; Werth, Max; Schmidt-Ott, Kai M; Forster, Catherine; Deng, Rong; Zhang, Qingyin; Singer, Eugenia; Klose, Alexander D; Shen, Tian Huai; Francis, Kevin P; Ray, Sunetra; Vijayakumar, Soundarapandian; Seward, Samuel; Bovino, Mary E; Xu, Katherine; Takabe, Yared; Amaral, Fábio E; Mohan, Sumit; Wax, Rebecca; Corbin, Kaitlyn; Sanna-Cherchi, Simone; Mori, Kiyoshi; Johnson, Lynne; Nickolas, Thomas; D'Agati, Vivette; Lin, Chyuan-Sheng; Qiu, Andong; Al-Awqati, Qais; Ratner, Adam J; Barasch, Jonathan

    2014-07-01

    α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC-dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system.

  6. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  7. The type VI secretion system impacts bacterial invasion and population dynamics in a model intestinal microbiota

    Science.gov (United States)

    Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer

    Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.

  8. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation.

    Science.gov (United States)

    Cox, D; Kerrigan, S W; Watson, S P

    2011-06-01

    It has become clear that platelets are not simply cell fragments that plug the leak in a damaged blood vessel; they are, in fact, also key components in the innate immune system, which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the cells that respond first to a site of injury, they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets, which usually triggers platelet activation and the secretion of antimicrobial peptides. The main platelet receptors that mediate these interactions are glycoprotein (GP)IIb-IIIa, GPIbα, FcγRIIa, complement receptors, and TLRs. This process may involve direct interactions between bacterial proteins and the receptors, or can be mediated by plasma proteins such as fibrinogen, von Willebrand factor, complement, and IgG. Here, we review the variety of interactions between platelets and bacteria, and look at the potential for inhibiting these interactions in diseases such as infective endocarditis and sepsis. © 2011 International Society on Thrombosis and Haemostasis.

  9. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae).

    Science.gov (United States)

    Zheng, Zhou; Wang, Dandan; He, Hong; Wei, Cong

    2017-01-01

    Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica) were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the "filter chamber + conical segment" of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and are informative for

  10. Bacterial diversity of bacteriomes and organs of reproductive, digestive and excretory systems in two cicada species (Hemiptera: Cicadidae.

    Directory of Open Access Journals (Sweden)

    Zhou Zheng

    Full Text Available Cicadas form intimate symbioses with bacteria to obtain nutrients that are scarce in the xylem fluid they feed on. The obligate symbionts in cicadas are purportedly confined to specialized bacteriomes, but knowledge of bacterial communities associated with cicadas is limited. Bacterial communities in the bacteriomes and organs of reproductive, digestive and excretory systems of two cicada species (Platypleura kaempferi and Meimuna mongolica were investigated using different methods, and the bacterial diversity and distribution patterns of dominant bacteria in different tissues were compared. Within each species, the bacterial communities of testes are significantly different from those of bacteriomes and ovaries. The dominant endosymbiont Candidatus Sulcia muelleri is found not only in the bacteriomes and reproductive organs, but also in the "filter chamber + conical segment" of both species. The transmission mode of this endosymbiont in the alimentary canal and its effect on physiological processes merits further study. A novel bacterium of Rhizobiales, showing ~80% similarity to Candidatus Hodgkinia cicadicola, is dominant in the bacteriomes and ovaries of P. kaempferi. Given that the genome of H. cicadicola exhibits rapid sequence evolution, it is possible that this novel bacterium is a related endosymbiont with beneficial trophic functions similar to that of H. cicadicola in some other cicadas. Failure to detect H. cicadicola in M. mongolica suggests that it has been subsequently replaced by another bacterium, a yeast or gut microbiota which compensates for the loss of H. cicadicola. The distribution of this novel Rhizobiales species in other cicadas and its identification require further investigation to help establish the definition of the bacterial genus Candidatus Hodgkinia and to provide more information on sequence divergence of related endosymbionts of cicadas. Our results highlight the complex bacterial communities of cicadas, and

  11. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon

    Directory of Open Access Journals (Sweden)

    Paula Marcela Duque Jaramillo

    2013-12-01

    Full Text Available Cowpea (Vigna unguiculata is an important grain-producing legume that can forego nitrogen fertilization by establishing an efficient symbiosis with nitrogen-fixing bacteria. Although inoculating strains have already been selected for this species, little is known about the genotypic and symbiotic diversity of native rhizobia. Recently, Bradyrhizobium has been shown to be the genus most frequently trapped by cowpea in agricultural soils of the Amazon region. We investigated the genetic and symbiotic diversity of 148 bacterial strains with different phenotypic and cultural properties isolated from the nodules of the trap species cowpea, which was inoculated with samples from soils under agroforestry systems from the western Amazon. Sixty non-nodulating strains indicated a high frequency of endophytic strains in the nodules. The 88 authenticated strains had varying symbiotic efficiency. The SPAD (Soil Plant Analysis Development index (indirect measurement of chlorophyll content was more efficient at evaluating the contribution of symbiotic N2-fixation than shoot dry matter under axenic conditions. Cowpea-nodulating bacteria exhibited a high level of genetic diversity, with 68 genotypes identified by BOX-PCR. Sequencing of the 16S rRNA gene showed a predominance of the genus Bradyrhizobium, which accounted for 70 % of all strains sequenced. Other genera identified were Rhizobium, Ochrobactrum, Paenibacillus, Bosea, Bacillus, Enterobacter, and Stenotrophomonas. These results support the promiscuity of cowpea and demonstrate the high genetic and symbiotic diversity of rhizobia in soils under agroforestry systems, with some strains exhibiting potential for use as inoculants. The predominance of Bradyrhizobium in land uses with different plant communities and soil characteristics reflects the adaptation of this genus to the Amazon region.

  12. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems.

    Science.gov (United States)

    Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit

    2016-08-15

    Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) - a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0-9.7×10(4)CFUm(-2)h(-1)) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1m away from the GW systems. At the 5m distance amounts of these bacteria were not statistically different (p>0.05) from background concentrations tested over 50m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide more accurate

  13. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  14. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  15. Cone-morse implant connection system significantly reduces bacterial leakage between implant and abutment: an in vitro study.

    Science.gov (United States)

    Baj, A; Bolzoni, A; Russillo, A; Lauritano, D; Palmieri, A; Cura, F; Silvestre, F J; Giannì, A B

    2017-01-01

    Osseointegrated implants are very popular dental treatments today in the world. In osseointegrated implants, the occlusal forces are transmitted from prosthesis through an abutment to a dental implant. The abutment is connected to the implant by mean of a screw. A screw is the most used mean for connecting an implant to an abutment. Frequently the screws break and are lost. There is an alternative to screw retained abutment systems: the cone-morse connection (CMC). The CMC, thanks to the absence of the abutment screw, guarantees no micro-gaps, no micro-movements, and a reduction of bacterial leakage between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new CMC implants systems (Leone Spa®, Florence, Italy). To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Four cone-morse Leone implants (Leone® Spa, Florence, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was then measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 3% for P. gingivalis and 4% for T. forsythia. Cone-morse connection implant system has very low bacterial leakage percentage and is similar to one-piece implants.

  16. Development of a Low Input and sustainable Switchgrass Feedstock Production System Utilizing Beneficial Bacterial Endophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Chuansheng [IALR; Nowak, Jerzy [VPISU; Seiler, John [VPISU

    2014-10-24

    Switchgrass represents a promising feedstock crop for US energy sustainability. However, its broad utilization for bioenergy requires improvements of biomass yields and stress tolerance. In this DOE funded project, we have been working on harnessing beneficial bacterial endophytes to enhance switchgrass performance and to develop a low input feedstock production system for marginal lands that do not compete with the production of food crops. We have demonstrated that one of most promising plant growth-promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize roots and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, greenhouse, as well as field conditions. Furthermore, PsJN bacterization improved growth and development of switchgrass seedlings, significantly stimulated plant root and shoot growth, and tiller number in the field, and enhanced biomass accumulation on both poor (p<0.001) and rich (p<0.05) soils, with more effective stimulation of plant growth in low fertility soil. Plant physiology measurements showed that PsJN inoculated Alamo had consistently lower transpiration, lower stomatal conductance, and higher water use efficiency in greenhouse conditions. These physiological changes may significantly contribute to the recorded growth enhancement. PsJN inoculation rapidly results in an increase in photosynthetic rates which contributes to the advanced growth and development. Some evidence suggests that this initial growth advantage decreases with time when resources are not limited such as in greenhouse studies. Additionally, better drought resistance and drought hardening were observed in PsJN inoculated switchgrass. Using the DOE-funded switchgrass EST microarray, in a collaboration with the Genomics Core Facility at the Noble Foundation, we have determined gene expression profile changes in both responsive switchgrass cv. Alamo and non-responsive cv. Cave-in-Rock (CR) following Ps

  17. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  18. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    Science.gov (United States)

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic “sinks” that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands. PMID:21908672

  19. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens.

    Science.gov (United States)

    Haney, Cara H; Wiesmann, Christina L; Shapiro, Lori R; Melnyk, Ryan A; O'Sullivan, Lucy R; Khorasani, Sophie; Xiao, Li; Han, Jiatong; Bush, Jenifer; Carrillo, Juli; Pierce, Naomi E; Ausubel, Frederick M

    2017-10-31

    Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture. © 2017 John Wiley & Sons Ltd.

  20. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Weissbrodt, D.G.; Hammes, F; van Loosdrecht, Mark C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year

  1. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis

    NARCIS (Netherlands)

    I.A. Schrijver (Ingrid); M. van Meurs (Marjan); M.J. Melief (Marie-José); D. Buljevac (Dragan); R. Ravid (Rivka); M.P.H. Hazenberg (Maarten); J.D. Laman (Jon); C.W. Ang (Wim)

    2001-01-01

    textabstractMultiple sclerosis is believed to result from a CD4+ T-cell response against myelin antigens. Peptidoglycan, a major component of the Gram-positive bacterial cell wall, is a functional lipopolysaccharide analogue with potent proinflammatory properties and is conceivably

  2. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah; Almashharawi, Samir; Kammourie, Nizar; Missimer, Thomas M.

    2014-01-01

    natural filtration and biological treatment of the feed water prior to the entry of the water into the desalination plant. The use of subsurface intakes normally improves the raw water quality by reducing suspended solids, algae, bacterial, and dissolved

  3. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    Science.gov (United States)

    Xu, Shoutao

    Microbial electrochemical systems (MESs) have attracted much research attention in recent years due to their promising applications in renewable energy generation, bioremediation, and wastewater treatment. In a MES, microorganisms interact with electrodes via electrons, catalyzing oxidation and reduction reactions at the anode and the cathode. The bacterial community of a high power mixed consortium MESs (maximum power density is 6.5W/m2) was analyzed by using denature gradient gel electrophoresis (DGGE) and 16S DNA clone library methods. The bacterial DGGE profiles were relatively complex (more than 10 bands) but only three brightly dominant bands in DGGE results. These results indicated there are three dominant bacterial species in mixed consortium MFCs. The 16S DNA clone library method results revealed that the predominant bacterial species in mixed culture is Geobacter sp (66%), Arcobacter sp and Citrobacter sp. These three bacterial species reached to 88% of total bacterial species. This result is consistent with the DGGE result which showed that three bright bands represented three dominant bacterial species. Exoelectrogenic bacterial strain SX-1 was isolated from a mediator-less microbial fuel cell by conventional plating techniques with ferric citrate as electron acceptor under anaerobic conditions. Phylogenetic analysis of the 16S rDNA sequence revealed that it was related to the members of Citrobacter genus with Citrobacter sp. sdy-48 being the most closely related species. The bacterial strain SX-1 produced electricity from citrate, acetate, glucose, sucrose, glycerol, and lactose in MFCs with the highest current density of 205 mA/m2 generated from citrate. Cyclic voltammetry analysis indicated that membrane associated proteins may play an important role in facilitating electron transfer from the bacteria to the electrode. This is the first study that demonstrates that Citrobacter species can transfer electrons to extracellular electron acceptors

  4. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    Directory of Open Access Journals (Sweden)

    Matthew L Faron

    Full Text Available The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA System (Bruker Daltonics Inc, Billerica, MA for the identification of aerobic gram-negative bacteria as part of a 510(k submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263 to genus and 98.2% (2,222/2,263 to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  5. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    Science.gov (United States)

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  6. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  7. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Science.gov (United States)

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  8. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Directory of Open Access Journals (Sweden)

    Reuben B Vercoe

    2013-04-01

    Full Text Available In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs and their associated (Cas proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2 involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  9. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands

    Science.gov (United States)

    Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.

    2013-01-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  10. A short-time scale colloidal system reveals early bacterial adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2008-07-01

    Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.

  11. Assessing Interactions of Multiple Agrichemicals by Using Bacterial Assemblages in a Wetland Mesocosm System

    Directory of Open Access Journals (Sweden)

    Bruce Libman

    2005-08-01

    Full Text Available Agrichemicals may enter wetlands located adjacent to or downstream from agricultural fields. We investigated the individual and interactive effects of three agrichemicals [atrazine, chlorpyrifos, and monosodium acid methanearsonate (MSMA] and methyl mercury on abundance and heterotrophic potential of wetland heterotrophic bacteria assemblages. We used a factorial experimental design, in which chemicals were introduced in all possible combinations to 66 500-liter mesocosms at the Biological Field Station of the University of Mississippi. Methyl mercury was added to bring the total mercury (HG concentration to 0.4 mg/Kg wet weight at the sediment surface. Atrazine, chlorpyrifos, and MSMA were added at concentrations of 192, 51, and 219μg/L, respectively. Over 32 days of exposure, microbial heterotrophic activity was sensitive to only the interactive effect of HG*ATR*CPF in the sediments and only CPF in the water. Total bacterial numbers did not exhibit any significant treatment effects. Therefore, the effects of agrichemicals were reflected on cell-specific bacterial heterotrophic activity rather than bacterial population size.

  12. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Directory of Open Access Journals (Sweden)

    Vidlak Debbie

    2012-06-01

    Full Text Available Abstract Although IL-17A (commonly referred to as IL-17 has been implicated in the pathogenesis of central nervous system (CNS autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R knockout (KO mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25. In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT cell and gamma-delta (γδ T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.

  13. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October. All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005 and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.

  14. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance.

    Science.gov (United States)

    Cao, Qi; Feng, Fenfen; Wang, Huan; Xu, Xiaojuan; Chen, Huanchun; Cai, Xuwang; Wang, Xiangru

    2018-01-01

    Haemophilus parasuis is an opportunistic pathogen localized in the upper respiratory tracts of pigs, its infection begins from bacterial survival under complex conditions, like hyperosmosis, oxidative stress, phagocytosis, and sometimes antibiotics as well. The two-component signal transduction (TCST) system serves as a common stimulus-response mechanism that allows microbes to sense and respond to diverse environmental conditions via a series of phosphorylation reactions. In this study, we investigated the role of TCST system CpxRA in H. parasuis in response to different environmental stimuli by constructing the ΔcpxA and ΔcpxR single deletion mutants as well as the ΔcpxRA double deletion mutant from H. parasuis serotype 4 isolate JS0135. We demonstrated that H. parasuis TCST system CpxRA confers bacterial tolerance to stresses and bactericidal antibiotics. The CpxR was found to play essential roles in mediating oxidative stress, osmotic stresses and alkaline pH stress tolerance, as well as macrolide resistance (i.e. erythromycin), but the CpxA deletion did not decrease bacterial resistance to abovementioned stresses. Moreover, we found via RT-qPCR approach that HAPS_RS00160 and HAPS_RS09425, both encoding multidrug efflux pumps, were significantly decreased in erythromycin challenged ΔcpxR and ΔcpxRA mutants compared with wild-type strain JS0135. These findings characterize the role of the TCST system CpxRA in H. parasuis conferring stress response tolerance and bactericidal resistance, which will deepen our understanding of the pathogenic mechanism in H. parasuis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Development of a Premature Stop Codon-detection method based on a bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Mayorga Luis S

    2006-09-01

    Full Text Available Abstract Background The detection of Premature Stop Codons (PSCs in human genes is very useful for the genetic diagnosis of different hereditary cancers, e.g. Familial Breast Cancer and Hereditary Non-Polyposis Colorectal Cancer (HNPCC. The products of these PSCs are truncated proteins, detectable in vitro by the Protein Truncation Test and in vivo by using the living translation machinery of yeast or bacteria. These living strategies are based on the construction of recombinant plasmids where the human sequence of interest is inserted upstream of a reporter gene. Although simple, these assays have their limitations. The yeast system requires extensive work to enhance its specificity, and the bacterial systems yield many false results due to translation re-initiation events occurring post PSCs. Our aim was to design a recombinant plasmid useful for detecting PSCs in human genes and resistant to bacterial translation re-initiation interferences. Results A functional recombinant plasmid (pREAL was designed based on a bacterial two-hybrid system. In our design, the in vivo translation of fused fragments of the Bordetella pertussis adenylate cyclase triggers the production of cAMP giving rise to a selectable bacterial phenotype. When a gene of interest is inserted between the two fragments, any PSC inhibits the enzymatic activity of the product, and translation re-initiation events post-PSC yield separated inactive fragments. We demonstrated that the system can accurately detect PSCs in human genes by inserting mutated fragments of the brca1 and msh2 gene. Western Blot assays revealed translation re-initiation events in all the tested colonies, implying that a simpler plasmid would not be resistant to this source of false negative results. The application of the system to a HNPCC family with a nonsense mutation in the msh2 gene correctly diagnosed wild type homozygous and heterozygous patients. Conclusion The developed pREAL is applicable to the

  16. Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis.

    Science.gov (United States)

    Miglietta, Fabio; Faneschi, Maria Letizia; Lobreglio, Giambattista; Palumbo, Claudio; Rizzo, Adriana; Cucurachi, Marco; Portaccio, Gerolamo; Guerra, Francesco; Pizzolante, Maria

    2015-09-01

    The aim of this study was to evaluate procalcitonin (PCT), C-reactive protein (CRP), platelet count (PLT) and serum lactate dehydrogenase (LDH) as early markers for diagnosis of SIRS, bacterial sepsis and systemic candidiasis in intensive care unit (ICU) patients. Based on blood culture results, the patients were divided into a sepsis group (70 patients), a SIRS group (42 patients) and a systemic candidiasis group (33 patients). PCT, CRP, LDH and PLT levels were measured on day 0 and on day 2 from the sepsis symptom onset. PCT levels were higher in Gram negative sepsis than those in Gram positive sepsis, although the P value between the two subgroups is not significant (P=0.095). Bacterial sepsis group had higher PCT and CRP levels compared with the systemic candidiasis group, whereas PLT and LDH levels showed similar levels in these two subgroups. The AUC for PCT (AUC: 0.892, P candidiasis groups (P=0.093 N.S.). In conclusion, PCT can be used as a preliminary marker in the event of clinical suspicion of systemic candidiasis; however, low PCT levels (candidiasis and SIRS groups.

  17. A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems

    KAUST Repository

    Prest, E. I.

    2016-01-06

    A systematic approach is presented for the assessment of (i) bacterial growth-controlling factors in drinking water and (ii) the impact of distribution conditions on the extent of bacterial growth in full-scale distribution systems. The approach combines (i) quantification of changes in autochthonous bacterial cell concentrations in full-scale distribution systems with (ii) laboratoryscale batch bacterial growth potential tests of drinking water samples under defined conditions. The growth potential tests were done by direct incubation of water samples, without modification of the original bacterial flora, and with flow cytometric quantification of bacterial growth. This method was shown to be reproducible (ca. 4% relative standard deviation) and sensitive (detection of bacterial growth down to 5 μg L-1 of added assimilable organic carbon). The principle of step-wise assessment of bacterial growth-controlling factors was demonstrated on bottled water, shown to be primarily carbon limited at 133 (±18) × 103 cells mL-1 and secondarily limited by inorganic nutrients at 5,500 (±1,700) × 103 cells mL-1. Analysis of the effluent of a Dutch full-scale drinking water treatment plant showed (1) bacterial growth inhibition as a result of end-point chlorination, (2) organic carbon limitation at 192 (±72) × 103 cells mL-1 and (3) inorganic nutrient limitation at 375 (±31) × 103 cells mL-1. Significantly lower net bacterial growth was measured in the corresponding full-scale distribution system (176 (±25) × 103 cells mL-1) than in the laboratory-scale growth potential test of the same water (294 (±35) × 103 cells mL-1), highlighting the influence of distribution on bacterial growth. The systematic approach described herein provides quantitative information on the effect of drinking water properties and distribution system conditions on biological stability, which can assist water utilities in decision-making on treatment or distribution system improvements to

  18. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  19. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2011-02-01

    Full Text Available Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS, and thereby translocated Bartonella effector proteins (Beps, evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial

  20. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  1. Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites

    DEFF Research Database (Denmark)

    Li, Qiuchun; Xie, Xiaolei; Yin, Kequan

    2016-01-01

    Staphylococcus epidermidis is considered as a major cause of nosocomial infections, bringing an immense burden to healthcare systems. Virulent phages have been confirmed to be efficient in combating the pathogen, but the prensence of CRISPR-Cas system, which is a bacterial immune system eliminating...... phages was reported in few S. epidermidis strains. In this study, the CRISPR-Cas system was detected in 12 from almost 300 published genomes in GenBank and by PCR of cas6 gene in 18 strains out of 130 clinical isolates obtained in Copenhagen. Four strains isolated in 1965-1966 harboured CRISPR elements...... spacers located in the CRISPR1 locus with homolgy to virulent phage 6ec DNA sequences, and 19 strains each carrying 2 or 3 different spacers recognizing this phage, implied that the CRISPR-Cas immunity could be abrogated by nucleotide mismatch between the spacer and its target phage sequence, while new...

  2. Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences

    DEFF Research Database (Denmark)

    Pallesen, L; Poulsen, LK; Christiansen, Gunna

    1995-01-01

    of heterologous DNA segments encoding two reporter sequences. In the selected positions such insertions did not significantly alter the function of the FimH protein with regard to surface location and adhesive ability. The system seemed to be quite flexible, since chimeric versions of the FimH adhesin containing...... as many as 56 foreign amino acids were transported to the bacterial surface as components of the fimbrial organelles. Furthermore, the foreign protein segments were recognized by insert-specific antibodies when expressed within chimeric proteins on the surface of the bacteria. The results from...

  3. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  4. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Heydorn, Arne; Hentzer, Morten

    2001-01-01

    In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P-luxI have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent...... proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL...

  5. Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems.

    Science.gov (United States)

    Ki, Bo-Min; Kim, Yu Mi; Jeon, Jun Min; Ryu, Hee Wook; Cho, Kyung-Suk

    2017-12-28

    Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter , and Brevundimonas . However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium , and Caldicoprobacter . Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.

  6. Diversity of ribosomal 16S DNA- and RNA-based bacterial community in an office building drinking water system.

    Science.gov (United States)

    Inkinen, J; Jayaprakash, B; Santo Domingo, J W; Keinänen-Toivola, M M; Ryu, H; Pitkänen, T

    2016-06-01

    Next-generation sequencing of 16S ribosomal RNA genes (rDNA) and ribosomal RNA (rRNA) was used to characterize water and biofilm microbiome collected from a drinking water distribution system of an office building after its first year of operation. The total bacterial community (rDNA) and active bacterial members (rRNA) sequencing databases were generated by Illumina MiSeq PE250 platform. As estimated by Chao1 index, species richness in cold water system was lower (180-260) in biofilms (Sphingomonas spp., Methylobacterium spp., Limnohabitans spp., Rhizobiales order) than in waters (250-580), (also Methylotenera spp.) (P = 0·005, n = 20). Similarly species richness (Chao1) was slightly higher (210-580) in rDNA libraries compared to rRNA libraries (150-400; P = 0·054, n = 24). Active Mycobacterium spp. was found in cross-linked polyethylene (PEX), but not in corresponding copper pipeline biofilm. Nonpathogenic Legionella spp. was found in rDNA libraries but not in rRNA libraries. Microbial communities differed between water and biofilms, between cold and hot water systems, locations in the building and between water rRNA and rDNA libraries, as shown by clear clusters in principal component analysis (PcoA). By using the rRNA method, we found that not all bacterial community members were active (e.g. Legionella spp.), whereas other members showed increased activity in some locations; for example, Pseudomonas spp. in hot water circulations' biofilm and order Rhizobiales and Limnohabitans spp. in stagnated locations' water and biofilm. rRNA-based methods may be better than rDNA-based methods for evaluating human health implications as rRNA methods can be used to describe the active bacterial fraction. This study indicates that copper as a pipeline material might have an adverse impact on the occurrence of Mycobacterium spp. The activity of Legionella spp. maybe questionable when detected solely by using DNA-based methods. © 2016 The Society for Applied

  7. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.

    Science.gov (United States)

    Lazzaro, Martina; Feldman, Mario F; García Véscovi, Eleonora

    2017-08-22

    The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens , it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter , which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia 's RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. IMPORTANCE Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was

  8. Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems

    KAUST Repository

    Kalathil, Shafeer

    2016-03-17

    An electrically active bacterium transports its metabolically generated electrons to insoluble substrates such as electrodes via a process known as extracellular electron transport (EET). Bacterial EET is a crucial process in the geochemical cycling of metals, bioremediation and bioenergy devices such as microbial fuel cells (MFCs). Recently, it has been found that electroactive bacteria can reverse their respiratory pathways by accepting electrons from a negatively poised electrode to produce high-value chemicals such as ethanol in a process termed as microbial electrosynthesis (MES). A poor electrical connection between bacteria and the electrode hinders the EET and MES processes significantly. Also, the bidirectional EET process is sluggish and needs to be improved drastically to extend its practical applications. Several attempts have been undertaken to improve the bidirectional EET by employing various advanced nanostructured materials such as carbon nanotubes and graphene. This review covers the recent progress in the bacterial bidirectional EET processes using advanced nanostructures in the light of current understandings of bacteria–nanomaterial interactions.

  9. Fat storage-inducing transmembrane (FIT or FITM proteins are related to lipid phosphatase/phosphotransferase enzymes

    Directory of Open Access Journals (Sweden)

    Matthew J Hayes

    2017-12-01

    Full Text Available Fat storage-inducing transmembrane (FIT or FITM proteins have been implicated in the partitioning of triacylglycerol to lipid droplets and the budding of lipid droplets from the ER. At the molecular level, the sole relevant interaction is that FITMs directly bind to triacyglycerol and diacylglycerol, but how they function at the molecular level is not known. Saccharomyces cerevisiae has two FITM homologues: Scs3p and Yft2p. Scs3p was initially identified because deletion leads to inositol auxotrophy, with an unusual sensitivity to addition of choline. This strongly suggests a role for Scs3p in phospholipid biosynthesis. Looking at the FITM family as widely as possible, we found that FITMs are widespread throughout eukaryotes, indicating presence in the last eukaryotic common ancestor. Protein alignments also showed that FITM sequences contain the active site of lipid phosphatase/phosphotransferase (LPT enzymes. This large family transfers phosphate-containing headgroups either between lipids or in exchange for water. We confirmed the prediction that FITMs are related to LPTs by showing that single amino-acid substitutions in the presumptive catalytic site prevented their ability to rescue growth of the mutants on low inositol/high choline media when over-expressed. The substitutions also prevented rescue of other phenotypes associated with loss of FITM in yeast, including mistargeting of Opi1p, defective ER morphology, and aberrant lipid droplet budding. These results suggest that Scs3p, Yft2p and FITMs in general are LPT enzymes involved in an as yet unknown critical step in phospholipid metabolism.

  10. The effect of E coli virulence on bacterial translocation and systemic sepsis in the neonatal rabbit model.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Wadowsky, R M; DePudyt, L; Rowe, M I

    1991-04-01

    In the surgical neonate, three factors that promote bacterial translocation and systemic infection are: (1) intestinal bacterial colonization and overgrowth; (2) compromised host defenses; and (3) disruption of the mucosal epithelial barrier. The newborn rabbit provides an excellent model to study these factors. Like the human, there is early closure of the gut mucosa to macromolecules, and nutrition can be maintained by breast or formula feeding. This study examines translocation and systemic sepsis after colonization with virulent K1 and avirulent K100 strains of Escherichia coli. New Zealand white rabbit pups (2 to 5 days old) were studied. The gastrointestinal tracts of 12 were colonized with K1 E coli; 14 were colonized with K100 E coli; 12 control animals were not inoculated. Mesenteric lymph node (MLN), liver, spleen, and colon homogenate were cultured 72 hours postinoculation. No bacteria were isolated from the colons of all but one control animal. Translocation or systemic sepsis did not occur. Translocation to the MLN was significantly increased (P less than .03) in K1 (50%) and K100 (36%) groups compared with controls (0%). Translocation to liver and spleen (systemic sepsis) was significantly increased (P less than .03) in K1 animals (67%) compared with K100 (0%) or controls (0%). Colonization by both strains of E coli led to translocation to the MLN, but only K1 E coli caused systemic sepsis. This suggests that although colonization by E coli in the newborn leads to translocation to the MLN, progression to systemic sepsis is the result of characteristics of the bacteria and/or neonatal host responses.

  11. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration.

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-07-01

    To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  12. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration

    Science.gov (United States)

    Douterelo, I; Sharpe, R; Boxall, J

    2014-01-01

    Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. PMID:24712449

  13. Dynamic instability in the hook-flagellum system that triggers bacterial flicks

    Science.gov (United States)

    Jabbarzadeh, Mehdi; Fu, Henry Chien

    2018-01-01

    Dynamical bending, buckling, and polymorphic transformations of the flagellum are known to affect bacterial motility, but run-reverse-flick motility of monotrichous bacteria also involves the even more flexible hook connecting the flagellum to its rotary motor. Although flick initiation has been hypothesized to involve either static Euler buckling or dynamic bending of the hook, the precise mechanism of flick initiation remains unknown. Here, we find that flicks initiate via a dynamic instability requiring flexibility in both the hook and flagellum. We obtain accurate estimates of forces and torques on the hook that suggest that flicks occur for stresses below the (static) Euler buckling criterion, then provide a mechanistic model for flick initiation that requires combined bending of the hook and flagellum. We calculate the triggering torque-stiffness ratio and find that our predicted onset of dynamic instability corresponds well with experimental observations.

  14. The dynamic instability in the hook/flagellum system that triggers bacterial flicks

    Science.gov (United States)

    Jabbarzadeh, Mehdi; Fu, Henry

    2017-11-01

    Dynamical bending, buckling, and polymorphic transformations of the flagellum are known to affect bacterial motility, but run-reverse-flick motility of monotrichous bacteria also involves the even more flexible hook, which connects the flagellum to the cell body. Here, we identify the dynamic buckling mechanism that produces flicks in Vibrio alginolyticus. Estimates of forces and torques on the hook from experimental observations suggest that flicks are triggered at stresses below the hook's static Euler buckling criterion. Using an accurate linearization of the Kirchoff rod model for the hook in a model of a swimming bacterium with rigid flagellum, we show that as hook stiffness decreases there is a transition from on-axis flagellar rotation with small hook deflections to flagellar precession with large deflections. When flagellum flexibility is incorporated, the precession is disrupted by significant flagellar bending - i.e., incipient flicks. The predicted onset of dynamic instabilities corresponds well with experimentally observed flick events.

  15. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  16. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  17. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  18. Efficiency of temporary storage of geothermal waters in a lake system: Monitoring the changes of water quality and bacterial community structures.

    Science.gov (United States)

    Szirányi, Barbara; Krett, Gergely; Kosáros, Tünde; Janurik, Endre; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2017-12-01

    Disposal of used geothermal waters in Hungary often means temporary storage in reservoir lakes to reduce temperature and improve water quality. In this study, the physical and chemical properties and changes in the bacterial community structure of a reservoir lake system in southeast region of Hungary were monitored and compared through 2 years, respectively. The values of biological oxygen demand, concentrations of ammonium ion, total inorganic nitrogen, total phosphorous, and total phenol decreased, whereas oxygen saturation, total organic nitrogen, pH, and conductivity increased during the storage period. Bacterial community structure of water and sediment samples was compared by denaturing gradient gel electrophoresis (DGGE) following the amplification of the 16S rRNA gene. According to the DGGE patterns, greater seasonal than spatial differences of bacterial communities were revealed in both water and sediment of the lakes. Representatives of the genera Arthrospira and Anabaenopsis (cyanobacteria) were identified as permanent and dominant members of the bacterial communities.

  19. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  20. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    Science.gov (United States)

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts.

    Directory of Open Access Journals (Sweden)

    Fuqiang Ye

    Full Text Available Biliary bacteria have been implicated in gallstone pathogenesis, though a clear understanding of their composition and source is lacking. Moreover, the effects of the biliary environment, which is known to be generally hostile to most bacteria, on biliary bacteria are unclear. Here, we investigated the bacterial communities of the biliary tract, duodenum, stomach, and oral cavity from six gallstone patients by using 16S rRNA amplicon sequencing. We found that all observed biliary bacteria were detectable in the upper digestive tract. The biliary microbiota had a comparatively higher similarity with the duodenal microbiota, versus those of the other regions, but with a reduced diversity. Although the majority of identified bacteria were greatly diminished in bile samples, three Enterobacteriaceae genera (Escherichia, Klebsiella, and an unclassified genus and Pyramidobacter were abundant in bile. Predictive functional analysis indicated enhanced abilities of environmental information processing and cell motility of biliary bacteria. Our study provides evidence for the potential source of biliary bacteria, and illustrates the influence of the biliary system on biliary bacterial communities.

  2. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    Science.gov (United States)

    Fish, K; Osborn, A M; Boxall, J B

    2017-09-01

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    Science.gov (United States)

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio

    Directory of Open Access Journals (Sweden)

    Julia Johnke

    2017-10-01

    Full Text Available Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists, predatory bacteria (semi-specialists, and phages (specialists—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.

  5. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  6. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  7. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  8. Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization?

    Science.gov (United States)

    Andelid, Kristina; Tengvall, Sara; Andersson, Anders; Levänen, Bettina; Christenson, Karin; Jirholt, Pernilla; Åhrén, Christina; Qvarfordt, Ingemar; Ekberg-Jansson, Ann; Lindén, Anders

    2015-01-01

    We examined whether systemic cytokine signaling via interleukin (IL)-17 and growth-related oncogene-α (GRO-α) is impaired in smokers with obstructive pulmonary disease including chronic bronchitis (OPD-CB). We also examined how this systemic cytokine signaling relates to bacterial colonization in the airways of the smokers with OPD-CB. Currently smoking OPD-CB patients (n=60, corresponding to Global initiative for chronic Obstructive Lung Disease [GOLD] stage I–IV) underwent recurrent blood and sputum sampling over 60 weeks, during stable conditions and at exacerbations. We characterized cytokine protein concentrations in blood and bacterial growth in sputum. Asymptomatic smokers (n=10) and never-smokers (n=10) were included as control groups. During stable clinical conditions, the protein concentrations of IL-17 and GRO-α were markedly lower among OPD-CB patients compared with never-smoker controls, whereas the asymptomatic smoker controls displayed intermediate concentrations. Notably, among OPD-CB patients, colonization by opportunistic pathogens was associated with markedly lower IL-17 and GRO-α, compared with colonization by common respiratory pathogens or oropharyngeal flora. During exacerbations in the OPD-CB patients, GRO-α and neutrophil concentrations were increased, whereas protein concentrations and messenger RNA for IL-17 were not detectable in a reproducible manner. In smokers with OPD-CB, systemic cytokine signaling via IL-17 and GRO-α is impaired and this alteration may be linked to colonization by opportunistic pathogens in the airways. Given the potential pathogenic and therapeutic implications, these findings deserve to be validated in new and larger patient cohorts. PMID:25848245

  9. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  10. Assessment of toxicity of a glyphosate-based formulation using bacterial systems in lake water.

    Science.gov (United States)

    Amorós, I; Alonso, J L; Romaguera, S; Carrasco, J M

    2007-05-01

    A new Aeromonas bioassay is described to assess the potential harmful effects of the glyphosate-based herbicide, Roundup, in the Albufera lake, a protected area near Valencia. Viability markers as membrane integrity, culturability and beta-galactosidase production of Aeromonas caviae were studied to determine the influence of the herbicide in the bacterial cells. Data from the multifactor analysis of variance test showed no significant differences (P>0.05) between A. caviae counts of viability markers at the studied concentrations (0, 50 and 100 mg l-1 of glyphosate). The effects of Roundup on microbial biota present in the lake were assessed by measuring the number of indigenous mesophilic Aeromonas in presence of different amounts of the herbicide at 0, 50 and 100 mg l-1 of glyphosate. In samples containing 50 and 100 mg l-1 of glyphosate a significant (PAlbufera lake water to Microtox luminescent bacterium (Vibrio fischeri) also was determined. The EC50 values obtained were 36.4 mg l-1 and 64.0 mgl-1 of glyphosate respectively. The acidity (pH 4.5) of the herbicide formulation was the responsible of the observed toxicity.

  11. Detection of Specific Solvent Rearrangement Regions of an Enzyme: NMR and ITC Studies with Aminoglycoside Phosphotransferase(3 )-IIIa

    International Nuclear Information System (INIS)

    Ozen, C.; Norris, Adrianne; Land, Miriam Louise; Tjioe, Elina; Serpersu, Engin H

    2008-01-01

    This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3 and cent;)-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative and cent;H in H2O relative to D2O ( and cent; and cent;H(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative and cent;Cp values were observed for binding of aminoglycosides to APH. and cent;Cp for the APHneomycin complex was -1.6 kcal and acirc;mol-1 and acirc;deg-1. A break at 30 C was observed in the APH-kanamycin complex yielding and cent;Cp values of -0.7 kcal and acirc;mol-1 and acirc;deg-1 and -3.8 kcal and acirc;mol-1 and acirc;deg-1 below and above 30 C, respectively. Neither the change in accessible surface area ( and cent;ASA) nor contributions from heats of ionization were sufficient to explain the large negative and cent;Cp values. Most significantly, 15N-1H HSQC experiments showed that temperature-dependent shifts of the backbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 C only in the APH-kanamycin complex in spectra collected between 21 C and 38 C. These amino acids represent solVent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect and cent;Cp and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site

  12. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system.

    Science.gov (United States)

    Zhang, Meng-Meng; Wang, Ning; Hu, Yan-Bo; Sun, Guang-Yu

    2018-04-01

    A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon

  13. Sonic Hedgehog Signaling Regulates Hematopoietic Stem/Progenitor Cell Activation during the Granulopoietic Response to Systemic Bacterial Infection.

    Science.gov (United States)

    Shi, Xin; Wei, Shengcai; Simms, Kevin J; Cumpston, Devan N; Ewing, Thomas J; Zhang, Ping

    2018-01-01

    Activation and reprogramming of hematopoietic stem/progenitor cells play a critical role in the granulopoietic response to bacterial infection. Our current study determined the significance of Sonic hedgehog (SHH) signaling in the regulation of hematopoietic precursor cell activity during the host defense response to systemic bacterial infection. Bacteremia was induced in male Balb/c mice via intravenous injection (i.v.) of Escherichia coli (5 × 10 7 CFUs/mouse). Control mice received i.v. saline. SHH protein level in bone marrow cell (BMC) lysates was markedly increased at both 24 and 48 h of bacteremia. By contrast, the amount of soluble SHH ligand in marrow elutes was significantly reduced. These contrasting alterations suggested that SHH ligand release from BMCs was reduced and/or binding of soluble SHH ligand to BMCs was enhanced. At both 12 and 24 h of bacteremia, SHH mRNA expression by BMCs was significantly upregulated. This upregulation of SHH mRNA expression was followed by a marked increase in SHH protein expression in BMCs. Activation of the ERK1/2-SP1 pathway was involved in mediating the upregulation of SHH gene expression. The major cell type showing the enhancement of SHH expression in the bone marrow was lineage positive cells. Gli1 positioned downstream of the SHH receptor activation serves as a key component of the hedgehog (HH) pathway. Primitive hematopoietic precursor cells exhibited the highest level of baseline Gli1 expression, suggesting that they were active cells responding to SHH ligand stimulation. Along with the increased expression of SHH in the bone marrow, expression of Gli1 by marrow cells was significantly upregulated at both mRNA and protein levels following bacteremia. This enhancement of Gli1 expression was correlated with activation of hematopoietic stem/progenitor cell proliferation. Mice with Gli1 gene deletion showed attenuation in activation of marrow hematopoietic stem/progenitor cell proliferation and inhibition

  14. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  15. Changes of bacterial diversity and tetracycline resistance in sludge from AAO systems upon exposure to tetracycline pressure

    International Nuclear Information System (INIS)

    Huang, Manhong; Qi, Fangfang; Wang, Jue; Xu, Qi; Lin, Li

    2015-01-01

    Highlights: • High-throughput sequencing was used to compare sludge bacteria with and without TC. • Bacterial diversity increased with TC addition despite of various oxygen conditions. • Total TRGs proliferated with TC addition in three kinds of sludge. • The concentration of efflux pump genes was the highest in the three groups of TRGs. - Abstract: Two lab-scale anaerobic-anoxic-oxic (AAO) systems were used to investigate the changes in tetracycline (TC) resistance and bacterial diversity upon exposure to TC pressure. High-throughput sequencing was used to detect diversity changes in microorganisms at the level of class in sludge from different bioreactors with and without TC. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the abundances of eight tetracycline resistance genes (TRGs), tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX. The results showed that the diversities of the microbial communities of anoxic, anaerobic and aerobic sludge all increased with the addition of TC. TC substantially changed the structure of the microbial community regardless of oxygen conditions. Bacteroidetes and Proteobacteria were the dominant species in the three kinds of sludge and were substantially enriched with TC pressure. In sludge with TC added, almost all target TRGs proliferated more than those in sludge without TC except tetX, which decreased in anaerobic sludge with TC addition. The concentration of efflux pump genes, tet(A–C, E), was the highest among the three groups of TRGs in the different kinds of sludge

  16. Changes of bacterial diversity and tetracycline resistance in sludge from AAO systems upon exposure to tetracycline pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Manhong, E-mail: egghmh@163.com; Qi, Fangfang; Wang, Jue; Xu, Qi; Lin, Li

    2015-11-15

    Highlights: • High-throughput sequencing was used to compare sludge bacteria with and without TC. • Bacterial diversity increased with TC addition despite of various oxygen conditions. • Total TRGs proliferated with TC addition in three kinds of sludge. • The concentration of efflux pump genes was the highest in the three groups of TRGs. - Abstract: Two lab-scale anaerobic-anoxic-oxic (AAO) systems were used to investigate the changes in tetracycline (TC) resistance and bacterial diversity upon exposure to TC pressure. High-throughput sequencing was used to detect diversity changes in microorganisms at the level of class in sludge from different bioreactors with and without TC. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the abundances of eight tetracycline resistance genes (TRGs), tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX. The results showed that the diversities of the microbial communities of anoxic, anaerobic and aerobic sludge all increased with the addition of TC. TC substantially changed the structure of the microbial community regardless of oxygen conditions. Bacteroidetes and Proteobacteria were the dominant species in the three kinds of sludge and were substantially enriched with TC pressure. In sludge with TC added, almost all target TRGs proliferated more than those in sludge without TC except tetX, which decreased in anaerobic sludge with TC addition. The concentration of efflux pump genes, tet(A–C, E), was the highest among the three groups of TRGs in the different kinds of sludge.

  17. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  18. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  19. Behaviour of marine oil-degrading bacterial populations in a continuous culture system

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; David, J.J.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In pursuit of developing an oil-degrading microbial consortium, we used the principle of "plasmid assisted molecular breeding" (PAMB) in a continuous culture system. Three marine bacteria, Pseudomonas putida, Brevibacterium epidermidis...

  20. Annual Surveillance Summary: Bacterial Infections in the Military Health System (MHS), 2016

    Science.gov (United States)

    2017-06-01

    prescription practices, and antimicrobial resistance for the following infections among Military Health System (MHS) beneficiaries for calendar year...Frequently Prescribed Drug - Percent Susceptibility Proportion of Healthcare- (HA) and Community- Associated (CA) Cases Acinetobacter spp.b 18

  1. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  2. The bacterial Sec system is required for the organization and function of the MreB cytoskeleton.

    Science.gov (United States)

    Govindarajan, Sutharsan; Amster-Choder, Orna

    2017-09-01

    The Sec system is responsible for protein insertion, translocation and secretion across membranes in all cells. The bacterial actin homolog MreB controls various processes, including cell wall synthesis, membrane organization and polarity establishment. Here we show that the two systems genetically interact and that components of the Sec system, especially the SecA motor protein, are essential for spatiotemporal organization of MreB in E. coli, as evidenced by the accumulation of MreB at irregular sites in Sec-impaired cells. MreB mislocalization in SecA-defective cells significantly affects MreB-coordinated processes, such as cell wall synthesis, and induce formation of membrane invaginations enriched in high fluidity domains. Additionally, MreB is not recruited to the FtsZ ring in secA mutant cells, contributing to division arrest and cell filamentation. Our results show that all these faults are due to improper targeting of MreB to the membrane in the absence of SecA. Thus, when we reroute RodZ, MreB membrane-anchor, by fusing it to a SecA-independent integral membrane protein and overproducing it, MreB localization is restored and the defect in cell division is corrected. Notably, the RodZ moiety is not properly inserted into the membrane, strongly suggesting that it only serves as a bait for placing MreB around the cell circumference. Finally, we show that MreB localization depends on SecA also in C. crescentus, suggesting that regulation of MreB by the Sec system is conserved in bacteria. Taken together, our data reveal that the secretion system plays an important role in determining the organization and functioning of the cytoskeletal system in bacteria.

  3. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  4. Saponin, an inhibitory agent of carbon dioxide production by white cells : its use in the microbiologic examination of blood components in an automated bacterial culture system

    NARCIS (Netherlands)

    van Doorne, Hans; van der Tuuk Adriani, W.P A; van der Ven, L.I; Bosch, E.H; de Natris, T; Smit Sibinga, C.Th.

    1998-01-01

    BACKGROUND: Blood components with a white cell count >100 x 10(9) per L may cause false-positive results when the BacT/Alert system is used for the microbiologic examination. The effects of different concentrations of saponin on bacterial growth and on carbon dioxide production by blood fractions

  5. Flavobacterium branchiophilum and F. succinicans associated with bacterial gill disease in rainbow trout Oncorhynchus mykiss (Walbaum) in water recirculation aquaculture systems

    Science.gov (United States)

    Raised rainbow trout Oncorhynchus mykiss in six replicated water recirculation aquaculture systems (WRAS), and manipulated environmental conditions to promote bacterial gill disease (BGD). For each episode of BGD, gill tissue was sampling from affected fish, unaffected fish within the same WRAS, and...

  6. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  7. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  8. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  9. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  10. Bacterial activity dynamics in the water phase during start-up of recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Rojas-Tirado, Paula Andrea; Pedersen, Per Bovbjerg; Pedersen, Lars-Flemming

    2017-01-01

    tMicrobial water quality in recirculating aquaculture systems (RAS) is important for successful RAS opera-tion but difficult to assess and control. There is a need to identify factors affecting changes in the bacterialdynamics – in terms of abundance and activity – to get the information needed...

  11. Bacterial Composition of Biofilms Collected From Two Service Areas in a Metropolitan Drinking Water Distribution System

    Science.gov (United States)

    The development and succession of bacteria were examined by 16S rRNA gene clone libraries generated from various biofilms within a metropolitan water distribution system. Biofilms were obtained from off-line devices using polycarbonate coupons from annular reactors incubated for ...

  12. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival.

    Science.gov (United States)

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia

    2016-12-15

    The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. The NMR determination of the IIAmtl binding site on HPr of the Escherichia coli phosphoenol pyruvate-dependent phosphotransferase system

    NARCIS (Netherlands)

    Nuland, Nico A.J. van; Kroon, Gerard J.A.; Dijkstra, Klaas; Wolters, Gea K.; Scheek, Ruud M.; Robillard, George T.

    1993-01-01

    The region of the surface of the histidine-containing protein (HPr) which interacts with the A domain of the mannitol-specific Enzyme II (IIAmtl) has been mapped by titrating the A-domain into a solution of 15N-labeled HPr and monitoring the effects on the amide proton and nitrogen chemical shifts

  14. The Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System : Observation of Heterogeneity in the Amino Acid Composition of HPr

    NARCIS (Netherlands)

    Roossien, F.F.; Dooijewaard, G.; Robillard, G.T.

    1979-01-01

    Resonances of the aromatic protons of tyrosine have been observed in the proton nuclear magnetic resonance (1H NMR) spectrum of purified HPr from Escherichia coli. Analysis of the NMR spectrum of native HPr suggests that the tyrosine is located in a single position in the secondary structure and

  15. Structure and mechanism of a bacterial t6A biosynthesis system

    OpenAIRE

    Luthra, Amit; Swinehart, William; Bayooz, Susan; Phan, Phuc; Stec, Boguslaw; Iwata-Reuyl, Dirk; Swairjo, Manal A

    2018-01-01

    Abstract The universal N(6)-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs is central to translational fidelity. In bacteria, t6A biosynthesis is catalyzed by the proteins TsaB, TsaC/TsaC2, TsaD and TsaE. Despite intense research, the molecular mechanisms underlying t6A biosynthesis are poorly understood. Here, we report biochemical and biophysical studies of the t6A biosynthesis system from Thermotoga maritima. Small angle X-ray scattering analysis reveals...

  16. Platelets and the innate immune system: Mechanisms of bacterial-induced platelet activation.

    OpenAIRE

    Cox, Dermot; Kerrigan, Steven W; Watson, Steve

    2011-01-01

    It has become clear that platelets are not simply cell fragments that can plug the leak in a damaged blood vessel, they are in fact key components in the innate immune system which is supported by the presence of Toll-like receptors (TLRs) on platelets. As the first responding cell to a site of injury they are well placed to direct the immune response to deal with any resulting exposure to pathogens. The response is triggered by bacteria binding to platelets which usually triggers platelet ac...

  17. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.

    Science.gov (United States)

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J; Leahy, Sinead C; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2017-08-08

    Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH 4 /kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Rumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures. Detailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade. This is the first report of bacterial type III secretion system genes being associated with high

  18. Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System

    Directory of Open Access Journals (Sweden)

    Sean M. Gibbons

    2016-12-01

    Full Text Available Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems.

  19. Architecture and inherent robustness of a bacterial cell-cycle control system.

    Science.gov (United States)

    Shen, Xiling; Collier, Justine; Dill, David; Shapiro, Lucy; Horowitz, Mark; McAdams, Harley H

    2008-08-12

    A closed-loop control system drives progression of the coupled stalked and swarmer cell cycles of the bacterium Caulobacter crescentus in a near-mechanical step-like fashion. The cell-cycle control has a cyclical genetic circuit composed of four regulatory proteins with tight coupling to processive chromosome replication and cell division subsystems. We report a hybrid simulation of the coupled cell-cycle control system, including asymmetric cell division and responses to external starvation signals, that replicates mRNA and protein concentration patterns and is consistent with observed mutant phenotypes. An asynchronous sequential digital circuit model equivalent to the validated simulation model was created. Formal model-checking analysis of the digital circuit showed that the cell-cycle control is robust to intrinsic stochastic variations in reaction rates and nutrient supply, and that it reliably stops and restarts to accommodate nutrient starvation. Model checking also showed that mechanisms involving methylation-state changes in regulatory promoter regions during DNA replication increase the robustness of the cell-cycle control. The hybrid cell-cycle simulation implementation is inherently extensible and provides a promising approach for development of whole-cell behavioral models that can replicate the observed functionality of the cell and its responses to changing environmental conditions.

  20. A system for the rapid detection of bacterial contamination in cell-based therapeutica

    Science.gov (United States)

    Bolwien, Carsten; Erhardt, Christian; Sulz, Gerd; Thielecke, Hagen; Johann, Robert; Pudlas, Marieke; Mertsching, Heike; Koch, Steffen

    2010-02-01

    Monitoring the sterility of cell or tissue cultures is of major concern, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. Our sterility-control system is based on a Raman micro-spectrometer and is able to perform fast sterility testing on microliters of liquid samples. In conventional sterility control, samples are incubated for weeks to proliferate the contaminants to concentrations above the detection limit of conventional analysis. By contrast, our system filters particles from the liquid sample. The filter chip fabricated in microsystem technology comprises a silicon nitride membrane with millions of sub-micrometer holes to retain particles of critical sizes and is embedded in a microfluidic cell specially suited for concomitant microscopic observation. After filtration, identification is carried out on the single particle level: image processing detects possible contaminants and prepares them for Raman spectroscopic analysis. A custom-built Raman-spectrometer-attachment coupled to the commercial microscope uses 532nm or 785nm Raman excitation and records spectra up to 3400cm-1. In the final step, the recorded spectrum of a single particle is compared to an extensive library of GMP-relevant organisms, and classification is carried out based on a support vector machine.

  1. A secretory system for bacterial production of high-profile protein targets

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Vernet, Erik; Hammarström, Martin

    2011-01-01

    Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To impr......Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli...... membrane protein F (OmpF) and osmotically inducible protein Y (OsmY). Based on the results of this initial study, we carried out an extended expression screen employing the OsmY fusion and multiple constructs of a more diverse set of human proteins. Using this high-throughput compatible system, we clearly...

  2. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae

    Directory of Open Access Journals (Sweden)

    Foster Leonard J

    2009-08-01

    Full Text Available Abstract Background There is a major paradox in our understanding of honey bee immunity: the high population density in a bee colony implies a high rate of disease transmission among individuals, yet bees are predicted to express only two-thirds as many immunity genes as solitary insects, e.g., mosquito or fruit fly. This suggests that the immune response in bees is subdued in favor of social immunity, yet some specific immune factors are up-regulated in response to infection. To explore the response to infection more broadly, we employ mass spectrometry-based proteomics in a quantitative analysis of honey bee larvae infected with the bacterium Paenibacillus larvae. Newly-eclosed bee larvae, in the second stage of their life cycle, are susceptible to this infection, but become progressively more resistant with age. We used this host-pathogen system to probe not only the role of the immune system in responding to a highly evolved infection, but also what other mechanisms might be employed in response to infection. Results Using quantitative proteomics, we compared the hemolymph (insect blood of five-day old healthy and infected honey bee larvae and found a strong up-regulation of some metabolic enzymes and chaperones, while royal jelly (food and energy storage proteins were down-regulated. We also observed increased levels of the immune factors prophenoloxidase (proPO, lysozyme and the antimicrobial peptide hymenoptaecin. Furthermore, mass spectrometry evidence suggests that healthy larvae have significant levels of catalytically inactive proPO in the hemolymph that is proteolytically activated upon infection. Phenoloxidase (PO enzyme activity was undetectable in one or two-day-old larvae and increased dramatically thereafter, paralleling very closely the age-related ability of larvae to resist infection. Conclusion We propose a model for the host response to infection where energy stores and metabolic enzymes are regulated in concert with direct

  3. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  4. Glycerol as a Cheaper Carbon Source in Bacterial Cellulose (BC) Production by Gluconacetobacter Xylinus DSM46604 in Batch Fermentation System

    International Nuclear Information System (INIS)

    Azila Adnan; Nair, G.R.; Roslan Umar; Roslan Umar

    2015-01-01

    Bacterial cellulose (BC) is a polymer of glucose monomers, which has unique properties including high crystallinity and high strength. It has potential to be used in biomedical applications such as making artificial blood vessel, wound dressings, and in the paper making industry. Extensive study on BC aimed to improve BC production such as by using glycerol as a cheaper carbon source. BC was produced in shake flask culture using five different concentrations of glycerol (10, 20, 30, 40 and 50 g/ L). Using concentration of glycerol above 20 g/ L inhibited culture growth and BC production. Further experiments were performed in batch culture (3-L bioreactor) using 20 g/ L glycerol. It produced yield and productivity of 0.15 g/ g and 0.29 g/ L/ day BC, respectively. This is compared with the control medium, 50 g/ L glucose, which only gave yield and productivity of 0.05 g/ g and 0.23 g/ L/ day, respectively. Twenty g/ L of glycerol enhanced BC production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. (author)

  5. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    Directory of Open Access Journals (Sweden)

    Weir Jerry P

    2007-05-01

    Full Text Available Abstract Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2 BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors.

  6. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London.

    Science.gov (United States)

    Otter, J A; French, G L

    2009-12-01

    To investigate bacterial contamination on hand-touch surfaces in the public transport system and in public areas of a hospital in central London. Dipslides were used to sample 118 hand-touch surfaces in buses, trains, stations, hotels and public areas of a hospital in central London. Total aerobic counts were determined, and Staphylococcus aureus isolates were identified and characterized. Bacteria were cultured from 112 (95%) of sites at a median concentration of 12 CFU cm(-2). Methicillin-susceptible Staph. aureus (MSSA) was cultured from nine (8%) of sites; no sites grew methicillin-resistant Staph. aureus (MRSA). Hand-touch sites in London are frequently contaminated with bacteria and can harbour MSSA, but none of the sites tested were contaminated with MRSA. Hand-touch sites can become contaminated with staphylococci and may be fomites for the transmission of bacteria between humans. Such sites could provide a reservoir for community-associated MRSA (CA-MRSA) in high prevalence areas but were not present in London, a geographical area with a low incidence of CA-MRSA.

  7. Novel protein interactions with an actin homolog (MreB) of Helicobacter pylori determined by bacterial two-hybrid system.

    Science.gov (United States)

    Zepeda Gurrola, Reyna Cristina; Fu, Yajuan; Rodríguez Luna, Isabel Cristina; Benítez Cardoza, Claudia Guadalupe; López López, María de Jesús; López Vidal, Yolanda; Gutíerrez, Germán Rubén Aguilar; Rodríguez Pérez, Mario A; Guo, Xianwu

    2017-08-01

    The bacterium Helicobacter pylori infects more than 50% of the world population and causes several gastroduodenal diseases, including gastric cancer. Nevertheless, we still need to explore some protein interactions that may be involved in pathogenesis. MreB, an actin homolog, showed some special characteristics in previous studies, indicating that it could have different functions. Protein functions could be realized via protein-protein interactions. In the present study, the MreB protein from H. pylori 26695 fused with two tags 10×His and GST in tandem was overexpressed and purified from Escherchia coli. The purified recombinant protein was used to perform a pull-down assay with H. pylori 26695 cell lysate. The pulled-down proteins were identified by mass spectrometry (MALDI-TOF), in which the known important proteins related to morphogenesis were absent but several proteins related to pathogenesis process were observed. The bacterial two-hybrid system was further used to evaluate the protein interactions and showed that new interactions of MreB respectively with VacA, UreB, HydB, HylB and AddA were confirmed but the interaction MreB-MreC was not validated. These results indicated that the protein MreB in H. pylori has a distinct interactome, does not participate in cell morphogenesis via MreB-MreC but could be related to pathogenesis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. The bacterial two-hybrid system uncovers the involvement of acetylation in regulating of Lrp activity in Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Ran Qin

    2016-11-01

    Full Text Available Nε-lysine acetylation is an abundant and important Post-translational modification in bacteria. We used the bacterial two-hybrid system to screen the genome library of the Salmonella Typhimurium to identify potential proteins involved in acetyltransferase Pat - or deacetylase CobB-mediated acetylation. Then, the in vitro (deacetylation assays were used to validate the potential targets, such as STM14_1074, NrdF, RhaR. Lrp, a leucine-responsive regulatory protein and global regulator, was shown to interact with Pat. We further demonstrate that Lrp could be acetylated by Pat and deacetylated by NAD+-dependent CobB in vitro. Specifically, the conserved lysine residue 36 (K36 in helix-turn-helix (HTH DNA-binding domain of Lrp was acetylated. Acetylation of K36 impaired the function of Lrp through altering the affinity with the target promoter. The mutation of K36 in chromosome mimicking acetylation enhanced the transcriptional level of itself and attenuated the mRNA levels of Lrp-regulated genes including fimA, which was confirmed by yeast agglutination assay. These findings demonstrate that the acetylation regulates the DNA-binding activity of Lrp, suggesting that acetylation modification of transcription factors is a conserved regulatory manner to modulate gene expression in bacteria and eukaryotes.

  9. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    Science.gov (United States)

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha -1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha -1 straw incorporation and 300 kg ha -1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  10. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.

    Science.gov (United States)

    Goacher, Robyn E; Braham, Erick J; Michienzi, Courtney L; Flick, Robert M; Yakunin, Alexander F; Master, Emma R

    2017-12-29

    The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion. © 2017 Scandinavian Plant Physiology Society.

  11. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  12. Effect of TiO2 nanoparticles on aerobic granulation of algal-bacterial symbiosis system and nutrients removal from synthetic wastewater.

    Science.gov (United States)

    Li, Bing; Huang, Wenli; Zhang, Chao; Feng, Sisi; Zhang, Zhenya; Lei, Zhongfang; Sugiura, Norio

    2015-01-01

    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization and in-vivo evaluation of potential probiotics of the bacterial flora within the water column of a healthy shrimp larviculture system

    Science.gov (United States)

    Xue, Ming; Liang, Huafang; He, Yaoyao; Wen, Chongqing

    2016-05-01

    A thorough understanding of the normal bacterial flora associated with shrimp larviculture systems contributes to probiotic screening and disease control. The bacterial community of the water column over a commercial Litopenaeus vannamei larval rearing run was characterized with both culture-dependent and culture-independent methods. A total of 27 phylotypes at the species level were isolated and identified based on 16S rDNA sequence analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of the V3-V5 region of 16S rRNA genes showed a dynamic bacterial community with major changes occurred from stages zoea to mysis during the rearing run. The sequences retrieved were affiliated to four phyla, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, with the family Rhodobacteraceae being the most frequently recovered one. Subsequently, 13 representative strains conferred higher larval survival than the control when evaluated in the in-vivo experiments; in particular, three candidates, assigned to Phaeobacter sp., Arthrobacter sp., and Microbacterium sp., significantly improved larval survival ( P < 0.05). Therefore, the healthy shrimp larviculture system harbored a diverse and favorable bacterial flora, which contribute to larval development and are of great importance in exploiting novel probiotics.

  14. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    Science.gov (United States)

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  15. Detrimental effects of commercial zinc oxide and silver nanomaterials on bacterial populations and performance of wastewater systems

    Science.gov (United States)

    Mboyi, Anza-vhudziki; Kamika, Ilunga; Momba, MaggyN. B.

    2017-08-01

    The widespread use of commercial nanomaterials (NMs) in consumer products has raised environmental concerns as they can enter and affect the efficiency of the wastewater treatment plants. In this study the effect of various concentrations of zinc oxide NMs (nZnO) and silver NMs (nAg) on the selected wastewater bacterial species (Bacillus licheniformis, Brevibacillus laterosporus and Pseudomonas putida) was ascertained at different pH levels (pH 2, 7 and 10). Lethal concentrations (LC) of NMs and parameters such as chemical oxygen demand (COD) and dissolved oxygen (DO) were taken into consideration to assess the performance of a wastewater batch reactor. Bacterial isolates were susceptible to varying concentrations of both nZnO and nAg at pH 2, 7 and 10. It was found that a change in pH did not significantly affect the toxicity of test NMs towards target bacterial isolates. All bacterial species were significantly inhibited (p 0.05) in COD removal in the presence of increasing concentrations of NMs, which resulted in increasing releases of COD. Noticeably, there was no significant difference (p > 0.05) in the decrease in DO uptake in the presence of increasing NM concentrations for all bacterial isolates. The toxic effects of the target NMs on bacterial populations in wastewater may negatively impact the performance of biological treatment processes and may thus affect the efficiency of wastewater treatment plants in producing effluent of high quality.

  16. Optimizing a portable biosensor system for bacterial detection in milk based mix for ice cream

    Directory of Open Access Journals (Sweden)

    A. Biscotti

    2018-04-01

    Full Text Available One of the primary focuses of the food industry is providing products compliant with safety standards. The microbiological analysis helps in the identification of the presence of pathogen microorganisms in the food. The analysis with Agar Plate is the classic method. This approach guarantees a high accuracy, but it needs a long detection time (twenty-four to forty-eight hours, beyond high costs and skilled technician. In recent times have been proposed many different methods to have a faster response, and between them there is the impedance method. One of its features is that it is fast, in fact it requires between three to fourteen hours to obtain a reliable measurement. The system is accurate, and suitable to be executed automatically. To test this method has been used UHT Ice Cream Mix. A known volume of mix has been inoculated with increasing percentage of cultures of E. coli. The measurement of the impedance of the inoculated mix has been done by an electronic board designed for the application, and by applying a sinusoidal voltage to the test tube. The signal was digitally generated by the microprocessor, and supplied externally through a D.A. converter. The signal was then filtered to delete from its spectrum the high frequency components typical of the digitally generated signals. The data obtained from impedance instrument showed a reliable correspondence with those from the plate count. By working in less time compared to traditional methods, this tool is well suited for in-situ preliminary analysis in commercial and professional foodservice environment.

  17. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  18. Water system is a controlling variable modulating bacterial diversity of gastrointestinal tract and performance in rainbow trout.

    Science.gov (United States)

    Betiku, Omolola C; Yeoman, Carl J; Gaylord, T Gibson; Americus, Benjamin; Olivo, Sarah; Duff, Glenn C; Sealey, Wendy M

    2018-01-01

    A two-phase feeding study evaluating performance of rainbow trout and comparing luminal and mucosal gastrointestinal tract (GIT) bacterial community compositions when fed two alternative protein diets in two rearing systems was conducted. Alternative protein diets (animal protein and plant protein diets) balanced with crystalline amino acids: lysine, methionine and threonine or unbalanced, were fed to rainbow trout in two separate water systems (recirculating (RR) and flow-through (FF)) for a period of 16 weeks. The four diets, each contained 38% digestible protein and 20% fats, were fed to rainbow trout with an average weight of 12.02 ± 0.61 g, and sorted at 30 fish/tank and 12 tanks per dietary treatment. Phase 1 lasted for 8 weeks after which fish from each tank were randomly divided, with one-half moved to new tanks of the opposing system (i.e. from RR to FF and vice versa). The remaining halves were retained in their initial tank and system, and fed their original diets for another 8 weeks (phase 2). After the 16th week, 3 fish/tank were sampled for each of proximate analysis, body indexes and 16S rRNA analysis of GIT microbiota. Fish weight (P = 0.0008, P = 0.0030, PPERMANOVA: R = 0.39, P = 0.0010), but not in dietary samples (ANOSIM: R = 0.004, P = 0.3140, PERMANOVA: R = 0.008, P = 0.4540). Bacteria were predominantly from the phyla Proteobacteria, Firmicutes and Bacteroidetes. Their abundance differed with more dissimilarity in the luminal samples (ANOSIM: R = 0.40, P = 0.0010, PERMANOVA: R = 0.56, P = 0.0010) than those from the mucosal intestine (ANOSIM: R = 0.37, P = 0.0010, PERMANOVA: R = 0.41, P = 0.0010). Bacteria generally associated with carbohydrate and certain amino acids metabolism were observed in the mucosal intestine while rearing water appeared to serve as the main route of colonization of Aeromonas and Acinetobacter in the rainbow trout.

  19. Composition of Groundwater Bacterial Communities before and after Air Surging in a Groundwater Heat Pump System According to a Pyrosequencing Assay

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2017-11-01

    Full Text Available The geothermal energy of groundwater has aroused increasing interest as a solution to climate change. The groundwater heat pumps (GWHP system using groundwater is the most environmentally friendly system to date and has been examined in several studies. However, biological clogging by microorganisms negatively affects the thermal efficiency of the GWHP system. In this study, we employed air surging, the most popular among well management methods, and pyrosequencing to analyze the genetic diversity in bacteria before and after air surging in a geothermal well. Furthermore, the diversity of dominant bacterial genera and those related to clogging were evaluated. The bacterial diversity of the groundwater well increased after air surging. Nevertheless, the proportion of bacterial genera thought to be related to microbiological clogging decreased. In cooling and heating systems based on the geothermal energy of groundwater, the wells should be maintained regularly by air surging to reduce efficiency problems caused by microbiological clogging and to prevent secondary damage to human health, e.g., pneumonia due to human pathogenic bacteria including Pseudomonas aeruginosa and Acinetobacter.

  20. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    Science.gov (United States)

    Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  1. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    Directory of Open Access Journals (Sweden)

    Patrícia Martins

    Full Text Available The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS with a shallow raceway system (SRS for turbot (Scophthalmus maximus and sole (Solea senegalensis. Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup, fish production tanks (Pro, sedimentation filter (Sed, biofilter tank (Bio, and protein skimmer (Ozo; also used as an ozone reaction chamber of twin RAS operating in parallel (one for each fish species. Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments, Tenacibaculum discolor in turbot and sole (all compartments, Tenacibaculum soleae in turbot (all compartments and sole (Pro, Sed and Bio, and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo and sole (only Sed RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  2. Activity and Phylogenetic Diversity of Bacterial Cells with High and Low Nucleic Acid Content and Electron Transport System Activity in an Upwelling Ecosystem

    OpenAIRE

    Longnecker, K.; Sherr, B. F.; Sherr, E. B.

    2005-01-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters...

  3. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  4. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    compounds these must first be undergo extracellular hydrolysis. Bacteria have a great diversity with respect to types of metabolism that far exceeds the metabolic repertoire of eukaryotic organisms. Bacteria play a fundamental role in the biosphere and certain key processes such as, for example......, the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  5. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  6. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems.

    Directory of Open Access Journals (Sweden)

    Sophie S Abby

    2012-09-01

    Full Text Available Type 3 secretion systems (T3SSs are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS, which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.

  7. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Directory of Open Access Journals (Sweden)

    Geisla Mary Silva Soares

    2012-06-01

    Full Text Available Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.

  8. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part 1—diagnosis based on clinical presentation, cytology and culture

    Science.gov (United States)

    Beco, L.; Guaguère, E.; Méndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of therapy are to confirm that an infection is present, identify the causative bacteria, select the most appropriate antimicrobial, ensure that the infection is treated correctly, and to identify and manage any underlying conditions. This is the first of two articles that will provide evidence-led guidelines to help practitioners address these issues. This article covers diagnosis, including descriptions of the different clinical presentations of surface, superficial and deep bacterial skin infections, how to perform and interpret cytology, and how to best use bacterial culture and sensitivity testing. Part 2 will discuss therapy, including choice of drug and treatment regimens. PMID:23292951

  9. Immunohistochemical analysis of MMP-9, MMP-2 and TIMP-1, TIMP-2 expression in the central nervous system following infection with viral and bacterial meningitis.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2009-01-01

    Full Text Available Matrix metalloproteinases (MMPs are capable of degrading components of the basal lamina of cerebral vessels, thereby disrupting the blood-brain barrier and inducing leukocyte recruitment. This study provides comprehensive information regarding the cell specificity of matrix metalloproteinases (MMP-2, MMP-9 and their binding tissue inhibitors (TIMP-1, TIMP-2 in the central nervous system during viral and bacterial meningitis. Specifically, we evaluated the immunoreactivity of MMPs and TIMPs in various cell types in brain parenchyma and meninges obtained from autopsy tissues. We found that a higher proportion of endothelial cells were positive for MMP-9 during meningitis when compared to controls. In addition, the immunoreactivity of MMP-9 decreased and the immunoreactivity of TIMP-1 increased in astrocytes upon infection. Furthermore, the results of this study revealed that mononuclear cells were highly immunoreactive for TIMP-1, TIMP-2 and MMP-9 during viral meningitis and that the expression of TIMPs in polymorphonuclear cells was even higher during bacterial meningitis. Taken together the results of this study indicated that the central nervous system resident cells and inflammatory infiltrates contribute to MMPs activity and that the expression patterns vary between cell types and in response to viral and bacterial meningitis.

  10. Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Wen Xie

    Full Text Available BACKGROUND: Bemisia tabaci (Gennadius is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45% unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the

  11. Survival of bacterial indicators and the functional diversity of native microbial communities in the Floridan aquifer system, south Florida

    Science.gov (United States)

    Lisle, John T.

    2014-01-01

    The Upper Floridan aquifer in the southern region of Florida is a multi-use, regional scale aquifer that is used as a potable water source and as a repository for passively recharged untreated surface waters, and injected treated surface water and wastewater, industrial wastes, including those which contain greenhouse gases (for example, carbon dioxide). The presence of confined zones within the Floridan aquifer that range in salinity from fresh to brackish allow regulatory agencies to permit the injection of these different types of product waters into specific zones without detrimental effects to humans and terrestrial and aquatic ecosystems. The type of recharge that has received the most regulatory attention in south Florida is aquifer storage and recovery (ASR). The treated water, prior to injection and during recovery, must meet primary and secondary drinking water standards. The primary microbiology drinking water standard is total coliforms, which have been shown to be difficult to inactivate below the regulatory standard during the treatment process at some ASR facilities. The inefficient inactivation of this group of indicator bacteria permits their direct injection into the storage zones of the Floridan aquifer. Prior to this study, the inactivation rates for any member of the total coliform group during exposure to native geochemical conditions in groundwater from any zone of the Floridan aquifer had not been derived. Aboveground flow through mesocosms and diffusion chambers were used to quantify the inactivation rates of two bacterial indicators, Escherichia coli and Pseudomonas aeruginosa, during exposure to groundwater from six wells. These wells collect water from two ASR storage zones: the Upper Floridan aquifer (UFA) and Avon Park Permeable Zone (APPZ). Both bacterial strains followed a biphasic inactivation model. The E. coli populations had slower inactivation rates in the UFA (range: 0.217–0.628 per hour (h-1)) during the first phase of the

  12. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    Directory of Open Access Journals (Sweden)

    Qisong Li

    2018-02-01

    Full Text Available Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS, semi-separation intercropping (SS using a nylon net, and complete separation intercropping (CS using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS improved levels of soil-available nutrients (nitrogen (N and phosphorus (P and enzymes (urease and acid phosphomonoesterase as compared to intercropping without belowground interactions (CS. Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P supply capacity and soil microecosystem stability.

  13. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem.

    Science.gov (United States)

    Longnecker, K; Sherr, B F; Sherr, E B

    2005-12-01

    We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.

  15. Polysaccharides as Bacterial Antiadhesive Agents and "Smart" Constituents for Improved Drug Delivery Systems Against Helicobacter pylori Infection.

    Science.gov (United States)

    Menchicchi, Bianca; Hensel, Andreas; Goycoolea, Francisco M

    2015-01-01

    The standard eradication treatment of the hostile Helicobacter pylori (H. pylori) stomach infection is facing increasing alarming antibiotic resistance worldwide and calls for alternative strategies to the use of antibiotics. One new perspective in this direction is cytoprotective compounds for targeted prevention of the adhesion of the bacteria to the stomach host cell and to inhibit the bacterial cell-cell communication via quorum sensing by specific inhibitors. Bacterial adhesion of H. pylori to the host cells is mainly mediated by carbohydrate-protein interactions. Therefore, the use of polyvalent carbohydrates, (e.g. plant-derived polysaccharides), as potential antiadhesive compounds, seems to be a promising tool to prevent the initial docking of the bacterium to the stomach cells. Polysaccharides are common constituents of daily food, either as starch or as dietary fiber and often also function as excipients for galenic drug-delivery formulations. In addition, polysaccharides with defined pharmacodynamics action against bacterial outer membrane proteins can have potential as therapeutic tools in the treatment of bacterial infections. Some polysaccharides are known to possess antibacterial properties against gram-positive bacteria, others to inhibit bacterial colonization by blocking specific carbohydrate receptors involved in host-bacteria interaction. This mode of action is advocated as alternative antiadhesion therapy. Ongoing research is also seeking for polysaccharide-based nanoformulations with potential for local drug delivery at the stomach as novel H. pylori therapies. These approaches pose challenges concerned with the stability of the nanomaterials in the harsh conditions of the gastric environment and their capacity to adhere to the stomach mucosa. In a global scenario, geographical diversity and social habits, namely lifestyle and dietary factors, influence the prevalence of the H. pylori-associated diseases and their severity. In this context

  16. Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis.

    Directory of Open Access Journals (Sweden)

    Fernando A Gómez

    Full Text Available Piscirickettsia salmonis is a fish bacterial pathogen that has severely challenged the sustainability of the Chilean salmon industry since its appearance in 1989. As this Gram-negative bacterium has been poorly characterized, relevant aspects of its life cycle, virulence and pathogenesis must be identified in order to properly design prophylactic procedures. This report provides evidence of the functional presence in P. salmonis of four genes homologous to those described for Dot/Icm Type IV Secretion Systems. The Dot/Icm System, the major virulence mechanism of phylogenetically related pathogens Legionella pneumophila and Coxiella burnetii, is responsible for their intracellular survival and multiplication, conditions that may also apply to P. salmonis. Our results demonstrate that the four P. salmonis dot/icm homologues (dotB, dotA, icmK and icmE are expressed both during in vitro tissue culture cells infection and growing in cell-free media, suggestive of their putative constitutive expression. Additionally, as it happens in other referential bacterial systems, temporal acidification of cell-free media results in over expression of all four P. salmonis genes, a well-known strategy by which SSTIV-containing bacteria inhibit phagosome-lysosome fusion to survive. These findings are very important to understand the virulence mechanisms of P. salmonis in order to design new prophylactic alternatives to control the disease.

  17. Bacterial production and growth rate estimation from [3H]thymidine incorporation for attached and free-living bacteria in aquatic systems

    International Nuclear Information System (INIS)

    Iriberri, J.; Unanue, M.; Ayo, B.; Barcina, I.; Egea, L.

    1990-01-01

    Production and specific growth rates of attached and free-living bacteria were estimated in an oligotrophic marine system, La Salvaje Beach, Vizcaya, Spain, and in a freshwater system having a higher nutrient concentration, Butron River, Vizcaya, Spain. Production was calculated from [methyl- 3 H]thymidine incorporation by estimating specific conversion factors (cells or micrograms of C produced per mole of thymidine incorporated) for attached and free-living bacteria, respectively, in each system. Conversion factors were not statistically different between attached and free-living bacteria: 6.812 x 10 11 and 8.678 x 10 11 μg of C mol -1 for free-living and attached bacteria in the freshwater system, and 1.276 x 10 11 and 1.354 x 10 11 μg of C mol -1 for free-living and attached bacteria in the marine system. Therefore, use of a unique conversion factor for the mixed bacterial population is well founded. However, conversion factors were higher in the freshwater system than in the marine system. This could be due to the different tropic conditions of the two systems. Free-living bacteria contributed the most to production in the two systems (85% in the marine system and 67% in the freshwater system) because of their greater contribution to total biomass. Specific growth rates calculated from production data and biomass data were similar for attached and free-living bacteria

  18. Correlation between system performance and bacterial composition under varied mixing intensity in thermophilic anaerobic digestion of food waste

    KAUST Repository

    Ghanimeh, Sophia A.; Al-Sanioura, Dana N.; Saikaly, Pascal; El-Fadel, Mutasem

    2017-01-01

    This study examines the stability and efficiency of thermophilic anaerobic digesters treating food waste under various mixing velocities (50–160 rpm). The results showed that high velocities (120 and 160 rpm) were harmful to the digestion process with 18–30% reduction in methane generation and 1.8 to 3.8 times increase in volatile fatty acids (VFA) concentrations, compared to mild mixing (50 and 80 rpm). Also, the removal rate of soluble COD dropped from 75 to 85% (at 50–80 rpm) to 20–59% (at 120–160 rpm). Similarly, interrupted mixing caused adverse impacts and led to near-failure conditions with excessive VFA accumulation (15.6 g l), negative removal rate of soluble COD and low methane generation (132 ml gVS). The best efficiency and stability were achieved under mild mixing (50 and 80 rpm). In particular, the 50 rpm stirring speed resulted in the highest methane generation (573 ml gVS). High-throughput sequencing of 16S rRNA genes revealed that the digesters were dominated by one bacterial genus (Petrotoga; phylym Thermotogae) at all mixing velocities except at 0 rpm, where the community was dominated by one bacterial genus (Anaerobaculum; phylum Synergistetes). The Petrotoga genus seems to have played a major role in the degradation of organic matter.

  19. Early systemic bacterial dissemination and a rapid innate immune response characterize genetic resistance to plague of SEG mice.

    Science.gov (United States)

    Demeure, Christian E; Blanchet, Charlène; Fitting, Catherine; Fayolle, Corinne; Khun, Huot; Szatanik, Marek; Milon, Geneviève; Panthier, Jean-Jacques; Jaubert, Jean; Montagutelli, Xavier; Huerre, Michel; Cavaillon, Jean-Marc; Carniel, Elisabeth

    2012-01-01

    Although laboratory mice are usually highly susceptible to Yersinia pestis, we recently identified a mouse strain (SEG) that exhibited an exceptional capacity to resist bubonic plague and used it to identify immune mechanisms associated with resistance. The kinetics of infection, circulating blood cells, granulopoiesis, lesions, and cellular populations in the spleen, and cytokine production in various tissues were compared in SEG and susceptible C57BL/6J mice after subcutaneous infection with the virulent Y. pestis CO92. Bacterial invasion occurred early (day 2) but was transient in SEG/Pas mice, whereas in C57BL/6J mice it was delayed but continuous until death. The bacterial load in all organs significantly correlated with the production of 5 cytokines (granulocyte colony-stimulating factor, keratinocyte-derived chemokine (KC), macrophage cationic peptide-1 (MCP-1), interleukin 1α, and interleukin 6) involved in monocyte and neutrophil recruitment. Indeed, higher proportions of these 2 cell types in blood and massive recruitment of F4/80(+)CD11b(-) macrophages in the spleen were observed in SEG/Pas mice at an early time point (day 2). Later times after infection (day 4) were characterized in C57BL/6J mice by destructive lesions of the spleen and impaired granulopoiesis. A fast and efficient Y. pestis dissemination in SEG mice may be critical for the triggering of an early and effective innate immune response necessary for surviving plague.

  20. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    Science.gov (United States)

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Correlation between system performance and bacterial composition under varied mixing intensity in thermophilic anaerobic digestion of food waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2017-12-07

    This study examines the stability and efficiency of thermophilic anaerobic digesters treating food waste under various mixing velocities (50–160 rpm). The results showed that high velocities (120 and 160 rpm) were harmful to the digestion process with 18–30% reduction in methane generation and 1.8 to 3.8 times increase in volatile fatty acids (VFA) concentrations, compared to mild mixing (50 and 80 rpm). Also, the removal rate of soluble COD dropped from 75 to 85% (at 50–80 rpm) to 20–59% (at 120–160 rpm). Similarly, interrupted mixing caused adverse impacts and led to near-failure conditions with excessive VFA accumulation (15.6 g l), negative removal rate of soluble COD and low methane generation (132 ml gVS). The best efficiency and stability were achieved under mild mixing (50 and 80 rpm). In particular, the 50 rpm stirring speed resulted in the highest methane generation (573 ml gVS). High-throughput sequencing of 16S rRNA genes revealed that the digesters were dominated by one bacterial genus (Petrotoga; phylym Thermotogae) at all mixing velocities except at 0 rpm, where the community was dominated by one bacterial genus (Anaerobaculum; phylum Synergistetes). The Petrotoga genus seems to have played a major role in the degradation of organic matter.

  2. Bacterial Pathogens and Community Composition in Advanced Sewage Treatment Systems Revealed by Metagenomics Analysis Based on High-Throughput Sequencing

    Science.gov (United States)

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416

  3. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia

    Science.gov (United States)

    Smith, Clyde A.; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    The bifunctional acetyltransferase(6′)-Ie-phosphotransfer­ase(2′′)-Ia [AAC(6′)-Ie-APH(2′′)-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2′′)-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2′′)-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2′′)-IIa and APH(2′′)-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2′′)-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2′′)-IIIa enzyme. In APH(2′′)-Ia this GTP selectivity is governed by the presence of a ‘gatekeeper’ residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2′′)-Ia into a dual-specificity enzyme. PMID:24914967

  4. An Amperometric Biosensor for the Determination of Bacterial Sepsis Biomarker, Secretory Phospholipase Group 2-IIA Using a Tri-Enzyme System

    Directory of Open Access Journals (Sweden)

    Nik Nurhanan Nik Mansor

    2018-02-01

    Full Text Available A tri-enzyme system consisting of choline kinase/choline oxidase/horseradish peroxidase was used in the rapid and specific determination of the biomarker for bacterial sepsis infection, secretory phospholipase Group 2-IIA (sPLA2-IIA. These enzymes were individually immobilized onto the acrylic microspheres via succinimide groups for the preparation of an electrochemical biosensor. The reaction of sPLA2-IIA with its substrate initiated a cascading enzymatic reaction in the tri-enzyme system that led to the final production of hydrogen peroxide, which presence was indicated by the redox characteristics of potassium ferricyanide, K3Fe(CN6. An amperometric biosensor based on enzyme conjugated acrylic microspheres and gold nanoparticles composite coated onto a carbon-paste screen printed electrode (SPE was fabricated and the current measurement was performed at a low potential of 0.20 V. This enzymatic biosensor gave a linear range 0.01–100 ng/mL (R2 = 0.98304 with a detection limit recorded at 5 × 10−3 ng/mL towards sPLA2-IIA. Moreover, the biosensor showed good reproducibility (relative standard deviation (RSD of 3.04% (n = 5. The biosensor response was reliable up to 25 days of storage at 4 °C. Analysis of human serum samples for sPLA2-IIA indicated that the biosensor has potential for rapid bacterial sepsis diagnosis in hospital emergency department.

  5. An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems.

    Science.gov (United States)

    Cheng, Hao-Wen; Chen, Kuan-Chun; Raja, Joseph A J; Li, Jian-Xian; Yeh, Shyi-Dong

    2013-04-15

    NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season.

    Science.gov (United States)

    Holmsgaard, Peter N; Dealtry, Simone; Dunon, Vincent; Heuer, Holger; Hansen, Lars H; Springael, Dirk; Smalla, Kornelia; Riber, Leise; Sørensen, Søren J

    2017-10-01

    A biopurification system (BPS) is used on-farm to clean pesticide-contaminated wastewater. Due to high pesticide loads, a BPS represents a hot spot for the proliferation and selection as well as the genetic adaptation of discrete pesticide degrading microorganisms. However, while considerable knowledge exists on the biodegradation of specific pesticides in BPSs, the bacterial community composition of these systems has hardly been explored. In this work, the Shannon diversity, the richness and the composition of the bacterial community within an operational BPS receiving wastewater contaminated with various pesticides was, for the first time, elucidated over the course of an agricultural season, using DGGE profiling and pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. During the agricultural season, an increase in the concentration of pesticides in the BPS was observed along with the detection of significant community changes including a decrease in microbial diversity. Additionally, a significant increase in the relative abundance of Proteobacteria, mainly the Gammaproteobacteria, was found, and OTUs (operational taxonomic units) affiliated to Pseudomonas responded positively during the course of the season. Furthermore, a banding-pattern analysis of 16S rRNA gene-based DGGE fingerprinting, targeting the Alpha- and Betaproteobacteria as well as the Actinobacteria, indicated that the Betaproteobacteria might play an important role. Interestingly, a decrease of Firmicutes and Bacteroidetes was observed, indicating their selective disadvantage in a BPS, to which pesticides have been introduced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man systems.

    Directory of Open Access Journals (Sweden)

    Cristian Suárez

    Full Text Available Although the agmatine deiminase system (AgDI has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position. In addition, we found that components of the mannose phosphotransferase (PTS(Man system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTS(Man and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches.

  8. Expression of the Agmatine Deiminase Pathway in Enterococcus faecalis Is Activated by the AguR Regulator and Repressed by CcpA and PTSMan Systems

    Science.gov (United States)

    Blancato, Víctor S.; Magni, Christian

    2013-01-01

    Although the agmatine deiminase system (AgDI) has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR) operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position). In addition, we found that components of the mannose phosphotransferase (PTSMan) system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTSMan and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches. PMID:24155893

  9. Bacterial communities hitching a hike - a guide to the river system of the Red river, Disko Island, West Greenland

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N.; Stibal, Marek

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on Disko Island, West Greenland (69°N). We describe the bacterial community through a river into the estuary......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact......, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while...

  10. Normalization of test and evaluation of biothreat detection systems: overcoming microbial air content fluctuations by using a standardized reagent bacterial mixture.

    Science.gov (United States)

    Berchebru, Laurent; Rameil, Pascal; Gaudin, Jean-Christophe; Gausson, Sabrina; Larigauderie, Guilhem; Pujol, Céline; Morel, Yannick; Ramisse, Vincent

    2014-10-01

    Test and evaluation of engineered biothreat agent detection systems ("biodetectors") are a challenging task for government agencies and industries involved in biosecurity and biodefense programs. In addition to user friendly features, biodetectors need to perform both highly sensitive and specific detection, and must not produce excessive false alerts. In fact, the atmosphere displays a number of variables such as airborne bacterial content that can interfere with the detection process, thus impeding comparative tests when carried out at different times or places. To overcome these bacterial air content fluctuations, a standardized reagent bacterial mixture (SRBM), consisting in a collection of selected cultivable environmental species that are prevalent in temperate climate bioaerosols, was designed to generate a stable, reproducible, and easy to use surrogate of bioaerosol sample. The rationale, design, and production process are reported. The results showed that 8.59; CI 95%: 8.46-8.72 log cfu distributed into vials underwent a 0.95; CI 95%: 0.65-1.26 log viability decay after dehydration and subsequent reconstitution, thus advantageously mimicking a natural bioaerosol sample which is typically composed of cultivable and uncultivable particles. Dehydrated SRBM was stable for more than 12months at 4°C and allowed the reconstitution of a dead/live cells aqueous suspension that is stable for 96h at +4°C, according to plate counts. Specific detection of a simulating biothreat agent (e.g. Bacillus atrophaeus) by immuno-magnetic or PCR assays did not display any significant loss of sensitivity, false negative or positive results in the presence of SRBM. This work provides guidance on testing and evaluating detection devices, and may contribute to the establishment of suitable standards and normalized procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?

    Science.gov (United States)

    Lebaron, P; Servais, P; Agogué, H; Courties, C; Joux, F

    2001-04-01

    The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.

  12. Variation in the ovine cortisol response to systemic bacterial endotoxin challenge is predominantly determined by signalling within the hypothalamic-pituitary-adrenal axis

    International Nuclear Information System (INIS)

    You Qiumei; Karrow, Niel A.; Cao Honghe; Rodriguez, Alexander; Mallard, Bonnie A.; Boermans, Herman J.

    2008-01-01

    Bi-directional communication between the neuroendocrine and immune systems is designed, in part, to maintain or restore homeostasis during physiological stress. Exposure to endotoxin during Gram-negative bacterial infection for example, elicits the release of pro-inflammatory cytokines that activate the hypothalamic-pituitary-adrenal axis (HPAA). The secretion of adrenal glucocorticoids subsequently down regulates the host inflammatory response, minimizing potential tissue damage. Sequence and epigenetic variants in genes involved in regulating the neuroendocrine and immune systems are likely to contribute to individual differences in the HPAA response, and this may influence the host anti-inflammatory response to toxin exposure and susceptibility to inflammatory disease. In this study, high (HCR) and low (LCR) cortisol responders were selected from a normal population of 110 female sheep challenged iv with Escherichia coli endotoxin (400 ng/kg) to identify potential determinants that contribute to variation in the cortisol response phenotype. This phenotype was stable over several years in the HCR and LCR animals, and did not appear to be attributed to differences in expression of hepatic immune-related genes or systemic pro-inflammatory cytokine concentrations. Mechanistic studies using corticotrophin-releasing factor (0.5 μg/kg body weight), arginine vasopressin (0.5 μg/kg), and adrenocorticotropic hormone (0.5 μg/kg) administered iv demonstrated that variation in this phenotype is largely determined by signalling within the HPAA. Future studies will use this ovine HCR/LCR model to investigate potential genetic and epigenetic variants that may contribute to variation in cortisol responsiveness to bacterial endotoxin

  13. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  14. Novel insights in preventing Gram-negative bacterial infection in cirrhotic patients: review on the effects of GM-CSF in maintaining homeostasis of the immune system.

    Science.gov (United States)

    Xu, Dong; Zhao, Manzhi; Song, Yuhu; Song, Jianxin; Huang, Yuancheng; Wang, Junshuai

    2015-01-01

    Cirrhotic patients with dysfunctional and/or low numbers of leukocytes are often infected with bacteria, especially Gram-negative bacteria, which is characterized by producing lipopolysaccharide (LPS). Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that influences the production, maturation, function, and survival of various immune cells. In this paper, we reviewed not only Toll-like receptors 4 (TLR4) signaling pathway and its immunological effect, but also the specific stimulating function and autocrine performance of GM-CSF on hematopoietic cells, as well as the recent discovery of innate response activator-B cells in protection against microbial sepsis and the direct LPS-TLR4 signaling on hematopoiesis. Thus we concluded that GM-CSF might play important roles in preventing Gram-negative bacterial infections in cirrhotic patients through maintaining immune system functions and homeostasis.

  15. Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: from surface and cellular changes to mono- and dioxygenases activities.

    Science.gov (United States)

    Sałek, Karina; Kaczorek, Ewa; Guzik, Urszula; Zgoła-Grześkowiak, Agnieszka

    2015-03-01

    Triton X-100, as one of the most popular surfactants used in bioremediation techniques, has been reported as an effective agent enhancing the biodegradation of hydrocarbons. However efficient, the surfactant's role in different processes that together enable the satisfying biodegradation should be thoroughly analysed and verified. In this research, we present the interactions of Triton X-100 with the bacterial surfaces (hydrophobicity and zeta potential), its influence on the enzymatic properties (considering mono- and dioxygenases) and profiles of fatty acids, which then all together were compared with the biodegradation rates. The addition of various concentrations of Triton X-100 to diesel oil system revealed different cell surface hydrophobicity (CSH) of the tested strains. The results demonstrated that for Pseudomonas stutzeri strain 9, higher diesel oil biodegradation was correlated with hydrophilic properties of the tested strain and lower Triton X-100 biodegradation. Furthermore, an increase of the branched fatty acids was observed for this strain.

  16. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.

    Science.gov (United States)

    Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve

    2017-07-01

    The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    Science.gov (United States)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  18. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  19. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  20. Bacterial computing with engineered populations.

    Science.gov (United States)

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  2. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  3. Physical and chemical quality, biodiversity, and thermodynamic prediction of adhesion of bacterial isolates from a water purification system: a case study

    Directory of Open Access Journals (Sweden)

    Roberta Barbosa Teodoro Alves

    2017-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the quality of water purification system and identify the bacteria this system, predict bacterial adherence according to the hydrophobicity of these microorganisms and of the polypropylene distribution loop for purified water. The assessment of drinking water that supplies the purification system allowed good-quality physical, chemical, and microbiological specifications. The physicochemical specifications of the distributed purified water were approved, but the heterotrophic bacteria count was higher than allowed (>2 log CFU mL-1.The sanitation of the storage tank with chlorine decreased the number of bacteria adhered to the surface (4.34 cycles log. By sequencing of the 16SrDNA genes, six species of bacteria were identified. The contact angle was determined and polypropylene surface and all bacteria were considered to be hydrophilic, and adhesion was thermodynamically unfavorable. This case study showed the importance of monitoring the water quality in the purified water systems and the importance of sanitization with chemical agents. The count of heterotrophic bacteria on the polypropylene surface was consistent with the predicted thermodynamics results because the number of adhered cells reached approximate values of 5 log CFU cm-2.

  4. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    Science.gov (United States)

    Chen, Jonathan H K; Ho, Pak-Leung; Kwan, Grace S W; She, Kevin K K; Siu, Gilman K H; Cheng, Vincent C C; Yuen, Kwok-Yung; Yam, Wing-Cheong

    2013-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and fungi was recently introduced in microbiology laboratories. This technology could greatly improve the clinical management of patients and guidance for chemotherapy. In this study, we used a commercial MALDI Sepsityper extraction method to evaluate the performance of two commercial MALDI-TOF MS systems, the Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for direct bacterial identification in positive blood cultures. In 181 monomicrobial cultures, both systems generated genus to species level identifications for >90% of the specimens (Biotyper, 177/181 [97.8%]; Vitek MS IVD, 167/181 [92.3%]). Overall, the Biotyper system generated significantly more accurate identifications than the Vitek MS IVD system (P = 0.016; 177 versus 167 out of 181 specimens). The Biotyper system identified the minority species among polymicrobial blood cultures. We also compared the performance of an in-house extraction method with that of the Sepsityper on both MALDI-TOF MS systems. The in-house method generated more correct identifications at the genus level than the Sepsityper (96.7% versus 93.5%) on the Biotyper system, whereas the two methods exhibited the same performance level (88.0% versus 88.0%) on the Vitek MS IVD system. Our study confirmed the practical advantages of MALDI-TOF MS, and our in-house extraction method reduced the reagent cost to $1 per specimen, with a shorter turnaround time of 3 h, which is highly cost-effective for a diagnostic microbiology service.

  5. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    OpenAIRE

    Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammon...

  6. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress.

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-12-01

    Full Text Available Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR, detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular

  7. Engineering of self-sustaining systems: substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system in a Lactococcus lactis network in silico

    NARCIS (Netherlands)

    Adamczyk, M.; Westerhoff, H.V.

    2012-01-01

    The success rate of introducing new functions into a living species is still rather unsatisfactory. Much of this is due to the very essence of the living state, i.e. its robustness towards perturbations. Living cells are bound to notice that metabolic engineering is being effected, through changes

  8. Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens.

    LENUS (Irish Health Repository)

    O'Leary, James

    2009-11-01

    The EntericBio system uses a multiplex PCR assay for the simultaneous detection of Campylobacter spp., Salmonella enterica, Shigella spp., and Escherichia coli O157 from feces. It combines overnight broth enrichment with PCR amplification and detection by hybridization. An evaluation of this system was conducted by comparing the results obtained with the system with those obtained by routine culture, supplemented with alternative PCR detection methods. In a study of 773 samples, routine culture and the EntericBio system yielded 94.6 and 92.4% negative results, respectively. Forty-two samples had positive results by culture, and all of these were positive with the EntericBio system. This system detected an additional 17 positive samples (Campylobacter spp., n = 12; Shigella spp., n = 1; E. coli O157, n = 4), but the results for 5 samples (Campylobacter spp., n = 2; Shigella spp., n = 1; E. coli O157, n = 2) could not be confirmed. The target for Shigella spp. detected by the EntericBio system is the ipaH gene, and the molecular indication of the presence of Shigella spp. was investigated by sequence analysis, which confirmed that the ipaH gene was present in a Klebsiella pneumoniae isolate from the patient. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 99.3%, 91.5%, and 100%, respectively. Turnaround times were significantly reduced with the EntericBio system, and a result was available between 24 and 32 h after receipt of the sample in the laboratory. In addition, the amount of laboratory waste was significantly reduced by use of this system. In summary, the EntericBio system proved convenient to use, more sensitive than the conventional culture used in this study, and highly specific; and it generated results significantly faster than routine culture for the pathogens tested.

  9. Do host genetic traits in the bacterial sensing system play a role in the development of Chlamydia trachomatis-associated tubal pathology in subfertile women?

    Directory of Open Access Journals (Sweden)

    Ito James I

    2006-07-01

    Full Text Available Abstract Background In women, Chlamydia (C. trachomatis upper genital tract infection can cause distal tubal damage and occlusion, increasing the risk of tubal factor subfertility and ectopic pregnancy. Variations, like single nucleotide polymorphisms (SNPs, in immunologically important host genes are assumed to play a role in the course and outcome of a C. trachomatis infection. We studied whether genetic traits (carrying multiple SNPs in different genes in the bacterial sensing system are associated with an aberrant immune response and subsequently with tubal pathology following a C. trachomatis infection. The genes studied all encode for pattern recognition receptors (PRRs involved in sensing bacterial components. Methods Of 227 subfertile women, serum was available for C. trachomatis IgG antibody testing and genotyping (common versus rare allele of the PRR genes TLR9, TLR4, CD14 and CARD15/NOD2. In all women, a laparoscopy was performed to assess the grade of tubal pathology. Tubal pathology was defined as extensive peri-adnexal adhesions and/or distal occlusion of at least one tube. Results Following a C. trachomatis infection (i.e. C. trachomatis IgG positive, subfertile women carrying two or more SNPs in C. trachomatis PRR genes were at increased risk of tubal pathology compared to women carrying less than two SNPs (73% vs 33% risk. The differences were not statistically significant (P = 0.15, but a trend was observed. Conclusion Carrying multiple SNPs in C. trachomatis PRR genes tends to result in an aberrant immune response and a higher risk of tubal pathology following a C. trachomatis infection. Larger studies are needed to confirm our preliminary findings.

  10. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2

    Directory of Open Access Journals (Sweden)

    Md. Mahidul Islam Masum

    2017-09-01

    Full Text Available The Type VI secretion system (T6SS is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2 and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  11. Role of the Genes of Type VI Secretion System in Virulence of Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae Strain RS-2.

    Science.gov (United States)

    Masum, Md Mahidul Islam; Yang, Yingzi; Li, Bin; Olaitan, Ogunyemi Solabomi; Chen, Jie; Zhang, Yang; Fang, Yushi; Qiu, Wen; Wang, Yanli; Sun, Guochang

    2017-09-21

    The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations Δ pppA , Δ clpB , Δ hcp , Δ dotU , Δ icmF , Δ impJ , and Δ impM caused similar virulence characteristics as RS-2. Moreover, the mutant Δ pppA , Δ clpB , Δ icmF , Δ impJ and Δ impM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants Δ pppA , Δ clpB , Δ icmF and Δ hcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.

  12. Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2009-01-01

    Full Text Available Abstract Background The exported repetitive protein (erp gene encodes a secreted 36-kDa protein with a central domain containing several proline-glycine-leucine-threonine-serine (PGLTS repeats. It has been demonstrated that erp is a virulence-associated factor since the disruption of this gene impairs the growth of Mycobacterium bovis and Mycobacterium tuberculosis in mice. Results In order to elucidate the function of Erp we searched for Erp-binding proteins from M. tuberculosis by using a bacterial two-hybrid system. Our results indicate that Erp interacts specifically with two putative membrane proteins, Rv1417 and Rv2617c. Further analysis revealed that the latter two interact with each other, indicating that Rv1417, Rv2617c and Erp are connected through multiple interactions. While Rv1417 is disseminated in several Actinomycetales genera, orthologues of Rv2617c are exclusively present in members of the M. tuberculosis complex (MTC. The central and amino-terminal regions of Erp were determined to be involved in the interaction with Rv1417 and Rv2627c. Erp forms from Mycobacterium smegmatis and Mycobacterium leprae were not able to interact with Rv2617c in two-hybrid assays. Immunolocalization experiments showed that Rv1417 and Rv2617c are found on the cell membrane and Erp on the bacterial cell wall. Finally, comparative genomics and expression studies revealed a possible role of Rv1417 in riboflavin metabolism. Conclusion We identified interactive partners of Erp, an M. tuberculosis protein involved in virulence, which will be the focus of future investigation to decipher the function of the Erp family protein.

  13. IL-1RI (Interleukin-1 Receptor Type I Signalling is Essential for Host Defence and Hemichannel Activity During Acute Central Nervous System Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Juan Xiong

    2012-03-01

    Full Text Available Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1 response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I KO (knockout animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88 and TLR2 (Toll-like receptor 2 KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.

  14. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  15. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system.

    Science.gov (United States)

    Regan, John M; Harrington, Gregory W; Noguera, Daniel R

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.

  17. Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System

    Directory of Open Access Journals (Sweden)

    Ivaylo Sirakov

    2016-11-01

    Full Text Available One of the main challenges in aquaponics is disease control. One possible solution for this is biological control with organisms exerting inhibitory effects on fish and plant pathogens. The aim of this study was to examine the potential of isolating microorganisms that exert an inhibitory effect on both plant and fish pathogens from an established aquaponic system. We obtained 924 isolates on selective King’s B agar and 101 isolates on MRS agar from different compartments of a model aquaponic system and tested them for antagonism against the plant pathogen Pythium ultimum and fish pathogen Saprolegnia parasitica. Overall, 42 isolates were able to inhibit both fungi. Although not yet tested in vivo, these findings open new options for the implementation of biological control of diseases in aquaponics, where plants and fish are cultivated in the same water recirculating system.

  18. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  19. Production and purification of anti-bacterial biometabolite from wild-type Lactobacillus, isolated from fermented bamboo shoot: future suggestions and a proposed system for secondary metabolite onsite recovery during continuous fermentation.

    Science.gov (United States)

    Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C

    2015-02-01

    Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

  20. IDENTIFICATION OF ACTIVE BACTERIAL COMMUNITIES IN A MODEL DRINKING WATER BIOFILM SYSTEM USING 16S RRNA-BASED CLONE LIBRARIES

    Science.gov (United States)

    Recent phylogenetic studies have used DNA as the target molecule for the development of environmental 16S rDNA clone libraries. As DNA may persist in the environment, DNA-based libraries cannot be used to identify metabolically active bacteria in water systems. In this study, a...

  1. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  2. [Effect of mixed edaphic bacterial inoculants in the early development of improved cocoa cultivars (Theobroma cacao L.) in a traditional agroforestry system of Oaxaca, Mexico].

    Science.gov (United States)

    Hipólito-Romero, E; Carcaño-Montiel, M G; Ramos-Prado, J M; Vázquez-Cabañas, E A; López-Reyes, L; Ricaño-Rodríguez, J

    Cocoa plant (Theobroma cacao L.) is native from South America and it represents one of the most significant "bio-cultural" resources of Mesoamerica, since it is a region where it was domesticated and had a relevance as ritual drink and as currency in many pre-hispanic cultures until the arrival of the Spaniards who spread its use worldwide, and became it one of the most consumed commodity goods. Through this research, an alternative is proposed to address the problem of cultivars through the introduction of a wide variety of cocoa plants in traditional agroforestry systems, in synergy with the inoculation of nitrogen-fixing and insoluble phosphor solubilizing edaphic bacterial consortia. Four cultivars of improved grafted cocoa plants were introduced in a traditional agroforestry plot and three fertilization treatments were applied: application of biofertilizer, application of chemical fertilizer and control. Measurements of height, stem diameter, number of leaves and branches were recorded at 2 and 12 months after planting and rhizosphere microbial populations were characterized. Growth results showed good potential for all studied cultivars and it was observed that biofertilization foresees significant effects in some of the growth indicators of cocoa plant. Thereby, plant associations in an agroforestry system could be favorable to promote fruit development and resistance to pests and diseases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    Science.gov (United States)

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  4. Liming in the sugarcane burnt system and the green harvest practice affect soil bacterial community in northeastern São Paulo, Brazil.

    Science.gov (United States)

    Val-Moraes, Silvana Pompeia; de Macedo, Helena Suleiman; Kishi, Luciano Takeshi; Pereira, Rodrigo Matheus; Navarrete, Acacio Aparecido; Mendes, Lucas William; de Figueiredo, Eduardo Barretto; La Scala, Newton; Tsai, Siu Mui; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-12-01

    Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.

  5. Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection.

    Science.gov (United States)

    Deuschle, Eva; Keller, Birgit; Siegfried, Alexandra; Manncke, Birgit; Spaeth, Tanja; Köberle, Martin; Drechsler-Hake, Doreen; Reber, Julia; Böttcher, Ralph T; Autenrieth, Stella E; Autenrieth, Ingo B; Bohn, Erwin; Schütz, Monika

    2016-02-01

    Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors. Copyright © 2015. Published by Elsevier GmbH.

  6. From 2D fluidic array screening to 3D bacterial capturing structures in a point of care system for sepsis diagnosis

    DEFF Research Database (Denmark)

    Shahbazi, Mohammad-Ali; Kant, Krishna; Kaplinsky, Joseph John

    2017-01-01

    A combined 2D microfluidic-microarray high throughput approach is reported to identify universal bacterial capturing ligands that can be tethered on the surface of 3D sponges fabricated by different methods for concentrating of bacterial targets in diagnosis devices. The developed platform allows...... between the solid surface and ligands. 3D sponges and micropillars are modified with the most potent capturing molecule to assess their bacterial capturing in real blood samples. Next, the 3D structures are placed into a chip with an immense potential to recognize bacteria through imaging and fluorescence...

  7. Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants.

    Science.gov (United States)

    Nesler, Andrea; DalCorso, Giovanni; Fasani, Elisa; Manara, Anna; Di Sansebastiano, Gian Pietro; Argese, Emanuele; Furini, Antonella

    2017-03-25

    Cadmium (Cd) is a toxic trace element released into the environment by industrial and agricultural practices, threatening the health of plants and contaminating the food/feed chain. Biotechnology can be used to develop plant varieties with a higher capacity for Cd accumulation (for use in phytoremediation programs) or a lower capacity for Cd accumulation (to reduce Cd levels in food and feed). Here we generated transgenic tobacco plants expressing components of the Pseudomonas putida CzcCBA efflux system. Plants were transformed with combinations of the CzcC, CzcB and CzcA genes, and the impact on Cd mobilization was analysed. Plants expressing PpCzcC showed no differences in Cd accumulation, whereas those expressing PpCzcB or PpCzcA accumulated less Cd in the shoots, but more Cd in the roots. Plants expressing both PpCzcB and PpCzcA accumulated less Cd in the shoots and roots compared to controls, whereas plants expressing all three genes showed a significant reduction in Cd levels only in shoots. These results show that components of the CzcCBA system can be expressed in plants and may be useful for developing plants with a reduced capacity to accumulate Cd in the shoots, potentially reducing the toxicity of food/feed crops cultivated in Cd-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  9. A New Evolutionary Algorithm Based on Bacterial Evolution and Its Application for Scheduling A Flexible Manufacturing System

    Directory of Open Access Journals (Sweden)

    Chandramouli Anandaraman

    2012-01-01

    Full Text Available A new evolutionary computation algorithm, Superbug algorithm, which simulates evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale optimization problems such as scheduling, transportation and assignment problems. In this work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS by minimizing makespan. The FMS comprises of four machines and two identical Automated Guided Vehicles (AGVs. AGVs are used for carrying jobs between the Load/Unload (L/U station and the machines. Experimental results indicate the efficiency of the proposed algorithm in its optimization performance in scheduling is noticeably superior to other evolutionary algorithms when compared to the best results reported in the literature for FMS Scheduling.

  10. Functional morphology of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae), a bacterially luminous coral reef fish.

    Science.gov (United States)

    Dunlap, Paul V; Nakamura, Masaru

    2011-08-01

    Previous studies of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae) identified a ventral light organ, reflector, lens, duct, and a ventral diffuser extending from the throat to the caudal peduncle. The control and function of luminescence in this and other species of Siphamia, however, have not been defined. Morphological examination of fresh and preserved specimens identified additional components of the luminescence system involved in control and ventral emission of luminescence, including a retractable shutter over the ventral face of the light organ, contiguity of the ventral diffuser from the caudal peduncle to near the chin, and transparency of the bones and other tissues of the lower jaw. The shutter halves retract laterally, allowing the ventral release of light, and relax medially, blocking ventral light emission; topical application of norepinephrine to the exposed light organ resulted in retraction of the shutter halves, which suggests that operation of the shutter is under neuromuscular control. The extension of the diffuser to near the chin and transparency of the lower jaw allow a uniform emission of luminescence over the entire ventrum of the fish. The live aquarium-held fish were found to readily and consistently display ventral luminescence. At twilight, the fish left the protective association with their longspine sea urchin, Diadema setosum, and began to emit ventral luminescence and to feed on zooplankton. Ventral luminescence illuminated a zone below and around the fish, which typically swam close to the substrate. Shortly after complete darkness, the fish stopped feeding and emitting luminescence. These observations suggest that S. versicolor uses ventral luminescence to attract and feed on zooplankton from the reef benthos at twilight. Ventral luminescence may allow S. versicolor to exploit for feeding the gap at twilight in the presence of potential predators as the reef transitions from diurnally active to

  11. Trial of a novel plasma gas disinfection system (Radica) to reduce mattress residual bacterial contamination in the acute hospital setting: a preliminary study.

    Science.gov (United States)

    Shiely, F; Fallon, D; Casey, C; Kerins, D M; Eustace, J A

    2017-02-01

    In routine clinical practice, mattresses are manually cleaned using specialised cleaning and high-level disinfecting fluids. While effective against a wide range of organisms, the success of this approach is dependent on a thorough and complete application and is likely to be susceptible to human error and thus variable. The efficacy of available infection control measures to reduce such mattress contamination is unknown as it is not subject to quality control measures. There is a pressing need to identify more effective methods to prevent cross contamination within the medical environment, given the lack of available treatment strategies. The purpose of this study is to investigate the ability of a new technology, gaseous technology, to reduce colonization levels, compared to standard cleaning, and so attenuate superficial nosocomial infections. We conducted a prospective, single-centre, open-label, non-randomized trial with blinded outcome assessments, comparing the standard cleaning of hospital mattresses with a novel plasma based disinfection system Radica™, followed by a standard post-cleaning culturing protocol (five swabs/mattress). The median (interquartile range) maximal colony count per mattress for the 20 Radica versus 7 routinely cleaned mattresses was 1 (1-2.7) versus Too-Numerous-to-Count (TNTC) (32-TNTC), respectively, p = 0.002. Of the 20 Radica™ treated mattresses, 12 (60 %) had no positive culture result while all of the standard cleaned mattresses had at least two positive cultures. The plasma based Radica disinfection system reduces mattress bacterial colonization levels as compared to routine cleaning. This is a potentially important technology in the health care system to reduce surface colonisation and hence nosocomial infections.

  12. Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems*

    Science.gov (United States)

    Durand, Eric; Zoued, Abdelrahim; Spinelli, Silvia; Watson, Paul J. H.; Aschtgen, Marie-Stéphanie; Journet, Laure; Cambillau, Christian; Cascales, Eric

    2012-01-01

    The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families. PMID:22371492

  13. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N2 O decomposition by microwave discharge.

    Science.gov (United States)

    Hattori, Shohei; Savarino, Joel; Kamezaki, Kazuki; Ishino, Sakiko; Dyckmans, Jens; Fujinawa, Tamaki; Caillon, Nicolas; Barbero, Albane; Mukotaka, Arata; Toyoda, Sakae; Well, Reinhard; Yoshida, Naohiro

    2016-12-30

    Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N 2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N 2 O separation by gas chromatography before N 2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. The δ 17 O, δ 18 O, and Δ 17 O values increased with increasing sample size, although the δ 15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ 18 O, Δ 17 O, and δ 15 N values, results that are not inferior to those from other systems using gold tube or gold wire. An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N 2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision

  15. Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration.

    Science.gov (United States)

    Lingua, Guido; Copetta, Andrea; Musso, Davide; Aimo, Stefania; Ranzenigo, Angelo; Buico, Alessandra; Gianotti, Valentina; Osella, Domenico; Berta, Graziella

    2015-12-01

    High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l(-1)), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l(-1) of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands.

  16. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  17. Multilevel analysis of bacterial counts from chronic periodontitis after root planing/scaling, surgery, and systemic and local antibiotics: 2-year results

    Directory of Open Access Journals (Sweden)

    Ibrahimu Mdala

    2013-07-01

    Full Text Available Aim: To follow changes (over 2 years in subgingival bacterial counts of five microbial complexes including health-related Actinomyces spp. in deeper pockets (≥5 mm after periodontal treatments. Methods: Eight different treatments were studied: (1 scaling+root planing (SRP; (2 periodontal surgery (SURG+systemic amoxicillin (AMOX+systemic metronidazole (MET; (3 SURG+locally delivered tetracycline (TET; (4 SURG; (5 AMOX+MET+TET; (6 AMOX+MET; (7 TET; and (8 SURG+AMOX+MET+TET. Antibiotics were given immediately following SRP. Subgingival plaque was collected mesiobuccally from each tooth, except third molars, from 176 subjects, completing the study, at baseline, 3, 6, 12, 18, and 24 months post-treatment and analysed for 40 different bacteria using checkerboard hybridization. A negative binomial (NB generalized estimating equation (NB GEE model was used to analyze count data and a logistic GEE was used for proportions. Results: We observed short-term beneficial changes in the composition of the red complex of up to 3 months by treating subjects with AMOX+MET+TET. Similar short-term improvements with the same treatment were observed for Tannerella forsythia and Treponema denticola of the red complex. SURG had also short-term beneficial effect on Porphyromonas gingivalis. No periodontal treatments applied to severely affected sites promoted the growth of Actinomyces. Smoking elevated counts of both the red and orange complex while bleeding on probing (BOP and gingival redness were also predictors of more red complex counts. Comparatively similar findings were obtained by analyzing counts and by analyzing proportions. Conclusions: Although short-term reductions in the counts of the red complex were observed in sites that were treated with AMOX+MET+TET, long-term significant effects were not observed with any of the eight treatments. Poor oral hygiene in patients with severe chronic periodontitis diminished the beneficial effects of treatment.

  18. Prevalence of quinolone resistance genes, copper resistance genes, and the bacterial communities in a soil-ryegrass system co-polluted with copper and ciprofloxacin.

    Science.gov (United States)

    Tuo, Xiaxia; Gu, Jie; Wang, Xiaojuan; Sun, YiXin; Duan, Manli; Sun, Wei; Yin, Yanan; Guo, Aiyun; Zhang, Li

    2018-04-01

    The presence of high concentrations of residual antibiotics and antibiotic resistance genes (ARGs) in soil may pose potential health and environmental risks. This study investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) genes, copper resistance genes (CRGs), and the bacterial communities in a soil-ryegrass pot system co-polluted with copper and ciprofloxacin (CIP; 0, 20, or 80 mg kg -1 dry soil). Compared with the samples on day 0, the total relative abundances of the PMQR genes and mobile genetic elements (MGEs) were reduced significantly by 80-89% in the ryegrass and soil by the cutting stage (after 75 days). The abundances of PMQR genes and MGEs were reduced by 63-81% in soil treated with 20 mg kg -1 CIP compared with the other treatments, but the abundances of CRGs increased by 18-42%. The presence of 80 mg kg -1 CIP affected the microbial community structure in the soil by increasing the abundances of Acidobacteria and Thaumarchaeota, but decreasing those of Firmicutes. Redundancy analysis indicated that the pH and microbial composition were the main factors that affected the variations in PMQR genes, MGEs, and CRGs, where they could explain 42.2% and 33.3% of the variation, respectively. Furthermore, intI2 may play an important role in the transfer of ARGs. We found that 80 mg kg -1 CIP could increase the abundances of ARGs and CRGs in a soil-ryegrass pot system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Reconsidering 'appropriate technology': the effects of operating conditions on the bacterial removal performance of two household drinking-water filter systems

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Jill [Harvard School of Public Health, Boston, MA (United States); Murcott, Susan [Massachusetts Institute of Technology, Cambridge, MA (United States); Ezzati, Majid [Harvard School of Public Health, Boston, MA (United States)

    2007-04-01

    We examined the performance of two household water treatment and safe storage (HWTS) systems, the Danvor plastic biosand filter and the Potters for Peace Filtron ceramic filter, under ideal as well as modified operating conditions using systematic and comparable measurements. The operating variables for the biosand filter were (i) pause times between filtration runs (ii) water-dosing volumes and (iii) the effluent volume at which a filtered water sample was collected. For the ceramic filter we examined overflow filtration versus standard filtration. We used the bacterial indicators of total coliforms and Escherichia coli to quantify microbiological removal. With the biosand filter, a 12 h pause time had significantly higher total coliform removal than a 36 h pause time at the 20 l collection point (79.1% versus 73.7%; p < 0.01) and borderline significance at the 10 l collection point (81.0% versus 78.3%; p = 0.07). High-volume filtration (20 l) had significantly lower total coliform removal efficacy than low-volume (10 l) filtration at the 10 l collection point (81.0% versus 84.2%; p = 0.03). We observed a decreasing trend in total coliform removal by sample collection volume with the highest removal efficacy at the 5 l sample collection point (versus at the 10 and 20 l collection points). Using the ceramic filter, mean total coliform and E. coli removal were significantly lower (p < 0.01) in overflow filtration than in standard filtration. The findings indicate that operating conditions can reduce the effectiveness of the systems in a field-based setting and increase environmental risk exposure.

  20. Reconsidering 'appropriate technology': the effects of operating conditions on the bacterial removal performance of two household drinking-water filter systems

    International Nuclear Information System (INIS)

    Baumgartner, Jill; Murcott, Susan; Ezzati, Majid

    2007-01-01

    We examined the performance of two household water treatment and safe storage (HWTS) systems, the Danvor plastic biosand filter and the Potters for Peace Filtron ceramic filter, under ideal as well as modified operating conditions using systematic and comparable measurements. The operating variables for the biosand filter were (i) pause times between filtration runs (ii) water-dosing volumes and (iii) the effluent volume at which a filtered water sample was collected. For the ceramic filter we examined overflow filtration versus standard filtration. We used the bacterial indicators of total coliforms and Escherichia coli to quantify microbiological removal. With the biosand filter, a 12 h pause time had significantly higher total coliform removal than a 36 h pause time at the 20 l collection point (79.1% versus 73.7%; p < 0.01) and borderline significance at the 10 l collection point (81.0% versus 78.3%; p = 0.07). High-volume filtration (20 l) had significantly lower total coliform removal efficacy than low-volume (10 l) filtration at the 10 l collection point (81.0% versus 84.2%; p = 0.03). We observed a decreasing trend in total coliform removal by sample collection volume with the highest removal efficacy at the 5 l sample collection point (versus at the 10 and 20 l collection points). Using the ceramic filter, mean total coliform and E. coli removal were significantly lower (p < 0.01) in overflow filtration than in standard filtration. The findings indicate that operating conditions can reduce the effectiveness of the systems in a field-based setting and increase environmental risk exposure

  1. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  2. Collective Functionality through Bacterial Individuality

    Science.gov (United States)

    Ackermann, Martin

    According to the conventional view, the properties of an organism are a product of nature and nurture - of its genes and the environment it lives in. Recent experiments with unicellular organisms have challenged this view: several molecular mechanisms generate phenotypic variation independently of environmental signals, leading to variation in clonal groups. My presentation will focus on the causes and consequences of this microbial individuality. Using examples from bacterial genetic model systems, I will first discuss different molecular and cellular mechanisms that give rise to bacterial individuality. Then, I will discuss the consequences of individuality, and focus on how phenotypic variation in clonal populations of bacteria can promote interactions between individuals, lead to the division of labor, and allow clonal groups of bacteria to cope with environmental uncertainty. Variation between individuals thus provides clonal groups with collective functionality.

  3. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation

    NARCIS (Netherlands)

    Paganelli, Fernanda L.; Huebner, Johannes; Singh, Kavindra V.; Zhang, Xinglin; Van Schaik, Willem; Wobser, Dominique; Braat, Johanna C.; Murray, Barbara E.; Bonten, Marc J M; Willems, Rob J L; Leavis, Helen L.

    2016-01-01

    Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated

  4. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  5. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  6. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  7. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  8. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  9. Environmental T4-Family Bacteriophages Evolve to Escape Abortive Infection via Multiple Routes in a Bacterial Host Employing "Altruistic Suicide" through Type III Toxin-Antitoxin Systems.

    Science.gov (United States)

    Chen, Bihe; Akusobi, Chidiebere; Fang, Xinzhe; Salmond, George P C

    2017-01-01

    Abortive infection is an anti-phage mechanism employed by a bacterium to initiate its own death upon phage infection. This reduces, or eliminates, production of viral progeny and protects clonal siblings in the bacterial population by an act akin to an "altruistic suicide." Abortive infection can be mediated by a Type III toxin-antitoxin system called ToxIN Pa consisting of an endoribonuclease toxin and RNA antitoxin. ToxIN Pa is a heterohexameric quaternary complex in which pseudoknotted RNA inhibits the toxicity of the toxin until infection by certain phages causes destabilization of ToxIN Pa , leading to bacteriostasis and, eventually, lethality. However, it is still unknown why only certain phages are able to activate ToxIN Pa . To try to address this issue we first introduced ToxIN Pa into the Gram-negative enterobacterium, Serratia sp. ATCC 39006 ( S 39006) and then isolated new environmental S 39006 phages that were scored for activation of ToxIN Pa and abortive infection capacity. We isolated three T4-like phages from a sewage treatment outflow point into the River Cam, each phage being isolated at least a year apart. These phages were susceptible to ToxIN Pa -mediated abortive infection but produced spontaneous "escape" mutants that were insensitive to ToxIN Pa . Analysis of these resistant mutants revealed three different routes of escaping ToxIN Pa , namely by mutating asiA (the product of which is a phage transcriptional co-activator); by mutating a conserved, yet functionally unknown, orf84 ; or by deleting a 6.5-10 kb region of the phage genome. Analysis of these evolved escape mutants may help uncover the nature of the corresponding phage product(s) involved in activation of ToxIN Pa .

  10. New players in the same old game: a system level in silico study to predict type III secretion system and effector proteins in bacterial genomes reveals common themes in T3SS mediated pathogenesis.

    Science.gov (United States)

    Sadarangani, Vineet; Datta, Sunando; Arunachalam, Manonmani

    2013-07-26

    Type III secretion system (T3SS) plays an important role in virulence or symbiosis of many pathogenic or symbiotic bacteria [CHM 2:291-294, 2007; Physiology (Bethesda) 20:326-339, 2005]. T3SS acts like a tunnel between a bacterium and its host through which the bacterium injects 'effector' proteins into the latter [Nature 444:567-573, 2006; COSB 18:258-266, 2008]. The effectors spatially and temporally modify the host signalling pathways [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe5:571-579, 2009]. In spite its crucial role in host-pathogen interaction, the study of T3SS and the associated effectors has been limited to a few bacteria [Cell Microbiol 13:1858-1869, 2011; Nat Rev Microbiol 6:11-16, 2008; Mol Microbiol 80:1420-1438, 2011]. Before one set out to perform systematic experimental studies on an unknown set of bacteria it would be beneficial to identify the potential candidates by developing an in silico screening algorithm. A system level study would also be advantageous over traditional laboratory methods to extract an overriding theme for host-pathogen interaction, if any, from the vast resources of data generated by sequencing multiple bacterial genomes. We have developed an in silico protocol in which the most conserved set of T3SS proteins was used as the query against the entire bacterial database with increasingly stringent search parameters. It enabled us to identify several uncharacterized T3SS positive bacteria. We adopted a similar strategy to predict the presence of the already known effectors in the newly identified T3SS positive bacteria. The huge resources of biochemical data [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe 5:571-579, 2009; BMC Bioinformatics 7(11):S4, 2010] on the T3SS effectors enabled us to search for the common theme in T3SS mediated pathogenesis. We identified few cellular signalling networks in the host, which are manipulated by most of the T3SS containing pathogens. We went on to look for

  11. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  12. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  13. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  14. Application of Chemical Genomics to Plant-Bacteria Communication: A High-Throughput System to Identify Novel Molecules Modulating the Induction of Bacterial Virulence Genes by Plant Signals.

    Science.gov (United States)

    Vandelle, Elodie; Puttilli, Maria Rita; Chini, Andrea; Devescovi, Giulia; Venturi, Vittorio; Polverari, Annalisa

    2017-01-01

    The life cycle of bacterial phytopathogens consists of a benign epiphytic phase, during which the bacteria grow in the soil or on the plant surface, and a virulent endophytic phase involving the penetration of host defenses and the colonization of plant tissues. Innovative strategies are urgently required to integrate copper treatments that control the epiphytic phase with complementary tools that control the virulent endophytic phase, thus reducing the quantity of chemicals applied to economically and ecologically acceptable levels. Such strategies include targeted treatments that weaken bacterial pathogens, particularly those inhibiting early infection steps rather than tackling established infections. This chapter describes a reporter gene-based chemical genomic high-throughput screen for the induction of bacterial virulence by plant molecules. Specifically, we describe a chemical genomic screening method to identify agonist and antagonist molecules for the induction of targeted bacterial virulence genes by plant extracts, focusing on the experimental controls required to avoid false positives and thus ensuring the results are reliable and reproducible.

  15. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  16. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  17. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  18. Comparison of in vitro test systems using bacterial and mammalian cells for genotoxicity assessment within the "health-related indication value (HRIV) concept.

    Science.gov (United States)

    Prantl, Eva-Maria; Kramer, Meike; Schmidt, Carsten K; Knauer, Martina; Gartiser, Stefan; Shuliakevich, Aliaksandra; Milas, Julia; Glatt, Hansruedi; Meinl, Walter; Hollert, Henner

    2018-02-01

    information and may give a first indication of the mechanism of action. To check this hypothesis, various additional strains expressing specific human-relevant enzymes were investigated. It could be shown that the additional use of genetically modified tester strains can enhance the detectable substance spectrum with the bacterial genotoxicological standard procedures or increase the sensitivity. The additional use provides orienting information at this level as a lot of data can be obtained quite quickly and with little effort. These indications of the mechanism of action should be however verified with a test system that uses mammalian cells, better human cells, to check their actual relevance. The selection of appropriate additional tester strains has to be defined from case to case depending on the molecular structure and also still requires some major expertise.

  19. Endocarditis in adults with bacterial meningitis.

    Science.gov (United States)

    Lucas, Marjolein J; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2013-05-21

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2012. Endocarditis was identified in 24 of 1025 episodes (2%) of bacterial meningitis. Cultures yielded Streptococcus pneumoniae in 13 patients, Staphylococcus aureus in 8 patients, and Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus salivarius in 1 patient each. Clues leading to the diagnosis of endocarditis were cardiac murmurs, persistent or recurrent fever, a history of heart valve disease, and S aureus as the causative pathogen of bacterial meningitis. Treatment consisted of prolonged antibiotic therapy in all patients and surgical valve replacement in 10 patients (42%). Two patients were treated with oral anticoagulants, and both developed life-threatening intracerebral hemorrhage. Systemic (70%) and neurological (54%) complications occurred frequently, leading to a high proportion of patients with unfavorable outcome (63%). Seven of 24 patients (29%) with meningitis and endocarditis died. Endocarditis is an uncommon coexisting condition in bacterial meningitis but is associated with a high rate of unfavorable outcome.

  20. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    OpenAIRE

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  1. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  2. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  3. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  4. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  5. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  6. Development of a Method to Monitor Gene Expression in Single Bacterial Cells During the Interaction With Plants and Use to Study the Expression of the Type III Secretion System in Single Cells of Dickeya dadantii in Potato

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2018-06-01

    Full Text Available Dickeya dadantii is a bacterial plant pathogen that causes soft rot disease on a wide range of host plants. The type III secretion system (T3SS is an important virulence factor in D. dadantii. Expression of the T3SS is induced in the plant apoplast or in hrp-inducing minimal medium (hrp-MM, and is repressed in nutrient-rich media. Despite the understanding of induction conditions, how individual cells in a clonal bacterial population respond to these conditions and modulate T3SS expression is not well understood. In our previous study, we reported that in a clonal population, only a small proportion of bacteria highly expressed T3SS genes while the majority of the population did not express T3SS genes under hrp-MM condition. In this study, we developed a method that enabled in situ observation and quantification of gene expression in single bacterial cells in planta. Using this technique, we observed that the expression of the T3SS genes hrpA and hrpN is restricted to a small proportion of D. dadantii cells during the infection of potato. We also report that the expression of T3SS genes is higher at early stages of infection compared to later stages. This expression modulation is achieved through adjusting the ratio of T3SS ON and T3SS OFF cells and the expression intensity of T3SS ON cells. Our findings not only shed light into how bacteria use a bi-stable gene expression manner to modulate an important virulence factor, but also provide a useful tool to study gene expression in individual bacterial cells in planta.

  7. Small-angle X-ray scattering analysis reveals the ATP-bound monomeric state of the ATPase domain from the homodimeric MutL endonuclease, a GHKL phosphotransferase superfamily protein.

    Science.gov (United States)

    Iino, Hitoshi; Hikima, Takaaki; Nishida, Yuya; Yamamoto, Masaki; Kuramitsu, Seiki; Fukui, Kenji

    2015-05-01

    DNA mismatch repair is an excision system that removes mismatched bases chiefly generated by replication errors. In this system, MutL endonucleases direct the excision reaction to the error-containing strand of the duplex by specifically incising the newly synthesized strand. Both bacterial homodimeric and eukaryotic heterodimeric MutL proteins belong to the GHKL ATPase/kinase superfamily that comprises the N-terminal ATPase and C-terminal dimerization regions. Generally, the GHKL proteins show large ATPase cycle-dependent conformational changes, including dimerization-coupled ATP binding of the N-terminal domain. Interestingly, the ATPase domain of human PMS2, a subunit of the MutL heterodimer, binds ATP without dimerization. The monomeric ATP-bound state of the domain has been thought to be characteristic of heterodimeric GHKL proteins. In this study, we characterized the ATP-bound state of the ATPase domain from the Aquifex aeolicus MutL endonuclease, which is a homodimeric GHKL protein unlike the eukaryotic MutL. Gel filtration, dynamic light scattering, and small-angle X-ray scattering analyses clearly showed that the domain binds ATP in a monomeric form despite its homodimeric nature. This indicates that the uncoupling of dimerization and ATP binding is a common feature among bacterial and eukaryotic MutL endonucleases, which we suggest is closely related to the molecular mechanisms underlying mismatch repair.

  8. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  9. Acute Bacterial Prostatitis: Diagnosis and Management.

    Science.gov (United States)

    Coker, Timothy J; Dierfeldt, Daniel M

    2016-01-15

    Acute bacterial prostatitis is an acute infection of the prostate gland that causes pelvic pain and urinary tract symptoms, such as dysuria, urinary frequency, and urinary retention, and may lead to systemic symptoms, such as fevers, chills, nausea, emesis, and malaise. Although the true incidence is unknown, acute bacterial prostatitis is estimated to comprise approximately 10% of all cases of prostatitis. Most acute bacterial prostatitis infections are community acquired, but some occur after transurethral manipulation procedures, such as urethral catheterization and cystoscopy, or after transrectal prostate biopsy. The physical examination should include abdominal, genital, and digital rectal examination to assess for a tender, enlarged, or boggy prostate. Diagnosis is predominantly made based on history and physical examination, but may be aided by urinalysis. Urine cultures should be obtained in all patients who are suspected of having acute bacterial prostatitis to determine the responsible bacteria and its antibiotic sensitivity pattern. Additional laboratory studies can be obtained based on risk factors and severity of illness. Radiography is typically unnecessary. Most patients can be treated as outpatients with oral antibiotics and supportive measures. Hospitalization and broad-spectrum intravenous antibiotics should be considered in patients who are systemically ill, unable to voluntarily urinate, unable to tolerate oral intake, or have risk factors for antibiotic resistance. Typical antibiotic regimens include ceftriaxone and doxycycline, ciprofloxacin, and piperacillin/tazobactam. The risk of nosocomial bacterial prostatitis can be reduced by using antibiotics, such as ciprofloxacin, before transrectal prostate biopsy.

  10. Bacterial infec tions in travellers

    African Journals Online (AJOL)

    namely bacterial causes of travellers' diarrhoea and skin infections, as well as .... Vaccination: protective efficacy against typhoid may be overcome by ingesting a high bacterial load. Vaccine ..... preparation such as cream sauce. Only after ...

  11. Influence of Integrated Use of Inorganic fertiliser and Organic manures on Bacterial Wilt Incidence (WI) and Tuber Yield in Potato Production Systems in Southern Slopes of Mt. Kenya

    International Nuclear Information System (INIS)

    Mriithi, L.M.

    2002-01-01

    Bacterial wilt (BW) caused by Ralstonia solanacearum is one of the most damaging of potato (Solanum tuberosum L.) in Kenya and worldwide. In Kenya Potato tuber yield losses due to BW infection are estimated at 50-100%. Low soil fertility is also one of the most important constraints limiting potato production in central Kenya highlands. Farmers tackle this problem through use of inorganic fertilisers and organic manures, both of which amend the soil environment to influence bacterial wilt development. Undecomposed organic manures can also introduce the pathogen into a clean field. Between short rains 1999 and 2000, 10 on-farm researcher/farmer-designed and farmer-managed trials were done at Kianjuki catchment in Embu District. The objective was to use farmers' participatory research approach and select the most suitable organic and inorganic fertiliser combination(s) with lowest BWI and acceptable usable tuber yields. And also demonstrate use of some components of integrated disease management methods in reduction of disease incidence and spread. Seven treatments were proposed, presented to the farmers for discussion and the most relevant four were selected for evaluation . A newly released potato variety 'Asante' was planted during the short-rains 1999 and long rains 2000. BWI didn't;t result in significant differences between treatments but the tuber yields were significantly different in short-rains 1999 and 2000. During short-rains 2000, both BWI and tuber yields and unusable tubers differed significantly between treatments. The results confirmed that use of well-decomposed manures or manures from pathogen-free areas can be used in combination with inorganic fertilisers to improve soil fertility and potato tuber yields in smallholder farm without influencing BWI. Use of certified seed tubers in pathogen free fields and following recommendation field sanitation measures, resulted in apparently bacterial wilt free crop

  12. A novel whole-bacterial enzyme linked-immunosorbant assay to quantify Chlamydia trachomatis specific antibodies reveals distinct differences between systemic and genital compartments.

    Directory of Open Access Journals (Sweden)

    Hannah L Albritton

    Full Text Available Chlamydia trachomatis (CT is the leading sexually transmitted bacterial infection. The continued global burden of CT infection strongly predicates the need for a vaccine to supplement current chlamydial control programs. The correlates of protection against CT are currently unknown, but they must be carefully defined to guide vaccine design. The localized nature of chlamydial infection in columnar epithelial cells of the genital tract necessitates investigation of immunity at the site of infection. The purpose of this study was to develop a sensitive whole bacterial enzyme-linked immunosorbent assay (ELISA to quantify and compare CT-specific IgG and IgA in sera and genital secretions from CT-infected women. To achieve this, elementary bodies (EBs from two of the most common genital serovars (D and E were attached to poly-L-lysine-coated microtiter plates with glutaraldehyde. EB attachment and integrity were verified by the presence of outer membrane antigens and the absence of bacterial cytoplasmic antigens. EB-specific IgG and IgA standards were developed by pooling sera with high titers of CT-specific antibodies from infected women. Serum, endocervical and vaginal secretions, and endocervical cytobrush specimens from CT-infected women were used to quantify CT-specific IgG and IgA which were then normalized to total IgG and IgA, respectively. Analyses of paired serum and genital samples revealed significantly higher proportions of EB-specific antibodies in genital secretions compared to sera. Cervical and vaginal secretions and cytobrush specimens had similar proportions of EB-specific antibodies, suggesting any one of these genital sampling techniques could be used to quantify CT-specific antibodies when appropriate normalization methodologies are implemented. Overall, these results illustrate the need to investigate genital tract CT antibody responses, and our assay provides a useful quantitative tool to assess natural immunity in defined

  13. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system

    DEFF Research Database (Denmark)

    Montagner, Giulia; Bezzerri, Valentino; Cabrini, Giulio

    2017-01-01

    of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably...... are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection....

  14. Structure of bacterial lipopolysaccharides.

    Science.gov (United States)

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  15. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  16. CRISPR-mediated control of the bacterial initiation of replication

    NARCIS (Netherlands)

    Wiktor, J.M.; Lesterlin, Christian; Sherratt, David J.; Dekker, C.

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is

  17. Instability of expanding bacterial droplets.

    Science.gov (United States)

    Sokolov, Andrey; Rubio, Leonardo Dominguez; Brady, John F; Aranson, Igor S

    2018-04-03

    Suspensions of motile bacteria or synthetic microswimmers, termed active matter, manifest a remarkable propensity for self-organization, and formation of large-scale coherent structures. Most active matter research deals with almost homogeneous in space systems and little is known about the dynamics of strongly heterogeneous active matter. Here we report on experimental and theoretical studies on the expansion of highly concentrated bacterial droplets into an ambient bacteria-free fluid. The droplet is formed beneath a rapidly rotating solid macroscopic particle inserted in the suspension. We observe vigorous instability of the droplet reminiscent of a violent explosion. The phenomenon is explained in terms of continuum first-principle theory based on the swim pressure concept. Our findings provide insights into the dynamics of active matter with strong density gradients and significantly expand the scope of experimental and analytic tools for control and manipulation of active systems.

  18. Bacterial control of cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, Luyanda L

    2017-08-01

    Full Text Available of biological control appears to be direct contact. • Ndlela, L. L. et al. (2016) ‘An overview of cyanobacterial bloom occurrences and research in Africa over the last decade’, Harmful Algae, 60 • Gumbo, J.R. et al. (2010) The Isolation and identification... of Predatory Bacteria from a Microcystis algal Bloom.. African Journal of Biotechnology, 9. *Special acknowledgement goes to the National Research foundation for funding this presentation Bacterial control of cyanobacteria Luyanda...

  19. SnapShot: The Bacterial Cytoskeleton.

    Science.gov (United States)

    Fink, Gero; Szewczak-Harris, Andrzej; Löwe, Jan

    2016-07-14

    Most bacteria and archaea contain filamentous proteins and filament systems that are collectively known as the bacterial cytoskeleton, though not all of them are cytoskeletal, affect cell shape, or maintain intracellular organization. To view this SnapShot, open or download the PDF. Copyright © 2016. Published by Elsevier Inc.

  20. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  1. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  2. Interspecies chemical communication in bacterial development.

    Science.gov (United States)

    Straight, Paul D; Kolter, Roberto

    2009-01-01

    Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.

  3. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  4. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  5. Microconductometric Detection of Bacterial Contamination

    Directory of Open Access Journals (Sweden)

    Sarra EL ICHI

    2014-05-01

    Full Text Available Several approaches can be used for the electrochemical detection of bacterial contamination. Their performance can be assessed by the ability to detect bacteria at very low concentrations within a short-time response. We have already demonstrated that a conductometric biosensor based on interdigitated thin-film electrodes is adapted to detect bacteria in clinical samples like serum and compatible with microfluidic fabrication. The type of interdigitated microelectrodes influences the performance of the biosensor. This was shown by the results obtained in this work. A magnetic-nanoparticles based immunosensor was designed using gold screen-printed electrodes. The immunosensor was able to specifically detect E. coli in the range of 1-103 CFU mL-1. The new transducer offered a larger active sensing surface with a lower cost and a robust material. Accuracy of the conductance value was enhanced by differential measurements. The immunosensor is compatible with a microfluidic system.

  6. Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems. Comprehensive report, 1 February 1981-15 September 1983

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1983-01-01

    We have explored the molecular mechanism of the repair of DNA at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian (including human) cells. We have demonstrated that uv endonuclease of phage T4 not only possesses pyrimidine dimer (PD)-DNA glycosylase activity but also apyrimidinic (AP) endonuclease activity. The demonstration of both activities provided an explanation for the specific endonucleosytic cleavage of DNA at sites of pyrimidine dimers catalyzed by this small protein. A new apurinic/apyrimidinic (AP) endonuclease, specific for sites of of base loss in single stranded DNA has been isolated from E. celi and presumably recognizes these lesions in single stranded regions of duplex DNA. We have partially purified this enzyme and have carried out a preliminary characterization of the activity. We treated xeroderma pigmentosum and normal cells with sodium butyrate in the hope of restoring normal levels of excision repair to the former. Although this result was not obtained, we established that all cells treated with sodium butyrate show enhanced levels of repair synthesis, thus providing a means for increasing the sensitivity of this commonly used technique for measuring DNA repair in mammalian cells in culture

  7. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  9. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.......Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par...

  11. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  12. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  13. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  14. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  15. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  16. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    Science.gov (United States)

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  18. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  19. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  20. Bursting the bubble on bacterial biofilms

    DEFF Research Database (Denmark)

    Crusz, Shanika A; Popat, Roman; Rybtke, Morten Theil

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly...... of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable...... methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities....

  1. Bacterial nucleotide-based second messengers.

    Science.gov (United States)

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  2. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs).

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A; Barbieri, Giancarlo; De Pascale, Stefania

    2015-01-01

    Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use

  3. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Angela Liao

    Full Text Available Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.

  4. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System.

    Science.gov (United States)

    Liao, Ting-Yu Angela; Lau, Alice; Joseph, Sunil; Hytönen, Vesa; Hmama, Zakaria

    2015-01-01

    Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.

  5. Bacterial selection during the formation of early-stage aerobic granules in wastewater treatment systems operated under wash-out dynamics

    Directory of Open Access Journals (Sweden)

    David Gregory Weissbrodt

    2012-09-01

    Full Text Available Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s-1 was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s-1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in

  6. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    Science.gov (United States)

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  7. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    Science.gov (United States)

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  8. Bacterial Biofilm Control by Perturbation of Bacterial Signaling Processes

    Directory of Open Access Journals (Sweden)

    Tim Holm Jakobsen

    2017-09-01

    Full Text Available The development of effective strategies to combat biofilm infections by means of either mechanical or chemical approaches could dramatically change today’s treatment procedures for the benefit of thousands of patients. Remarkably, considering the increased focus on biofilms in general, there has still not been invented and/or developed any simple, efficient and reliable methods with which to “chemically” eradicate biofilm infections. This underlines the resilience of infective agents present as biofilms and it further emphasizes the insufficiency of today’s approaches used to combat chronic infections. A potential method for biofilm dismantling is chemical interception of regulatory processes that are specifically involved in the biofilm mode of life. In particular, bacterial cell to cell signaling called “Quorum Sensing” together with intracellular signaling by bis-(3′-5′-cyclic-dimeric guanosine monophosphate (cyclic-di-GMP have gained a lot of attention over the last two decades. More recently, regulatory processes governed by two component regulatory systems and small non-coding RNAs have been increasingly investigated. Here, we review novel findings and potentials of using small molecules to target and modulate these regulatory processes in the bacterium Pseudomonas aeruginosa to decrease its pathogenic potential.

  9. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  10. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  11. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  12. New-found fundamentals of bacterial persistence.

    Science.gov (United States)

    Kint, Cyrielle I; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2012-12-01

    Persister cells display tolerance to high doses of bactericidal antibiotics and typically comprise a small fraction of a bacterial population. Recently, evidence was provided for a causal link between therapy failure and the presence of persister cells in chronic infections, underscoring the need for research on bacterial persistence. A series of recent breakthroughs have shed light on the multiplicity of persister genes, the contribution of gene expression noise to persister formation, the importance of active responses to antibiotic tolerance and heterogeneity among persister cells. Moreover, the development of in vivo model systems has highlighted the clinical relevance of persistence. This review discusses these recent advances and how this knowledge fundamentally changes the way in which we will perceive the problem of antibiotic tolerance in years to come. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Bacterial Inclusion Bodies: Discovering Their Better Half.

    Science.gov (United States)

    Rinas, Ursula; Garcia-Fruitós, Elena; Corchero, José Luis; Vázquez, Esther; Seras-Franzoso, Joaquin; Villaverde, Antonio

    2017-09-01

    Bacterial inclusion bodies (IBs) are functional, non-toxic amyloids occurring in recombinant bacteria showing analogies with secretory granules of the mammalian endocrine system. The scientific interest in these mesoscale protein aggregates has been historically masked by their status as a hurdle in recombinant protein production. However, progressive understanding of how the cell handles the quality of recombinant polypeptides and the main features of their intriguing molecular organization has stimulated the interest in inclusion bodies and spurred their use in diverse technological fields. The engineering and tailoring of IBs as functional protein particles for materials science and biomedicine is a good example of how formerly undesired bacterial byproducts can be rediscovered as promising functional materials for a broad spectrum of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sustainable strategies for treatment of bacterial infections

    DEFF Research Database (Denmark)

    Molin, Søren

    2014-01-01

    Resistance to antibiotics and the consequential failures of treatment based on antibiotics makes microbial infections a major threat to human health. This problem combined with rapidly increasing life-style disease problems challenge our healtcare system as well as the pharma industry, and if we do...... not in a foreseeable future develop novel approaches and strategies to combat bacterial infections, many people will be at risk of dying from even trivial infections for which we until recently had highly effective antibiotics. We have for a number of years investigated chronic bacterial lung infections in patients...... suffering from cystic fibrosis. These infections are optimal model scenarios for studies of antibiotic resistance development and microbial adaptation, and we suggest that this information should be useful when designing new anti-microbial strategies. In this respect it will be important to choose...

  15. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA....... Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation....... Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity...

  16. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation

    Science.gov (United States)

    Merfa, Marcus V.; Niza, Bárbara; Takita, Marco A.; De Souza, Alessandra A.

    2016-01-01

    Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis—CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions. PMID:27375608

  17. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  18. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm

    Directory of Open Access Journals (Sweden)

    Nora eMellouk

    2016-04-01

    Full Text Available Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  19. [On bacterial aftergrowth in drinking and industrial water. II. Apparative and processing influence upon the growth and the possibility of disinfection of ion exchange resin filter systems (author's transl)].

    Science.gov (United States)

    Schubert, R H

    1975-12-01

    The comparative examination of numerous ion exchange resin filter systems for discontinuous water softening on the market revealed that apparative and processing characteristics are of great influence upon the aftergrowth of bacteria in the water of ion exchange resin systems. Within the examination it was taken into consideration that on the end-delivery-tube of the water pipe with regard to the colony count the conditions were more unfavourable during the long standstill over a weekend (table 1) than during the week (table2). The less favourable conditions have therefore been examined separately. The work has been divided in six test series. In the first one 5 ion exchange resin systems the types A-E are simultaneously tested with regard to the colony count in the water at the inflow to the apparatus and after the passage of it; regeneration twice a week with sodium chloride. The data ascertained in the course of several weeks (without first data on mondays) and the separated mondays data are examined according to logarithmic transformation with the assistance of variance analysis and the Newman Keuls-test for differences. The results show (tab. 4 and 5) that apparative parameters and such relevant to the technical process (tab. 3) have an influence upon the bacterial after growth of the water. The most favourable ion exchange resin filter is type E because it shows more favourable values than all other systems and the tapwater. In the second test serie the systems A-E have been regenerated with 1% Chloramin T containing sodium chloride. The results show again the type E as the statistically significant most favourable system in comparison with the others and the tapwater. In the third test serie it has been examined whether the long period of standstill of the brine in the resin bed which has probably been responsible for the good results of the type E would lead to values just as favourable if transferred to another type of apparatus. ...

  20. Collective decisions among bacterial viruses

    Science.gov (United States)

    Joh, Richard; Mileyko, Yuriy; Voit, Eberhard; Weitz, Joshua

    2010-03-01

    For many temperate bacteriophages, the decision of whether to kill hosts or enter a latent state depends on the multiplicity of infection. In this talk, I present a quantitative model of gene regulatory dynamics to describe how phages make collective decisions within host cells. Unlike most previous studies, the copy number of viral genomes is treated as a variable. In the absence of feedback loops, viral mRNA transcription is expected to be proportional to the viral copy number. However, when there are nonlinear feedback loops in viral gene regulation, our model shows that gene expression patterns are sensitive to changes in viral copy number and there can be a domain of copy number where the system becomes bistable. Hence, the viral copy number is a key control parameter determining host cell fates. This suggests that bacterial viruses can respond adaptively to changes in population dynamics, and can make alternative decisions as a bet-hedging strategy. Finally, I present a stochastic version of viral gene regulation and discuss speed-accuracy trade-offs in the context of cell fate determination by viruses.

  1. Neurological sequelae of bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van de Beek, Diederik

    2016-01-01

    We reported on occurrence and impact of neurological sequelae after bacterial meningitis. We reviewed occurrence of neurological sequelae in children and adults after pneumococcal and meningococcal meningitis. Most frequently reported sequelae are focal neurological deficits, hearing loss, cognitive

  2. Bacterial tracheitis in Down's syndrome.

    OpenAIRE

    Cant, A J; Gibson, P J; West, R J

    1987-01-01

    Four children with Down's syndrome and bacterial tracheitis are described. In three the infection was due to Haemophilus influenza. In patients with Down's syndrome presenting with stridor tracheitis should be considered and appropriate treatment started.

  3. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  4. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  5. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  6. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  7. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  8. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  9. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  10. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity.

    Science.gov (United States)

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile

  11. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways...... to control certain bacterial infections. Furanone compounds capable of inhibiting bacterial quorum-sensing systems have been isolated from the marine macro alga Delisea pulchra. Objectives: Two synthetic furanones were tested for their ability to attenuate bacterial virulence in the mouse models of chronic...

  12. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  13. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    Science.gov (United States)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  14. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin

    2016-01-01

    The novel system of EBA (based on external circulation anaerobic (EC) process-biological enhanced (BE) process-anoxic/oxic (A/O) process) was applied to treat the British Gas/Lurgi coal gasification wastewater in Erdos, China. After a long time of commissioning, the EBA system represented a stable and highly efficient performance, particularly, the concentrations of COD, NH4(+)-N, total organic carbon, total nitrogen and volatile phenols in the final effluent reached 53, 0.3, 18, 106mg/L and not detected, respectively. Both the GC-MS and fluorescence excitation-emission matrix analyses revealed significant variations of organic compositions in the effluent of different process. The results of high-throughput sequencing represented the EBA system composed 34 main bacteria which were affiliated to 7 phyla. In addition, the canonical correspondence analysis indicated high coherence among community composition, wastewater characteristics and environmental variables, in which the pH, mixed liquid suspended solids and total phenols loading were the most three significant variables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bacterial microbiome of lungs in COPD

    Directory of Open Access Journals (Sweden)

    Sze MA

    2014-02-01

    Full Text Available Marc A Sze,1 James C Hogg,2 Don D Sin1 1Department of Medicine, 2Department of Pathology and Laboratory Medicine, The James Hogg Research Centre, Providence Heart-Lung Institute, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada Abstract: Chronic obstructive pulmonary disease (COPD is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease. Keywords: chronic obstructive pulmonary disease, bacterial microbiome, lungs

  16. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  17. A Straightforward Approach for 3D Bacterial Printing.

    Science.gov (United States)

    Lehner, Benjamin A E; Schmieden, Dominik T; Meyer, Anne S

    2017-07-21

    Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.

  18. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong

    2016-12-01

    Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive u