WorldWideScience

Sample records for bacterial outer membrane

  1. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  2. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Reinaldo eAcevedo

    2014-03-01

    Full Text Available Vaccines based on outer membrane vesicles (OMV were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA, serogroup W (dOMVW and serogroup X (dOMVX were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC, Bordetella pertussis (dOMVBP, Mycobacterium smegmatis (dOMVSM and BCG (dOMVBCG. The immunogenicity of the OMV have been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice have shown their protective potential. dOMVB has been evaluated with non-self neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates.

  3. Exploring bacterial outer membrane barrier to combat bad bugs.

    Science.gov (United States)

    Ghai, Ishan; Ghai, Shashank

    2017-01-01

    One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps) is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels.

  4. Exploring bacterial outer membrane barrier to combat bad bugs

    Directory of Open Access Journals (Sweden)

    Ghai I

    2017-08-01

    Full Text Available Ishan Ghai,1 Shashank Ghai2 1School of Engineering and Life Sciences, Jacobs University, Bremen, 2Leibniz University, Hannover, Germany Abstract: One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels. Keywords: antibiotics, Gram-negative bacteria, cell envelope, protein channels, nanopores, influx, antibiotic resistance

  5. A Molecularly Complete Planar Bacterial Outer Membrane Platform

    Science.gov (United States)

    Hsia, Chih-Yun; Chen, Linxiao; Singh, Rohit R.; DeLisa, Matthew P.; Daniel, Susan

    2016-01-01

    The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. We show that the orientation of proteins in the OM-SB matches the native bacterial membrane, preserving the characteristic asymmetry of these membranes. As a demonstration of the utility of the OM-SB platform, we quantitatively measure antibiotic interactions between OM-SBs and polymyxin B, a cationic peptide used to treat Gram-negative infections. This data enriches understanding of the antibacterial mechanism of polymyxin B, including disruption kinetics and changes in membrane mechanical properties. Combining OM-SBs with microfluidics will enable higher throughput screening of antibiotics. With a broader view, we envision that a molecularly complete membrane-scaffold could be useful for cell-free applications employing engineered membrane proteins in bacterial membranes for myriad technological purposes. PMID:27600663

  6. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  7. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  8. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane.

  9. The participation of outer membrane proteins in the bacterial sensitivity to nanosilver

    Directory of Open Access Journals (Sweden)

    Anna Kędziora

    2016-06-01

    Full Text Available The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

  10. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    Hirst, T.R.; Holmgren, J.

    1987-01-01

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [ 35 S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  11. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Aggregatibacter actinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI, was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control

  12. [Bacterial outer membrane vesicles as nano carriers to study immunological activities].

    Science.gov (United States)

    Qi, Chen; Min, W U; Hongzhen, Bai; Zeling, Guo; Jun, Zhou; Qingqing, Wang; Guping, Tang

    2017-03-25

    Objective: To prepare a nano-carrier based on combining bacterial outer membrane vesicles (OMV) with three block polymer pluronic F127 (PEO 100 -PPO 65 -PEO 100 ) (OMV-F127) and to investigate its immunological activity. Methods: Attenuated salmonella (sal) was cultivated. OMV were separated by centrifugal ultrafiltration or ultrasonication, and OMV-F127 was prepared by mechanical extrudation method. The protein contents and compositions were tested with BCA and SDS-PAGE; the morphology of OMV, F127 and OMV-F127 were observed with FM and TEM; the particle sizes and their zeta potential were determined with DLS. Mouse macrophage RAW246.7 cells were treated with OMV-F127 (50 μg/mL, 100 μg/mL) in vitro, and the concentrations of IL-12, TNF-α and IFN-γ in culture supernatant were measured with ELISA kits. Results: The contents of protein in separated OMV by centrifugal ultrafiltration and ultrasonication were 2.8 mg/mL and 2.7 mg/mL, respectively. SDS-PAGE showed the marker protein OmpF/C in OMV. Under the FM and TEM, ball-like structure of F127 and OMV-F127 was observed. Size analysis revealed that the diameters of OMV, F127 and OMV-F127 were 72±2 nm, 90±3 nm and 92±2 nm, respectively. ELISA tests revealed that OMV-F127 significantly stimulated the secretion of IL-12, TNF-α and IFN-γ in RAW246.7 cells. Conclusion: A nano-carrier based on bacterial outer membrane vesicles has been prepared, which can stimulate the secretion of cytokines and may have immunomodulatory effects.

  13. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna Lena Jung

    2016-04-01

    Full Text Available The formation and release of outer membrane vesicles (OMVs is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila, a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.

  14. The Motion of a Single Molecule, the Lambda-Receptor, in the Bacterial Outer Membrane

    DEFF Research Database (Denmark)

    Oddershede, Lene; Dreyer, Jakob Kisbye; Grego, Sonia

    2002-01-01

    Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo...

  15. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB

    OpenAIRE

    Okuda, Suguru; Tokuda, Hajime

    2009-01-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detai...

  16. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  17. Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Molecules

    Directory of Open Access Journals (Sweden)

    Samuel I. Miller

    2016-09-01

    Full Text Available The Gram-negative outer membrane is an important barrier that provides protection against toxic compounds, which include antibiotics and host innate immune molecules such as cationic antimicrobial peptides. Recently, significant research progress has been made in understanding the biogenesis, regulation, and functioning of the outer membrane, including a recent paper from the laboratory of Dr. Brett Finlay at the University of British Columbia (J. van der Heijden et al., mBio 7:e01238-16, 2016, http://dx.doi.org/10.1128/mBio.01541-16. These investigators demonstrate that toxic oxygen radicals, such as those found in host tissues, regulate outer membrane permeability by altering the outer membrane porin protein channels to regulate the influx of oxygen radicals as well as β-lactam antibiotics. This commentary provides context about this interesting paper and discusses the prospects of utilizing increased knowledge of outer membrane biology to develop new antibiotics for antibiotic-resistant Gram-negative bacteria.

  18. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  19. Interaction of phospholipase A of the E. coli outer membrane with the inhibitors of eucaryotic phospholipases A₂ and their effect on the Ca²⁺-induced permeabilization of the bacterial membrane.

    Science.gov (United States)

    Belosludtsev, Konstantin N; Belosludtseva, Natalia V; Kondratyev, Maxim S; Agafonov, Alexey V; Purtov, Yuriy A

    2014-03-01

    Phospholipase A of the bacterial outer membrane (OMPLA) is a β-barrel membrane protein which is activated under various stress conditions. The current study examines interaction of inhibitors of eucaryotic phospholipases A₂--palmitoyl trifluoromethyl ketone (PACOCF₃) and aristolochic acid (AA)--with OMPLA and considers a possible involvement of the enzyme in the Ca²⁺-dependent permeabilization of the outer membrane of Escherichia coli. Using the method of molecular docking, it has been predicted that PACOCF₃ and AA bind to OMPLA at the same site and with the same affinity as the OMPLA inhibitors, hexadecanesulfonylfluoride and bromophenacyl bromide, and the substrate of the enzyme palmitoyl oleoyl phosphatidylethanolamine. It has also been shown that PACOCF₃, AA, and bromophenacyl bromide inhibit the Ca²⁺-induced temperature-dependent changes in the permeability of the bacterial membrane for the fluorescent probe propidium iodide and suppressed the transformation of E. coli cells with plasmid DNA induced by Ca²⁺ and heat shock. The cell viability was not affected by the eucaryotic phospholipases A₂ inhibitors. The study discusses a possible involvement of OMPLA in the mechanisms of bacterial transmembrane transport based on the permeabilization of the bacterial outer membrane.

  20. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB.

    Science.gov (United States)

    Okuda, Suguru; Tokuda, Hajime

    2009-04-07

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detail. However, it remained unclear how Lol factors interact with each other to conduct very efficient lipoprotein transfer in the periplasm where ATP is not available. To address this issue, a photo-reactive phenylalanine analogue, p-benzoyl-phenylalanine, was introduced at various positions of LolA and LolB, of which the overall structures are very similar and comprise an incomplete beta-barrel with a hydrophobic cavity inside. Cells expressing LolA or LolB derivatives containing the above analogue were irradiated with UV for in vivo photo-cross-linking. These analyses revealed a hot area in the same region of LolA and LolB, through which LolA and LolB interact with each other. This area is located at the entrance of the hydrophobic cavity. Moreover, this area in LolA is involved in the interaction with a membrane subunit, LolC, whereas no cross-linking occurs between LolA and the other membrane subunit, LolE, or ATP-binding subunit LolD, despite the structural similarity between LolC and LolE. The hydrophobic cavities of LolA and LolB were both found to bind lipoproteins inside. These results indicate that the transfer of lipoproteins through Lol proteins occurs in a mouth-to-mouth manner.

  1. Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response.

    Directory of Open Access Journals (Sweden)

    Cora N Pollak

    Full Text Available Outer membrane vesicles (OMVs released by some gram-negative bacteria have been shown to exert immunomodulatory effects that favor the establishment of the infection. The aim of the present study was to assess the interaction of OMVs from Brucella abortus with human epithelial cells (HeLa and monocytes (THP-1, and the potential immunomodulatory effects they may exert. Using confocal microscopy and flow cytometry, FITC-labeled OMVs were shown to be internalized by both cell types. Internalization was shown to be partially mediated by clathrin-mediated endocytosis. Pretreatment of THP-1 cells with Brucella OMVs inhibited some cytokine responses (TNF-α and IL-8 to E. coli LPS, Pam3Cys or flagellin (TLR4, TLR2 and TLR5 agonists, respectively. Similarly, pretreatment with Brucella OMVs inhibited the cytokine response of THP-1 cells to B. abortus infection. Treatment of THP-1 cells with OMVs during IFN-γ stimulation reduced significantly the inducing effect of this cytokine on MHC-II expression. OMVs induced a dose-dependent increase of ICAM-1 expression on THP-1 cells and an increased adhesion of these cells to human endothelial cells. The addition of OMVs to THP-1 cultures before the incubation with live B. abortus resulted in increased numbers of adhered and internalized bacteria as compared to cells not treated with OMVs. Overall, these results suggest that OMVs from B. abortus exert cellular effects that promote the internalization of these bacteria by human monocytes, but also downregulate the innate immune response of these cells to Brucella infection. These effects may favor the persistence of Brucella within host cells.

  2. Structure of the Neisserial outer membrane protein Opa₆₀: loop flexibility essential to receptor recognition and bacterial engulfment.

    Science.gov (United States)

    Fox, Daniel A; Larsson, Per; Lo, Ryan H; Kroncke, Brett M; Kasson, Peter M; Columbus, Linda

    2014-07-16

    The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen-host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors.

  3. Roles of the Protruding Loop of Factor B Essential for the Localization of Lipoproteins (LolB) in the Anchoring of Bacterial Triacylated Proteins to the Outer Membrane*

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-01-01

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  4. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.

  5. Outer membrane protein antigens of Moraxella bovis.

    Science.gov (United States)

    Ostle, A G; Rosenbusch, R F

    1986-07-01

    Outer membranes were isolated from bovine isolates and type strains of Moraxella bovis, M phenylpyruvica, M lacunata, and M ovis by sodium N lauroyl sarcosinate extraction and differential centrifugation. Analysis of outer membranes from these organisms by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis revealed that all M bovis isolates shared a common polypeptide pattern that was readily distinguishable from other Moraxella spp. Nine major outer membrane protein bands were identified by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis analysis of M bovis. Immunoblotting of protein antigens of M bovis revealed several outer membrane proteins that seemed to be common antigens of all M bovis isolates.

  6. Antimicrobial properties of arginine- and lysine-rich histones and involvement of bacterial outer membrane protease T in their differential mode of actions.

    Science.gov (United States)

    Tagai, Chihiro; Morita, Shuu; Shiraishi, Takayuki; Miyaji, Kazuyuki; Iwamuro, Shawichi

    2011-10-01

    There is growing evidence of the antimicrobial properties of histones and histone-derived peptides; however, most of them are specific to lysine (Lys)-rich histones (H1, H2A, and H2B). In the present study, we focused on arginine (Arg)-rich histones (H3 and H4) and investigated their antimicrobial properties in comparison with those of histone H2B. In a standard microdilution assay, calf thymus histones H2B, H3, and H4 showed growth inhibitory activity against the bacterial outer membrane protease T (OmpT) gene-expressing Escherichia coli strain JCM5491 with calculated 50% growth inhibitory concentrations of 3.8, 10, and 12.7 μM, respectively. A lysate prepared from the JCM5491 cells was capable of strongly, moderately, and slightly fragmenting histones H2B, H3, and H4, respectively. While the lysate prepared from the cells of the ompT-deleted E. coli strain BL21(DE3) did not digest these histones, the ompT-transformed BL21(DE3), termed BL21/OmpT(+), cell lysate digested the histones more strongly than the JCM5491 cell lysate. Laser confocal and scanning electron microscopic analyses demonstrated that while histone H2B penetrated the cell membrane of JCM5491 or BL21/OmpT(+) cells, histones H3 and H4 remained on the cell surface and subsequently disrupted the cell membrane structure with bleb formation in a manner similar to general antimicrobial peptides. The BL21(DE3) cells treated with each histone showed no bleb formation, but cell integrity was affected and the cell surface was corrugated. Consequently, it is suggested that OmpT is involved in the antimicrobial properties of Arg- and Lys-rich histones and that the modes of antimicrobial action of these histones are different. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Influence of cytokine gene polymorphisms and of the Helicobacter pylori outer membrane protein Hp0638 on bacterial pathogenesis

    OpenAIRE

    Dossumbekova, Anar

    2006-01-01

    Infection with H. pylori leads to persistent colonisation and chronic inflammation of the gastric mucosa, thereby increasing the risk for the developing peptic ulceration, distal gastric adenocarcinoma and gastric lymphoma. In the current study we showed that cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation and the long-term development of precancerous lesions in H. pylori infection. Host polymorphisms are associated with certain bacterial strain types, ...

  8. Role of Gamma Radiation and Some Natural Products in Alteration of Bacterial Outer Membrane Porins Permeability for Uptake of Certain Antibiotics

    International Nuclear Information System (INIS)

    El-Bastawisy, H.S.

    2015-01-01

    Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The bacterial outer membrane proteins (OMPs) that constitute porins play role in the definition of intrinsic resistance in Gram negative bacilli that is altered under antibiotic pressure. It has been noted that the response to prolonged exposure to increasing levels of antibiotic cause major changes in the permeability of the bacterium due to down regulation of porins and over expression of efflux pumps. In this study a total of 92 bacterial isolates of different species were isolated from different sites of cancer and non cancer patients; the microorganisms were identified using API system. The susceptibility test was carried out for all the isolates to detect the multidrug resistant isolates; from this test eleven strains were selected for further studies. Antimicrobial susceptibility of the eleven strains against some selected antibiotics acting on the inhibition of cell wall synthesis before and after in vitro gamma irradiation was carried out. The obtained results showed a clear increase in the number of resistant isolates after irradiation as compared to those before irradiation. The efficacy of the citrus fruits (Citrus limon, Citrus paradise, Citrus reticulate and Citrus sinensis) was tested to improve the performance of the tested antibiotics by increasing its permeability through the porin channels. The dried crushed citrus fruits peels were decontaminated by gamma irradiation at 700 Gray; then the aqueous extract of the citrus fruits were prepared to test its antimicrobial activity against the selected bacterial strains. The obtained results revealed that the aqueous extracts of different citrus fruits peels did not show any antibacterial activities against six bacterial isolates (Acinetobacter calcoaceticus 44, Enterbacter cloacae 51, Escherichia coli 52, Pseudomonas fluorescens 64, Klebsiella pneumoniae 78 and Pseudomonas aeruginosa 90). Therefore, these six

  9. Outer membrane proteins of pathogenic spirochetes

    OpenAIRE

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2004-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning bi...

  10. Dissecting Escherichia coli outer membrane biogenesis using differential proteomics.

    Directory of Open Access Journals (Sweden)

    Alessandra M Martorana

    Full Text Available The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality.

  11. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles

    NARCIS (Netherlands)

    Kieselbach, Thomas; Zijnge, Vincent; Granstrom, Elisabeth; Oscarsson, Jan

    2015-01-01

    Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and

  12. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  13. Protective role of E. coli outer membrane vesicles against antibiotics.

    Science.gov (United States)

    Kulkarni, Heramb M; Nagaraj, R; Jagannadham, Medicharla V

    2015-12-01

    The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Outer membrane proteins of pathogenic spirochetes.

    Science.gov (United States)

    Cullen, Paul A; Haake, David A; Adler, Ben

    2004-06-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.

  15. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles.

    Science.gov (United States)

    Gui, M J; Dashper, S G; Slakeski, N; Chen, Y-Y; Reynolds, E C

    2016-10-01

    Outer membrane vesicles (OMVs) are asymmetrical single bilayer membranous nanostructures produced by Gram-negative bacteria important for bacterial interaction with the environment. Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces OMVs that act as a virulence factor secretion system contributing to its pathogenicity. Despite their biological importance, the mechanisms of OMV biogenesis have not been fully elucidated. The ~14 times more curvature of the OMV membrane than cell outer membrane (OM) indicates that OMV biogenesis requires energy expenditure for significant curvature of the OMV membrane. In P. gingivalis, we propose that this may be achieved by upregulating the production of certain inner or outer leaflet lipids, which causes localized outward curvature of the OM. This results in selection of anionic lipopolysaccharide (A-LPS) and associated C-terminal domain (CTD) -family proteins on the outer surface due to their ability to accommodate the curvature. Deacylation of A-LPS may further enable increased curvature leading to OMV formation. Porphyromonas gingivalis OMVs that are selectively enriched in CTD-family proteins, largely the gingipains, can support bacterial coaggregation, promote biofilm development and act as an intercessor for the transport of non-motile bacteria by motile bacteria. The P. gingivalis OMVs are also believed to contribute to host interaction and colonization, evasion of immune defense mechanisms, and destruction of periodontal tissues. They may be crucial for both micro- and macronutrient capture, especially heme and probably other assimilable compounds for its own benefit and that of the wider biofilm community. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles

    Science.gov (United States)

    Roier, Sandro; Fenninger, Judith C.; Leitner, Deborah R.; Rechberger, Gerald N.; Reidl, Joachim; Schild, Stefan

    2013-01-01

    Pasteurella multocida is able to cause disease in humans and in a wide range of animal hosts, including fowl cholera in birds, atrophic rhinitis in pigs, and snuffles in rabbits. Together with Mannheimia haemolytica, P. multocida also represents a major bacterial causative agent of bovine respiratory disease (BRD), which is one of the most important causes for economic losses for the cattle backgrounding and feedlot industry. Commercially available vaccines only partially prevent infections caused by P. multocida and M. haemolytica. Thus, this study characterized the immunogenicity of P. multocida and M. haemolytica outer membrane vesicles (OMVs) upon intranasal immunization of BALB/c mice. Enzyme-linked immunosorbent assays (ELISA) revealed that OMVs derived from P. multocida or M. haemolytica are able to induce robust humoral and mucosal immune responses against the respective donor strain. In addition, also significant cross-immunogenic potential was observed for both OMV types. Colonization studies showed that a potential protective immune response against P. multocida is not only achieved by immunization with P. multocida OMVs, but also by immunization with OMVs derived from M. haemolytica. Immunoblot and immunoprecipitation analyses demonstrated that M. haemolytica OMVs induce a more complex immune response compared to P. multocida OMVs. The outer membrane proteins OmpA, OmpH, and P6 were identified as the three major immunogenic proteins of P. multocida OMVs. Amongst others, the serotype 1-specific antigen, an uncharacterized outer membrane protein, as well as the outer membrane proteins P2 and OmpA were found to be the most important antigens of M. haemolytica OMVs. These findings are useful for the future development of broad-spectrum OMV based vaccines against BRD and other infections caused by P. multocida or M. haemolytica. PMID:23731905

  17. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens.

    Science.gov (United States)

    Choi, J-W; Kim, S-C; Hong, S-H; Lee, H-J

    2017-04-01

    MicroRNAs (miRNAs) have been shown to be major regulators of eukaryotic gene expression. However, bacterial RNAs comparable in size to eukaryotic miRNAs (18-22 nucleotides) have received little attention. Recently, a novel class of small RNAs similar in size to miRNAs (miRNA-size, small RNAs or msRNAs) have also been found in several bacteria. Like miRNAs, msRNAs are approximately 15 to 25 nucleotides in length, and their precursors are predicted to form a hairpin loop secondary structure. Here, we identified msRNAs in the periodontal pathogens Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. We examined these msRNAs using a deep sequencing method and characterized dozens of msRNAs through bioinformatic analysis. Highly expressed msRNAs were selected for further validation. The findings suggest that this class of small RNAs is well conserved across the domains of life. Indeed, msRNAs secreted via bacterial outer membrane vesicles (OMVs) were detected. The ability of bacterial OMVs to deliver RNAs into eukaryotic cells was also observed. These msRNAs in OMVs allowed us to identify their potential human immune-related target genes. Furthermore, we found that exogenous msRNAs could suppress expression of certain cytokines in Jurkat T cells. We propose msRNAs may function as novel bacterial signaling molecules that mediate bacteria-to-human interactions. Furthermore, this study may provide fresh insight into bacterial pathogenic mechanisms of periodontal diseases.

  18. Expression of human CEACAM1 in transgenic mice limits the Opa-specific immune response against meningococcal outer membrane vesicles.

    NARCIS (Netherlands)

    Zariri, A.; Dijken, H. van; Hamstra, H.J.; Flier, M. van der; Vidarsson, G.; Putten, J.P. van; Boog, C.J.; Dobbelsteen, G. van den; Ley, P. van der

    2013-01-01

    Outer membrane vesicles (OMVs) have been extensively investigated as meningococcal vaccine candidates. Among their major components are the opacity (Opa) proteins, a family of surface-exposed outer membrane proteins important for bacterial adherence and entry into host cells. Many Opa-dependent

  19. Expression of human CEACAM1 in transgenic mice limits the Opa-specific immune response against meningococcal outer membrane vesicles

    NARCIS (Netherlands)

    Zariri, Afshin; van Dijken, Harry; Hamstra, Hendrik-Jan; van der Flier, Michiel; Vidarsson, Gestur; van Putten, Jos P. M.; Boog, Claire J. P.; van den Dobbelsteen, Germie; van der Ley, Peter

    2013-01-01

    Outer membrane vesicles (OMVs) have been extensively investigated as meningococcal vaccine candidates. Among their major components are the opacity (Opa) proteins, a family of surface-exposed outer membrane proteins important for bacterial adherence and entry into host cells. Many Opa-dependent

  20. Outer membranes of environmental isolates of Pseudomonas aeruginosa.

    OpenAIRE

    Hancock, R E; Chan, L

    1988-01-01

    The outer membrane composition of 30 environmental isolates of Pseudomonas aeruginosa was examined. Other than variations in the amounts of lipoprotein H2, there were no major differences in the outer membrane protein or lipopolysaccharide patterns when compared with those of previously studied clinical isolates.

  1. Outer membrane vesicles of Pasteurella multocida contain virulence factors.

    Science.gov (United States)

    Fernández-Rojas, Miguel A; Vaca, Sergio; Reyes-López, Magda; de la Garza, Mireya; Aguilar-Romero, Francisco; Zenteno, Edgar; Soriano-Vargas, Edgardo; Negrete-Abascal, Erasmo

    2014-10-01

    Pasteurella multocida (Pm) is a gram-negative bacterium able to infect different animal species, including human beings. This bacterium causes economic losses to the livestock industry because of its high morbidity and mortality in animals. In this work, we report the characterization of outer membrane vesicles (OMVs) released into the culture medium by different Pm serogroups. Purified OMVs in the range of 50-300 nm were observed by electron microscopy. Serum obtained from chickens infected with Pm recognized several proteins from Pm OMVs. Additionally, rabbit antiserum directed against a secreted protease from Actinobacillus pleuropneumoniae recognized a similar protein in the Pm OVMs, suggesting that OMVs from these bacterial species contain common immunogenic proteins. OmpA, a multifunctional protein, was identified in OMVs from different Pm serogroups, and its concentration was twofold higher in OMVs from Pm serogroups B and D than in OMVs from other serogroups. Three outer membrane proteins were also identified: OmpH, OmpW, and transferrin-binding protein. Three bands of 65, 110, and 250 kDa with proteolytic activity were detected in Pm OMVs of serogroups A and E. Additionally, β-lactamase activity was detected only in OMVs from Pm 12945 Amp(r) (serogroup A). Pm OMVs may be involved in different aspects of disease pathogenesis. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Zou, Long; Qiao, Yan; Zhong, Canyu; Li, Chang Ming

    2017-01-01

    Both physical structure and chemical property of an electrode play critical roles in extracellular electron transfer from microbes to electrodes in microbial fuel cells (MFCs). Herein a novel polyaniline hybridized large mesoporous carbon (PANI-LMC) anode is fabricated from natural biomass by nanostructured CaCO 3 template-assisted carbonization followed by in situ chemical polymerizing PANI to enable fast extracellular electron transfer, in which the LMC with rich disorder-interconnected large mesopores (∼20−50 nm) and large surface area facilitates a fast mediated electron transfer through electron mediators, while the decorated PANI on LMC surface enables the direct electron transfer via bacterial outer-membrane redox centers. Owing to the unique synergistic effect from both excellent electron transfer paths, the PANI-LMC hybrid anode harvests high power electricity with a maximum output power density of 1280 mW m −2 in Shewanella putrefaciens CN32 MFCs, 10-fold higher than that of conventional carbon cloth. The findings from this work suggest a new insight on design of high-efficient anode according to the multiple and flexible electrochemical process for practical MFC applications.

  3. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Isolation of Contact Sites Between Inner and Outer Mitochondrial Membranes.

    Science.gov (United States)

    Harner, Max

    2017-01-01

    Mitochondria are essential organelles of all eukaryotic cells. They perform a plethora of important metabolic functions and have a highly complex architecture that differs drastically between different cells and tissues. Mitochondria are delimited from the cytosol by the mitochondrial envelope that consists of the outer membrane and the inner membrane. The inner membrane is subdivided into the inner boundary membrane that runs parallel to the outer membrane and the crista membrane. Both sections of the inner membrane are linked by crista junctions. A further important architectural element of mitochondria are the contact sites between outer membrane and inner membrane. These sites were observed a long time ago by classical electron microscopy, but their molecular structure was identified only recently when it was recognized that proteins of crista junctions and proteins of the outer membrane are responsible for these strong contacts. Mitochondrial function is severely affected when contact sites are disturbed. This underlines the notion that mitochondrial architecture and function are intimately connected. In the following a method is described to generate and to isolate membrane vesicles from isolated yeast mitochondria that contain these contact sites.

  5. Loss of outer membrane integrity in Gram-negative bacteria by silver ...

    Indian Academy of Sciences (India)

    Mater. Sci., Vol. 39, No. 7, December 2016, pp. 1871–1878. c Indian Academy of Sciences. DOI 10.1007/s12034-016-1317-5. Loss of outer membrane integrity in Gram-negative bacteria by silver nanoparticles loaded with Camellia sinensis leaf phytochemicals: plausible mechanism of bacterial cell disintegration. M SINGH.

  6. Outer membrane lipoprotein biogenesis: Lol is not the end.

    Science.gov (United States)

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-05

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. © 2015 The Author(s).

  7. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Role of Outer Membrance Vesicles of Bacteria. M V Jagannadham M K Chattopadhyay. General Article Volume 20 Issue 8 August 2015 pp 711-725. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Outer membrane biogenesis in Helicobacter pylori: A deviation from the paradigm

    Directory of Open Access Journals (Sweden)

    George W. Liechti

    2012-04-01

    Full Text Available The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM. Lipopolysaccharide (LPS and numerous outer membrane proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its outer membrane profile limits the effectiveness of vaccines that use any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε- proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε-proteobacteria, while the inner and outer membrane associated apparatus of LPS, lipoprotein, and OM protein transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to

  9. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  10. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    However, not all the surface-associated bacterial toxins mediate binding and internal- ization of the vesicles. Role in Pathogenesis. OMVs are important for pathogenicity and virulence of bacteria. Studies involving various pathogenic bacteria clearly reveal that they produce OMVs within the infected host tissues. Body fluids.

  11. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    nificant role in cell-to-cell communication, virulence, nutri- tion and protection of the ... nm diameter. OMVs are not formed by fragmentation of the cell or accidental detachment of some quantities of the cell membrane. They are the outcome of the normal turnover of the .... transport of small metabolites. (e.g sugars, amino ...

  12. Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers.

    Science.gov (United States)

    Dutta, Samit Kumar; Yao, Yong; Marassi, Francesca M

    2017-08-17

    Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein's activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure-activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded β-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15 N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.

  13. Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Soni Priya Valeru

    2014-01-01

    Full Text Available Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA and outer membrane vesicles (OMVs in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.

  14. Proteomic analysis of Vibrio cholerae outer membrane vesicles

    Science.gov (United States)

    Altindis, Emrah; Fu, Yang; Mekalanos, John J.

    2014-01-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria provide an interesting research material for defining cell-envelope proteins without experimental cell disruption. OMVs are also promising immunogenic platforms and may play important roles in bacterial survival and pathogenesis. We used in-solution trypsin digestion coupled to mass spectrometry to identify 90 proteins present in OMVs of Vibrio cholerae when grown under conditions that activate the TCP pilus virulence regulatory protein (ToxT) virulence regulon. The ToxT expression profile and potential contribution to virulence of these proteins were assessed using ToxT and in vivo RNA-seq, Tn-seq, and cholera stool proteomic and other genome-wide data sets. Thirteen OMV-associated proteins appear to be essential for cell growth, and therefore may represent antibacterial drug targets. Another 12 nonessential OMV proteins, including DegP protease, were required for intestinal colonization in rabbits. Comparative proteomics of a degP mutant revealed the importance of DegP in the incorporation of nine proteins into OMVs, including ones involved in biofilm matrix formation and various substrates of the type II secretion system. Taken together, these results suggest that DegP plays an important role in determining the content of OMVs and also affects phenotypes such as intestinal colonization, proper function of the type II secretion system, and formation of biofilm matrix. PMID:24706774

  15. Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin; Kuzmenko, Ivan; Nikaido, Hiroshi; Gidalevitz, David

    2015-12-01

    Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwas prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.

  16. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    Science.gov (United States)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  17. Identification of outer membrane proteins of Yersinia pestis through biotinylation

    NARCIS (Netherlands)

    Smither, S.J.; Hill, J.; Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Titball, R.W.

    2007-01-01

    The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with

  18. Serological response to the outer membrane lipoprotein in animal brucellosis.

    OpenAIRE

    Gómez-Miguel, M J; Moriyón, I; Alonso-Urmeneta, B; Riezu-Boj, J I; Díaz, R

    1988-01-01

    The presence of antibodies to Brucella outer membrane lipoprotein was investigated in cattle and rams. Low but significant amounts of antibody were detected in sera from B. abortus-infected cattle and from B. ovis-infected rams which had developed epididymitis. Strain-19-vaccinated cattle also showed a weak albeit transient antibody response.

  19. Detergent organisation in crystals of monomeric outer membrane phospholipase A

    NARCIS (Netherlands)

    Snijder, HJ; Timmins, PA; Kalk, KH; Dijkstra, BW

    The structure of the detergent in crystals of outer membrane phospholipase A (OMPLA) has been determined using neutron diffraction contrast variation. Large crystals were soaked in stabilising solutions, each containing a different H2O/D2O contrast. From the neutron diffraction at five contrasts,

  20. Redefining the essential trafficking pathway for outer membrane lipoproteins

    OpenAIRE

    Grabowicz, Marcin; Silhavy, Thomas J.

    2017-01-01

    In Gram-negative bacteria, most lipoproteins synthesized in the inner membrane (IM) are trafficked to the outer membrane (OM). The Lol pathway is the trafficking paradigm: LolCDE releases lipoproteins from the IM; LolA shuttles them between membranes to LolB in the OM. Several OM lipoproteins are essential for viability. In apparent concordance, the Lol proteins are each essential in wild-type cells. However, we show that Escherichia coli grows well without LolA and LolB in the absence of one...

  1. Demarcating SurA Activities Required for Outer Membrane Targeting of Yersinia pseudotuberculosis Adhesins

    Science.gov (United States)

    Obi, Ikenna R.

    2013-01-01

    SurA is a periplasmic protein folding factor involved in chaperoning and trafficking of outer membrane proteins across the Gram-negative bacterial periplasm. In addition, SurA also possesses peptidyl-prolyl cis/trans isomerase activity. We have previously reported that in enteropathogenic Yersinia pseudotuberculosis, SurA is needed for bacterial virulence and envelope integrity. In this study, we investigated the role of SurA in the assembly of important Yersinia adhesins. Using genetic mutation, biochemical characterization, and an in vitro-based bacterial host cell association assay, we confirmed that surface localization of the invasin adhesin is dependent on SurA. As a surA deletion also has some impact on the levels of individual components of the BAM complex in the Yersinia outer membrane, abolished invasin surface assembly could reflect both a direct loss of SurA-dependent periplasmic targeting and a potentially compromised BAM complex assembly platform in the outer membrane. To various degrees, the assembly of two other adhesins, Ail and the pH 6 antigen fibrillum PsaA, also depends on SurA. Consequently, loss of SurA leads to a dramatic reduction in Yersinia attachment to eukaryotic host cells. Genetic complementation of surA deletion mutants indicated a prominent role for SurA chaperone function in outer membrane protein assembly. Significantly, the N terminus of SurA contributed most of this SurA chaperone function. Despite a dominant chaperoning role, it was also evident that SurA isomerization activity did make a modest contribution to this assembly process. PMID:23589578

  2. High-yield membrane protein expression from E. coli using an engineered outer membrane protein F fusion.

    Science.gov (United States)

    Su, Pin-Chuan; Si, William; Baker, Deidre L; Berger, Bryan W

    2013-04-01

    Obtaining high yields of membrane proteins necessary to perform detailed structural study is difficult due to poor solubility and variability in yields from heterologous expression systems. To address this issue, an Escherichia coli-based membrane protein overexpression system utilizing an engineered bacterial outer membrane protein F (pOmpF) fusion has been developed. Full-length human receptor activity-modifying protein 1 (RAMP1) was expressed using pOmpF, solubilized in FC15 and purified to homogeneity. Using circular dichroism and fluorescence spectroscopy, purified full-length RAMP1 is composed of approximately 90% α-helix, and retains its solubility and structure in FC15 over a wide range of temperatures (20-60°C). Thus, our approach provides a useful, complementary approach to achieve high-yield, full-length membrane protein overexpression for biophysical studies. Copyright © 2013 The Protein Society.

  3. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria.

    Science.gov (United States)

    Sperandeo, Paola; Martorana, Alessandra M; Polissi, Alessandra

    2017-11-01

    The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016. Published by Elsevier B.V.

  4. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity

    Directory of Open Access Journals (Sweden)

    Eleanor Watson

    2014-09-01

    Full Text Available Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC–ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith–Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  5. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer membrane protein OmpL32

    Science.gov (United States)

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer membrane proteins has been shown to modulate the effectiveness of the host immu...

  6. Monoclonal antibodies against the iron regulated outer membrane Proteins of Acinetobacter baumannii are bactericidal

    Directory of Open Access Journals (Sweden)

    Goel Vikas

    2001-08-01

    Full Text Available Abstract Background Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores. Results/ Discussion Acinetobacter baumannii ATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, expresses four new outer membrane proteins,with molecular weight ranging from 77 kDa to 88 kDa, that are called Iron Regulated Outer Membrane Proteins (IROMPs. We studied the functional and immunological properties of IROMPs expressed by A.baumanii ATCC 19606.The bands corresponding to IROMPs were eluted from SDS-PAGE and were used to immunize BALB/c mice for the production of monoclonal antibodies. Hybridomas secreting specific antibodies against these IROMPs were selected after screening by ELISA and their reactivity was confirmed by Western Blot. The antibodies then generated belonged to IgM isotype and showed bactericidical and opsonising activities against A.baumanii in vitro.These antibodies also blocked siderophore mediated iron uptake via IROMPs in bacteria. Conclusion This proves that iron uptake via IROMPs,which is mediated through siderophores,may have an important role in the survival of A.baumanii inside the host,and helps establishing the infection.

  7. Production of outer membrane vesicles by the plague pathogen Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Justin L Eddy

    Full Text Available Many Gram-negative bacteria produce outer membrane vesicles (OMVs during cell growth and division, and some bacterial pathogens deliver virulence factors to the host via the release of OMVs during infection. Here we show that Yersinia pestis, the causative agent of the disease plague, produces and releases native OMVs under physiological conditions. These OMVs, approximately 100 nm in diameter, contain multiple virulence-associated outer membrane proteins including the adhesin Ail, the F1 outer fimbrial antigen, and the protease Pla. We found that OMVs released by Y. pestis contain catalytically active Pla that is competent for plasminogen activation and α2-antiplasmin degradation. The abundance of OMV-associated proteins released by Y. pestis is significantly elevated at 37 °C compared to 26 °C and is increased in response to membrane stress and mutations in RseA, Hfq, and the major Braun lipoprotein (Lpp. In addition, we show that Y. pestis OMVs are able to bind to components of the extracellular matrix such as fibronectin and laminin. These data suggest that Y. pestis may produce OMVs during mammalian infection and we propose that dispersal of Pla via OMV release may influence the outcome of infection through interactions with Pla substrates such as plasminogen and Fas ligand.

  8. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    Science.gov (United States)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  9. Passive immunization to outer membrane proteins MLP and PAL does not protect mice from sepsis.

    Science.gov (United States)

    Valentine, Catherine H; Hellman, Judith; Beasley-Topliffe, Laura K; Bagchi, Aranya; Warren, H Shaw

    2006-01-01

    Multiple older studies report that immunoglobulin directed to rough mutant bacteria, such as E. coli J5, provides broad protection against challenge with heterologous strains of Gram-negative bacteria. This protection was initially believed to occur through binding of immunoglobulin to bacterial lipopolysaccharide (LPS). However, hundreds of millions of dollars have been invested in attempting to develop clinically-effective anti-LPS monoclonal antibodies without success, and no study has shown that IgG from this antiserum binds LPS. Identification of the protective mechanism would facilitate development of broadly protective human monoclonal antibodies for treating sepsis. IgG from this antiserum binds 2 bacterial outer membrane proteins: murein lipoprotein (MLP) and peptidoglycan-associated lipoprotein (PAL). Both of these outer membrane proteins are highly conserved, have lipid domains that are anchored in the bacterial membrane, are shed from bacteria in blebs together with LPS, and activate cells through Toll-like receptor 2. Our goal in the current work was to determine if passive immunization directed to MLP and PAL protects mice from Gram-negative sepsis. Neither monoclonal nor polyclonal IgG directed to MLP or PAL conferred survival protection in 3 different models of sepsis: cecal ligation and puncture, an infected burn model, and an infected fibrin clot model mimicking peritonitis. Our results are not supportive of the hypothesis that either anti-MLP or anti-PAL IgG are the protective antibodies in the previously described anti-rough mutant bacterial antisera. These studies suggest that a different mechanism of protection is involved.

  10. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori.

    Science.gov (United States)

    Liechti, George; Goldberg, Joanna B

    2012-01-01

    The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual

  11. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane.

    Directory of Open Access Journals (Sweden)

    Rathi Saravanan

    Full Text Available BACKGROUND: Antimicrobial peptides (AMPs play important roles in the innate defense mechanism. The broad spectrum of activity of AMPs requires an efficient permeabilization of the bacterial outer and inner membranes. The outer leaflet of the outer membrane of Gram negative bacteria is made of a specialized lipid called lipopolysaccharide (LPS. The LPS layer is an efficient permeability barrier against anti-bacterial agents including AMPs. As a mode of protection, LPS can induce self associations of AMPs rendering them inactive. Temporins are a group of short-sized AMPs isolated from frog skin, and many of them are inactive against Gram negative bacteria as a result of their self-association in the LPS-outer membrane. PRINCIPAL FINDINGS: Using NMR spectroscopy, we have determined atomic resolution structure and characterized localization of temporin-1Ta or TA (FLPLIGRVLSGIL-amide in LPS micelles. In LPS micelles, TA adopts helical conformation for residues L4-I12, while residues F1-L3 are found to be in extended conformations. The aromatic sidechain of residue F1 is involved in extensive packing interactions with the sidechains of residues P3, L4 and I5. Interestingly, a number of long-range NOE contacts have been detected between the N-terminal residues F1, P3 with the C-terminal residues S10, I12, L13 of TA in LPS micelles. Saturation transfer difference (STD NMR studies demonstrate close proximity of residues including F1, L2, P3, R7, S10 and L13 with the LPS micelles. Notably, the LPS bound structure of TA shows differences with the structures of TA determined in DPC and SDS detergent micelles. SIGNIFICANCE: We propose that TA, in LPS lipids, forms helical oligomeric structures employing N- and C-termini residues. Such oligomeric structures may not be translocated across the outer membrane; resulting in the inactivation of the AMP. Importantly, the results of our studies will be useful for the development of antimicrobial agents with a

  12. Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids.

    Science.gov (United States)

    Plesniak, Leigh A; Mahalakshmi, Radhakrishnan; Rypien, Candace; Yang, Yuan; Racic, Jasmina; Marassi, Francesca M

    2011-01-01

    Ail is an outer membrane protein and virulence factor of Yersinia pestis, an extremely pathogenic, category A biothreat agent, responsible for precipitating massive human plague pandemics throughout history. Due to its key role in bacterial adhesion to host cells and bacterial resistance to host defense, Ail is a key target for anti-plague therapy. However, little information is available about the molecular aspects of its function and interactions with the human host, and the structure of Ail is not known. Here we describe the recombinant expression, purification, refolding, and sample preparation of Ail for solution and solid-state NMR structural studies in lipid micelles and lipid bilayers. The initial NMR and CD spectra show that Ail adopts a well-defined transmembrane β-sheet conformation in lipids. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  14. Insecticidal Activity Associated with the Outer Membrane Vesicles of Xenorhabdus nematophilus

    OpenAIRE

    Khandelwal, Puneet; Banerjee-Bhatnagar, Nirupama

    2003-01-01

    Xenorhabdus nematophilus secretes a large number of proteins into the culture supernatant as soluble proteins and also as large molecular complexes associated with the outer membrane. Transmission electron micrographs of X. nematophilus cells showed that there was blebbing of the outer membrane from the surface of the bacterium. The naturally secreted outer membrane vesicles (OMVs) were purified from the culture supernatant of X. nematophilus and analyzed. Electron microscopy revealed a vesic...

  15. Rhizobium strains differ considerably in outer membrane permeability and polymyxin B resistance.

    Science.gov (United States)

    Komaniecka, Iwona; Zamłyńska, Katarzyna; Zan, Radosław; Staszczak, Magdalena; Pawelec, Jarosław; Seta, Irena; Choma, Adam

    2016-01-01

    Six rhizobium (Rhizobium leguminosarum bv. Trifolii TA1, Sinorhizobium meliloti 1021, Mesorhizobium huakuii IFO 15243(T), Ochrobactrum lupini LUP 21(T), Bradyrhizobium japonicum USDA110 and B. elkanii USDA 76) and two Escherichia coli strains (E. coli ATCC 25922 and E. coli HB 101) were compared in respect to polymyxin B and EDTA resistance, as well as bacterial outer membrane (OM) permeability to a fluorescent hydrophobic agent (N-phenyl-1-naphthylamine - NPN). TEM (Transmission Electron Microscopy) and a microbial test demonstrated that all the rhizobia were much more resistant to polymyxin B in comparison with E. coli strains. EDTA and polymyxin B enhance permeability of B. japonicum and O. lupini OM. Other rhizobia incorporated NPN independently of the presence of membrane-deteriorating agents; however, the level of fluorescence (measured as NPN absorption) was strain dependent.

  16. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  17. Vesicle-independent extracellular release of a proinflammatory outer membrane lipoprotein in free-soluble form

    Directory of Open Access Journals (Sweden)

    Oscarsson Jan

    2008-01-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressively progressing periodontitis. Extracellular release of bacterial outer membrane proteins has been suggested to mainly occur via outer membrane vesicles. This study investigated the presence and conservation of peptidoglycan-associated lipoprotein (AaPAL among A. actinomycetemcomitans strains, the immunostimulatory effect of AaPAL, and whether live cells release this structural outer membrane lipoprotein in free-soluble form independent of vesicles. Results The pal locus and its gene product were confirmed in clinical A. actinomycetemcomitans strains by PCR-restriction fragment length polymorphism and immunoblotting. Culturing under different growth conditions revealed no apparent requirement for the AaPAL expression. Inactivation of pal in a wild-type strain (D7S and in its spontaneous laboratory variant (D7SS resulted in pleiotropic cellular effects. In a cell culture insert model (filter pore size 0.02 μm, AaPAL was detected from filtrates when strains D7S and D7SS were incubated in serum or broth in the inserts. Electron microscopy showed that A. actinomycetemcomitans vesicles (0.05–0.2 μm were larger than the filter pores and that there were no vesicles in the filtrates. The filtrates were immunoblot negative for a cytoplasmic marker, cyclic AMP (cAMP receptor protein. An ex vivo model indicated cytokine production from human whole blood stimulated by AaPAL. Conclusion Free-soluble AaPAL can be extracellularly released in a process independent of vesicles.

  18. An ABC-transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa

    Science.gov (United States)

    Casabona, Maria G.; Silverman, Julie M.; Sall, Khady M.; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D.; Elsen, Sylvie; Attree, Ina

    2012-01-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SS). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Thr kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and export of Hcp1 and Tse1. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signaling pathway that promotes H1-T6SS activity under optimal environmental conditions. PMID:22765374

  19. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Casabona, Maria G; Silverman, Julie M; Sall, Khady M; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D; Elsen, Sylvie; Attree, Ina

    2013-02-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SSs). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Threonine kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein, Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and, apparatus assembly and effector export. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signalling pathway that promotes H1-T6SS activity under optimal environmental conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  1. Expression and distribution of leptospiral outer membrane components during renal infection of hamsters

    NARCIS (Netherlands)

    Barnett, J. K.; Barnett, D.; Bolin, C. A.; Summers, T. A.; Wagar, E. A.; Cheville, N. F.; Hartskeerl, R. A.; Haake, D. A.

    1999-01-01

    The outer membrane of pathogenic Leptospira species grown in culture media contains lipopolysaccharide (LPS), a porin (OmpL1), and several lipoproteins, including LipL36 and LipL41. The purpose of this study was to characterize the expression and distribution of these outer membrane antigens during

  2. Redefining the essential trafficking pathway for outer membrane lipoproteins

    Science.gov (United States)

    Grabowicz, Marcin; Silhavy, Thomas J.

    2017-01-01

    The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins’ key function is to prevent lethal accumulation of mislocalized lipoproteins. PMID:28416660

  3. Redefining the essential trafficking pathway for outer membrane lipoproteins.

    Science.gov (United States)

    Grabowicz, Marcin; Silhavy, Thomas J

    2017-05-02

    The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins' key function is to prevent lethal accumulation of mislocalized lipoproteins.

  4. Increased Outer Membrane Vesicle Formation in a Helicobacter pylori tolB Mutant.

    Science.gov (United States)

    Turner, Lorinda; Praszkier, Judyta; Hutton, Melanie L; Steer, David; Ramm, Georg; Kaparakis-Liaskos, Maria; Ferrero, Richard L

    2015-08-01

    Multiple studies have established the importance of the tol-pal gene cluster in bacterial cell membrane integrity and outer membrane vesicle (OMV) formation in Escherichia coli. In contrast, the functions of Tol-Pal proteins in pathogenic organisms, including those of the Epsilonproteobacteria, remain poorly if at all defined. The aim of this study was to characterize the roles of two key components of the Tol-Pal system, TolB and Pal, in OMV formation in the pathogenic bacterium, Helicobacter pylori. H. pylori ΔtolB, Δpal and ΔtolBpal mutants, as well as complemented strains, were generated and assessed for changes in morphology and OMV production by scanning electron microscopy and enzyme-linked immunoassay (ELISA), respectively. The protein content and pro-inflammatory properties of OMVs were determined by mass spectroscopy and interleukin-8 (IL-8) ELISA on culture supernatants from OMV-stimulated cells, respectively. H. pylori ΔtolB and Δpal bacteria exhibited aberrant cell morphology and/or flagella biosynthesis. Importantly, the disruption of H. pylori tolB but not pal resulted in a significant increase in OMV production. The OMVs from H. pylori ΔtolB and Δpal bacteria harbored many of the major outer membrane and virulence proteins observed in wild-type (WT) OMVs. Interestingly, ΔtolB, Δpal and ΔtolBpal OMVs induced significantly higher levels of IL-8 production by host cells, compared with WT OMVs. This work demonstrates that TolB and Pal are important for membrane integrity in H. pylori. Moreover, it shows how H. pylori tolB-pal genes may be manipulated to develop "hypervesiculating" strains for vaccine purposes. © 2015 John Wiley & Sons Ltd.

  5. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    Directory of Open Access Journals (Sweden)

    Fujita Naoya

    2011-01-01

    Full Text Available Abstract Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  6. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.

    Science.gov (United States)

    Pirbadian, Sahand; Barchinger, Sarah E; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A; Reed, Samantha B; Romine, Margaret F; Saffarini, Daad A; Shi, Liang; Gorby, Yuri A; Golbeck, John H; El-Naggar, Mohamed Y

    2014-09-02

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  7. Transferrins selectively cause ion efflux through bacterial and artificial membranes

    NARCIS (Netherlands)

    Aguilera, O; Quiros, LM; Fierro, JF

    2003-01-01

    Serum transferrin, ovotransferrin and lactoferrin constitute the most notable members of the transferrin family. Among their multiple biological functions, they possess an important antibacterial activity. These proteins can permeate the Escherichia coli outer membrane, reaching the inner membrane

  8. Expression of Caspase Signaling Components in the Outer Membranes of Chronic Subdural Hematomas.

    Science.gov (United States)

    Osuka, Koji; Watanabe, Yasuo; Usuda, Nobuteru; Aoyama, Masahiro; Iwami, Kenichiro; Takeuchi, Mikinobu; Watabe, Takeya; Takayasu, Masakazu

    2017-11-15

    Chronic subdural hematoma (CSDH) is fundamentally treatable through surgery, although CSDH recurs in some cases. We have observed several cases of spontaneous resolution of CSDH outer membranes, including in trabecular CSDH, after trepanation surgery. In this study, we examined the expression of molecules involved in caspase signaling in CSDH outer membranes. Eight patients whose outer membranes were obtained successfully during trepanation surgery were included in this study. The expression of Fas; Fas-associated death domain (FADD); tumor necrosis factor receptor type 1-associated death domain (TRADD); receptor-interacting protein (RIP); caspases 3, 7, 8, and 9; poly-(ADP-ribose) polymerase (PARP); DNA fragmentation factor 45 (DFF45) and β-actin was examined by Western blot analysis. The expression levels of PARP, caspase-3, and cleaved caspase-3 were also examined by immunohistochemistry. Fas; FADD; TRADD; RIP; caspases 3, 7, 8, and 9; PARP, and DFF45 were detected in nearly all samples. Caspase-3 and PARP were localized in the endothelial cells of vessels and in fibroblasts in CSDH outer membranes. In addition, cleaved caspase-3 was detected in fibroblasts. We detected molecules of the caspase signaling pathway in CSDH outer membranes. In particular, cleaved caspase-3 was detected, which suggests that apoptosis may occur within these membranes. Thus, during the growth of CSDH outer membranes, the caspase signaling pathway may be restrained. Once the pathway is activated, gradual resolution of CSDH outer membranes may occur. Therefore, these molecules may be novel therapeutic targets for intractable CSDH.

  9. Backbone resonance assignments of the outer membrane lipoprotein FrpD from Neisseria meningitidis.

    Science.gov (United States)

    Bumba, Ladislav; Sviridova, Ekaterina; Kutá Smatanová, Ivana; Řezáčová, Pavlína; Veverka, Václav

    2014-04-01

    The iron-regulated FrpD protein is a unique lipoprotein embedded into the outer membrane of the Gram-negative bacterium Neisseria meningitidis. The biological function of FrpD remains unknown but might consist in anchoring to the bacterial cell surface the Type I-secreted FrpC protein, which belongs to a Repeat in ToXins (RTX) protein family and binds FrpD with very high affinity (K(d) = 0.2 nM). Here, we report the backbone (1)H, (13)C, and (15)N chemical shift assignments for the FrpD(43-271) protein that allow us to characterize the intimate interaction between FrpD and the N-terminal domain of FrpC.

  10. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens

    DEFF Research Database (Denmark)

    Pors, Susanne Elisabeth; Pedersen, Ida Just; Skjerning, Ragnhild Bager

    2016-01-01

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have...... previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe...... degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis...

  11. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Tae

    2008-12-01

    Full Text Available Abstract Background Acinetobacter baumannii is a nosocomial pathogen of increasing importance, but the pathogenic mechanism of this microorganism has not been fully explored. This study investigated the potential of A. baumannii to invade epithelial cells and determined the role of A. baumannii outer membrane protein A (AbOmpA in interactions with epithelial cells. Results A. baumannii invaded epithelial cells by a zipper-like mechanism, which is associated with microfilament- and microtubule-dependent uptake mechanisms. Internalized bacteria were located in the membrane-bound vacuoles. Pretreatment of recombinant AbOmpA significantly inhibited the adherence to and invasion of A. baumannii in epithelial cells. Cell invasion of isogenic AbOmpA- mutant significantly decreased as compared with wild-type bacteria. In a murine pneumonia model, wild-type bacteria exhibited a severe lung pathology and induced a high bacterial burden in blood, whereas AbOmpA- mutant was rarely detected in blood. Conclusion A. baumannii adheres to and invades epithelial cells. AbOmpA plays a major role in the interactions with epithelial cells. These findings contribute to the understanding of A. baumannii pathogenesis in the early stage of bacterial infection.

  12. Isolation and partial characterization of outer and inner membranes from encapsulated Haemophilus influenzae type b.

    Science.gov (United States)

    Loeb, M R; Zachary, A L; Smith, D H

    1981-01-01

    A method has been developed to separate the cell envelope of encapsulated (type b) Haemophilus influenzae into its outer and inner membrane components with procedures that avoided two problems encountered in fractionation of this envelope: (i) the tendency of the outer and inner membranes to hybridize and (ii) the tendency of the apparently fragile inner membrane to fragment into difficulty sedimentable units. Log phage cells, whose lipids were radioactively labeled, were lysed by passage through a French press. The lysate was applied to a discontinuous sucrose gradient, and envelope-rich material was collected by centrifugation onto a cushion of dense sucrose under carefully controlled conditions. This material was then further fractionated by isopycnic centrifugation in a sucrose gradient to yield four membrane fractions which were partially characterized. On the basis of their radioactivity, buoyant density, ultrastructure, polypeptide composition, and content of phospholipid, protein, lipopolysaccharide, and succinic dehydrogenase, these fractions were identified as follows: fraction 1, outer membrane vesicles with very little inner membrane contamination (less than 4%); fraction 2, outer membrane vesicles containing entrapped inner membrane; fraction 3, a protein-rich fraction of inner membrane; fraction 4, a protein-poor fraction of inner membrane. Fractions 3 and 4 contained about 25% outer membrane contamination.

  13. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex

    DEFF Research Database (Denmark)

    Mygind, Per H; Christiansen, Gunna; Roepstorff, P

    2000-01-01

    The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. By....... By silver staining of the protein profile, a major protein doublet of 100-110 kDa was detected. In-gel tryptic digestion and matrix-assisted laser desorption/ionization mass spectrometry identified these proteins as the putative outer membrane proteins PmpG and PmpH....

  14. A New Strain Collection for Improved Expression of Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Ina Meuskens

    2017-11-01

    Full Text Available Almost all integral membrane proteins found in the outer membranes of Gram-negative bacteria belong to the transmembrane β-barrel family. These proteins are not only important for nutrient uptake and homeostasis, but are also involved in such processes as adhesion, protein secretion, biofilm formation, and virulence. As surface exposed molecules, outer membrane β-barrel proteins are also potential drug and vaccine targets. High production levels of heterologously expressed proteins are desirable for biochemical and especially structural studies, but over-expression and subsequent purification of membrane proteins, including outer membrane proteins, can be challenging. Here, we present a set of deletion mutants derived from E. coli BL21(DE3 designed for the over-expression of recombinant outer membrane proteins. These strains harbor deletions of four genes encoding abundant β-barrel proteins in the outer membrane (OmpA, OmpC, OmpF, and LamB, both single and in all combinations of double, triple, and quadruple knock-outs. The sequences encoding these outer membrane proteins were deleted completely, leaving only a minimal scar sequence, thus preventing the possibility of genetic reversion. Expression tests in the quadruple mutant strain with four test proteins, including a small outer membrane β-barrel protein and variants thereof as well as two virulence-related autotransporters, showed significantly improved expression and better quality of the produced proteins over the parent strain. Differences in growth behavior and aggregation in the presence of high salt were observed, but these phenomena did not negatively influence the expression in the quadruple mutant strain when handled as we recommend. The strains produced in this study can be used for outer membrane protein production and purification, but are also uniquely useful for labeling experiments for biophysical measurements in the native membrane environment.

  15. Outer Membrane Vesicle-Mediated Export of Processed PrtV Protease from Vibrio cholerae.

    Science.gov (United States)

    Rompikuntal, Pramod K; Vdovikova, Svitlana; Duperthuy, Marylise; Johnson, Tanya L; Åhlund, Monika; Lundmark, Richard; Oscarsson, Jan; Sandkvist, Maria; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2015-01-01

    Outer membrane vesicles (OMVs) are known to release from almost all Gram-negative bacteria during normal growth. OMVs carry different biologically active toxins and enzymes into the surrounding environment. We suggest that OMVs may therefore be able to transport bacterial proteases into the target host cells. We present here an analysis of the Vibrio cholerae OMV-associated protease PrtV. In this study, we demonstrated that PrtV was secreted from the wild type V. cholerae strain C6706 via the type II secretion system in association with OMVs. By immunoblotting and electron microscopic analysis using immunogold labeling, the association of PrtV with OMVs was examined. We demonstrated that OMV-associated PrtV was biologically active by showing altered morphology and detachment of cells when the human ileocecum carcinoma (HCT8) cells were treated with OMVs from the wild type V. cholerae strain C6706 whereas cells treated with OMVs from the prtV isogenic mutant showed no morphological changes. Furthermore, OMV-associated PrtV protease showed a contribution to bacterial resistance towards the antimicrobial peptide LL-37. Our findings suggest that OMVs released from V. cholerae can deliver a processed, biologically active form of PrtV that contributes to bacterial interactions with target host cells.

  16. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    Energy Technology Data Exchange (ETDEWEB)

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  17. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond

    Science.gov (United States)

    Zückert, Wolfram R.

    2014-01-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., grampositive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporterlike LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the “+2 rule”. Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  18. OmcF, a Putative c-Type Monoheme Outer Membrane Cytochrome Required for the Expression of Other Outer Membrane Cytochromes in Geobacter sulfurreducens

    OpenAIRE

    Kim, Byoung-Chan; Leang, Ching; Ding, Yan-Huai R.; Glaven, Richard H.; Coppi, Maddalena V.; Lovley, Derek R.

    2005-01-01

    Outer membrane cytochromes are often proposed as likely agents for electron transfer to extracellular electron acceptors, such as Fe(III). The omcF gene in the dissimilatory Fe(III)-reducing microorganism Geobacter sulfurreducens is predicted to code for a small outer membrane monoheme c-type cytochrome. An OmcF-deficient strain was constructed, and its ability to reduce and grow on Fe(III) citrate was found to be impaired. Following a prolonged lag phase (150 h), the OmcF-deficient strain de...

  19. The outer limiting membrane (OLM revisited: clinical implications

    Directory of Open Access Journals (Sweden)

    S Omri

    2010-03-01

    Full Text Available S Omri1,2,3, B Omri1,2,3, M Savoldelli1,2,3,4, L Jonet1,2,3, B Thillaye-Goldenberg1,2,3, G Thuret5, P Gain5, J C Jeanny1,2,3, P Crisanti1,2,3, Francine Behar-Cohen1,2,3,41INSERM, U872 Physiopathology of ocular diseases: Therapeutic innovations, Paris, France; 2Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris6, Paris, France; 3Université Paris Descartes, Paris, France; 4Department of Ophthalmology, Hôtel-Dieu de Paris, France; 5Department of Ophthalmology, Bellevue Hospital, University of Saint-Etienne, FrancePurpose: The outer limiting membrane (OLM is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier.Material and methods: Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported.Results: In the rat retina, in the subapical region zonula occludens-1 (ZO-1, junction adhesion molecule (JAM, an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors.Conclusions: In the OLM

  20. Host cell interactions of outer membrane vesicle-associated virulence factors of Enterohemorrhagic Escherichia coli O157: intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, confocal laser...

  1. Meningococcal outer membrane vesicle composition-dependent activation of the innate immune response

    NARCIS (Netherlands)

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-01-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen associated molecular patterns including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an

  2. Next-generation outer membrane vesicle vaccines from concept to clinical trials

    NARCIS (Netherlands)

    Waterbeemd, van de B.

    2013-01-01

    Only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. The OMV vaccines, however, provide limited coverage and are difficult to produce. This is caused by an obligatory detergent treatment, which removes lipopolysaccharide

  3. Quantitative Proteomics Reveals Distinct Differences in the Protein Content of Outer Membrane Vesicle Vaccines

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Mommen, G.P.M.; Pennings, J.L.A.; Eppink, M.H.M.; Wijffels, R.H.; Pol, van der L.A.; Jong, de A.P.J.M.

    2013-01-01

    At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in

  4. Structural Characterization of Outer Membrane Components of the Type IV Pili System in Pathogenic Neisseria

    NARCIS (Netherlands)

    Jain, Samta; Moscicka, Katarzyna B.; Bos, Martine P.; Pachulec, Emilia; Stuart, Marc C. A.; Keegstra, Wilko; Boekema, Egbert J.; van der Does, Chris; B. Mościcka, K.; Ahmed, Niyaz

    2011-01-01

    Structures of the type IV pili secretin complexes from Neisseria gonorrhoeae and Neisseria meningitidis, embedded in outer membranes were investigated by transmission electron microscopy. Single particle averaging revealed additional domains not observed previously. Secretin complexes of N.

  5. Outer Membrane Vesicle Vaccines from Biosafe Surrogates Prevent Acute Lethal Glanders in Mice

    Directory of Open Access Journals (Sweden)

    Michael H. Norris

    2018-01-01

    Full Text Available Burkholderia mallei is a host-adapted Gram-negative mammalian pathogen that causes the severe disease glanders. Glanders can manifest as a rapid acute progression or a chronic debilitating syndrome primarily affecting solipeds and humans in close association with infected animals. In USA, B. mallei is classified as one of the most important bacterial biothreat agents. Presently, there is no licensed glanders vaccine available for humans or animals. In this work, outer membrane vesicles (OMVs were isolated from three attenuated biosafe bacterial strains, Burkholderia pseudomallei Bp82, B. thailandensis E555, and B. thailandensis TxDOH and used to vaccinate mice. B. thailandensis OMVs induced significantly higher antibody responses that were investigated. B. mallei specific serum antibody responses were of higher magnitude in mice vaccinated with B. thailandensis OMVs compared to levels in mice vaccinated with B. pseudomallei OMVs. OMVs derived from biosafe strains protected mice from acute lethal glanders with vesicles from the two B. thailandensis strains affording significant protection (>90% up to 35 days post-infection with some up to 60 days. Organ loads from 35-day survivors indicated bacteria colonization of the lungs, liver, and spleen while those from 60 days had high CFUs in the spleens. The highest antibody producing vaccine (B. thailandensis E555 OMVs also protected C57BL/6 mice from acute inhalational glanders with evidence of full protection.

  6. Effects of membrane lipid composition and antibacterial drugs on the rigidity of Escherichia coli: Different contributions of various bacterial substructures.

    Science.gov (United States)

    Li, Ming; Gan, Chaoye; Shao, Wenxiang; Yu, Chuan; Wang, Xingguo; Chen, Yong

    2016-01-01

    The rigidity/stiffness is an important biomechanical property of bacteria and potentially correlated with many bacterial activities. While the rigidity or fluidity of the bacterial membrane has been extensively studied, the contributions of different bacterial substructures to the bacterial rigidity are less investigated. Here, we utilized four Escherichia coli (E. coli) strains with different membrane lipid compositions and three antibacterial drugs (EDTA, lysozyme, and streptomycin) to specifically alter bacterial substructures. By using atomic force microscopy (AFM), we found that the average height and Young's modulus of phosphatidylethanolamine (PE)-deficient E. coli strains were larger than those of PE(+) strains and that EDTA, EDTA plus lysozyme instead of lysozyme alone, and streptomycin all caused significant decreases in height and Young's modulus of the four E. coli strains. Our data imply that membrane lipid composition, the integrated outer membrane, the cell wall, and the cytoplasmic content are all responsible for bacterial rigidity but to different extents. © Wiley Periodicals, Inc.

  7. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum.

    Science.gov (United States)

    Cox, D L; Chang, P; McDowall, A W; Radolf, J D

    1992-01-01

    Virulent Treponema pallidum reacts poorly with the specific antibodies present in human and rabbit syphilitic sera, a phenomenon often attributed to an outer coat of host serum proteins. Here we present additional evidence that the limited antigenicity of virulent organisms actually is due to a paucity of proteins in the outer membrane. Initially, we used electron microscopy to demonstrate that the outer membrane is highly susceptible to damage from physical manipulation (i.e., centrifugation and resuspension) and nonionic detergents. Organisms with disrupted outer membranes were markedly more antigenic than intact treponemes as determined by immunoelectron microscopy (IEM) with rabbit syphilitic and antiendoflagellar antisera. Data obtained with a new radioimmunoassay, designated the T. pallidum surface-specific radioimmunoassay, corroborated these IEM findings by demonstrating that the major T. pallidum immunogens are not surface exposed; the assay also was unable to detect serum proteins, including fibronectin, on the surfaces of intact organisms. Furthermore, IEM of T. pallidum on ultrathin cryosections with monospecific anti-47-kDa-immunogen antiserum confirmed the intracellular location of the 47-kDa immunogen. On the basis of these and previous findings, we proposed a new model for T. pallidum ultrastructure in which the outer membrane contains a small number of transmembrane proteins and the major membrane immunogens are anchored by lipids to the periplasmic leaflet of the cytoplasmic membrane. This unique ultrastructure explains the remarkable ability of virulent organisms to evade the humoral immune response of the T. pallidum-infected host. Images PMID:1541522

  8. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    Science.gov (United States)

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  9. Loss of elongation factor P disrupts bacterial outer membrane integrity

    DEFF Research Database (Denmark)

    Zou, S Betty; Hersch, Steven J; Roy, Hervé

    2012-01-01

    Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Sal...

  10. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  11. Assembly of β-barrel proteins in the mitochondrial outer membrane.

    Science.gov (United States)

    Höhr, Alexandra I C; Straub, Sebastian P; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils

    2015-01-01

    Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  13. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    Science.gov (United States)

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-11-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.

  15. Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects.

    Science.gov (United States)

    Kudryakova, Irina V; Shishkova, Nina A; Vasilyeva, Natalia V

    2016-06-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have been intensively investigated in recent times. Vesicle formation models have been proposed, some factors affecting the process were established, and important roles vesicles play in vital activities of their producing cells were determined. Studies of pathogenic bacterial vesicles contribute to understanding the causes of acute infection and developing drugs on their basis. Despite intensive research, issues associated with the understanding of vesicle biogenesis, the mechanisms of bacterium-bacterium and pathogen-host interactions with participation of vesicles, still remain unresolved. This review discusses some results obtained in the research into OMVs of Lysobacter sp. XL1 VKM B-1576. This bacterium secretes into the environment a spectrum of bacteriolytic enzymes that hydrolyze peptidoglycan of competing bacteria, thus leading to their lysis. One of these enzymes, lytic endopeptidase L5, has been shown not only to be secreted by means of vesicles but also to be involved in their formation. As part of vesicles, the antimicrobial potential of L5 enzyme has been found to be considerably expanded. Vesicles have been shown to have a therapeutic effect in respect of anthrax infection and staphylococcal sepsis modelled in mice. The scientific basis for constructing liposomal antimicrobial preparations from vesicle phospholipids and recombinant bacteriolytic enzyme L5 has been formed.

  16. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    Science.gov (United States)

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

  17. Iron-Associated Outer Membrane Proteins of Magnetic Bacteria

    Science.gov (United States)

    1989-06-16

    dihowstagluaedm of gothe proguectsed arg ptea aryta defeop inall wif -5onor resta ofhcress widt arnd Slent uar to n siz FIGURE 1. Lati icraga of an individua...not evert their magnetite crystals as would be expected of particles within surficial invaginations of the cytoplasmic LITERATURE CITED membrane...Sumnmer I-efmmship. Cii r \\1licrobimtl 14 121- I -’ I ;. Pooletl It C. Hlakernore RP’ fl NMI- H. droimmrne prmmdU. nin Literature Cited h\\ 4c taipititt

  18. Interactions of Neisseria gonorrhoeae with human neutrophils: studies with purified PII (Opa) outer membrane proteins and synthetic Opa peptides.

    OpenAIRE

    Naids, F L; Belisle, B; Lee, N; Rest, R F

    1991-01-01

    We investigated the role of gonococcal outer membrane protein PII (also called Opa protein) in nonopsonic adherence to human neutrophils. Gonococcal outer membranes, purified Opa in detergent (Opa), purified Opa in liposomes (Opa+ lips), and peptides composing the second hypervariable (HV2) region of OpaB (strain FA1090) in liposomes (pepHV2 lips) were tested for their abilities to inhibit subsequent gonococcal adherence to human neutrophils. Outer membranes from gonococci possessing adherent...

  19. Green Modification of Outer Selective P84 Nanofiltration (NF) Hollow Fiber Membranes for Cadmium Removal

    KAUST Repository

    Gao, Jie

    2015-10-26

    Outer-selective thin-film composite (TFC) hollow fiber membranes are normally made from interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). However, the removal of excess MPD solution and the large consumption of alkane solvents are their technical bottlenecks. In this study, green methods to prepare the outer selective TFC hollow fiber membranes were explored by firstly modifying the membrane substrate with polyethyleneimine (PEI) and then by water soluble small molecules such as glutaraldehyde (GA) and epichlorohydrin (ECH). Using P84 polyimide as the substrate, not only do these modifications decrease substrate\\'s pore size, but also vary surface charge by making the membranes less positively charged. As a result, the resultant membranes have higher rejections against salts such as Na2SO4, NaCl and MgSO4. The PEI and then GA modified membrane has the best separation performance with a NaCl rejection over 90% and a pure water permeability (PWP) of 1.74±0.01 Lm−2bar−1h−1. It also shows an impressive rejection to CdCl2 (94%) during long-term stability tests. The CdCl2 rejection remains higher than 90% at operating temperatures from 5 to 60 °C. This study may provide useful insights for green manufacturing of outer-selective nanofiltration (NF) hollow fiber membranes.

  20. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  1. Azithromycin Exhibits Bactericidal Effects on Pseudomonas aeruginosa through Interaction with the Outer Membrane

    Science.gov (United States)

    Imamura, Yoshifumi; Higashiyama, Yasuhito; Tomono, Kazunori; Izumikawa, Koichi; Yanagihara, Katsunori; Ohno, Hideaki; Miyazaki, Yoshitsugu; Hirakata, Yoichi; Mizuta, Yohei; Kadota, Jun-ichi; Iglewski, Barbara H.; Kohno, Shigeru

    2005-01-01

    The aim of the present study was to elucidate the effect of the macrolide antibiotic azithromycin on Pseudomonas aeruginosa. We studied the susceptibility to azithromycin in P. aeruginosa PAO1 using a killing assay. PAO1 cells at the exponential growth phase were resistant to azithromycin. In contrast, PAO1 cells at the stationary growth phase were sensitive to azithromycin. The divalent cations Mg2+ and Ca2+ inhibited this activity, suggesting that the action of azithromycin is mediated by interaction with the outer membranes of the cells, since the divalent cations exist between adjacent lipopolysaccharides (LPSs) and stabilize the outer membrane. The divalent cation chelator EDTA behaved in a manner resembling that of azithromycin; EDTA killed more PAO1 in the stationary growth phase than in the exponential growth phase. A 1-N-phenylnaphthylamine assay showed that azithromycin interacted with the outer membrane of P. aeruginosa PAO1 and increased its permeability while Mg2+ and Ca2+ antagonized this action. Our results indicate that azithromycin directly interacts with the outer membrane of P. aeruginosa PAO1 by displacement of divalent cations from their binding sites on LPS. This action explains, at least in part, the effectiveness of sub-MICs of macrolide antibiotics in pseudomonal chronic airway infection. PMID:15793115

  2. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    Science.gov (United States)

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  3. Expression and Distribution of Leptospiral Outer Membrane Components during Renal Infection of Hamsters

    Science.gov (United States)

    Barnett, Jeanne K.; Barnett, Dean; Bolin, Carole A.; Summers, Theresa A.; Wagar, Elizabeth A.; Cheville, Norman F.; Hartskeerl, Rudy A.; Haake, David A.

    1999-01-01

    The outer membrane of pathogenic Leptospira species grown in culture media contains lipopolysaccharide (LPS), a porin (OmpL1), and several lipoproteins, including LipL36 and LipL41. The purpose of this study was to characterize the expression and distribution of these outer membrane antigens during renal infection. Hamsters were challenged with host-derived Leptospira kirschneri to generate sera which contained antibodies to antigens expressed in vivo. Immunoblotting performed with sera from animals challenged with these host-derived organisms demonstrated reactivity with OmpL1, LipL41, and several other proteins but not with LipL36. Although LipL36 is a prominent outer membrane antigen of cultivated L. kirschneri, its expression also could not be detected in infected hamster kidney tissue by immunohistochemistry, indicating that expression of this protein is down-regulated in vivo. In contrast, LPS, OmpL1, and LipL41 were demonstrated on organisms colonizing the lumen of proximal convoluted renal tubules at both 10 and 28 days postinfection. Tubular epithelial cells around the luminal colonies had fine granular cytoplasmic LPS. When the cellular inflammatory response was present in the renal interstitium at 28 days postinfection, LPS and OmpL1 were also detectable within interstitial phagocytes. These data establish that outer membrane components expressed during infection have roles in the induction and persistence of leptospiral interstitial nephritis. PMID:9916100

  4. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S

    2009-01-01

    In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one...

  5. Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC

    DEFF Research Database (Denmark)

    Birkelund, Svend; Morgan-Fisher, Marie; Timmerman, Evy

    2009-01-01

    amino groups of in vivo generated proteolytic cleavage sites facilitated identification of such sites in known outer membrane proteins (MOMPs). Our results further support a proposed prediction of the topology of the MOMPs. Furthermore, a previously unknown MOMP, CTL0626 (Ct372), was assigned as an MOMP...

  6. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond.

    Science.gov (United States)

    Zückert, Wolfram R

    2014-08-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the "+2 rule". Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  7. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria

    KAUST Repository

    Ates, Louis S.

    2015-05-04

    Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow

  8. Inhibitory Mechanism of the Outer Membrane Growth of Chronic Subdural Hematomas.

    Science.gov (United States)

    Osuka, Koji; Watanabe, Yasuo; Usuda, Nobuteru; Aoyama, Masahiro; Iwami, Kenichiro; Takeuchi, Mikinobu; Watabe, Takeya; Takayasu, Masakazu

    2017-06-01

    We previously demonstrated that the inflammatory cytokine interleukin-6 (IL-6) activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway in fibroblasts within the outer membranes of chronic subdural hematomas (CSDHs), and the activation of this pathway may induce CSDH outer membrane growth. The inhibitory system for this signal transduction pathway is unknown. CSDH fluids were obtained from 10 patients during trepanation surgery as the case group, and cerebrospinal fluid (CSF) samples were obtained from seven patients suffering from subarachnoid hemorrhage (SAH) on Day 1 as the control group. The concentrations of IL-6, soluble IL-6 receptor (sIL-6R), and soluble gp130 (sgp130) in CSDH fluid and CSF were measured using enzyme immunoassay kits. The co-localization of IL-6 and sgp130 in CSDH fluid was examined by immunoprecipitation. The expression levels of STAT3, JAK2, suppressor of cytokine signaling 3 (SOCS3), and protein inhibitor of activated Stat3 (PIAS3) in the outer membranes of CSDHs were examined by immunostaining. Soluble IL-6R and sgp130 concentrations in CSDH fluid were significantly higher than those in CSF after SAH. Sgp130 and IL-6 were co-immunoprecipitated from CSDH fluid. Immunostaining revealed STAT3, JAK2, SOCS3, and PIAS3 expression in fibroblasts located in the outer membranes of CSDHs. Soluble gp130 binds to IL-6/sIL-6R and acts as an antagonist of the JAK/STAT signaling pathway. SOCS3 also binds to JAK and inhibits its signaling pathway. In addition, PIAS3 regulates STAT3 activation. These factors might down-regulate the IL-6/JAK/STAT signaling pathway in fibroblasts within CSDH outer membranes. Therefore, these molecules may be novel therapeutic targets for the inhibition of CSDH growth.

  9. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  10. Pathogenicity of Vibrio anguillarum serogroup O1 strains compared to plasmids, outer membrane protein profiles and siderophore production

    DEFF Research Database (Denmark)

    Pedersen, K.; Gram, Lone; Austin, D.A.

    1997-01-01

    The virulence of 18 strains of Vibrio anguillarum serogroup 01 was compared to plasmid content, expression of siderophores and outer membrane proteins. All strains, irrespective of plasmid content, produced siderophores and inducible outer membrane proteins under iron-limited conditions. Only str...

  11. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  12. The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis

    Science.gov (United States)

    Oleastro, Mónica; Ménard, Armelle

    2013-01-01

    Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1) colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2) evasion from the human immune system and (3) efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence. PMID:24833057

  13. Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Nafiseh Noroozi

    2018-03-01

    Full Text Available Objective(s: Enterotoxigenic Escherichia coli (ETEC is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs. These structures contain various immunogenic virulence proteins such as LT and therefore can be used as vaccine candidates. In this study we attempted to isolate the OMVs of ETEC cultivated at different temperatures and evaluate their immunogenicity and protective efficacy in a murine model of infection. Materials and Methods: OMVs was purified from bacterial supernatant by ultracentrifugation. OMVs were encapsulated in chitosan nanoparticles prepared by ionic gelation method within a layer of Eudragit L100 for oral delivery.  Female BALB/c mice of 9 weeks’ old were immunized by parenteral injection and oral administration with free and encapsulated OMVs obtained from bacteria cultivated at 37°C and 42°C. The serum samples were collected and the antibody titers were measured by an enzyme-linked immunosorbent assay (ELISA. Results: The protein concentrations of OMVs were 3.47 mg/ml and 2.46 mg/ml for bacteria grown at 37°C and 42°C respectively. OMVs loaded into nanoparticles (NP-OMVs were homogeneous and spherical in shape, with a size of 532 nm. The encapsulation efficiency of NP was 90%. Mice immunized with OMVs, inhibited the ETEC colonization in their small intestine and induced production of antibodies against LT toxin. Conclusion: The results obtained in this research place OMVs among promising candidates to be used for vaccination.

  14. Identification and network of outer membrane proteins regulating streptomysin resistance in Escherichia coli.

    Science.gov (United States)

    Li, Hui; Wang, Bao-Cheng; Xu, Wen-Jiao; Lin, Xiang-Min; Peng, Xuan-Xian

    2008-09-01

    Bacterial Outer membrane (OM) proteins involved in antibiotic resistance have been reported. However, little is known about the OM proteins and their interaction network regulating streptomycin (SM) resistance. In the present study, a subproteomic approach was utilized to characterize OM proteins of Escherichia coli with SM resistance. TolC, OmpT and LamB were found to be up-regulated, and FadL, OmpW and a location-unknown protein Dps were down-regulated in the SM-resistant E. coli strain. These changes at the level of protein expression were validated using Western blotting. The possible roles of the altered proteins involved in the SM resistance were investigated using genetic modified strains with the deletion of these altered genes. It is found that decreased and elevated minimum inhibitory concentrations and survival capabilities of the gene deleted strains and their resistant strains, Delta tolC, Delta ompT, Delta dps, Delta tolC-R, Delta ompT-R, Delta dps-R and Delta fadL-R, were correlated with the changes of TolC, OmpT, Dps and FadL at the protein expression levels detected by 2-DE gels, respectively. The results may suggest that these proteins are the key OM proteins and play important roles in the regulation of SM resistance in E. coli. Furthermore, an interaction network of altered OM proteins involved in the SM resistance was proposed in this report. Of the six altered proteins, TolC may play a central role in the network. These findings may provide novel insights into mechanisms of SM resistance in E. coli.

  15. The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis

    Directory of Open Access Journals (Sweden)

    Armelle Ménard

    2013-08-01

    Full Text Available Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1 colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2 evasion from the human immune system and (3 efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence.

  16. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    Science.gov (United States)

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  17. Involvement of outer membrane proteins and peroxide-sensor genes in Burkholderia cepacia resistance to isothiazolone.

    Science.gov (United States)

    Zhou, Gang; Shi, Qing-shan; Ouyang, You-sheng; Chen, Yi-ben

    2014-04-01

    Isothiazolones are used as preservatives in various modern industrial products. Although microorganisms that exhibit resistance towards these biocides have been identified, the underlying resistance mechanisms are still unclear. Therefore, we investigated the resistance properties of the following Burkholderia cepacia strains to Kathon (a representative of isothiazolones): a wild-type (WT) strain; a laboratory resistance strain (BC-IR) induced from WT; and an isolated strain (BC-327) screened from industrial contamination samples. The bacterial cell structure was disrupted by 50 μg ml⁻¹ Kathon treatment. BC-IR and BC-327 did not display resistance in the presence of 1 ml L⁻¹ Tween 80, 1 ml L⁻¹ Triton X-100, 0.1 % sodium dodecyl sulfate or 1 mmol L⁻¹ EDTA-2Na. Additionally, BC-IR and BC-327 exhibited lower relative conductivity from 10 to 180 min. The types as well as the levels of outer-membrane proteins (OMPs) were altered among WT, BC-IR and BC-327. Finally, the two Kathon-resistance strains BC-IR and BC-327 presented higher resistance capacity to H₂O₂. We measured the levels of peroxide-sensor genes and observed that the transcriptional activator oxyR, superoxide dismutase sod1, sod2, catalase cat1 and cat3 were all up-regulated under oxidative conditions for all strains. Taken together, OMPs and peroxide-sensor genes in B. cepacia contributed to isothiazolone resistance; However, the laboratory strain BC-IR exhibited a different resistance mechanism and properties compared to the isolated strain BC-327.

  18. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions

    International Nuclear Information System (INIS)

    Chen, Yong; Liu, Liguo; Fu, Hua; Wei, Candong; Jin, Qi

    2014-01-01

    Highlights: • We utilized mTRAQ-based quantification to study protein changes in Congo red-induced OMVs. • A total of 148 proteins were identified in S. flexneri-derived OMVs. • Twenty-eight and five proteins are significantly up- and down-regulated in the CR-induced OMV, respectively. • The result implied that a special sorting mechanism of particular proteins into OMVs may exist. • Key node proteins in the protein interaction network might be important for pathogenicity. - Abstract: The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear. S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein–protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria

  19. Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli

    International Nuclear Information System (INIS)

    Albrecht, Reinhard; Zeth, Kornelius; Söding, Johannes; Lupas, Andrei; Linke, Dirk

    2006-01-01

    The outer membrane protein OmpW from E. coli was overexpressed in inclusion bodies and refolded with the help of detergent. The protein has been crystallized and the crystals diffract to 3.5 Å resolution. OmpW is an eight-stranded 21 kDa molecular-weight β-barrel protein from the outer membrane of Gram-negative bacteria. It is a major antigen in bacterial infections and has implications in antibiotic resistance and in the oxidative degradation of organic compounds. OmpW from Escherichia coli was cloned and the protein was expressed in inclusion bodies. A method for refolding and purification was developed which yields properly folded protein according to circular-dichroism measurements. The protein has been crystallized and crystals were obtained that diffracted to a resolution limit of 3.5 Å. The crystals belong to space group P422, with unit-cell parameters a = 122.5, c = 105.7 Å. A homology model of OmpW is presented based on known structures of eight-stranded β-barrels, intended for use in molecular-replacement trials

  20. Resistance of Yersinia pestis to Complement-Dependent Killing Is Mediated by the Ail Outer Membrane Protein▿

    Science.gov (United States)

    Bartra, Sara Schesser; Styer, Katie L.; O'Bryant, Deanna M.; Nilles, Matthew L.; Hinnebusch, B. Joseph; Aballay, Alejandro; Plano, Gregory V.

    2008-01-01

    Yersinia pestis, the causative agent of plague, must survive in blood in order to cause disease and to be transmitted from host to host by fleas. Members of the Ail/Lom family of outer membrane proteins provide protection from complement-dependent killing for a number of pathogenic bacteria. The Y. pestis KIM genome is predicted to encode four Ail/Lom family proteins. Y. pestis mutants specifically deficient in expression of each of these proteins were constructed using lambda Red-mediated recombination. The Ail outer membrane protein was essential for Y. pestis to resist complement-mediated killing at 26 and 37°C. Ail was expressed at high levels at both 26 and 37°C, but not at 6°C. Expression of Ail in Escherichia coli provided protection from the bactericidal activity of complement. High-level expression of the three other Y. pestis Ail/Lom family proteins (the y1682, y2034, and y2446 proteins) provided no protection against complement-mediated bacterial killing. A Y. pestis ail deletion mutant was rapidly killed by sera obtained from all mammals tested except mouse serum. The role of Ail in infection of mice, Caenorhabditis elegans, and fleas was investigated. PMID:18025094

  1. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein.

    Science.gov (United States)

    Bartra, Sara Schesser; Styer, Katie L; O'Bryant, Deanna M; Nilles, Matthew L; Hinnebusch, B Joseph; Aballay, Alejandro; Plano, Gregory V

    2008-02-01

    Yersinia pestis, the causative agent of plague, must survive in blood in order to cause disease and to be transmitted from host to host by fleas. Members of the Ail/Lom family of outer membrane proteins provide protection from complement-dependent killing for a number of pathogenic bacteria. The Y. pestis KIM genome is predicted to encode four Ail/Lom family proteins. Y. pestis mutants specifically deficient in expression of each of these proteins were constructed using lambda Red-mediated recombination. The Ail outer membrane protein was essential for Y. pestis to resist complement-mediated killing at 26 and 37 degrees C. Ail was expressed at high levels at both 26 and 37 degrees C, but not at 6 degrees C. Expression of Ail in Escherichia coli provided protection from the bactericidal activity of complement. High-level expression of the three other Y. pestis Ail/Lom family proteins (the y1682, y2034, and y2446 proteins) provided no protection against complement-mediated bacterial killing. A Y. pestis ail deletion mutant was rapidly killed by sera obtained from all mammals tested except mouse serum. The role of Ail in infection of mice, Caenorhabditis elegans, and fleas was investigated.

  2. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Science.gov (United States)

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  3. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  4. Genetic and biochemical characterization of ISP6, a small mitochondrial outer membrane protein associated with the protein translocation complex.

    OpenAIRE

    Kassenbrock, C K; Cao, W; Douglas, M G

    1993-01-01

    To search genetically for additional components of the protein translocation apparatus of mitochondria, we have used low fidelity PCR mutagenesis to generate temperature-sensitive mutants in the outer membrane translocation pore component ISP42. A high copy number suppressor of temperature-sensitive isp42 has been isolated and sequenced. This novel gene, denoted ISP6, encodes a 61 amino acid integral membrane protein of the mitochondrial outer membrane, which is oriented with its amino-termin...

  5. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    International Nuclear Information System (INIS)

    Hong, H.; Patel, D.; Tamm, L.; van den Berg, B.

    2006-01-01

    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM

  6. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    Directory of Open Access Journals (Sweden)

    D. Darwis

    2012-08-01

    Full Text Available Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in–vitro degradation study in synthetic body fluid (SBF of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure

  7. Neurenteric Cysts Found on the Outer Membrane of a Subdural Haematoma

    Directory of Open Access Journals (Sweden)

    Satoshi Takahashi

    2013-01-01

    Full Text Available We report on a patient initially diagnosed with a chronic subdural haematoma that was resistant to treatment. After the second burr hole craniostomy within a half month failed to resolve the subdural haematoma (SDH, we performed a craniotomy to identify the point of bleeding. Macroscopic evaluation showed that most of the outer membrane of the SDH was transparent; however, further examination revealed the presence of multiple white regions. Pathologic examination showed that the white regions were fluid filled and surrounded by columnar ciliated epithelial cells. These lesions were pathologically diagnosed as neurenteric cysts. To our knowledge, this is the first report on a patient with neurenteric cysts found on the outer membrane of a CSDH. We agree that a craniotomy is a treatment of last resort for recurrent CSDHs; however, sometimes this procedure can be very useful for identifying underlying causes of obstinate SDHs as well as for their treatment.

  8. Structure of the surface layer protein of the outer membrane of Spirillum serpens

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, R.M.; Chiu, W.; Grano, D.

    1979-01-01

    The outer membrane of the Gram negative bacterium, Spirillum serpens VHA, possesses an ordered surface-layer protein. A morphological model of this protein is proposed on the basis of electron micrographs that have been obtained of unstained, hydrated specimens as well as of negatively stained specimens. The molecular weight of the protein monomer in this model is consistent with the surface-layer protein molecular weight obtained by gel electrophoresis and estimated to be 140,000. In addition, gel electrophoresis reveals the presence of proteins of MW approx. = 35,000 and MW approx. = 78,000, which remain associated with the outer membrane under conditions where the ordered surface-layer protein is released in soluble form.

  9. Yersinia pestis uses the Ail outer membrane protein to recruit vitronectin.

    Science.gov (United States)

    Bartra, Sara Schesser; Ding, Yi; Miya Fujimoto, L; Ring, Joshua G; Jain, Vishal; Ram, Sanjay; Marassi, Francesca M; Plano, Gregory V

    2015-11-01

    Yersinia pestis, the agent of plague, requires the Ail (attachment invasion locus) outer membrane protein to survive in the blood and tissues of its mammalian hosts. Ail is important for both attachment to host cells and for resistance to complement-dependent bacteriolysis. Previous studies have shown that Ail interacts with components of the extracellular matrix, including fibronectin, laminin and heparan sulfate proteoglycans, and with the complement inhibitor C4b-binding protein. Here, we demonstrate that Ail-expressing Y. pestis strains bind vitronectin - a host protein with functions in cell attachment, fibrinolysis and inhibition of the complement system. The Ail-dependent recruitment of vitronectin resulted in efficient cleavage of vitronectin by the outer membrane Pla (plasminogen activator protease). Escherichia coli DH5α expressing Y. pestis Ail bound vitronectin, but not heat-treated vitronectin. The ability of Ail to directly bind vitronectin was demonstrated by ELISA using purified refolded Ail in nanodiscs.

  10. The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.

    Science.gov (United States)

    Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M

    1997-09-01

    Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.

  11. Proteolytic cleavage of the Chlamydia pneumoniae major outer membrane protein in the absence of Pmp10

    DEFF Research Database (Denmark)

    Juul, Nicolai Stefan; Timmerman, E; Gevaert, K

    2007-01-01

    The genome of the obligate intracellular bacteria Chlamydia pneumoniae contains 21 genes encoding polymorphic membrane proteins (Pmp). While no function has yet been attributed to the Pmps, they may be involved in an antigenic variation of the Chlamydia surface. It has previously been demonstrated...... that Pmp10 is differentially expressed in the C. pneumoniae CWL029 isolate. To evaluate whether the absence of Pmp10 in the outer membrane causes further changes to the C. pneumoniae protein profile, we subcloned the CWL029 isolate and selected a clone with minimal Pmp10 expression. Subsequently, we...

  12. Distinct constrictive processes, separated in time and space,divide Caulobacter inner and outer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Ellen M.; Comolli, Luis R.; Chen, Joseph C.; Downing,Kenneth H.; Moerner, W.E.; McAdams, Harley H.

    2005-05-01

    Cryo-electron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner, and then the outer, membrane in a manner distinctly different from septum-forming bacteria. The smallest observed pre-fission constrictions were 60 nm for both the inner and outer membrane. FLIP experiments had previously shown cytoplasmic compartmentalization, when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, occurring 18 min before daughter cell separation in a 135 min cell cycle. Here, we used FLIP experiments with membrane-bound and periplasmic fluorescent proteins to show that (1) periplasmic compartmentalization occurs after cytoplasmic compartmentalization, consistent with the cryoEM observations, and (2) inner membrane and periplasmic proteins can diffuse past the FtsZ constriction site, indicating that the cell division machinery does not block membrane diffusion.

  13. Einfluss von Legionella pneumophila outer membrane vesicles auf die bakterielle Replikation in Makrophagen

    OpenAIRE

    Jung, Anna Lena; Schmeck, Bernd (Prof. Dr.)

    2016-01-01

    Gramnegative Bakterien treten über die Sekretion verschiedenster Moleküle mit ihrer Umwelt in Kontakt. Die Freisetzung von Proteinen und Nukleinsäuren kann aber nicht nur über die bakteriellen Sekretionssysteme vermittelt werden, sondern auch über outer membrane vesicles (OMVs) erfolgen. Diese kleinen, sphäroiden Membranvesikel werden von allen gramnegativen Bakterien gebildet und können über weite Entfernung wirken, da die zu tra...

  14. Structure Prediction of Outer Membrane Protease Protein of Salmonella typhimurium Using Computational Techniques

    Directory of Open Access Journals (Sweden)

    Rozina Tabassum

    2016-03-01

    Full Text Available Salmonella typhimurium, a facultative gram-negative intracellular pathogen belonging to family Enterobacteriaceae, is the most frequent cause of human gastroenteritis worldwide. PgtE gene product, outer membrane protease emerges important in the intracellular phases of salmonellosis. The pgtE gene product of S. typhimurium was predicted to be capable of proteolyzing T7 RNA polymerase and localize in the outer membrane of these gram negative bacteria. PgtE product of S. enterica and OmpT of E. coli, having high sequence similarity have been revealed to degrade macrophages, causing salmonellosis and other diseases. The three-dimensional structure of the protein was not available through Protein Data Bank (PDB creating lack of structural information about E protein. In our study, by performing Comparative model building, the three dimensional structure of outer membrane protease protein was generated using the backbone of the crystal structure of Pla of Yersinia pestis, retrieved from PDB, with MODELLER (9v8. Quality of the model was assessed by validation tool PROCHECK, web servers like ERRAT and ProSA are used to certify the reliability of the predicted model. This information might offer clues for better understanding of E protein and consequently for developmet of better therapeutic treatment against pathogenic role of this protein in salmonellosis and other diseases.

  15. Cold Stress Makes Escherichia coli Susceptible to Glycopeptide Antibiotics by Altering Outer Membrane Integrity.

    Science.gov (United States)

    Stokes, Jonathan M; French, Shawn; Ovchinnikova, Olga G; Bouwman, Catrien; Whitfield, Chris; Brown, Eric D

    2016-02-18

    A poor understanding of the mechanisms by which antibiotics traverse the outer membrane remains a considerable obstacle to the development of novel Gram-negative antibiotics. Herein, we demonstrate that the Gram-negative bacterium Escherichia coli becomes susceptible to the narrow-spectrum antibiotic vancomycin during growth at low temperatures. Heterologous expression of an Enterococcus vanHBX vancomycin resistance cluster in E. coli confirmed that the mechanism of action was through inhibition of peptidoglycan biosynthesis. To understand the nature of vancomycin permeability, we screened for strains of E. coli that displayed resistance to vancomycin at low temperature. Surprisingly, we observed that mutations in outer membrane biosynthesis suppressed vancomycin activity. Subsequent chemical analysis of lipopolysaccharide from vancomycin-sensitive and -resistant strains confirmed that suppression was correlated with truncations in the core oligosaccharide of lipopolysaccharide. These unexpected observations challenge the current understanding of outer membrane permeability, and provide new chemical insights into the susceptibility of E. coli to glycopeptide antibiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Outer membrane protein A (OmpA: a new player in shigella flexneri protrusion formation and inter-cellular spreading.

    Directory of Open Access Journals (Sweden)

    Cecilia Ambrosi

    Full Text Available Outer membrane protein A (OmpA is a multifaceted predominant outer membrane protein of Escherichia coli and other Enterobacteriaceae whose role in the pathogenesis of various bacterial infections has recently been recognized. Here, the role of OmpA on the virulence of Shigella flexneri has been investigated. An ompA mutant of wild-type S. flexneri 5a strain M90T was constructed (strain HND92 and it was shown to be severely impaired in cell-to-cell spreading since it failed to plaque on HeLa cell monolayers. The lack of OmpA significantly reduced the levels of IcsA while the levels of cell associated and released IcsP-cleaved 95 kDa amino-terminal portion of the mature protein were similar. Nevertheless, the ompA mutant displayed IcsA exposed across the entire bacterial surface. Surprisingly, the ompA mutant produced proper F-actin comet tails, indicating that the aberrant IcsA exposition at bacterial lateral surface did not affect proper activation of actin-nucleating proteins, suggesting that the absence of OmpA likely unmasks mature or cell associated IcsA at bacterial lateral surface. Moreover, the ompA mutant was able to invade and to multiply within HeLa cell monolayers, although internalized bacteria were found to be entrapped within the host cell cytoplasm. We found that the ompA mutant produced significantly less protrusions than the wild-type strain, indicating that this defect could be responsible of its inability to plaque. Although we could not definitely rule out that the ompA mutation might exert pleiotropic effects on other S. flexneri genes, complementation of the ompA mutation with a recombinant plasmid carrying the S. flexneri ompA gene clearly indicated that a functional OmpA protein is required and sufficient for proper IcsA exposition, plaque and protrusion formation. Moreover, an independent ompA mutant was generated. Since we found that both mutants displayed identical virulence profile, these results further supported the

  17. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Directory of Open Access Journals (Sweden)

    Miranda Lo

    Full Text Available BACKGROUND: Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. METHODOLOGY/PRINCIPAL FINDINGS: To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS. We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. CONCLUSIONS/SIGNIFICANCE: This is the first study to compare transcriptional and translational responses to temperature

  18. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    Science.gov (United States)

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E; Fridberger, Anders; Zuo, Jian

    2015-09-01

    Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.

  19. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    Directory of Open Access Journals (Sweden)

    Tetsuji Yamashita

    2015-09-01

    Full Text Available Nature's fastest motors are the cochlear outer hair cells (OHCs. These sensory cells use a membrane protein, Slc26a5 (prestin, to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.

  20. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Directory of Open Access Journals (Sweden)

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  1. Identification of immunogenic outer membrane proteins of Haemophilus influenzae type b in the infant rat model system

    International Nuclear Information System (INIS)

    Hansen, E.J.; Frisch, C.F.; McDade, R.L. Jr.; Johnston, K.H.

    1981-01-01

    Outer membrane proteins of Haemophilus influenzae type b which are immunogenic in infant rats were identified by a radioimmunoprecipitation method. Intact cells of H. influenzae type b were radioiodinated by a lactoperoxidase-catalyzed procedure, and an outer membrane-containing fraction was prepared from these cells. These radioiodinated outer membranes were mixed with sera obtained from rats convalescing from systemic H. influenzae type b disease induced at 6 days of age, and the resultant (antibody-outer membrane protein antigen) complexes were extracted from these membranes by treatment with nonionic detergent and ethylenediaminetetraacetic acid. These soluble antibody-antigen complexes were isolated by means of adsorption to protein A-bearing staphylococci, and the radioiodinated protein antigens were identified by gel electrophoresis followed by autoradiography. Infant rats were shown to mount a readily detectable antibody response to several different proteins present in the outer membrane of H. influenzae type b. Individual infant rats were found to vary both qualitatively and quantitatively in their immune response to these immunogenic outer membrane proteins

  2. Identification of immunogenic outer membrane proteins of Haemophilus influenzae type b in the infant rat model system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.J.; Frisch, C.F.; McDade, R.L. Jr.; Johnston, K.H.

    1981-06-01

    Outer membrane proteins of Haemophilus influenzae type b which are immunogenic in infant rats were identified by a radioimmunoprecipitation method. Intact cells of H. influenzae type b were radioiodinated by a lactoperoxidase-catalyzed procedure, and an outer membrane-containing fraction was prepared from these cells. These radioiodinated outer membranes were mixed with sera obtained from rats convalescing from systemic H. influenzae type b disease induced at 6 days of age, and the resultant (antibody-outer membrane protein antigen) complexes were extracted from these membranes by treatment with nonionic detergent and ethylenediaminetetraacetic acid. These soluble antibody-antigen complexes were isolated by means of adsorption to protein A-bearing staphylococci, and the radioiodinated protein antigens were identified by gel electrophoresis followed by autoradiography. Infant rats were shown to mount a readily detectable antibody response to several different proteins present in the outer membrane of H. influenzae type b. Individual infant rats were found to vary both qualitatively and quantitatively in their immune response to these immunogenic outer membrane proteins.

  3. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis.

    Science.gov (United States)

    Horne, Jim E; Radford, Sheena E

    2016-06-15

    Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed. © 2016 The Author(s).

  4. Accelerated microevolution in an outer membrane protein (OMP of the intracellular bacteria Wolbachia

    Directory of Open Access Journals (Sweden)

    Russell Jacob A

    2010-02-01

    Full Text Available Abstract Background Outer membrane proteins (OMPs of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods. Results Here we performed an analysis of 515 unique alleles found in 831 Wolbachia isolates, to investigate WSP structure, microevolution and population genetics. WSP shows an eight-strand transmembrane β-barrel structure with four extracellular loops containing hypervariable regions (HVRs. A clustering approach based upon patterns of HVR haplotype diversity was used to group similar WSP sequences and to estimate the relative contribution of mutation and recombination during early stages of protein divergence. Results indicate that although point mutations generate most of the new protein haplotypes, recombination is a predominant force triggering diversity since the very first steps of protein evolution, causing at least 50% of the total amino acid variation observed in recently diverged proteins. Analysis of synonymous variants indicates that individual WSP protein types are subject to a very rapid turnover and that HVRs can accommodate a virtually unlimited repertoire of peptides. Overall distribution of WSP across hosts supports a non-random association of WSP with the host genus, although extensive horizontal transfer has occurred also in recent times. Conclusions In OMPs of vertebrate pathogens, large recombination impact, positive

  5. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kristin M Watts

    2008-10-01

    Full Text Available SurA is a periplasmic peptidyl-prolyl isomerase (PPIase and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its "core module" (the N- plus C-terminal domains, based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates.In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC, namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module.Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.

  6. Safety and Immunogenicity Testing of an Intranasal Group B Meningococcal Native Outer Membrane Vesicle Vaccine in Healthy Volunteers

    National Research Council Canada - National Science Library

    Drabick, Joseph

    1998-01-01

    An intranasal vaccine composed of native outer membrane vesicles (NOMV) not exposed to detergent or denaturing agents was prepared from the group B meningococcal strain and tested in 32 healthy adult volunteers...

  7. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells

    Science.gov (United States)

    Herrera-Valencia, E. E.; Rey, Alejandro D.

    2014-01-01

    Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found. PMID:25332388

  8. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein.

    OpenAIRE

    Burns, J L; Clark, D K

    1992-01-01

    The most common mechanism of antibiotic resistance in multiply resistant Pseudomonas cepacia is decreased porin-mediated outer membrane permeability. In some gram-negative organisms this form of antibiotic resistance can be induced by growth in the presence of weak acids, such as salicylates, which suppress porin synthesis. To determine the effects of salicylates on outer membrane permeability of P. cepacia, a susceptible laboratory strain, 249-2, was grown in 10 mM sodium salicylate. Antibio...

  9. Long circulating micelles of an amphiphilic random copolymer bearing cell outer membrane phosphorylcholine zwitterions.

    Science.gov (United States)

    Zhao, Jing; Chai, Yu-Dong; Zhang, Jing; Huang, Peng-Fei; Nakashima, Kenichi; Gong, Yong-Kuan

    2015-04-01

    Polymeric micelles with cell outer membrane mimetic structure were prepared in water from amphiphilic random copolymers bearing both the hydrophilic phosphorylcholine zwitterions and hydrophobic octadecyl side chains of cell outer membrane. The polymeric micelles showed sizes ranging from 80 nm to 120 nm in hydrodynamic diameter and zeta-potentials from -6.4 mV to -2.4 mV by dynamic light scattering measurements. The micelles loaded with 6-coumarin as a fluorescence probe were stable to investigate their blood circulation and biodistribution. The in vitro phagocytosis results using murine peritoneal macrophages showed 10-fold reduction compared with a reference micelle. The in vivo blood circulation half-life of the polymeric micelles following intravenous administration in New Zealand Rabbits was increased from 0.55 h to 90.5h. More interestingly, tissue distribution results showed that the concentration of the micelles in the kidney is 4-fold higher than that in the liver and other organs 48 h after administration. The results of this work show great promise for designing more effective stealth drug carriers that can minimize reticuloendothelial system clearance and circulate for long time to reach target by using simple cell membrane mimetic random copolymer micelles. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

    Science.gov (United States)

    Bartolini, Erika; Ianni, Elvira; Frigimelica, Elisabetta; Petracca, Roberto; Galli, Giuliano; Berlanda Scorza, Francesco; Norais, Nathalie; Laera, Donatello; Giusti, Fabiola; Pierleoni, Andrea; Donati, Manuela; Cevenini, Roberto; Finco, Oretta; Grandi, Guido; Grifantini, Renata

    2013-01-01

    Background Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform. PMID:24009891

  11. Expression of human CEACAM1 in transgenic mice limits the Opa-specific immune response against meningococcal outer membrane vesicles.

    Science.gov (United States)

    Zariri, Afshin; van Dijken, Harry; Hamstra, Hendrik-Jan; van der Flier, Michiel; Vidarsson, Gestur; van Putten, Jos P M; Boog, Claire J P; van den Dobbelsteen, Germie; van der Ley, Peter

    2013-11-12

    Outer membrane vesicles (OMVs) have been extensively investigated as meningococcal vaccine candidates. Among their major components are the opacity (Opa) proteins, a family of surface-exposed outer membrane proteins important for bacterial adherence and entry into host cells. Many Opa-dependent interactions are mediated through the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of receptors. Importantly, binding of Opa to CEACAM1 has been reported to suppress human CD4 T cell proliferation in vitro in response to OMV preparations. This raises the question whether OMV vaccines should contain Opa proteins at all. Until now it has been difficult to answer this question, as the proposed immunosuppressive effect was only demonstrated with human cells in vitro, while immunization experiments in mice are not informative because the Opa interaction is specific for human CEACAM1. In the present study we have used Opa+ and Opa- OMVs for immunization experiments in a human CEACAM1 transgenic mouse model. OMVs were prepared from a meningococcal strain H44/76 variant expressing the CEACAM1-binding OpaJ protein, and from an isogenic variant in which all opa genes have been inactivated. Both the CEACAM1 expressing transgenic mice and their congenic littermates lacking it were immunized twice with the OMV preparations, and the sera were analyzed for bactericidal activity and ELISA antibody titres. Total IgG antibodies against the OMVs were similar in both mouse strains. Yet the titres for IgG antibodies specific for purified OpaJ protein were significantly lower in the mice expressing human CEACAM1 than in the nontransgenic mice. No significant differences were found in bactericidal titres among the four groups. Overall, these data indicate that expression of human CEACAM1 confers a reduced Opa-specific antibody response in vivo without affecting the overall immune response against other OMV antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Isolation and Identification of Outer Membrane Proteins of Helicobacter Pylori of Iranian Patient by SDS-PAGE

    Directory of Open Access Journals (Sweden)

    M. Doosty

    1998-04-01

    Full Text Available The function of Helicobacter pylori (H.pylori is confirmed as one of the factors which motivates gastric and duodenal ulcer and gastritis. Various methods are used to diagnose the infection. Serological tests are the easiest and most harmless for the patients. Probably, H.pylori strains in Iran are different from the strains in other countries. Hence, it seems neccessary to design a specific serological test to recognize and identify different strains of bacterial antigenic proteins of Iranian patients."nSince the most manifest and specific to these bacterial antigens are the "Outer Membrane Protein" (OMP, therefore, the first necessary step is to separate and purify H.pylori OMP and then to identify antigenic proteins."nIn this study, we received bacteria colony that belonged to 15 patients with gastric or duodenal ulcer, which had been growed in blood agar or brucella broth. After processing such as washing, freezing and defreezing, sonicating, centrifugation with high speed (10,000 g and treatment with sarcosyl, the sarcosyl insoluble fraction was extracted. Sodium Dodecyl Sulfate - Poly Acrylamide Gel Electrophoresis (SDS-PAGE was preformed. From all 15 OMP specimens, we isolated protein bands."nThe first two bands with higher MW, were major bands and the two lighter bands were the minor bands. Approximate MW of these 4 proteins are equal to 67000, 61000, 30000 and 17000 dalton

  13. Bacillus Cellulase Molecular Cloning, Expression, and Surface Display on the Outer Membrane of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Daehwan Kim

    2018-02-01

    Full Text Available One of the main challenges of using recombinant enzymes is that they are derived from genetically-modified microorganisms commonly located in the intracellular region. The use of these recombinant enzymes for commercial purposes requires the additional processes of cell disruption and purification, which may result in enzyme loss, denaturation, and increased total production cost. In this study, the cellulase gene of Bacillus licheniformis ATCC 14580 was cloned, over-expressed, and surface displayed in recombinant Escherichia coli using an ice-nucleation protein (INP. INP, an outer membrane-bound protein from Pseudomonas syringae, was utilized as an anchor linker, which was cloned with a foreign cellulase gene into the pET21a vector to develop a surface display system on the outer membrane of E. coli. The resulting strain successfully revealed cellulase on the host cell surface. The over-expressed INP-cellulase fusion protein was confirmed via staining assay for determining the extracellular cellulase and Western blotting method for the molecular weight (MW of cellulase, which was estimated to be around 61.7 kDa. Cell fractionation and localization tests demonstrated that the INP-cellulase fusion protein was mostly present in the supernatant (47.5% and outer membrane (19.4%, while the wild-type strain intracellularly retained enzymes within cytosol (>61%, indicating that the INP gene directed the cellulase expression on the bacteria cell surface. Further studies of the optimal enzyme activity were observed at 60 °C and pH 7.0, and at least 75% of maximal enzyme activity was preserved at 70 °C.

  14. Effects of intense noise exposure on the outer hair cell plasma membrane fluidity.

    Science.gov (United States)

    Chen, Guang-Di; Zhao, Hong-Bo

    2007-04-01

    Outer hair cells (OHCs) play an important role in cochlear amplification via their length changes (electromotility). A noise-induced cochlear amplification loss leading to a permanent threshold shift (PTS) was observed without a significant hair cell loss in rats [Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9.]. Since motor proteins are inserted in the OHC lateral membrane, any change in the OHC plasma membrane may result in a loss of OHC electromotility, leading to a loss of cochlear amplification. In this study, the lateral diffusion in the OHC plasma membrane was determined in vitro in guinea pigs by fluorescent recovery after photobleaching (FRAP) after an in vivo noise exposure. The lateral diffusion in the OHC plasma membrane demonstrated a length-dependence, which increased as OHC length increased. A reduction in the lateral diffusion was observed in those OHCs with lengths of 50-70 microm after exposure to an 8-kHz octave band noise at 110 dB SPL for 3h. This membrane fluidity change was associated with the selective PTS at frequencies around 8 kHz. The reduction of the lateral diffusion in the OHC lateral wall indicated that noise could impair the micromechanics of the OHC lateral wall and might consequently impair OHC electromotility to induce threshold shift.

  15. Negative membrane capacitance of outer hair cells: electromechanical coupling near resonance.

    Science.gov (United States)

    Iwasa, Kuni H

    2017-09-21

    Outer hair cells in the cochlea have a unique motility in their cell body based on mechanoelectric coupling, with which voltage changes generated by stimuli at their hair bundles drive the cell body and, in turn, it has been assumed, amplifies the signal. In vitro experiments show that the movement of the charges of the motile element significantly increases the membrane capacitance, contributing to the attenuation of the driving voltage. That is indeed the case in the absence of mechanical load. Here it is predicted, however, that the movement of motile charges creates negative capacitance near the condition of mechanical resonance, such as those in the cochlea, enhancing energy output.

  16. Analysis of the humoral immune response to Chlamydia outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Persson, K

    1998-01-01

    The humoral immune response to Chlamydia outer membrane protein 2 (Omp2) was studied. Omp2 is a highly genus-conserved structural protein of all Chlamydia species, containing a variable N-terminal fragment. To analyze where the immunogenic parts were localized, seven highly purified truncated...... patient sera, Omp2 was found to be a major immunogen of both C. pneumoniae and C. trachomatis infections (P immune responses were not confined to any particular region of the Omp2 protein, and no species-specific anti-Omp2 immunoglobulins were detected....

  17. Developmental regulation of tandem promoters for the major outer membrane protein gene of Chlamydia trachomatis.

    Science.gov (United States)

    Stephens, R S; Wagar, E A; Edman, U

    1988-01-01

    Chlamydia trachomatis has a biphasic developmental cycle which is characterized by qualitative and quantitative changes in protein expression. The molecular mechanisms that mediate these changes are unknown. Evidence for transcriptional regulation of the chlamydial major outer membrane protein gene (omp1) was found by Northern hybridization of RNA isolated sequentially during the chlamydial developmental cycle. Early in the growth cycle a single transcript was detected, which was followed hours later in the cycle by an additional transcript. Mapping of the initiating nucleotide for each transcript suggested that this gene is regulated by differential transcription from tandem promoters. Images PMID:2448291

  18. Overexpression and surface localization of the Chlamydia trachomatis major outer membrane protein in Escherichia coli

    DEFF Research Database (Denmark)

    Koehler, JF; Birkelund, Svend; Stephens, RS

    1992-01-01

    The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis....... The induction of MOMP expression had a rapidly lethal effect on the L2rMOMP E. coli clone. Although no genetic system exists for Chlamydia, development of a stable, inducible E. coli clone which overexpresses the chlamydial MOMP permits a study of the biological properties of the MOMP, including...

  19. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing of these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)

  20. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria.

    Science.gov (United States)

    Lamers, Ryan P; Cavallari, Joseph F; Burrows, Lori L

    2013-01-01

    Active efflux of antimicrobial agents is a primary mechanism by which bacterial pathogens can become multidrug resistant. The combined use of efflux pump inhibitors (EPIs) with pump substrates is under exploration to overcome efflux-mediated multidrug resistance. Phenylalanine-arginine β-naphthylamide (PAβN) is a well-studied EPI that is routinely combined with fluoroquinolone antibiotics, but few studies have assessed its utility in combination with β-lactam antibiotics. The initial goal of this study was to assess the efficacy of β-lactams in combination with PAβN against the opportunistic pathogen, Pseudomonas aeruginosa. PAβN reduced the minimal inhibitory concentrations (MICs) of several β-lactam antibiotics against P. aeruginosa; however, the susceptibility changes were not due entirely to efflux inhibition. Upon PAβN treatment, intracellular levels of the chromosomally-encoded AmpC β-lactamase that inactivates β-lactam antibiotics were significantly reduced and AmpC levels in supernatants correspondingly increased, potentially due to permeabilization of the outer membrane. PAβN treatment caused a significant increase in uptake of 8-anilino-1-naphthylenesulfonic acid, a fluorescent hydrophobic probe, and sensitized P. aeruginosa to bulky antibiotics (e.g. vancomycin) that are normally incapable of crossing the outer membrane, as well as to detergent-like bile salts. Supplementation of growth media with magnesium to stabilize the outer membrane increased MICs in the presence of PAβN and restored resistance to vancomycin. Thus, PAβN permeabilizes bacterial membranes in a concentration-dependent manner at levels below those typically used in combination studies, and this additional mode of action should be considered when using PAβN as a control for efflux studies.

  1. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN permeabilizes the outer membrane of gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Ryan P Lamers

    Full Text Available Active efflux of antimicrobial agents is a primary mechanism by which bacterial pathogens can become multidrug resistant. The combined use of efflux pump inhibitors (EPIs with pump substrates is under exploration to overcome efflux-mediated multidrug resistance. Phenylalanine-arginine β-naphthylamide (PAβN is a well-studied EPI that is routinely combined with fluoroquinolone antibiotics, but few studies have assessed its utility in combination with β-lactam antibiotics. The initial goal of this study was to assess the efficacy of β-lactams in combination with PAβN against the opportunistic pathogen, Pseudomonas aeruginosa. PAβN reduced the minimal inhibitory concentrations (MICs of several β-lactam antibiotics against P. aeruginosa; however, the susceptibility changes were not due entirely to efflux inhibition. Upon PAβN treatment, intracellular levels of the chromosomally-encoded AmpC β-lactamase that inactivates β-lactam antibiotics were significantly reduced and AmpC levels in supernatants correspondingly increased, potentially due to permeabilization of the outer membrane. PAβN treatment caused a significant increase in uptake of 8-anilino-1-naphthylenesulfonic acid, a fluorescent hydrophobic probe, and sensitized P. aeruginosa to bulky antibiotics (e.g. vancomycin that are normally incapable of crossing the outer membrane, as well as to detergent-like bile salts. Supplementation of growth media with magnesium to stabilize the outer membrane increased MICs in the presence of PAβN and restored resistance to vancomycin. Thus, PAβN permeabilizes bacterial membranes in a concentration-dependent manner at levels below those typically used in combination studies, and this additional mode of action should be considered when using PAβN as a control for efflux studies.

  2. Defects in the outer limiting membrane are associated with rosette development in the Nrl-/- retina.

    Directory of Open Access Journals (Sweden)

    Michael W Stuck

    Full Text Available The neural retinal leucine zipper (Nrl knockout mouse is a widely used model to study cone photoreceptor development, physiology, and molecular biology in the absence of rods. In the Nrl(-/- retina, rods are converted into functional cone-like cells. The Nrl(-/- retina is characterized by large undulations of the outer nuclear layer (ONL commonly known as rosettes. Here we explore the mechanism of rosette development in the Nrl(-/- retina. We report that rosettes first appear at postnatal day (P8, and that the structure of nascent rosettes is morphologically distinct from what is seen in the adult retina. The lumen of these nascent rosettes contains a population of aberrant cells protruding into the subretinal space that induce infolding of the ONL. Morphologically adult rosettes do not contain any cell bodies and are first detected at P15. The cells found in nascent rosettes are photoreceptors in origin but lack inner and outer segments. We show that the adherens junctions between photoreceptors and Müller glia which comprise the retinal outer limiting membrane (OLM are not uniformly formed in the Nrl(-/- retina and thus allow protrusion of a population of developing photoreceptors into the subretinal space where their maturation becomes delayed. These data suggest that the rosettes of the Nrl(-/- retina arise due to defects in the OLM and delayed maturation of a subset of photoreceptors, and that rods may play an important role in the proper formation of the OLM.

  3. A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization

    Directory of Open Access Journals (Sweden)

    Rhona Kayra Stuart

    2014-06-01

    Full Text Available Deg-family proteases are a periplasm-associated group of proteins that are known to be involved in envelope stress responses and are found in most microorganisms. Orthologous genes SYNW2176 (in strain WH8102 and sync_2523 (strain CC9311 are predicted members of the Deg-protease family and are among the few genes induced by copper stress in both open ocean and coastal marine Synechococcus strains. In contrast to the lack of a phenotype in a similar knockout in Synechocystis PCC6803, a SYNW2176 knockout mutant in strain WH8102 was much more resistant to copper than the wild-type. The mutant also exhibited a significantly altered outer membrane protein composition which may contribute to copper resistance, longer lag phase after transfer, low-level consistent alkaline phosphatase activity, and an inability to induce high alkaline phosphatase activity in response to phosphate stress. This phenotype suggests a protein-quality-control role for SYNW2176, the absence of which leads to a constitutively activated stress response. Deg-protease family proteins in this ecologically important cyanobacterial group thus help to determine outer membrane responses to both nutrients and toxins.

  4. Refolding, purification and crystallization of the FrpB outer membrane iron transporter from Neisseria meningitidis

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Prince, Stephen M.; Patel, Hema; Chan, Hannah; Feavers, Ian M.; Derrick, Jeremy P.

    2012-01-01

    The refolding, purification and crystallization of FrpB from the meningitis pathogen Neisseria meningitidis is described. FrpB is an integral outer membrane protein from the human pathogen Neisseria meningitidis. It is a member of the TonB-dependent transporter family and promotes the uptake of iron across the outer membrane. There is also evidence that FrpB is an antigen and hence a potential component of a vaccine against meningococcal meningitis. FrpB incorporating a polyhistidine tag was overexpressed in Escherichia coli into inclusion bodies. The protein was then solubilized in urea, refolded and purified to homogeneity. Two separate antigenic variants of FrpB were crystallized by sitting-drop vapour diffusion. Crystals of the F5-1 variant diffracted to 2.4 Å resolution and belonged to space group C2, with unit-cell parameters a = 176.5, b = 79.4, c = 75.9 Å, β = 98.3°. Crystal-packing calculations suggested the presence of a monomer in the asymmetric unit. Crystals of the F3-3 variant also diffracted to 2.4 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 85.3, b = 104.6, c = 269.1 Å. Preliminary analysis suggested the presence of an FrpB trimer in the asymmetric unit

  5. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    Science.gov (United States)

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903

  6. Outer membrane proteins analysis of Shigella sonnei and evaluation of their antigenicity in Shigella infected individuals.

    Directory of Open Access Journals (Sweden)

    Hemavathy Harikrishnan

    Full Text Available Bacillary dysentery caused by infection with Shigella spp. remains as serious and common health problem throughout the world. It is a highly multi drug resistant organism and rarely identified from the patient at the early stage of infection. S. sonnei is the most frequently isolated species causing shigellosis in industrialized countries. The antigenicity of outer membrane protein of this pathogen expressed during human infection has not been identified to date. We have studied the antigenic outer membrane proteins expressed by S. sonnei, with the aim of identifying presence of specific IgA and IgG in human serum against the candidate protein biomarkers. Three antigenic OMPs sized 33.3, 43.8 and 100.3 kDa were uniquely recognized by IgA and IgG from patients with S. sonnei infection, and did not cross-react with sera from patients with other types of infection. The antigenic proteome data generated in this study are a first for OMPs of S. sonnei, and they provide important insights of human immune responses. Furthermore, numerous prime candidate proteins were identified which will aid the development of new diagnostic tools for the detection of S. sonnei.

  7. Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440.

    Science.gov (United States)

    Choi, Chi-Won; Park, Edmond Changkyun; Yun, Sung Ho; Lee, Sang-Yeop; Lee, Yeol Gyun; Hong, Yeonhee; Park, Kyeong Ryang; Kim, Sang-Hyun; Kim, Gun-Hwa; Kim, Seung Il

    2014-10-03

    Outer membrane vesicles (OMVs) are produced by various pathogenic Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. In this study, we isolated OMVs from a representative soil bacterium, Pseudomonas putida KT2440, which has a biodegradative activity toward various aromatic compounds. Proteomic analysis identified the outer membrane proteins (OMPs) OprC, OprD, OprE, OprF, OprH, OprG, and OprW as major components of the OMV of P. putida KT2440. The production of OMVs was dependent on the nutrient availability in the culture media, and the up- or down-regulation of specific OMPs was observed according to the culture conditions. In particular, porins (e.g., benzoate-specific porin, BenF-like porin) and enzymes (e.g., catechol 1,2-dioxygenase, benzoate dioxygenase) for benzoate degradation were uniquely found in OMVs prepared from P. putida KT2440 that were cultured in media containing benzoate as the energy source. OMVs of P. putida KT2440 showed low pathological activity toward cultured cells that originated from human lung cells, which suggests their potential as adjuvants or OMV vaccine carriers. Our results suggest that the protein composition of the OMVs of P. putida KT2440 reflects the characteristics of the total proteome of P. putida KT2440.

  8. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  9. Analysis of long-chain fatty acid binding activity in vesicles of the outer membrane generated from Escherchia coli

    International Nuclear Information System (INIS)

    Black, P.N.

    1987-01-01

    Escherichia coli transports long-chain fatty acids across the dual membrane by a high affinity, saturable, energy-dependent process. The fadL gene codes for an outer membrane protein which appears to act specifically as a long-chain fatty acid binding protein when fatty acid utilization is blocked by mutation. In an effort to understand the function of the fadL gene product, FLP, membranes have been isolated from fadL + and fadL - strains following osmotic lysis. Following isolation, total membranes were separated into inner and outer membrane fractions and assayed for long-chain fatty acid binding activity. Outer membrane vesicles were incubated 2-5 min at 37 0 C with 3 H oleate (C/sub 18:1/), cooled to 0 0 C, and centrifuged through a Lipidex 100 column for 3 min to remove the unbound fatty acid. The level of fatty acid binding was quantitated by scintillation counting of the eluate. Outer membrane vesicles generated from a fadL + strain bind 325 pmol fatty acid/mg protein whereas vesicles generated for a mutant strain bind 175 pmol fatty acid/mg protein. These data suggest that FLP acts at least as a long-chain fatty acid binding protein on the surface of the cell

  10. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis.

    Science.gov (United States)

    Ding, Yi; Fujimoto, L Miya; Yao, Yong; Plano, Gregory V; Marassi, Francesca M

    2015-02-01

    The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation

    KAUST Repository

    Le, Ngoc Lieu

    2016-01-14

    The pressure-retarded osmosis (PRO) process is a green technique for power generation to respond the world\\'s need of energy sustainability. In this study, we have developed the vital component of the process, i.e. membrane, in the configuration of the outer-selective thin-film composite (TFC) hollow fiber, which is more practical than other configurations in the real applications. The support layer morphology and the formation of the selective polyamide layer have been optimized for a good PRO performance. The results show that the bore fluid with higher amount of the solvent N-methyl-2-pyrrolidone leads to full finger-like hollow fibers, which provide higher flux but lower pressure tolerance. The addition of higher amount of diethylene glycol into the dope solution, improves the pore formation and suppresses the macrovoid formation, while properly lowering the take-up speed increases their wall thickness and pressure tolerance. A simple alcohol-pre-wetting approach on the fiber support leads to a smooth and thin polyamide layer, which is favorable for a high water flux and power density. Its efficiency follows this order: n-propanol>ethanol>methanol>water. The n-propanol pre-wetted TFC membrane can tolerate 17 bar with a peak power density of 9.59 W/m2 at room temperature, using 1 M NaCl solution as the draw solution and DI water as feed. This work demonstrates the potential of outer-selective TFC hollow fiber membranes for energy conversion via PRO process, provides useful database to fabricate suitable support morphology and raise a simple technique to practically form a thin and smooth polyamide layer.

  12. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Yosuke Koga

    2012-01-01

    Full Text Available The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1 the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2 the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3 the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.”

  13. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Science.gov (United States)

    Koga, Yosuke

    2012-01-01

    The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.” PMID:22927779

  14. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-09-01

    Full Text Available Graphite nanoplatelets (GNPs were utilized to improve the electrical conductivity of pristine bacterial cellulose (BC membranes. By physical and chemical methods, flake-shaped GNPs, weaving through the surface layer of web-like cellulose nanofibrils, were indeed fixed or trapped by the adjacent nanofibrils in the BC surface network, for comparison, rod-shaped multi-walled carbon nanotubes (MWCNTs were homogeneously inserted into BC membrane through the pore structures and tunnels within the BC membrane. Strong physical and chemical interaction exists between the BC nanofibrils and the particles of GNP or MWCNT even after 15 h sonication. BC membrane with 8.7 wt% incorporated GNPs reached the maximum electrical conductivity of 4.5 S/cm, while 13.9 wt% MWCNT/BC composite membrane achieved the maximum electrical conductivity of 1.2 S/cm. Compared with one dimensional (1-D MWCNTs, as long as GNPs inserted into BC membranes, the 2-D reinforcement of GNPs was proven to be more effective in improving the electrical conductivity of BC membranes thus not only break the bottleneck of further improvement of the electrical conductivity of BC-based composite membranes but also broaden the applications of BC and GNPs.

  15. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  16. Outer nuclear membrane fusion of adjacent nuclei in varicella-zoster virus-induced syncytia.

    Science.gov (United States)

    Wang, Wei; Yang, Lianwei; Huang, Xiumin; Fu, Wenkun; Pan, Dequan; Cai, Linli; Ye, Jianghui; Liu, Jian; Xia, Ningshao; Cheng, Tong; Zhu, Hua

    2017-12-01

    Syncytia formation has been considered important for cell-to-cell spread and pathogenesis of many viruses. As a syncytium forms, individual nuclei often congregate together, allowing close contact of nuclear membranes and possibly fusion to occur. However, there is currently no reported evidence of nuclear membrane fusion between adjacent nuclei in wild-type virus-induced syncytia. Varicella-zoster virus (VZV) is one typical syncytia-inducing virus that causes chickenpox and shingles in humans. Here, we report, for the first time, an interesting observation of apparent fusion of the outer nuclear membranes from juxtaposed nuclei that comprise VZV syncytia both in ARPE-19 human epithelial cells in vitro and in human skin xenografts in the SCID-hu mouse model in vivo. This work reveals a novel aspect of VZV-related cytopathic effect in the context of multinucleated syncytia. Additionally, the information provided by this study could be helpful for future studies on interactions of viruses with host cell nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin.

    Science.gov (United States)

    Collin, Séverine; Guilvout, Ingrid; Nickerson, Nicholas N; Pugsley, Anthony P

    2011-05-01

    The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane. © 2011 Blackwell Publishing Ltd.

  18. Interaction of antimicrobial biomimetics with bacterial and cytoplasmic membrane models

    Science.gov (United States)

    Gidalevitz, David

    2010-03-01

    Non-natural mimics of antimicrobial peptides are excellent candidates for anti-infectious agents due to their stability towards enzymatic degradation and broad adjustability of physicochemical properties. This study examines how structural rigidity affects interactions of the AMP analogs with model Langmuir monolayers of phospholipids at the air-liquid interface mimicking bacterial and mammalian lipid membrane surfaces. Flexible acyl-lysine olygomer was more efficient in disrupting Gram-negative rather than Gram-positive bacterial model membrane. Electron density profiles across the film, derived from XR data, demonstrate that following OAK and arylamide insertion into bacterial membrane mimics their hydrophobic cores were located within the lipid acyl chains, inducing opposite local curvatures. Moreover, flexible OAK molecules were found to penetrate the six acyl chains lipid A better than two chain DPPG, while conformationally restrained arylamide molecules, as well as previously characterized natural antimicrobial peptides LL-37, protegrin-1 and SMAP-29, insert into DPPG monolayer with almost identical or better efficiency.

  19. Strain specific variation of outer membrane proteins of wild Yersinia pestis strains subjected to different growth temperatures

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme Coutinho Abath

    1990-03-01

    Full Text Available Three Yersinia pestis strains isolated from humans and one laboratory strain (EV76 were grown in rich media at 28§C and 37§C and their outer membrane protein composition compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-Page. Several proteins with molecular weights ranging from 34 kDa to 7 kDa were observed to change in relative abundance in samples grown at different temperatures. At least seven Y. pestis outer membrane proteins showed a temperature-dependent and strain-specific behaviour. Some differences between the outer membrane proteins of full-pathogenic wild isolates and the EV76 strain could aldso be detected and the relevance of this finding on the use of laboratory strains as a reference to the study of Y. pestis biological properties is discuted.

  20. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    Science.gov (United States)

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-08

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Tiny but mighty: bacterial membrane vesicles in food biotechnological applications.

    Science.gov (United States)

    Liu, Yue; Alexeeva, Svetlana; Defourny, Kyra Ay; Smid, Eddy J; Abee, Tjakko

    2018-02-01

    Membrane vesicle (MV) production is observed in all domains of life. Evidence of MV production accumulated in recent years among bacterial species involved in fermentation processes. These studies revealed MV composition, biological functions and properties, which made us recognize the potential of MVs in food applications as delivery vehicles of various compounds to other bacteria or the human host. Moreover, MV producing strains can deliver benefits as probiotics or starters in fermentation processes. Next to the natural production of MVs, we also highlight possible methods for artificial generation of bacterial MVs and cargo loading to enhance their applicability. We believe that a more in-depth understanding of bacterial MVs opens new avenues for their exploitation in biotechnological applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Multicomponent Moraxella catarrhalis outer membrane vesicles induce an inflammatory response and are internalized by human epithelial cells.

    Science.gov (United States)

    Schaar, Viveka; de Vries, Stefan P W; Perez Vidakovics, Maria Laura A; Bootsma, Hester J; Larsson, Lennart; Hermans, Peter W M; Bjartell, Anders; Mörgelin, Matthias; Riesbeck, Kristian

    2011-03-01

    Moraxella catarrhalis is an emerging human respiratory pathogen in patients with chronic obstructive pulmonary disease (COPD) and in children with acute otitis media. The specific secretion machinery known as outer membrane vesicles (OMVs) is a mechanism by which Gram-negative pathogens interact with host cells during infection. We identified 57 proteins in M. catarrhalis OMVs using a proteomics approach combining two-dimensional SDS-PAGE and MALDI-TOF mass spectrometry analysis. The OMVs contained known surface proteins such as ubiquitous surface proteins (Usp) A1/A2, and Moraxella IgD-binding protein (MID). Most of the proteins are adhesins/virulence factors triggering the immune response, but also aid bacteria to evade the host defence. FITC-stained OMVs bound to lipid raft domains in alveolar epithelial cells and were internalized after interaction with Toll-like receptor 2 (TLR2), suggesting a delivery to the host tissue of a large and complex group of OMV-attributed proteins. Interestingly, OMVs modulated the pro-inflammatory response in epithelial cells, and UspA1-bearing OMVs were found to specifically downregulate the reaction. When mice were exposed to OMVs, a pulmonary inflammation was clearly seen. Our findings indicate that Moraxella OMVs are highly biologically active, transport main bacterial virulence factors and may modulate the epithelial pro-inflammatory response. © 2010 Blackwell Publishing Ltd.

  3. Biofilm inhibitors targeting the outer membrane protein A of Pasteurella multocida in swine.

    Science.gov (United States)

    Kubera, Anchanee; Thamchaipenet, Arinthip; Shoham, Menachem

    2017-01-01

    Pasteurella multocida (Pm) is the causative agent of atrophic rhinitis in swine. This study aimed to discover biofilm inhibitors against swine Pm to counteract antibiotic resistance and decrease virulence. The virulence factor outer membrane protein A (OmpA) was targeted. A library of drugs approved by the Food and Drug Administration (FDA) was used to perform virtual screening against PmOmpA. The top-scoring compounds had no effect on the growth of Pm serotype A or D. Mycophenolate mofetil showed the highest efficacy in inhibiting biofilm formation by Pm serotype A, with an IC 50 of 7.3 nM. For Pm serotype D, indocyanine green showed the highest effect at an IC 50 of 11.7 nM. Nevertheless, these compounds had no effect on an established biofilm of Pm. This study offers an alternative way to prevent biofilm formation by Pm that could also be applied to other pathogens.

  4. The control of mitochondrial respiration in yeast: a possible role of the outer mitochondrial membrane.

    Science.gov (United States)

    Ahmadzadeh, M; Horng, A; Colombini, M

    1996-09-01

    Mitochondrial respiration in yeast (S. cerevisiae) is regulated by the level of glucose in the medium. Glucose is known to inhibit respiration by repressing key enzymes in the respiratory chain. We present evidence that the early events in this inhibition include the closure of VDAC channels, the primary pathway for metabolite flow across the outer membrane. Aluminum hydroxide is known to inhibit the closure of VDAC. Addition of aluminum acetylacetonate to yeast cells, which should elevate the aluminum hydroxide concentrations in the cytoplasm, caused the inhibition of cell respiration by glucose to be delayed for up to 100 min. No significant effect of aluminum was observed in cells grown on glycerol. Yeast cells lacking the VDAC gene were also unresponsive to the addition of aluminum salt in the presence of glucose. Therefore, the closure of VDAC channels may be an early step in the inhibition of the respiration of yeast by glucose.

  5. Characteristics of the molecular diversity of the outer membrane protein A gene of Haemophilus parasuis

    Science.gov (United States)

    Tang, Cheng; Zhang, Bin; Yue, Hua; Yang, Falong; Shao, Guoqing; Hai, Quan; Chen, Xiaofei; Guo, Dingqian

    2010-01-01

    The molecular diversity of the gene encoding the outer membrane protein A (OmpA) of Haemophilus parasuis has been unclear. In this study, the structural characteristics, sequence types, and genetic diversity of ompA were investigated in 15 H. parasuis reference strains of different serovars and 20 field isolates. Three nucleotide lengths of the complete open reading frame (ORF) of ompA were found: 1098 base pairs (bp), 1104 bp, and 1110 bp. The OmpA contained 4 hypervariable domains, mainly encoding the 4 putative surface-exposed loops, which makes it a potential molecular marker for genotyping. Western blot analysis showed that the recombinant OmpAs of serovars 4 and 5 could cross-react with antiserum to all 15 serovars. Hence, although ompA of H. parasuis exhibited high variation among serovars, this variation did not seem to affect the strong antigenic characteristics of OmpA. PMID:20885850

  6. Genetic Manipulation of Outer Membrane Permeability: Generating Porous Heterogeneous Catalyst Analogs in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Patel, TN; Park, AHA; Bantat, S

    2014-12-01

    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilities (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.

  7. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.

    Science.gov (United States)

    Larsen, Ray A; Letain, Tracy E; Postle, Kathleen

    2003-07-01

    Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.

  8. Can direct extracellular electron transfer occur in the absence of outer membrane cytochromes in Desulfovibrio vulgaris?

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Zane, Mr. Grant M. [University of Missouri, Columbia; Auer, Dr. Manfred [Lawrence Berkeley National Laboratory (LBNL); Fields, Dr. Matthew Wayne [Montana State University; Wall, Judy D. [University of Missouri; Gorby, Dr. Yuri A. [J. Craig Venter Institute

    2010-01-01

    Extracellular electron transfer has been investigated over several decades via forms of soluble electron transfer proteins that are exported for extracellular reoxidation. More recently, several organisms have been shown to reduce extracellular metals via the direct transfer of electron through appendages; also known as nanowires. They have been reported most predominantly in Shewanella and Geobacter. While the relevancy and composition of these structures in each genus has been debated, both possess outer membrane cytochrome complexes that could theoretically come into direct contact with solid phase oxidized metals. Members of the genus Desulfovibrio apparently have no such cytochromes although similar appendages are present, are electrically conductive, and are different from flagella. Upon U(VI)-reduction, the structures in Desulfovibrio become coated with U(IV). Deletion of flagellar genes did not alter soluble or amorphous Fe(III) or U(VI) reduction, or appendage appearance. Removal of the chromosomal pilA gene hampered amorphous Fe(III)-reduction by ca. 25%, but cells lacking the native plasmid, pDV1, reduced soluble Fe(III) and U(VI) at ca. 50% of the wild type rate while amorphous Fe(III)-reduction slowed to ca. 20% of the wild type rate. Appendages were present in all deletions as well as pDV1, except pilA. Gene complementation restored all activities and morphologies to wild type levels. This suggests that pilA encodes the structural component, whereas genes within pDV1 may provide the reactive members. How such appendages function without outer membrane cytochromes is under investigation.

  9. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yuyu [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Laboratory of Natural Medicine, Wuxi Medical School, Jiangnan University (China); Qiu, Liying [Laboratory of Natural Medicine, Wuxi Medical School, Jiangnan University (China); Cui, Jing [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-textiles, Jiangnan University, Wuxi (China)

    2016-02-01

    Bacterial cellulose (BC) and bacterial cellulose-vaccarin (BC-Vac) membranes were successfully produced in large scale. BC was synthesized by Gluconacetobacter xylinum. BC-Vac membranes were prepared by immersing BC in vaccarin solution. The surface morphologies of BC and BC-Vac membranes were examined by a scanning electron microscope (SEM) and an atomic force microscopy (AFM). The images showed that BC-Vac exhibited the characteristic 3D nanofibrillar network of BC matrix but there was adhesion between fibers. The mechanical properties of BC and BC-Vac membranes were evaluated and the results indicated that the adding of drug vaccarin into the BC membranes increased the malleability indicated by the increment in elongation at break compared with BC. Fourier transform infrared spectroscopy (FTIR) analysis was conducted to confirm the incorporation of vaccarin in BC-Vac and investigate the hydroxyl interactions between BC and drug vaccarin. Cell viability and cell attachment studies demonstrated that BC and BC-Vac membranes had no cytotoxicity and could be a good carrier for cell growth. The wound healing performance was examined in vivo by rat skin models. Histological observations revealed that wounds treated with BC-Vac epithelialized and regenerated faster than treated with BC. Therefore, BC-Vac was considered as a potential candidate for wound dressing materials. - Highlights: • BC and BC-Vac membranes were produced to achieve desirable properties. • BC and BC-Vac membranes could be a good carrier for cell growth. • BC-Vac membranes have potential application for wound healing.

  10. Metabolic Remodeling, Inflammasome Activation, and Pyroptosis in Macrophages Stimulated by Porphyromonas gingivalis and Its Outer Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Andrew J. Fleetwood

    2017-08-01

    Full Text Available Porphyromonas gingivalis is one of the bacterial species most closely associated with periodontitis and can shed large numbers of outer membrane vesicles (OMVs, which are increasingly thought to play a significant role in bacterial virulence and pathogenicity. Macrophages are amongst the first immune cells to respond to bacteria and their products, so we sought to directly compare the response of macrophages to P. gingivalis or its purified OMVs. Macrophages stimulated with OMVs produced large amounts of TNFα, IL-12p70, IL-6, IL-10, IFNβ, and nitric oxide compared to cells infected with P. gingivalis, which produced very low levels of these mediators. Both P. gingivalis and OMVs induced a shift in macrophage metabolism from oxidative phosphorylation (OXPHOS to glycolysis, which was supported by enhanced lactate release, decreased mitochondrial oxygen consumption with reduced spare respiratory capacity, as well as increased mitochondrial reactive oxygen species (ROS production. Corresponding to this metabolic shift, gene expression analysis of macrophages infected with P. gingivalis or stimulated with OMVs revealed a broad transcriptional upregulation of genes critical to glycolysis and a downregulation of genes associated with the TCA cycle. Upon examination of inflammasome signaling and pyroptosis it was found that P. gingivalis did not activate the inflammasome in macrophages as the mature forms of caspase-1, IL-1β, and IL-18 were not detected and there was no extracellular release of lactate dehydrogenase (LDH or 7-AAD staining. In comparison, macrophages stimulated with OMVs potently activated caspase-1, produced large amounts of IL-1β, IL-18, released LDH, and were positive for 7-AAD indicative of pyroptotic cell death. These data directly quantitate the distinct effects of P. gingivalis and its OMVs on macrophage inflammatory phenotype, mitochondrial function, inflammasome activation, and pyroptotic cell death that may have potential

  11. Relationship of Triamine-Biocide Tolerance of Salmonella enterica Serovar Senftenberg to Antimicrobial Susceptibility, Serum Resistance and Outer Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Bożena Futoma-Kołoch

    2017-07-01

    Full Text Available A new emerging phenomenon is the association between the incorrect use of biocides in the process of disinfection in farms and the emergence of cross-resistance in Salmonella populations. Adaptation of the microorganisms to the sub-inhibitory concentrations of the disinfectants is not clear, but may result in an increase of sensitivity or resistance to antibiotics, depending on the biocide used and the challenged Salmonella serovar. Exposure of five Salmonella enterica subsp. enterica serovar Senftenberg (S. Senftenberg strains to triamine-containing disinfectant did not result in variants with resistance to antibiotics, but has changed their susceptibility to normal human serum (NHS. Three biocide variants developed reduced sensitivity to NHS in comparison to the sensitive parental strains, while two isolates lost their resistance to serum. For S. Senftenberg, which exhibited the highest triamine tolerance (6 × MIC and intrinsic sensitivity to 22.5% and 45% NHS, a downregulation of flagellin and enolase has been demonstrated, which might suggest a lower adhesion and virulence of the bacteria. This is the first report demonstrating the influence of biocide tolerance on NHS resistance. In conclusion, there was a potential in S. Senftenberg to adjust to the conditions, where the biocide containing triamine was present. However, the adaptation did not result in the increase of antibiotic resistance, but manifested in changes within outer membrane proteins’ patterns. The strategy of bacterial membrane proteins’ analysis provides an opportunity to adjust the ways of infection treatments, especially when it is connected to the life-threating bacteremia caused by Salmonella species.

  12. Enterohemorrhagic Escherichia coli Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis

    Science.gov (United States)

    Kunsmann, Lisa; Greune, Lilo; Bauwens, Andreas; Zhang, Wenlan; Kuczius, Thorsten; Kim, Kwang Sik; Mellmann, Alexander; Schmidt, M. Alexander; Karch, Helge

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in

  13. Relationship of Triamine-Biocide Tolerance of Salmonella enterica Serovar Senftenberg to Antimicrobial Susceptibility, Serum Resistance and Outer Membrane Proteins.

    Science.gov (United States)

    Futoma-Kołoch, Bożena; Dudek, Bartłomiej; Kapczyńska, Katarzyna; Krzyżewska, Eva; Wańczyk, Martyna; Korzekwa, Kamila; Rybka, Jacek; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela

    2017-07-11

    A new emerging phenomenon is the association between the incorrect use of biocides in the process of disinfection in farms and the emergence of cross-resistance in Salmonella populations. Adaptation of the microorganisms to the sub-inhibitory concentrations of the disinfectants is not clear, but may result in an increase of sensitivity or resistance to antibiotics, depending on the biocide used and the challenged Salmonella serovar. Exposure of five Salmonella enterica subsp. enterica serovar Senftenberg ( S. Senftenberg) strains to triamine-containing disinfectant did not result in variants with resistance to antibiotics, but has changed their susceptibility to normal human serum (NHS). Three biocide variants developed reduced sensitivity to NHS in comparison to the sensitive parental strains, while two isolates lost their resistance to serum. For S. Senftenberg, which exhibited the highest triamine tolerance (6 × MIC) and intrinsic sensitivity to 22.5% and 45% NHS, a downregulation of flagellin and enolase has been demonstrated, which might suggest a lower adhesion and virulence of the bacteria. This is the first report demonstrating the influence of biocide tolerance on NHS resistance. In conclusion, there was a potential in S. Senftenberg to adjust to the conditions, where the biocide containing triamine was present. However, the adaptation did not result in the increase of antibiotic resistance, but manifested in changes within outer membrane proteins' patterns. The strategy of bacterial membrane proteins' analysis provides an opportunity to adjust the ways of infection treatments, especially when it is connected to the life-threating bacteremia caused by Salmonella species.

  14. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Susannah ePiek

    2012-12-01

    Full Text Available The Gram-negative bacterial cell envelope consists of an inner membrane (IM that surrounds the cytoplasm, and an asymmetrical outer-membrane (OM that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS, phospholipids, outer membrane proteins (OMPs and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the correct biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation and isomerisation pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, these conserved pathways have been modified to suit the lifestyle of each organism.

  15. Direct observation of the uptake of outer membrane proteins by the periplasmic chaperone Skp.

    Directory of Open Access Journals (Sweden)

    Zhi-Xin Lyu

    Full Text Available The transportation of membrane proteins through the aqueous subcellular space is an important and challenging process. Its molecular mechanism and the associated structural change are poorly understood. Periplasmic chaperones, such as Skp in Escherichia coli, play key roles in the transportation and protection of outer membrane proteins (OMPs in Gram-negative bacteria. The molecular mechanism through which Skp interacts with and protects OMPs remains mysterious. Here, a combined experimental and molecular dynamics simulation study was performed to gain the structural and dynamical information in the process of OMPs and Skp binding. Stopped-flow experiments on site specific mutated and labeled Skp and several OMPs, namely OmpC, the transmembrane domain of OmpA, and OmpF, allowed us to obtain the mechanism of OMP entering the Skp cavity, and molecular dynamics simulations yielded detailed molecular interactions responsible for this process. Both experiment and simulation show that the entrance of OMP into Skp is a highly directional process, which is initiated by the interaction between the N-terminus of OMP and the bottom "tentacle" domain of Skp. The opening of the more flexible tentacle of Skp, the non-specific electrostatic interactions between OMP and Skp, and the constant formation and breaking of salt bridges between Skp and its substrate together allow OMP to enter Skp and gradually "climb" into the Skp cavity in the absence of an external energy supply.

  16. Dual effect of local anesthetics on the function of excitable rod outer segment disk membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, T.; Abe, K.; Yoshiya, I.

    1986-04-01

    The effects of local anesthetics and a divalent cation, Ca2+, on the function of rhodopsin were estimated from the measurements of light-induced proton uptake. The light-induced proton uptake by rhodopsin in the rod outer segment disk membrane was enhanced at lower pH (4) but depressed at higher pHs (6 to 8) by the tertiary amine local anesthetics lidocaine, bupivacaine, tetracaine, and dibucaine. The order of local anesthetic-induced depression of the proton uptake followed that of their clinical anesthetic potencies. The depression of the proton uptake versus the concentration of the uncharged form of local anesthetic nearly describes the same curve for small and large dose of added anesthetic. Furthermore, a neutral local anesthetic, benzocaine, depressed the proton uptake at all pHs between 4 and 7. These results indicate that the depression of the proton uptake is due to the effect of only the uncharged form. It is hypothesized that the uncharged form of local anesthetics interacts hydrophobically with the rhodopsin in the disk membrane. The dual effect of local anesthetics on the proton uptake, on the other hand, suggests that the activation of the function of rhodopsin may be caused by the charged form. There was no significant change in the light-induced proton uptake by rhodopsin when 1 mM of Ca2+ was introduced into the disk membrane at varying pHs in the absence or presence of local anesthetics. This fact indicates that Ca2+ ion does not influence the diprotonating process of metarhodopsin; neither does it interfere with the local anesthetic-induced changes in the rhodopsin molecule.

  17. Outer Membrane Proteins of Brucella abortus Vaccinal and Field Strains and their Immune Response in Buffaloes

    Directory of Open Access Journals (Sweden)

    Rukhshanda Munir*, M. Afzal1, M. Hussain2, S. M. S. Naqvi3 and A. Khanum3

    2010-04-01

    Full Text Available Outer membrane proteins (OMPs of three strains of B. abortus i.e. S19, RB51 and a local field isolate of biotype 1 were isolated through disrupting cells to generate membranes by centrifugation and sodium lauryl sarcosinate solubilisation of inner membrane proteins. Distinct OMP profiles of each strain were seen on SDS-PAGE. SDS-PAGE analysis of S19 and field isolate revealed eight protein bands in each strain. The OMPs of S19 had molecular masses 89.0, 73.0, 53.7, 49.0, 38.0, 27.0, 22.3, and 17.7 kDa, while field isolate had OMPs of 151.3, 89.0, 75.8, 67.6, 37.0, 27.0, 24.0 and 19.0 kDa. B. abortus RB51 yielded 11 OMP bands ranging from 12.5 to 107.1 kDa, with 34.2, 15.8 and 12.5 kDa as additional OMPs. Western immunoblot analysis using antisera raised against all three strains in buffaloes indicated an almost similar pattern of immuno-reactive OMPs in S19 and field strain. Two OMPs of molecular weight 37-38 and 19 kDa were immuno-reactive in all strains in buffaloes. There is possibility of use of these OMPs in a recombinant vaccine for B. abortus. A distinct protein of molecular weight of 151.3 kDa was identified in field strain but not in both vaccine strains of B. abortus. Use of this OMP in a diagnostic assay may differentiate between vaccinated and infected animals.

  18. Leptospiral Outer Membrane Proteins OmpL1 and LipL41 Exhibit Synergistic Immunoprotection

    Science.gov (United States)

    Haake, David A.; Mazel, Mary K.; McCoy, Adam M.; Milward, Frank; Chao, Garlo; Matsunaga, James; Wagar, Elizabeth A.

    1999-01-01

    New vaccine strategies are needed for prevention of leptospirosis, a widespread human and veterinary disease caused by invasive spirochetes belonging to the genus Leptospira. We have examined the immunoprotective capacity of the leptospiral porin OmpL1 and the leptospiral outer membrane lipoprotein LipL41 in the Golden Syrian hamster model of leptospirosis. Specialized expression plasmids were developed to facilitate expression of leptospiral proteins in Escherichia coli as the membrane-associated proteins OmpL1-M and LipL41-M. Although OmpL1-M expression is highly toxic in E. coli, this was accomplished by using plasmid pMMB66-OmpL1, which has undetectable background expression without induction. LipL41-M expression and processing were enhanced by altering its lipoprotein signal peptidase cleavage site to mimic that of the murein lipoprotein. Active immunization of hamsters with E. coli membrane fractions containing a combination of OmpL1-M and LipL41-M was found to provide significant protection against homologous challenge with Leptospira kirschneri serovar grippotyphosa. At 28 days after intraperitoneal inoculation, survival in animals vaccinated with both proteins was 71% (95% confidence interval [CI], 53 to 89%), compared with only 25% (95% CI, 8 to 42%) in the control group (P < 0.001). On the basis of serological, histological, and microbiological assays, no evidence of infection was found in the vaccinated survivors. The protective effects of immunization with OmpL1-M and LipL41-M were synergistic, since significant levels of protection were not observed in animals immunized with either OmpL1-M or LipL41-M alone. In contrast to immunization with the membrane-associated forms of leptospiral proteins, hamsters immunized with His6-OmpL1 and His6-LipL41 fusion proteins, either alone or in combination, were not protected. These data indicate that the manner in which OmpL1 and LipL41 associates with membranes is an important determinant of immunoprotection. PMID

  19. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  20. MOLECULAR MODELING STUDY OF THE CONTRIBUTIONS OF SIDE AMINO ACID RESIDUES OF POLYMYXIN B3 TO ITS BINDING WITH E.COLI OUTER MEMBRANE LIPOPOLYSACCHARIDE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2014-12-01

    Full Text Available Last decades, antimicrobial peptides (AMPs are the subject of intense investigations aimed to develop effective drugs against extremely resistant nosocomial bacterial pathogens (especially Gram-negative bacteria. In particular, there has been greatly renewed interest to polymyxins, the representatives of AMPs which are specific and highly potent against Gram-negative bacteria, but have potential nephrotoxic side effect. A prerequisite of purposeful enhancement of therapeutic properties of polymyxins is a detailed knowledge of the molecular mechanisms of their interactions with cell targets. Lipopolysaccharide (LPS, the main component of the outer leaflet of outer membrane of gram-negative bacteria, is a primary cell target of polymyxins. The aim of the paper was to study the peculiarities of molecular interactions of polymyxin В3 with lipopolysaccharide of the outer membrane of gram-negative bacterium. Materials and methods The complexes of polymyxin В3 (PmВ3 and its alaninederivatives with E. coli outer membrane lipopolysaccharide were built and studied by molecular modeling methods (minimization, simulated annealing, docking. Atom coordinates of polymyxin В3 and LPS structures were taken from nuclear magnetic resonance and X-ray crystallography experiments, respectively. The AMBER03 force field was used with a 1.05 nm force cutoff. Longrange electrostatic interactions were treated by the Particle Mesh Ewald method. Results and discussion Alanine scanning of PmВ3 molecule has been carried out and the role of its side amino acid residues in the formation of complex with lipopolysaccharide has been investigated. It has been shown that substitutions of polymyxin’s Dab residues in positions 1, 3, 5, 8 and 9 for alanine markedly reduce the binding energy of PmB3-LPS complex, where as the similar substitutions of residues in positions 2, 6, 7 and 10 leave the binding energy virtually unchanged. Structural aspects of antimicrobial action of

  1. Identification and Comparative Analysis of Genes Encoding Outer Membrane Proteins P2 and P5 in Haemophilus parsuis

    Science.gov (United States)

    Haemophilus parasuis is a serious swine pathogen but little is known about how it causes disease. A related human pathogen, Haemophilus influenzae, has been better studied and many of its virulence factors have been identified. Two of these, outer membrane proteins P2 and P5, have been shown to ha...

  2. Immunization of mice with Vibrio cholerae outer-membrane vesicles protects against hyperinfectious challenge and blocks transmission

    NARCIS (Netherlands)

    A.L. Bishop (Anne); A.A. Tarique; B. Patimalla (Bharathi); S.B. Calderwood; F. Qadri (Firdausi); A. Camilli (Andrew)

    2012-01-01

    textabstractBackground. Vibrio cholerae excreted by cholera patients is "hyperinfectious" (HI), which can be modeled by passage through infant mice. Immunization of adult female mice with V. cholerae outer-membrane vesicles (OMVs) passively protects suckling mice from challenge. Although V. cholerae

  3. Structural studies of two outer membrane proteins: OmpT from Escherichia coli and NspA from Neisseria meningitidis

    NARCIS (Netherlands)

    Rutten, L.

    2003-01-01

    This Thesis describes the three-dimensional structures of two outer membrane proteins (OMPs), OmpT and NspA, from two pathogenic Gram-negative bacteria. These structures reveal information about the functioning of these proteins and can potentially be used for the design of antimicrobial drugs or

  4. The use of outer membrane proteins as an exposure surface for foreign antigens in AIDS vaccine methodology and AIDS diagnostics

    NARCIS (Netherlands)

    Soede WWD; Hegger I

    1992-01-01

    A live recombinant bacteria or virus with HIV determinants exposed at the outermembrane is one strategy for AIDS vaccine development. Two HIV determinants that showed neutralization capacity in in- vitro experiments were tested for their expression in PhoE outer membrane protein of E coli K12.

  5. Interlaced CNT Electrodes for Bacterial Fouling Reduction of Microfiltration Membranes.

    Science.gov (United States)

    Zhang, Qiaoying; Arribas, Paula; Remillard, E Marielle; García-Payo, M Carmen; Khayet, Mohamed; Vecitis, Chad D

    2017-08-15

    Interlaced carbon nanotube electrodes (ICE) were prepared by vacuum filtering a well-dispersed carbon nanotube-Nafion solution through a laser-cut acrylic stencil onto a commercial polyvinylidene fluoride (PVDF) microfiltration (MF) membrane. Dead-end filtration was carried out using 10 7 and 10 8 CFU mL -1 Pseudomonas fluorescens to study the effects of the electrochemically active ICE on bacterial density and morphology, as well as to evaluate the bacterial fouling trend and backwash (BW) efficacy, respectively. Finally, a simplified COMSOL model of the ICE electric field was used to help elucidate the antifouling mechanism in solution. At 2 V DC and AC (total cell potential), the average bacterial log removal of the ICE-PVDF increased by ∼1 log compared to the control PVDF (3.5-4 log). Bacterial surface density was affected by the presence and polarity of DC electric potential, being 87-90% lower on the ICE cathode and 59-93% lower on the ICE anode than that on the PVDF after filtration, and BW further reduced the density on the cathode significantly. The optimal operating conditions (2 V AC) reduced the fouling rate by 75% versus the control and achieved up to 96% fouling resistance recovery (FRR) during BW at 8 V AC using 155 mM NaCl. The antifouling performance should mainly be due to electrokinetic effects, and the electric field simulation by COMSOL model suggested electrophoresis and dielectrophoresis as likely mechanisms.

  6. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rehse, Steven J.; Jeyasingham, Narmatha; Diedrich, Jonathan; Palchaudhuri, Sunil

    2009-05-01

    Nanosecond single-pulse laser-induced breakdown spectroscopy (LIBS) has been used to discriminate between two different genera of Gram-negative bacteria and between several strains of the Escherichia coli bacterium based on the relative concentration of trace inorganic elements in the bacteria. Of particular importance in all such studies to date has been the role of divalent cations, specifically Ca2+ and Mg2+, which are present in the membranes of Gram-negative bacteria and act to aggregate the highly polar lipopolysaccharide molecules. We have demonstrated that the source of emission from Ca and Mg atoms observed in LIBS plasmas from bacteria is at least partially located at the outer membrane by intentionally altering membrane biochemistry and correlating these changes with the observed changes in the LIBS spectra. The definitive assignment of some fraction of the LIBS emission to the outer membrane composition establishes a potential serological, or surface-antigen, basis for the laser-based identification. E. coli and Pseudomonas aeruginosa were cultured in three nutrient media: trypticase soy agar as a control, a MacConkey agar with a 0.01% concentration of bile salts including sodium deoxycholate, and a trypticase soy agar with a 0.4% deoxycholate concentration. The higher concentration of deoxycholate is known to disrupt bacterial outer membrane integrity and was expected to induce changes in the observed LIBS spectra. Altered LIBS emission was observed for bacteria cultured in this 0.4% medium and laser ablated in an all-argon environment. These spectra evidenced a reduced calcium emission and in the case of one species, a reduced magnesium emission. Culturing on the lower (0.01%) concentration of bile salts altered the LIBS spectra for both the P. aeruginosa and two strains of E. coli in a highly reproducible way, although not nearly as significantly as culturing in the higher concentration of deoxycholate did. This was possibly due to the accumulation

  7. Effects of the Membrane Action of Tetralin on the Functional and Structural Properties of Artificial and Bacterial Membranes

    NARCIS (Netherlands)

    SIKKEMA, J; POOLMAN, B; KONINGS, WN; DEBONT, JAM

    Tetralin is toxic to bacterial cells at concentrations below 100-mu-mol/liter. To assess the inhibitory action of tetralin on bacterial membranes, a membrane model system, consisting of proteoliposomes in which beef heart cytochrome c oxidase was reconstituted as the proton motive force-generating

  8. Comparative analysis of the uropathogenic Escherichia coli surface proteome by tandem mass-spectrometry of artificially induced outer membrane vesicles.

    Science.gov (United States)

    Wurpel, Daniël J; Moriel, Danilo G; Totsika, Makrina; Easton, Donna M; Schembri, Mark A

    2015-02-06

    Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome. In this study a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles was used to define the outer membrane proteome of a large uropathogenic E. coli (UPEC) collection. Our results provide an inventory of proteins expressed on the surface of UPEC, and provide a framework for understanding the composition of the UPEC OM proteome. The method enables the rapid characterisation of the E. coli surface proteome and could easily be applied to the large-scale outer membrane protein profiling of other Gram-negative bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of extremely low frequency electromagnetic fields on bacterial membrane.

    Science.gov (United States)

    Oncul, Sule; Cuce, Esra M; Aksu, Burak; Inhan Garip, Ayse

    2016-01-01

    The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.

  10. A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingquan [Trinity College, Dublin (Ireland); Rouse, Sarah L. [University of Oxford, South Parks Road, Oxford (United Kingdom); Li, Dianfan; Pye, Valerie E.; Vogeley, Lutz; Brinth, Alette R.; El Arnaout, Toufic [Trinity College, Dublin (Ireland); Whitney, John C.; Howell, P. Lynne [The Hospital for Sick Children, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada); Sansom, Mark S. P. [University of Oxford, South Parks Road, Oxford (United Kingdom); Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College, Dublin (Ireland)

    2014-08-01

    Crystal structures of the β-barrel porin AlgE reveal a mechanism whereby alginate is exported from P. aeruginosa for biofilm formation. The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common β-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gate (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.

  11. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-08-01

    Full Text Available Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs, have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated proteins in bacterial cells and the perspectives on how to overcome the issues.

  12. Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability

    Science.gov (United States)

    Kowata, Hikaru; Tochigi, Saeko; Takahashi, Hideyuki

    2017-01-01

    ABSTRACT The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli. The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients. IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is

  13. Homology modeling, functional annotation and comparative genomics of outer membrane protein H of Pasteurella multocida.

    Science.gov (United States)

    Ganguly, Bhaskar; Tewari, Kamal; Singh, Rashmi

    2015-12-07

    Pasteurella multocida is an important pathogen of animals and humans. Outer Membrane Protein (Omp) H is a major conserved protein in the envelope of P. multocida and has been commonly targeted as a protective antigen. However, not much is known about its structure and function due to the difficulties that are typically associated with obtaining sufficient amounts of purified prokaryotic transmembrane proteins. The present work is aimed at studying the OmpH using an in silico approach and consolidate the findings in light of existing experimental evidences. Our study describes the first 3D model of the P. multocida OmpH obtained through a combination of several in silico modeling approaches. From our results, OmpH of P. multocida could be classified as a homotrimeric, 16 stranded, β-barrel porin involved in the non-specific transport of small, hydrophilic molecules, serving essential osmoregulatory function. Moreover, very small homologous sequences could be identified in the host proteome, strengthening the probability of a successful OmpH-based vaccine against the pathogen with remote chances of cross-reaction to host proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Colistin resistance associated with outer membrane protein change in Klebsiella pneumoniae and Enterobacter asburiae.

    Science.gov (United States)

    Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Kristóf, Katalin; Felső, Péter; Kocsis, Béla; Böddi, Katalin; Szabó, Dóra

    2017-06-01

    In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and three colistin-resistant K. pneumoniae sequence type 258 strains as well as one colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were involved in the study. OMP analysis of each strain was performed by microchip method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry (MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and OmpX were identified in the colistin-resistant counterpart. This study demonstrated that OMP differences were between colistin-susceptible and -resistant counterpart strains. The altered Gram-negative cell wall may contribute to acquired colistin resistance in Enterobacteriaceae.

  15. Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism.

    Directory of Open Access Journals (Sweden)

    Darshankumar T Pathak

    Full Text Available Biofilms are dense microbial communities. Although widely distributed and medically important, how biofilm cells interact with one another is poorly understood. Recently, we described a novel process whereby myxobacterial biofilm cells exchange their outer membrane (OM lipoproteins. For the first time we report here the identification of two host proteins, TraAB, required for transfer. These proteins are predicted to localize in the cell envelope; and TraA encodes a distant PA14 lectin-like domain, a cysteine-rich tandem repeat region, and a putative C-terminal protein sorting tag named MYXO-CTERM, while TraB encodes an OmpA-like domain. Importantly, TraAB are required in donors and recipients, suggesting bidirectional transfer. By use of a lipophilic fluorescent dye, we also discovered that OM lipids are exchanged. Similar to lipoproteins, dye transfer requires TraAB function, gliding motility and a structured biofilm. Importantly, OM exchange was found to regulate swarming and development behaviors, suggesting a new role in cell-cell communication. A working model proposes TraA is a cell surface receptor that mediates cell-cell adhesion for OM fusion, in which lipoproteins/lipids are transferred by lateral diffusion. We further hypothesize that cell contact-dependent exchange helps myxobacteria to coordinate their social behaviors.

  16. The Yersinia pseudotuberculosis outer membrane protein Ail recruits the human complement regulatory protein factor H.

    Science.gov (United States)

    Ho, Derek K; Riva, Rauna; Skurnik, Mikael; Meri, Seppo

    2012-10-01

    Previous investigations characterizing the mechanism(s) of complement resistance in Yersinia pseudotuberculosis showed that the outer membrane protein Ail can functionally recruit the regulator of the classical and lectin pathways of complement, C4b-binding protein. In this study, we extend these observations and show that Ail can also recruit the regulator of the alternative pathway (AP), factor H (fH). Binding to fH was dependent on Ail expression and observed in the context of full-length LPS. Inactivation of ail resulted in loss of fH binding. Ail expression conferred resistance to AP-mediated killing. Bound fH was functional as a cofactor for factor I-mediated cleavage and inactivation of C3b. Ail alone is sufficient to mediate fH binding and resistance to AP-mediated killing, because Ail expression in a laboratory Escherichia coli strain conferred both of these phenotypes. Binding was specific and inhibited by increasing heparin and NaCl concentrations. Using a panel of fH recombinant fragments, we observed that both short consensus repeats 5-7 and 19-20 regions are responsible for mediating the interaction with Ail. Collectively, these results suggest that fH recruitment is an additional mechanism of complement resistance of Ail. Recruitment of both fH and C4BP by Ail may confer Y. pseudotuberculosis with the ability to resist all pathways of complement activation.

  17. Ferric-Pyoverdine Recognition by Fpv Outer Membrane Proteins of Pseudomonas protegens Pf-5

    Science.gov (United States)

    Hartney, Sierra L.; Mazurier, Sylvie; Girard, Maëva K.; Mehnaz, Samina; Davis, Edward W.; Gross, Harald; Lemanceau, Philippe

    2013-01-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  18. Molecular biology of Neisseria meningitidis class 5 and H. 8 outer membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kawula, T.H.

    1987-01-01

    One of the surface structures responsible for inter- and intrastrain antigenic variability in meningococci is the heat-modifiable class 5 (C.5) protein. Neisseria meningitidis strain FAM18 (a meningococcal disease isolate) expressed two different C.5 proteins (C.5a and C.5b) identifiable by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We generated two monoclonal antibodies (MAbs), each specific for one of the identified C.5 proteins. The MAbs, which were bactericidal for variants expressing the appropriate C.5 protein, were used to study C.5 expression changes in FAM18. The H.8 protein is an antigenically conserved outer membrane protein expressed almost exclusively by the pathogenic Neisseria. We have cloned and sequenced an H.8 gene from N. meningitidis FAM18. The predicted H.8 amino acid sequence indicated that the most probable signal peptide processing site matched the consensus prokaryotic lipoprotein processing/modification sequence. We then showed that the H.8 protein could be labeled with {sup 14}C-palmitic acid, confirming that H.8 was a lipoprotein. Processing of the H.8 protein was inhibited by globomycin in E. coli indicating that H.8 was modified by the described lipoprotein processing/modifying pathway described in both gram negative and gram positive genera.

  19. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC).

    Science.gov (United States)

    Stenkova, Anna M; Bystritskaya, Evgeniya P; Guzev, Konstantin V; Rakin, Alexander V; Isaeva, Marina P

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system.

  20. Analysis of bacteria-derived outer membrane vesicles using tunable resistive pulse sensing

    Science.gov (United States)

    Bogomolny, Evgeny; Hong, Jiwon; Blenkiron, Cherie; Simonov, Denis; Dauros, Priscila; Swift, Simon; Phillips, Anthony; Willmott, Geoff R.

    2015-03-01

    Accurate characterization of submicron particles within biological fluids presents a major challenge for a wide range of biomedical research. Detection, characterization and classification are difficult due to the presence of particles and debris ranging from single molecules up to particles slightly smaller than cells. Especial interest arises from extracellular vesicles (EVs) which are known to play a pivotal role in cell-signaling in multicellular organisms. Tunable resistive pulse sensing (TRPS) is increasingly proving to be a useful tool for high throughput particle-by-particle analysis of EVs and other submicron particles. This study examines the capability of TRPS for characterization of EVs derived from bacteria, also called outer membrane vesicles (OMVs). Measurement of a size distribution (124 +/- 3 nm modal diameter) and concentration (lower bound 7.4 x 109 mL-1) are demonstrated using OMVs derived from uropathogenic Escherichia coli. Important aspects of measurement are discussed, including sample preparation and size selection. Application of TRPS to study EVs could assist the development of these particles in clinical diagnostics and therapeutics.

  1. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim

    Full Text Available Outer membrane (OM proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  2. Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae.

    Science.gov (United States)

    Ibrahim, Muhammad; Shi, Yu; Qiu, Hui; Li, Bin; Jabeen, Amara; Li, Liping; Liu, He; Kube, Michael; Xie, Guanlin; Wang, Yanli; Blondel, Carlos; Santiviago, Carlos A; Contreras, Ines; Sun, Guochang

    2012-01-01

    Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.

  3. Recombinant outer membrane secretin PilQ(406-770) as a vaccine candidate for serogroup B Neisseria meningitidis.

    Science.gov (United States)

    Haghi, Fakhri; Peerayeh, Shahin Najar; Siadat, Seyed Davar; Zeighami, Habib

    2012-02-21

    Secretin PilQ is an antigenically conserved outer membrane protein which is present on most meningococci. This protein naturally expressed at high levels and is essential for meningococcal pilus expression at the cell surface. A 1095 bp fragment of C-terminal of secretin pilQ from serogroup B Neisseria meningitidis was cloned into prokaryotic expression vector pET-28a. Recombinant protein was overexpressed with IPTG and affinity-purified by Ni-NTA agarose. BALB/c mice were immunized subcutaneously with purified rPilQ(406-770) mixed with Freund's adjuvant. Serum antibody responses to serogroups A and B N. meningitidis whole cells or purified rPilQ(406-770) and functional activity of antibodies were determined by ELISA and SBA, respectively. The output of rPilQ(406-770) was approximately 50% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with PilQ(406-770) mixed with Freund's adjuvant in comparison with control groups. Antisera produced against rPilQ(406-770) demonstrated strong surface reactivity to serogroups A and B N. meningitidis tested by whole-cell ELISA. Surface reactivity to serogroup B N. meningitidis was higher than serogroup A. The sera from PilQ(406-770) immunized animals were strongly bactericidal against serogroups A and B. These results suggest that rPilQ(406-770) is a potential vaccine candidate for serogroup B N. meningitidis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  5. Effects of Outer Membrane Protein TolC on the Transport of Escherichia coli within Saturated Quartz Sands

    Science.gov (United States)

    Feriancikova, Lucia; Bardy, Sonia L.; Wang, Lixia; Li, Jin; Xu, Shangping

    2013-01-01

    The outer membrane protein (OMP) TolC is the cell surface component of several drug efflux pumps that are responsible for bacterial resistance against a variety of antibiotics. In this research, we investigated the effects of OMP TolC on E. coli transport within saturated sands through column experiments using a wide type E. coli K12 strain (with OMP TolC), as well as the corresponding transposon mutant (tolC∷kan) and the markerless deletion mutant (ΔtolC). Our results showed OMP TolC could significantly enhance the transport of E. coli when the ionic strength was 20 mM NaCl or higher. The deposition rate coefficients for the wild type E. coli strain (with OMP TolC) was usually >50% lower than those of the tolC-negative mutants. The measurements of contact angles using three probe liquids suggested that TolC altered the surface tension components of E. coli cells and lead to lower Hamaker constants for the cell-water-sand system. The interaction energy calculations using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the deposition of the E. coli cell primarily occurred at the secondary energy minimum. The depth of the secondary energy minimum increased with ionic strength, and was greater for the TolC-deletion strains under high ionic strength conditions. Overall, the transport behavior of three E. coli strain within saturated sands could be explained by the XDLVO calculations. Results from this research suggested that antibiotic resistant bacteria expressing OMP TolC could spread more widely within sandy aquifers. PMID:23627691

  6. Overexpression, purification, crystallization and preliminary X-ray crystallographic analysis of the periplasmic domain of outer membrane protein A from Acinetobacter baumannii

    International Nuclear Information System (INIS)

    Park, Jeong Soon; Lee, Woo Cheol; Choi, Saehae; Yeo, Kwon Joo; Song, Jung Hyun; Han, Young-Hyun; Lee, Je Chul; Kim, Seung Il; Jeon, Young Ho; Cheong, Chaejoon; Kim, Hye-Yeon

    2011-01-01

    The crystallization of the OmpA periplasmic domain from A. baumannii is described. Outer membrane protein A from Acinetobacter baumannii (AbOmpA) is a major outer membrane protein and a key player in the bacterial pathogenesis that induces host cell death. AbOmpA is presumed to consist of an N-terminal β-barrel transmembrane domain and a C-terminal periplasmic OmpA-like domain. In this study, the recombinant C-terminal periplasmic domain of AbOmpA was overexpressed in Escherichia coli, purified and crystallized using the vapour-diffusion method. A native diffraction data set was collected to a resolution of 2.0 Å using synchrotron radiation. The space group of the crystal was P2 1 , with unit-cell parameters a = 58.24, b = 98.59, c = 97.96 Å, β = 105.92°. The native crystal contained seven or eight molecules per asymmetric unit and had a calculated Matthews coefficient of 2.93 or 2.56 Å 3 Da −1

  7. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  8. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  9. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes

    International Nuclear Information System (INIS)

    Yao, Yong; Dutta, Samit Kumar; Park, Sang Ho; Rai, Ratan; Fujimoto, L. Miya; Bobkov, Andrey A.; Opella, Stanley J.; Marassi, Francesca M.

    2017-01-01

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13 C or 1 H detection, have very narrow line widths (0.40–0.60 ppm for 13 C, 0.11–0.15 ppm for 1 H, and 0.46–0.64 ppm for 15 N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1 H-detected solid-state NMR 1 H/ 15 N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1 H/ 15 N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  10. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes.

    Science.gov (United States)

    Yao, Yong; Dutta, Samit Kumar; Park, Sang Ho; Rai, Ratan; Fujimoto, L Miya; Bobkov, Andrey A; Opella, Stanley J; Marassi, Francesca M

    2017-03-01

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail's biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13 C or 1 H detection, have very narrow line widths (0.40-0.60 ppm for 13 C, 0.11-0.15 ppm for 1 H, and 0.46-0.64 ppm for 15 N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1 H-detected solid-state NMR 1 H/ 15 N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1 H/ 15 N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  11. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yong; Dutta, Samit Kumar [Sanford Burnham Prebys Medical Discovery Institute (United States); Park, Sang Ho; Rai, Ratan [University of California San Diego, Department of Chemistry and Biochemistry (United States); Fujimoto, L. Miya; Bobkov, Andrey A. [Sanford Burnham Prebys Medical Discovery Institute (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbp.edu [Sanford Burnham Prebys Medical Discovery Institute (United States)

    2017-03-15

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with {sup 13}C or {sup 1}H detection, have very narrow line widths (0.40–0.60 ppm for {sup 13}C, 0.11–0.15 ppm for {sup 1}H, and 0.46–0.64 ppm for {sup 15}N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The {sup 1}H-detected solid-state NMR {sup 1}H/{sup 15}N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR {sup 1}H/{sup 15}N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  12. Protection against Chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4 of the major outer membrane protein

    DEFF Research Database (Denmark)

    Olsen, Anja W.; Follmann, Frank; Erneholm, Karin Susanne

    2015-01-01

    bacterial numbers in vagina and prevention of pathological changes in the upper genital tract. Adoptive transfer of serumand T-cell depletion experiments demonstrated a dominant role for antibodies and CD4+ T cells in the protective immune response. Integrating a multivalent VD4 construct into the sequence......The VD4 region from the Chlamydia trachomatis major outer membrane protein contains important neutralizing B-cell epitopes of relevance for antibody-mediated protection against genital tract infection. We developed a multivalent vaccine construct based on VD4s and their surrounding constant...... segments from serovars D, E, and F. Adjuvanted with cationic liposomes, this construct promoted strong immune responses to serovar-specific epitopes, the conserved LNPTIAG epitope and neutralized serovars D, E, and F. Vaccinated mice were protected against challenge, with protection defined as reduced...

  13. Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique

    Directory of Open Access Journals (Sweden)

    Appleton Hazel

    2010-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS and identified from mass spectral database searches. Results In this study, 54 outer membrane proteins, were identified with two or more peptide hits using a multi-step digest approach. Out of these 28 were lipoproteins, nine were involved in transport and three with enzyme activity These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane. Other proteins identified included the enzymes MltC which may play a role in cell elongation and division and NlpD which is involved in catabolic processes in cell wall formation as well as proteins involved in virulence such as Lpp1, Lpp2 and OmpX. Conclusion Using a multi-step digest approach the LPI™ technique enables the incorporation of a

  14. Analysis of surface protein expression reveals the growth pattern of the gram-negative outer membrane.

    Directory of Open Access Journals (Sweden)

    Tristan S Ursell

    Full Text Available The outer membrane (OM of Gram-negative bacteria is a complex bilayer composed of proteins, phospholipids, lipoproteins, and lipopolysaccharides. Despite recent advances revealing the molecular pathways underlying protein and lipopolysaccharide incorporation into the OM, the spatial distribution and dynamic regulation of these processes remain poorly understood. Here, we used sequence-specific fluorescent labeling to map the incorporation patterns of an OM-porin protein, LamB, by labeling proteins only after epitope exposure on the cell surface. Newly synthesized LamB appeared in discrete puncta, rather than evenly distributed over the cell surface. Further growth of bacteria after labeling resulted in divergence of labeled LamB puncta, consistent with a spatial pattern of OM growth in which new, unlabeled material was also inserted in patches. At the poles, puncta remained relatively stationary through several rounds of division, a salient characteristic of the OM protein population as a whole. We propose a biophysical model of growth in which patches of new OM material are added in discrete bursts that evolve in time according to Stokes flow and are randomly distributed over the cell surface. Simulations based on this model demonstrate that our experimental observations are consistent with a bursty insertion pattern without spatial bias across the cylindrical cell surface, with approximately one burst of ≈ 10(-2 µm(2 of OM material per two minutes per µm(2. Growth by insertion of discrete patches suggests that stochasticity plays a major role in patterning and material organization in the OM.

  15. Identification and validation of T-cell epitopes in outer membrane protein (OMP) of Salmonella typhi.

    Science.gov (United States)

    Tanu, Arifur Rahman; Ashraf, Mohammad Arif; Hossain, Md Faruk; Ismail, Md; Shekhar, Hossain Uddin

    2014-01-01

    This study aims to design epitope-based peptides for the utility of vaccine development by targeting outer membrane protein F (Omp F), because two available licensed vaccines, live oral Ty21a and injectable polysaccharide, are 50% to 80% protective with a higher rate of side effects. Conventional vaccines take longer time for development and have less differentiation power between vaccinated and infected cells. On the other hand, Peptide-based vaccines present few advantages over other vaccines, such as stability of peptide, ease to manufacture, better storage, avoidance of infectious agents during manufacture, and different molecules can be linked with peptides to enhance their immunogenicity. Omp F is highly conserved and facilitates attachment and fusion of Salmonella typhi with host cells. Using various databases and tools, immune parameters of conserved sequences from Omp F of different isolates of Salmonella typhi were tested to predict probable epitopes. Binding analysis of the peptides with MHC molecules, epitopes conservancy, population coverage, and linear B cell epitope prediction were analyzed. Among all those predicted peptides, ESYTDMAPY epitope interacted with six MHC alleles and it shows highest amount of interaction compared to others. The cumulative population coverage for these epitopes as vaccine candidates was approximately 70%. Structural analysis suggested that epitope ESYTDMAPY fitted well into the epitope-binding groove of HLA-C*12:03, as this HLA molecule was common which interact with each and every predicted epitopes. So, this potential epitope may be linked with other molecules to enhance its immunogenicity and used for vaccine development.

  16. Clonality, outer-membrane proteins profile and efflux pump in KPC- producing Enterobacter sp. in Brazil.

    Science.gov (United States)

    Rosa, Juliana Ferraz; Rizek, Camila; Marchi, Ana Paula; Guimaraes, Thais; Miranda, Lourdes; Carrilho, Claudia; Levin, Anna S; Costa, Silvia F

    2017-03-17

    Carbapenems resistance in Enterobacter spp. has increased in the last decade, few studies, however, described the mechanisms of resistance in this bacterium. This study evaluated clonality and mechanisms of carbapenems resistance in clinical isolates of Enterobacter spp. identified in three hospitals in Brazil (Hospital A, B and C) over 7-year. Antibiotics sensitivity, pulsed-field gel electrophoresis (PFGE), PCR for carbapenemase and efflux pump genes were performed for all carbapenems-resistant isolates. Outer-membrane protein (OMP) was evaluated based on PFGE profile. A total of 130 isolates of Enterobacter spp were analyzed, 44/105 (41, 9%) E. aerogenes and 8/25 (32,0%) E. cloacae were resistant to carbapenems. All isolates were susceptible to fosfomycin, polymyxin B and tigecycline. KPC was present in 88.6% of E. aerogenes and in all E. cloacae resistant to carbapenems. The carbapenems-resistant E. aerogenes identified in hospital A belonged to six clones, however, a predominant clone was identified in this hospital over the study period. There is a predominant clone in Hospital B and Hospital C as well. The mechanisms of resistance to carbapenems differ among subtypes. Most of the isolates co-harbored blaKPC, blaTEM and /or blaCTX associated with decreased or lost of 35-36KDa and or 39 KDa OMP. The efflux pump AcrAB-TolC gene was only identified in carbapenems-resistant E. cloacae. There was a predominant clone in each hospital suggesting that cross-transmission of carbapenems-resistant Enterobacter spp. was frequent. The isolates presented multiple mechanisms of resistance to carbapenems including OMP alteration.

  17. Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody.

    Science.gov (United States)

    Zheng, W Y; Wang, Y; Zhang, Z C; Yan, F

    2015-10-05

    We examined the immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody. Genomic DNA from the M5 strain of goat Brucella was amplified by polymerase chain reaction and cloned into the prokaryotic expression vector pGEX-4T-1. The expression and immunological characteristics of the fusion protein GST-omp31 were subjected to preliminary western blot detection with goat Brucella rabbit immune serum. The Brucella immunized BALB/c mouse serum was detected using purified protein. The high-potency mouse splenocytes and myeloma Sp2/0 cells were fused. Positive clones were screened by enzyme-linked immunosorbent assay to establish a hybridoma cell line. Mice were inoculated intraperitoneally with hybridoma cells to prepare ascites. The mAb was purified using the n-caprylic acid-ammonium sulfate method. The characteristics of mAb were examined using western blotting and enzyme-linked immunosorbent assay. A 680-base pair band was observed after polymerase chain reaction. Enzyme digestion identification and sequencing showed that the pGEX-4T-1-omp31 prokaryotic expression vector was successfully established; a target band of approximately 57 kDa with an apparent molecular weight consistent with the size of the target fusion protein. At 25°C, the expression of soluble expression increased significantly; the fusion protein GST-omp31 was detected by western blotting. Anti-omp31 protein mAb was obtained from 2 strains of Brucella. The antibody showed strong specificity and sensitivity and did not cross-react with Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, or Bacillus pyocyaneus. The pGEX-4T-1-omp31 prokaryotic expression vector was successfully established and showed good immunogenicity. The antibody also showed strong specificity and good sensitivity.

  18. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation From Immunogenicity

    Directory of Open Access Journals (Sweden)

    David J. Dowling

    2016-12-01

    Full Text Available Background. Group B Neisseria meningitidis, an endotoxin-producing gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs or soluble lipopolysaccharide (LPS represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific in vitro culture systems.Methods. OMVs from wild type and inactivated lpxL1 gene mutant N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and PGE2 production, as well as cell surface activation markers (HLA-DR, CD86, CCR7. OMV immunogenicity was assessed in mice.Results. ΔlpxLI native OMVs demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, Bacillus Calmette–Guérin (BCG tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI native OMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization.Conclusions. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  19. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa.

    Science.gov (United States)

    Briers, Y; Walmagh, M; Lavigne, R

    2011-03-01

    To select and evaluate an appropriate outer membrane (OM) permeabilizer to use in combination with the highly muralytic bacteriophage endolysin EL188 to inactivate (multi-resistant) Pseudomonas aeruginosa. We tested the combination of endolysin EL188 and several OM permeabilizing compounds on three selected Ps. aeruginosa strains with varying antibiotic resistance. We analysed OM permeabilization using the hydrophobic probe N-phenylnaphtylamine and a recombinant fusion protein of a peptidoglycan binding domain and green fluorescent protein on the one hand and cell lysis assays on the other hand. Antibacterial assays showed that incubation of 10(6) Ps. aeruginosa cells ml(-1) in presence of 10 mmol l(-1) ethylene diamine tetraacetic acid disodium salt dihydrate (EDTA) and 50 μg ml(-1) endolysin EL188 led to a strain-dependent inactivation between 3·01 ± 0·17 and 4·27 ± 0·11 log units in 30 min. Increasing the EL188 concentration to 250 μg ml(-1) further increased the inactivation of the most antibiotic resistant strain Br667 (4·07 ± 0·09 log units). Ethylene diamine tetraacetic acid disodium salt dihydrate was selected as the most suitable component to combine with EL188 in order to reduce Ps. aeruginosa with up to 4 log units in a time interval of 30 min. This in vitro study demonstrates that the application range of bacteriophage encoded endolysins as 'enzybiotics' must not be limited to gram-positive pathogens. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Discovery of Salmonella Virulence Factors Translocated via Outer Membrane Vesicles to Murine Macrophages.

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; Ansong, Charles; Adkins, Joshua N.; Heffron, Fred

    2011-06-01

    We have previously shown that the regulators SpvR, FruR, IHF, PhoP/PhoQ, SsrA/SsrB, SlyA, Hnr, RpoE, SmpB, CsrA, RpoS, Crp, OmpR/EnvZ, and Hfq are essential for Salmonella Typhimurium virulence in mice. Here we use quantitative LC-MS-based proteomics profiling of in-frame deletion mutants of these 14 regulators to identify proteins that are coordinately regulated by these virulence regulators and are thus presumably novel factors contributing to Salmonella pathogenesis. Putative candidate proteins from proteomics analysis were determined, which exhibited similar abundance profiles to those of Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS) proteins. A subset of 5 proteins including STM0082, STM1548, PdgL, STM1633, and STM3595 was selected for further analysis. All 5 proteins were expressed inside macrophage cells and STM0082 (SrfN) was secreted into host cytoplasm. Furthermore, deletion of STM0082 attenuated virulence in mice when administered intraperitoneally as determined by competitive index. srfN transcription was positively regulated by SsrAB, however, secretion was independent of SPI-2 TTSS as well as SPI-1 TTSS and flagella. Proteins including PagK and STM2585A, which are positively regulated by PhoP/PhoQ, have sec signal peptides as predicted for SrfN and were secreted into macrophage cytoplasm regardless of SPI-2 TTSS. Isolation of outer membrane vesicles (OMVs) revealed the presence of SrfN, PagK, and STM2585A inside vesicle compartments. This result is the first case showing delivery of virulence effectors via OMVs in S. Typhimurium. Moreover, Hfq regulation of SrfN translation suggests that small non-coding RNAs may be responsible for regulating effector protein expression.

  1. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles.

    Science.gov (United States)

    Chatterjee, Somdatta; Mondal, Ayan; Mitra, Shravani; Basu, Sulagna

    2017-08-01

    To investigate the transmission of the gene encoding New Delhi metallo-β-lactamase-1 ( bla NDM-1 ) through outer membrane vesicles (OMVs) released from an Acinetobacter baumannii strain (A_115). Isolation and purification of OMVs by density gradient from a carbapenem-resistant clinical strain of A. baumannii harbouring plasmid-mediated bla NDM-1 and aac(6')-Ib-cr genes was performed. DNA was purified from the OMVs and used for PCR and dot-blot analysis. Vesicles treated with DNase I and proteinase K were used to transform A. baumannii ATCC 19606 and Escherichia coli JM109 strains. MIC values for the transformants were determined, followed by PCR and restriction digestion of plasmids. PFGE was done for A_115 and transformants of ATCC 19606 and JM109. The A. baumannii strain (ST 1462) released vesicles (25-100 nm) during in vitro growth at late log phase. PCR and dot-blot analysis confirmed the presence of bla NDM-1 and aac(6')-Ib-cr genes in intravesicular DNA. bla NDM-1 and aac(6')-Ib-cr genes were transferred to both the A. baumannii ATCC 19606 and E. coli JM109 recipient cells. The transformation frequency of the purified OMVs was in the range of 10 -5 -10 -6 and gradually reduced with storage of OMVs. The sizes of the plasmids in the transformants and their restriction digestion patterns were identical to the plasmid in A_115. The transformants showed elevated MIC values of the β-lactam group of antibiotics, which confirmed the presence of a bla NDM-1 -harbouring plasmid. This is the first experimental evidence of intra- and inter-species transfer of a plasmid harbouring a bla NDM-1 gene in A. baumannii via OMVs with high transformation frequency. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Comparative Outer Membrane Protein Analysis of High and Low-Invasive Strains of Cronobacter malonaticus

    Directory of Open Access Journals (Sweden)

    Maha A. Aldubyan

    2017-11-01

    Full Text Available Cronobacter are an important group of foodborne pathogens that has been linked to life-threatening infections in both infants and adults. The major infections associated with Cronobacter species are neonatal meningitis, necrotizing enterocolitis, and septicaemia. There are seven species in the Cronobacter genus, of which only three are of clinical importance; Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter turicensis. To date most studies have focussed on C. sakazakii as it is the major species associated with neonatal infections. However, recently C. malonaticus, in particular sequence type 7 (ST7, has been noted as being prevalent in adult infections and therefore warranting further investigation. In this study, eight strains of C. malonaticus ST7, that had been isolated from a wide range of sources and varied in their in vitro virulence, were chosen for proteomic analysis of their outer membrane proteins (OMPs. One-dimensional gel analysis revealed a ~29 kDa size band that was only present in the highly invasive strains. Subsequent mass spectrometric analysis identified several peptides that matched the flagellin protein. The presence of flagellin protein was confirmed in 2D gel spot. Mass spectrometry analysis of total OMPs revealed that the four highly invasive C. malonaticus strains expressed the main flagellum proteins that were absent from the four low invasive strains. These were the flagellar hook protein FlgE, flagellar hook-associated protein 1, flagellar hook-associated protein, flagellin, and flagellar hook-filament junction protein FlgL. This data indicates that C. malonaticus flagellar proteins may have an important role in the organism's invasion properties.

  3. Prevalence of Genes Encoding Outer Membrane Virulence Factors Among Fecal Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    Ahmad Rashki

    2017-03-01

    Full Text Available Objective: Escherichia coli is commensal bacterium of human intestine. The gut is a common pool of E. coli isolates causing urinary tract infections (UTIs. Some of fecal E. coli (FeEC by the possession of certain virulence factors is able to cause diseases in human and other mammalian models. To evaluate the health threats coordinated with a given fecal source of E. coli strains, we determined the frequency of genes expressing virulence determinants in fecal E. coli isolates collected from human feces in Zabol, southeast of Iran. Methods: Escherichia coli isolates (n = 94 were separated from the feces of patients attending teaching hospitals, and screened for various virulence genes: fimH, his, hlyA, ompT, irp2, iucD, iroN, and cnf1 by using the multiplex polymerase chain reaction (PCR method. Results: The prevalence of virulence genes was as follows: adhesins (fimH, 98% and iha, 26%, alpha-hemolysins (hlyA, 10%, outer membrane protease (ompT, 67%, aerobactin (iucD, 67%, iron-repressible protein (irp2, 91% and salmochelin (iroN, 33% and cytotoxic necrotizing factor 1 (cnf1. According to the diversity of different virulence genes, the examined isolates exhibited 29 different patterns. Conclusion: Our results demonstrated that most of the assessed isolates harbored several virulence factors. Our findings propose possibility of human feces serving as a source for pathogenic organisms, supporting the notion that fecal materials of humans play a role in the epidemiological chain of extra-intestinal pathogenic E. coli. This is the first report of the frequency of virulence factors among E. coli isolates collected from human feces in Iran.

  4. Molecular automata assembly: principles and simulation of bacterial membrane construction.

    Science.gov (United States)

    Lahoz-Beltra, R

    1997-01-01

    The motivation to understand the basic rules and principles governing molecular self-assembly may be relevant to explain in the context of molecular biology the self-organization and biological functions exhibited within cells. This paper presents a molecular automata model to simulate molecular self-assembly introducing the concept of molecular programming to simulate the biological function or operation performed by an assembled molecular state machine. The method is illustrated modelling Escherichia coli membrane construction including the assembly and operation of ATP synthase as well as the assembly of the bacterial flagellar motor. Flagellar motor operation was simulated using a different approach based on state machine definition used in virtual reality systems. The proposed methodology provides a modelling framework for simulation of biological functions performed by cellular components and other biological systems suitable to be modelled as molecular state machines.

  5. Polyphosphate kinases modulate Campylobacter jejuni outer membrane constituents and alter its capacity to invade and survive in intestinal epithelial cells in vitro

    Science.gov (United States)

    Pina-Mimbela, Ruby; Madrid, Jesús Arcos; Kumar, Anand; Torrelles, Jordi B; Rajashekara, Gireesh

    2015-01-01

    Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Polyphosphate kinases 1 and 2 (PPK1 and PPK2) regulate several cellular processes, including the biosynthesis of the bacterial cell wall. Despite their importance, whether PPK1 and PPK2 modulate the composition of C. jejuni outer membrane constituents (OMCs) and consequently impact its interaction with host cells remains unknown. Our comparative analysis between C. jejuni wild type, Δppk1, and Δppk2 strains showed qualitative and quantitative differences in the total OMC composition among these strains. Importantly, these OMC variations observed on the C. jejuni polyphosphate kinase mutants are directly related to their capacity to invade, survive, and alter the immune response of intestinal epithelial cells in vitro. Specifically, sub-fractionation of the C. jejuni OMC indicated that OMC proteins are uniquely associated with bacterial invasion, whereas C. jejuni OMC proteins, lipids, and lipoglycans are all associated with C. jejuni intracellular survival. This study provides new insights regarding the function of polyphosphate kinases and their role in C. jejuni infection. PMID:26714783

  6. Polyphosphate kinases modulate Campylobacter jejuni outer membrane constituents and alter its capacity to invade and survive in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Pina-Mimbela, Ruby; Madrid, Jesús Arcos; Kumar, Anand; Torrelles, Jordi B; Rajashekara, Gireesh

    2015-12-30

    Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Polyphosphate kinases 1 and 2 (PPK1 and PPK2) regulate several cellular processes, including the biosynthesis of the bacterial cell wall. Despite their importance, whether PPK1 and PPK2 modulate the composition of C. jejuni outer membrane constituents (OMCs) and consequently impact its interaction with host cells remains unknown. Our comparative analysis between C. jejuni wild type, Δppk1, and Δppk2 strains showed qualitative and quantitative differences in the total OMC composition among these strains. Importantly, these OMC variations observed on the C. jejuni polyphosphate kinase mutants are directly related to their capacity to invade, survive, and alter the immune response of intestinal epithelial cells in vitro. Specifically, sub-fractionation of the C. jejuni OMC indicated that OMC proteins are uniquely associated with bacterial invasion, whereas C. jejuni OMC proteins, lipids, and lipoglycans are all associated with C. jejuni intracellular survival. This study provides new insights regarding the function of polyphosphate kinases and their role in C. jejuni infection.

  7. Predicting the outer membrane proteome of Pasteurella multocida based on consensus prediction enhanced by results integration and manual confirmation

    Directory of Open Access Journals (Sweden)

    E-komon Teerasak

    2012-04-01

    Full Text Available Abstract Background Outer membrane proteins (OMPs of Pasteurella multocida have various functions related to virulence and pathogenesis and represent important targets for vaccine development. Various bioinformatic algorithms can predict outer membrane localization and discriminate OMPs by structure or function. The designation of a confident prediction framework by integrating different predictors followed by consensus prediction, results integration and manual confirmation will improve the prediction of the outer membrane proteome. Results In the present study, we used 10 different predictors classified into three groups (subcellular localization, transmembrane β-barrel protein and lipoprotein predictors to identify putative OMPs from two available P. multocida genomes: those of avian strain Pm70 and porcine non-toxigenic strain 3480. Predicted proteins in each group were filtered by optimized criteria for consensus prediction: at least two positive predictions for the subcellular localization predictors, three for the transmembrane β-barrel protein predictors and one for the lipoprotein predictors. The consensus predicted proteins were integrated from each group into a single list of proteins. We further incorporated a manual confirmation step including a public database search against PubMed and sequence analyses, e.g. sequence and structural homology, conserved motifs/domains, functional prediction, and protein-protein interactions to enhance the confidence of prediction. As a result, we were able to confidently predict 98 putative OMPs from the avian strain genome and 107 OMPs from the porcine strain genome with 83% overlap between the two genomes. Conclusions The bioinformatic framework developed in this study has increased the number of putative OMPs identified in P. multocida and allowed these OMPs to be identified with a higher degree of confidence. Our approach can be applied to investigate the outer membrane proteomes of other Gram

  8. Antigen sequence typing of outer membrane protein (fetA gene of Neisseria meningitidis serogroup A from Delhi & adjoining areas

    Directory of Open Access Journals (Sweden)

    S Dwivedi

    2014-01-01

    Full Text Available Background & objectives: Meningitis caused by Neisseria meningitidis is a fatal disease. Meningococcal meningitis is an endemic disease in Delhi and irregular pattern of outbreaks has been reported in India. All these outbreaks were associated with serogroup A. Detailed molecular characterization of N. meningitidis is required for the management of this fatal disease. In this study, we characterized antigenic diversity of surface exposed outer membrane protein (OMP FetA antigen of N. meningitidis serogroup A isolates obtained from cases of invasive meningococcal meningitis in Delhi, India. Methods: Eight isolates of N. meningitidis were collected from cerebrospinal fluid during October 2008 to May 2011 from occasional cases of meningococcal meningitis. Seven isolates were from outbreaks of meningococcal meningitis in 2005-2006 in Delhi and its adjoining areas. These were subjected to molecular typing of fetA gene, an outer membrane protein gene. Results: All 15 N. meningitides isolates studied were serogroup A. This surface exposed porin is putatively under immune pressure. Hence as a part of molecular characterization, genotyping was carried out to find out the diversity in outer membrane protein (FetA gene among the circulating isolates of N. meningitidis. All 15 isolates proved to be of the same existing allele type of FetA variable region (VR when matched with global database. The allele found was F3-1 for all the isolates. Interpretation & conclusions: There was no diversity reported in the outer membrane protein FetA in the present study and hence this protein appeared to be a stable molecule. More studies on molecular characterization of FetA antigen are required from different serogroups circulating in different parts of the world.

  9. Bacterial membrane vesicles as novel nanosystems for drug delivery

    Directory of Open Access Journals (Sweden)

    Jain S

    2017-08-01

    Full Text Available Sapna Jain, Jonathan Pillai Implants, Devices and Drug Delivery Systems Laboratory, Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India Abstract: Bacterial membrane vesicles (BMVs are closed spherical nanostructures that are shed naturally and ubiquitously by most bacterial species both in vivo and in vitro. Researchers have elucidated their roles in long-distance transport of a wide array of cargoes, such as proteins, toxins, antigens, virulence factors, microbicidal agents and antibiotics. Given that these natural carriers are important players in intercellular communication, it has been hypothesized that they are equally well attuned for transport and delivery of exogenous therapeutic cargoes. Additionally, BMVs appear to possess specific properties that enable their utilization as drug delivery vehicles. These include their ability to evade the host immune system, protection of the therapeutic payload and natural stability. Using bioengineering approaches, BMVs have been applied as carriers of therapeutic moieties in vaccines and for targeted delivery in cancer. In this article, we explore BMVs from the perspective of understanding their applicability to drug delivery. BMV biology, including biogenesis, physiology and pathology, is briefly reviewed. Practical issues related to bioprocessing, loading of therapeutic moieties and characterization for enabling scalability and commercial viability are evaluated. Finally, challenges to clinical translation and rational design approaches for novel BMV formulations are presented. Although the realization of the full potential of BMVs in drug delivery hinges on the development of scalable approaches for their production as well as the refinement of targeting and loading methods, they are promising candidates for development of a novel generation of drug delivery vehicles in future. Keywords: bacteria, membrane vesicles, immune system

  10. Intrauterine bacterial findings in postpartum cows with retained fetal membranes.

    Science.gov (United States)

    Bekana, M; Jonsson, P; Ekman, T; Kindahl, H

    1994-11-01

    Eleven Swedish postpartum cows with retained fetal membranes (RFM) were studied to determine the intrauterine bacterial flora. Bacteriological examination was performed from twice weekly uterine biopsies. A total of 161 biopsies were collected during the first 8 weeks postpartum of which 82 (50.9%) were found with bacterial growth. Seventy-one of the 82 bacteria-positive biopsies (86.6%) showed mixed infections whereas the remaining 11 (13.4%) were pure cultures. Generally, a total of 322 isolates belonging to 12 different genera of bacteria, 6 facultative and 6 obligate anaerobic pathogens were identified. Mixed infections were most frequent for Actinomyces pyogenes together with obligate anaerobic bacteria, especially Bacteroides levii/spp. and Fusobacterium necrophorum. All of the studied cows had an infection that involved the first two genera of bacteria, whereas F. necrophorum was found in 8 of the 11 animals. The present work suggests that a possible pathogenic synergism between A. pyogenes and the two main Gram-negative anaerobes might have caused early endometritis and/or persistent infection.

  11. Gram's Stain Does Not Cross the Bacterial Cytoplasmic Membrane.

    Science.gov (United States)

    Wilhelm, Michael J; Sheffield, Joel B; Sharifian Gh, Mohammad; Wu, Yajing; Spahr, Christian; Gonella, Grazia; Xu, Bolei; Dai, Hai-Lung

    2015-07-17

    For well over a century, Hans Christian Gram's famous staining protocol has been the standard go-to diagnostic for characterizing unknown bacteria. Despite continuous and ubiquitous use, we now demonstrate that the current understanding of the molecular mechanism for this differential stain is largely incorrect. Using the fully complementary time-resolved methods: second-harmonic light-scattering and bright-field transmission microscopy, we present a real-time and membrane specific quantitative characterization of the bacterial uptake of crystal-violet (CV), the dye used in Gram's protocol. Our observations contradict the currently accepted mechanism which depicts that, for both Gram-negative and Gram-positive bacteria, CV readily traverses the peptidoglycan mesh (PM) and cytoplasmic membrane (CM) before equilibrating within the cytosol. We find that not only is CV unable to traverse the CM but, on the time-scale of the Gram-stain procedure, CV is kinetically trapped within the PM. Our results indicate that CV, rather than dyes which rapidly traverse the PM, is uniquely suited as the Gram stain.

  12. Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles.

    Science.gov (United States)

    Liu, Yaolin; Rosenfield, Eric; Hu, Meng; Mi, Baoxia

    2013-06-01

    A microscope-equipped online monitoring system was used to investigate the bacterial deposition and detachment kinetics of a nanocomposite membrane that was synthesized by embedding silver nanoparticles in a polysulfone membrane. A pure polysulfone membrane was used as a control in the experiments. The deposition experiments with live bacteria showed that the bacterial deposition rates were the same for the nanocomposite and control polysulfone membranes. After the rinsing experiments, however, on average a high bacterial detachment ratio of 75% was observed for the nanocomposite membrane, compared with 18% for the control polysulfone membrane. These results indicate that the presence of silver nanoparticles as an antibacterial agent enhances the antiadhesive property of the nanocomposite membrane by decreasing the capability of bacteria in permanently attaching to the membrane surface. A quartz crystal microbalance with dissipation was used to study silver leaching. It was found that silver leaching significantly decreased within the first few hours. Deposition and rinsing experiments with dead bacterial cells revealed that the dead cell deposition rates were similar for both membranes, and so were the detachment ratios. Since the nanocomposite membrane did not show any antiadhesive action against dead cells, its antiadhesive property was most likely attributed to its ability to inhibit biological activities. Results of the antibacterial experiments confirmed that the nanocomposite membrane was highly effective in inhibiting bacterial growth with an antibacterial efficiency of over 98%, which did not decrease even after the membrane was soaked in DI water for seven days. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  14. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    Science.gov (United States)

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  15. Allelic Variation in Outer Membrane Protein A and Its Influence on Attachment of Escherichia coli to Corn Stover

    Directory of Open Access Journals (Sweden)

    Chunyu Liao

    2017-05-01

    Full Text Available Understanding the genetic factors that govern microbe-sediment interactions in aquatic environments is important for water quality management and reduction of waterborne disease outbreaks. Although chemical properties of bacteria have been identified that contribute to initiation of attachment, the outer membrane proteins that contribute to these chemical properties still remain unclear. In this study we explored the attachment of 78 Escherichia coli environmental isolates to corn stover, a representative agricultural residue. Outer membrane proteome analysis led to the observation of amino acid variations, some of which had not been previously described, in outer membrane protein A (OmpA at 10 distinct locations, including each of the four extracellular loops, three of the eight transmembrane segments, the proline-rich linker and the dimerization domain. Some of the polymorphisms within loops 1, 2, and 3 were found to significantly co-occur. Grouping of sequences according to the outer loop polymorphisms revealed five distinct patterns that each occur in at least 5% of our isolates. The two most common patterns, I and II, are encoded by 33.3 and 20.5% of these isolates and differ at each of the four loops. Statistically significant differences in attachment to corn stover were observed among isolates expressing different versions of OmpA and when different versions of OmpA were expressed in the same genetic background. Most notable was the increased corn stover attachment associated with a loop 3 sequence of SNFDGKN relative to the standard SNVYGKN sequence. These results provide further insight into the allelic variation of OmpA and implicate OmpA in contributing to attachment to corn stover.

  16. Helicobacter pylori outer membrane protein Q genotypes and their susceptibility to anti-adhesive phytotherapeutic agents.

    Science.gov (United States)

    Yakoob, Javed; Abbas, Zaigham; Mehmood, Malik Hassan; Tariq, Kanwal; Saleem, Saima Azhar; Awan, Safia; Malik, Abdul; Hamid, Saeed; Khan, Rustam; Jafri, Wasim

    2017-09-01

    Helicobacter pylori is a Gram-negative organism. Its outer membrane protein Q (HopQ) mediates host-pathogen interactions; HopQ genotypes 1 and 2 are found associating with gastroduodenal pathologies. The authors measured the anti-adhesion effects of the extracts of Abelmoschus esculentus, Zingiber officinale, Trachyspermum ammi, Glycyrrhiza glabra, Curcuma longa and Capsicum annum against HopQ genotypes and H. pylori cytotoxin-associated gene A (CagA). DNA was extracted by polymerase chain reaction of the HopQ genotypes (i.e., type 1, type 2 and CagA) from 115 H. pylori strains. The effect of the extracts from selected dietary ingredients was determined using a gastric adenocarcinoma cell line and a quantitative DNA fragmentation assay. The anti-adhesive effect of these extracts on H. pylori was tested using an anti-adhesion analysis. C. annum, C. longa and A. esculentus showed prominent anti-adhesion effects with resultant values of 17.3% ± 2.9%, 14.6% ± 3.7%, 13.8% ± 3.6%, respectively, against HopQ type 1 and 13.1% ± 1.7%, 12.1% ± 2%, 11.1% ± 1.6%, respectively, against HopQ type 2. C. longa (93%), C. annum (89%) and A. esculentus (75%) had better anti-adhesive activity against H. pylori with HopQ type 1 compared to HopQ type 2 with respective values of 70%, 64% and 51%. Extracts of C. annum (14.7% ± 4.1%), A. esculentus (12.3% ± 4.1%) and Z. officinale (8.4% ± 2.8%) had an anti-adhesion effect against CagA-positive H. pylori strains compared to CagA-negative strains. The anti-adhesion properties of the tested phytotherapeutic dietary ingredients were varied with HopQ genotypes. HopQ type 1 was found to be more sensitive to extracts of C. annum, C. longa and A. esculentus compared to the HopQ type 2 genotype.

  17. Overexpression of an Outer Membrane Protein Associated with Decreased Susceptibility to Carbapenems in Proteus mirabilis

    Science.gov (United States)

    Tsai, Yi-Lin; Wang, Min-Cheng; Hsueh, Po-Ren; Liu, Ming-Che; Hu, Rouh-Mei; Wu, Yue-Jin; Liaw, Shwu-Jen

    2015-01-01

    Proteus mirabilis isolates commonly have decreased susceptibility to imipenem. Previously, we found P. mirabilis hfq mutant was more resistant to imipenem and an outer membrane protein (OMP) could be involved. Therefore, we investigated the role of this OMP in carbapenem susceptibility. By SDS-PAGE we found this OMP (named ImpR) was increased in hfq mutant and LC-MS/MS revealed it to be the homologue of Salmonella YbfM, which is a porin for chitobiose and subject to MicM (a small RNA) regulation. We demonstrated that ImpR overexpression resulted in increased carbapenem MICs in the laboratory strain and clinical isolates. Chitobiose induced expression of chb (a chitobiose utilization operon). Real-time RT-PCR and SDS-PAGE were performed to elucidate the relationship of hfq, impR, chb and MicM in P. mirabilis. We found MicM RNA was decreased in hfq mutant and chbBC-intergenic region (chbBC-IGR) overexpression strain (chbIGRov), while impR mRNA was increased in hfq mutant, micM mutant and chbIGRov strain. In addition, mutation of hfq or micM and overexpression of chbBC-IGR increased ImpR protein level. Accordingly, chitobiose made wild-type have higher levels of ImpR protein and are more resistant to carbapenems. Hfq- and MicM-complemented strains restored wild-type MICs. Mutation of both impR and hfq eliminated the increase in carbapenem MICs observed in hfq mutant and ImpR-complementation of hfq/impR double mutant resulted in MICs as hfq mutant, indicating that the ImpR-dependent decreased carbapenem susceptibility of hfq mutant. These indicate MicM was antisense to impR mRNA and was negatively-regulated by chbBC-IGR. Together, overexpression of ImpR contributed to the decreased carbapenem susceptibility in P. mirabilis. PMID:25756370

  18. Outer Membrane Proteome of Veillonella parvula: A Diderm Firmicute of the Human Microbiome

    Directory of Open Access Journals (Sweden)

    Daniel I. Poppleton

    2017-06-01

    Full Text Available Veillonella parvula is a biofilm-forming commensal found in the lungs, vagina, mouth, and gastro-intestinal tract of humans, yet it may develop into an opportunistic pathogen. Furthermore, the presence of Veillonella has been associated with the development of a healthy immune system in infants. Veillonella belongs to the Negativicutes, a diverse clade of bacteria that represent an evolutionary enigma: they phylogenetically belong to Gram-positive (monoderm Firmicutes yet maintain an outer membrane (OM with lipopolysaccharide similar to classic Gram-negative (diderm bacteria. The OMs of Negativicutes have unique characteristics including the replacement of Braun's lipoprotein by OmpM for tethering the OM to the peptidoglycan. Through phylogenomic analysis, we have recently provided bioinformatic annotation of the Negativicutes diderm cell envelope. We showed that it is a unique type of envelope that was present in the ancestor of present-day Firmicutes and lost multiple times independently in this phylum, giving rise to the monoderm architecture; however, little experimental data is presently available for any Negativicutes cell envelope. Here, we performed the first experimental proteomic characterization of the cell envelope of a diderm Firmicute, producing an OM proteome of V. parvula. We initially conducted a thorough bioinformatics analysis of all 1,844 predicted proteins from V. parvula DSM 2008's genome using 12 different localization prediction programs. These results were complemented by protein extraction with surface exposed (SE protein tags and by subcellular fractionation, both of which were analyzed by liquid chromatography tandem mass spectrometry. The merging of proteomics and bioinformatics results allowed identification of 78 OM proteins. These include a number of receptors for TonB-dependent transport, the main component of the BAM system for OM protein biogenesis (BamA, the Lpt system component LptD, which is responsible for

  19. Protection from hemolytic uremic syndrome by eyedrop vaccination with modified enterohemorrhagic E. coli outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Kyoung Sub Choi

    Full Text Available We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs is effective for protecting against hemolytic uremic syndrome (HUS caused by enterohemorrhagic E. coli (EHEC O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB. Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN/Creatinin (Cr were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.

  20. Disease association with two Helicobacter pylori duplicate outer membrane protein genes, homB and homA.

    Science.gov (United States)

    Oleastro, Monica; Cordeiro, Rita; Yamaoka, Yoshio; Queiroz, Dulciene; Mégraud, Francis; Monteiro, Lurdes; Ménard, Armelle

    2009-06-22

    homB encodes a Helicobacter pylori outer membrane protein. This gene was previously associated with peptic ulcer disease (PUD) and was shown to induce activation of interleukin-8 secretion in vitro, as well as contributing to bacterial adherence. Its 90%-similar gene, homA, was previously correlated with gastritis. The present study aimed to evaluate the gastric disease association with homB and homA, as well as with the H. pylori virulence factors cagA, babA and vacA, in 415 H. pylori strains isolated from patients from East Asian and Western countries. The correlation among these genotypes was also evaluated. Both homB and homA genes were heterogeneously distributed worldwide, with a marked difference between East Asian and Western strains. In Western strains (n = 234, 124 PUD and 110 non-ulcer dyspepsia (NUD), homB, cagA and vacA s1 were all significantly associated with PUD (p = 0.025, p = 0.014, p = 0.039, respectively), and homA was closely correlated with NUD (p = 0.072). In East Asian strains (n = 138, 73 PUD and 65 NUD), homB was found more frequently than homA, and none of these genes was associated with the clinical outcome. Overall, homB was associated with the presence of cagA (p = 0.043) and vacA s1 (p homA was found more frequently in cagA-negative (p = 0.062) and vacA s2 (p homA copy number were observed, with a clear geographical specificity, suggesting an involvement of these genes in host adaptation. A correlation between the homB two-copy genotype and PUD was also observed, emphasizing the role of homB in the virulence of the strain. The global results suggest that homB and homA contribute to the determination of clinical outcome.

  1. Comparison of dot-ELISA and standard ELISA for detection of Neisseria meningitidis outer membrane complex-specific antibodies

    Directory of Open Access Journals (Sweden)

    Elza FT Belo

    Full Text Available Dot-ELISA using the outer membrane complex antigens of Neisseria meningitidis as a target was standardized for rapid detection of meningococcal-specific antibodies in human serum. We investigated the level of meningococcal-specific IgG, IgA, and IgM in serum using dot-ELISA with outer membrane antigens prepared from Neisseria meningitidis serotype B:4.19:P1.15,3,7,9 (a strain isolated from a Brazilian epidemic. The dot-ELISA is based on the same principles as the standard ELISA and is useful for detection of anti-N. meningitidis B antibodies in serum of patients with meningococcal infections. For the assay, outer membrane complexes (OMCs were absorbed by nitrocellulose membrane and blocked with a 5% skim milk solution. Serum samples were drawn upon hospital admission and during convalescence from patients with meningococcal septicemia, and single samples were drawn from uninfected controls. We retrospectively examined a total of 57 serum samples: 35 from patients infected with N. meningitidis B, 12 from patients infected with Haemophilus influenzae b, and 10 from health individuals. When performed at room temperature, dot-ELISA took approximately four hours to perform, and the optimum antigen concentration was 0.42 µg per dot. The specificity of IgG, IgM, and IgA demonstrates that dot-ELISA using OMCs from N. meningitidis B as a target is suitable for serologic verification of clinically suspected meningococcal disease in patients and for titer determination of antibodies produced during different phases of natural infection. Furthermore, the sensitivity of dot-ELISA was comparable to that of standard ELISA. Overall, dot-ELISA is simple to perform, rapid, and low cost. Further validation of the test as a screening tool is required.

  2. Identifying the components in eggshell membrane responsible for reducing the heat resistance of bacterial pathogens.

    Science.gov (United States)

    Ahlborn, Gene; Sheldon, Brian W

    2006-04-01

    combination of these proteins and perhaps other ESM components interferes with interactions between bacterial lipopolysaccharides, sensitizing the outer bacterial membrane to the lethal affects of heat and possibly pressure and osmotic stressors.

  3. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    International Nuclear Information System (INIS)

    Rybin, V.O.; Gureeva, A.A.

    1986-01-01

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP

  4. Dimerization of Smac is crucial for its mitochondrial retention by XIAP subsequent to mitochondrial outer membrane permeabilization.

    Science.gov (United States)

    Flanagan, Lorna; Sebastia, Jordi; Delgado, Maria Eugenia; Lennon, Jennifer C; Rehm, Markus

    2011-05-01

    Following the apoptotic permeabilization of the outer mitochondrial membrane, the inter-membrane space protein second mitochondria-derived activator of caspases (Smac) is released into the cytosol. Smac efficiently promotes apoptosis by antagonizing x-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases-9, -3, and -7, via a short NH(2)-terminal inhibitor of apoptosis protein (IAP) binding motif (AVPI). Native Smac dimerizes to form a highly stable and inflexible elongated arch, however, a functional role for this outstretched structure so far remained unknown. Using time-lapse single-cell imaging of DLD-1 and HCT-116 colon cancer cells, we here demonstrate that upon mitochondrial outer membrane permeabilization physiological expression levels of XIAP are sufficient to selectively prolong the release of dimeric but not monomeric Smac. Elevating the expression of XIAP further extended the release duration of dimeric Smac and resulted in the mitochondrial retention of a significant proportion of the Smac pool. In contrast, monomeric Smac was always fully released and the release kinetics were not affected by altered XIAP expression. Our findings therefore indicate that the dimerization of Smac is critical for the XIAP-mediated retention of Smac at or inside the mitochondria. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. 2010 Elsevier B.V. All rights reserved.

  5. Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.

    Directory of Open Access Journals (Sweden)

    Rithika Kulathila

    2011-01-01

    Full Text Available While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I and Ag(I ions.We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 Å resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor.The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA.

  6. High-resolution NMR reveals secondary structure and folding of amino acid transporter from outer chloroplast membrane.

    Directory of Open Access Journals (Sweden)

    James D Zook

    Full Text Available Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16, an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the (13C, (15N, (2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein.

  7. Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice

    Directory of Open Access Journals (Sweden)

    María-José Fábrega

    2017-07-01

    Full Text Available Escherichia coli Nissle 1917 (EcN is a probiotic strain with proven efficacy in inducing and maintaining remission of ulcerative colitis. However, the microbial factors that mediate these beneficial effects are not fully known. Gram-negative bacteria release outer membrane vesicles (OMVs as a direct pathway for delivering selected bacterial proteins and active compounds to the host. In fact, vesicles released by gut microbiota are emerging as key players in signaling processes in the intestinal mucosa. In the present study, the dextran sodium sulfate (DSS-induced colitis mouse model was used to investigate the potential of EcN OMVs to ameliorate mucosal injury and inflammation in the gut. The experimental protocol involved pre-treatment with OMVs for 10 days before DSS intake, and a 5-day recovery period. Oral administration of purified EcN OMVs (5 μg/day significantly reduced DSS-induced weight loss and ameliorated clinical symptoms and histological scores. OMVs treatment counteracted altered expression of cytokines and markers of intestinal barrier function. This study shows for the first time that EcN OMVs can mediate the anti-inflammatory and barrier protection effects previously reported for this probiotic in experimental colitis. Remarkably, translation of probiotics to human healthcare requires knowledge of the molecular mechanisms involved in probiotic–host interactions. Thus, OMVs, as a non-replicative bacterial form, could be explored as a new probiotic-derived therapeutic approach, with even lower risk of adverse events than probiotic administration.

  8. Loss of outer membrane integrity in gram negative bacteria by silver ...

    Indian Academy of Sciences (India)

    9

    due to rise of Multiple Drug Resistant (MDR) strains2-4. The importance and increasing incidence of infections .... (1998)19. In the presence of viable bacteria, TTC is reduced to red formazan and thus the change from colorless to red color indicates the viability of the bacterial cells. All bacterial strains were grown in 10 ml.

  9. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    Science.gov (United States)

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria.

    Science.gov (United States)

    Fleming, Karen G

    2015-10-05

    In vitro folding studies of outer membrane beta-barrels have been invaluable in revealing the lipid effects on folding rates and efficiencies as well as folding free energies. Here, the biophysical results are summarized, and these kinetic and thermodynamic findings are considered in terms of the requirements for folding in the context of the cellular environment. Because the periplasm lacks an external energy source the only driving forces for sorting and folding available within this compartment are binding or folding free energies and their associated rates. These values define functions for periplasmic chaperones and suggest a biophysical mechanism for the BAM complex. © 2015 The Author(s).

  11. Crystallization and preliminary crystallographic characterization of the iron-regulated outer membrane lipoprotein FrpD from Neisseria meningitidis

    Czech Academy of Sciences Publication Activity Database

    Sviridova, E.; Bumba, Ladislav; Řezáčová, Pavlína; Procházková, Kateřina; Kavan, Daniel; Bezouška, Karel; Kutý, Michal; Šebo, Peter; Kutá-Smatanová, Ivana

    2010-01-01

    Roč. 66, - (2010), s. 1119-1123 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LC06010; GA ČR GP310/06/P150 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50520514; CEZ:AV0Z60870520; CEZ:AV0Z40550506 Keywords : Fe-regulated protein D * iron-regulated proteins * outer membrane lipoproteins Subject RIV: EC - Immunology Impact factor: 0.563, year: 2010

  12. A peptide derived from the rotavirus outer capsid protein VP7 permeabilizes artificial membranes.

    Science.gov (United States)

    Elaid, Sarah; Libersou, Sonia; Ouldali, Malika; Morellet, Nelly; Desbat, Bernard; Alves, Isabel D; Lepault, Jean; Bouaziz, Serge

    2014-08-01

    Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Disruption the Outer Membrane of Enteropathogenic and Enterotoxigenic Escherichia coli using Proanthocyanidins

    Science.gov (United States)

    American cranberry (Vaccinium macrocarpon) proanthocyanidins (PACs) have been reported as a natural antibacterial agent to suppress the growth of pathogenic Escherichia coli. The objective of this study was to investigate the efficacy of cranberry-derived proanthocyanidins on destabilizing the outer...

  14. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    International Nuclear Information System (INIS)

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Marassi, Francesca M.

    2015-01-01

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales

  15. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation.

    Science.gov (United States)

    Ding, Yi; Fujimoto, L Miya; Yao, Yong; Marassi, Francesca M

    2015-04-01

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396-10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure-activity correlation experiments across a wide range of timescales.

  16. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham Medical Research Institute (United States)

    2015-04-15

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales.

  17. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli

    NARCIS (Netherlands)

    Poolman, Bert; Konings, Wil N.; Robillard, George T.

    1983-01-01

    Evidence is presented in this report for the presence of two sets of dithiols associated with proline transport activity in Escherichia coli. One set is located at the outer surface, the other at the inner surface of the cytoplasmic membrane. Treatment of right-side-out membrane vesicles from E.

  18. Structural investigations of the active-site mutant Asn156Ala of outer membrane phospholipase A: Function of the Asn-His interaction in the catalytic triad

    NARCIS (Netherlands)

    Snijder, H.J.; van Eerde, J.H.; Kalk, K.H.; Dekker, N.; Egmond, M.R.; Dijkstra, B.W.

    2010-01-01

    Outer membrane phospholipase A (OMPLA) from Escherichia coli is an integral-membrane enzyme with a unique His-Ser-Asn catalytic triad. In serine proteases and serine esterases usually an Asp occurs in the catalytic triad; its role has been the subject of much debate. Here the role of the uncharged

  19. Association of neighboring β-strands of outer membrane protein A in lipid bilayers revealed by site-directed fluorescence quenching

    NARCIS (Netherlands)

    Kleinschmidt, J.H.; Bulieris, P.V.; Qu, J.; Dogterom, M.; den Blaauwen, T.

    2011-01-01

    We present a detailed study on the formation of neighboring β-strands during the folding of a monomeric integral membrane protein of the β-barrel type. β-Strand and β-barrel formations were investigated for the eight-stranded transmembrane domain of outer membrane protein A (OmpA) with

  20. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    Science.gov (United States)

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  1. Impact of heat shock protein 60KD in combination with outer membrane proteins on immune response against Brucella melitensis.

    Science.gov (United States)

    Abbassi-Daloii, Tooba; Yousefi, Soheil; Sekhavati, Mohammad Hadi; Tahmoorespur, Mojtaba

    2018-01-01

    Brucellosis caused by the bacterium Brucella affects various domestic and wild species. The outer membrane proteins 25 and 31 play key roles on stimulation of cell-mediated immune response against Brucella. GroEL as one of the major Brucella antigens stimulates the immune system and increases intracellular survival of bacteria. In the present study, we assumed injection of GroEL in combination with OMP25 and OMP31 would offer higher immunity levels. So, the impact of GroEL with different concentrations of recombinant outer membrane proteins emulsified in Chitosan Nanoparticles on immune responses was evaluated in mice model. Results showed both univalent (except rGroEL) and divalent immunized groups induced higher IFN-γ, TNF-α, and IL-4 titers in comparison to negative control groups. While GroEL showed negative effect on TNF-α titer, there were positive increase trends in IFN-γ in some treatments. Analysis of humoral antibody response revealed both univalent and divalent immunized groups induced higher IgG2a titer than IgG1 titer, indicating strong bent of Th1 immune response. Also, results showed GroEL can have positive impact on lymphocyte proliferation response. Overall, mice immunization using individual OMP25 or OMP31 demonstrated more effective cell-mediated immunity, although some combinations of rGroEL and rOMP31 vaccines were more efficient than other divalent ones. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  2. Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge.

    Science.gov (United States)

    Choi, Hyun-Il; Kim, Moonjeong; Jeon, Jinseong; Han, Jin Kwan; Kim, Kwang-Sun

    2017-08-26

    Outer membrane vesicles (OMVs) derived from bacteria are promising candidates for subunit vaccines. Stresses that modulate the composition of outer membrane proteins (OMPs) are important for OMV synthesis. Small RNAs (sRNAs) expressed in response to stress regulate OMPs, although the mechanism underlying sRNA-mediated OMV biogenesis and its utility for developing vaccine platforms remains to be elucidated. Here, we characterized the role of a sRNA, MicA, which regulates OmpA, a major OMP involved in both production of OMVs and reactive immunity against Salmonella challenge. A Salmonella strain overexpressing MicA generated more OMVs than a control strain. In addition, OmpC was the major component of MicA-derived OMV proteins. MicA-derived OMVs induced Th1- and Th17-type immune responses in vitro and reduced Salmonella-mediated lethality in a mouse model. Thus, OmpA-regulatory sRNA-derived OMVs may facilitate production of Salmonella-protective vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Herpes simplex viruses activate phospholipid scramblase to redistribute phosphatidylserines and Akt to the outer leaflet of the plasma membrane and promote viral entry

    OpenAIRE

    Cheshenko, Natalia; Pierce, Carl; Herold, Betsy C.

    2018-01-01

    Herpes simplex virus (HSV) entry is associated with Akt translocation to the outer leaflet of the plasma membrane to promote a complex signaling cascade. We hypothesized that phospholipid scramblase-1 (PLSCR1), a calcium responsive enzyme that flips phosphatidylserines between membrane leaflets, might redistribute Akt to the outside during entry. Confocal imaging, biotinylation of membrane proteins and flow cytometric analysis demonstrated that HSV activates PLSCR1 and flips phosphatidylserin...

  4. Characterisation and comparison of bacterial communities on reverse osmosis membranes of a full-scale desalination plant by bacterial 16S rRNA gene metabarcoding

    OpenAIRE

    Nagaraj, Veena; Skillman, Lucy; Ho, Goen; Li, Dan; Gofton, Alexander

    2017-01-01

    Microbiomes of full-scale seawater reverse osmosis membranes are complex and subject to variation within and between membrane units. The pre-existing bacterial communities of unused membranes before operation have been largely ignored in biofouling studies. This study is novel as unused membranes were used as a critical benchmark for comparison. Fouled seawater reverse osmosis membrane biofilm communities from an array of autopsied membrane samples, following a 7-year operational life-span in...

  5. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein.

    Science.gov (United States)

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2017-01-01

    Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.

  6. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing.

    Science.gov (United States)

    He, Ting; Wang, Jingnan; Huang, Peilin; Zeng, Baozhen; Li, Haihong; Cao, Qingyun; Zhang, Shiying; Luo, Zhuo; Deng, David Y B; Zhang, Hongwu; Zhou, Wuyi

    2015-06-01

    The aim of this study was to synthesis drug-loaded fibrous membrane scaffolds for potential applications as wound dressing. Polyvinylidene fluoride (PVDF) fibrous membranes were loaded with enrofloxacin (Enro) drugs by using an electrospinning process, and their mechanical strength, drug release profile and anti-bacterial properties were evaluated. Enro drug-loaded PVDF membranes exhibited good elasticity, flexibility and excellent mechanical strength. The electrospinning Enro/PVDF membranes showed a burst drug release in the initial 12h, followed by sustained release for the next 3 days, which was an essential property for antibiotic drugs applied for wound healing. The drug-loaded PVDF fibrous membranes displayed excellent anti-bacterial activity toward Escherichia coli and Staphylococcus aureus. The results suggest that electrospinning PVDF membrane scaffolds loaded with drugs can be used as wound dressing. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes

    Directory of Open Access Journals (Sweden)

    Fioroni Marco

    2011-03-01

    Full Text Available Abstract Background Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. Results To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext. The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB1000-PEG6000-PIB1000 (PIB = polyisobutylene, PEG = polyethyleneglycol has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine. Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB1000-PEG6000-PIB1000 membrane. Furthermore labeling of the Lys-NH2 groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Conclusion Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  8. Impact of nano-ZnO/grafted textile on the outer membrane ...

    Indian Academy of Sciences (India)

    2017-09-15

    Sep 15, 2017 ... ZnO in the prepared samples was examined by energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The particle size of ... binding to intracellular proteins and inactivating them, gen- eration of reactive .... bacterial cultures, treated with plain textile discs or with nano–. ZnO/grafted textile ...

  9. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections

    OpenAIRE

    Hurdle, Julian G.; O’Neill, Alex J.; Chopra, Ian; Lee, Richard E.

    2011-01-01

    Persistent infections involving slow-growing or non-growing bacteria are hard to treat with antibiotics that target biosynthetic processes in growing cells. Consequently, there is a need for antimicrobials that can treat infections containing dormant bacteria. In this Review, we discuss the emerging concept that disrupting the bacterial membrane bilayer or proteins that are integral to membrane function (including membrane potential and energy metabolism) in dormant bacteria is a strategy for...

  10. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Dohnalkova, Alice; Smit, John; Jiao, Yongqin

    2016-09-23

    ABSTRACT

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in

  11. Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets

    Czech Academy of Sciences Publication Activity Database

    Bischof, J.; Salzmann, M.; Streubel, M.K.; Hašek, Jiří; Geltinger, F.; Duschl, J.; Bresgen, N.; Briza, P.; Hašková, Danuša; Lejsková, Renata; Sopjani, M.; Richter, K.; Rinnerthaler, M.

    2017-01-01

    Roč. 3, March 20 (2017), č. článku 17016. E-ISSN 2058-7716 R&D Projects: GA ČR(CZ) GA16-05497S; GA MŠk(CZ) 7AMB16AT006 Institutional support: RVO:61388971 Keywords : mitochondrial membrane * harmful proteins * lipid droplets Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  12. IgG Responses to Porins and Lipopolysaccharide within an Outer Membrane-Based Vaccine against Nontyphoidal Salmonella Develop at Discordant Rates.

    Science.gov (United States)

    Schager, Anna E; Dominguez-Medina, C Coral; Necchi, Francesca; Micoli, Francesca; Goh, Yun Shan; Goodall, Margaret; Flores-Langarica, Adriana; Bobat, Saeeda; Cook, Charlotte N L; Arcuri, Melissa; Marini, Arianna; King, Lloyd D W; Morris, Faye C; Anderson, Graham; Toellner, Kai-Michael; Henderson, Ian R; López-Macías, Constantino; MacLennan, Calman A; Cunningham, Adam F

    2018-03-06

    Antibodies acquired after vaccination or natural infection with Gram-negative bacteria, such as invasive Salmonella enterica serovar Typhimurium, can protect against disease. Immunization with naturally shed outer membrane vesicles from Gram-negative bacteria is being studied for its potential to protect against many infections, since antigens within vesicles maintain their natural conformation and orientation. Shedding can be enhanced through genetic modification, and the resulting particles, generalized modules for membrane antigens (GMMA), not only offer potential as vaccines but also can facilitate the study of B-cell responses to bacterial antigens. Here we show that the response to immunization with GMMA from S  Typhimurium (STmGMMA) provides B-cell-dependent protection and induces antibodies to two immunodominant antigens, lipopolysaccharide (LPS) and porins. Antibodies to LPS O antigen (O-Ag) markedly enhance protection in the spleen, but this effect is less marked in the liver. Strikingly, IgG responses to LPS and porins develop with distinct kinetics. In the first week after immunization, there is a dramatic T-cell-independent B1b-cell-associated induction of all IgG isotypes, except IgG1, to porins but not to LPS. In contrast, production of IgG1 to either antigen was delayed and T cell dependent. Nevertheless, after 1 month, cells in the bone marrow secreting IgG against porins or LPS were present at a similar frequency. Unexpectedly, immunization with O-Ag-deficient STmGMMA did not substantially enhance the anti-porin response. Therefore, IgG switching to all antigens does not develop synchronously within the same complex and so the rate of IgG switching to a single component does not necessarily reflect its frequency within the antigenic complex. IMPORTANCE Vaccines save millions of lives, yet for some infections there are none. This includes some types of Salmonella infections, killing hundreds of thousands of people annually. We show how a new type

  13. Exposure of outer membrane proteins on the surface of Pseudomonas aeruginosa PA01 revealed by labelling with [125I]lactoperoxidase

    International Nuclear Information System (INIS)

    Lambert, P.A.; Booth, B.R.

    1982-01-01

    The authors have investigated the exposure of the major outer membrane proteins on the cell surface by treating whole cells of P. aeruginosa with [ 125 I]lactoperoxidase. This reagent catalyses the iodination of tyrosine and histidine residues of proteins in the presence of hydrogen peroxide. It is too large to penetrate the outer membrane (Msub(r) 77500), therefore it is assumed to label only those proteins which have such residues exposed on the cell surface and has been applied to a number of Gram-negative organisms. It is found that F was the major labelled protein, D1 and/or D2 were less heavily labelled, and G was very faintly labelled. In addition, two proteins (Msub(r) 72500 and 38000) which did not appear to be major outer membrane proteins were labelled. (Auth.)

  14. Moraxella catarrhalis Outer Membrane Vesicles Carry β-Lactamase and Promote Survival of Streptococcus pneumoniae and Haemophilus influenzae by Inactivating Amoxicillin▿

    Science.gov (United States)

    Schaar, Viveka; Nordström, Therése; Mörgelin, Matthias; Riesbeck, Kristian

    2011-01-01

    Moraxella catarrhalis is a common pathogen found in children with upper respiratory tract infections and in patients with chronic obstructive pulmonary disease during exacerbations. The bacterial species is often isolated together with Streptococcus pneumoniae and Haemophilus influenzae. Outer membrane vesicles (OMVs) are released by M. catarrhalis and contain phospholipids, adhesins, and immunomodulatory compounds such as lipooligosaccharide. We have recently shown that M. catarrhalis OMVs exist in patients upon nasopharyngeal colonization. As virtually all M. catarrhalis isolates are β-lactamase positive, the goal of this study was to investigate whether M. catarrhalis OMVs carry β-lactamase and to analyze if OMV consequently can prevent amoxicillin-induced killing. Recombinant β-lactamase was produced and antibodies were raised in rabbits. Transmission electron microscopy, flow cytometry, and Western blotting verified that OMVs carried β-lactamase. Moreover, enzyme assays revealed that M. catarrhalis OMVs contained active β-lactamase. OMVs (25 μg/ml) incubated with amoxicillin for 1 h completely hydrolyzed amoxicillin at concentrations up to 2.5 μg/ml. In functional experiments, preincubation of amoxicillin (10× MIC) with M. catarrhalis OMVs fully rescued amoxicillin-susceptible M. catarrhalis, S. pneumoniae, and type b or nontypeable H. influenzae from β-lactam-induced killing. Our results suggest that the presence of amoxicillin-resistant M. catarrhalis originating from β-lactamase-containing OMVs may pave the way for respiratory pathogens that by definition are susceptible to β-lactam antibiotics. PMID:21576428

  15. Cloning and sequence analysis of hsf, an outer membrane protein gene of Pasteurella multocida serotype B:2

    Directory of Open Access Journals (Sweden)

    A. Priyadarshini

    2014-12-01

    Full Text Available Aim: The present study was undertaken to clone, sequence and analyze the hsf, an outer membrane protein gene of Pasteurella multocida serotype B:2 Materials and Methods: hsf gene was amplified from genomic DNA of P. multocida. Polymerase chain reaction (PCR product was cloned in pET-32a vector and was characterized. hsf gene was sequenced, analyzed and phylogenetic tree was constructed taking sequences of other strains. Results: Amplicon size was found to be 785 bp. Recombinant got characterized through colony PCR and restriction enzyme analysis. Conclusion: hsf gene of P. multocida serotype B is similar to serotype A, but different from serotype D. Further work is needed to evaluate role of Hsf protein in protection studies and to study the antigenic properties of this recombinant protein as a candidate for vaccine.

  16. Iodo-gen-catalysed iodination for identification of surface-exposed outer membrane proteins of Escherichia coli K12

    International Nuclear Information System (INIS)

    Ferreira, L.C.S.; Almeida, D.F. de

    1987-01-01

    Surface proteins of Escherichia coli K12 were identified by radiolabelling using 1,3,4,6 - tatrachloro, 3-alpha, 6-alpha - diphenylgycoluryl (Iodo-Gen) and 131 I. Labelled proteins were localized in the outer membrane of the cells. Using this technique it has been possible to observe technique it has been possible to observe that the eletrophoretic pattern of surface proteins changes according to the growth phases in culture. Radiolabelling of E.coli cells inculbated at 42 0 C showed that the syntheses of two surface proteins were temperature-inducible. At least one such protein may be involved in the process of cell division in E.coli K12. (author) [pt

  17. [Study on immunogenicity of group A and group C meningococcal conjugate vaccine with coupling group B meningococcal outer membrane protein].

    Science.gov (United States)

    Ma, Fu-Bao; Tao, Hong; Wang, Hong-Jun

    2009-10-01

    To evaluate the Immunogenicity of Group A and Group C Meningococcal conjugate Vaccine with coupling Group B Meningococcal Outer Membrane Protein (Men B-OMP). 458 healthy children aged 3-5 months, 6-23 months, 2-6 years and 7-24 years were given the Groups A and C conjugate Vaccine with MenB-OMP or other vaccine as control group to measure the pre-and post-vaccination Men A and C and B by Serum Bactericidal Assay (SBA) in the double-blind randomized controlled trial. 97.65%-100% were 4 times or greater increase in SBA titer for the healthy children given the Groups A and C conjugate Vaccine with MenB-OMP, The geometric mean titer of SBA were 1:194-1:420, which significantly higber than controls. The Group A and C conjugate Vaccine with MenB-OMP was safe and well immunogenic.

  18. Expression, purification and preliminary X-ray analysis of the Neisseria meningitidis outer membrane protein PorB

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Mikio; Iverson, Tina M.; (Vanderbilt)

    2010-01-28

    The Neisseria meningitidis outer membrane protein PorB was expressed in Escherichia coli and purified from inclusion bodies by denaturation in urea followed by refolding in buffered LDAO on a size-exclusion column. PorB has been crystallized in three different crystal forms: C222, R32 and P6{sub 3}. The C222 crystal form may contain either one or two PorB monomers in the asymmetric unit, while both the R32 and P6{sub 3} crystal forms contained one PorB monomer in the asymmetric unit. Of the three, the P6{sub 3} crystal form had the best diffraction quality, yielding data extending to 2.3 {angstrom} resolution.

  19. Application of zwitterionic detergent to the solubilization of Klebsiella pneumoniae outer membrane proteins for two-dimensional gel electrophoresis.

    Science.gov (United States)

    Bednarz-Misa, I; Serek, P; Dudek, B; Pawlak, A; Bugla-Płoskońska, G; Gamian, A

    2014-12-01

    Klebsiella pneumoniae is a frequent cause of nosocomial respiratory, urinary and gastrointestinal tract infections and septicemia with the multidrug-resistant K. pneumoniae being a major public health concern. Outer membrane proteins (OMPs) are important virulence factors responsible for the appropriate adaptation to the host environment. They constitute of the antigens being the first in contact with infected organism. However, K. pneumoniae strains are heavily capsulated and it is important to establish the OMPs isolation procedure prior to proteomics extensive studies. In this study we used Zwittergent Z 3-14® as a detergent to isolate the OMPs from K. pneumoniae cells and resolve them using two-dimensional electrophoresis (2-DE). As a result we identified 134 protein spots. The OMPs identified in this study are possible candidates for the development of a protein-based vaccine against K. pneumoniae infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique

    International Nuclear Information System (INIS)

    Ma Qian; Zhang Hui; Zhao Jiang; Gong Yongkuan

    2012-01-01

    Highlights: ► Cell membrane mimetic antifouling polymer brush was grown on polysulfone surface. ► Graft density and polymerization degree were calculated from XPS results. ► Water contact angle measurements showed an extremely hydrophilic surface. ► Platelet adhesion and protein adsorption results suggested excellent antifouling ability. - Abstract: Cell membrane mimetic antifouling polymer brush was grown on polysulfone (PSF) membrane by surface-induced reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC). The RAFT agent immobilized PSF substrate was prepared by successive chloromethylation, amination with ethylenediamine (EDA) and amidation of the amine group of grafted EDA with the carboxylic group of 4-cyanopentanoic acid dithiobenzoate (CPAD). The surface RAFT polymerization of MPC was initiated in aqueous solution by 4,4′-azobis-4-cyanopentanoic acid (ACPA). The formation of PMPC brush coating is evidenced by X-ray photoelectron spectroscopy and water contact angle measurements. The degree of polymerization of PMPC and the polymer grafting density were calculated from the high resolution XPS spectra. The platelet adhesion and protein adsorption results showed that the PMPC-grafted PSF surface has excellent antifouling ability to resist platelet adhesion completely and suppress protein adsorption significantly. This biomimetic and bio-friendly surface RAFT polymerization strategy could be promising for a variety of biomedical applications.

  1. Outer membrane targeting of Pseudomonas aeruginosa proteins shows variable dependence on the components of Bam and Lol machineries.

    Science.gov (United States)

    Hoang, Hanh H; Nickerson, Nicholas N; Lee, Vincent T; Kazimirova, Anastasia; Chami, Mohamed; Pugsley, Anthony P; Lory, Stephen

    2011-01-01

    In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the β-barrel membrane protein OprF to localize to the OM, while the targeting of three secretins that are functionally related OM proteins was less affected (PilQ and PscC) or not at all affected (XcpQ). Depletion of LolB affected all lipoproteins examined and had a variable effect on the nonlipidated proteins. While the levels of OprF, PilQ, and PscC were significantly reduced by LolB depletion, XcpQ was unaffected and was correctly localized to the OM. These results suggest that certain β-barrel proteins such as OprF primarily utilize the complete Bam machinery. The Lol machinery participates in the OM targeting of secretins to variable degrees, likely through its involvement in the assembly of lipidated Bam components. XcpQ, but not PilQ or PscC, was shown to assemble spontaneously into liposomes as multimers. This work raises the possibility that there is a gradient of utilization of Bam and Lol insertion and targeting machineries. Structural features of individual proteins, including their β-barrel content, may determine the propensity of these proteins for folding (or misfolding) during periplasmic transit and OM insertion, thereby influencing the extent of utilization of the Bam targeting machinery, respectively. Targeting of lipidated and nonlipidated proteins to the outer membrane (OM) compartment in Gram-negative bacteria involves the transfer across the periplasm utilizing the Lol and Bam machineries, respectively. We show that depletion of Bam and Lol components in Pseudomonas aeruginosa does not lead to a general OM protein translocation defect

  2. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Jilu Shen

    Full Text Available We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM and imipenem (IMP for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE. Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA isolates tested, namely IMPRMEMR (66.7%, IMPRMEMS (32.6%, and IMPRMEMS (0.7%. DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.

  3. Role of the Outer Membrane Protein OprD2 in Carbapenem-Resistance Mechanisms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Shen, Jilu; Pan, Yaping; Fang, Yaping

    2015-01-01

    We investigated the relationship between the outer membrane protein OprD2 and carbapenem-resistance in 141 clinical isolates of Pseudomonas aeruginosa collected between January and December 2013 from the First Affiliated Hospital of Anhui Medical University in China. Agar dilution methods were employed to determine the minimum inhibitory concentration of meropenem (MEM) and imipenem (IMP) for P. aeruginosa. The gene encoding OprD2 was amplified from141 P. aeruginosa isolates and analyzed by PCR and DNA sequencing. Differences between the effects of IMPR and IMPS groups on the resistance of the P. aeruginosa were observed by SDS-poly acrylamide gel electrophoresis (SDS-PAGE). Three resistance types were classified in the 141 carbapenem-resistant P. aeruginosa (CRPA) isolates tested, namely IMPRMEMR (66.7%), IMPRMEMS (32.6%), and IMPRMEMS (0.7%). DNA sequencing revealed significant diverse gene mutations in the OprD2-encoding gene in these strains. Thirty-four strains had large fragment deletions in the OprD2gene, in 6 strains the gene contained fragment inserts, and in 96 resistant strains, the gene featured small fragment deletions or multi-site mutations. Only 4 metallo-β-lactamase strains and 1 imipenem-sensitive (meropenem-resistant) strain showed a normal OprD2 gene. Using SDS-PAGE to detect the outer membrane protein in 16 CRPA isolates, it was found that 10 IMPRMEMR strains and 5 IMPRMEMS strains had lost the OprD2 protein, while the IMPSMEMR strain contained a normal 46-kDa protein. In conclusion, mutation or loss of the OprD2-encoding gene caused the loss of OprD2, which further led to carbapenem-resistance of P. aeruginosa. Our findings provide insights into the mechanism of carbapenem resistance in P. aeruginosa.

  4. Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs.

    Science.gov (United States)

    van den Bosch, Han; Frey, Joachim

    2003-09-08

    The role of antibodies to the outer membrane protein PalA of Actinobacillus pleuropneumoniae in protective immunity was studied in pigs vaccinated with purified PalA alone and PalA in combination with toxoids of the RTX toxins ApxI and ApxII using an established challenge model with the virulent serotype 1 of A. pleuropneumoniae. Pigs that developed antibody titers against PalA after immunization were more significantly affected by challenge with A. pleuropneumoniae serotype 1. Following challenge, pigs that were immunized with PalA showed more severe respiratory symptoms, had a higher mortality rate and died faster. They also displayed much more severe lung lesions after necropsy than animals not immunized with PalA. Pigs that were immunized with toxoids of the two cytotoxins ApxI and ApxII were protected against challenge with A. pleuropneumoniae. In contrast, the protective efficacy of the ApxI and ApxII vaccine was completely lost when it was supplemented with PalA. Hence, antibodies induced against the outer membrane protein PalA of A. pleuropneumoniae aggravated the consequences of infection and counteracted the protective effect of anti-ApxI and anti-ApxII antibodies. Due to the high similarity between protein analogues of PalA from various bacteria of the Pasteurellaceae family such as P6 of Haemophilus influenzae or 16kDa Omp of Pasteurella multocida, this deleterious effect of PalA in vaccination should be taken into consideration in the development of vaccines against infections with other Pasteurellaceae.

  5. OpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host.

    Science.gov (United States)

    van der Hoeven, Ransome; Forst, Steven

    2009-09-01

    The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the DeltaopnS strain. Coinjection of the wild-type and DeltaopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or DeltaopnS strain were colonized by the wild-type strain. In addition, the DeltaopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The DeltaopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.

  6. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  7. Differing prevalence and diversity of bacterial species in fetal membranes from very preterm and term labor.

    Directory of Open Access Journals (Sweden)

    Hannah E Jones

    Full Text Available BACKGROUND: Intrauterine infection may play a role in preterm delivery due to spontaneous preterm labor (PTL and preterm prolonged rupture of membranes (PPROM. Because bacteria previously associated with preterm delivery are often difficult to culture, a molecular biology approach was used to identify bacterial DNA in placenta and fetal membranes. METHODOLOGY/PRINCIPAL FINDINGS: We used broad-range 16S rDNA PCR and species-specific, real-time assays to amplify bacterial DNA from fetal membranes and placenta. 74 women were recruited to the following groups: PPROM <32 weeks (n = 26; 11 caesarean; PTL with intact membranes <32 weeks (n = 19; all vaginal birth; indicated preterm delivery <32 weeks (n = 8; all caesarean; term (n = 21; 11 caesarean. 50% (5/10 of term vaginal deliveries were positive for bacterial DNA. However, little spread was observed through tissues and species diversity was restricted. Minimal bacteria were detected in term elective section or indicated preterm deliveries. Bacterial prevalence was significantly increased in samples from PTL with intact membranes [89% (17/19 versus 50% (5/10 in term vaginal delivery p = 0.03] and PPROM (CS [55% (6/11 versus 0% (0/11 in term elective CS, p = 0.01]. In addition, bacterial spread and diversity was greater in the preterm groups with 68% (13/19 PTL group having 3 or more positive samples and over 60% (12/19 showing two or more bacterial species (versus 20% (2/10 in term vaginal deliveries. Blood monocytes from women with PTL with intact membranes and PPROM who were 16S bacterial positive showed greater level of immune paresis (p = 0.03. A positive PCR result was associated with histological chorioamnionitis in preterm deliveries. CONCLUSION/SIGNIFICANCE: Bacteria are found in both preterm and term fetal membranes. A greater spread and diversity of bacterial species were found in tissues of women who had very preterm births. It is unclear to what extent the greater bacterial prevalence

  8. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity

    International Nuclear Information System (INIS)

    Cunningham, K.; Wickner, W.T.

    1989-01-01

    Isolation of the integral membrane components of protein translocation requires methods for fractionation and functional reconstitution. The authors treated inner-membrane vesicles of Escherichia coli with mixtures of octyl β-D-glucoside, phospholipids, and an integral membrane carrier protein under conditions that extract most of the membrane proteins into micellar solution. Upon dialysis, proteoliposomes were reconstituted that supported translocation of radiochemically pure [ 35 S]pro-OmpA (the precursor of outer membrane protein A). Translocation into these proteoliposomes required ATP hydrolysis and membrane proteins, indicating that the reaction is that of the inner membrane. The suspension of membranes in detergent was separated into supernatant and pellet fractions by ultracentrifugation. After reconstitution, translocation activity was observed in both fractions, but processing by leader peptidase of translocated pro-OmpA to OmpA was not detectable in the reconstituted pellet fraction. Processing activity was restored by addition of pure leader peptidase as long as this enzyme was added before detergent removal, indicating that the translocation activity is not associated with detergent-resistant membrane vesicles. These results show that protein translocation activity can be recovered from detergent-disrupted membrane vesicles, providing a first step towards the goal of isolating the solubilized components

  9. Herpes simplex viruses activate phospholipid scramblase to redistribute phosphatidylserines and Akt to the outer leaflet of the plasma membrane and promote viral entry.

    Science.gov (United States)

    Cheshenko, Natalia; Pierce, Carl; Herold, Betsy C

    2018-01-01

    Herpes simplex virus (HSV) entry is associated with Akt translocation to the outer leaflet of the plasma membrane to promote a complex signaling cascade. We hypothesized that phospholipid scramblase-1 (PLSCR1), a calcium responsive enzyme that flips phosphatidylserines between membrane leaflets, might redistribute Akt to the outside during entry. Confocal imaging, biotinylation of membrane proteins and flow cytometric analysis demonstrated that HSV activates PLSCR1 and flips phosphatidylserines and Akt to the outside shortly following HSV-1 or HSV-2 exposure. Translocation was blocked by addition of a cell permeable calcium chelator, pharmacological scramblase antagonist, or transfection with small interfering RNA targeting PLSCR1. Co-immunoprecipitation and proximity ligation studies demonstrated that PLSCR1 associated with glycoprotein L at the outer leaflet and studies with gL deletion viruses indicate that this interaction facilitates subsequent restoration of the plasma membrane architecture. Ionomycin, a calcium ionophore, also induced PLSCR1 activation resulting in Akt externalization, suggesting a previously unrecognized biological phenomenon.

  10. Identification and characterization of a novel porin family highlights a major difference in the outer membrane of chlamydial symbionts and pathogens.

    Directory of Open Access Journals (Sweden)

    Karin Aistleitner

    Full Text Available The Chlamydiae constitute an evolutionary well separated group of intracellular bacteria comprising important pathogens of humans as well as symbionts of protozoa. The amoeba symbiont Protochlamydia amoebophila lacks a homologue of the most abundant outer membrane protein of the Chlamydiaceae, the major outer membrane protein MOMP, highlighting a major difference between environmental chlamydiae and their pathogenic counterparts. We recently identified a novel family of putative porins encoded in the genome of P. amoebophila by in silico analysis. Two of these Protochlamydiaouter membrane proteins, PomS (pc1489 and PomT (pc1077, are highly abundant in outer membrane preparations of this organism. Here we show that all four members of this putative porin family are toxic when expressed in the heterologous host Escherichia coli. Immunofluorescence analysis using antibodies against heterologously expressed PomT and PomS purified directly from elementary bodies, respectively, demonstrated the location of both proteins in the outer membrane of P. amoebophila. The location of the most abundant protein PomS was further confirmed by immuno-transmission electron microscopy. We could show that pomS is transcribed, and the corresponding protein is present in the outer membrane throughout the complete developmental cycle, suggesting an essential role for P. amoebophila. Lipid bilayer measurements demonstrated that PomS functions as a porin with anion-selectivity and a pore size similar to the Chlamydiaceae MOMP. Taken together, our results suggest that PomS, possibly in concert with PomT and other members of this porin family, is the functional equivalent of MOMP in P. amoebophila. This work contributes to our understanding of the adaptations of symbiotic and pathogenic chlamydiae to their different eukaryotic hosts.

  11. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  12. Impact of Membrane Phospholipid Alterations in Escherichia coli on Cellular Function and Bacterial Stress Adaptation.

    Science.gov (United States)

    Rowlett, Veronica W; Mallampalli, Venkata K P S; Karlstaedt, Anja; Dowhan, William; Taegtmeyer, Heinrich; Margolin, William; Vitrac, Heidi

    2017-07-01

    Bacteria have evolved multiple strategies to sense and rapidly adapt to challenging and ever-changing environmental conditions. The ability to alter membrane lipid composition, a key component of the cellular envelope, is crucial for bacterial survival and adaptation in response to environmental stress. However, the precise roles played by membrane phospholipids in bacterial physiology and stress adaptation are not fully elucidated. The goal of this study was to define the role of membrane phospholipids in adaptation to stress and maintenance of bacterial cell fitness. By using genetically modified strains in which the membrane phospholipid composition can be systematically manipulated, we show that alterations in major Escherichia coli phospholipids transform these cells globally. We found that alterations in phospholipids impair the cellular envelope structure and function, the ability to form biofilms, and bacterial fitness and cause phospholipid-dependent susceptibility to environmental stresses. This study provides an unprecedented view of the structural, signaling, and metabolic pathways in which bacterial phospholipids participate, allowing the design of new approaches in the investigation of lipid-dependent processes involved in bacterial physiology and adaptation. IMPORTANCE In order to cope with and adapt to a wide range of environmental conditions, bacteria have to sense and quickly respond to fluctuating conditions. In this study, we investigated the effects of systematic and controlled alterations in bacterial phospholipids on cell shape, physiology, and stress adaptation. We provide new evidence that alterations of specific phospholipids in Escherichia coli have detrimental effects on cellular shape, envelope integrity, and cell physiology that impair biofilm formation, cellular envelope remodeling, and adaptability to environmental stresses. These findings hold promise for future antibacterial therapies that target bacterial lipid biosynthesis

  13. Health economics of a hexavalent meningococcal outer-membrane vesicle vaccine in children : potential impact of introduction in the Dutch vaccination program

    NARCIS (Netherlands)

    Bos, JM; Rumke, HC; Welte, R; Postma, MJ; Jager, JC

    2001-01-01

    The cost-effectiveness of universal vaccination of infants with a new hexavalent meningococcal B outer-membrane vesicle vaccine is projected for The Netherlands by applying decision analysis. The societal perspective is taken and direct and productivity costs (friction costs method) are considered.

  14. Antibiotic Trapping by Plasmid-Encoded CMY-2 beta-Lactamase Combined with Reduced Outer Membrane Permeability as a Mechanism of Carbapenem Resistance in Escherichia coli

    NARCIS (Netherlands)

    Goessens, W.H.F.; van der Bij, A.K.; van Boxtel, R.; Pitout, J.D.D.; van Ulsen, J.P.; Melles, D.C.; Tommassen, J.

    2013-01-01

    A liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS) Escherichia coli strain, but during admission, a carbapenem-resistant (CR) E. coli strain was isolated. Analysis of the outer membrane protein

  15. Antibiotic trapping by plasmid-encoded cmy-2-lactamase combined with reduced outer membrane permeability as a mechanism of carbapenem resistance in escherichia coli

    NARCIS (Netherlands)

    W.H.F. Goessens (Wil); A.K. van der Bij (Akke); R. van Boxtel (Ria); J.D.D. Pitout (J. D D); P. van Ulsen (Peter); D.C. Melles (Damian); J. Tommassen (Jan)

    2013-01-01

    textabstractA liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS) Escherichia coli strain, but during admission, a carbapenem-resistant (CR) E. coli strain was isolated. Analysis of the outer membrane

  16. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  17. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the TonB-dependent haem outer membrane transporter ShuA from Shigella dysenteriae

    International Nuclear Information System (INIS)

    Brillet, Karl; Meksem, Ahmed; Thompson, Andrew; Cobessi, David

    2009-01-01

    ShuA from S. dysenteriae was crystallized in several crystallization conditions containing detergents. Adding heavy atoms during crystallization strongly improved the crystal quality and the resolution limits. Diffraction data were collected at an energy remote from the Pb M absorption edges. As part of efforts towards understanding the crystallization of membrane proteins and membrane transport across the outer membrane of Gram-negative bacteria, the TonB-dependent haem outer membrane transporter ShuA of Shigella dysenteriae bound to heavy atoms was crystallized in several crystallization conditions using detergents. The insertion of a His 6 tag into an extracellular loop of ShuA, instead of downstream of the Escherichia coli peptide signal, allowed efficient targeting to the outer membrane and the rapid preparation of crystallizable protein. Crystals diffracting X-rays beyond 3.5 Å resolution were obtained by co-crystallizing ShuA with useful heavy atoms for phasing (Eu, Tb, Pb) by the MAD method at the synchrotron, and the SAD or SIRAS method at the Cu wavelength. The authors collected X-ray diffraction data at 2.3 Å resolution using one crystal of ShuA-Pb, and at 3.2 Å resolution at an energy remote from the Pb M absorption edges for phasing on PROXIMA-1 at SOLEIL

  18. Treponema pallidum in Gel Microdroplets: A Method for Topological Analysis of BamA (TP0326) and Localization of Rare Outer Membrane Proteins.

    Science.gov (United States)

    Luthra, Amit; Anand, Arvind; Radolf, Justin D

    2015-01-01

    The noncultivable spirochete Treponema pallidum subspecies pallidum (T. pallidum) is the etiological agent of venereal syphilis. In contrast to the outer membranes (OMs) of gram-negative bacteria, the OM of T. pallidum lacks lipopolysaccharide, contains a paucity of integral membrane proteins, and is extremely labile. The lability of the T. pallidum OM greatly hinders efforts to localize the bacterium's rare outer membrane proteins (OMPs). To circumvent this problem, we developed the gel microdroplet method in which treponemes are encapsulated in porous agarose beads and then probed with specific antibodies in the absence or presence of low concentrations of the non-ionic detergent Triton X-100. To demonstrate the general utility of this method for surface localization of any T. pallidum antigen, herein we describe a protocol for immunolabeling of encapsulated treponemes using antibodies directed against the β-barrel and POTRA domains of TP0326, the spirochete's BamA ortholog.

  19. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation

    Directory of Open Access Journals (Sweden)

    Masato eMurakawa

    2014-06-01

    Full Text Available Plant galactolipid synthesis on the outer envelope membranes of chloroplasts is an important biosynthetic pathway for sustained growth under conditions of phosphate (Pi depletion. During Pi starvation, the amount of digalactosyldiacylglycerol (DGDG is increased to substitute for the phospholipids that are degraded for supplying Pi. An increase in DGDG concentration depends on an adequate supply of monogalactosyldiacylglycerol (MGDG, which is a substrate for DGDG synthesis and is synthesized by a type-B MGDG synthase, MGD3. Recently, sucrose was suggested to be a global regulator of plant responses to Pi starvation. Thus, we analyzed expression levels of several genes involved in lipid remodeling during Pi starvation in Arabidopsis thaliana and found that the abundance of MGD3 mRNA increased when sucrose was exogenously supplied to the growth medium. Sucrose supplementation retarded the growth of the Arabidopsis MGD3 knockout mutant mgd3 but enhanced the growth of transgenic Arabidopsis plants overexpressing MGD3 compared with wild type, indicating the involvement of MGD3 in plant growth under sucrose-replete conditions. Although most features such as chlorophyll content, photosynthetic activity, and Pi content were comparable between wild-type and the transgenic plants overexpressing MGD3, sucrose content in shoot tissues decreased and incorporation of exogenously supplied carbon to DGDG was enhanced in the MGD3-overexpressing plants compared with wild type. Our results suggest that MGD3 plays an important role in supplying DGDG as a component of extraplastidial membranes to support enhanced plant growth under conditions of carbon excess.

  20. Molecular mechanism of pore creation in bacterial membranes by amyloid proteins

    International Nuclear Information System (INIS)

    Tsigelny, I F; Sharikov, Y; Miller, M A; Masliah, E

    2009-01-01

    This study explores the mechanism of pore creation in cellular membranes by MccE92 bacterial proteins. The results of this study are then compared with the mechanism of alpha-synuclein (aS)-based pore formation in mammalian cells, and its role in Parkinson's disease.

  1. Life without a cell membrane: Challenging the specificity of bacterial endophytes within Bryopsis (Bryopsidales, Chlorophyta

    Directory of Open Access Journals (Sweden)

    Hollants Joke

    2011-11-01

    Full Text Available Abstract Background The siphonous green macroalga Bryopsis has some remarkable characteristics. Besides hosting a rich endophytic bacterial flora, Bryopsis also displays extraordinary wound repair and propagation mechanisms. This latter feature includes the formation of protoplasts which can survive in the absence of a cell membrane for several minutes before regenerating into new individuals. This transient 'life without a membrane' state, however, challenges the specificity of the endophytic bacterial communities present and raises the question whether these bacteria are generalists, which are repeatedly acquired from the environment, or if there is some specificity towards the Bryopsis host. Results To answer this question, we examined the temporal stability and the uniqueness of endobiotic bacterial communities within Bryopsis samples from the Mexican west coast after prolonged cultivation. DGGE analysis revealed that Bryopsis endophytic bacterial communities are rather stable and clearly distinct from the epiphytic and surrounding cultivation water bacterial communities. Although these endogenous communities consist of both facultative and obligate bacteria, results suggest that Bryopsis owns some intrinsic mechanisms to selectively maintain and/or attract specific bacteria after repeated wounding events in culture. Conclusions This suggests that Bryopsis algae seem to master transient stages of life without a cell membrane well as they harbor specific - and possibly ecological significant - endophytic bacteria.

  2. Outer Membrane Proteome Analysis of Indian Strain of Pasteurella multocida Serotype B:2 by MALDI-TOF/MS Analysis

    Directory of Open Access Journals (Sweden)

    A. Prasannavadhana

    2014-01-01

    Full Text Available Identification of outer membrane proteins (OMPs is important to understand the bacteria structure and function, host-pathogen interaction, development of novel vaccine candidates, and diagnostic antigens. But till now the key antigens of P. multocida B:2 isolate causing haemorrhagic septicaemia (HS in animals are not clearly defined. In this study, P52 strain of P. multocida serotype B:2 was grown in vitro under iron-rich and iron-limited condition. The OMPs were extracted by sarkosyl method followed by SDS-PAGE and the proteins were identified by MALDI-TOF/MS analysis. In total, 22 proteins were identified, of which 7 were observed exclusively under iron-limited condition. Most of the high molecular weight proteins (TbpA, HgbA, HgbB, HasR, IroA, and HemR identified in this study were involved in iron acquisition. Some hypothetical proteins (HP-KCU-10206, HP and AAUPMB 08244, HP AAUPMB 21592, HP AAUPMB 19766, AAUPMB 11295 were observed for the first time in this study which could be unique to serotype B:2. Further functional in vivo study of the proteins identified are required to explore the utility of these proteins in developing diagnostics and vaccine against HS.

  3. TP0326, a Treponema pallidum β-Barrel Assembly Machinery A (BamA) Ortholog and Rare Outer Membrane Protein

    Science.gov (United States)

    Desrosiers, Daniel C.; Anand, Arvind; Luthra, Amit; Dunham-Ems, Star M; LeDoyt, Morgan; Cummings, Michael A. D.; Eshghi, Azad; Cameron, Caroline E.; Cruz, Adriana R.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2011-01-01

    SUMMARY Definitive identification of Treponema pallidum (Tp) rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in Tp with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modeling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat-modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in Tp considerably larger than that of E. coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. Tp-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity. PMID:21488980

  4. Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae

    Science.gov (United States)

    Mondal, Ayan; Tapader, Rima; Chatterjee, Nabendu Sekhar; Ghosh, Amit; Sinha, Ritam; Koley, Hemanta; Saha, Dhira Rani; Chakrabarti, Manoj K.; Wai, Sun Nyunt

    2016-01-01

    Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses. PMID:26930702

  5. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  6. Brucella abortus Ornithine Lipids Are Dispensable Outer Membrane Components Devoid of a Marked Pathogen-Associated Molecular Pattern

    Science.gov (United States)

    Palacios-Chaves, Leyre; Conde-Álvarez, Raquel; Gil-Ramírez, Yolanda; Zúñiga-Ripa, Amaia; Barquero-Calvo, Elías; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Arce-Gorvel, Vilma; Gorvel, Jean-Pierre; Moreno, Edgardo; de Miguel, María-Jesús; Grilló, María-Jesús

    2011-01-01

    The brucellae are α-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL) of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA) and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-α release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in α-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity. PMID:21249206

  7. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  8. The Outer Membrane Protein OmpW Enhanced V. cholerae Growth in Hypersaline Conditions by Transporting Carnitine

    Directory of Open Access Journals (Sweden)

    Xiuping Fu

    2018-01-01

    Full Text Available Pathogenic marine bacteria are found in environments and food sources with high salt concentrations, which the bacteria must effectively manage for their survival. Several mechanisms, such as the transport of ions and compatible solutes as well as changes in aerobic and anaerobic respiration, confer salt tolerance to bacteria. In this study, we found that the outer membrane protein OmpW was related to salt stress in Vibrio cholerae and that ompW gene transcription and expression were up-regulated in cultures containing high NaCl concentrations. Deletion of ompW resulted in reduced V. cholerae growth in hypersaline culture conditions. Supplements of the compatible solutes betaine, L-carnitine, or L-lysine enhanced the growth of V. cholerae in hypersaline media. Supplements of betaine or L-lysine had the same growth enhancement effect on the ompW-deletion mutant cultured in hypersaline media, whereas L-carnitine supplementation did not restore mutant growth. In addition, the uptake of L-carnitine was decreased in the ompW-deletion mutant. Our study showed that among the multiplex factors that enhance the hypersaline tolerance of V. cholerae, OmpW also plays a role by transporting L-carnitine.

  9. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  10. Surfactant Protein A Recognizes Outer Membrane Protein OprH on Pseudomonas aeruginosa Isolates From Individuals With Chronic Infection.

    Science.gov (United States)

    Qadi, Mohammad; Lopez-Causapé, Carla; Izquierdo-Rabassa, Sofia; Mateu Borrás, Margalida; Goldberg, Joanna B; Oliver, Antonio; Albertí, Sebastián

    2016-11-01

    Surfactant protein A (SP-A) plays a critical role in the clearance of Pseudomonas aeruginosa from the lung. However, there is limited information about the interaction of this protein with P. aeruginosa isolates from individuals with cystic fibrosis (CF). We characterized the interplay between SP-A and a collection of isogenic sequential isolates from 7 patients with CF. We identified outer membrane protein OprH as a novel ligand for SP-A on P. aeruginosa The last-available (late) isolates from patients with CF bound significantly less SP-A than their respective first-available (early) isolates. This difference could be associated with a reduction in the expression of OprH. Binding of SP-A to OprH promoted phagocytic killing; thus, late CF isolates were at least 2-fold more resistant to SP-A-mediated killing by human macrophages than their respective early isolates. We postulate that the reduction of OprH expression is a previously unrecognized adaptation of P. aeruginosa to the lung of individuals with CF that facilitates the escape of the microorganism from SP-A-mediated phagocytic killing. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Co-autodisplay of Z-domains and bovine caseins on the outer membrane of E. coli.

    Science.gov (United States)

    Yoo, Gu; Saenger, Thorsten; Bong, Ji-Hong; Jose, Joachim; Kang, Min-Jung; Pyun, Jae-Chul

    2015-12-01

    In this work, two proteins, Z-domains and bovine casein, were auto-displayed on the outer membrane of the same Escherichia coli cells by co-transformation of two different auto-display vectors. On the basis of SDS-PAGE densitometry, Z-domains and bovine casein were expressed at 3.12 × 10⁵ and 1.55 × 10⁵ proteins/E. coli cell, respectively. The co-auto-displayed Z-domains had antibody-binding activity and the bovine casein had adhesive properties. E. coli with co-auto-displayed proteins were analyzed by fluorescence assisted cell sorting (FACS). E. coli with co-auto-displayed Z-domains and bovine casein aggregated due to hydrophobic interaction. For application to immunoassays, the Z-domain activity was estimated after (1) immobilizing the E. coli and (2) forming an OM layer. E. coli with co-auto-displayed two proteins that were immobilized on a polystyrene microplate had the same antibody-binding activity as did E. coli with auto-displayed Z-domains only. The OM layer from the co-transformed E. coli had Z-domains and bovine casein expressed at a 1:2 ratio from antibody-binding activity measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms.

    Directory of Open Access Journals (Sweden)

    Marlena M Wilson

    Full Text Available Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.

  13. MitoNEET Is a Uniquely Folded 2Fe-2S Outer Mitochondrial Membrane Protein Stabilized By Pioglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A.; /UC, San Diego /SLAC, SSRL /Hebrew U.

    2007-10-19

    Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Angstrom x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the {approx}650 reported Fe-S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a {beta}-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe-2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe-2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe-S cluster transfer.

  14. Comparison of clinical performance of antigen basedenzyme immunoassay (EIA and major outer membrane protein (MOMP-PCR for detection of genital Chlamydia trachomatis infection

    Directory of Open Access Journals (Sweden)

    Mahmoud Nateghi Rostami

    2016-06-01

    Full Text Available Background: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Early detection and treatment of C.trachomatis genital infection prevent serious reproductive complications. Objective: Performances of enzyme immunoassay (EIA and major outer membrane protein (MOMP-polymerase chain reaction (PCR for diagnosis of genital C.trachomatis infection in women were compared. Materials and Methods: In this cross sectional study a total of 518 women volunteers were included (33.67±8.3 yrs who had been referred to Gynecology clinics of Qom province, Iran, were included. Endocervical swab specimens were collected to detect lipopolysaccharide (LPS antigen in EIA and to amplify MOMP gene of C.trachomatis in PCR. Results were confirmed using ompI nested-PCR. Sensitivity, specificity, positive (PPV and negative predictive values (NPV were calculated for performance of the tests. Odds ratios were determined using binary logistic regression analysis. Results: In total, 37 (7.14% cases were positive by EIA and/or MOMP-PCR. All discrepant results were confirmed by nested-PCR. Sensitivity, specificity, PPV and NPV values of EIA were 59.46%, 100%, 100% and 96.98%, and those of MOMPPCR were 97.30%, 100%, 100%, 99.79%, respectively. Reproductive complications including 2.7% ectopic pregnancy, 5.4% stillbirth, 5.4% infertility, and 10.8% PROM were recorded. The risk of developing chlamydiosis was increased 4.8-fold in volunteers with cervicitis (p<0.05; OR 4.80; 95% CI 1.25-18.48. Conclusion: C.trachomatis infection should be regarded in women of reproductive ages especially those with cervicitis. Primary screening of women by using the low cost antigen-EIA is recommended; however, due to the low sensitivity of Ag-EIA, verification of the negative results by a DNA amplification method is needed.

  15. Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Maria José eFábrega

    2016-05-01

    Full Text Available The influence of microbiota in human health is well known. Imbalances in microbiome structure have been linked to several diseases. Modulation of microbiota composition through probiotic therapy is an attempt to harness the beneficial effects of commensal microbiota. Although there is wide knowledge of the responses induced by gut microbiota, the microbial factors that mediate these effects are not well known. Gram-negative bacteria release outer membrane vesicles (OMVs as a secretion mechanism of microbial factors, which have an important role in intercellular communication. Here, we investigated whether OMVs from the probiotic Escherichia coli strain Nissle 1917 or the commensal E. coli strain ECOR12 trigger immune responses in various cellular models: (i peripheral blood mononuclear cells (PBMCs as a model of intestinal barrier disruption, (ii apical stimulation of Caco-2/PMBCs co-culture as a model of intact intestinal mucosa, and (iii colonic mucosa explants as an ex vivo model. Stimulations with bacterial lysates were also performed. Whereas both OMVs and lysates activated expression and secretion of several cytokines and chemokines in PBMCs, only OMVs induced basolateral secretion and mRNA upregulation of these mediators in the co-culture model. We provide evidence that OMVs are internalized in polarized Caco-2 cells. The activated epithelial cells elicit a response in the underlying immunocompetent cells. The OMVs effects were corroborated in the ex vivo model. This experimental study shows that OMVs are an effective strategy used by beneficial gut bacteria to communicate with and modulate host responses, activating signaling events through the intestinal epithelial barrier.

  16. Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length.

    Science.gov (United States)

    Kolodziejek, Anna M; Schnider, Darren R; Rohde, Harold N; Wojtowicz, Andrzej J; Bohach, Gregory A; Minnich, Scott A; Hovde, Carolyn J

    2010-12-01

    Yersinia pestis, the causative agent of plague, is one of the most virulent microorganisms known. The outer membrane protein X (OmpX) in Y. pestis KIM is required for efficient bacterial adherence to and internalization by cultured HEp-2 cells and confers resistance to human serum. Here, we tested the contribution of OmpX to disease progression in the fully virulent Y. pestis CO92 strain by engineering a deletion mutant and comparing its ability in mediating pneumonic plague to that of the wild type in two animal models. The deletion of OmpX delayed the time to death up to 48 h in a mouse model and completely attenuated virulence in a rat model of disease. All rats challenged with 1 × 10(8) CFU of the ompX mutant survived, compared to the 50% lethal dose (LD50) of 1.2 × 10(3) CFU for the wild-type strain. Because murine serum is not bactericidal for the ompX mutant, the mechanism underlying the delay in time to death in mice was attributed to loss of adhesion/internalization properties but not serum resistance. The rat model, which is most similar to humans, highlighted the critical role of serum resistance in disease. To resolve conflicting evidence for the role of Y. pestis lipopolysaccharide (LPS) and OmpX in serum resistance, ompX was cloned into Escherichia coli D21 and three isogenic derivatives engineered to have progressively truncated LPS core saccharides. OmpX-mediated serum resistance, adhesiveness, and invasiveness, although dependent on LPS core length, displayed these functions in E. coli, independently of other Yersinia proteins and/or LPS. Also, autoaggregation was required for efficient OmpX-mediated adhesiveness and internalization but not serum resistance.

  17. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane.

    Directory of Open Access Journals (Sweden)

    Poonam Tyagi

    Full Text Available Curcumin, an important constituent of turmeric, is known for various biological activities, primarily due to its antioxidant mechanism. The present study focused on the antibacterial activity of curcumin I, a significant component of commercial curcumin, against four genera of bacteria, including those that are Gram-positive (Staphylococcus aureus and Enterococcus faecalis and Gram-negative (Escherichia coli and Pseudomonas aeruginosa. These represent prominent human pathogens, particularly in hospital settings. Our study shows the strong antibacterial potential of curcumin I against all the tested bacteria from Gram-positive as well as Gram-negative groups. The integrity of the bacterial membrane was checked using two differential permeabilization indicating fluorescent probes, namely, propidium iodide and calcein. Both the membrane permeabilization assays confirmed membrane leakage in Gram-negative and Gram-positive bacteria on exposure to curcumin I. In addition, scanning electron microscopy and fluorescence microscopy were employed to confirm the membrane damages in bacterial cells on exposure to curcumin I. The present study confirms the broad-spectrum antibacterial nature of curcumin I, and its membrane damaging property. Findings from this study could provide impetus for further research on curcumin I regarding its antibiotic potential against rapidly emerging bacterial pathogens.

  18. Large-scale preparation of the homogeneous LolA–lipoprotein complex and efficient in vitro transfer of lipoproteins to the outer membrane in a LolB-dependent manner

    OpenAIRE

    Watanabe, Shoji; Oguchi, Yuki; Yokota, Naoko; Tokuda, Hajime

    2007-01-01

    An ATP-binding cassette transporter LolCDE complex of Escherichia coli releases lipoproteins destined to the outer membrane from the inner membrane as a complex with a periplasmic chaperone, LolA. Interaction of the LolA–lipoprotein complex with an outer membrane receptor, LolB, then causes localization of lipoproteins to the outer membrane. As far as examined, formation of the LolA–lipoprotein complex strictly depends on ATP hydrolysis by the LolCDE complex in the presence of LolA. It has be...

  19. ExsB Is Required for Correct Assembly of the Pseudomonas aeruginosa Type III Secretion Apparatus in the Bacterial Membrane and Full Virulence In Vivo

    Science.gov (United States)

    Perdu, Caroline; Huber, Philippe; Bouillot, Stéphanie; Blocker, Ariel; Elsen, Sylvie; Attrée, Ina

    2015-01-01

    Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa. Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon. PMID:25690097

  20. Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa.

    Science.gov (United States)

    Bitter, W; Koster, M; Latijnhouwers, M; de Cock, H; Tommassen, J

    1998-01-01

    Pseudomonas aeruginosa is able to translocate proteins across both membranes of the cell envelope. Many of these proteins are transported via the type II secretion pathway and adopt their tertiary conformation in the periplasm, which implies the presence of a large transport channel in the outer membrane. The outer membrane protein, XcpQ, which is involved in transport of folded proteins across the outer membrane of P. aeruginosa, was purified as a highly stable homomultimer. Insertion and deletion mutagenesis of xcpQ revealed that the C-terminal part of XcpQ is sufficient for the formation of the multimer. However, linker insertions in the N-terminal part can disturb complex formation completely. Furthermore, complex formation is strictly correlated with lethality, caused by overexpression of xcpQ. Electron microscopic evaluation of the XcpQ multimers revealed large, ring-shaped structures with an apparent central cavity of 95 A. Purified PilQ, a homologue of XcpQ involved in the biogenesis of type IV pili, formed similar structures. However, the apparent cavity formed by PilQ was somewhat smaller, 53 A. The size of this cavity could allow for the transport of intact type IV pili.

  1. Affinities and in-plane stress forces between glycopeptide antibiotics and biomimetic bacterial membranes

    Directory of Open Access Journals (Sweden)

    Sisi Bi

    2015-03-01

    Full Text Available Understanding the molecular basis of interactions between antibiotics affecting bacterial cell wall biosynthesis and cellular membranes is important in rational drug design of new drugs to overcome resistance. However, a precise understanding of how bacteriostatic antibiotics effect action often neglects the effect of biophysical forces involved following antibiotic-receptor binding events. We have employed a combination of a label-free binding biosensor (surface plasmon resonance, SPR and a force biosensor (in-plane stress cantilever, together with model membrane systems to study the complex interplay between glycopeptide antibiotics, their cognate ligands and different model membranes. Bacterial cell wall precursor analogue N-α-Docosanoyl-ε-acetyl-Lys-d-Alanine-d-Alanine (doc-KAA was inserted into lipid layers comprised of zwitterionic or anionic lipids then exposed to either vancomycin or the membrane-anchored glycopeptide antibiotic teicoplanin. Binding affinities and kinetics of the antibiotics to these model membranes were influenced by electrostatic interactions with the different lipid backgrounds, in addition to ligand affinities. In addition, cantilever sensors coated with model membranes showed that planar surface stress changes were induced by glycopeptide antibiotics adsorption and caused compressive surface stress generation in a ligand-dependent manner.

  2. Parenteral immunization of PLA/PLGA nanoparticle encapsulating outer membrane protein (Omp) from Aeromonas hydrophila: Evaluation of immunostimulatory action in Labeo rohita (rohu).

    Science.gov (United States)

    Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-05-01

    Advanced vaccine research approaches needs to explore on biodegradable nanoparticles (NPs) based vaccine carrier that can serve as antigen delivery systems as well as immuno-stimulatory action to induce both innate and adaptive immune response in fish. Immunogenicity of PLA and PLGA NPs encapsulating outer membrane protein (Omp) antigen of Aeromonas hydrophila were evaluated through intra-peritoneal injection in fish, Labeo rohita. Antigen loaded PLA-Omp (223.5 ± 13.19 nm) and PLGA-Omp (166.4 ± 21.23 nm) NPs were prepared using double emulsion method by efficiently encapsulating the antigen reaching the encapsulation efficiency 44 ± 4.58% and 59.33 ± 5.13% respectively. Our formulated PLA Omp and PLGA-Omp NPs were in nanometer range (PLA-Omp, it showed considerably slower antigen release in vitro than PLGA-Omp NPs. Other physical properties like zetapotential values and poly dispersity index (PDI) confirmed the stability as well as monodisperse nature of the formulated nanoparticles. The spherical and isolated nature of PLA-Omp and PLGA-Omp NPs were revealed by SEM analysis. Upon immunization of all antigenic formulations (PLA-Omp NP, PLGA-Omp NP, FIA-Omp, PLA NP, PLGA NP, PBS as control), significant higher bacterial agglutination titre and haemolytic activity were observed in case of PLA-Omp and PLGA-Omp immunized groups than rest groups at both 21 days and 42 days. The specific antibody response was significantly increased and persisted up to 42 days of post immunization by PLA-Omp, PLGA-Omp, FIA-Omp. PLA-Omp NPs showed better immune response (higher bacterial agglutination titre, haemolytic activity, specific antibody titre, higher percent survival upon A. hydrophila challenge) than PLGA-Omp in L. rohita confirming its better efficacy. Comparable antibody response of PLA-Omp and PLGA-Omp with FIA-Omp treated groups suggested that PLA and PLGA could be replacement for Freund's adjuvant (for stimulating antibody response) to overcome many side effects

  3. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  4. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury.

    Directory of Open Access Journals (Sweden)

    Martina Bielaszewska

    2017-02-01

    Full Text Available Outer membrane vesicles (OMVs are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a, cytolethal distending toxin V (CdtV, EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV

  5. Electrochemical characterization of pore formation by bacterial protein toxins on hybrid supported membranes.

    Science.gov (United States)

    Wilkop, Thomas; Xu, Danke; Cheng, Quan

    2008-05-20

    The interaction of pore-forming streptolysin O (SLO) with biomimetic lipid membranes has been studied by electrochemical methods. Phosphatidylcholine lipid vesicles were deposited onto gold electrodes modified with supporting layers of hexyl thioctate (HT) or thioctic acid tri(ethylene glycol) ester (TA-TEGE), and integrity and permeability of the resulting membranes were characterized by cyclic voltammetry and impedance spectroscopy. Both positively and negatively charged electrochemical probes, potassium ferrocyanide, hexaammineruthenium(III) chloride, and ferrocene carboxylic acid (FCA), were employed to evaluate their suitability to probe the membrane permeability properties, with FCA exhibiting ideal behavior and thus employed throughout the work. Fusion of vesicles incubated with SLO on the electrodes yielded membranes that showed a distinctive response pattern for FCA as a function of SLO concentration. A direct dependence of both the currents and peak separation of FCA in the cyclic voltammograms was observed over a concentration range of 0-10 hemolytic units (HU)/microL of the toxin. The interaction of SLO with preformed supported lipid membranes was also investigated, and much lower response was observed, suggesting a different extent of membrane-toxin interactions on such an interface. Nonionic surfactant Triton was found to disrupt the vesicle structure but could not completely remove a preformed membrane to fully restore the electrode response. The information reported here offers some unique insight into toxin-surface interactions on a hybrid membrane, facilitating the development of electrochemically based sensing platforms for detecting trace amounts of bacterial toxins via the perforation process.

  6. Critical determinants of the interactions of capsule-expressing Neisseria meningitidis with host cells: the role of receptor density in increased cellular targeting via the outer membrane Opa proteins.

    Science.gov (United States)

    Bradley, Christopher J; Griffiths, Natalie J; Rowe, Helen A; Heyderman, Robert S; Virji, Mumtaz

    2005-10-01

    Neisseria meningitidis capsule is an important virulence determinant required for survival in the blood but is reportedly involved in inhibiting cellular interactions mediated by meningococcal outer membrane adhesins. However, evidence from our previous studies suggested that target receptor density on host cells may determine whether or not capsulate bacteria can adhere via outer membrane proteins such as Opa. To confirm this and evaluate the impact of capsulation on bacterial interactions, we used Opa(+) and Opa(-) derivatives of capsulate and acapsulate meningococcal isolates and transfected cell lines expressing CEACAM1, a receptor targeted by Opa proteins. To assess the extent and rate of cell association, subpopulations of stably transfected Chinese hamster ovary cells with different receptor levels were derived. A quantitative correlation of CEACAM1 levels and Opa-dependent binding of both capsulate and acapsulate bacteria was demonstrated, which was accelerated at high receptor densities. However, it appears that invasion by Opa(+) capsulate bacteria only occurs when a threshold level of CEACAM density has been reached. Target cells expressing high levels of CEACAM1 (MFI c. 400) bound threefold more, but internalized 20-fold more Opa(+) capsulate bacteria than those with intermediate expression (MFI c. 100). No overall selection of acapsulate phenotype was observed in the internalized population. These observations confirm that capsule may not be an adequate barrier for cellular interactions and demonstrate the role of a host factor that may determine capsulate bacterial invasion potential. Upregulation of CEACAMs, which can occur in response to inflammatory cytokines, could lead to translocation of a small number of fully capsulate bacteria across mucosal epithelium into the bloodstream sufficient to cause a rapid onset of disseminated disease. Thus the data also suggest a novel rationale for the epidemiological observations that individuals with prior

  7. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science and Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University, Shanghai, 201620 (China); Wang Huaping, E-mail: wanghp@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science and Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University, Shanghai, 201620 (China)

    2009-05-05

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  8. Functional recruitment of human complement inhibitor C4B-binding protein to outer membrane protein Rck of Salmonella.

    Directory of Open Access Journals (Sweden)

    Derek K Ho

    Full Text Available Resistance to complement mediated killing, or serum resistance, is a common trait of pathogenic bacteria. Rck is a 17 kDa outer membrane protein encoded on the virulence plasmid of Salmonella enterica serovars Typhimurium and Enteritidis. When expressed in either E. coli or S. enterica Typhimurium, Rck confers LPS-independent serum resistance as well as the ability to bind to and invade mammalian cells. Having recently shown that Rck binds the inhibitor of the alternative pathway of complement, factor H (fH, we hypothesized that Rck can also bind the inhibitor of the classical and lectin pathways, C4b-binding protein (C4BP. Using flow cytometry and direct binding assays, we demonstrate that E. coli expressing Rck binds C4BP from heat-inactivated serum and by using the purified protein. No binding was detected in the absence of Rck expression. C4BP bound to Rck is functional, as we observed factor I-mediated cleavage of C4b in cofactor assays. In competition assays, binding of radiolabeled C4BP to Rck was reduced by increasing concentrations of unlabeled protein. No effect was observed by increasing heparin or salt concentrations, suggesting mainly non-ionic interactions. Reduced binding of C4BP mutants lacking complement control protein domains (CCPs 7 or 8 was observed compared to wt C4BP, suggesting that these CCPs are involved in Rck binding. While these findings are restricted to Rck expression in E. coli, these data suggest that C4BP binding may be an additional mechanism of Rck-mediated complement resistance.

  9. Functional recruitment of the human complement inhibitor C4BP to Yersinia pseudotuberculosis outer membrane protein Ail.

    Science.gov (United States)

    Ho, Derek K; Riva, Rauna; Kirjavainen, Vesa; Jarva, Hanna; Ginström, Erica; Blom, Anna M; Skurnik, Mikael; Meri, Seppo

    2012-05-01

    Ail is a 17-kDa chromosomally encoded outer membrane protein that mediates serum resistance (complement resistance) in the pathogenic Yersiniae (Yersinia pestis, Y. enterocolitica, and Y. pseudotuberculosis). In this article, we demonstrate that Y. pseudotuberculosis Ail from strains PB1, 2812/79, and YPIII/pIB1 (serotypes O:1a, O:1b, and O:3, respectively) can bind the inhibitor of the classical and lectin pathways of complement, C4b-binding protein (C4BP). Binding was observed irrespective of serotype tested and independently of YadA, which is the primary C4BP receptor of Y. enterocolitica. Disruption of the ail gene in Y. pseudotuberculosis resulted in loss of C4BP binding. Cofactor assays revealed that bound C4BP is functional, because bound C4BP in the presence of factor I cleaved C4b. In the absence of YadA, Ail conferred serum resistance to strains PB1 and YPIII, whereas serum resistance was observed in strain 2812/79 in the absence of both YadA and Ail, suggesting additional serum resistance factors. Ail from strain YPIII/pIB1 alone can mediate serum resistance and C4BP binding, because its expression in a serum-sensitive laboratory strain of Escherichia coli conferred both of these phenotypes. Using a panel of C4BP mutants, each deficient in a single complement control protein domain, we observed that complement control protein domains 6-8 are important for binding to Ail. Binding of C4BP was unaffected by increasing heparin or salt concentrations, suggesting primarily nonionic interactions. These results indicate that Y. pseudotuberculosis Ail recruits C4BP in a functional manner, facilitating resistance to attack from complement.

  10. Immunogenicity and protective role of antigenic regions from five outer membrane proteins of Flavobacterium columnare in grass carp Ctenopharyngodon idella

    Science.gov (United States)

    Luo, Zhang; Liu, Zhixin; Fu, Jianping; Zhang, Qiusheng; Huang, Bei; Nie, Pin

    2016-11-01

    Flavobacterium columnare causes columnaris disease in freshwater fish. In the present study, the antigenic regions of five outer membrane proteins (OMPs), including zinc metalloprotease, prolyl oligopeptidase, thermolysin, collagenase and chondroitin AC lyase, were bioinformatically analyzed, fused together, and then expressed as a recombinant fusion protein in Escherichia coli. The expressed protein of 95.6 kDa, as estimated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was consistent with the molecular weight deduced from the amino acid sequence. The purified recombinant protein was used to vaccinate the grass carp, Ctenopharyngodon idella. Following vaccination of the fish their IgM antibody levels were examined, as was the expression of IgM, IgD and IgZ immunoglobulin genes and other genes such as MHC Iα and MHC IIβ, which are also involved in adaptive immunity. Interleukin genes ( IL), including IL-1β, IL-8 and IL-10, and type I and type II interferon ( IFN) genes were also examined. At 3 and 4 weeks post-vaccination (wpv), significant increases in IgM antibody levels were observed in the fish vaccinated with the recombinant fusion protein, and an increase in the expression levels of IgM, IgD and IgZ genes was also detected following the vaccinations, thus indicating that an adaptive immune response was induced by the vaccinations. Early increases in the expression levels of IL and IFN genes were also observed in the vaccinated fish. At four wpv, the fish were challenged with F. columnare, and the vaccinated fish showed a good level of protection against this pathogen, with 39% relative percent survival (RPS) compared with the control group. It can be concluded, therefore, that the five OMPs, in the form of a recombinant fusion protein vaccine, induced an immune response in fish and protection against F. columnare.

  11. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model.

    Science.gov (United States)

    Babu, Litty; Uppalapati, Siva R; Sripathy, Murali H; Reddy, Prakash N

    2017-01-01

    Safety and protective efficacy of recombinant multi-epitope subunit vaccine (r-AK36) was evaluated in a mouse model. Recombinant AK36 protein comprised of immunodominant antigens from outer membrane proteins (Omp's) of Klebsiella pneumoniae namely OmpA and OmpK36. r-AK36 was highly immunogenic and the hyperimmune sera reacted strongly with native OmpA and OmpK36 proteins from different K. pneumoniae strains. Hyperimmune sera showed cross-reactivity with Omp's of other Gram-negative organisms. Humoral responses showed a Th2-type polarized immune response with IgG1 being the predominant antibody isotype. Anti-r-AK36 antibodies showed antimicrobial effect during in vitro testing with MIC values in the range of 25-50 μg/ml on different K. pneumoniae strains. The recombinant antigen elicited three fold higher proliferation of splenocytes from immunized mice compared to those with sham-immunized mice. Anti-r-AK36 antibodies also exhibited in vitro biofilm inhibition property. Subunit vaccine r-AK36 immunization promoted induction of protective cytokines IL-2 and IFN-γ in immunized mice. When r-AK36-immunized mice were challenged with 3 × LD 100 dose, ∼80% of mice survived beyond the observation period. Passive antibody administration to naive mice protected them (67%) against the lethal challenge. Since the targeted OMPs are conserved among all K. pneumoniae serovars and due to the strong nature of immune responses, r-AK36 subunit vaccine could be a cost effective candidate against klebsiellosis.

  12. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model

    Directory of Open Access Journals (Sweden)

    Litty Babu

    2017-09-01

    Full Text Available Safety and protective efficacy of recombinant multi-epitope subunit vaccine (r-AK36 was evaluated in a mouse model. Recombinant AK36 protein comprised of immunodominant antigens from outer membrane proteins (Omp’s of Klebsiella pneumoniae namely OmpA and OmpK36. r-AK36 was highly immunogenic and the hyperimmune sera reacted strongly with native OmpA and OmpK36 proteins from different K. pneumoniae strains. Hyperimmune sera showed cross-reactivity with Omp’s of other Gram-negative organisms. Humoral responses showed a Th2-type polarized immune response with IgG1 being the predominant antibody isotype. Anti-r-AK36 antibodies showed antimicrobial effect during in vitro testing with MIC values in the range of 25–50 μg/ml on different K. pneumoniae strains. The recombinant antigen elicited three fold higher proliferation of splenocytes from immunized mice compared to those with sham-immunized mice. Anti-r-AK36 antibodies also exhibited in vitro biofilm inhibition property. Subunit vaccine r-AK36 immunization promoted induction of protective cytokines IL-2 and IFN-γ in immunized mice. When r-AK36-immunized mice were challenged with 3 × LD100 dose, ∼80% of mice survived beyond the observation period. Passive antibody administration to naive mice protected them (67% against the lethal challenge. Since the targeted OMPs are conserved among all K. pneumoniae serovars and due to the strong nature of immune responses, r-AK36 subunit vaccine could be a cost effective candidate against klebsiellosis.

  13. Two outer membrane proteins are required for maximal type I secretion of the Caulobacter crescentus S-layer protein.

    Science.gov (United States)

    Toporowski, Michael C; Nomellini, John F; Awram, Peter; Smit, John

    2004-12-01

    Transport of RsaA, the crystalline S-layer subunit protein of Caulobacter crescentus, is mediated by a type I secretion mechanism. Two proteins have been identified that play the role of the outer membrane protein (OMP) component in the RsaA secretion machinery. The genes rsaF(a) and rsaF(b) were identified by similarity to the Escherichia coli hemolysin secretion OMP TolC by using the C. crescentus genome sequence. The rsaF(a) gene is located several kilobases downstream of the other transporter genes, while rsaF(b) is completely unlinked. An rsaF(a) knockout had approximately 56% secretion compared to wild-type levels, while the rsaF(b) knockout reduced secretion levels to approximately 79%. When expression of both proteins was eliminated, there was no RsaA secretion, but a residual level of approximately 9% remained inside the cell, suggesting posttranslational autoregulation. Complementation with either of the individual rsaF genes by use of a multicopy vector, which resulted in 8- to 10-fold overexpression of the proteins, did not restore RsaA secretion to wild-type levels, indicating that both rsaF genes were required for full-level secretion. However, overexpression of rsaF(a) (with normal rsaF(b) levels) in concert with overexpression of rsaA resulted in a 28% increase in RsaA secretion, indicating a potential for significantly increasing expression levels of an already highly expressing type I secretion system. This is the only known example of type I secretion requiring two OMPs to assemble a fully functional system.

  14. Serum antibodies against Chlamydia pneumoniae outer membrane protein cross-react with the heavy chain of immunoglobulin in the wall of abdominal aortic aneurysms

    DEFF Research Database (Denmark)

    Lindholt, Jes Sanddal; Støvring, Jette; Østergaard, Lars

    2004-01-01

    Chlamydia pneumoniae (Cp) has been demonstrated in arteries and abdominal aortic aneurysms (AAAs). However, the validity of the methods used is questioned, and antibiotic treatment trials have thus far shown disappointing results. Nevertheless, antibodies against the Cp outer membrane proteins (O...... (OMPs) have been associated with progression of atherosclerosis and AAAs. The aim of this study was to detect Cp OMPs in the wall of AAA patients by use of purified serum antibodies directed against Cp OMP and to assess potential cross-reacting proteins in AAA walls.......Chlamydia pneumoniae (Cp) has been demonstrated in arteries and abdominal aortic aneurysms (AAAs). However, the validity of the methods used is questioned, and antibiotic treatment trials have thus far shown disappointing results. Nevertheless, antibodies against the Cp outer membrane proteins...

  15. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic...

  16. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM).

    Science.gov (United States)

    Frank, Daniel O; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  17. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    OpenAIRE

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty ...

  18. Outer membrane protein STM3031 (Ail/OmpX-like protein) plays a key role in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Hu, Wensi S; Lin, Jing-Fang; Lin, Ying-Hsiu; Chang, Hsin-Yu

    2009-08-01

    Previously, the putative outer membrane protein STM3031 has been correlated with ceftriaxone resistance in Salmonella enterica serovar Typhimurium. In this study, this protein was almost undetectable in the ceftriaxone-susceptible strain 01-4, but its levels were increased in 01-4 isogenic strains for which MICs were higher. The stm3031 gene deletion mutant, R200(Deltastm3031), was generated and showed >64-fold lower ceftriaxone resistance than R200, supporting a key role for STM3031 in ceftriaxone resistance. To investigate which outer membrane protein(s) was associated with resistance, the outer membrane protein profiles of 01-4, R200, and R200(Deltastm3031) were compared proteomically. Nine proteins were identified as altered. The expression levels of AcrA, TolC, STM3031, STM1530, VacJ, and Psd in R200 were increased; those of OmpC, OmpD, and OmpW were decreased. The expression levels of OmpD, OmpW, STM1530, VacJ, and Psd, but not those of OmpC, AcrA, and TolC, in R200(Deltastm3031) were returned to the levels in strain 01-4. Furthermore, the genes' mRNA levels correlated with their protein levels when the three strains were compared. The detection of higher AcrB levels, linked to higher acrB, acrD, and acrF mRNA levels, in strain R200 than in strains 01-4 and R200(Deltastm3031) suggests that AcrB, AcrD, and AcrF participate in ceftriaxone resistance. Taken together with the location of STM3031 in the outer membrane, these results suggest that STM3031 plays a key role in ceftriaxone resistance, probably by reducing permeability via a decreased porin OmpD level and enhancing export via increased AcrD efflux pump activity.

  19. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells.

    OpenAIRE

    Kupsch, E M; Knepper, B; Kuroki, T; Heuer, I; Meyer, T F

    1993-01-01

    Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, ...

  20. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM.

    Directory of Open Access Journals (Sweden)

    Daniel O Frank

    Full Text Available The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM. In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20 by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  1. Clinico-pathology and hemato-biochemistry responses in buffaloes infected with Pasteurella multocida type B:2 immunogen outer membrane protein.

    Science.gov (United States)

    Chung, Eric Lim Teik; Abdullah, Faez Firdaus Jesse; Marza, Ali Dhiaa; Saleh, Wessam Monther Mohammed; Ibrahim, Hayder Hamzah; Abba, Yusuf; Zamri-Saad, Mohd; Haron, Abd Wahid; Saharee, Abdul Aziz; Lila, Mohd Azmi Mohd; Norsidin, Mohd Jefri

    2017-01-01

    The aim of this study was to investigate the clinico-pathology and haemato-biochemistry alterations in buffaloes inoculated with Pasteurella multocida type B:2 immunogen outer membrane protein via subcutaneous and oral routes. Nine buffalo heifers were divided equally into 3 treatment groups. Group 1 was inoculated orally with 10 mL of phosphate buffer saline (PBS); Group 2 and 3 were inoculated with 10 mL of outer membrane protein broth subcutaneously and orally respectively. Group 2 buffaloes showed typical haemorrhagic septicaemia clinical signs and were only able to survive for 72 h of the experiment. However, Group 3 buffaloes were able to survive throughout the stipulated time of 21 days of experiment. There were significant differences (p  0.05) in edema between groups except for the lung. This study was a proof that oral route infection of Pasteurella multocida type B:2 immunogen outer membrane protein can be used to stimulate host cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Natural Products at Work: Structural Insights into Inhibition of the Bacterial Membrane Protein MraY.

    Science.gov (United States)

    Koppermann, Stefan; Ducho, Christian

    2016-09-19

    Natural(ly) fit: The X-ray crystal structure of the bacterial membrane protein MraY in complex with its natural product inhibitor muraymycin D2 is discussed. MraY catalyzes one of the membrane-associated steps in peptidoglycan biosynthesis and, therefore, represents a promising target for novel antibiotics. Structural insights derived from the protein-inhibitor complex might now pave the way for the development of new antimicrobial drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dual layer hollow fiber PVDF ultra-filtration membranes containing Ag nano-particle loaded zeolite with longer term anti-bacterial capacity in salt water.

    Science.gov (United States)

    Shi, Huyan; Xue, Lixin; Gao, Ailin; Zhou, Qingbo

    2016-01-01

    Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag(+) released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag(+) even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag(+) (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag(+) after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes.

  4. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor

    Directory of Open Access Journals (Sweden)

    Graumann Peter

    2009-11-01

    Full Text Available Abstract Background The signal recognition particle (SRP receptor plays a vital role in co-translational protein targeting, because it connects the soluble SRP-ribosome-nascent chain complex (SRP-RNCs to the membrane bound Sec translocon. The eukaryotic SRP receptor (SR is a heterodimeric protein complex, consisting of two unrelated GTPases. The SRβ subunit is an integral membrane protein, which tethers the SRP-interacting SRα subunit permanently to the endoplasmic reticulum membrane. The prokaryotic SR lacks the SRβ subunit and consists of only the SRα homologue FtsY. Strikingly, although FtsY requires membrane contact for functionality, cell fractionation studies have localized FtsY predominantly to the cytosolic fraction of Escherichia coli. So far, the exact function of the soluble SR in E. coli is unknown, but it has been suggested that, in contrast to eukaryotes, the prokaryotic SR might bind SRP-RNCs already in the cytosol and only then initiates membrane targeting. Results In the current study we have determined the contribution of soluble FtsY to co-translational targeting in vitro and have re-analysed the localization of FtsY in vivo by fluorescence microscopy. Our data show that FtsY can bind to SRP-ribosome nascent chains (RNCs in the absence of membranes. However, these soluble FtsY-SRP-RNC complexes are not efficiently targeted to the membrane. In contrast, we observed effective targeting of SRP-RNCs to membrane-bond FtsY. These data show that soluble FtsY does not contribute significantly to cotranslational targeting in E. coli. In agreement with this observation, our in vivo analyses of FtsY localization in bacterial cells by fluorescence microscopy revealed that the vast majority of FtsY was localized to the inner membrane and that soluble FtsY constituted only a negligible species in vivo. Conclusion The exact function of the SRP receptor (SR in bacteria has so far been enigmatic. Our data show that the bacterial SR is

  6. Deciphering the roles of BamB and its interaction with BamA in outer membrane biogenesis, T3SS expression and virulence in Salmonella.

    Science.gov (United States)

    Namdari, Fatémeh; Hurtado-Escobar, Genaro Alejandro; Abed, Nadia; Trotereau, Jérôme; Fardini, Yann; Giraud, Etienne; Velge, Philippe; Virlogeux-Payant, Isabelle

    2012-01-01

    The folding and insertion of β-barrel proteins in the outer membrane of Gram-negative bacteria is mediated by the BAM complex, which is composed of the outer membrane protein BamA and four lipoproteins BamB to BamE. In Escherichia coli and/or Salmonella, the BamB lipoprotein is involved in (i) β-barrel protein assembly in the outer membrane, (ii) outer membrane permeability to antibiotics, (iii) the control of the expression of T3SS which are major virulence factors and (iv) the virulence of Salmonella. In E. coli, this protein has been shown to interact directly with BamA. In this study, we investigated the structure-function relationship of BamB in order to assess whether the roles of BamB in these phenotypes were inter-related and whether they require the interaction of BamB with BamA. For this purpose, recombinant plasmids harbouring point mutations in bamB were introduced in a ΔSalmonella bamB mutant. We demonstrated that the residues L173, L175 and R176 are crucial for all the roles of BamB and for the interaction of BamB with BamA. Moreover, the results obtained with a D229A BamB variant, which is unable to immunoprecipitate BamA, suggest that the interaction of BamB with BamA is not absolutely necessary for BamB function in outer-membrane protein assembly, T3SS expression and virulence. Finally, we showed that the virulence defect of the ΔbamB mutant is not related to its increased susceptibility to antimicrobials, as the D227A BamB variant fully restored the virulence of the mutant while having a similar antibiotic susceptibility to the ΔbamB strain. Overall, this study demonstrates that the different roles of BamB are not all inter-related and that L173, L175 and R176 amino-acids are privileged sites for the design of BamB inhibitors that could be used as alternative therapeutics to antibiotics, at least against Salmonella.

  7. Deciphering the roles of BamB and its interaction with BamA in outer membrane biogenesis, T3SS expression and virulence in Salmonella.

    Directory of Open Access Journals (Sweden)

    Fatémeh Namdari

    Full Text Available The folding and insertion of β-barrel proteins in the outer membrane of Gram-negative bacteria is mediated by the BAM complex, which is composed of the outer membrane protein BamA and four lipoproteins BamB to BamE. In Escherichia coli and/or Salmonella, the BamB lipoprotein is involved in (i β-barrel protein assembly in the outer membrane, (ii outer membrane permeability to antibiotics, (iii the control of the expression of T3SS which are major virulence factors and (iv the virulence of Salmonella. In E. coli, this protein has been shown to interact directly with BamA. In this study, we investigated the structure-function relationship of BamB in order to assess whether the roles of BamB in these phenotypes were inter-related and whether they require the interaction of BamB with BamA. For this purpose, recombinant plasmids harbouring point mutations in bamB were introduced in a ΔSalmonella bamB mutant. We demonstrated that the residues L173, L175 and R176 are crucial for all the roles of BamB and for the interaction of BamB with BamA. Moreover, the results obtained with a D229A BamB variant, which is unable to immunoprecipitate BamA, suggest that the interaction of BamB with BamA is not absolutely necessary for BamB function in outer-membrane protein assembly, T3SS expression and virulence. Finally, we showed that the virulence defect of the ΔbamB mutant is not related to its increased susceptibility to antimicrobials, as the D227A BamB variant fully restored the virulence of the mutant while having a similar antibiotic susceptibility to the ΔbamB strain. Overall, this study demonstrates that the different roles of BamB are not all inter-related and that L173, L175 and R176 amino-acids are privileged sites for the design of BamB inhibitors that could be used as alternative therapeutics to antibiotics, at least against Salmonella.

  8. The antitoxin protein of a toxin-antitoxin system from Xylella fastidiosa is secreted via outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    André Santiago

    2016-12-01

    Full Text Available The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp pauca strain 9a5c. These proteins display a high similarity to their homologues in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC, size exclusion chromatography, isothermal titration calorimetry and western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss

  9. The Antitoxin Protein of a Toxin-Antitoxin System fromXylella fastidiosaIs Secreted via Outer Membrane Vesicles.

    Science.gov (United States)

    Santiago, André da Silva; Mendes, Juliano S; Dos Santos, Clelton A; de Toledo, Marcelo A S; Beloti, Lilian L; Crucello, Aline; Horta, Maria A C; Favaro, Marianna T de Pinho; Munar, Duber M M; de Souza, Alessandra A; Cotta, Mônica A; de Souza, Anete P

    2016-01-01

    The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli . The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible

  10. Molecular dynamics simulations of outer-membrane protease T from E. coli based on a hybrid coarse-grained/atomistic potential

    International Nuclear Information System (INIS)

    Neri, Marilisa; Anselmi, Claudio; Carnevale, Vincenzo; Vargiu, Attilio V; Carloni, Paolo

    2006-01-01

    Outer-membrane proteases T (OmpT) are membrane enzymes used for defense by Gram-negative bacteria. Here we use hybrid molecular mechanics/coarse-grained simulations to investigate the role of large-scale motions of OmpT from Escherichia coli for its function. In this approach, the enzyme active site is treated at the all-atom level, whilst the rest of the protein is described at the coarse-grained level. Our calculations agree well with previously reported all-atom molecular dynamics simulations, suggesting that this approach is well suitable to investigate membrane proteins. In addition, our findings suggest that OmpT large-scale conformational fluctuations might play a role for its biological function, as found for another protease class, the aspartyl proteases

  11. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  12. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes

    Science.gov (United States)

    Meitl, Leisa A.; Eggleston, Carrick M.; Colberg, Patricia J. S.; Khare, Nidhi; Reardon, Catherine L.; Shi, Liang

    2009-09-01

    Bacterial metal reduction is an important biogeochemical process in anaerobic environments. An understanding of electron transfer pathways from dissimilatory metal-reducing bacteria (DMRB) to solid phase metal (hydr)oxides is important for understanding metal redox cycling in soils and sediments, for utilizing DMRB in bioremedation, and for developing technologies such as microbial fuel cells. Here we hypothesize that the outer membrane cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 are the only terminal reductases capable of direct electron transfer to a hematite working electrode. Cyclic voltammetry (CV) was used to study electron transfer between hematite electrodes and protein films, S. oneidensis MR-1 wild-type cell suspensions, and cytochrome deletion mutants. After controlling for hematite electrode dissolution at negative potential, the midpoint potentials of adsorbed OmcA and MtrC were measured (-201 mV and -163 mV vs. Ag/AgCl, respectively). Cell suspensions of wild-type MR-1, deletion mutants deficient in OmcA (Δ omcA), MtrC (Δ mtrC), and both OmcA and MtrC (Δ mtrC-Δ omcA) were also studied; voltammograms for Δ mtrC-Δ omcA were indistinguishable from the control. When the control was subtracted from the single deletion mutant voltammograms, redox peaks were consistent with the present cytochrome (i.e., Δ omcA consistent with MtrC and Δ mtrC consistent with OmcA). The results indicate that OmcA and MtrC are capable of direct electron exchange with hematite electrodes, consistent with a role as terminal reductases in the S. oneidensis MR-1 anaerobic respiratory pathway involving ferric minerals. There was no evidence for other terminal reductases operating under the conditions investigated. A Marcus-based approach to electron transfer kinetics indicated that the rate constant for electron transfer ket varies from 0.025 s -1 in the absence of a barrier to 63.5 s -1 with a 0.2 eV barrier.

  13. Regulatory Protein OmpR Influences the Serum Resistance of Yersinia enterocolitica O:9 by Modifying the Structure of the Outer Membrane

    Science.gov (United States)

    Skorek, Karolina; Raczkowska, Adrianna; Dudek, Bartłomiej; Miętka, Katarzyna; Guz-Regner, Katarzyna; Pawlak, Aleksandra; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela; Brzostek, Katarzyna

    2013-01-01

    The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS) compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC) and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane. PMID:24260242

  14. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane.

    Directory of Open Access Journals (Sweden)

    Karolina Skorek

    Full Text Available The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.

  15. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  16. Bacterial lipoproteins; biogenesis, sorting and quality control.

    Science.gov (United States)

    Narita, Shin-Ichiro; Tokuda, Hajime

    2017-11-01

    Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    Science.gov (United States)

    Marín-Menéndez, Alejandro; Montis, Costanza; Díaz-Calvo, Teresa; Carta, Davide; Hatzixanthis, Kostas; Morris, Christopher J.; McArthur, Michael; Berti, Debora

    2017-01-01

    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy.

  18. Structure of a bacterial type III secretion system in contact with a host membrane in situ

    Science.gov (United States)

    Nans, Andrea; Kudryashev, Mikhail; Saibil, Helen R.; Hayward, Richard D.

    2015-12-01

    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform-ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking `pump-action' conformational changes that underpin effector injection.

  19. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2014-06-01

    Full Text Available To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals.

  20. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb.

    Science.gov (United States)

    de Oliveira, Sabrina Alves; da Silva, Bruno Campos; Riegel-Vidotti, Izabel Cristina; Urbano, Alexandre; de Sousa Faria-Tischer, Paula Cristina; Tischer, Cesar Augusto

    2017-04-01

    The bacterial cellulose (BC), from Gluconacetobacter hansenii, is a biofilm with a high degree of crystallinity that can be used for therapeutic purposes and as a candidate for healing wounds. Hyaluronic acid (HA) is a constitutive polysaccharide found in the extracellular matrix and is a material used in tissue engineering and scaffolding for tissue regeneration. In this study, polymeric composites were produced in presence of hyaluronic acid isolated from chicken comb on different days of fermentation, specifically on the first (BCHA-SABT0) and third day (BCHA-SABT3) of fermentation. The structural characteristics, thermal stability and molar mass of hyaluronic acid from chicken comb were evaluated. Native membrane and polymeric composites were characterized with respect to their morphology and crystallinity. The optimized process of extraction and purification of hyaluronic acid resulted in low molar mass hyaluronic acid with structural characteristics similar to the standard commercial hyaluronic acid. The results demonstrate that the polymeric composites (BC/HA-SAB) can be produced in situ. The membranes produced on the third day presented better incorporation of HA-SAB between cellulose microfiber, resulting in membranes with higher thermal stability, higher roughness and lower crystallinity. The biocompatiblily of bacterial cellulose and the importance of hyaluronic acid as a component of extracellular matrix qualify the polymeric composites as promising biomaterials for tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration

    OpenAIRE

    An, Sung-Jun; Lee, So-Hyoun; Huh, Jung-Bo; Jeong, Sung In; Park, Jong-Seok; Gwon, Hui-Jeong; Kang, Eun-Sook; Jeong, Chang-Mo; Lim, Youn-Mook

    2017-01-01

    Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated b...

  2. Outer membrane protein OmpW is the receptor for typing phage VP5 in the Vibrio cholerae O1 El Tor biotype.

    Science.gov (United States)

    Xu, Donglei; Zhang, Jingyun; Liu, Jie; Xu, Jialiang; Zhou, Haijian; Zhang, Lijuan; Zhu, Jun; Kan, Biao

    2014-06-01

    Phage typing is used for the subtyping of clones of epidemic bacteria. In this study, we identified the outer membrane protein OmpW as the receptor for phage VP5, one of the typing phages for the Vibrio cholerae O1 El Tor biotype. A characteristic 11-bp deletion in ompW was observed in all epidemic strains resistant to VP5, suggesting that this mutation event can be used as a tracing marker in cholera surveillance. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model

    DEFF Research Database (Denmark)

    Hansen, Jon; Jensen, Klaus Thorleif; Follmann, Frank

    2008-01-01

    BACKGROUND: Immunity to chlamydia is thought to rely on interferon (IFN)-gamma-secreting T helper cells type 1 (Th1) with an additional effect of secreted antibodies. A need for Th1-polarizing adjuvants in experimental chlamydia vaccines has been demonstrated, and antigen conformation has also been...... reported as being important for raising protective immunity. METHODS: C57BL/6 mice vaccinated with native refolded Chlamydia muridarum major outer membrane protein (MOMP) adjuvanted with either Th1-promoting cationic adjuvant formulation 1 (CAF01) or T helper cells type 2-promoting aluminum hydroxide (alum...

  4. Identification of a TcpC-TcpQ Outer Membrane Complex Involved in the Biogenesis of the Toxin-Coregulated Pilus of Vibrio cholerae

    OpenAIRE

    Bose, Niranjan; Taylor, Ronald K.

    2005-01-01

    The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis p...

  5. Rapid determination of bacterial aminoglycoside resistance in environmental samples using membrane electrospray ionization mass spectrometry.

    Science.gov (United States)

    Fan, Liusheng; Ke, Ming; Yuan, Min; Pu, Ji; Li, Juan; Lu, Jinxing; Xu, Jianguo; Zhang, Mei; Xu, Wei

    2016-08-01

    Antibiotic resistance in pathogenic bacteria is becoming a global public health problem, such as aminoglycoside resistance encoded by the armA gene. Although many methods have been reported, rapid analysis of environmental samples is still challenging. A rapid analytical method was developed in this study to determine bacterial aminoglycoside resistance using membrane electrospray ionization mass spectrometry (MESI-MS). Precursor/product-ion pairs of ArmA unique peptides were detected with minimal sample preparation. Standard peptides were synthesized and used for developing and validating the methodology, and then the method was verified by both ArmA positive and ArmA negative simulated environmental samples. A rapid method for determination of bacterial aminoglycoside resistance was developed using MESI-MS/MS. The bacterial cultural time was optimized to 2 hours, and the precision, accuracy and recovery of this method were investigated. The peptide IHSSTNER (IR-8) unique to ArmA in simulated environmental samples can be successfully identified within 3 hours. The novel assay offered a rapid method to determine bacterial aminoglycoside resistance with high sensitivity, accuracy and precision in simulated environmental samples. This method could also be applied to identify other drug-resistance proteins in clinical/environmental samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...

  7. N-terminal amino acid sequences of the major outer membrane proteins from a Neisseria meningitidis group B strain isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni De Simone

    1996-02-01

    Full Text Available The four dominant outer membrane proteins (46, 38, 33 and 28 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE in a semi-purified preparation of vesicle membranes of a Neisseria meningitidis (N44/89, B:4:P1.15:P5.5,7 strain isolated in Brazil. The N-terminal amino acid sequence for the 46 kDa and 28 kDa proteins matched that reported by others for class 1 and 5 proteins respectively, whereas the sequence (25 amino acids for the 38 kDa (class 3 protein was similar to class 1 meningococcal proteins. The sequence for the 33 kDa (class 4 was unique and not homologous to any known protein.

  8. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Delucia, Angela M; Six, David A; Caughlan, Ruth E; Gee, Patricia; Hunt, Ian; Lam, Joseph S; Dean, Charles R

    2011-01-01

    Gram-negative outer membrane (OM) integrity is maintained in part by Mg(2+) cross-links between phosphates on lipid A and on core sugars of adjacent lipopolysaccharide (LPS) molecules. In contrast to other Gram-negative bacteria, waaP, encoding an inner-core kinase, could not be inactivated in Pseudomonas aeruginosa. To examine this further, expression of the kinases WaaP or WapP/WapQ/PA5006 was placed under the control of the arabinose-regulated pBAD promoter. Growth of these strains was arabinose dependent, confirming that core phosphorylation is essential in P. aeruginosa. Transmission electron micrographs of kinase-depleted cells revealed marked invaginations of the inner membrane. SDS-PAGE of total LPS from WaaP-depleted cells showed accumulation of a fast-migrating band. Mass spectrometry (MS) analysis revealed that LPS from these cells exhibits a unique truncated core consisting of two 3-deoxy-d-manno-octulosonic acids (Kdo), two l-glycero-d-manno-heptoses (Hep), and one hexose but completely devoid of phosphates, indicating that phosphorylation by WaaP is necessary for subsequent core phosphorylations. MS analysis of lipid A from WaaP-depleted cells revealed extensive 4-amino-4-deoxy-l-arabinose modification. OM prepared from these cells by Sarkosyl extraction of total membranes or by sucrose density gradient centrifugation lacked truncated LPS. Instead, truncated LPS was detected in the inner membrane fractions, consistent with impaired transport/assembly of this species into the OM. IMPORTANCE Gram-negative bacteria have an outer membrane (OM) comprised of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The OM protects cells from toxic molecules and is important for survival during infection. The LPS core kinase gene waaP can be deleted in several Gram-negative bacteria but not in Pseudomonas aeruginosa. We used a controlled-expression system to deplete WaaP directly in P. aeruginosa cells, which halted growth. WaaP depletion

  9. A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle.

    Science.gov (United States)

    Raschdorf, Oliver; Bonn, Florian; Zeytuni, Natalie; Zarivach, Raz; Becher, Dörte; Schüler, Dirk

    2018-02-10

    Magnetotactic bacteria produce chains of complex membrane-bound organelles that direct the biomineralization of magnetic nanoparticles and serve for magnetic field navigation. These magnetosome compartments have recently emerged as a model for studying the subcellular organization of prokaryotic organelles. Previous studies indicated the presence of specific proteins with various functions in magnetosome biosynthesis. However, the exact composition and stoichiometry of the magnetosome subproteome have remained unknown. In order to quantify and unambiguously identify all proteins specifically targeted to the magnetosome membrane of the Alphaproteobacterium Magnetospirillum gryphiswaldense, we analyzed the protein composition of several cellular fractions by semi-quantitative mass spectrometry. We found that nearly all genuine magnetosome membrane-integral proteins belong to a well-defined set of previously identified proteins encoded by gene clusters within a genomic island, indicating a highly controlled protein composition. Magnetosome proteins were present in different quantities with up to 120 copies per particle as estimated by correlating our results with available quantitative Western blot data. This high abundance suggests an unusually crowded protein composition of the membrane and a tight packing with transmembrane domains of integral proteins. Our findings will help to further define the structure of the organelle and contribute to the elucidation of magnetosome biogenesis. Magnetosomes are one of the most complex bacterial organelles and consist of membrane-bounded crystals of magnetic minerals. The exact composition and stoichiometry of the associated membrane integral proteins are of major interest for a deeper understanding of prokaryotic organelle assembly; however, previous proteomic studies failed to reveal meaningful estimations due to the lack of precise and quantitative data, and the inherently high degree of accumulated protein contaminants in

  10. Expression of the major outer membrane protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and Chlamydia suis in Escherichia coli using an arabinose-inducible plasmid vector.

    Science.gov (United States)

    Hoelzle, L E; Hoelzle, K; Wittenbrink, M M

    2003-10-01

    The ompA genes encoding the 40 kDa major outer membrane protein (MOMP) of Chlamydophila (Ch.) abortus, Ch. pecorum, and Chlamydia (C.) suis were cloned into the arabinose-inducible plasmid vector pBADMycHis, and recombinant MOMPs (rMOMP) from the three chlamydial species were expressed at high levels in Escherichia (E.) coli. The proteins lacking the 22 aa N-terminal signal peptide were expressed as insoluble cytoplasmic inclusion bodies which were readily purified using immobilized metal-affinity chromatography. The rMOMPs including the N-terminal signal peptide were expressed and translocated as a surface-exposed immunoaccessible protein into the outer membrane of E. coli. Transformants expressing this full-length rMOMP were significantly reduced in viability. Purified native elementary bodies (EB) and rMOMPs of the three chlamydial species purified from the E. coli cytoplasm were used for immunization of rabbits. The resulting sera were analysed for their ability to recognize homologous and heterologous rMOMP and native EB. When testing rMOMP antisera against rMOMP and EB antigens, marked cross-reactivities were detected between the three species. Using EB antisera and rMOMPs as antigens, a significant species-specific reactivity was measured.

  11. The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence.

    Science.gov (United States)

    Hsieh, Pei-Fang; Hsu, Chun-Ru; Chen, Chun-Tang; Lin, Tzu-Lung; Wang, Jin-Town

    2016-07-03

    Klebsiella pneumoniae is an opportunistic pathogen that causes several kinds of infections, including pneumonia, bacteremia, urinary tract infection and community-acquired pyogenic liver abscess (PLA). Adhesion is the critical first step in the infection process. Our previous work demonstrated that the transcellular translocation is exploited by K. pneumoniae strains to migrate from the gut flora into other tissues, resulting in systemic infections. However, the initial stages of K. pneumoniae infection remain unclear. In this study, we demonstrated that a K. pneumoniae strain deleted for yfgL (bamB) exhibited reduced adherence to and invasion of host cells; changed biogenesis of major β-barrel outer membrane proteins; decreased transcriptional expression of type-1 fimbriae; and increased susceptibility to vancomycin and erythromycin. The yfgL deletion mutant also had reduced ability to against neutrophil phagocytosis; exhibited decreased induction of host IL-6 production; and was profoundly attenuated for virulence in a K. pneumoniae model of bacteremia. Thus, the K. pneumoniae YfgL lipoprotein mediates in outer membrane proteins biogenesis and is crucial for anti-phagocytosis and survival in vivo. These data provide a new insight for K. pneumoniae attachment and such knowledge could facilitate preventive therapies or alternative therapies against K. pneumoniae.

  12. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    Science.gov (United States)

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  13. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Akihiro [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Ryuhei, E-mail: nakamura@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito, E-mail: hashimoto@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); ERATO/JST, HASHIMOTO Light Energy Conversion Project (Japan)

    2011-06-30

    Graphical abstract: . Display Omitted Highlights: > Monolayer biofilm of Shewanella cells was prepared on an ITO electrode. > Extracellular electron transfer (EET) process was examined with series of mutants. > Direct ET was confirmed with outer-membrane-bound OmcA-MtrCAB complex. > The EET process was not prominently influenced by capsular polysaccharide. - Abstract: The direct electron-transfer (DET) property of Shewanella bacteria has not been resolved in detail due to the complexity of in vivo electrochemistry in whole-cell systems. Here, we report the in vivo assignment of the redox signal indicative of the DET property in biofilms of Shewanella oneidensis MR-1 by cyclic voltammetry (CV) with a series of mutants and a chemical marking technique. The CV measurements of monolayer biofilms formed by deletion mutants of c-type cytochromes ({Delta}mtrA, {Delta}mtrB, {Delta}mtrC/{Delta}omcA, and {Delta}cymA), and pilin ({Delta}pilD), capsular polysaccharide ({Delta}SO3177) and menaquinone ({Delta}menD) biosynthetic proteins demonstrated that the electrochemical redox signal with a midpoint potential at 50 mV (vs. SHE) was due to an outer-membrane-bound OmcA-MtrCAB protein complex of decaheme cytochromes, and did not involve either inner-membrane-bound CymA protein or secreted menaquinone. Using the specific binding affinity of nitric monoxide for the heme groups of c-type cytochromes, we further confirmed this conclusion. The heterogeneous standard rate constant for the DET process was estimated to be 300 {+-} 10 s{sup -1}, which was two orders of magnitude higher than that previously reported for the electron shuttling process via riboflavin. Experiments using a mutant unable to produce capsular polysaccharide ({Delta}SO3177) revealed that the DET property of the OmcA-MtrCAB complex was not influenced by insulating and hydrophilic extracellular polysaccharide. Accordingly, under physiological conditions, S. oneidensis MR-1 utilizes a high density of outer-membrane

  14. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik

    2011-01-01

    acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time......BACKGROUND: Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells...... and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS: All six AMP analogues...

  15. Bacterial membrane vesicles, an overlooked environmental colloid: Biology, environmental perspectives and applications.

    Science.gov (United States)

    Toyofuku, Masanori; Tashiro, Yosuke; Hasegawa, Yusuke; Kurosawa, Masaharu; Nomura, Nobuhiko

    2015-12-01

    Phospholipid vesicles play important roles in biological systems. Bacteria are one of the most abundant organisms on Earth, and bacterial membrane vesicles (MVs) were first observed 50 years ago. Many bacteria release MVs to the environment that mainly consist of the cell membrane and typically range from 20 to 400 nm in size. Bacterial MVs are involved in several biological functions, such as delivery of cargo, virulence and gene transfer. MVs can be isolated from laboratory culture and directly from the environment, indicating their high abundance in and impact on ecosystems. Many colloidal particles in the environment ranging in size from 1 nm to 1 μm have been reported but not characterized at the molecular level, and MVs remain to be explored. Hence, MVs can be considered terra incognita in environmental colloid research. Although MV biogenesis and biological roles are yet to be fully understood, the accumulation of knowledge has opened new avenues for their applications. Via genetic engineering, the MV yield can be greatly increased, and the components of MVs can be tailored. Recent studies have demonstrated that MVs have promising potential for applications such as drug delivery systems and nanobiocatalysts. For instance, MV vaccines have been extensively studied and have already been approved in Europe. Recent MV studies have evoked great interest in the fields of biology and biotechnology, but fundamental questions, such as their transport in the environment or physicochemical features of MVs, remain to be addressed. In this review, we present the current understanding of bacterial MVs and environmental perspectives and further introduce their applications. Copyright © 2015. Published by Elsevier B.V.

  16. Deuterium Labeling Together with Contrast Variation Small-Angle Neutron Scattering Suggests How Skp Captures and Releases Unfolded Outer Membrane Proteins.

    Science.gov (United States)

    Zaccai, Nathan R; Sandlin, Clifford W; Hoopes, James T; Curtis, Joseph E; Fleming, Patrick J; Fleming, Karen G; Krueger, Susan

    2016-01-01

    In Gram-negative bacteria, the chaperone protein Skp forms specific and stable complexes with membrane proteins while they are transported across the periplasm to the outer membrane. The jellyfish-like architecture of Skp is similar to the eukaryotic and archaeal prefoldins and the mitochondrial Tim chaperones, that is the α-helical "tentacles" extend from a β-strand "body" to create an internal cavity. Contrast variation small-angle neutron scattering (SANS) experiments on Skp alone in solution and bound in two different complexes to unfolded outer membrane proteins (uOMPs), OmpA and OmpW, demonstrate that the helical tentacles of Skp bind their substrate in a clamp-like mechanism in a conformation similar to that previously observed in the apo crystal structure of Skp. Deuteration of the uOMP component combined with contrast variation analysis allowed the shapes of Skp and uOMP as well as the location of uOMP with respect to Skp to be determined in both complexes. This represents unique information that could not be obtained without deuterium labeling of the uOMPs. The data yield the first direct structural evidence that the α-helical Skp tentacles move closer together on binding its substrate and that the structure of Skp is different when binding different uOMPs. This work presents, by example, a tutorial on performing SANS experiments using both deuterium labeling and contrast variation, including SANS theory, sample preparation, data collection, sample quality validation, data analysis, and structure modeling. © 2016 Elsevier Inc. All rights reserved.

  17. Silver nanowire catalysts on carbon nanotubes-incorporated bacterial cellulose membrane electrodes for oxygen reduction reaction.

    Science.gov (United States)

    Kim, Bona; Choi, Youngeun; Cho, Se Youn; Yun, Young Soo; Jin, Hyoung-Joon

    2013-11-01

    Silver nanowires have unique electrical, thermal and optical properties, which support their potential application in numerous fields including catalysis, electronics, optoelectronics, sensing, and surface-enhanced spectroscopy. Especially, their application such as catalysts for alkaline fuel cells (AFCs) have attracted much interest because of their superior electrical conductivity over that of any metal and their lower cost compared to Pt. In this study, multiwalled carbon nanotubes (MWCNTs)-incorporated bacterial cellulose (BC) membrane electrode with silver nanowire catalyst was prepared. First, acid-treated MWCNTs were incorporated into BC membranes and then freeze-dried after solvent exchange to tert-butanol in order to maintain the 3D-network macroporous structure. Second, silver nanowires synthesized by polyol process were introduced onto the surface of the MWCNTs-incorporated BC membrane through easy vacuum filtration. Finally, thermal treatment was carried out to confirm the effect of the PVP on the silver nanowire catalysts toward oxygen reduction reaction. The electrode with thermally treated silver nanowire had great electrocatalytic activity compared with non-treated one. These results suggest that the MWCNTs-incorporated BC electrode with silver nanowire catalysts after thermal treatment could be potentially used in cathodes of AFCs.

  18. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  19. Energetics and molecular biology of active transport in bacterial membrane vesicles.

    Science.gov (United States)

    Kaback, H R; Ramos, S; Robertson, D E; Stroobant, P; Tokuda, H

    1977-01-01

    Bacterial membrane vesicles retain the same sidedness as the membrane in the intact cell and catalyze active transport of many solutes by a respiration-dependent mechanism that does not involve the generation of utilization of ATP or other high-energy phosphate compounds. In E. coli vesicles, most of these transport systems are coupled to an electrochemical gradient of protons (deltamuH+, interior negative and alkaline) generated primarily by the oxidation of D-lactate or reduced phenazine methosulfate via a membrane-bound respiratory chain. Oxygen or, under appropriate conditions, fumarate or nitrate can function as terminal electron acceptors, and the site at which deltamuH+ is generated is located before cytochrome b1 in the respiratory chain. Certain (N-dansyl)aminoalkyl-beta-D-galactopyranosides (Dns-gal) and N(2-nitro-4-azidophenyl)aminoalkyl 1-thio-beta-D-galactopyranosides (APG) are competitive inhibitors of lactose transport but are not transported themselves. Various fluorescence techniques, direct binding assays, and photoinactivation studies demonstrate that the great bulk of the lac carrier protein (ca. 95%) does not bind ligand in the absence of energy-coupling. Upon generation of a deltamuH+ (interior negative and alkaline), binding of Dns-gal and APG-dependent photoinactivation are observed. The data indicate that energy is coupled to the initial step in the transport process, and suggest that the lac carrier protein may be negatively charged.

  20. Uncoupler resistance in E. coli Tuv and Cuv is due to the exclusion of uncoupler by the outer membrane

    DEFF Research Database (Denmark)

    Haworth, Robert S.; Jensen, Peter Ruhdal; Michelsen, Ole

    1990-01-01

    is freely permeable to both TPP+ and hydroxymethylinulin. Tuv and Cuv are able to exclude these compounds. EDTA treatment was necessary prior to measuring membrane potentials in Tuv and Cuv. Under conditions where Δψ could be measured, uncouplers acted to dissipate Δψ with equal potency in all strains...

  1. Variations in fixation techniques for field emission SEM and TEM of zebrafish (Branchydanio rerio) embryo inner and outer membranes

    NARCIS (Netherlands)

    Kalicharan, D; Jongebloed, WL; Rawson, DM; Zhang, TT

    1998-01-01

    The morphology of embryos of the fresh water teleost, Brachydania rerio (zebrafish), was examined in a parallel FE-SEM/TEM study, after various pre- and post-fixation regimes. Special attention was paid to the chorion, the contents of the peri-vitelline space, the plasma membrane, the syncytial

  2. Response Mechanisms of Bacterial Degraders to Environmental Contaminants on the Level of Cell Walls and Cytoplasmic Membrane

    Directory of Open Access Journals (Sweden)

    Slavomíra Murínová

    2014-01-01

    Full Text Available Bacterial strains living in the environment must cope with the toxic compounds originating from humans production. Surface bacterial structures, cell wall and cytoplasmic membrane, surround each bacterial cell and create selective barriers between the cell interior and the outside world. They are a first site of contact between the cell and toxic compounds. Organic pollutants are able to penetrate into cytoplasmic membrane and affect membrane physiological functions. Bacteria had to evolve adaptation mechanisms to counteract the damage originated from toxic contaminants and to prevent their accumulation in cell. This review deals with various adaptation mechanisms of bacterial cell concerning primarily the changes in cytoplasmic membrane and cell wall. Cell adaptation maintains the membrane fluidity status and ratio between bilayer/nonbilayer phospholipids as well as the efflux of toxic compounds, protein repair mechanisms, and degradation of contaminants. Low energy consumption of cell adaptation is required to provide other physiological functions. Bacteria able to survive in toxic environment could help us to clean contaminated areas when they are used in bioremediation technologies.

  3. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane.

    Science.gov (United States)

    Murínová, Slavomíra; Dercová, Katarína

    2014-01-01

    Bacterial strains living in the environment must cope with the toxic compounds originating from humans production. Surface bacterial structures, cell wall and cytoplasmic membrane, surround each bacterial cell and create selective barriers between the cell interior and the outside world. They are a first site of contact between the cell and toxic compounds. Organic pollutants are able to penetrate into cytoplasmic membrane and affect membrane physiological functions. Bacteria had to evolve adaptation mechanisms to counteract the damage originated from toxic contaminants and to prevent their accumulation in cell. This review deals with various adaptation mechanisms of bacterial cell concerning primarily the changes in cytoplasmic membrane and cell wall. Cell adaptation maintains the membrane fluidity status and ratio between bilayer/nonbilayer phospholipids as well as the efflux of toxic compounds, protein repair mechanisms, and degradation of contaminants. Low energy consumption of cell adaptation is required to provide other physiological functions. Bacteria able to survive in toxic environment could help us to clean contaminated areas when they are used in bioremediation technologies.

  4. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Chang, C.F.

    1983-07-01

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A 2 in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure

  5. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.

    Science.gov (United States)

    Adams, Mark; Wang, Eric; Zhuang, Xiaohong; Klauda, Jeffery B

    2017-11-21

    The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (S CD ), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The S CD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C.1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45

    Directory of Open Access Journals (Sweden)

    Michael Pritsch

    2016-01-01

    Full Text Available Purified protein vaccines often require adjuvants for efficient stimulation of immune responses. There is no licensed mucosal adjuvant on the market to adequately boost the immune response to purified antigens for intranasal applications in humans. Bacterial outer membrane vesicles (OMV are attractive candidates potentially combining antigenic and adjuvant properties in one substance. To more precisely characterize the potential of Escherichia coli OMV for intranasal vaccination with heterologous antigens, immune responses for AnAPN1 and Pfs48/45 as well as ovalbumin as a reference antigen were assessed in mice. The intranasal adjuvant cholera toxin (CT and parenteral adjuvant MF59C.1 were used in comparison. Vaccinations were administered intranasally or subcutaneously. Antibodies (total IgG and IgM as well as subclasses IgG1, IgG2a, IgG2b, and IgG3 were measured by ELISA. T cell responses (cytotoxic T cells, Th1, Th17, and regulatory T cells were determined by flow cytometry. When OMV were used as adjuvant for intranasal immunization, antibody and cellular responses against all three antigens could be induced, comparable to cholera toxin and MF59C.1. Antigen-specific IgG titres above 1 : 105 could be detected in all groups. This study provides the rationale for further development of OMV as a vaccination strategy in malaria and other diseases.

  7. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice.

    Directory of Open Access Journals (Sweden)

    Wenping Gong

    Full Text Available The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ and tumor necrosis factor-α (TNF-α, two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii.

  8. Lipoprotein Transport: Greasing the Machines of Outer Membrane Biogenesis: Re-Examining Lipoprotein Transport Mechanisms Among Diverse Gram-Negative Bacteria While Exploring New Discoveries and Questions.

    Science.gov (United States)

    Grabowicz, Marcin

    2018-04-01

    The Gram-negative outer membrane (OM) is a potent permeability barrier against antibiotics, limiting clinical options amid mounting rates of resistance. The Lol transport pathway delivers lipoproteins to the OM. All the OM assembly machines require one or more OM lipoprotein to function, making the Lol pathway central for all aspects of OM biogenesis. The Lol pathways of many medically important species clearly deviate from the Escherichia coli paradigm, perhaps with implications for efforts to develop novel antibiotics. Moreover, recent work reveals the existence of an undiscovered alternate route for bringing lipoproteins to the OM. Here, lipoprotein transport mechanisms, and the quality control systems that underpin them, is re-examined in context of their diversity. © 2018 WILEY Periodicals, Inc.

  9. Recombinant major outer membrane protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and Chlamydia suis as antigens to distinguish chlamydial species-specific antibodies in animal sera.

    Science.gov (United States)

    Hoelzle, Ludwig E; Hoelzle, Katharina; Wittenbrink, Max M

    2004-10-05

    Recombinant major outer membrane proteins (rMOMP) of Chlamydophila (Ch.) abortus, Ch. pecorum, and Chlamydia (C.) suis were used as antigens to distinguish chlamydial species-specific antibodies in (i) immune sera from six rabbits and three pigs raised against native purified elementary bodies, (ii) serum samples from 25 sows vaccinated with Ch. abortus, and (iii) 40 serum samples from four heifers experimentally infected with Ch. abortus. All post-exposition sera contained chlamydial antibodies as confirmed by strong ELISA seroreactivities against the chlamydial LPS. For the rMOMP ELISA mean IgG antibody levels were at least 5.8-fold higher with the particular rMOMP homologous to the chlamydial species used for immunisation or infection than with heterologous rMOMPs (P <0.001). Preferential rMOMP ELISA reactivities of sera were confirmed by Western blotting. The results suggest that the entire chlamydial rMOMP could provide a species-specific serodiagnostic antigen.

  10. Purification, crystallization and preliminary X-ray analysis of the outer membrane complex HasA–HasR from Serratia marcescens

    International Nuclear Information System (INIS)

    Huché, Frédéric; Delepelaire, Philippe; Wandersman, Cécile; Welte, Wolfram

    2005-01-01

    The expression, purification, and crystallization in space group P2 1 2 1 2 1 of the complex HasA-HasR from S. marcescens are reported. Diffraction data have been collected and processed to 6.8 Å. Serratia marcescens is able to acquire iron using its haem-acquisition system (‘has’), which contains an outer membrane receptor HasR and a soluble haemophore HasA. After secretion, HasA binds free haem in the extracellular medium or extracts it from haemoproteins and delivers it to the receptor. Here, the crystallization of a HasA–HasR complex is reported. HasA and HasR have been overexpressed in Escherichia coli and the complex formed and crystallized. Small platelets and bunches of needles of dimensions 0.01 × 0.1 × 1 mm were obtained. A native data set has been collected to 6.8 Å

  11. The outer membrane protein TolC of Vibrio cholerae serves as a second cell-surface receptor for the VP3 phage.

    Science.gov (United States)

    Fan, Fenxia; Li, Xu; Pang, Bo; Zhang, Cheng; Li, Zhe; Zhang, Lijuan; Li, Jie; Zhang, Jingyun; Yan, Meiying; Liang, Weili; Kan, Biao

    2017-12-19

    Receptor recognition is a key step in the initiation of phage infection. Previously, we found that VP3, the T7 family phage of the Vibrio cholerae serogroup O1 biotype El Tor, can adsorb to the core oligosaccharide (OS) of lipopolysaccharides of V. cholerae. However, some wild-type strains of V. cholerae possessing the intact OS gene cluster still have VP3 binding but are resistant to VP3 infection. Moreover, an OS gene deletion mutant still exhibits weak VP3 binding, suggesting multiple factors are possibly involved in VP3 binding to V. cholerae. Here, we report that the outer-membrane protein TolC of V. cholerae is involved in the host adsorption of VP3. We observed that TolC directly interacts with the VP3 tail fiber protein gp44 and its C-terminal domains, and also found that three amino acid residues in the outside loops of TolC, at positions 78, 290 and 291, are critical for binding to gp44. Among VP3-resistant wild type V. cholerae strains, frequent amino acid residue mutations were observed in the loops around the sites 78, 290 and 291 which were predicted to be exposed to the cell surface. These findings reveal a co-receptor-binding mechanism for VP3 infection of V. cholerae and that both outer membrane TolC and OS are necessary for successful VP3 infection of V. cholerae. We conclude that mutations on the outside loops of the receptor may confer V. cholerae strains with VP3 phage-resistance, enabling these strains to survive in environments containing VP3 or related phages. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  12. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Arenholz, Elke; Rosso, Kevin M.

    2016-11-01

    The cycling of iron at the Earth’s near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger

  13. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study.

    Science.gov (United States)

    Petousis-Harris, Helen; Paynter, Janine; Morgan, Jane; Saxton, Peter; McArdle, Barbara; Goodyear-Smith, Felicity; Black, Steven

    2017-09-30

    Gonorrhoea is a major global public health problem that is exacerbated by drug resistance. Effective vaccine development has been unsuccessful, but surveillance data suggest that outer membrane vesicle meningococcal group B vaccines affect the incidence of gonorrhoea. We assessed vaccine effectiveness of the outer membrane vesicle meningococcal B vaccine (MeNZB) against gonorrhoea in young adults aged 15-30 years in New Zealand. We did a retrospective case-control study of patients at sexual health clinics aged 15-30 years who were born between Jan 1, 1984, and Dec 31, 1998, eligible to receive MeNZB, and diagnosed with gonorrhoea or chlamydia, or both. Demographic data, sexual health clinic data, and National Immunisation Register data were linked via patients' unique personal identifier. For primary analysis, cases were confirmed by laboratory isolation or detection of Neisseria gonorrhoeae only from a clinical specimen, and controls were individuals with a positive chlamydia test only. We estimated odds ratios (ORs) comparing disease outcomes in vaccinated versus unvaccinated participants via multivariable logistic regression. Vaccine effectiveness was calculated as 100×(1-OR). 11 of 24 clinics nationally provided records. There were 14 730 cases and controls for analyses: 1241 incidences of gonorrhoea, 12 487 incidences of chlamydia, and 1002 incidences of co-infection. Vaccinated individuals were significantly less likely to be cases than controls (511 [41%] vs 6424 [51%]; adjusted OR 0·69 [95% CI 0·61-0·79]; pvaccine effectiveness of MeNZB against gonorrhoea after adjustment for ethnicity, deprivation, geographical area, and sex was 31% (95% CI 21-39). Exposure to MeNZB was associated with reduced rates of gonorrhoea diagnosis, the first time a vaccine has shown any protection against gonorrhoea. These results provide a proof of principle that can inform prospective vaccine development not only for gonorrhoea but also for meningococcal vaccines. GSK

  14. Evaluation of Protective Potential of Yersinia pestis Outer Membrane Protein Antigens as Possible Candidates for a New-Generation Recombinant Plague Vaccine

    Science.gov (United States)

    Erova, Tatiana E.; Rosenzweig, Jason A.; Sha, Jian; Suarez, Giovanni; Sierra, Johanna C.; Kirtley, Michelle L.; van Lier, Christina J.; Telepnev, Maxim V.; Motin, Vladimir L.

    2013-01-01

    Plague caused by Yersinia pestis manifests itself in bubonic, septicemic, and pneumonic forms. Although the U.S. Food and Drug Administration recently approved levofloxacin, there is no approved human vaccine against plague. The capsular antigen F1 and the low-calcium-response V antigen (LcrV) of Y. pestis represent excellent vaccine candidates; however, the inability of the immune responses to F1 and LcrV to provide protection against Y. pestis F1− strains or those which harbor variants of LcrV is a significant concern. Here, we show that the passive transfer of hyperimmune sera from rats infected with the plague bacterium and rescued by levofloxacin protected naive animals against pneumonic plague. Furthermore, 10 to 12 protein bands from wild-type (WT) Y. pestis CO92 reacted with the aforementioned hyperimmune sera upon Western blot analysis. Based on mass spectrometric analysis, four of these proteins were identified as attachment invasion locus (Ail/OmpX), plasminogen-activating protease (Pla), outer membrane protein A (OmpA), and F1. The genes encoding these proteins were cloned, and the recombinant proteins purified from Escherichia coli for immunization purposes before challenging mice and rats with either the F1− mutant or WT CO92 in bubonic and pneumonic plague models. Although antibodies to Ail and OmpA protected mice against bubonic plague when challenged with the F1− CO92 strain, Pla antibodies were protective against pneumonic plague. In the rat model, antibodies to Ail provided protection only against pneumonic plague after WT CO92 challenge. Together, the addition of Y. pestis outer membrane proteins to a new-generation recombinant vaccine could provide protection against a wide variety of Y. pestis strains. PMID:23239803

  15. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1

    Science.gov (United States)

    Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Arenholz, Elke; Rosso, Kevin M.

    2016-11-01

    The cycling of iron at the Earth's near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr)oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1:10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger

  16. Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells.

    Science.gov (United States)

    Aguilar, Julieta; Cameron, Todd A; Zupan, John; Zambryski, Patricia

    2011-01-01

    Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in the A. tumefaciens octopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression following vir induction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles. vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiple vir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates. Transfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of the Agrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model of A. tumefaciens attachment to a plant cell, where A. tumefaciens takes advantage of the multiple

  17. Interaction of antimicrobial peptide Plantaricin149a and four analogs with lipid bilayers and bacterial membranes

    Directory of Open Access Journals (Sweden)

    José Luiz de Souza Lopes

    2013-12-01

    Full Text Available The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide's antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5% until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 µM and 155 µM to Plantaricin149a, respectively but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide.

  18. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes

    Science.gov (United States)

    Amos, Sarah-Beth T. A.; Vermeer, Louic S.; Ferguson, Philip M.; Kozlowska, Justyna; Davy, Matthew; Bui, Tam T.; Drake, Alex F.; Lorenz, Christian D.; Mason, A. James

    2016-11-01

    The interaction of antimicrobial peptides (AMPs) with the inner membrane of Gram-negative bacteria is a key determinant of their abilities to exert diverse bactericidal effects. Here we present a molecular level understanding of the initial target membrane interaction for two cationic α-helical AMPs that share structural similarities but have a ten-fold difference in antibacterial potency towards Gram-negative bacteria. The binding and insertion from solution of pleurocidin or magainin 2 to membranes representing the inner membrane of Gram-negative bacteria, comprising a mixture of 128 anionic and 384 zwitterionic lipids, is monitored over 100 ns in all atom molecular dynamics simulations. The effects of the membrane interaction on both the peptide and lipid constituents are considered and compared with new and published experimental data obtained in the steady state. While both magainin 2 and pleurocidin are capable of disrupting bacterial membranes, the greater potency of pleurocidin is linked to its ability to penetrate within the bacterial cell. We show that pleurocidin displays much greater conformational flexibility when compared with magainin 2, resists self-association at the membrane surface and penetrates further into the hydrophobic core of the lipid bilayer. Conformational flexibility is therefore revealed as a key feature required of apparently α-helical cationic AMPs for enhanced antibacterial potency.

  19. The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK).

    Science.gov (United States)

    Mackie, Timothy D; Kim, Bo-Young; Subramanya, Arohan R; Bain, Daniel J; O'Donnell, Allyson F; Welling, Paul A; Brodsky, Jeffrey L

    2018-03-02

    Protein trafficking can act as the primary regulatory mechanism for ion channels with high open probabilities, such as the r enal o uter m edullary (ROMK) channel. ROMK, also known as Kir1.1 (KCNJ1), is the major route for potassium secretion into the pro-urine and plays an indispensable role in regulating serum potassium and urinary concentrations. However, the cellular machinery that regulates ROMK trafficking has not been fully defined. To identify regulators of the cell-surface population of ROMK, we expressed a pH-insensitive version of the channel in the budding yeast Saccharomyces cerevisiae We determined that ROMK primarily resides in the endoplasmic reticulum (ER), as it does in mammalian cells, and is subject to ER-associated degradation (ERAD). However, sufficient ROMK levels on the plasma membrane rescued growth on low-potassium medium of yeast cells lacking endogenous potassium channels. Next, we aimed to identify the biological pathways most important for ROMK regulation. Therefore, we used a synthetic genetic array to identify non-essential genes that reduce the plasma membrane pool of ROMK in potassium-sensitive yeast cells. Genes identified in this screen included several members of the endosomal complexes required for transport (ESCRT) and the class-C core vacuole/endosome tethering (CORVET) complexes. Mass spectroscopy analysis confirmed that yeast cells lacking an ESCRT component accumulate higher potassium concentrations. Moreover, silencing of ESCRT and CORVET components increased ROMK levels at the plasma membrane in HEK293 cells. Our results indicate that components of the post-endocytic pathway influence the cell-surface density of ROMK and establish that components in this pathway modulate channel activity.

  20. Effect of growth times on the physical and mechanical properties of hydrophobic and oleophilic silylated bacterial cellulose membranes

    Science.gov (United States)

    Zakaria, M. N.; Sukirah, A. R.; Maizatulnisa, O.; Ayuni, J.; Khalisanni, K.; Rosmamuhamadani, R.

    2017-09-01

    Bacterial cellulose is an extracellular natural byproduct of the metabolism of various bacteria. Its physical and mechanical properties were determined by growth period, method of cultivation either static or agitate, fermentation condition and medium. Thispaper presented works done on the effect of culture time on the physical and mechanical properties of silylated bacteria cellulose membranes. Bacterial cellulose (BC) growth under 4, 5, 6 and 7 days had been used as a natural reinforcement material and silane as a hydrophobic coating material. With extended culture time, the tensile strength and tensile modulus were increased linearly as result of more compact structure. Due to hydrophobic properties of silane, the water absorption and thickness swelling improved correspondingly. Contact angle testingusing three different liquid proven the functionality of silane as hydrophobic and oleophilic coating agent. The experimental results suggested that hydropobicand oleophilicsilylatedbacteria cellulose membranes with controlled growth time could be prepared and regarded as a reusable oil spills membrane.

  1. Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi.

    Science.gov (United States)

    Zhao, Xiangna; Cui, Yujun; Yan, Yanfeng; Du, Zongmin; Tan, Yafang; Yang, Huiying; Bi, Yujing; Zhang, Pingping; Zhou, Lei; Zhou, Dongsheng; Han, Yanping; Song, Yajun; Wang, Xiaoyi; Yang, Ruifu

    2013-11-01

    Yep-phi is a T7-related bacteriophage specific to Yersinia pestis, and it is routinely used in the identification of Y. pestis in China. Yep-phi infects Y. pestis grown at both 20°C and 37°C. It is inactive in other Yersinia species irrespective of the growth temperature. Based on phage adsorption, phage plaque formation, affinity chromatography, and Western blot assays, the outer membrane proteins of Y. pestis Ail and OmpF were identified to be involved, in addition to the rough lipopolysaccharide, in the adsorption of Yep-phi. The phage tail fiber protein specifically interacts with Ail and OmpF proteins, and residues 518N, 519N, and 523S of the phage tail fiber protein are essential for the interaction with OmpF, whereas residues 518N, 519N, 522C, and 523S are essential for the interaction with Ail. This is the first report to demonstrate that membrane-bound proteins are involved in the adsorption of a T7-related bacteriophage. The observations highlight the importance of the tail fiber protein in the evolution and function of various complex phage systems and provide insights into phage-bacterium interactions.

  2. Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35.

    Science.gov (United States)

    Pocanschi, Cosmin L; Popot, Jean-Luc; Kleinschmidt, Jörg H

    2013-03-01

    Amphipols are a class of amphipathic polymers designed to maintain membrane proteins in aqueous solutions in the absence of detergents. Denatured β-barrel membrane proteins, like outer membrane proteins OmpA from Escherichia coli and FomA from Fusobacterium nucleatum, can be folded by dilution of the denaturant urea in the presence of amphipol A8-35. Here, the folding kinetics and stability of OmpA in A8-35 have been investigated. Folding is well described by two parallel first-order processes, whose half-times, ~5 and ~70 min, respectively, are independent of A8-35 concentration. The faster process contributed ~55-64 % to OmpA folding. Folding into A8-35 was faster than into dioleoylphosphatidylcholine bilayers and complete at ratios as low as ~0.17 g/g A8-35/OmpA, corresponding to ~1-2 A8-35 molecules per OmpA. Activation energies were determined from the temperature dependence of folding kinetics, monitored both by electrophoresis, which reports on the formation of stable OmpA tertiary structure, and by fluorescence spectroscopy, which reflects changes in the environment of tryptophan side chains. The two methods yielded consistent estimates, namely ~5-9 kJ/mol for the fast process and ~29-37 kJ/mol for the slow one, which is lower than is observed for OmpA folding into dioleoylphosphatidylcholine bilayers. Folding and unfolding titrations with urea demonstrated that OmpA folding into A8-35 is reversible and that amphipol-refolded OmpA is thermodynamically stable at room temperature. Comparison of activation energies for folding and unfolding in A8-35 versus detergent indicates that stabilization of A8-35-trapped OmpA against denaturation by urea is a kinetic, not a thermodynamic phenomenon.

  3. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model.

    Directory of Open Access Journals (Sweden)

    Miao Li

    Full Text Available Glässer's disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926 identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC, rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease.

  4. Correlation between ceftriaxone resistance of Salmonella enterica serovar Typhimurium and expression of outer membrane proteins OmpW and Ail/OmpX-like protein, which are regulated by BaeR of a two-component system.

    Science.gov (United States)

    Hu, Wensi S; Li, Pei-Chuan; Cheng, Chao-Yin

    2005-09-01

    Mutant 7F2 of Salmonella enterica serovar Typhimurium has a transposon inserted in the regulator gene baeR of a two-component system and showed a more-than-fourfold reduction in resistance to ceftriaxone. Complementation analysis suggested an association among the outer membrane proteins OmpW and STM3031, ceftriaxone resistance, and baeR.

  5. Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers

    Directory of Open Access Journals (Sweden)

    Stella W. Nowotarska

    2014-06-01

    Full Text Available Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE, 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin. Surface pressure–area (π-A and surface potential–area (Δψ-A isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial –lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.

  6. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.

  7. Cloning and Characterization of Multigenes Encoding the Immunodominant 30-Kilodalton Major Outer Membrane Proteins of Ehrlichia canis and Application of the Recombinant Protein for Serodiagnosis

    Science.gov (United States)

    Ohashi, Norio; Unver, Ahmet; Zhi, Ning; Rikihisa, Yasuko

    1998-01-01

    A 30-kDa major outer membrane protein of Ehrlichia canis, the agent of canine ehrlichiosis, is the major antigen recognized by both naturally and experimentally infected dog sera. The protein cross-reacts with a serum against a recombinant 28-kDa protein (rP28), one of the outer membrane proteins of a gene (omp-1) family of Ehrlichia chaffeensis. Two DNA fragments of E. canis were amplified by PCR with two primer pairs based on the sequences of E. chaffeensis omp-1 genes, cloned, and sequenced. Each fragment contained a partial 30-kDa protein gene of E. canis. Genomic Southern blot analysis with the partial gene probes revealed the presence of multiple copies of these genes in the E. canis genome. Three copies of the entire gene (p30, p30-1, and p30a) were cloned and sequenced from the E. canis genomic DNA. The open reading frames of the two copies (p30 and p30-1) were tandemly arranged with an intergenic space. The three copies were similar but not identical and contained a semivariable region and three hypervariable regions in the protein molecules. The following genes homologous to three E. canis 30-kDa protein genes and the E. chaffeensis omp-1 family were identified in the closely related rickettsiae: wsp from Wolbachia sp., p44 from the agent of human granulocytic ehrlichiosis, msp-2 and msp-4 from Anaplasma marginale, and map-1 from Cowdria ruminantium. Phylogenetic analysis among the three E. canis 30-kDa proteins and the major surface proteins of the rickettsiae revealed that these proteins are divided into four clusters and the two E. canis 30-kDa proteins are closely related but that the third 30-kDa protein is not. The p30 gene was expressed as a fusion protein, and the antibody to the recombinant protein (rP30) was raised in a mouse. The antibody reacted with rP30 and a 30-kDa protein of purified E. canis. Twenty-nine indirect fluorescent antibody (IFA)-positive dog plasma specimens strongly recognized the rP30 of E. canis. To evaluate whether the rP30

  8. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  9. The mode of action of 2-(thiazol-2-ylthio)-1beta-methylcarbapenems against Pseudomonas aeruginosa: the impact of outer membrane permeability and the contribution of MexAB-OprM efflux system.

    Science.gov (United States)

    Eguchi, Ken; Ueda, Yutaka; Kanazawa, Katsunori; Sunagawa, Makoto; Gotoh, Naomasa

    2007-02-01

    The mode of action of a series of 2-(4-dihydropyrrolylthiazol-2-ylthio) and 2-(4-tetrahydropyridinylthiazol-2-ylthio)-1beta-methylcarbapenem analogues against Pseudomonas aeruginosa was investigated with regard to contributions of the affinity for penicillin binding proteins (PBPs), the outer membrane permeability, and the effect of the MexAB-OprM efflux system. In this series of carbapenems, the introduction of a substituent in C-2 side chain with a change in physicochemical properties affected the antipseudomonal activity depending on the molecular weight. However, these structural modifications did not affect the affinity for pseudomonal PBPs significantly. It was confirmed that the affinity for PBPs was not an important determinant of the antipseudomonal activity of this series of carbapenems. OprD porin-deficiency did not affect antipseudomonal activity either. On the other hand, the MIC of these carbapenems against P. aeruginosa significantly decreased in the presence of outer membrane permeabilizer. This result strongly suggests that the cause of the relatively low antipseudomonal activity of these carbapanems is their low permeability through the outer membrane of P. aeruginosa. And also, in the presence of outer membrane permeabilizer, the MICs against MexAB-OprM deficient mutants remarkably decreased and were very close to the value of the IC(50) for pseudomonal PBPs. From this result, it was clear that the effect of the MexAB-OprM efflux system was also an important determinant of antipseudomonal activity of these carbapenems. In conclusion, the major determinants of the antipseudomonal activity of the 2-(thiazol-2-ylthio)-1beta-methylcarbapenems are the outer membrane permeability and the effect of the MexAB-OprM efflux system, not the affinity for pseudomonal PBPs.

  10. Mechanism of Action of a Membrane-Active Quinoline-Based Antimicrobial on Natural and Model Bacterial Membranes.

    Science.gov (United States)

    Hubbard, Alasdair T M; Barker, Robert; Rehal, Reg; Vandera, Kalliopi-Kelli A; Harvey, Richard D; Coates, Anthony R M

    2017-02-28

    HT61 is a quinoline-derived antimicrobial, which exhibits bactericidal potency against both multiplying and quiescent methicillin resistant and sensitive Staphylococcus aureus, and has been proposed as an adjunct for other antimicrobials to extend their usefulness in the face of increasing antimicrobial resistance. In this study, we have examined HT61's effect on the permeability of S. aureus membranes and whether this putative activity can be attributed to an interaction with lipid bilayers. Using membrane potential and ATP release assays, we have shown that HT61 disrupts the membrane enough to result in depolarization of the membrane and release of intercellular constituents at concentrations above and below the minimum inhibitory concentration of the drug. Utilizing both monolayer subphase injection and neutron reflectometry, we have shown that increasing the anionic lipid content of the membrane leads to a more marked effect of the drug. In bilayers containing 25 mol % phosphatidylglycerol, neutron reflectometry data suggest that exposure to HT61 increases the level of solvent in the hydrophobic region of the membrane, which is indicative of gross structural damage. Increasing the proportion of PG elicits a concomitant level of membrane damage, resulting in almost total destruction when 75 mol % phosphatidylglycerol is present. We therefore propose that HT61's primary action is directed toward the cytoplasmic membrane of Gram-positive bacteria.

  11. Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics

    Directory of Open Access Journals (Sweden)

    C. Liu

    2018-04-01

    Full Text Available We developed and fabricated novel polyvinylidene fluoride (PVDF-(0.5–2%Ag and PVDF-(0.5–2%Ag-1% graphene oxide (GO nanocomposite membranes with antifouling properties through electrospinning. Silver nanoparticles (AgNPs were in situ synthesized from silver nitrate precursor directly. The tensile properties, wetting, antifouling characteristics of pristine PVDF and its nanocomposite membranes were studied. Tensile tests showed that the addition of 0.5–2% AgNPs to PVDF improves its elastic modulus and tensile strength markedly. A further increase in both tensile modulus and strength of PVDF were obtained by hybridizing AgNPs with 1% GO. Water contact angle measurements revealed that the incorporation of AgNPs or AgNPs/GO nanofillers into PVDF decreases its degree of hydrophobicity. This led to the nanocomposite membranes having higher water flux permeation. In addition, AgNPs and AgNPs/GO fillers played a crucial role against protein and bacterial fouling of the resulting composite membranes. The antibacterial activities of electrospun nanocomposite membranes were assessed against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. On the basis of water contact angle, water permeation flux and antifouling results, electrospun PVDF-2% Ag-GO composite membrane was found to exhibit excellent filtration performance, protein antifouling and bactericidal activities. Thus such a fibrous nanocomposite is considered as a high-potential membrane for water purification and disinfection applications.

  12. Comparative studies of Yersinia pestis outer membrane isolation techniques and their potential use in plague epidemiology Estudo comparativo de técnicas de isolamento de membrana externa de Yersinia pestis e seu uso na epidemiologia da peste

    Directory of Open Access Journals (Sweden)

    Frederico Guilherme Coutinho Abath

    1990-04-01

    Full Text Available In the present study three techniques for obtaining outer membrane enriched fractions from Yersinia pestis were evaluated. The techniques analysed were: differential solubilization of the cytoplasmic membrane with Sarkosyl or Triton X-100, and centrifugation in sucrose density gradients. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE of outer membrane isolated by the different methods resulted in similar protein patterns. The measurement of NADH-dehydrogenase and succinate dehydrogenase (inner membrane enzymes indicated that the outer membrane preparations obtained by the three methods were pure enough for analytical studies. In addition, preliminary evidences on the potential use of outer membrane proteins for the identification of geographic variants of Y. pestis wild isolates are presented.No presente estudo três técnicas para isolamento de frações enriquecidas em membrana externa de Y. pestis foram avaliadas. As técnicas utilizadas foram: centrifugação em gradiente de densidade em sacarose e solubilização diferencial com Sarkosyl ou Triton X-100. A análise por eletroforese em gel de poliacrilamida na presença de dodecil sulfato de sódio (SDS-PAGE das membranas externas extraídas pelos diferentes métodos evidenciou perfis protéicos semelhantes. A determinação das atividades de NADH-desidrogenase e succinato-desidrogenase (enzimas de membrana interna indicou que todas as preparações estudadas eram adequadas a estudos analíticos. Obteve-se evidências preliminares sobre o possível uso de perfis protéicos de membrana externa na identificação de variantes geográficos entre isolados selvagens de Y. pestis.

  13. In Silico Analysis of the Small Molecule Content of Outer Membrane Vesicles Produced by Bacteroides thetaiotaomicron Indicates an Extensive Metabolic Link between Microbe and Host

    Directory of Open Access Journals (Sweden)

    William A. Bryant

    2017-12-01

    Full Text Available The interactions between the gut microbiota and its host are of central importance to the health of the host. Outer membrane vesicles (OMVs are produced ubiquitously by Gram-negative bacteria including the gut commensal Bacteroides thetaiotaomicron. These vesicles can interact with the host in various ways but until now their complement of small molecules has not been investigated in this context. Using an untargeted high-coverage metabolomic approach we have measured the small molecule content of these vesicles in contrasting in vitro conditions to establish what role these metabolites could perform when packed into these vesicles. B. thetaiotaomicron packs OMVs with a highly conserved core set of small molecules which are strikingly enriched with mouse-digestible metabolites and with metabolites previously shown to be associated with colonization of the murine GIT. By use of an expanded genome-scale metabolic model of B. thetaiotaomicron and a potential host (the mouse we have established many possible metabolic pathways between the two organisms that were previously unknown, and have found several putative novel metabolic functions for mouse that are supported by gene annotations, but that do not currently appear in existing mouse metabolic networks. The lipidome of these OMVs bears no relation to the mouse lipidome, so the purpose of this particular composition of lipids remains unclear. We conclude from this analysis that through intimate symbiotic evolution OMVs produced by B. thetaiotaomicron are likely to have been adopted as a conduit for small molecules bound for the mammalian host in vivo.

  14. Three-dimensional structure of Wza, the protein required for translocation of group 1 capsular polysaccharide across the outer membrane of Escherichia coli.

    Science.gov (United States)

    Beis, Konstantinos; Collins, Richard F; Ford, Robert C; Kamis, Alhaji B; Whitfield, Chris; Naismith, James H

    2004-07-02

    Wza is a highly conserved multimeric outer membrane protein complex required for the surface expression of the serotype K30 group 1 capsular polysaccharide in Escherichia coli. Here we present the first three-dimensional structure of this type of polysaccharide exporter at a 15.5-A resolution obtained using single particle averaging on a dataset of cryo-negatively stained protein. Previous structural studies on purified Wza have revealed a homo-oligomeric ring structure that is most probably composed of eight subunits. Symmetry analysis of the three-dimensional structure combined with biochemical two- and three-dimensional crystallographic data strongly suggest that Wza is an octameric complex with a C4 quasi-rotational symmetry and is organized as a tetramer of dimeric subunits. Wza is best described as a stack of two 4-A high rings with differing diameters providing a mushroom-like aspect from the side. The larger ring has a distinctive square shape with a diameter of 115 A, whereas the smaller is almost circular with a diameter of 90 A. In the center of the complex and enclosed by the four symmetrical arms is a small elliptical cagelike cavity of approximately 40 A in diameter. The central cavity is effectively sealed at the top and bottom of the complex but has small inter-arm holes when viewed from the side. We discuss the structure of this complex and implications in the surface translocation of cell-surface polysaccharide.

  15. Identification and immunogenicity of immunodominant mimotopes of outer membrane protein U (OmpU) of Vibrio mimicus from phage display peptide library.

    Science.gov (United States)

    Cen, Junyu; Liu, Xueqin; Li, Jinnian; Zhang, Ming; Wang, Wei

    2013-01-01

    Vibrio mimicus (V. mimicus) is the causative agent of ascites disease in aquatic animals. Outer membrane protein U (OmpU) is an important antigen of V. mimicus, but its protective epitopes are still unclear. A random 12-mer phage-displayed peptide library was used to screen and identify immunodominant mimotopes of the OmpU protein in V. mimicus by panning against purified OmpU-specific polyclonal antibody. Then the immunogenicity and immunoprotection in fish of these mimotopes was evaluated. Nine positive phage clones presented seven different 12- peptide sequences and more than 50% of them carried a consensus core motif of DSSK-P. These positive clones reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by OmpU protein. Intraperitoneal injection of seven positive phage clones into fish induced a specific antibody response to OmpU protein. The fish immunized respectively with the positive phage clones C17, C24, C60 and C66 obtained 100% immunoprotective effect against experimental V. mimicus challenge. Taken together, these mimotopes presented by clone C17, C24, C60 and C66 were immunodominant mimotopes of the OmpU protein and exhibited a more appropriate candidate as epitope-based vaccine against V. mimicus infection in aquatic animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A trivalent Apx-fusion protein delivered by E. coli outer membrane vesicles induce protection against Actinobacillus pleuropneumoniae of serotype 1 and 7 challenge in a murine model.

    Science.gov (United States)

    Xu, Kui; Zhao, Qin; Wen, Xintian; Wu, Rui; Wen, Yiping; Huang, Xiaobo; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Chang, Yung-Fu; Cao, Sanjie

    2018-01-01

    Actinobacillus pleuropneumoniae (APP) causes serious economic losses in the swine industry, and is the etiologic agent of porcine pleuropneumonia. In this study we have engineered a trivalent Apx fusion protein enclosed in outer membrane vesicles (Apxr-OMV) and studied its immunoprotective efficacy against APP serotypes 1 and 7 challenge in mice. The results showed that the IgG levels in the Apxr-OMVs immune group were significantly higher than those of the negative control (P < 0.05). Up-regulation of both Th1 (IFN-γ, IL-2) and Th2 (IL-4) cytokines were detected in splenocytes of Apxr-OMVs immune group. The survival rates 87.5% and 62.5% were observed against APP strain 1516 of serotype 7 and APP strain 2701 of serotype 1 in the groups of Apxr-OMVs immune group, respectively. Histopathological lesions of the pulmonary structure alveoli were found to be minimal in APX-OMV group challenged with APP serotypes 1 and 7. These results strongly indicated that engineered OMVs could effectively induce specific humoral or cellular immune responses. Moreover, Apxr-OMVs used as novel vaccine provides cross-protective immunity against different serotype 1 and 7 of APP infection in a mouse model. In contrast, the OMV-empty and PBS as negative controls or inactivated strain of APP-2701 and APP-1516 as positive controls for the animal study cannot provide protection or cross-protection.

  17. Variability of Outer Membrane Protein P1 and Its Evaluation as a Vaccine Candidate against Experimental Otitis Media due to Nontypeable Haemophilus influenzae: an Unambiguous, Multifaceted Approach

    Science.gov (United States)

    Bolduc, Gilles R.; Bouchet, Valérie; Jiang, Ru-Zhang; Geisselsoder, Janet; Truong-Bolduc, Que Chi; Rice, Peter A.; Pelton, Stephen I.; Goldstein, Richard

    2000-01-01

    Candidate vaccine antigens for preventing otitis media caused by nontypeable Haemophilus influenzae (NTHI) should possess one or more conserved epitopes. We sought to evaluate the candidacy of P1, a surface-expressed outer membrane protein knowing that this antigen is subject to diversifying selection. Therefore, we selected NTHI strains from among >500 phylogenically variant isolates representative of the diversity found in natural populations of H. influenzae. Twenty-three variants of P1 (≤95% similarity) were identified among 42 strains. When chinchillas were immunized with recombinant P1 (rP1) obtained from one of these isolates (BCH-3), all animals developed antibodies specific for rP1. Immunized animals were protected against disease when challenged with BCH-3, but not with an ompP1 mutant of BCH-3 or a strain (BCH-2) possessing a heterologous P1 (91% identity). We conclude that (i) while P1 induces protection against NTHI-mediated otitis media, development of a polyvalent vaccine reflecting the variability of P1 would be necessary to construct an efficacious vaccine and (ii) use of a phylogenically characterized collection of representative isolates in concert with gene sequencing, cloning, gene inactivation, and animal testing offers an efficient, rational, and rigorous strategy for evaluating the potential problems associated with variability of vaccine targets and specificity of related immune responses. PMID:10899849

  18. The host outer membrane proteins OmpA and OmpC are associated with the Shigella phage Sf6 virion

    International Nuclear Information System (INIS)

    Zhao Haiyan; Sequeira, Reuben D.; Galeva, Nadezhda A.; Tang Liang

    2011-01-01

    Assembly of dsDNA bacteriophage is a precisely programmed process. Potential roles of host cell components in phage assembly haven't been well understood. It was previously reported that two unidentified proteins were present in bacteriophage Sf6 virion (Casjens et al, 2004, J.Mol.Biol. 339, 379-394, Fig. 2A). Using tandem mass spectrometry, we have identified the two proteins as outer membrane proteins (OMPs) OmpA and OmpC from its host Shigella flexneri. The transmission electron cryo-microscopy structure of Sf6 shows significant density at specific sites at the phage capsid inner surface. This density fit well with the characteristic beta-barrel domains of OMPs, thus may be due to the two host proteins. Locations of this density suggest a role in Sf6 morphogenesis reminiscent of phage-encoded cementing proteins. These data indicate a new, OMP-related phage:host linkage, adding to previous knowledge that some lambdoid bacteriophage genomes contain OmpC-like genes that express phage-encoded porins in the lysogenic state.

  19. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

    Science.gov (United States)

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-12-05

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.

  20. Binding diversity of monoclonal antibodies to alpha(2-->8) polysialic acid conjugated to outer membrane vesicle via adipic acid dihydrazide.

    Science.gov (United States)

    Devi, S J; Karpas, A B; Frasch, C E

    1996-07-01

    Murine monoclonal antibodies (mAbs) were generated using group B Neisseria meningitidis and Escherichia coli K1 polysaccharides (PSs) conjugated to outer membrane vesicle (OMV) via adipic acid dihydrazide, and were used to identify the immunodeterminants expressed on these capsular PSs. Ten mAbs representative of IgM and all subclasses of IgG were obtained which recognized diverse immunodeterminants on alpha(2-->8) polysialic acid (PSA). The specificity of mAbs to different antigenic determinants was assessed by their differential binding to PSA attached to a solid phase by different methods and confirmed by absorption studies. Two mAbs from the E. coli K1 fusion were directed to the O-acetyl epitope and the rest reacted with both the PSs only when attached to a solid phase by certain means. The methods by which PSA was coated on the solid phase had an impact on the epitope expression and binding pattern. At the concentrations used, the O-acetyl-specific mAbs, IgG1 and IgG3 mAbs were not bactericidal against group B N. meningitidis, whereas other mAbs were. The conjugates B and K1 PSs present to the murine immune system different antigenic determinants, some of which elicit bactericidal antibodies.

  1. Transfer of fatty acids from the 1-position of phosphatidyl-ethanolamine to the major outer membrane lipoprotein of E coli

    International Nuclear Information System (INIS)

    Jackowski, S.; Rock, C.O.

    1986-01-01

    The fatty acids esterified to Braun's lipoprotein are derived from the phospholipid pool in E. coli. Mutants lacking acyl-CoA synthetase activity (fadD) incorporated extracellular fatty acids specifically into the 1-position of phosphatidylethanolamine (PtdEtn). This pathway was blocked by chloramphenicol and was depressed by preventing the acylation of the amino terminus of the lipoprotein with globomycin. Transfer of fatty acids to lipoprotein was investigated in fadD mutants harboring hybrid plasmids containing either the lipoprotein gene or a lipoprotein-β-lactamase gene fusion under control of the lactose promoter. Labeling of the 1-position of the PtdEtn pool prior to induction of lipoprotein biosynthesis resulted in the transfer of fatty acids from PtdEtn to the lipoproteins. Induction of lipoprotein synthesis in the presence of exogenous [1- 14 C]palmitate increased the amount of radioactivity entering the PtdEtn pool and efficiently labeled lipoprotein acyl moieties. Lipoprotein fatty acids derived from the 1-position of PtdEtn were resistant to hydroxylamine hydrolysis, and globomycin reduced the incorporation of exogenous [1- 14 C]palmitic acid into lipoproteins by 80% suggesting that the fatty acid is attached to the amino terminus. These data illustrate the metabolic relationship between turnover of fatty acids in the 1-position of PtdEtn and the maturation of the major outer membrane lipoprotein

  2. DipA, a pore-forming protein in the outer membrane of Lyme disease spirochetes exhibits specificity for the permeation of dicarboxylates.

    Directory of Open Access Journals (Sweden)

    Marcus Thein

    Full Text Available Lyme disease Borreliae are highly dependent on the uptake of nutrients provided by their hosts. Our study describes the identification of a 36 kDa protein that functions as putative dicarboxylate-specific porin in the outer membrane of Lyme disease Borrelia. The protein was purified by hydroxyapatite chromatography from Borrelia burgdorferi B31 and designated as DipA, for dicarboxylate-specific porin A. DipA was partially sequenced, and corresponding genes were identified in the genomes of B. burgdorferi B31, Borrelia garinii PBi and Borrelia afzelii PKo. DipA exhibits high homology to the Oms38 porins of relapsing fever Borreliae. B. burgdorferi DipA was characterized using the black lipid bilayer assay. The protein has a single-channel conductance of 50 pS in 1 M KCl, is slightly selective for anions with a permeability ratio for cations over anions of 0.57 in KCl and is not voltage-dependent. The channel could be partly blocked by different di- and tricarboxylic anions. Particular high stability constants up to about 28,000 l/mol (in 0.1 M KCl were obtained among the 11 tested anions for oxaloacetate, 2-oxoglutarate and citrate. The results imply that DipA forms a porin specific for dicarboxylates which may play an important role for the uptake of specific nutrients in different Borrelia species.

  3. Short communication: Roles of outer membrane protein W (OmpW) on survival and biofilm formation of Cronobacter sakazakii under neomycin sulfate stress.

    Science.gov (United States)

    Ye, Yingwang; Ling, Na; Gao, Jina; Zhang, Maofeng; Zhang, Xiyan; Tong, Liaowang; Ou, Dexin; Wang, Yaping; Zhang, Jumei; Wu, Qingping

    2018-04-01

    Cronobacter sakazakii is associated with severe infections including sepsis, neonatal meningitis, and necrotizing enterocolitis. Antibiotic resistance in Cronobacter species has been documented in recent years, but the genes involved in resistance in Cronobacter strains are poorly understood. In this study, we determined the role of outer membrane protein W (OmpW) on survival rates, morphologic changes, and biofilm formation between wild type (WT) and an OmpW mutant strain (ΔOmpW) under neomycin sulfate stress. Results indicated that the survival rates of ΔOmpW were significantly reduced after half minimum inhibitory concentration (½ MIC) treatment compared with the WT strain. Filamentation of C. sakazakii cells was observed after ½ MIC treatment in WT and ΔOmpW, and morphologic injury, including cell disruption and leakage of cells, was more predominant in ΔOmpW. Under ½ MIC stress, the biofilms of WT and ΔOmpW were significantly decreased, but decreasing rates of biofilm formation in mutant strain were more predominant compared with WT strain. This is the first report to determine the role of OmpW on survival, morphological changes, and biofilm formation in C. sakazakii under neomycin sulfate stress. The findings indicated that OmpW contributed to survival and reduction of morphological injury under neomycin sulfate stress. In addition, enhancing biofilm formation in ΔOmpW may be an alternative advantage for adaptation to neomycin sulfate stress. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Partial Characterisation of Salmonella gallinarum Clinical Isolate and Expression of Its Antigenic Outer Membrane Protein C (OmpC Gene In Planta

    Directory of Open Access Journals (Sweden)

    Ee Leen Pang

    2015-05-01

    Full Text Available Fowl typhoid’s epidemiology and disease intervention have been extensively studied since 1950's owing to its high mortality and morbidity rates. Even up-to-date, outbreaks are incessantly haunting poultry industries of major continents. Salmonella gallinarum, the etiologic agent of fowl typhoid, was used to develop a series of vaccination regime. However, treatments are gradually losing effectiveness due to residual virulence from mutated strains and rapid evolution of mult